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Abstract

Jinwook Bok
Department of Electrical Engineering & Computer Science

College of Engineering | Seoul National University

Information visualization harnesses the capabilities of human vision by repre-
senting data through visual graphics, facilitating effective data exploration through
visual graphics. However, with the ever-increasing size of data surpassing the lim-
itations of human perception, providing scalability in visualizations has become
a significant topic of research. Various methods and workflows have been devel-
oped to address the issue of scalability in information visualization, with com-
bining multiple extracted information from the data in a coherent manner to en-
hance interaction with data. However, despite the efforts to effectively manage
scalability, there are situations where dealing with the information of multiple
values across multiple items becomes inevitable, particularly when resources are
limited. In such cases, previous approaches may become inadequate, and users
may need to resort to interacting with individual items, thereby encountering the
scalability problem once again.

Reflecting the limitations, we introduce approaches in resolving the scalabil-
ity issue of interacting with large sized multivariate data, utilizing colors as an im-
portant channel for resolving scalability. We leverage the critical advantage of col-
orsin visualizing multiple values in limited space, allowing users to expand their
understanding by interpreting the color patterns associated with different values.
Tackling scalability issues in visualizing multiple items, we present Parallel His-

togram Plot (PHP), a technique that overcomes the innate limitations of parallel



coordinates plot (PCP) by attaching stacked-bar histograms with discrete color
schemes to PCP. The color-coded histograms enable users to see an overview of
the whole data without cluttering or scalability issues. Each rectangle in the PHP
histograms is color coded according to the data ranking by a selected attribute.
The color-coding scheme allows users to visually examine relationships between
attributes, even between those that are displayed far apart, without repositioning
or reordering axes. Addressing the complexity of multiple attributes in items, we
introduce IssueML, a visualization system for monitoring and analyzing multiple
issues that occur during the development of large softwares. Based on expert in-
terviews, IssueML is equipped with specialized visualization techniques for mon-
itoring issues and their progress over time. With the help of multiple, coordinated
views, IssueML enables scalable observation and analysis of multiple issues, fol-
lowing the Visual Information Seeking Mantra. Finally, to support the user’s in-
teraction with multiple items, we propose TRaVis, a novel visualization approach
in visualizing temporal rank data. In TRaVis each of the ranking changes are ex-
pressed as a single row of color patches, which are stacked according to order
without overlapping. Such heatmap-like visualization enables the observation of
trends of multiple items in a non-cluttering manner. By altering how items are
stacked in the visualization, TRaVis enables the examination of temporal rank
data in conjunction with the sorting criterion, which supports curious individu-
als in their visual information seeking process. We wrap up the dissertation by
discussing the learned lessons and suggesting future research agendas based on

the three researches.

Keywords: Information Visualization; Multivariate Data; User Interaction; Colors

Student Number: 2015-22900
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Chapter1

Introduction

1.1 Background and Motivation

Information visualization leverages the graphical representation of data to
facilitate user interaction and information retrieval, taking advantage of hu-
man visual perception. In order to effectively communicate information through
visualizations, the original data is often transformed or modified to align
with the specific visualization purpose and the chosen visual channels. This
process of modifying the data plays a crucial role in determining the effec-
tiveness of the visualization. By carefully considering the task at hand and
selecting appropriate data modifications and visual channels, information
visualizations can effectively express complex information, enabling users to
make meaningful interpretations and gain valuable insights from the data.
However, providing scalability has become a crucial challenge in infor-
mation visualization due to the continuous growth in data volume and com-
plexity. To visualize with scalability, it is imperative to effectively represent
information within the limitations of limited space and human perception.
Thus, to address the challenge of interacting with large data, it is common

to extract essential information from the data and reduce the number of tar-



gets to be rendered based on the user’s objectives. One example is to cluster
multiple items into a single cluster, effectively reducing the number of in-
dividual targets to interact with. By grouping similar items together, users
can efficiently identify and analyze the shared characteristics within the data
without being overwhelmed by the sheer volume of multiple items. Further-
more, as no single approach can extract all the necessary information from
complex data, it is a common practice in visual analytics to express multiple
interconnected facets of the data, each reflecting different yet related aspects.
By combining multiple facets of the data in a rigorous manner, following es-
tablished guidelines such as the top-to-bottom approach in the Visual Infor-
mation Seeking Mantra [71] or the alternative bottom-up approach [47, 80],
users can effectively interact with large datasets and search for information
in a scalable manner.

Despite ongoing efforts to address scalability in visual analytics, chal-
lenges still persist in the realm of scalable data exploration. While reduction
techniques can be applied to simplify the data, there are instances where
users need to interact with each value within multiple items, leading to the
reintroduction of scalability issues. For example, although clustering can
make the observation task more efficient, users may still need to interact with
individual items within the clusters. Furthermore, approaches in visual an-
alytics can introduce additional complexity to the overall visualization pro-
cess. While they may demonstrate effectiveness in controlled research set-
tings, their applicability in real-world situations may vary. In contrast to con-
trolled settings, real-world users often face ambiguous tasks that lack clear
definitions or understanding. They may also encounter resource limitations,
such as limited computational power or lack of domain-specific knowledge,

which can hinder their ability to effectively visualize the data based on the



given task. While the increase in variety and complexity of data to interact
further exacerbate the need for scalable visualization solutions in such lim-
ited situations, the attention given to these critical issues has been relatively
insufficient.

In situations where appropriate reduction methods are not available or
limited, users often have to resort to simpler visualization techniques that fo-
cus on expressing individual values without reducing the data. These tech-
niques generally leverage visual properties such as positions or lengths to
express multiple values, based on established results of human perception.
However, such results do not consider the challenges that arise when multi-
ple items need to be displayed within limited space. The existing results of
human perception, although effective in larger spaces, may not adequately
address the challenges of visualizing multiple values in restricted spaces. As
a result, the use of visual approaches that were previously effective can be
limited, and the overlapping of visual components can hinder the interpre-
tation of the data. The difficulty in effectively visualizing the details of multi-
ple items has become a critical problem in visualization, especially with the
continued growth in the size of interactive data. Unfortunately, the issue of
expressing details of multiple values has received relatively less attention in
both research and practice compared to the emphasis on visualizing a scal-
able overview. This is particularly true when it comes to supporting novice
users who may have limited knowledge of visualization methods and rely on
simpler visual techniques. Thus, addressing this limitation in information vi-
sualization is crucial for bridging the gap between the growing complexity
of data and inexperienced users, by providing them with enhanced usability

through visualization techniques that effectively represent multiple values.



Taking into account the limitations highlighted earlier, our dissertation
focuses on the design and implementation of novel visualization techniques
aimed at supporting users in effectively interacting with multiple values of
multiple items in multivariate data. In our research, we recognize and lever-
age the advantageous characteristics of colors as a critical channel for ad-
dressing the scalability issue. Colors offer the benefit of conveying infor-
mation without requiring excessive space, which is crucial in dealing with
scalability challenges. Additionally, colors enable users to directly interact
with individual values within the visualization, enhancing the overall un-
derstanding and facilitating direct interaction and comprehension. While
colors are commonly utilized in visualizing multiple patterns, such as ex-
pressing gene sequences in bioinformatics [1], they are often underutilized
in other domains due to concerns about accuracy limitations. However, in
situations where the size of the data is significant and previous "accurate’
approaches are ineffective, colors can be highly effective in limited situa-
tions. To leverage the advantages of colors in the researches, we employ map-
pings that assigns colors to values, allowing the expression multiple values
of multiple items as color patterns. By carefully positioning of these color
patterns, the visualizations ensure effective understanding of the data from
which users can interact with the data across various contexts.

In the dissertation, we delve into three critical aspects related to the scala-
bility issue in information visualization: Effectively handling a large number
of items, dealing with multiple and complicated attributes, and supporting
user’s interaction in large sized data. Firstly, focusing on providing a scal-
able visualization in multiple items, we developed Parallel Histogram Plots
for expressing the overview of multiple items augmenting parallel coordi-

nates plot. Secondly, dealing with multiple, complicated attributes of items,



we implemented IssueML, a visualization tool for monitoring how fields in
multiple issues have progressed over time. Finally, for supporting user inter-
action with multiple items, we designed TRaVis, a visualization technique
for displaying multiple ranking changes of items from which users can seek

for information in various perspectives.

Thesis Statement  Utilizing colors as a critical channel to express values can
overcome the scalability and complexity issues in visualizing multiple values
of multiple items, supporting user’s exploration and interactions with large

multivariate data.

1.2 Research Questions

Over the course of the research, we have sought ways to address the thesis
statement of utilizing colors to deal with scalability in expressing large sized

data with the following research questions

RQ1. How can multiple items in data be visualized in a scalable manner

using colors?

RQ2. How can items with complex, multiple attributes be effectively ex-

pressed with colors?

RQ3. How can visualizations support the users’ interaction with multiple

items utilizing colors?

1.3 Contributions

The core contributions of this dissertation are as follows:



1. Development and evaluation of Parallel Histogram Plot, a visualization
technique for visualizing scalable overview of multiple items in multi-
variate data by attaching colored, stacked bar histograms in each axis of

parallel coordinates plot.

2. Design and implementation of IssueML, an interactive visual system for
monitoring and analyzing multiple issues and its related information that

occur during development of a large software.

3. Implementation of TRaVis, a visualization technique for supporting the

observation and exploration of multiple items in a temporal rank data.

1.3.1 Augmenting Parallel Coordinates Plots with Color-coded
Stacked Histograms

Figure 1.1: Parallel Histogram Plots (PHP) visualizing multiple attributes.

Addressing RQ1, we designed Parallel Histogram Plots (PHP), a novel
visualization technique for displaying scalable overview of multiple items.
Parallel coordinates plot (PCP) is a commonly used visualization technique
for observing the information of multivariate data. In PCP, information of
each item are encoded as a polyline, and from the patterns of polylines cor-
responding to multiple items, users can discover major trends and outliers

in the data. However, scalability of PCP is limited due to the cluttering of



polylines, in which patterns become difficult to discern as the number of
items to visualize increases. To overcome the limitations, we developed Par-
allel Histogram Plots (PHP) that augments PCP with color-coded stacked bar
charts attached to each axis of PCP. From the stacked bar charts, users can
observe the overall information of multiple attributes in a scalable manner.
Furthermore, the bar charts in PHP are color-coded based on a user-selected
attribute. By examining the color distribution across the histograms, users
can uncover relationships between the selected attribute and other attributes,
even when those attributes are distant from each other. This capability over-
comes the limitation of PCP, which is limited in the observation relationships

between distant attributes.

1.3.2 Interactive Visualization System for Monitoring Issues in
Industrial Software Development

IssueML Multiple Issues
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Figure 1.2: Overview of IssueML displaying multiple issues.

Focusing on RQ2, we developed IssueML, an interactive visualization
system for monitoring the progress of multiple issues. Errors that occur dur-
2o U & -
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ing the development of a large software are recorded as issues. Issues con-
tain critical information related to the symptoms and conditions of the er-
rors, and managers are responsible for monitoring such issues to ensure
timely resolution. However, the sheer volume of issues to be monitored, cou-
pled with the fact that information within each issue evolves over time as
the resolution progresses, presents a significant challenge. Due to the com-
plexity of changes in multiple issues, managers were previously required to
manually review the details of each issue to understand its progress, which
was time-consuming and inefficient. To address these limitations, we devel-
oped IssueML, a visual analytic system designed for monitoring the progress
of multiple issues. Based on interviews with domain experts, IssueML is
equipped with various visualizations that aid the observations of multiple
issues following the Visual Information Seeking Mantra [71]. Especially, the
progress of each issues are expressed as patterns utilizing colors, from which
users can effectively monitor changes in multiple issues and observe how

critical information has evolved over time.

1.3.3 Towards Supporting the Exploration of Temporal Rank Data
with Multiple Colormaps




Related to RQ3, we developed TRaVis, a visualization technique for sup-
porting the exploration of multiple items in temporal rank data. The concept
of rank is widely used in comparing items, as it offers the convenience of
summarizing the related context into a single value, i.e., rank. Although vi-
sualizations are often helpful in exploring rank data, previous methods have
had limitations in depicting changes in rankings of multiple items over time.
We designed TRaVis, a novel visualization approach specifically designed
for displaying temporal rank data. In TRaVis each change in ranking for an
item is represented by a row of color patches, which are stacked in a partic-
ular order to create a heatmap-like visualization. The heatmap-like visual-
ization of TRaVis effectively displays trends in multiple items without over-
lapping them. By changing the stacking order of items, TRaVis allows the
observation of temporal rank data in relation to the sorting criterion, which

supports curious individuals in their visual information seeking process.

1.4 Structure of the Dissertation

The remainder of the dissertation is organized as follows. First, in Chap-
ter 2, we introduce prior works related to utilizing colors as a visual channel,
and also cover previous approaches related to the researches in the disser-
tation. In Chapter 3, we present Parallel Histogram Plots, in which we il-
lustrate the design of the technique and measure its effectiveness compared
to alternative visualization techniques in the correlation coefficient retrieval
task. Chapter 4 describes the system overview and use cases of IssueML, in-
cluding its system requirements which was established based on interviews
with domain users. Following in Chapter 5, the designs and its rationale

of TRaVis, along with various use cases in visualizing real world data are



demonstrated. We discuss insights gathered from the researches in Chap-
ter 6, and conclude our dissertation in Chapter 7 by summarizing the contri-

butions and presenting potential research topics related to the dissertation.
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Chapter 2

Related Work

This chapter covers previous works related to the dissertation that motivated
the researches. First we discuss colors as a visual channel, and cover re-
searches related to mapping values to colors. Second, we introduce overview
in how users interact with the overall data. Finally, we discuss previous ap-

proaches related to our researches of visualizing data in a scalable manner.

2.1 Colors as a Visual Channel

When color is employed as a visual channel, data information is encoded
into different properties including hue, lightness, and saturation. These color
properties enable users to extract valuable values and insights from the vi-
sual representation of the data. Researches for understanding how users per-
ceive information in colors have been researched in various tasks and per-
spectives, including how people distinguish different colors with names [31],
or measuring its effectiveness in graphical perception according to various
tasks [9, 30]. However, colors underperform in the perspective of graphical
perception [9, 30] and is prone to complicated interaction effect in multiple

colors that affect the perception of humans, such as contrast altering the ap-
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pearance [54], or various visual illusions that occur under certain conditions.
Thus, it requires careful usage when expressing information with colors.

Addressing such difficulties in utilizing colors, various researches and
guidelines were proposed for overcoming and improving the usage in visu-
alizing information with colors [72, 87]. For example, Wang et. al introduced
a method for optimizing the selection of colors in multiclass scatterplots [86],
and Lu et. al developed integrated approach for creating and assigning col-
ors to visualizations [50]. Likewise, various guideline in choosing colors for
effective representation of values [48, 85] have aided users in effectively ob-
serving information with colors despite the limitations.

Meanwhile, compared to handling a finite, defined set of colors, attempts
in visualizing continuous values as colors mostly involve utilizing colormaps.
Colormaps refers to a continuous set or array of colors, in which the range of
values can be mapped to the range of colors for values to be expressed as col-
ors. The rainbow colormap is one widely used color map in which the colors
of the rainbow spectrum are continuously mapped to values for expressive
representation. However, the effectiveness of rainbow colormap are known
to underperform in various aspects [7, 68], and thus it is generally not recom-
mended to use them. Alternatively, carefully designed colormaps based on
heuristic rules are often utilized in visualizing quantatitive values. Popular
colormaps used include the viridis colormap from mpl colormaps [79], or
the predefined color scales in Colorbrewer [27], which are generated accord-
ing to various criteria related to human perception and defined rules [92].
Moreover, approaches in further enhancing the versatility of the colormaps
were researched, for example the Value-Suppressing Uncertainty Palettes for

dealing with the problem of expressing uncertain values in the data [11].
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Exploiting the advantages of colors in expressing patterns, visualizations
have utilized multiple rows of colors for visualizing the information of mul-
tiple items in a scalable manner [2, 69]. In this approach, the advantage of
colors in visualizing patterns in limited space (compared to line charts or
horizon charts) without cluttering is leveraged [22]. The Line Graph Explorer
[44] uses a focus + context technique with multiple colored line charts that
changes into rows of colors when shrunk. On Lasagna plots [73], the rows
and columns of the plot can be sorted by various methodologies (vertically,
horizontally, etc.) to find trends in items or in a certain time range. The mul-
tiple rows of colors can also be utilized in bioinfomatics for encoding and
comparing patterns in genomic information [1], multiple runners [59], or in
expressing fitness activities [55]. Expanding upon such previous approaches,
in TRaVis we express each of the ranking changes as a single row of colors for
scalable visualization. To further support scalability in the visualization, we
greedily stack each row of colors in a manner similar to Tetris blocks, from

which users can observe patterns in multiple items in limited space.

2.2 Approaches in Visual Information Seeking

As a single visualization facet is limited in expressing all of the information
in the data, it is important to provide multiple facets of data in visual analyt-
ics from which users can understand the data step by step. In guiding how
such multiple facets should function, the Visual Information Seeking Mantra
[71] is one of the most renowned guideline. The Visual Information Seeking
Mantra is consisted of 4 main keywords, of Overview, Zoom, Filter, and De-
tails on Demand, which corresponds to key steps of visualizing information

of data in a top-down manner from which users can effectively understand
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and interact with. Alternatively, visual interaction of starting from the de-
tail of a single item and expanding the target based on the information is
another popular approach in information seeking [47, 80]. Converse to the
top-down approach in Visual Information Seeking Mantra, this "planting a
seed and watching it grow" approach mostly refers to the bottom-up style in
interacting with multiple items in the data.

In both the top-down approach of the Visual Information Seeking Mantra
and the alternative bottom-up approaches, the main focus is providing guide-
lines on how should users interact with the data. Conversely, the term of in-
formation flaneurs [14] approach from a different perspective in interacting
with data, of user’s attitude and intention with the data. The term flaneur
is commonly used to describe a person who leisurely walks around, observ-
ing their surroundings without any particular goal in mind. In the context
of information seeking, information flaneur refers to a paradigm of infor-
mation interaction that is driven by aesthetics and the desire for serendip-
itous encounters, rather than a clear motivation or task. An example that
supports this concept of information seeking is the Bohemian Library [74],
where multiple interconnected visualizations support the serendipitous dis-
covery of books. When designing visualizations for information flaneurs, it
is important to provide multiple facets of the data that allow users to en-
counter information from various perspectives. Although rank is a popu-
lar means of comparison, users had limited interaction with the temporal
aspects of rank data due to the complexity of multiple ranking changes in
numerous items. Dealing with this, in designing TRaVis, we visualize the
ranks of items in limited space without overlapping using multiple rows of

heatmaps, enabling the discovery of interesting patterns in each items. Also,
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by sorting the items according to various criteria, we enable the observation

of temporal rank data in multiple perspectives.

2.3 Approaches in Visualizing with Scalability

In this section we discuss previous researches related to visualizing multiple

items of multiple values in various approaches related to our research.

2.3.1 Parallel Coordinate Plots

This section introduces previous research upon which we built our visual-
ization and interaction idioms in this study. We first summarize previous
approaches to enhancing the performance of PCP. Then, we introduce At-
tribute and Influence Explorer [76, 77] which inspired our work through the

way it utilizes histograms of stacked elements.

Approaches to Enhancing PCP

Many efforts have been devoted to enhancing the performance of PCP. They
have focused mainly on making it more scalable by reducing visual clut-
ter. These efforts can be grouped into four categories according to the types
of techniques employed: reduction, transformation, integration, and interac-
tion.

Reducing the number of items displayed on PCP is a popular approach.
Such a reduction results in fewer polylines, thus leading to less cluttering.
Reducing the number of items to show is done mostly by aggregating (or
compressing) the data. Because it is subject to information loss, maintain-
ing the characteristics of the original data as much as possible has been the
main concern of this approach. Various data reduction methods have been

introduced, including clustering [20, 42], binning [58], sampling [15], and
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image-space methods based on image processing algorithms [3]. The num-
ber of dimensions can also be reduced by using dimension hierarchy [89],
by measuring the distance between attributes [36], and by contracting adja-
cent axes[57]. Finally, without any form of data reduction, the ordering of the
dimensions can be changed for a more orderly overview [12, 49, 51, 61, 91].
Reordering attributes is critical in PCP because it is impossible to investigate
relationships between nonadjacent attributes.

Transforming the components (polylines and axes) of PCP is another
well-known approach. Bezier curves can replace the polylines of PCP, which
are more appropriate for bundling and thus more suitable for presenting
clusters of items [33, 60, 84]. Other methods of transforming the polylines in-
clude density fields [32], polygons [52], bands [46], and layers of consistency
maps [56]. These substituted visual elements can serve a specific purpose
better compared with the original polylines. For example, in the method of
Parallel Sets [46], the lines are replaced with bands to effectively visualize
categorical variables. The axes of PCP are also targets for transformation.
The arrangement of the axes can go beyond the 1D linear one. They can be
arranged on a 2D plane [8] or in a 3D space [10, 40] to enable users to ex-
amine relationships among multiple attributes. The axes can even be trans-
formed into curves [64] to show the data in a polar coordinate system, or be
tilted by the tension of lines in PCP [83]. When applying these approaches,
we should consider the trade-off, in that we could lose the strong perceptual
advantage of the original visual encoding of PCP in correlation estimation
by (line-crossing) pattern recognition.

Integrating other visualizations with PCP can facilitate the visual in-
formation seeking process by revealing different facets of the data that are

difficult to grasp only from the patterns of polylines. Scatterplots that display
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the relationship between two attributes are popular visualizations for such a
purpose [65, 90]. Stacked bar charts [37] and histograms [21] attached to an
axis of the PCP can show the distribution of each attribute. Other visualiza-
tion idioms can also be integrated with PCP, including star glyphs [17], box
plots [37, 45], spherical coordinate systems [82] and MDS plots [24]. In PHP,
we integrate color-coded histograms with PCP to visualize the overview of
multiple attributes in a scalable manner. Color-encoding acts as an important
channel that reveals the relationship between attributes, even when they are
not adjacent to each other.

There have been a few attempts to use color as an auxiliary channel for
delivering additional information, such as the distribution of values of an
attribute. In Value-cell bar charts [43], bars are split into multiple cells that
correspond to one or more individual values. The cells are color coded by the
sum of the values. From the color distribution made by each of the cells, the
distribution of the values in each of the bars can be inferred. Janetzko et al.
[37] utilized color-coded stacked bar charts on the axes of PCP to show clus-
ters generated by K-means clustering. Geng et al. [21] used color in Angular
Histograms for redundantly encoding the height of the tilted bars to help
users perceive the height more accurately. In contrast to these approaches,
our method uses the color channel for showing the linear relationships be-
tween attributes. Using colors in histograms attached to axes makes it pos-
sible for users to grasp linear relationships between (even distant) attributes
through implicit connections made by perceptually matching colors. Unlike
[43], which uses colors to reveal the distribution of values within a single bar
chart, PHP uses colors to reveal the relationship between multiple distribu-
tions or attributes. This approach enables the analysis of data with multiple

attributes. Compared with [37], in which colors are mapped onto the groups
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generated by a clustering algorithm, our approach is more universally appli-
cable and provides the direct relationships between attributes. In addition,
compared with [21], in which histograms must be tilted, our approach pre-
serves the original shape of the histograms to prevent users from getting
confused by the distortion. Also, the color channel is used as a pivotal chan-
nel that reveals the relationships between attributes in PHP, rather than as a
redundant channel as in [21].

Interaction techniques also help users find information with PCP by fa-
cilitating the exploration process. Lack of interaction in PCP is known to
discourage users from drawing information from the visualization [41]. The
Angular Brushing technique enables users to filter data by the value of the
angle between the line and the axis in PCP [28]. Roberts et al. designed a
sketch-based brushing for high-dimensional pattern searches and a data-
dependent smart brushing based on metadata [67]. When a visualization is
integrated into PCP, novel interactions are often designed to make it work
harmoniously with PCP. For instance, OPCP, a visualization technique that
integrates a scatterplot-based visualization into PCP, has a dedicated inter-
action named O-brushing for facilitating pattern selection in complex data
[65]. In PHP, we also designed interaction techniques that aid users in inves-
tigating small regions of a histogram that are too small for details to be seen
— e.g., two-level semantic zooming that can enlarge a small selected region

of the histogram while maintaining the overall layout of PHP.

2.3.2 Visualizing Temporal Rank Data

Tables are the most primitive and popular method used to visualize rankings
of items. In tables, rankings of multiple items can be rendered in a scalable

manner with the help of interaction techniques, such as the focus context
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technique utilized in Table Lens [66]. However, tables are mostly limited to
visualizing a single rank chart, and thus is not effective at displaying multiple
rank charts of temporal information [63]. Thus, researches such as [63, 81]
has integrated line charts with tables to visualize ranking changes over time,
with the help of interaction techniques related to transitioning time.

Line charts are also frequently used to visualize multiple time series of
rank changes. For example, in Rank Clocks [5] line charts of rankings are ren-
dered in radial coordinates, aimed at observing periodic patterns. Extending
upon the line charts, slope charts [75] can provide additional information
related to the rank data by appending visualizations in each of the axes cor-
responding to rank charts over time. For example, in LineUp [23] ranks by
semantics of multiple, heterogeneous attributes can be compared with from
the connected stacked bar charts. Perin et. al modified slope charts as gap
charts [62], in which both the score and its ranking of items can be rendered
in a scalable manner. However, in both line charts and slope charts, clutter-
ing between the lines of each items is inevitable. In we prevent overlap-
ping between items by visualizing each of the ranking changes as a row of
colormap. Not only the colormaps are individually non-cluttering, the accu-
mulated patterns can reveal information that would be hard to be discovered
in multiple line charts.

As scalability is limited in line charts, various researches have been pro-
posed to overcome the cluttering issue. Xia et. al proposed a heatmap based
approach [88], in which rankings of each items are rendered as coordinates
in a 2D space connected by colors. However, such colors were applied ac-
cording to a single rank chart, and thus only items that appear in the chart
could be displayed. RankBrusher [26] utilized histograms with glyphs rep-

resenting ranking ensembles, with heatmaps in the background support-



ing connection between adjacent items. RankExplorer [70] designed a The-
meRiver [29] based visualization to show changes in search query data over
time, with glyphs assisting the visualization of ranking changes in items.
But in both methods [26, 70], the techniques are only valid at visualizing the
changes in adjacent rank charts, limiting users” observation task to chrono-
logical order. Visualizing ranks in stock data [25], or bicycle riders [13] were
also introduced, but the techniques were limited for specific tasks. Converse
to previous researches, in we aim at visualizing temporal rank data for in-
formation flaneurs, and visualize information of ranking changes with less

restrictions.
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Chapter 3

Augmenting Parallel Coordinates
Plots with Color-coded Stacked
Histograms

This chapter introduces Parallel Histogram Plot (PHP), a novel visualization
technique for displaying scalable overview of multiple attributes in parallel
coordinates plot, by utilizing color-coded stacked histograms. This research
mainly addresses the first research question (RQ1) of the dissertation, of vi-

sualizing the overview of multiple items in a scalable manner using colors.

3.1 Background

Parallel coordinates plot (PCP) [35] is a visualization technique that arranges
multiple attributes parallel to each other in a 2D plane. Clusters of data items
and relations between attributes, including correlations, can be perceived by
the patterns of lines in PCP. This pattern recognition becomes harder, how-
ever, when lines overlap more with each other as the number of items and

attributes increases. Furthermore, relationships between attributes are diffi-
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cult, if not impossible, to infer from visual patterns in PCP when the axes are
not adjacent. Many approaches have been proposed to deal with these lim-
itations, e.g., the overplotting of lines or the ordering of axes [34]; however,
there are still many challenges that researchers have to face when visualizing
data with PCP because of the innate limitations of the original PCP. Some-
times, the limitations have been resolved by sacrificing the original structure
of PCP, which significantly weakens its perceptual advantages.

Reflecting the limitations, we introduce Parallel Histogram Plot (PHP), a
visualization technique that deals with the innate limitations of PCP while
preserving its perceptual advantages and characteristics. Following the Vi-
sual Information-Seeking Mantra [71], we augment the original polylines of
PCP with color-coded stacked bar histograms. Attached to each axis of the
original PCP layout, the histograms provide a scalable overview by show-
ing the distribution of data items of each attribute. Polylines of PCP are used
in the later stages of the Visual Information Seeking process, when the clut-
tering problem is less severe after less important items have been filtered
out. Colors applied to the stacked bars of histograms are determined by a
user-selected attribute. Visual comparison of the color distributions on his-
tograms for multiple attributes reveals relationships between the attributes
without cluttering or overlapping of lines as in PCP. Relationships between
distant attributes that are hard, if not impossible, to grasp in the original PCP
can be readily perceived in PHP through the visual comparison of color dis-
tributions for the attributes. We also designed interaction idioms for PHP to

help users investigate the details of histograms in a limited screen space.
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Figure 3.1: Parallel Histogram Plots (PHP) used to draw the CASP dataset [78]. The at-
tribute F2 is selected for color coding. From the color distribution, it can be deduced that
F2 is positively correlated with F1, F5, and F6 and negatively correlated with F9. In addi-
tion, the data items in the upper-right region (red circle) of the F9 histogram are selected
and thus displayed as polylines. The widget on the F9 histogram helps with clicking tiny
bars on the histogram.

3.2 Design of PHP
3.2.1 Design Rationale

Our approach focuses on overcoming the limitations of PCP while maintain-
ing its original advantages. PHP is designed to deal with two critical limita-
tions of PCP: (L1) cluttering of polylines and (L2) the difficulty in estimating
relationships between nonadjacent axes.

L1 - Cluttering of polylines

The polyline encoding of PCP helps users recognize clusters/outliers and es-
timate correlations from visual patterns made from the line crossings. How-
ever, such encoding inherently suffers from a scalability issue, in that poly-
lines clutter the view with too many overlapping lines. The problem becomes
worse as the data size becomes larger.

L2 - Difficulty in estimating relationships between non-adjacent axes
PCP utilizes a linear layout to display multiple attributes. The linear layout
is easy to understand and allows multiple attributes to be displayed in a rel-

atively small area. However, the layout makes it challenging to interpret the
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relationship between attributes that are not adjacent. Thus, finding an effec-
tive order of attributes in PCP has been an important research topic.

To achieve our design goal of overcoming the two main limitations of
PCP while preserving its advantages, we attach a histogram to each PCP
axis. Histograms can reveal the distribution of data items on each attribute
in a scalable manner, irrespective of the data size. It is also a relatively sim-
ple visualization that does not require any drastic modification of the orig-
inal layout of PCP, fulfilling our objective of maintaining the innate advan-
tages of PCP. However, histograms have the limitation that they cannot show
any relationships between attributes [21]. To resolve this limitation, we adopt
color as a crucial visual channel for expressing the relationships between at-
tributes. We order the data items by a user-selected attribute and split the
data items into groups according to the order while ensuring that each group
has a similar number of items. We represent each group as a bar and assign
a unique color to each group. We then build histograms by stacking color-
coded bars, with each bar representing a group. By comparing color distri-
butions on attributes in PHP, users can estimate the relationships not only
between adjacent attributes but also between distant ones even without di-
rect connections. The indirect connection provided by colors in PCP is free
from cluttering and less influenced by the distance between the attributes.
With the adoption of color encoding, the ordering of axes becomes much less
important, as the relationship between attributes can be perceived by match-
ing colors even when they are distant from each other. The next section and
Figure 3.2 show how PHP is built from data.

Following the Visual Information-Seeking Mantra [71], we utilize the orig-
inal polylines of PCP along with the color-coded histograms. The colored his-

tograms are good at displaying an overview of the data and the relationships



between attributes; however, they are not effective in helping users estimate
the exact value of each data item. Meanwhile, polylines excel in helping users
grasp the value of each data item at an attribute, but they easily suffer from
cluttering when there are many of them. Thus, we combine these two com-
ponents so that they complement each other. In the beginning, color-coded
histograms show an overview of the data. After zooming and filtering out
less important/relevant data items in the histograms, the polylines show de-
tails of a small group of data items selected from the histograms, enabling

users to take advantage of the original PCP design.

3.2.2 Construction of Color-coded Histograms

Grouping data items

To construct the color-coded histograms of PHP, we first split the data into
equally sized groups according to a user-selected attribute (Figure 3.2(a)).
Instead of using the original data value of the selected attribute to derive
groups, we use ranking as the criterion to create groups. First, data items are
sorted by the user-selected attribute, and the data items are grouped accord-
ing to the ranking. Unequally sized groups could occur because we make
sure that data items with the same value for the selected attribute are placed
together when splitting groups. This prevents data items that have the same
value for the selected attribute from being inconsistently placed in different
groups. Grouping by ranking mitigates the effects of outliers and skewed
distributions in the color mapping, which will be applied to each group in

the next step.



Applying colors to groups

Second, we apply a unique color to each group of the split data using a dis-
crete, diverging color scheme (Figure 3.2(b)). A discrete color scheme is used,
so that a color in the color scheme is assigned to a group. The color scheme is
designed to distinguish between groups and to show the differences (or sim-
ilarities) between them. We adopt this scheme to emphasize low- and high-
ranked groups with more saturated colors because they are usually more
valuable in the data analysis. In this paper, we use a ten-level blue-red di-
verging color scheme acquired from ColorBrewer2 [27] (low to high rankings
from blue to red). We chose 10 as the number of colors to be rendered, which
is close to the number of colors that a human can distinguish simultaneously

[37].

Building stacked-bar histograms

Finally, using the preprocessed data (grouped by ranking and then color
mapped), we draw a histogram that represents the distribution of each at-
tribute on the corresponding PCP axis (Figure 3.2(c)). The histogram is con-
structed in the same way as a stacked bar chart is drawn, with each group in
its unique color. When groups are stacked, the order of the color-coded ele-
ments must agree with the order of the colors in the color scheme so that ele-
ments in the same color are merged. This helps users perceive patterns from
the color distribution. Users can also recognize the relationship between the
selected attribute and others by perceiving the distribution patterns of col-
ors across the histograms. The stacking of elements in PHP makes the layout
similar to that of Attribute and Influence Explorer, with a histogram con-
sisting of stacks of lightbulbs that represent individual data items. In PHP,

however, a single stacked element represents a group of data, and its length
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Figure 3.2: How PHP is constructed from data. (a) Data items are sorted by a user-selected
attribute (attribute B), and items are grouped (G, — G ) according to the sorted order, i.e.,
the rank data items of the selected attribute. (b) A unique color is applied to each group,
with a diverging colormap: a reddish color for higher ranks and a blueish color for lower
ranks. (c) Stacked histograms are rendered in the applied color.

is proportional to the number of data items belonging to the group in the

corresponding attribute.

3.3 Visual Information Seeking with PHP

Using the visual encoding idioms of PHP !, users can recognize important
features in the data, including the distributions of attributes, correlations be-

tween attributes, and outliers. We also design interaction idioms combined

1A demo version of PHP is available at https:/ /bokjinwook.github.io/ParallelHistogramPlots /index.html

—
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with the visual encoding idioms, including two-level zooming and ghost
bars for more scalable and space-efficient exploration. In this section, we use
16 years of accumulated statistics data of baseball pitchers in Major League
Baseball, acquired from FanGraphs [18], as the dataset for ease of explana-
tion. The dataset contains 7,673 items representing each player’s record of a

year, with 17 sampled attributes reflecting the players” performance.

BABIP  LOB% GB% HR/FB  ERA FIP

Figure 3.3: The Baseball dataset [18] rendered in PHP. The attribute selected for color
coding (i.e., the pivot attribute) is bordered by a green rectangle ((a) IP and (b) wFB). Re-
lationships between the pivot attribute and all the others can be observed from how the
colors are distributed.

3.3.1 Interpreting PHP

PHP utilizes color coding derived from a single user-selected attribute, the
so-called pivot attribute (Figure 3.3). In PHP, selecting the pivot attribute is
a crucial step in revealing features in the data. Visually comparing color dis-
tributions on histograms can reveal relationships between the pivot attribute
and all the other attributes. Users can steer their data exploration by chang-
ing the pivot attribute to seek relationships between attributes with differ-
ent aspects. This methodology can be used effectively in situations in which
only some of the attributes in the dataset are familiar. Users can start their
exploration by first selecting a familiar attribute as the pivot attribute and
then expand their knowledge from the known to the unknown attributes by

analyzing their relationships.
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Figure 3.4: Example of positive and negative correlations displayed in PHP. The at-
tributes, Positive and Negative have positive (+0.8) and negative (-0.8) correlations with
attribute X, respectively.

Correlations between the pivot attribute and other attributes of interest
can be estimated just by visually comparing the color distributions of the cor-
responding histograms. For example, in Figure 3.4, the attribute Xis selected
as the pivot attribute, with the color changing from blue to red from bottom
to top. The histogram for the attribute Positive shows a color distribution
very similar to that of the attribute X, implying a strong positive correlation
between these two attributes. But the histogram of the attribute Negative
shows a color distribution inverted from that of the attribute X, implying a
strong negative correlation between these two attributes. By the same princi-
ple, in Figure 3.3(b), it is easy to recognize that WPA and LOB% are positively
correlated with the pivot attribute wFB. Meanwhile, it can also be easily rec-
ognized that BABIP, HR/FB, ERA, and FIP are negatively correlated with
wFB, as such visual recognition is not affected by the distance from the pivot
attribute.

Users can also recognize clusters of items that have similar color patterns,

or outliers that do not follow the major color patterns around them in the
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Figure 3.5: Histogram of WAR from Figure 3.3(b). The area inside the green box is magni-
fied for visibility. In the region of the green box, it can be observed that some blue items
are distant from the overall red data items.

histograms. Similar colors gathered in a small region indicate that the data
items sharing similar properties are clustered in that region. In Figure 3.3(a),
in which the histograms are color coded by the attribute IP, it can easily be
observed that data items with high IP values are tightly gathered in the lower
middle of the attribute G. Meanwhile, salient colors indicate that there ex-
ist data items outside the overall distribution of those that surround them,
suggesting outliers. Figure 3.5 displays a magnified histogram of WAR from
Figure 3.3(b). Some data items in the green box have salient blue colors that

are different from the overall red surroundings. Compared with most of the

GS WHIP P K/9 BB/9 HR/9 BABIP LOB%  GB% HR/FB  ERA

Figure 3.6: Displaying selected items in PHP. (a) Data items with high IP values are se-
lected from Figure 3.3. The distribution of selected items can be compared with the over-
all distribution, revealing that the selected items are gathered in the lower-middle nar-
row region of G. (b) The distinct blue items among the dominant red items in the WAR
histogram are selected from Figure 3.5 to be displayed by polylines. The polylines reveal
detailed characteristics of the selected data items.
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items nearby, these outliers have much lower rankings of the pivot attribute
wEFB, as is apparent from their distinct colors.

Like many other PCP-based visualizations, PHP supports common PCP-
based interactions, including selecting items by the range of an attribute’s
value with brushing and changing the order of axes. In PHP, ordering axes
is less important, as the relationship between attributes can be observed just
by color even when they are far away. Nonetheless, PHP enables users to
sort the attributes by correlation or similarity for a more efficient analysis
of the data. PHP also supports common interactions/modifications related
to histograms, such as selecting a range of data or bars of interest in the
histograms or changing the number of bins. In PHP, we adopt the analyti-
cal strategy of comparing the distributions between selected and unselected
data of Attribute and Influence Explorer [76, 77]. When items of interest
are selected, the color-coded stacked bar histogram for the selected data is
shown in the foreground, while the original histograms for all the data are
shown in grayscale in the background of PHP (Figure 3.6(a)). In this way,
the characteristics of the selected data can be examined in the context of the
whole data.

Following the Visual Information-Seeking Mantra, we enable users to
harmoniously use the original PCP in PHP, in situations in which the power
of the pattern recognition in the original PCP can shine, i.e., exploring a
smaller group of selected items with less clutter. When a user selects a bar for
a group of items of interest by hovering over or clicking on it, the correspond-
ing data items are shown as polylines as in the original PCP (Figure 3.6(b)).
This interaction can help users make a connection between histograms and
PCP lines. Users can show or hide either the histograms or the polylines to

avoid potential visual interference between the lines and the bars. In Fig-
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BB/9 BB/9 HR/9

Figure 3.7: Various interactions of PHP designed to deal with small components. (a) Fo-
cus+context zooming enables users to enlarge histograms of interest (the histograms of
WAR are enlarged when the axis is dragged). (b) Clamp zooming helps in observing small
elements in a space-efficient manner (from left to right, the histograms of WAR are in-
creasingly clamp zoomed). (c) When clamp zooming maxes out all bars, the histograms
turn into a heatmap-like visualization that can display the color distribution in a minimal
space. (d) Ghost bars in the right two histograms of BB/9 and HR/9 help identify small
bars that are unseen in the leftmost normal histogram of BB/9. The Ul widget of pop-up
color patches helps users click on tiny bars.

ure 3.6(b), the outliers selected from Figure 3.5 are displayed as polylines.
Detailed information about the selected data can be revealed from the poly-
lines. The polylines show that the selected outliers tend to share similarities,
and that they have relatively low wFB; high WPA; and low FIP, ERA, and
HR/FB.

3.3.2 Tools for Zooming in on Small bars

While clicking and hovering interactions on histograms are simple and intu-
itive actions, issues arise when users must interact with small components in
the visualization, which are hard to see and select. Each bar of a histogram
in PHP consists of stacks of color-coded bars. Among the stacked bars, there
can be small bars that are hard to interact with. We designed interaction tech-

niques to overcome such problems.
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Two-level zooming

One of the main issues with searching for information in histograms of stacked
bars is the difficulty of noticing bins that are rendered too small owing to a
skewed distribution, outliers, etc. To support observing small bins and bars,
we introduce a two-level zooming interaction technique. First-level zoom-
ing, named focus+context zooming, widens the gap between axes to assign
more space to an axis of interest while preserving the contexts around it in
a shrunk space. In PHP, a histogram is horizontally attached to an axis, and
thus occupies the space between two adjacent axes. Widening the gap be-
tween axes by dragging an axis gives more space to the histogram shown in
the gap, which can reveal more details about the histogram (i.e., small bars
getting bigger) (Figure 3.7(a)). As in the focus+context technique used in Ta-
ble Lens [66], users can horizontally increase the size of histograms to see
more details while maintaining contextual information about all the data in
the visualization.

Focus+context zooming still has limitations if the distribution of a his-
togram is skewed too much. In such a case, a very large space is required
for the histogram to see the details of tiny bars, which sacrifices the space
for other histograms. Considering this problem, we complement first-level
zooming with another space-efficient, second-level zooming technique called
clamp zooming. Clamp zooming is a ‘within-area” zooming technique. With-
out changing the allocated space for a histogram, it horizontally stretches
each bar inside the histogram with the same magnification, being maxed out
when reaching the maximum length. When the bars reach the maximum
length, they are gray colored to distinguish them from other, smaller, not-
maxed-out bars, which helps users focus on the smaller bars (Figure 3.7(b)).

This clamp zooming helps users investigate the long tail of a skewed distribu-
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tion. In Figure 3.7(b), outliers that had to be enlarged extensively in Figure
3.5 (distinct blue items in the upper region of the WAR histogram) can be
seen in a relatively smaller space.

When clamp zooming maxes out all bars, the original colors of the bars
are restored, and the histograms transform into a heatmap visualization (Fig-
ure 3.7(c)). This heatmap visualization is useful in extreme conditions, such
as when the space allocated to a histogram is so small that the colormap from
the histograms is hard to perceive. It can also be used to display a relatively

high number of attributes within a limited screen size.

Ghost bars for invisibly small elements

When scaling histogram bars to fit the allocated space between axes, it is
often inevitable that some bars cannot be shown because their heights be-
come smaller than one pixel. In Angular Histograms [21], another histogram-
based PCP visualization, this problem is resolved by using an additional vi-
sual encoding idiom named Attribute Curves. Attribute Curves provides a
clue that some data elements exist in a bin. But this approach takes additional
space along with the original visualization. We adopt a more space-efficient
approach by using a visual cue within the visualization that implies the exis-
tence of small bins, named ghost bars. The ghost bar technique shows a small
but noticeable gray bar for originally invisible bins, whose length is too short
to be shown on the current scale (Figure 3.7(d)). From the gray bars, users
can determine whether any bins are unseen because of their small size. The
ghost bars are colored this way so that they can be distinguished from the
normal histogram bars. Furthermore, they can be untoggled when they are

not needed to prevent confusion.



Support for selecting tiny bins

Finally, we provide a Ul widget to help users select small bins in a histogram
bar. When users click on the empty area right next to a (small) bar in a his-
togram, a widget pops up and shows a color panel, in which the colors used
in the bar are shown as patches (Figure 3.7(d)). In contrast to trying to directly
click on the small bar in the histogram, which may be challenging, the color
patches on the pop-up can be easily and more accurately clicked. Sometimes
the pop-up widget can show colors that are invisible in the original small

bar, which correspond to the invisibly small bars in the current scale.

3.4 Use Case

In this section, we demonstrate the efficacy and utility of PHP compared with
other similar visualizations, e.g. the original PCP, AH [21], and scatterplot
matrices (SPLOMs). For comparison, we used the protein tertiary structure
dataset [78], which consists of 45,730 items with 10 attributes (i.e., the physic-
ochemical properties of proteins). This dataset is part of the CASP (Critical
Assessment of Techniques for Protein Structure Prediction) dataset, which
contains various properties of a protein’s structure.

As can be observed in Figure 3.8(a), the two main limitations of PCP pre-
viously discussed (L1 and L2) prevail in PCP. Because there are many items
in the dataset, the overlapping of polylines is too severe in the original PCP,
even though the lines are rendered translucent to mitigate the overlap. AH
and PHP (Figures 3.8(b) and (c)) both mitigate the cluttering issue using his-
tograms. AH utilizes a vector-based approach for each bar of the histogram,
with an additional attribute of direction determined by the mean angle of the

polylines in the corresponding bin. Owing to this direction attribute, the his-
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Figure 3.8: CASP dataset rendered in (a) PCP, (b) AH, and (c) PHP. F7 is set as the pivot
attribute in PHP. In PHP, the relationship between F7 and other attributes can be discov-
ered by how the colors spread in the histograms, whereas in the other visualizations such
discovery is hindered by the skewed distribution of F7.

tograms are tilted, likely making it hard to derive their exact distribution [21].
To deal with this limitation, AH utilizes colors as an additional channel to
show the length of each histogram’s bars [21]. In contrast, PHP does not dis-
tort the distribution and utilizes color as a channel to show the relationship
between the pivot and other attributes. The use of the color channel makes it
possible to identify the relationship between non-adjacent attributes, in con-
trast to AH, in which determining the correlation depends heavily on the

ordering of axes, as in other PCP-based visualizations [21]. In PHP, users can
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find information in a more time-efficient manner because there is no need
for reordering the attributes to deduce the relationships between them.

PHP can display more attributes in a limited space than AH. PHP ren-
ders one histogram for each attribute, but AH renders two histograms for
each attribute (excluding the first and last ones), taking roughly double the
amount of space to render equally sized histograms. Thus, each histogram
of PHP is rendered about two times larger than a histogram of AH. In larger
histograms, users can observe subtle patterns or smaller bins more accu-
rately, as well as being able to see whether the difference in histograms is
tilted or not. This space efficiency also becomes an issue in SPLOMs when
visualizing multiple attributes (Figure 3.8(d)). When visualizing data with
n attributes, in SPLOMs n x n scatterplots are rendered, compared with
n histograms in PHP. SPLOMs become highly congested with scatterplots
as the number of attributes increases, and each scatterplot becomes smaller,
making it harder to observe relationships between attributes. When visual-
izing multiple attributes, the space efficiency of a visualization is important
because it is directly related to how many attributes can be displayed in a
limited screen space—i.e., the scalability of a visualization by the number of
attributes. Compared to other visualizations, PHP can visualize the relation-
ship between multiple attributes in a more space-efficient manner, benefiting
users who aim to find information across multiple attributes.

In the protein dataset, the attribute F7 is radically skewed toward the
bottom side of the axis. This skewness affects the performance of PCP-based
visualizations. In Figure 3.8(a) and 3.8(b), the nearby lines and histogram
bars in PCP and AH, respectively, are drastically slanted toward the lower
direction. In contrast, PHP is more resilient to this skewness issue, as the

shape of an attribute’s distribution is independent of other attributes, unlike
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Figure 3.9: CASP dataset rendered as a scatterplot matrix (SPLOM) with the colors of PHP
(F7 is the pivot attribute) applied to the scatterplots in the lower-right triangle of the ma-
trix. The colors enable additional discovery in how the items spread out in the context
of F7, e.g., the items with high values for F7 (red) gather in distinct regions (right or left
regions) in the scatterplots between RMSD and other attributes.

in PCP and AH (Figure 3.8(c)). Moreover, correlations between the skewed F7
and other attributes can be observed by selecting F7 as the pivot attribute. In
this case, the color encoding is determined by the ranking of F7, so the color
distributions of all histograms show the relationships between F7 and the
other attributes, not affected by the skewness of F7. In Figure 3.8(c), F1, F2,
F4,F5, and F6 have positive correlations, F3 and F8 do not have a particularly
positive or negative correlation, and F9 has a negative correlation with the
skewed F7. PHP requires only selecting the skewed attribute as the pivot
attribute, whereas other visualizations need further processing of the data
(enlarging the visualization, filtering out outliers, logarithmic scaling, etc.)

to observe more information.
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Utilizing colors in PHP enables the discovery of interesting patterns. In
Figure 3.1, the notable red colors in the upper region of the attribute F9 (cir-
cled in red) indicate that the data items in that region do not follow the neg-
ative correlation between F2 and F9. The same information is almost impos-
sible to obtain from AH or PCP because the attributes F2 and F9 are not
adjacent to each other. While a SPLOM can show all pairwise relationships
at once, it is also hard to find patterns in SPLOMs (Figure 3.9) because each
scatterplot is not rendered large enough owing to the number of attributes,
and such interesting data items do not stand out as colors as in PHP. A fo-
cus+context technique or a simple interaction, such as selecting a scatterplot
of interest to be shown as an enlarged inset, could be employed in SPLOM to
mitigate this problem. In PHP, such a small group of interesting data items
can be selected and displayed as polylines, as in the polylines of Figure 3.1.
Because only a small portion (about 1% of the data) is selected, the items
can be displayed without cluttering. Characteristics of the selected items can
be observed from the polylines, with the selected items seeming to show a
negative correlation between RMSD and F1.

The color mapping used in PHP can also be applied to other visualiza-
tions to improve the information-seeking process. One example of this is
shown in Figure 3.9, in which the color mapping of PHP (F7 is set as the pivot
attribute) is applied to scatterplots in the lower-right triangle of SPLOM.
From how the colors spread out in individual scatterplots, additional in-
formation related to the pivot attribute can be inferred. For example, from
the scatterplot between F4 and F9, it can be observed that items with high-
value items of F7 are spread mostly in the upper-left region, while items with
lower values of F7 are spread mostly in the lower-right region. This indicates

a positive correlation between F4 and F7 and a negative correlation between
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F9 and F7, which can likewise also be discovered in PHP. Also, in most of
the scatterplots of RMSD and other attributes, it can be observed that items
with a high value of F7 (red) are gathered in distinct regions, either the right
or the left region (i.e., having high or low values of the corresponding at-
tribute). However, the scatterplot between F3 and RMSD shows a distinct
pattern, with items with a high value of F7 being gathered in the middle
region of F3 and the upper and lower regions of RMSD.

3.5 User Study

We conducted a controlled user study to assess the performance of PHP
in terms of correlation coefficient retrieval. The user study consisted of two
within-subject tasks. In the first task, we compared the performance on corre-
lation retrieval between two attributes. In the second task, distance between
two attributes was added as a factor to measure how the PCP-based visual-
izations perform when retrieving the correlation between non-adjacent at-
tributes. The ordering of the two tasks was fixed for all the participants: The
first task was performed before the second task.

We selected three visualizations to be compared with PHP: PCP, scat-
terplot, and AH [21]. PCP was selected as a baseline condition to show the
level of improvement of our design. While PHP is an improved version of
PCP, its visual cues used to judge the correlation are different (color pattern
in PHP vs. line crossing in PCP). We intended to measure the effect of such
a difference in visual encoding. Scatterplots were selected because they are
commonly used and known to be the best method for visually analyzing the
relationship between two attributes. They were used as another baseline for

comparison with other techniques. We chose AH among various other im-
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provements of PCP considering that, like PHP, it uses histograms to deal with
scalability. Other approaches that use histograms [37, 76, 77] were also con-
sidered but were discarded because the visual property of the histograms of
these methods does not support correlation retrieval task and requires inter-

actions to derive any correlation between attributes.

3.5.1 Design

For the experiment, we recruited 36 participants from a university’s online
community (25 males, 11 females; aged 21-33 [mean + SD: 25.6 & 2.6]). Partic-
ipants were screened according to two conditions: (1) participants should be
familiar with the statistical terms used throughout the experiment (e.g. Pear-
son correlation coefficient), and (2) participants should not be colorblind. On
average, the user study lasted about 60 minutes. The participants were paid
about 10 dollars for their participation. A 27-inch LG monitor (27MP48HQ)
was used to display the visualizations for all conditions.

Before performing the tasks, the participants received instructions for
each visualization. The instructions included how the visualization is con-
structed from raw data, and how to interpret the patterns in the visualization
to retrieve the correlation. For all visualizations used in all tasks, the interac-
tions were disabled; only the visual encodings were utilized to retrieve the

correlation coefficient.

First task: two attributes

In the first task, users were asked to estimate the correlation coefficient (rang-
ing from -1 to 1, with an interval of 0.1) between the two attributes displayed.

In PHP, the leftmost attribute was set as the pivot attribute. We recorded the



time and error rate of the responses. All responses in the experiment were
self-paced, and users typed in their responses.

Two within-user factors were utilized in the experiment: (1) type of the
visualization to be displayed (PCP, scatterplot, PHP and AH, with the or-
dering being determined by a Latin square (4 levels)) and (2) the correlation
coefficient set of the data (4 levels). The set of correlation coefficients were
defined to have 4 levels: £[0.9, 0.8, 0.7, 0.6] and +[0.5, 0.4, 0.3, 0.2, 0.1]. Each
set will be referred to HP, HN, LP, and LN, representing high positive, high
negative, low positive, and low negative coefficients, respectively.

In this task, we used randomly generated data from a normal distribution
with a fixed size of 1,000 items with two attributes for each correlation coeffi-
cient set. A coefficient value was randomly chosen from a predetermined set
of correlation coefficients. A pivot attribute was first generated with a normal
distribution. Then, the other attribute was generated to follow the chosen co-
efficient value with the pivot attribute. The actual correlation coefficient of
the generated data (pivot and other attributes) was slightly different from
the chosen coefficient as noise was added during data generation; however,
we ensured that this difference did not exceed 0.025. For each combination of
visualization method (4 levels) and correlation coefficient set (4 levels), the
coefficient estimation experiment was repeated 5 times. Thus, a total of 4 x
4 x 5 =80 responses was collected.

Prior to the main task, training sessions were given to the participants.
The training session had the same conditions as the main task, but the re-
sponse was not recorded, and the participants could check the answer and
train themselves. A training session consisted of 12 responses, and users
could request more training sessions if needed. On average, users performed

around 2 to 3 training sessions per visualization.



Second task: multiple attributes

In the second task, 4 attributes were displayed in one of the three visualiza-
tions (PCP, AH, and PHP). The users were asked to estimate the correlation
coefficient (ranging from -1 to 1, with an interval of 0.1) between the left-
most attribute and one of the other selected attributes. In this task, we did
not include scatterplots for comparison because their methodology of dis-
playing multiple attributes (scatterplot matrices) greatly differs from other
PCP-based visualizations (PCP, AH, and PHP). We recorded the time and
error rate of the responses. All responses in the experiment were self-paced,
and users typed in their responses.

Three within-user factors were utilized in the experiment: (1) the type of
visualization (PCP, AH, and PHP) (3 levels, with the ordering determined by
a Latin square), (2) the correlation set of the target attribute (4 levels [HN, LN,
LP, and HP], the same as in the first task), and (3) the position of the target
attribute (3 positions excluding the leftmost; the leftmost attribute will be
referred to as the pivot attribute, and each position of the target attribute
will be referred to as the first, second, and third positions from the left).

In this task, we used randomly generated data from a normal distribution
with a fixed size of 1,000 items with 4 attributes as in the first task. A pivot at-
tribute was first generated with a normal distribution. Then, the other three
attributes were generated according to the pivot value. When the attribute
was not the target of correlation retrieval, it was generated to have a random
correlation (between -1 and 1) with the pivot attribute. When the attribute
was the target of retrieval, the data was generated in the same way as the
target attribute in the first task. For each combination of the target data (3
levels) and correlation coefficient set (4 levels), the coefficient estimation ex-

periment was repeated 3 times. Thus, a total of 3 x 4 x 3 = 36 responses



were collected per visualization, and thus a total of 36 x 3 = 108 responses
was collected in the task.

Prior to the main task, training sessions were given to the participants.
The training sessions had the same conditions as the main task, but the re-
sponse was not recorded and participants could check the answer and train
themselves. A training session consisted of 12 responses, and users could re-
quest more training sessions if needed. On average users performed around

1 to 2 training sessions per visualization.

3.5.2 Results

In both tasks, we recorded the task completion time (i.e., the time between
the appearance of a visualization and the user’s answer in milliseconds) and
the error rate of each user’s answers (i.e., the absolute difference between the

user’s response and the chosen coefficient).

First task: two attributes

The task completion time and error rate were analyzed using a 4 x 4 (4 visual-
ization methods x 4 correlation coefficient sets) repeated measures ANOVA.
Bonferroni’s pairwise comparison was used for all post hoc tests.

Task completion time: Figure 3.10(a) shows the task completion time of
all correlation coefficient sets for each visualization method. There was a sig-
nificant main effect by visualization type (F3 35 = 13.207, p < .001). Post hoc
tests revealed that the task completion time of scatterplots (mean + SD: 3,970
+ 265 ms) was significantly lower than the task completion times of all other
conditions (PCP: 4,875 + 271; AH: 5,411 + 354; PHP: 5,255 + 266). We also
found a significant main effect by correlation coefficient set (F3 35 = 35.310,

p < .001), with post hoc tests showing that the participants responded to
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Figure 3.10: Results regarding task completion time in the first task. (a) Results by visual-
ization method and correlation coefficient set. Error bars indicate the standard deviation
of the measured mean. (b) Significance of the difference between correlation coefficient
sets for each visualization. An asterisk (*) in the table indicates that the pairwise differ-
ence is significant (p < .05).

the HN (4,276 + 229) and HP (4,268 + 200) conditions significantly faster
than to the LP (5,439 + 323) and LN (5,527 + 300) conditions. This indicates
that the participants took less time to respond to more strong patterns with
positive/negative correlations.

There was also an interaction effect between visualization type and cor-
relation coefficient set (Fy 35 = 3.312, p = .001). For further analysis, we per-
formed a one-way repeated measures ANOVA (4 correlation coefficient sets)
for each visualization method. The result of the pairwise comparison of the
four correlation sets are shown in Figure 3.10(b). Each visualization showed
a slightly different trend. In PCP, HN outperformed all other conditions,

mostly because the crossing patterns were most distinct in that condition.
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Figure 3.11: Results regarding error rate in the first task. (a) Result by visualization method
and correlation coefficient set. Error bars indicate the standard deviation of the measured
mean. (b) Significance of the difference between correlation coefficient sets for each vi-
sualization. An asterisk (*) in the table indicates that the pairwise difference is significant
(p < .05).

On the other hand, because there are no crossing patterns in PHP, such a
trend did not appear for PHP.

Error rate: Figure 3.11(a) shows the error rate of all correlation coefficient
sets for each visualization method. There was a main effect by visualization
type with regard to the accuracy of the responses (F3 35 = 46.618, p < .001).
From post hoc tests, it was found that the error rate of scatterplots (mean
+ SD: 0.093 + 0.005) was significantly lower than the error rates of all other
conditions (PCP: 0.178 + 0.007; AH: 0.211 + 0.011; PHP: 0.140 + 0.007). In
addition, the error rate of PHP was significantly lower than the error rates
of PCP and AH. There was also a significant main effect by correlation coef-
ficient set (F3 35 = 100.049, p < .001). Post hoc tests indicated that the error
rates in the HN (0.099 £ 0.004) and HP (0.106 + 0.006) conditions were sig-
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nificantly lower than those of the LN (0.195 + 0.007) and LP (0.221 + 0.009)
conditions. Furthermore, LN showed a significantly lower error rate than LP.

An interaction effect between visualization type and correlation coeffi-
cient set was observed (Fy 35 = 7.385, p < .001). For further analysis, we per-
formed a one-way repeated measures ANOVA (4 correlation coefficient sets)
for each visualization method. The result of the pairwise comparison of the
four correlation sets is shown in Figure 3.11(b). Only in AH did LP signifi-
cantly underperform LN, whereas the other visualizations did not show such

notable differences.

Second task: multiple attributes

The task completion time and error rate were analyzed using a 3 x 4 x 3
(3 visualization methods x 4 correlation coefficient sets x 3 positions of tar-
get attribute) repeated measures ANOVA. Bonferroni’s pairwise comparison
was used for all post hoc tests.

Task completion time: There was a significant main effect by visualiza-
tion type (F3,35 = 23.702, p < .001), with post hoc tests showing that the task
completion time of PHP (mean = SD: 4,831 + 244 ms) was significantly lower
than the task completion times of the other two methods (PCP: 6,970 + 331;
AH: 7,144 + 419) (Figure 3.12(a)). We also observed a main effect by correla-
tion coefficient set (F3 35 = 11.656, p < .001). The response was significantly
faster in the highly correlated conditions (HN: 5,974 & 267; HP: 5,945 + 293)
than in the other two conditions (LN: 6,675 + 276; LP: 6,664 4+ 287). Position
of target attribute also showed a significant main effect (£ 35 = 64.835, p <
.001). The pairwise differences in task completion time between any two po-

sitions were all significant, while the response time increased as the distance
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Figure 3.12: Performance evaluation results of the second task. Error bars indicate the
standard deviation of the measured mean. (a) Response time of the visualization by posi-
tion of the target attribute. (b)-(d) Response time of each visualization by position of the
target attribute and correlation coefficient set ((b) PCP, (c) AH, and (d) PHP). (e) Error rate
of the visualization by position of the target attribute. (f)-(h) Error rate of each visualiza-
tion by position of the target attribute and correlation coefficient set ((f) PCP, (g) AH, and
(h) PHP).

between the pivot and the target attribute became bigger (first: 4,851 & 178;
second: 6,792 + 294; third: 7,302 £ 372.

Interaction effects were also observed. Visualization type and position of
target attribute showed a significant interaction effect (F4 35 = 20.798, p <
.001), as did correlation set and position (Fs 35 = 2.995, p = .008). For further
analysis of the interaction effects, we performed a 4 x 3 (4 correlation coef-
ficient sets x 3 positions of target attribute) repeated measures ANOVA for
each visualization. As shown in Figure 3.12(b)-(d), in PCP and AH, corre-
lation coefficient set and position of target attribute both showed a signif-
icant main effect in addition to the interaction effect between them. Mean-
while, in PHP, only correlation coefficient set showed a significant main ef-
fect, whereas task completion time was not affected by position of target at-

tribute.

. BEL

- 1

'-.-'.!_ T].



Error rate: There was a significant main effect by visualization type (F5 35
= 144.112, p < .001). Post hoc analysis revealed that the error rate of PHP
(mean =+ SD: 0.149 + 0.011) was significantly lower than the error rates of the
other two visualizations (PCP: 0.422 + 0.018; AH: 0.487 + 0.018) while PCP
significantly outperformed AH (Figure 3.12(e)). Position of target attribute
also had a significant main effect (F5 35 = 122.976, p < .001). According to the
post hoc analysis, all position pairs showed a significant difference, while the
error rate increased as the distance between the pivot and target attributes
increased (first: 0.215 + 0.010; second: 0.390 + 0.014; third: 0.452 + 0.016).
No significant main effect by correlation coefficient set was observed (F3 35
=.029, p =.993).

Multiple interaction effects were also observed. Interaction effects be-
tween visualization type and position of target attribute (£ 35 = 24.503, p <
.001), between correlation coefficient set and position of target attribute (F§ 35
=15.351, p < .001), and between all of the three within variables (Fi2 35 =
4.827, p < .001). For analysis of the interaction effects, we performed a 4 x 3
(4 correlation coefficient sets x 3 positions of target attribute) repeated mea-
sures ANOVA for each visualization. As shown in Figure 3.12(f)-3.12(h), in
PCP and AH, we observed a significant main effect by position of target at-
tribute and the interaction effect between it and correlation coefficient set. By
contrast, in PHP, only correlation coefficient set showed a significant main ef-
fect, implying that position of the target attribute did not play a significant

role in the performance regarding accuracy.
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3.6 Discussion

The first task shows that in terms of the accuracy of the responses, PHP out-
performs PCP and AH, but PHP is outperformed by scatterplots in the corre-
lation coefficient estimation task. We suspect that the performance difference
comes mainly from the innate difference in the effectiveness of the visual
encodings, i.e., crossing patterns in PCP and AH, color in PHP, and posi-
tion in scatterplot. Other factors could have affected the performance. While
training could offset the effect, the well-known scatterplot might have advan-
tages over the other unfamiliar visualizations. Fatigue from the first task may
have negatively affected the performance in the second task, in addition to
the second task being relatively more complicated than the first task. There
was mostly no tradeoff between response time and error rate (faster perfor-
mance does not increase the error rate). One exception to this was a faster re-
sponse time in scatterplots under positive correlation conditions compared
with negative conditions. In scatterplots, the response time of HP was faster
than that of HN, and LP was faster than LN. But there was no significant
difference in the performance between the two pairs. Although we have no
empirical evidence, we suspect that the difference in response time is caused
by participants’ being more familiar with scatterplots with positive correla-
tions. We think a more thorough analysis of this issue can be a potentially
interesting future topic.

Results of the second task show that the positioning of attributes in PHP
does not influence the performance of the correlation retrieval task, unlike
other conditions in which the performance severely decreases when the tar-
get and pivot attributes are not adjacent. The empirical results imply that

PHP mitigates one of the two main innate limitations of PCP we previously



stressed—i.e., the difficulty in estimating relationships between non-adjacent
axes. AH, which that also utilizes histograms to deal with scalability did not
outperform PCP and performed worse than PHP. Crossing and cluttering
of bars remain in AH, even though histograms are used to deal with the
scalability issue of PCP, implying that AH does not fully overcome the first
limitation of PCP we mentioned —i.e., the cluttering of polylines caused by
multiple crossings. Compared with AH, PHP utilizes a totally different vi-
sual channel, i.e., color, to deal with the cluttering problem, and thus it is
free from the cluttering by crossing line patterns. We expect that when the
number of items further increases, AH will perform better than PCP because
of the effectiveness of histograms in dealing with scalability.

When analyzing multidimensional data, it is a common approach to start
by inspecting each attribute individually (1D) and then continue by exam-
ining the relationships between two or more attributes in order to obtain
insights in higher dimensions [se02005rank]. PHP supports this data explo-
ration process. Each histogram in PHP shows the distribution of one dimen-
sion, which is hard to see in PCP or SPLOMs. In PHP, users can select a pivot
attribute and observe all the data from the perspective of that attribute using
the attribute’s colormap. After studying the 1D histograms, users can explore
the relationships between two or more attributes using the color mapping
applied to all other histograms. The implicit connection via colormapping
reveals relationships between the pivot attribute and other attributes. Users
can move on to select another attribute as a pivot, group and reorder similar
attributes for higher dimensional analysis, or zoom in further to inspect a
small group of items of interest in an attribute.

Throughout the paper, we fixed various parameters that could affect the

performance of the visualization—e.g., the set of colors of the color scheme,



the number of colors used in the color scheme, and the number of bins of the
histograms. Measuring the effects of changing these parameters could be an
interesting future research direction. Throughout the paper and user study,
we used a blue-red color scheme for PHP. Studying how a different color
scheme might affect task performance in correlation estimation could also be
interesting. In addition, the number of distinct colors was fixed at a relatively
small value (10) throughout the paper. The number of discriminable hues
mapped onto small, separated regions is known to be moderate, i.e., fewer
than 10. While using relatively few colors can still help users grasp the overall
trend in the data, it could potentially oversimplify the information in the
data, hindering the discovery of more diverse and precise patterns of colors
in the visualization. However, such a detailed exploration is possible with
the original PCP visual encoding, i.e., polyline representation. Investigating
the effect of the number of colors in terms of perceiving a data distribution
is an appealing future research topic. Increasing the number of colors could
reveal different structures in the data, but it could become harder to discern
different colors, and individual bars might become too small to interact with.

The number of bins affects the shape of a histogram, which is related to
how the colormap is rendered. We expect that changing the number of bins
should not greatly influence users’ task performance in estimating correla-
tion, as they examine the overall color distribution. However, since the shape
of the colormap changes, it could influence some tasks, such as finding out-
liers or a group of similar items. Since categorical attributes do not carry any
ordering information, our rank-based approach cannot be directly applied to
categorical attributes. It would be interesting to study how to harmoniously
combine the ranking channel and the identity channel in using color map-

pings for multidimensional data analysis. Also, while we proposed various



approaches to dealing with skewed histograms, such as using colors based
on ranking or utilizing two-level zooming interactions, they all require some
level of user input. Combining the proposed approaches with other analytic
methods (e.g., log transformation) that deals with the skewedness of a dis-
tribution would be an interesting direction. Finally, PHP can be integrated
with other related visualizations similarly to how PCP has been integrated

with other visualizations (e.g., scatterplots).

3.7 Summary

We introduced PHP, a novel visualization technique designed to overcome
the innate limitations of PCP. PHP utilizes color-coded, stacked-bar histograms
to show the relationships between attributes without the issue of cluttering
and regardless of the distance between the attributes. With PHP, users can
discover interesting items using colored stacked-bar histograms: Similar col-
ors gathered in a small region suggest clusters of data items that follow a
certain trend, and salient colors from the overall color distribution suggest
outliers. In addition, PHP provides interactions to help users investigate the
details of histograms in a limited screen space: two-level zooming (i.e., fo-
cus+context zooming and clamp zooming), ghost bars, and a UI widget of
the color panel. Following the Visual Information-Seeking Mantra, polylines
are used to display the details of focused data, while color-coded histograms
provide the overview. We demonstrated how PHP can be used on a real-
world dataset in a use case. We also tested the performance of PHP in corre-
lation coefficient estimation tasks. The results showed that PHP correlation

estimates were consistent regardless of the distance between attributes.
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Chapter 4

Interactive Visualization System
for Monitoring Issues in
Industrial Software Development

This chapter introduces IssueML, a visualization system for monitoring the
related information in multiple issues that occur during development of large
projects in industrial environments. This research mainly addresses the sec-
ond research question (RQ2) of the dissertation, of visualizing multiple, com-

plicated attributes in data items a scalable manner using colors.

4.1 Motivation

In industrial fields where large projects are collaboratively developed, it is
natural for many errors to occur during the process. To efficiently manage
errors, symptoms and conditions during the occurrence are organized as is-
sues. Since issues correspond to each errors, project managers utilize them as
milestones to be resolved to ensure the progression of the development pro-

cess. Hence, one of the primary responsibilities of the managers is to monitor
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and manage ongoing issues and their related developers responsible for res-
olution. However, monitoring issues is not a simple task. Not only are the
number of errors significant, but errors also occur in complicated and unex-
pected patterns that are proportional to the size of the project. Furthermore,
information in issues is frequently updated over time due to newly revealed
information during the resolution process, making monitoring even more
challenging.

We introduce IssueML, a visualization system that facilitates the moni-
toring of multiple issues generated from large projects. In designing IssueML,
we conducted interviews with industrial insiders to identify domain prob-
lems related to managing multiple issues. From the interviews, we define
two critical tasks in monitoring issues: managing the related developers and
visualizing the progress over time. Based on these tasks, IssueML consists
of multiple specialized views that support the visualization of multiple is-
sues in a space-efficient and intuitive manner, with respect to their related
developers and progress over time. These views are designed by following
the Visual Information Seeking Mantra [71], enabling users to steer their data
exploration, starting from an overview of overall issues and progressing to

the details of a selected subset of issues.

4.2 Background
4.2.1 Interview

We conducted interviews with insiders from an electronics company to gain
a deeper understanding of how industry professionals handle multiple is-
sues, and the related problems they have when dealing with the issues. The

interviews involved four managers, responsible for managing their subordi-
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nate developers, and five developers, responsible for actually resolving the
assigned issues. The interviews were conducted in a hybrid (either remote or
in person) fashion, depending on the individual conditions. We used a semi-
structured interview format, in which we observed their working routines in
monitoring or resolving issues, and then asked open-ended questions based
on the observation. Topics were mainly focused on questioning about pre-
vious limitations in dealing with issues, and the hopes they had functioned
they hoped to further understand the difficulties in dealing with issues. On
average, the interview lasted about 1 hour. Based on the interviews, we sum-
marize the related background domain problem in dealing with issues, and

identified three primary tasks in monitoring multiple issues.

4.2.2 Domain Situation

The electronics company manufactures software and hardware for smart
TVs, with the collaboration of multiple departments. To prevent errors in
the final product, there is a dedicated test department in which various func-
tions related to the product are tested. When error occurs during the test, the
symptoms and related attributes are recorded as issues, and such issues are
allocated to developers to be resolved. As the errors are detrimental in the
release of the product, issues should be resolved as soon as possible. Thus,
one of the critical job of managers is to manage and reduce the issues allo-
cated to their subordinate developers, by consistently monitoring the related
issues. An overview of how issues are generated and resolved is provided in
Figure 4.1.

However, since the cause of the error is unknown at the point when the er-
ror is discovered, and testers are not directly involved in the development of

the product, issues are often wrongly allocated to developers. In this case, de-
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velopers should inspect upon the related information and update the earned
information in the issues, and pass on to other developers who are poten-
tially related to the issue. As a result, issues contain history of multiple trial
and errors in its fields and comments, which is pivotal in understanding and
resolving the data. Followingly, observing related information in issues is a
critical stage in resolving (or passing on) the issue. But as the information in
multiple fields are updated over time, it is time-consuming and difficult to
interact with each of the issues. Such problem is more severe in the perspec-
tive of managers who need to monitor multiple issues allocated to multiple
developers. Moreover, it was hard to interact with such changes in the first
place; even though the changes in fields were logged, they were not directly
provided to the users. Based on such background, we identified three main
tasks, mainly focusing on the of task of managers who need to monitor mul-

tiple issues related to their subordinate developers.

4.2.3 Task

Task 1: Identifying developers’ status

One of the primary roles of managers is to review and monitor develop-
ers’ involvement in the assigned issues. Although managers could refer to
the values of selected fields (e.g., the assignee field), interviews revealed that
solely relying on the values may be misleading. Values of fields may change
over time during the resolution process; for example, the assignee field fre-
quently changes over time as the cause of the issue is updated. To address
this issue, IssueML provides visual cues that enable managers to monitor

developers’ status across state changes.



Task 2: Identifying updates in issues

Monitoring issues requires closely observing how the issue progresses over
time. In the past, managers had to manually read through most comments
left by developers to track changes while understanding the context of the
issues, which was inconvenient and required a significant amount of time.
Alternatively, they could rely on the internal issue management system [39],
which only supported limited tasks for monitoring issues. Log data con-
tained all of the update histories but was often very large and unstructured,
making it difficult for users to analyze, and thus was not utilized in the mon-
itoring task. To address these challenges, we designed an effective visualiza-
tion system that efficiently summarizes the progress of issues over time, fol-
lowing the Visual Information Seeking Mantra. This approach allows man-
agers to quickly and effectively monitor issues, starting from the overview

of the whole issues to the details of the focused issues.

Task 3: Supporting Discovery of Similar Issues

In analyzing the cause of the issue, we discovered that developers and man-
agers often refer to previous issues in resolving the current issue from the
interviews. By referring to the information of previous issues with similar
symptoms, users can earn hints on how to resolve the issue or ask help to
the developer who previously resolved the issue, speeding up the resolution
process. However, it was hard and cumbersome to find the similar issues, as
users had to manually search for the issues by matching keywords, hoping
that the similar issues appear in the search results which they had to indi-
vidually inspect upon. To address this limitation, we implemented a NLP
based approach that automatically searches for similar issues, overcoming

the limitations in direct string matching. Users can further control the results
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by applying filters according to multiple fields in the issue. Also, to reduce
the burden of users in inspecting upon each of the similar candidates, in Is-
sueML we provide visual cues for quickly comparing between the original

and the candidate issue.

4.3 Issue Data

In this section, we outline the process of utilizing and modifying the original
issue data to meet the requirements of our tasks and the visualization design
of IssueML. The issue data we utilized is based on the Atlassian JIRA [39]
software of generating and managing issue data which is currently used as
the issue management tool in the electronics company we collaborated with.

Firstly, among multiple fields, we extracted critical fields that managers
and developers commonly referred to when dealing with the issues based
on the interviews, as in Table 4.1. In most cases, managers first searched is-

sues according the the assignee field to retrieve issues of interest. Then in the

Field (key) Explanation Type
description Symptoms and conditions of the test in the error string
summary  Summary of description field string
assignee ID of currently assigned developer string (id)
resolution Resolution of the issue. default is null categorical
priority Priority of the issue (major, minor, ...) categorical
status Current status of the issue (Open, Closed, FixReady...) categorical
duedate Deadline of the issue to be resolved date
Comments left by developer/managers.
comment  Object contains the time, author, object
and the details of the comment

Table 4.1: Major fields in the issues utilized for IssueML.
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Field (key) Explanation Type

author ID of person who changed the values string

time Time of the changes occurred date
Information of the changed fields.

items Object contains each of the updated keys object

and its value before/after the update

Table 4.2: Structure of each record consisting the overall log data

subset of issues, they checked if the issues are being resolved according to
the assigned due date, referring to the resolution, status and duedate field. Fi-
nally, after referring to the summary field, if further inspection of the details
were required, users referred to the description and comment field.

There were two main limitations in the previous interaction process. Firstly,
while the changes in fields aids users in finding the cause of the issue, such
was hard to be utilized due to limits in accessing and interacting the large
log files. To overcome the difficulties related to interacting with the large
and complicated log data, in IssueML we aimed at providing an effective
overview of the log data. Log of the issue data are consisted of multiple
records in which changes in multiple fields in a single instance are recorded.
(The structure of a single record is described in Table 4.2.) However, not all
of the changes in the fields were considered important. Thus, in IssueML we
distinguish records that involve changes in “important’ fields (assignee, reso-
lution and status) from other records to assist users to interact with changes
in important fields more effectively.

Secondly, since it was previous complicated to track the history of previ-
ous changes in the fields, managers could not track issues that their subor-
dinate developers were previously assigned, but are not currently assigned.

As a result, managers could not fully track the developer’s contribution in
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Status Condition Explanation

Issues that were previously

| .
indirect é;u(r rfg‘fg ::f’g Zsid)ne d) assigned to the developer,
P v assig but not currently assigned
(currently assigned) L
complete && resolution 1= null Issues that are resolved in time
(currently assigned)

Issues that are not resolved,

ongoing  && resolution == null but did not pass the due date

&& duedate > current
(currently assigned)
delayed &&resolution == null Issues that passed the deadline
&& duedate < current
I(currently assigned)
&& !(previously assigned)

unrelated Issues that are not related to the developer

Table 4.3: Classification of issues according to a developer

resolving issues. In IssueML, to overcome potential misunderstandings in
the contribution of developers, we extract the history of changes in the as-
signee in each of the logs. Then, according to a single developer, we cate-
gorize the status of the selected issues with regards to its completion status
and the developer’s involvement in the issues. The categorization not only
reflects previous involvements in the issues, but also simplifies the previous
management of multiple developers according to dedicated categories, sup-
porting the effective observation of the performance of developers related
to Task 1. An overview of the categories according to a single developer are

depicted in Table 4.3.

4.4 |ssueML

Based on the identified tasks from interviews, we designed a visualization
system called IssueML (Figure 4.2). Previously, users mostly utilized queries
to retrieve and interact with multiple issues. The process required repeated

modification of the queries to change the selecting, and was ineffective at
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dealing with fields involving continuous attributes as each of the informa-
tion had to be manually entered. Reflecting the limitations, IssueMLis con-
sisted of four coordinated views dedicated to effectively monitoring multi-
ple issues in a scalable manner In line with the Visual Information Seeking
Mantra, users can explore the data starting from the overview of multiple
issues to the details of a single issue, fulfilling the aforementioned critical

tasks.

4.4.1 Attribute View

The attribute view (Figure 4.2(a)) can be the starting point for the monitor-
ing task of multiple issues. It presents the distribution of each attribute in the
issues as either a bar chart (for categorical attributes) or a histogram (for nu-
merical attributes). The attribute view provides an overview of the issue data
by offering distributions of each attribute, in which users can select items of
interest by applying filters. Previously, in applying filters user had to man-
ually enter the values, which was ineffective and less intuitive. In IssueML
users can interactively filter items of interest according to the attribute val-
ues by selecting values or ranges in the distributions. When a filter is applied,
users can compare the distribution of the overall data to the distribution of

the selected issues that are highlighted, as in Figure 4.3. Based on the in-

Resolution S Status $ DueDate Priority 3
in-progress 32 In Progress e o Minor | ] 497
Wi - 80 Open 2 Fod Major &

Fixed (14 22) [ 323 Resolved | 287 Comment

Nota Bug (2. [l 55 Closed | ] 21 1001

eferre | Reopened 1 50— '

10
annof M | FixReady I ol

Duplicate (5% ... |® Tue 25 aNBgertRat 0Wed CHov 13hu 1lon 2Fri 25Tue 20

Figure 4.3: Example of the filtering interaction applied in the attribute view. Upon select-
ing a certain range/categories in the attributes, the distribution of the selected issues can
be compared with the overall distribution in the background.
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formation, users can easily the observe how each of the filters influence the

selection of items, and further elaborate the selection of issues.

4.4.2 Issue List View

In the issue list view (Figure 4.2(b)), the selected issues from the attribute
view are visualized as a list. Users can swiftly obtain vital information about
each issue, such as its priority and whether it has surpassed its due date,
from the corresponding icons in each row of items. For further details, users
can refer to the summary of each issue by hovering over the list item. Based
on such information, users may either click on one of the items to display
details of the issue in the information view (Figure 4.2(d)), or manually select
an issue of interest and compare its distributions to the overall distribution,
as in the same way as selecting items in the attribute view. From the issue
list view, users can elaborate the selection of items previously sampled from

the attribute view, which can be further analyzed in the analysis view.

4.4.3 Analysis View

After issues of interest are selected from the attribute and the issue list view,
their patterns can be analyzed in the analysis view (Figure 4.2(c)). In the
analysis view, users can observe the progress of each developer and further
inspect the issues related to a selected developer with visualizations, fulfill-
ing the main tasks identified from the interviews. The analysis view consists
of two components, the developer component (Figure 4.2(c-1)) and the issue

log component (Figure 4.2(c-2)).
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Developer Component

In the developer component (Figure 4.2(c-1)), the distribution of the selected
issue, categorized by the involved developers is displayed as a stacked bar
chart. To address the user task of managing developers (Task 1), we utilized
the classification of issues defined in Table 4.3 for efficient observation of pre-
vious and current contributions in the issues as well as its completion status.
For each developer involved in the selected issues, we render a stacked bar
chart for each of the defined categories outside of unrelated issues. Colors are
applied to each of the issue groups, enabling users to directly distinguish
each of the groups in the bar charts. The colors were deliberately selected
to help users quickly distinguish one group from each other. Gray indicates
indirect issues that were previously assigned to the developer, but not cur-
rently assigned, and colored bars correspond to the issues that are currently
assigned to the developer (green: completed issues, blue: ongoing issues that
are not overdue, red: overdue issues). From the bar charts users can effec-
tively observe the status of each developer and select a developer of interest

to be further analyzed in the issue log component.

Issue Log Component

After a developer is selected, corresponding issues are visualized in the is-
sue log component. In the component, progress of each issues over time is dis-
played as a single row of timeline, with visual cues that indicate major events.
Figure 4.4 depicts how important progresses in an issue are visualized in the
issue log component. From the patterns of colors and ticks in each of the is-
sues, users can intuitively observe how each of the issues have progressed
over time. To assist users in effectively perceiving information without feel-

ing overwhelmed, we made a deliberate choice to limit the number of colors
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Figure 4.4: Step-to-step diagram of visualizing a single issue’s information over time in
the issue log component. (a) The overall visualization is a timeline, in which colors indi-
cate changesin the assignee, or changesin the issue’s resolution status. (b) Long ticks are
mapped to due dates. Previous due dates are also identically rendered in the visualiza-
tion for managers to observe. (c) The lower short ticks represent each records in the log
file. (d) The higher short ticks correspond to comments related to the selected issue. (e)
Colors refer to special types of events. Red ticks in comments are comments from the se-

lected developer, and blue ticks correspond to records containing changes in important
fields previously categorized.

used in the patterns of the visualizations. This approach helps to mitigate
color fatigue and ensures that users can focus on the relevant information
without being distracted by excessive color variations. With this visualiza-
tion technique, the previous task of identifying the changes in issues (Task
2), which was not accomplishable unless users read the comments or related
logs thoroughly, can be fulfilled by readily finding information from the vi-
sual patterns. In addition, based on the visualizations, it is able to interact
with multiple issues and find related information by visually comparing the
patterns, such as finding groups of similar issues or detecting outliers with

outstanding patterns. Furthermore, if an item worth further inspection is dis-
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Figure 4.5: Example of the threading approach in the comments from an issue in the in-
formation view. In comment 3, Developer C mentions Developer D and E, and in comment
4, Developer D replies to Developer C. With threading, users can directly jump to such co-
mentioned issues by clicking on the blue text corresponding to each comment.

covered from the patterns, users can hover over the ticks to retrieve its details

or interact with further details in the information view.

4.4.4 Information View

In the information view, detailed information of one selected issue can be
observed. Details of the selected issue over time such as the raw value of

each of the comments and histories can be examined in inverse chronolog-
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ical order, prioritizing recent updates. For effective observation of various
events, different background colors are applied according to the types (emer-
ald for important records, gray for other records, slate for comments) of the
expressed information. Furthermore, to aid the observation of comments, we
provided direct links for threaded comments (i.e., pairs of comments where
a developer(A) is mentioned by another developer(B) in one comment, and
the relationship is reversed in the other comment), in which users can di-
rectly jump to related comment without reading all the other comments.
With such expressions, users can check upon the details of the discovered
information from previous views in the information view. Based on the in-
formation, users can either continue the observation of multiple issues, or
further inspect upon the details of the selected issue in the issue analysis

view.

4.4.5 Issue Analysis View

Issue analysis view (Figure 4.6) is a separate view in IssueML dedicated for
inspecting and analyzing a single selected issue. In issue analysis view, most
of the details of the selected issue, such as the values in each of the fields can
be observed in a single screen. Based on the information, the issue analysis
view is designed to support the user task (Task 3) of supporting the discovery
of similar issues. On the right upper side of the issue analysis view, a list of
similar issues and its degree of similarity is provided. This similarity is based
on the FastText [6] encoding, where we encode each of the summaries in the
issues, and calculate the cosine similarity between the selected and all of the
other issues. Among the issues, we display the top 10 similar issues in the

analysis view for user to interact with. The provided suggestions based on
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NLP techniques enable users to overcome the previous limitation in direct
string matching.

Furthermore, in the issue analysis view, users can adjust the result of the
similar issues and observe the details of them. By checking on each of fields
in the issue of reference, only issues that share the same values in the checked
fields appear in the bar charts of similar issues. In addition, to support users
in verifying whether the similar issues according to the NLP technique are
actually similar to the original issue, users can further compare between the
two issues with the help of visualization techniques as in Figure 4.7 Upon
selecting one of the candidates, users can compare between the original issue
and the similar issue with the help of highlights. Highlights are rendered
when text or properties are shared in both of the issues, enabling the effective
observation of shared properties.

Finally, to support the analysis of attached log files in issues that are com-
plex and large, the issue analysis view is integrated with a dedicated system
for managing scripts for processing logs. In the system, Python scripts for
processing logs can be managed and uploaded by developers. Developers
can also choose the scripts to utilize for their logs, and run the scripts in the
server of IssueML. Then, the results of the scripts are displayed as in the
bottom right part of Figure 4.6. The script system enables users to efficiently
run scripts without dealing with complicated structures or routines in deal-
ing with the log data. In addition, scripts from multiple developers can be
shared via the system from which they can share their know-hows in dealing

with issues.
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Figure 4.7: When a candidate from the list of similar issue is selected, the selected issue
in displayed side to side, and the tokens that are shared in the issues are highlighted for
users to compare. (Content is blurred for privacy reasons.)

4.5 Use Case

From IssueML, users can monitor the progress of issues starting from the
overview of multiple issues to the details of a singular issue, following the
Visual Information Seeking Mantra [71]. Most notably, the visualization tech-
nique of displaying the events of a single issue with colors in the issue log
component enables the observation of progresses in multiple issues in a sin-
gle screen. In this section, we introduce various examples of discovering in-
teresting information in multiple issues of real world data. Data used in the
section are actual issues generated during the development of smart TVs in
an electronics company, containing a total of 187775 issues generated within
3 years (2020.06 - 2022.11).

Figure 4.8 shows an example of IssueML visualizing 1000 of the most
recent issues from the overall data. In interacting with multiple issues, it is
common to select a subset of interest from the overall data, and begin the

monitoring task. In IssueML, the visual filters support users in narrowing
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down the retrieved issues, as in the example where issues with major priority
are selected in Figure 4.8. Among the bar chart of developers in developer
component, users can select one developer of interest, such as Developer A
with many incomplete issues. Upon selecting, users can observe how the
selected issues have progressed over time from each of the colored patterns.
In the patterns, it can be discovered that during the time when the selected
developer is the assignee of the issue, less activities (corresponding to ticks)
occur. In addition, the red ticks corresponding to comments also only appear
when the developer is not the assignee of the issue. Such might suggest that
the selected developer is closer to the manager of developers, whose main
role is to appropriately assign the issues rather than resolving them.
Reflected in the example, as users tend to resolve issues according to their
roles and routine, progresses in their assigned issues often resemble each
other. Thus, in the patterns of multiple issues, users can find potential is-
sues of interest by searching for issues with outstanding patterns. Figure 4.9
shows the issue log component of a different subset of issues selected from
the previously retrieved 1000 items. In the Figure, it can be observed that
while most progresses are similar to each other, issues in red boxes tend to
have distant green regions. Such issues with different patterns can be the tar-
get of inspection, as the different pattern might suggest unexpected events
that caused changes in the routine of developers. As a result, the expression
of progresses as visual patterns not only enables the observation of indi-
vidual issues, but also aids users in understanding how the developers deal
with theissues, and further supports the discovery of distinct patterns which

users can prioritize in their observation.
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Figure 4.8: Example of interacting with multiple issues in IssueML. In the Figure, a total
of 1000 issues generated during the development of smart TVs are displayed. Users can
filter issues according to various characteristics from the attribute view (in the Figure,
issues with major priorities are selected) and select an developer of interest in the devel-
oper component of IssueML (in the Figure, Developer A is selected). Upon selecting one
developer, users can observe how multiple issues progress based on the color patterns.
Patterns reveal that the selected developer did not interfere a lot in the issues when the
issue was assigned to him/her. (Values in some fields are masked for privacy reasons)

4.6 Discussion

The approach of visually encoding the information of multiple issues in Is-
sueML provides a novel perspective in the issue monitoring task. Previously,
managers responsible for the monitoring did not, and could not have a clear
task with multiple issues, as dealing with information in each of the singular
issues itself was challenging and overwhelming. However, with the visual
approach of IssueML, such complicated process can be overcame. Following
the Visual Information Seeking Mantra, managers can effectively control the
target issues to be inspected on. Then, with the visual patterns expressing

the records in an issue, managers can quickly figure out on which records to
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Figure 4.9: Another example of interacting with multiple issuesinIssueML in theissue log
component. Among the patterns of multiple issues, users can discover distinct patterns
(red boxed issues) indicating atypical progresses during the resolution, from which they
can begin the inspection on.

focus instead of reading the entire details. Such approach enables effective
interaction with progresses of multiple issues that was previously unavail-
able, as reflected in the use case. We believe that our approach in visualiz-
ing issues can shed light on new possible tasks that were unavailable due
to the sheering complexity in observing the information multiple issues. To
further discover related tasks, we are currently deploying IssueML in actual
work environments, and plan to collect feedback from various users. Based
on iterative feedback with them, we hope to further extend the functions and
tasks related to interacting with multiple issues in IssueML.

One of the future directions is to further increase the scalability in visual-
izing multiple issues. Currently, an issue is expressed as a row of colors, and
users can observe the changes in multiple issues from the multiple rows. In
this approach, the number of issues users can interact with is bound by the
number of rows a single screen can accommodate. However, in the use case,

we discovered that many issues that are normally resolved follow a similar
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pattern, which we think can be visualized as a row indicating groups of simi-
lar trends rather than multiple rows that damage scalability. By reducing the
total number of rows with grouping, users will be able to interact with even
more items effectively, and discover interesting patterns more easily with the
increased capacity. Likewise, we hope to discover various criteria in which
the issues can be grouped by, and find appropriate expressions that can en-
velope the information in multiple issues.

Furthermore, we hope to develop new visual methodologies for express-
ing how the multiple issues are related to each other, for a better understand-
ing of the overview. Currently, the information of multiple issues are catego-
rized by the related developer or assignee. While this approach fulfills the
user task of monitoring each of the developers, it is limited in observing the
details of the issue which users still have to individually inspect upon. We be-
lieve that providing the overview in how the issues are related to each other
will further help managers in effectively understanding the current situation
related to errors. Based on the gained information, managers may infer to the
causes of the errors without inspecting on each of the issues, and apply ap-
propriate measures accordingly. However, since the row-based visualization
for each of the issues may be limited in expressing the relationship between
issues, we plan to design visualizations specialized for expressing the rela-
tionship, such as a scatterplot.

Finally, we wish to extend the system to enable users interact with more
complicated and detailed information in the issue data, further supporting
the analysis and resolution task. For example, in the current system, we mostly
relied on the summary of the issue for finding similar issues. However, the
summary and description field are mostly generated during the test, and

thus cannot reflect updates that occur during the resolution process. Thus,
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we plan to further integrate comments (which can reflect recent updates)
and log data (which contains most information related to the error) into the
components of IssueML to additionally support users in interacting with the
information of multiple issues. Since such data is generally more large and
complex, we also plan to implement NLP-based, dedicated algorithms for ef-
fectively extracting information in such fields, enabling effective interaction

of users.

4.7 Summary

We introduced IssueML, an interactive visualization system for managing
multiple issues during the development of large scaled software. Based on
interviews with domain users, IssueML consists of multiple views that en-
able effective monitoring of multiple issues, starting from the overview of
multiple issues to the details of selected issues following the Visual Infor-
mation Seeking Mantra. The patterns enable the observation of progresses
in multiple issues that were limited, from which users can efficiently find is-
sues of interest to further inspect upon. When one issue of interest is selected,
users can further examine the details of the issue by referring to similar is-
sues and utilizing scripts for processing the log files in the selected issue. In
the future, we plan to deploy IssueML in actual industrial environments, and
collect feedback from users of different background. Based on the feedback,
we hope to further improve the functionalities of IssueML in monitoring and

resolving multiple issues.
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Chapter 5

Towards Supporting the
Exploration of Temporal Rank
Data with Multiple Colormaps

This chapter presents TRaVis, a novel visualization approach for visualiz-
ing and interacting with each of the multiple ranking changes of items in a
temporal rank data using colormaps, supporting the data exploration task
of users. The research mainly addresses the third research question (RQ3)
of the dissertation, of interacting with the information of multiple items in a

scalable manner using colors.

5.1 Background

Ranks provide a simple, intuitive criterion for comparing items. With ranks,
the task of comparing multiple items can be reduced to comparing each of
the relative positions, instead of raw values that may be large in size or com-
plicated to comprehend. Thanks to its simplicity, ranks are popularly utilized

in peoples’ everyday, non-analytic interactions with data, such as referring
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The music rank chart [melon] visualized as TRaVis. In TRaVis, ranking changes of each items are displayed as rows of col-

ormaps, enabling the visualization of multiple items in limited space without cluttering. The stacked color patterns reveal interesting

patternsin the data, such as the overall downward trend in rankings, or the increased length in the colormaps over time which indicate

the recent trend of items lasting longer in the charts.

Figure 5.1



to ranks of popular musics, movies, or sport teams. Furthermore, users often
expand this comparison task to multiple values for more information, such
as observing the ranking changes over time. However, despite the simplicity
and intuitiveness of ranks, interacting with the temporal aspects of ranks is
a challenging task. Compared to a single rank chart with fixed items, items
in a temporal rank data may appear, disappear or even reappear over time.
Thus, not only the number of items to interact is increased, but in each of the
items, missing values also need to be dealt with.

Due to the increased complexity, visualizations that are frequently uti-
lized when interacting with rank data also becomes ineffective. For exam-
ple, tables are inherently inefficient at visualizing ranking changes over time
[63], and line charts cannot express the ranking changes of multiple items
in a limited space due to cluttering. While previous researches related to
visualizing temporal rank data were purposed, they did not fully address
the existing issues; for example, the visualization technique being limited to
visualizing items from a single rank chart [88], or only being able to display
ranking changes in adjacent time frames [70]. Especially, most researches did
not consider the casual, non-analytic aspect in interacting with rank data,
where users may not have a certain task or objective but hope to encounter
unexpected, interesting information from the data in various perspectives
[14].

Reflecting upon the limitations, we introduce a novel approach, TRaVis,
in visualizing multiple items in a temporal rank data. In TRaVis we encode
each items’ ranking changes over time as a single row of colormap, with the
colors correspond to ranks. Then each of the colormaps are stacked in a 2D
space while preserving the temporal information of rankings. Such visual

encoding in TRaVis prevents overlapping between items, which helps users
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to effectively explore for interesting patterns. Moreover, characteristics and
trends of the overall data that were previously hard to observe can be re-
vealed from the accumulated patterns. With user interaction of changing the
sorting method, users can further seek for information by multiple perspec-
tives in TRaVis. Such effectiveness of TRaVis in aiding users” exploration of
temporal rank data is demonstrated in multiple use case involving real world

data.

5.2 Design Rationale

Ranks can reduce the difficulty of interacting with multiple items by summa-
rizing the related context of raw values into a single value. Conversely, since
ranks are the reduced value of most details, from an analytical perspective
it is generally more effective to refer to the raw, detailed values rather than
the simplified version of ranks. Thus, rank data is often used in a casual and
lightweight fashion in seeking for interesting information, without a specific
analytical task. Based on such background, we aim at fulfilling the needs of
information flaneurs [14] who do not have a clear analytical objective.
When designing a visualization for information flaneurs, it is important
to provide multiple facets of data from which users can interact with. How-
ever, most previous approaches in visualizing temporal rank data only pro-
vide limited facets of the data to overcome complexity. For example, tables
mostly express a single chart from a single time frame, and line charts visu-
alize finite numbers of items due to prevent cluttering. Similarly, researches
designed for temporal rank data also restricted the visualization to reduce
complexity; for instance, only visualizing the adjacent ranking changes [26,

70], or bounding the items that can be visualized to a certain condition [88].



While such reduction is effective when appropriately applied for a partic-
ular task, from the perspective of information flaneurs who do not have a
clear analytical motivation, the exploration process is hindered by the lim-
ited visualization. Thus, in TRaVis we aim for explorability of the data by
providing an overview in which users can not only observe the items without
restrictions, but also can control the visualization according to their needs.
To maximize explorability in the data and support the user’s interaction
with each of the items, items are individually expressed instead of grouping
in TRaVis as grouping may limit or complicate the interaction. With the visu-
alization technique of stacking multiple colormaps, users can observe each
of the items in a non-cluttering manner. Moreover, in TRaVis each of the
patterns of colormaps accumulate to generate a stacked pattern, from which
characteristics of the overall data can be observed. TRaVis is also equipped
with the user interaction of observing the data according to user selected per-
spectives. Even though flaneurs do not have a clear objective, it would be dif-
ficult to interact with many items if no direction at all were provided. Thus, in
TRaVis users can steer their observation process by changing how the items
are ordered in the heatmap and observe the data in different perspectives.
Upon changing the ordering, the stacked patterns also change, from which

users can observe the characteristics of the data in a different manner.

5.3 TRaVis
5.3.1 Rendering of TRaVis

The most common visual mapping in visualizing time series is to map each
of the values into a 2D position, with X coordinate corresponding to time,

and Y coordinate corresponding to ranks as in Figure 5.2(b). However, when
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Figure 5.2: How TRaVis is rendered from temporal rank data. (a) Ranks of 2 items A and
B. Dash (-) indicates no records at that time. (b) Data of (a) visualized as line charts. In line
charts, problems such as disjointed records (T1 of B) and overlapping between lines can
be potentialissues as number of items increases. (c) The viridis [79] color scale utilized to
map rankings to colors. (d) Data of (a), in which each of the ranks are colored according
to the color scale of (c). (e) In TRaVis, each of the colormaps (as in (d)) of each items are
greedily stacked while preserving temporal information.

there are many items to visualize in a limited space, juxtaposition of each
items is inevitable. Such causes cluttering between items, which damages the
exploration task of the data as each items are become to discern. Moreover,

line charts are ineffective at dealing with disconnections caused by missing
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values (T1 of B in Figure 5.2(b)), as providing identity in disjointed line seg-
ments is limited.

To overcome the limitations of line charts, we render each item as a sin-
gle row, preventing the crossings patterns that causes overlapping between
items. This is similar to visualizing each items as rows from a table, in which
position of each cells corresponds to time in the rank charts as visualized in
Figure 5.2(a). Furthermore, we apply colors correspond to ranking values to
each cells instead of texts to indicate the values even when they are small in
size. We map rank values to a continuous color scale, as in Figure 5.2(c), and
apply the according colors in the cells as in Figure 5.2(d). For cells that do
not have a value, we leave them empty with no colors.

Throughout the research, we made use of the Viridis color scale [79] to
represent ranks in our visualizations. By employing the Viridis color scale,
in TRaVis we mapped rank values to different hues among various factors
in colors. While there were alternative color mapping options available, such
as varying the brightness of a single color, we determined that visualizing
hue as the mapped value offered improved differentiation between unde-
fined values and defined values. Given the significance of handling unde-
fined ranks in our context, we chose to map hues as values to effectively ad-
dress this requirement.

Finally, with each of the rows of colormaps, we stack them in a 2D space
to render TRaVis, as in Figure 5.2(e). Items are first sorted by a criterion (in
the case of Figure 5.2, in alphabetical order). Then each colormaps of items
are greedily stacked from top to bottom according to the sorted order with-
out overlapping, while preserving the temporal information with horizontal
positioning. When stacking the items, items are positioned at the possibly

highest position,as in item C of Figure 5.2(e). Even though the order of C
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is behind B, C is rendered on top of B because there is space left to render
C above B, without overlapping with A. Furthermore, each colormaps are
bordered to distinguish between different items.

In TRaVis, patterns of stacked items resemble a heatmap, from which
characteristics of the data in multiple items can be discovered. As the heatmap
is consisted of patterns of each items, similar trends in the heatmap reflect
characteristics in multiple items, while outstanding patterns correspond to
outliers that do not follow the trend. Moreover, users can discover and inter-
act with ranking changes in interesting items by referring to its nearby cells
in the same row in a non cluttering manner. Since each colormap preserves
the information of missing values as empty spaces, users can also observe
the patterns related to disjointed rankings, which was difficult to be accom-
plished in line charts. Thus, TRaVis can support the data exploration task of
flaneurs by providing the overview of temporal information from which the
pattern of each items can be directly observed, without limiting or compli-

cating the interaction.

5.3.2 Controlling Visual Components

We designed a variety of interactions that modifies various visual compo-
nents in TRaVis to further support the visual exploration task. Figure 5.3
shows an overview of the provided interactions. Firstly, users can choose to
remove borders to observe the patterns more clearly, at the cost of making
the distinction between individual items harder (Figure ??(a)). To compen-
sate this, users can also decide to reduce the width of color tile of the starting
point and ending point from the other ranks to distinguish and distance dif-
ferent items, as in Figure 5.3(b). The blank spaces can also be dealt with,

by filling in other items in the blank spaces as in Figure 5.3(c). While blank

85 MEH S



(b)

(d)

Figure 5.3: Various interactions in TRaVis for supporting the observation of multiple
items. (a) The border of each items can be toggled (top: with borders, bottom: without
borders). Ranking changes can be more clearly observed when borders are removed, but
each of the items become less distinguishable. (b) Size of the starting point and ending
point can be reduced, enabling distinction of items without borders. (c) Items can be
placed in between empty spaces of other items for more efficient space usage. (d) Users
can partially (top), or fully (bottom) filter items depending on the task. In the example,
items are partially/fully selected according to the light green value.

spaces provide information related to reentered items, such spaces stand out

compared to the colored patterns and may act as distractions in observing
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the overall trend. Thus users can position items in between the ranks of other
items, reducing the size of the blank patterns. While this approach makes it
difficult to precisely observe each of the individual items, it helps to observe
the overall trends as the blanks are reduced. Figure 5.4 shows the interaction
of reducing blanks applied in the original visualization of Figure 5.1. It can
be discovered that compared to the original visualization, the visualization
with interactions applied can better represent the pattern changes over time
while being more space-efficient.

To further aid the exploration, users can alter their perspective in observ-
ing the data with interactions. Since the pattern of the heatmap is dependant
in how the items are sorted, changing the sorting criterion of items is a crucial
interaction, from which users can steer their observation process. Changing
the sorting method changes the stacked pattern, and users can observe the
data from a different perspective. While the sorting method in TRaVis is
not completely exact due to the greedy nature of positioning, items that are
highly prioritized according to the sorting criterion tend to be rendered on
top of the heatmap. Based on the information, users can roughly expect how
items are positioned and start the observation based on the information. But
since such pseudo-sorting is not completely accurate, users can also discover
unexpected items during the observation task in a serendipitous manner.
Thus, changing the positioning of items plays a critical role in supporting
explorability for information flaneurs.

Finally, based on the discovered information in multiple colormaps by
different sorting methods, users can filter items by various attributes and in-
crease the efficiency of the information exploration process. When filters are
applied, records that are filtered out are dimmed and sorted last, allowing

users to focus on the selected items. In addition, since filtering also changes
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Figure 5.4: The music rank chart [melon] visualized as TRaVis, with border removed and blanks filled in with other items. Even though

the information of each of the items is harder to be observed, the overall pattern of multiple items can be better displayed.



Figure 5.5: The music rank data visualized as line chart. Outside of the information of
density generated from the cluttering of lines, it is hard for users to further interact with
the data.

how items are sorted, such interaction can also can aid users in discover-
ing interesting items. In addition to applying filtering item wise, users can
partially filter items according to certain conditions. Similar to filtering the
overall item, when partial filters are applied each of the instances that are

filtered out are dimmed out.

5.4 Use Case

The visual encoding of TRaVis enables users to observe the overview of mul-
tiple items from a temporal rank data in various perspectives. Based on the
overview, users can explore around the items and find interesting informa-
tion from which users can further expand their examination, fulfilling the
objective of information flaneurs. We demonstrate two use cases with real
world dataset in which the visual technique of TRaVis can benefit the infor-

mation seeking process in a temporal rank data.
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Figure 5.6: The upper right portion of TRaVis from Figure 5.1. Users can readily discover
irregular patterns (black box) or items with repeated patterns (orange box) from the color
patterns, without additional interactions of reducing the number of displayed items.

5.4.1 Music Rank Data

The music chart data consists of 14 years (2007-2020, 731 weeks) of weekly
top 100 popular songs, acquired from a Korean streaming platform [melon].
Reflecting the trendy nature of popular songs, new songs frequently appear
in the data, which eventually replaces old songs. As a result, the number of
items to display is followingly increased, and difficulty in displaying mul-
tiple items arises. We demonstrate how TRaVis can visualize information
despite the many items in the data.

Figure 5.1 shows the music data visualized as TRaVis, with items sorted
by the number of times the items appeared in the rank chart. Even though a
total of 9519 items are displayed, TRaVis is capable of visualizing all of the
items in a limited space without cluttering. Compared to the line chart visu-
alizing the same data in Figure 5.5 in which multiple lines clutter severely,
the information of each of the items can be better observed in TRaVis. In-
formation related to the patterns in the ranks can be discovered from the
stacked colormaps. Overall, it can be discovered that most ranking changes

are downward (from yellow of high rankings to blue of low rankings), due
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to new songs entering the rank data. Moreover, changes in listening patterns
over time can be reflected from changes in the color patterns. Length of the
colormaps tend to be longer as time progresses, meaning that recent songs
tend to remain longer in the charts compared to previous songs. Such is at-
tributed to the result of increased competition in streaming platforms, in
which fans competitively stream musics for higher rankings [38].

From the visualization of TRaVis, users can search for and discover inter-
esting items based on how they are sorted. In this particular case, where the
items are sorted by their longevity, it is natural for users to pay closer atten-
tion to the items that have remained for a longer period. By examining the
details of each item, particularly those with a longer lifespan, users can un-
cover interesting patterns and insights from the stacked colormaps. Figure
5.6 shows the upper right part of the overall visualization from Figure 5.1.
From the patterns, users can discover irregular patterns (black box in Figure
5.6) where the downward trend is abruptly reversed multiple times, or find
items that periodically reappear in spring or winter seasons (orange boxes in
Figure 5.6) every year. As each of the ranking changes of items are displayed
in a non-cluttering manner, interesting patterns in rankings can be readily
discovered without multiple steps of interactions such as filtering.

Based on the discovered patterns, users can expand the exploration in
different perspectives by reordering. In Figure 5.7(a), items are sorted by the
number of times songs reentered the rank charts, focusing on the blank pat-
terns of reentries in Figure 5.6. Items with reentries tend to appear more
frequently in recent times, reflecting the trend of songs climbing up the rank
chart due to refocused interest [16]. To further observe the patterns related to
reentries, users can change the ordering in alternative criteria. From Figure

5.7(b) in which items are ordered by the sex of the artist, it can be revealed
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Figure 5.7: Different sorting and filtering applied in the music rank data [16]. Interactions
in TRaVis can help discovery information in multiple perspectives. (a) Items ordered by
the number of times songs reappear in the ranks. (b) ltems ordered by the sex of the artist
(male, female, others from the top).

2013 2014 2015 2016 2017
| | |

'..,.F_ .

Figure 5.8: Items filtered by the same artist of the black boxed song from Figure 5.7. It can
be observed that the rise in rankings correspond to periodic appearances of new songs.

that songs in the upper region corresponding to male artists tend to reenter
more that the lower region corresponding to female artists.

Furthermore, users can filter items to focus on the subset of data that in-
terests them. Figure 5.8 shows the subset of data visualized by the artist of the
black boxed item in Figure 5.6, to further investigate why the patterns have
occurred. It can be observed that the spikes correspond to the simultaneous

appearance of items, implying that the rise in the ranks is highly related to
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Figure 5.9: The Baby Name Data [4] rendered as TRaVis. Color distribution reveals dif-
ferent characteristics of the two dataset. (a-b) Names sorted by frequency of appearance
((a): male, (b): female). (c-d) Names sorted and filtered by latest year’s rankings ((c): male,
(d): female). Colors of items that are filtered out are lightened.

the newly appeared items. As in the examples, in TRaVis users can readily
discover information from the overview, and extend observation based on

the information, supporting the exploration task of information flaneurs.

5.4.2 Ranks of Popular Baby Names

The baby name data [4] is consisted of yearly rankings (1880-2022, top 100) of
popular babies names (two datasets of male and female) in the United States.
Previously, it was hard to visualize and observe the overall data unless users
had clear targets (e.g. names, rank of a single year, etc.) to focus on, due to

the data containing only the name and its rankings. We demonstrate how
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TRaVis can aid the observation of the overall data. Figure 5.9(a) and Figure
5.9(b) shows each of the datasets visualized as TRaVis, in which items are
sorted by the number of times they appear in the charts. From the color pat-
terns, difference in the patterns of ranking changes can be found, in which
the names in the female data tend to be more diverse and variate more. Es-
pecially, while some names in the male data that have never left the ranks
can be observed, such pattern does not appear in the female’s data.

By combining filtering and sorting, users can observe items with TRaVis
similar to previous interactions with a single rank chart, with added advan-
tages. In Figure 5.9(c) and Figure 5.9(d), the same data is sorted and filtered
according to the rankings of the most recent (2022) year. The advantage of
encoding each items in a single row enables users to not only observe the cur-
rent ranks, but also how the items have progressed over time. The patterns
show that some of the names in the current popular names are previously
popular names that regained popularity. However, it can be also discovered
that such patterns in reoccurrence differ by sex. For example, in the female
data, the middle-right region (corresponding to the 70s-80s) is noticeably
less colored (in other words, filtered out) from the overall heatmap. How-
ever, such phenomenon is less prevalent in the male data. As shown in the
examples, TRaVis enables the visual comparison of characteristics in rank

data that was previously difficult to accomplish.

5.4.3 National Soccer Team Rankings

The soccer rank data [19] contains monthly rankings (top 100 of 1992.12.31 -
2022.02.10, 275 months) of national soccer teams. Compared to the previous
examples where the number of unique items is large due to items that newly

appear, new items corresponding to new nations rarely appear in the soccer



(b) |

Figure 5.10: The soccer ranking data [19] rendered as TRaVis. Changing the order of items
in TRaVis is a critical interaction which allows the observation of items in novel perspec-
tives. (a) Items are ordered by the average ranks. Lines correspond to the moments when
changes in the ranking criterion were applied. (b) tems are ordered by the gained or lost
ranks due to the changes in the ranking criterion in 2006 (middle line). Users can effec-
tively observe how the changes have influenced the ranks whilst conserving the informa-
tion of ranking changes over time.

data. Thus, scalability is not a critical problem in displaying the soccer rank
data, as the data is consisted of 166 unique items. Nonetheless, with TRaVis

users can effectively observe and interact with the information of multiple

o5 s A=l

s
L



items. We demonstrate how the sorting interaction can aid the observation
of items, focusing on the changes in ranking criteria.

The ranking criterion in the rank data had three major changes in 1999,
2006 and 2018 respectively. Figure 5.10(a) shows the soccer rank data visual-
ized as TRaVis, in which items are sorted by the average of the accumulated
ranks. The lines indicate when the criterion changes occurred. With the color
changes, users can observe how the changes affected the ranks of nations.
From the Figure, users can discover that the criterion change in 2006 (corre-
sponding to the middle line) relatively had the biggest influence in the ranks
of the nations. Moreover, they can discover that the ranking changes are stale
after the changes in 2019, due to the changes in the scoring method and the
influence of COVID-19.

To further observe the influence of the changes in the criterion, users can
order items according to the as in Figure 5.10(b). Previously, to interact with
the same information, users had to manually find items in the visualization
of multiple items, or observe the information from a separated, independent
visualization. In TRaVis users can integrate this process into a single visual-
ization by sorting the items according to the gained and lost ranks. With the
visual information, users can effectively find items according to the sorting
criterion, with the context of ranking changes in multiple items provided. Re-
flected to the example, users can freely define the required sorting method
according to their needs, and effectively observe how the patterns of multiple

items are related to the sorting criterion.
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5.5 Discussion

In TRaVis, each of the ranking changes of items are visualized in a non-
cluttering manner in limited space, thanks to its unique method of position-
ing items. Due to the positioning, users can search and discover interesting
patterns in the data from the information of each of the items. The usage
of colors as a visual channel for encoding rankings serves a critical role in
enabling such scalable visualization. While colors are considered as a less
accurate channel for visualizing numerical values [9], with colors the rank-
ing values of each items can be rendered in minimal space without direct
overlapping between the values. The low resolution of colors is also advan-
tageous in visualizing the overview of multiple items, as subtle changes in
ranks that may act as disturbances in observing the overview are less noticed
due to its low accuracy. From the patterns of colors generated by stacks of
colormaps, the overview of the temporal rank data that was previously diffi-
cult to express can be effectively visualized, from which users can explore for
interesting information in various perspectives with the help of interactions.

Sorting the items is a pivotal interaction in TRaVis, which enables the
interaction of multiple items by a preferred perspective. Compared to pre-
vious approaches in visualizing temporal rank data where the position of
each items are fixed to encode ranking values, in our approach the vertical
position of items can be controlled by users. Such opens up numerous new
possible interactions with the rank data that were limited in other visual ap-
proaches. Most notably, using TRaVis users can sort the items according to a
certain criterion and observe how the temporal trend is altered according to
the criterion. Previously, such interaction was mostly only available in mul-

tiple juxtaposed visual components, as there was no effective way to express
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both the temporal trends in relation to the criterion of interest. In TRaVis
such limitation can be overcome by sorting the items according to the crite-
rion, in which the relationship between the temporal trend and the sorting
criterion can be hinted from how the temporal trends are positioned in the
visualization.

We also believe a further inspection on the positioning of items would
benefit the users’” interaction with TRaVis. Currently, the sorting in TRaVis
is most limited to item-wise sorting according to a single attribute. We hope
to extend the sorting to more various criteria, further supporting the obser-
vation of data in multiple perspectives. For example, users may manually
position items of interest according to their preference, similar to stacking
blocks. Based on the user input, the sorting order of other items may adap-
tive change, for instance, in which items that are similar to the interacted
items are positioned nearby. Likewise, the items can be sorted according to
similarity in the ranking changes, aiding users to find information related to
the patterns in changes of rankings over time. In addition to the provided
examples, we would like to extend and discover novel methodologies in po-
sitioning items for supporting various user needs.

Throughout the paper, we mostly utilized the viridis [79] color scale for
visualizing the ranking values to control the potential effects that may occur
when the color scale is changed. Nonetheless, we believe that the color scale
is a major factor in the visualization that can be modified and controlled. In
addition to altering the continuous color scale to another color scale (such
as the inferno or plasma color scale [79]), the color scale can be altered into
a non-continuous color scale to emphasize certain values in the ranks. The
opacity of colors may also be mapped to the data, highlighting certain items

or regions similar to the filtering interaction provided. Colors may even ex-
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tend upon visualizing ranking values, and be utilized at expressing alterna-
tive information such as the value of a certain attribute at the certain time.
Combining such approaches, users can observe how the characteristics of
the multiple items in temporal rank data change over time, as in the exam-
ple provided in Figure 5.11. While the information related to changes in the
ranking is mostly lost, from the color distribution resembling an area chart
users can observe how each of the trends related to genres have progressed
over time. However, the approach in TRaVis has additional advantages of
visualizing the information related to each of the items, which is hard to be
addressed in area charts.

Nonetheless, there are also limitations in the approach of visualizing
multiple items as TRaVis. Due to the overwhelming usage of colors to encode
rankings, the visualization might feel overwhelming to users depending on
the user task or the size of the data. In addition, to our experience, careful
usage of visual channels were required as most of the other additional ap-
proaches that utilized colors were ineffective. Due to such limitation in uti-
lizing visual channels TRaVis, currently only a single attribute (in our paper,
mostly rankings) can be visualized. Thus, while the sorting interaction can
aid the observation of data according to the sorting criteria, users have to
manually check on the value of the criteria for further inspection. Moreover,
while colors are effective at displaying the overview, the limitation of color as
visual channel in terms of accuracy still remains in interacting with each of
the items. Designing additional interactions or visualization techniques for
overcoming the aforementioned limitations is one of the main goals we hope
to accomplish. Finally, we aim to further reveal how people experience and
benefit from the visual encoding of TRaVis in interacting with real world

data, and discover more interesting use cases and usages.
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5.6 Summary

We introduced TRaVis, a novel approach in visualizing temporal rank data.
In TRaVis, we display each ranking change of items as a single row of col-
ormap and stack each the rows without overlapping, enabling the observa-
tion of multiple items and its overview in a scalable manner. Users can inter-
act with the data by reordering the colormaps, and steer the observation task
by inspecting upon the data from different perspectives. Reflecting the non-
analytical context in rank data, TRaVis is designed to fulfill the needs of the
information flaneurs, and supports users to explore around the data and en-
joy serendipitous discoveries. We demonstrated multiple use cases with real
world data in which the visual encoding of TRaVis is effectively utilized in
exploring temporal rank data. For future work, we hope to expand the usage
of TRaVis to other tasks and scenarios related to interacting with temporal
rank data, by designing various visual modifications and interactions based

on user feedback.
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Chapter 6

Discussion

In this chapter, we discuss about the lessons we have learned from the re-

searches, and the current limitations in the dissertation.

6.1 Lessons Learned
6.1.1 Significance of Utilizing Colors in Expressing Multiple Values

Throughout the researches, we commonly utilized colors to express infor-
mation of multivariate data in a scalable manner. We discuss critical insights

acquired from the researches.

Overcoming the Critical Cluttering Issue with Colors

Colors play a critical role in the introduced researches as they serve as the pri-
mary visual channel for representing multiple values across multiple items
in visualizations. This utilization of colors offers a notable advantage by ef-
fectively expressing each value within a confined space. Unlike other visual
channels that require more space to convey values (for example, mapping
values to the length or size of a visual component), colors can be represented

using minimal pixels, enabling the visualization of multiple values in a lim-
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ited area. This approach proves particularly valuable in addressing the chal-
lenge of scalability, where the display of multiple values is necessary despite
space constraints.

Moreover, incorporating colors in the expression of values offers a signif-
icant advantage in terms of flexibility in positioning compared to positional
encodings. Unlike positional encodings, which are commonly used to con-
vey information but are constrained by specific positional scales and prone
to overlapping issues between items based on the characteristics of the data,
colors provide a relative freedom in placement. This increased flexibility al-
lows for greater adaptability and modification to meet the specific require-
ments of the given task in the data. Thus, although the use of colors may
slightly compromise the accuracy of each individual value, it effectively pre-
vents the more significant problem of cluttering. By strategically positioning
and mapping colors to the data in visualizations, researchers can effectively
overcome the limitations of positional encodings and create visual represen-
tations of the data based on the task.

In the dissertation, we make effective use of the advantages offered by the
relatively freed positional channel to convey information when visualizing
multiple values without cluttering. This was accomplished by strategically
mapping colors to values, and positioning them to effectively represent the
values being visualized. For instance, in Parallel Histogram Plots, colors are
mapped according to a single attribute and applied on top of histograms,
enabling scalable expression of information from which the relationship be-
tween attributes can be inferred from the patterns. The information conveyed
by colors can effectively represent relationships regardless of their position-
ing even when the attributes are distant from each other, in contrast to the

positional encoding of PCP. Similarly, in TRaVis, the use of colors facilitates
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the expression of numerous ranking changes within a limited space without
introducing clutter. By utilizing colors that effectively convey information in
a limited space, the issue of cluttering can be effectively addressed, enabling
the representation of a vast amount of information in multiple values. We
believe that this relatively position-freed property of colors can play a cru-
cial role in tackling the prevalent scalability challenges in visualization, with

the combination of appropriate color scales and its positioning.

Handling Multiple Values through Color Patterns

The advantage of utilizing colors to represent values without cluttering ex-
tends beyond the recognition of individual values. By employing colors to
visualize multiple values, users can identify patterns that emerge from the
combination of the colors. Patterns from multiple values enable users to ob-
serve and comprehend multiple values simultaneously, enhancing the effi-
ciency in interacting with the data. Such advantage in utilizing colors is re-
flected in the proposed researches. In IssueML, the use of colors and marks
to indicate important events and changes in a single issue allows users to ob-
serve not only the progression of individual issues but also compare them
based on visual patterns. This aids a more scalable and effective observation
of multiple issues, from which users can identify trends and outliers across
multiple issues. Similarly, in TRaVis, the ranking changes in multiple items
can be recognized as color patterns, and users can observe how such pat-
terns have progressed over time. Reflected in the examples, the utilization
of colors in visualizations enables users to gain valuable insights in patterns
generated from multiple values, that would have been challenging to dis-

cover without visual inspection.
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Such patterns derived from colors can serve as an critical step in the ob-
servation of data, allowing users to extract meaningful information from
multiple values. This visual analysis with color patterns is akin to cluster-
ing multiple attributes into a single, multidimensional representation in a
visual manner. Patterns of colors can provide an intuitive and accessible way
to explore multiple values, allowing users to effectively uncover insights and
trends in higher dimensions, even in situations where algorithmic clustering
is limited. Therefore, colors provide a significant advantage as a visual chan-
nel for scalable observation and analysis in multiple values, allowing users to
extend their interaction with the data beyond individual values and encom-
pass multiple values effectively. This important advantage of color patterns
can further aid users in overcoming scalability issues in interacting with mul-
tiple values in data, by enabling the expansion of the perspective of interac-

tion to multiple values.

Further Interacting with Data by Changing Color Patterns

While color patterns facilitate scalable interaction with multiple values, from
the researches we also learned the importance of incorporating functions
that support observation during the visualization process. Although colors
have the advantage of displaying numerous values within limited space, this
advantage can be compromised without appropriate interaction techniques
that assist users in discovering information from the patterns. Therefore, it is
crucial to not only visualize multiple values effectively but also provide spe-
cialized interactive features that specifically address the manipulation and
exploration of multiple color patterns.

Taking account the aforementioned precaution, our research aimed at

providing interactions that assist users in effectively navigating multiple val-
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ues of items. In Parallel Coordinates Plot, users can modify the pivot at-
tribute, which changes how histograms are colored and enables the obser-
vation of relationships based on the selected attribute. In IssueML, users
can apply filters based on various attributes, allowing them to control which
patterns corresponding to issues they want to observe. Finally, in TRaVis,
users can manipulate the positioning of items, facilitating the discovery of
different patterns with the help of other interactions like filtering. In the re-
searches conducted, we explored the potential of interacting with multiple
values through the adjustment of the color scale or its positioning in the vi-
sualization. By making these adjustments, it is able to uncover information
from different perspectives, as the altered color patterns can provide new
insights in the patterns and relationships. As in the examples, in express-
ing multiple values as colors, it is important to enable users to customize
and manipulate the color representation according to their specific needs
and preferences, facilitating a deeper understanding of the multiple values

being visualized.

6.1.2 Bridging the Gaps in Information Visualization

Our research primarily concentrated on visualizing and facilitating interac-
tion with multiple values in a scalable manner within limited space using
colors. Although this approach may appear counterintuitive, as it empha-
sizes individual values rather than grouping them, its purpose was to ad-

dress and highlight two crucial gaps in information visualization.

Between the Overview and Detail

The increase in the volume of data requiring interactive analysis and explo-

ration has posed a significant challenge in terms of scalability in data visu-
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alization. However, while efforts have been made to address this challenge
at the high-level overview of items, there has been relatively less emphasis
on effectively representing and navigating the granular details that have also
grown in tandem with the overall data size. Despite its critical role in data
interaction, previous approaches have been limited in dealing with display-
ing the details of multiple values, and such visual practice that break down
when many items are displayed was utilized in inertia.

While reducing the amount of target data to visualize is indeed a com-
mon approach to address scalability challenges, we acknowledged that this
solution may lead to a never-ending cycle. When interacting with data, it is
inevitable for users to interact with data involving large amounts of details by
chance, depending on the characteristics of the data. This raises the question
of whether the process of reducing and retrieving data should be continu-
ously repeated. As these challenges cannot be fully controlled or avoided,
our aim in the researches was to fundamentally address these limitations by
visually augmenting them. In order to visually resolve the issue, we lever-
aged colors as a crucial means of bridging the gap between detailed infor-
mation and the overview. By utilizing colors that enable the visualization of
multiple values, a scalable intermediate step that maximizes the versatility
offered by colors can be provided. This approach allows for the advantages
of representing each value in a non-cluttering manner and expanding the
observation of multiple values through patterns.

Ultimately, our approach of presenting information within a limited space
was aimed at facilitating the integration of techniques within the context
of visual analytics, bridging the gap between data overviews and detailed
analysis. While observing the details is one crucial step in visual analysis,

it is also important to consider how it works in harmony with the overall
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visual representation. Colors can play a valuable role in efficiently visualiz-
ing data details within limited space, optimizing the utilization of available
visual real estate, and enabling seamless integration with other visual com-
ponents in the field of visual analytics. This philosophy is evident in our
proposed researches. In Parallel Histogram Plots, the original PCP can be
enhanced without requiring additional space, and in IssueML, the space-
efficient color patterns enable the visual analysis of multiple issues follow-
ing the Visual Information Seeking Mantra. We firmly believe that utilizing
color-based visual representations in expressing data can promote a holistic
and comprehensive understanding of the data in a scalable manner, even in

the details.

Between Novices and Data

Despite the increased opportunity in users” access to more extensive and de-
tailed data, interaction with the data was limited due to the limitations in
visualization approaches. On one hand, analytical methods necessitate back-
ground knowledge related to visualizing and processing data, which users
may lack. On the other hand, simple visualization techniques struggle to ef-
fectively display the data, particularly given its increased complexity and
size. As a result, a dilemma arised when users are confronted with the task
or desire to explore information within large data. While there is a need to
simplify the information for users, limitations in understanding and inter-
acting with reduction techniques hindered the usage of such approaches.
Considering this situation, our research focused primarily on bridging
the gaps between novice users and large data by utilizing colors as repre-
sentations of values. Leveraging the advantage of expressing multiple val-

ues through colors, our studies allowed users to easily recognize and in-
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terpret intuitive patterns, enabling simultaneous interaction with multiple
values. Through direct reference to the values embedded within color pat-
terns, users can understand and analyze the data without relying on reduc-
tion techniques or complex calculations. Additionally, we showed that inter-
actively controlling the color patterns can greatly assist users in effectively
exploring and observing the data, facilitating a more comprehensive under-
standing of the data. Therefore, by utilizing colors, users can intuitively un-
derstand and interact with multiple values in multiple items, without un-
dergoing complicated steps or dealing with complex calculations.
Furthermore, our aim was to facilitate users in their curious observation
of the data by individually representing multiple items in a limited space,
thereby promoting explorability [14] within the visualizations. To enhance
explorability, it is crucial to offer various perspectives and interactive op-
tions, particularly considering that novice users often lack analytical moti-
vation and prefer encountering data in a casual manner. The use of colors
enables the display of multiple items in a limited space, allowing users to
easily discover interesting information and initiate their data observation.
Colors also serve as a direct representation of values, making it convenient
for users to refer to specific data values. This aspect is particularly evident
in TRaVis, where users can effortlessly uncover captivating ranking patterns
among the multiple items’ patterns. Although this approach may be less an-
alytically oriented, it still provides suggestions and offers an interactive and
highly flexible experience for users to explore the information interactively.
We assert that by effectively utilizing intuitive and simple visual interactions,
such as strategically incorporating colors in our dissertation, we can enhance
the data literacy of users, ultimately enabling a wider audience to benefit

from interactions with diverse and complicated data.
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6.2 Limitations

In this section, we discuss the current limitations of the researches in the
dissertation. While the proposed visualizations in the dissertation focuses
on providing scalability, such does not mean that they are not infinitely scal-
able. In Parallel Histogram Plots, even though colored histograms provides a
scalable overview of multiple items, the scalability issue reappears when the
number of selected subset displayed as polylines from the histogram is too
large. In IssueML and TRaVis, while visualization with colors can express
information of multiple items in limited space, the number of items that can
be displayed is still bound by the size of screen. Nonetheless, it is important
to note that as the primary objective in the researches is to provide scalability
in observing multiple values, additional approaches for interacting with the
overview of data is recommended when they are limited in scalability.

The visualizations are also currently limited in the types of data they can
express. Parallel Histogram Plots are designed for visualizing numerical at-
tributes, and require alternative approaches in visualizing other types of at-
tributes such as categorical attributes. IssueML is specialized for interacting
with issues, and TRaVis is only capable of visualizing temporal rank data,
due to its stacking of multiple items difficult to be applied in continuous time
series. As each of the approaches are specialized for a certain type of data,
modification of the visual encoding or data should be required in expanding
the capability of the visualizations.

Finally, in the presentation of our research, we opted to fix the colors
utilized in the visualizations to eliminate the potential influence of color
changes. In Parallel Histogram Plots, we utilized a bivariate color scale to

better express extremum values that users are generally interested in. In Is-
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sueML, the number of colors were limited to a countable number to prevent
the visualization to be over-complicated, and in TRaVis the viridis [79] was
used to distinguish undefined ranks from the defined. Although each color
scheme in our visualizations was chosen based on a specific rationale and
internal experiments, we acknowledge that we did not thoroughly explore
and compare alternative color scheme options. While we believe that chang-
ing the colors may not significantly impact or hinder the interaction, we also
recognize that properly applying alternative color choices can have a signifi-
cant positive effect on the visualizations we provide. A variety of factors can
be considered when exploring alternative color schemes, including the color
palette and various parameters such as intensity, brightness, and saturation.
Taking these factors into account can greatly enhance the ability to observe
and interpret information in visualizations. For example, we demonstrated
that by changing the colors in TRaVis, not only the ranks of multiple items
are observable, but the information of other attributes over time can also
be visualized. Exploring different ways to scale and manipulate colors, and
providing related interactions in the visualization holds as a potential future

work in our approaches.
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Chapter7

Conclusion

Concluding the dissertation, this chapter first summarizes the contributions
made by the studies and systems presented in the dissertation. Then, future

research agendas and opportunities are discussed.

7.1 Summary of Contributions

Throughout the dissertation, our primary goal was to address the thesis
statement of, "Utilizing colors as a critical channel to express values can over-
come the scalability and complexity issues in visualizing multiple values
of multiple items, supporting user’s exploration and interactions with large
multivariate data.", by answering to the following questions.

RQ1. How can multiple items in data be visualized in a scalable man-
ner using colors? To address RQ1, we developed Parallel Histogram Plots
(PHP), a visualization methodology for dealing with the innate limitations of
parallel coordinates plot (PCP) by attaching colored, stacked-bar histograms
on each axis of PCP. Colors in the histograms of PHP are applied accord-
ing to a discrete color schemes corresponding to the ranks a single attribute,

from which users can observe the relationship between attributes which was



previously limited in PCPs. With the combination of histograms and colors,
PHP can display a scalable information of multiple items and its relationship
in the selected attribute and all the other attributes without cluttering. More-
over, such relationship can be observed even if the attributes are positioned
distant from each other. Through the research, we provided demonstrations
in which the technology is effectively utilized in visualizing multiple items,
and performed a user study on how PCP performs in helping users esti-
mate the correlation between attributes. The results showed that the perfor-
mance of PHP was consistent in the estimation of correlations between two
attributes regardless of the distance between them.

RQ2. How can items with complex, multiple attributes be effectively ex-
pressed with colors? Dealing with RQ2, we implemented IssueML, an visual
analytics tool for monitoring multiple issues that occur during development
of a large software. One of the manager’s job in the development of large
softwares is to ensure that errors in the software are resolved in time. To
do so, they keep track on issues that are open, and manage the subordinate
developers responsible for the issues. However, due to the complexity of in-
formation and its changes over time, managers had difficulties in dealing
with multiple issues. Reflecting on the limitations, we developed IssueML
for monitoring multiple issues based on interviews with domain experts.
In IssueML, users can interact with from the overview of multiple issues
from the details of a singular issue, following the Visual Information Seek-
ing Mantra. IssueML is equipped with visualizations utilizing colors that
reveal how multiple fields in each of the issue have progressed over time,
enables the observation of multiple, complicated fields in multiple issues.

RQ3. How can visualizations support the users’ interaction with mul-

tiple items utilizing colors? Reflecting RQ3, we designed TRaVis, a visual-
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ization technique of displaying multiple items in temporal rank data. Pre-
viously, users had limitations in interacting with multiple rank items over
time, due to the complexity in ranking changes. While dedicated approaches
for reducing the complexity were introduced, they were objected towards a
certain analytical task, which limited the users’ interaction with the data. In
TRaVis, we display the multiple ranking changes in items as color patches,
in which users can observe information in items without restrictions. Such
visualization enables users to freely interact around the data, from which
they can steer the observation of multiple items in various perspectives by

changing how the items are positioned.

7.2 Future Research Agendas
We discuss future research agendas discovered from our researches.

7.2.1 Expanding the Interaction with Multiple Values using Colors

In our dissertation, our primary focus was to address the scalability issue
of representing multiple values in multivariate data using colors. Based on
the insights gained from the researches, we aim to expand our approach to
encompass different types of data in various scenarios. One specific type of
data that particularly interests us is network data, such as trees or graphs. In
visualizing such networks, the relationships between items are commonly
displayed as interconnected lines. However, when there are numerous nodes
or links to display, cluttering issues can arise, similar to the challenges in PCP
emphasized in our research of Parallel Histogram Plots. We strongly believe
that by effectively positioning the nodes and utilizing colors to express in-

formation in a non-cluttering manner, while considering the users’ objectives
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when interacting with the data, we can successfully resolve these cluttering
issues in network data in a similar manner to the proposed researches.
Furthermore, we hope to leverage the benefits of colors in analytical and
practical tasks involving simultaneous handling of multiple values. In our
research, we focused on assisting novice users by enabling interaction with
visualizations through individual value representations using colors. How-
ever, this approach becomes impractical when dealing with a large number
of values, such as in machine learning scenarios where users need to ob-
serve thousands or millions of attributes simultaneously. We believe that by
combining data reduction techniques, such as clustering, with space-efficient
visual representations using color patterns can help overcome these limi-
tations. When visualizing large sized data, even after applying data reduc-
tion techniques, the results may still be substantial in size. In such cases,
the space-efficient color encodings can complement the visualizations effec-
tively. Additionally, the space-efficient advantage of colors allows for seam-
less integration with other visual components, leading to more comprehen-
sive and insightful visualizations in the context of visual analysis. By har-
nessing the inherent benefits of color encoding, we anticipate further ex-
panding our approaches to effectively visualize larger-sized data in resolving

real-world problems.

7.2.2 Assessing the Effectiveness and Scalability in Color Patterns

In our approaches, we showed that colors can be utilized as a critical chan-
nel in resolving the scalability issue in various aspects. However, in the re-
searches, we fixed various factors in which could be further influence the ef-
fectiveness of the visualization. Measuring the effect of in changing how data

is expressed is one future work. For example, in our research approaches we
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limited the number of colors utilized in the visualization to a certain extent.
While this is based on the notion that too many colors are detrimental in
recognizing the patterns, we currently do not have a clear understanding on
to which extent colors can be utilized in visualizing multiple patterns. We
think that a deeper understanding in such can help in exploiting colors in
expressing scalable information.

Moreover, we recognize the importance of designing methods to assess
the effectiveness of color encoding in visualizations. Since our research pri-
marily focuses on higher-level tasks, it is essential to acknowledge that the
effectiveness of colors can vary for low-level tasks or performance measures.
For example, in our research on Parallel Histogram Plots (PHP), we mea-
sured the effectiveness of color patterns in a correlation coefficient retrieval
task, which is a relatively low level task that may not fully capture the broader
effectiveness of the color encoding. To ensure a comprehensive evaluation,
a more detailed and thorough assessment is necessary. Our future goal is
to provide comprehensive guidelines for assessing the effectiveness of color
encoding in different visualization contexts. These guidelines will be based
on evaluating our techniques and considering various factors, taking into

account both low-level and high-level tasks.

7.2.3 Further Supporting Novices with Visualizations

One critical motivation of the dissertation was to support users in limited
situations in which they may not have a clear understanding or an analytic
motivation in their interaction with the data, converse to most researches
which is based on rigorous definition of the supported tasks. Previous visu-
alizations for scalability mostly required modification of data according to a

certain algorithm, which requires to be well defined for the visualization to
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be effective. While this approach is useful in analysis tasks, such approach is
limited at addressing the users’ casual interaction with data. We stress that
moving towards supporting such ill defined tasks in everyday users is a crit-
ical future research topic. Similar to such approaches, we hope to further
research towards supporting exploration of data with scalability and high
versatility in supporting users of a wider audience.

Meanwhile, although our research has primarily focused on providing
visualizations for users to interact with large-sized data, we acknowledge
that novices often encounter more fundamental challenges when interacting
with data. These challenges typically involve difficulties in understanding vi-
sual information and extracting critical insights from visualizations, which
is another crucial issue that should not be left out when supporting novice
users. One promising example in supporting novices in these tasks is lever-
aging Al to generate visualizations. Through this approach, users can pro-
vide relatively ambiguous prompts, and Al algorithms can generate corre-
sponding visualizations in response. We argue that taking such approaches
into consideration for supporting novice users is crucial, as it plays a vital
role in bridging the gap between their understanding and the visual repre-

sentation of data.

7.3 Final Remarks

In the dissertation, we presented researches which utilize colors as a criti-
cal channel for visualizing multiple values in multivariate data in a scalable
manner. In Parallel Coordinates Plot, we focused on dealing with scalabil-
ity in the number of items, and in IssueML, multiple complicated attributes

were dealt with patterns of colors. Furthermore, we discussed about how the
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visual encoding can support users interaction with multiple items in TRaVis.
While the large size and complexity in data is generally considered as a nui-
sance in the field of information visualization, we believe they also present
new opportunities for supporting a broader audience of users in facilitating
diverse perspectives in understanding and interacting with the data, with

the help of visualizations.
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