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Abstract

Adaptive Attitude Reference System
Using Center-of-Rotation Estimation

Minseok Lee
Department of Aerospace Engineering
The Graduate School

Seoul National University

This master’s thesis proposes a novel augmented Kalman filter-based attitude
reference system (ARS) that uses an inertial sensor comprised of a tri-axial
gyroscope and a tri-axial accelerometer. For accurate estimation of attitude using an
inertial sensor, effective compensation of the non-gravitational acceleration is crucial.
The proposed method resolves this issue by using a novel rotational motion detector
to adaptively eliminate non-gravitational acceleration. The types of motions that the
system experiences are accurately distinguished by augmenting center of rotation to
the state vector. Due to the unconventional augmented state vector, the reformed
filter properties have been thoroughly examined, and an observability analysis has
been carried out. An extensive experimental validation was conducted under six
diversified scenarios from the author-collected and open-source datasets, including
both rotation-only and translation-rotation-combined motions. The results
demonstrate that the proposed method accurately estimates attitude with sub-degree
errors for most trials, proving robustness and accuracy under various motions. A

comparative analysis reveals that the proposed method outperforms the conventional



method and the MTx algorithm.

Keyword : Attitude Reference System (ARS), Inertial Measurement Unit (IMU),
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Chapter 1. Introduction

1.1. Motivation

Since the development of Micro Electro-Mechanical Systems (MEMS)
technology, inertial measurement units (IMUs) has been widely utilized on various
applications, including indoor navigation [1], motion capture [2], unmanned aerial
vehicles (UAVs) [3], and many more. Thanks to their small-sized, low-cost, and
low power consuming nature, IMUs have very little restrictions on which platform
they are mounted on, namely smartphones, quadrotors, and wearable devices. Using
measurements from the gyroscope, the inertial navigation system (INS) algorithm
can deliver orientation (roll, pitch, and yaw) through integrating angular rates, when
initial angles are known. However, gyroscopes are vulnerable to a drift which rapidly
increases over time. Hence, to achieve long-term stability and accuracy, other
sensors are often used together. The most common one is the accelerometer, which
outputs specific force. When stationary, the accelerometer can be used to estimate
gravity vector, and thus provide attitude (roll and pitch) information of the platform.
A system which fuses measurements from gyroscope and accelerometer to estimated
attitude is called Attitude Reference System (ARS). When outputs from
magnetometer is combined with ARS, the system is now able to estimate heading
(yaw), hence called Attitude and Heading Reference System (AHRS). Though the
scope of this thesis is ARS, previous works covered in this thesis are not limited to
ARS, since many works of AHRS still propose methods to deals with acceleration.

After surveying on existing attitude estimating methods, the author has gathered
a few insights and motivations towards developing the novel method proposed in
this thesis. First, sensor fusion technique combining outputs of gyroscope and
accelerometer that enables robust estimation of attitude is in need. Second, a system

should deliver excellent performance under changing circumstances through an
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adaptation method that withstands dynamic motions with severe acceleration for a
prolonged time. Third, appropriate modelling of the kinematics should be in place to
not only facilitate a more accurate attitude estimation but also improve versatility of
the system regarding various scenarios and platforms ARS may be utilized. When

doing so, using predetermined parameters should be shunned.

1.2. Objectives and Contribution

This thesis presents a novel indirect Kalman filter-based ARS that estimates
attitude and gyro bias along with center of rotation. The state vector of the filter is
augmented to include center of rotation, which not only improves accuracy of
attitude estimation but also robustness towards various types of dynamic not limited
to rotation-only or translation-only motions. To adaptively cope with changing
dynamics, a rotational motion detector is developed to efficiently equip the proposed
system with appropriate measurement model consistent with current dynamics. The
structure of the filter is thoroughly explained, with a detailed derivation of newly
devised measurement noise covariance matrix and an observability analysis. The
performance of the proposed ARS is verified experimentally against the MTx
algorithm by Xsens and a conventional method based on the work of Li and Wang
[14]. The tested scenarios consist of six cases, four of which are from the author-
collected dataset and the rest from the open-source dataset Berlin Robust Orientation
Estimation Assessment Dataset (BROAD) [36]. To highlight the accuracy and
robustness of the proposed algorithm, the tested datasets are comprised of differing
values of accelerations, centers of rotation, and types of motion, including rotation-
only and rotation-translation-combined motions.

The main contributions of this thesis are restated as follows:

An indirect Kalman filter-based ARS estimating center of rotation online is
proposed. Estimation of the rotational arm improves accuracy as well as the

2 ? _"i .'.;.-. i !- !



versatility of the proposed system.

A rotational motion detector is proposed to robustly adapt to ever-changing
dynamics with a corresponding measurement model and a noise covariance.

The unconventional measurement noise covariance matrix pertinent to the

proposed system is meticulously derived.

1.3. Organization of the Thesis

The thesis is organized as follows. In Chapter 2, the thesis explains conventional
ARS algorithms in two parts. The first part contains the two sensor fusion techniques
and the attitude reference systems that adopts the two methods: the complimentary
filter-based and the Kalman filter-based. A simple formulation of the Kalman filter-
based Attitude Reference System, and a brief summary of previous methods that deal
with external acceleration is also provided. The second part deals with the two
methods adopted by previous works on ARS to compensate non-gravitational
acceleration in dynamic situations: the adaptation methods and the kinematic
modeling methods. In Chapter 3, the thesis proposes a novel indirect Kalman filter-
based ARS, with a rotational motion detector, that estimates center of rotation online.
The chapter includes derivation of the newly developed measurement noise
covariance matrix, and an observability analysis of the proposed system. Chapter 4
presents a performance evaluation of the proposed method, compared with
conventional methods against several different scenarios, including highly
challenging motions. The thesis concludes with Chapter V.

Notations used throughout this thesis is presented in Table 1.1. Less frequently
used notations and abbreviations are defined separately when they first appear in this

thesis.



Table 1.1. Notations

Frames
b Body frame
n Local navigation frame
N, E, D North, East, Down of the navigation
frame
Kinematic quantities
y,0,¢ Roll, Pitch, Yaw
¢ y 6 I
C, Direction Cosine Matrix (DCM,
body frame to local navigation
frame)
g Gravitational acceleration
r Center of rotation (|r?|)
Sensor-related quantities
f Accelerometer measurement
w Gyroscope measurement
At Sampling time
bg Gyroscope bias
Kalman filter quantities
X State vector
L] System matrix (continuous)
F System matrix (discrete)
w Process noise (w ~ N(0,Q))
y/ Measurement
H Observation matrix
\' Measurement noise (v ~ N (0, R))
K Kalman gain
P Error covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance
matrix
ON Posteriori value
Ol Priori value
Others
Lxn n-by-n Identity matrix
0mxn m-by-n Zeros matrix
[() ] Skew-symmetric matrix
O Estimate value of (*)
O Measured value of (*)
() Error of ()
d External acceleration
E[-] Expectation of (+)
|] Norm of (-)
PSD Power Spectral Density

4



Chapter 2. Conventional ARS

2.1. Sensor Fusion of Gyro and Accelerometer
2.1.1. Complimentary Filter based Attitude Reference System

Plentiful works have addressed the means of sensor fusion with respect to ARS
and AHRS. The most common approaches, by far, are complementary filter [4]-[10]
and Kalman filter or its variants [1], [11]-[29]. Complementary filter is a simple data
fusion technique which combines complementary information from two different
sensors in the frequency domain. [4] showed that the gyroscope and accelerometer
to have complementary frequency response, making them suitable candidates for
complementary filter. Generally, gyroscopes and accelerometers are passed through
a high-pass filter and a low-pass filter, respectively, as the former experience a drift
in the low-frequency domain, and the latter are susceptible to noises of high-
frequency domain. Mahony [5] proposed a design of nonlinear complementary filter
on special orthogonal group. Madgwick [30] adopted Gradient Descent Algorithm
(GDA) to estimate orientation in a computationally efficient manner. More recently,
Liu [6] proposed an attitude estimation algorithm of multi-sample equivalent rotation
vector using angular rates rather than angular increments. Wu [7] contributed with a
quaternion-based fast complementary filter (FCF) that has much less convergence
time than the previous works. Despite many advantages including efficiency, above
works of complementary filter still suffer from lack of adaptability as their
parameters, namely gains, are usually fixed and performance deteriorates quickly
when circumstances regarding motions change. To resort to a more robust fusion

technique, the proposed method is based on Kalman filter.

2.1.2. Kalman Filter based Attitude Reference System



An ARS usually employs the Kalman filter for the fusion of gyro and
accelerometer information. The relationship between attitude and accelerometer

measurements when the sensor is static is as follows.

y = arctan <f—y> (2.1)
fz
0 = arctan /f—x\ (2.2)
/ﬁ+ﬁ/
The nominal state vector x is defined as
x=[y 0 | bgx bgy bg,]" (2.3)

where by y, by, and by, are the gyro bias in the x-, y-, and z-axes, respectively.

The error state vector 6x 1is defined as

dx=[pn @& | Obgx &bgy 6by,]" (2.4)

where ¢ is known as the Psi-angle error, used by numerous previous works
including [14], representing the difference between the true navigation frame and the
computed navigation frame.

C is expressed in terms of Euler angles as follows.

cosycosl cosypsinfsiny — sincosy cosypsinfcosy + sinysiny
b =|sincosd simpsinfsiny + cospcosy simpsinbcosy — cosypsiny (2.5)
—sinf cos@siny cosfcosy

The relationship between the Euler angle error and the Psi-angle error is defined as
7
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follows.

(ol =y osy 157 21T+ L35

(2.6)
_ [00596051/) —sim/)] [8)/
"~ lcosBsiny  cosy | lso
The Euler angle errors shown in above equation are defined as follows.
by =y—-7
~ (2.7)
60=0-0

As for the gyro bias, the relationship between the nominal value and the error is as

follows.

8by = b, — b, (2.8)

The indirect Kalman filter corrects the nominal state x with the error state 6x
using equations (2.7) and (2.8).

In the absence of external acceleration, the nonlinear continuous system and
measurement models adopted from [37] are as follows.

System model (nonlinear, continuous):

¥ = wx + wy(sinytand) + w,(cosytand) + bg
+ by (sinytan®) + by ,(cosytan) + w, (2.9)

+ wy (sinytan®) + w,(cosytan)



6= Wy, COSYy — w,Ssiny + w,,cosy + by, cosy — w,siny (2.9)

— by ,siny continued
b, =w,
Measurement model (nonlinear, continuous):
z=f>=C2[0 0 —g]"+v
(2.10)

=Chd—[exP[0 0 —g]"+v

The relationship between C2 and CZ is adopted from [38], which also provides a
detailed derivation.

From above models, the linearized discrete error state models can be shown as
follows.

System model (linear, discrete):

8Xk = (Dk_18xk_1 + Wg_1 (211)
0 C
@), =I5y + F AL F, = Oziz O;Z] (2.12)

where €, is the first two rows of Cl'. The discretization method of ® is

explained in Chapter 3.1.

Measurement model (linearized, discrete):

6Zk = fk + CQ[O 0 g]T = HkSXk + Vi (213)

Hp = [Ci2c O3x3] (2.14)

where C, 5. is the first two columns of CP[g x], 8z isthe measurement residual,

8 N =th



and f, is the measurement specific force.
However, in the presence of dynamic motion, the accelerometer measurements
also measure non-gravitational acceleration, and hence the force measurement

equation is as follows.
f,=Cc2[0 0 —g]"+4d, (2.15)

Note here that the measurement noise Vv, is incorporated in external
acceleration dj. To deal with such external acceleration, previous studies adopt

methods such as adaptation and modeling, which will be explained in Chapter 2.2.

2.2. Non-gravitational Acceleration Compensation in Dynamic
Situations

2.2.1. Adaptation based Methods

When the outputs of gyroscope and accelerometer are fused together, it is
imperative to correctly estimate the gravity vector from the accelerometer
measurements. Ideally, the system should experience little to no acceleration
compared to accelerometer noise to achieve so. However, handheld devices such as
smartphones and smartwatches are subject to dynamic motions, making it difficult
for accelerometer to estimate a pure gravity vector. To deal with such non-
gravitational acceleration, or external acceleration, numerous approaches have been
proposed, and most can be categorized into two: adaptation [1], [10], [14]-[23], [31],
[32] and modelling [3], [24]-[29], [33]. Works that adopt adaptation methods usually
distinguishes motion as static and dynamic, and adapts accordingly. Li and Wang [14]
proposed a Kalman filter-based AHRS that adaptively tunes the measurement noise
covariance depending on three different scenarios of non-acceleration, low-

acceleration, and high-acceleration modes. Munguia [15] presented an extended

9 !



Kalman filter-based (EKF) AHRS in a quaternion form that detects static mode with
the well-known Stance Hypothesis Optimal Detector (SHOE) [34]. Makni [1]
proposed an energy-efficient quaternion-based adaptive Kalman filter with a hybrid
detector that completely switches off the gyroscope when static. Tong [16]
implemented a hidden Markov Model (HMM) recognizer to a multiplicative
extended Kalman filter (MEKF) to adaptively tune noise covariance depending on
disturbance caused by motion. While stated works show satisfactory results, using
adaptation method alone will result in large attitude error when the system is under
dynamic situation for an extended period of time. Furthermore, information on the
nature of the motion are not fully exploited, since modelling of the non-gravitational

acceleration and/or the kinematics itself is absent.

2.2.2. Kinematic Modeling based Methods

Dealing with external acceleration through modelling is also a frequently used
method in the field of ARS/AHRS. Lee [24] proposed a Kalman filter-based ARS
that models the external acceleration as a first-order low-pass filtered white noise
process. Though such modelling approach is adopted by several works that followed
[11], [25], [26], yet, the model is not based on the actual nature of the non-
gravitational acceleration, lacking justification behind the approach. [27] adopts the
model of [24] and employs an augmented Kalman filter to describe the dynamics,
similar to the proposed work. However, [27] is limited to a ball-and-socket joint
application, contrary to this study which can be applied to complex motions with
varying center of rotation. Kim [3] studied attitude estimation on a small aerial
vehicle, where the external acceleration has certain frequency profile as it is induced
by the platform vibration of the actuators, and hence implemented second-order
infinite impulse response (IIR) notch filter. Malinak [28] proposed an EKF-based

AHRS with a newly developed concept of synthetic acceleration that models the
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non-gravitational acceleration differently depending on whether the dynamics of the
body is in a nominal or a rare-normal situation. Park [29] presented an indirect
Kalman filter-based AHRS where the measurement noise covariance was modelled
using ellipsoidal method, rather than modelling the external acceleration itself.
Takeda [35] estimated attitude by placing inertial sensors on specific points on limb
segments, modelling human gait as a series of rigid body rotation. However, such
modelling demanded many parameters that must be measured prior to motion.
Although numerous attempts have been made to accurately model the acceleration
or the kinematics, the results are still unsatisfactory. The models are either unrealistic
with no basis on the actual dynamics, too tailored to a specific application, or in need

of predetermined parameters.

11 -':I'-\._E ':'.'1.!:



Chapter 3. Center-of-Rotation-based ARS

This chapter presents the proposed center-of-rotation based ARS that uses a
rotational motion detector to estimate attitude, gyro bias, and center of rotation. The
structure of the proposed indirect Kalman filter-based system and a detailed
derivation of the measurement noise covariance matrix are also described in depth.

The structure of the proposed algorithm is illustrated as a schematic block
diagram in Fig. 3.1. The system is based on the indirect Kalman filter, where
accelerometer measurements with the priori values from time propagation go
through the novel rotational motion detector. Depending on which step of the
detector the system is determined to be dynamic, the filter adaptively adopts specific
measurement model and noise covariance apt for each circumstance. The details of

the adaptive algorithm are explained thoroughly in the following subchapters.

b i 211
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8y,56,5b,

Gyroscope
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Figure 3.1.: Schematic overview of the proposed algorithm
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3.1. Center-of-Rotation-Augmented Kalman Filter

This thesis proposes a kinematic modelling method where the model parameter,
center of rotation, is estimated online. The parameters to be estimated are the x, y,
and z positions of center of rotation in the sensor frame. The center of rotation vector
with respect to sensor frame is denoted as r°, while its x, y, z, positions are denoted

as Ty, 1y, and 1y, respectively. The estimated center of rotation is augmented to the

nominal state vector as follows.
x=[y 6| bgx bgy bg,| 1 1, 1T 3.1)

The error state, which the author uses for the proposed indirect Kalman filter, is as

follows.
8x=[¢n @g| Obgy &by, &by, &r, 8, 81,17 (3.2)

The roll, pitch, and gyro bias errors are defined the same as shown in Chapter 2.1.2.

The augmented center of rotation error is defined as follows.
srb =rb — P (3.3)

By including center of rotation into the state vector, the nature of the dynamics can
be estimated and explained in terms of any rotational movement that the system
might be experiencing. More importantly, the expected effect of such augmentation
is improvement in the accuracy of estimating attitude, which is proven
experimentally in Chapter 4.

The Kalman filter equations, including those of time propagation and

measurement update, are adopted from [39]. To practice economy, this thesis only
11 © 1)
14 A =—1]



presents filter properties and equations that deviate from [39].
Expanded from equation (2.9), the nonlinear continuous augmented state
system model is as follows.

System model (nonlinear, continuous):

V.6, b, from equation (2.9)

(3.4)
=0
The augmented error state system model is as follows.
System model (linearized, discrete):
8Xk = (Dk_18xk_1 + Wg_1 (35)
0 C 0
@, =Igyg + FeAt, F=| 2% 4% m] (3.6)
Osx2 Osx3  Ogx3

with process noise covariance matrix, Q, as a diagonal matrix consisted of noise
standard deviation of each state. The noise standard deviation for the augmented 8r®
is assumed as 10~3m/v/Hz. Some literatures suggest that methods such as Runge-
Kutta ensure a more accurate discretization than the method chosen in equation (3.6)
[40]. Yet, equation (3.6) is used instead for three reasons: in the context of a low-
grade IMU (such as the IMU used for the experiments in Chapter 4), the numerical
error from the discretization is far smaller than errors from other sources; the
discretization error is kept small with a small time-step, At [40]; the Runge-Kutta

method is computationally heavier than the chosen method.

3.2. Adaptation using Rotational Motion Detector

The priori values from performing time propagation of the Kalman filter with
¥ ¥
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above system model, together with the accelerometer measurement, faces the static
detector. The static detector determines whether the system is static by comparing
the acceleration measurement with the gravity vector with respect to a threshold. If
the system is deemed static, the measurement noise covariance matrix is setas R,
which is R originating from accelerometer only. Then, measurement update is
performed to update only the attitude and the gyroscope bias. The adaptive
determination of the measurement noise covariance and the measurement model
when deemed static by the static detector are as follows.

Adaptive R:

go to rot.detector if |f,, +C5[00 g]7| > o,
R, . (3.7)
Ryce otherwise
Measurement model (linearized, discrete):
SZk = fk + CQ[O 0 g]T = HkSXk + Vk (38)
Hy = [Ci2c 03x6] (3.9)

where o, is the measurement noise standard deviation. The above measurement
model is similar to the linearized discrete measurement model of equations (2.13)
and (2.14) from Chapter 2.1.2, with the difference being the new observation matrix
for the augmented error state vector. As for the threshold of the detectors, the value
was heuristically set it as the measurement noise standard deviation, g,, but the
value is a user-determined parameter that may be chosen differently. If the threshold
is set too low for any of the detectors, it would inflate the measurement covariance
matrix; if the threshold is set too high, it would deflate the measurement covariance

matrix. Both cases of false detection would hinder the filter from accurately

-
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capturing the true dynamics, and thus deteriorate the performance of the proposed
algorithm.

However, if deemed dynamic, the system goes through a rotational motion
detector. The rotational motion detector checks whether the system is rotationally
dynamic by comparing gravity vector with acceleration measurement compensated
for the acceleration with respect to the estimated center of rotation. When deemed
rotationally static, R is setas Ry, + R’, where the definition and derivation of R’
is presented in Chapter 3.3. Conversely, when deemed rotationally dynamic, R is
setas S(Rgee + R'). The parameter s is a user-set parameter, which was chosen as
107 for experiments carried out in this thesis. Though very large, the results in
Chapter 4 shows that the measurement was still able to influence attitude estimation.
The optimal value was chosen through a set of trials. It is also confirmed that the
degradation of performance due to using other values that are not widely different
from the optimal value is minimal. As the system undergoes the rotational motion
detector, the measurement update performs an update on not only the attitude and
the gyroscope bias, but also the center of rotation. The adaptive determination of the
measurement noise covariance and the measurement model of the second step are as
follows.

Adaptive R:

s(Rgee + R if |(fx + HF?) + €5[00 g]7| > o,
R, = , ; (3.10)
Ry TR otherwise
Measurement model (linearized, discrete):
8z, = f, + CB[0 0 g]" + H,f? = H, 8%y + v, (3.11)
Hy = [Ci2c O3x3 H] (3.12)

¥ s 1
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where £2 is the current estimate of the center of rotation in the sensor frame. Also,

~ B -1

H, = [®) X]? + [d; %], and @&, = o Where @ is the tri-axial gyro

measurements at time k with following relation.
(T)k = Wy + ka (313)

From the measurement model shown in equation (3.11), the centripetal acceleration
due to rotational motion about the fixed point at r? corresponds to —[w X]*r?,

whereas the tangential acceleration corresponds to —[oy, X]r?.

3.2. Derivation of Measurement Noise Covariance Matrix

With the presence of an error in H,. from the gyroscope error, the measurement
noise covariance matrix Ry is now larger than conventional measurement noise

covariance matrix, Rg... The increment is defined as R’, such that
Ry =Ry + R (3.14)

To derive R’, the polysemous notations /, m, and n are first defined. The
notations correspond to numbers 1, 2, or 3 when denoting components of H,, and
correspond to x, y, or z when denoting the axes of gyroscope measurement, w. To
elaborate, in case of H,(2,3), / and m are assigned to y and z axes, and n is
automatically assigned to the x axis. Let us define 6§H,.([, m) to be the error in the
(I, m)-th component of H,. Then, using the definition of H,., following error

expressions can be derived:

8H, (I, 1) = —(8w?, + Sw?) (3.15)
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SH,.(IL,m # 1) = 6(w;w,y,) + 6(ay,)

Wne — wn,t—At)
At

Wnt — wn,t—At) (3.16)

- (wlwm + At
= dw; 0wy + W dw, + wydw;

Swnt — Wn_pt
At

With such derivations of each component of the error matrix, the expectations
of squared-error terms are drawn. Their derivations are spanned out for all six cases
as followed. The final outcome of each case and the full process of the derivations
are presented as follows.

Case I:

E[6H,([,1)?] = E[w} + Sw} + 26w?,6w?]
= E[w}] + E[6w;] + 2E[6w?, ]E[6w?]
(v wy, &Sw, indep.)
(3.17)
= 30* + 30* + 20
= 8o*

= 8(PSD)2At2

Case 2:
E[6H, (I, m # [)?]

2 2
Swpt+ 6wy e_ar

At? (3.18)
+ (terms containing dw to odd powers) '

_ g |Swidwh, + 0fswh + whsw] +

3§ 53 17
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= E[§w}|E[6w?] + wfE[w?] + wZE[Swf]

N E[6w2 .|+ E[6w3 ;_a]
At?

0% + ¢?
At2

= o* + w?o? + wio? +

2
— ~4 2 2 2
=0 +(0)l+wm+m)0

(P )2

= (PSD)2At? + + (wf + w3 )(PSD)A¢

dependent on motion

Case 3:
E[6H, ([, DSH, (L, m # )]
= E[all terms containing dw to odd powers]
=0

Case 4:

E[6H, (I, D)SH,.(m # [,m)]

_ E[ Sw2dw? + Swtdw? + Swiswk + Swi
+(terms containing dw to odd powers)

= E[6wZ]E[Sw}]| + E[§wZ]E[Sw?] + E[§w?]|E[6w?]

+ E[Sw;]
=o*+ o* + 0* + 30*
= 60*

= 6(PSD)?At?

Case 5:
E[6H,.(I,m # )6H,.(,n # I&m)]

20

(3.18)

continued

(3.19)

(3.20)

(3.21)



wdw2,  wfw?
At At
+(terms containing dw to odd powers)

—E W Wpdw? +
(3.21)

continued

Wy Wy
= wpw,E[6wf] + EE[dwTZn] + EE[@(U%]

= w,w, (PSD)AL + 2w, (PSD)

dependent on motion

Case 6:
E[6H, (I, DSH,.(m # ,n # 1&m)]
= E[all terms containing dw to odd powers]| (3.22)

=0
Assuming that the rotational rate is much smaller than 1/A4t, which
corresponds to 100 rad/s for a sampling rate of 100Hz, above six cases can be

approximated and reduced down as follows.

For case 2 from above:

2(PSD)?
E[6H, (I, m # )?] = 7 (3.23)
For all other cases:
E[6H,([, m)6H,(n,0)] = 0 (3.24)

R’ is the measurement noise covariance matrix induced from the gyroscope
error, or more specifically, from the H,f? of the measurement equation (3.11). In

Kalman filter, the measurement noise covariance matrix is the expectation of the
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error squared. Accordingly, R’ can be expressed as E[(é‘Hrf'b)((SHrfb)T].

Expansion of this is shown as follows.

E[(sH,#°)(6H,)"]

Ir SH,(1,1) -7 + 6H,(1,2) -7, + 6H,(1,3) -7y
= E||6H,(21) -1y + 6H,(22) -7, + 6H,(23) -7,
[ SH(31) -1y + 6H,(3,2) -1y + SH,(3,3) -7y (3.25)

SH,(1,1) -7y + 6H,(1,2) -7 + 6H,(1,3) -7 ]
|6H,(2,1) 1 + 6H,(2,2) 7, + 6H,(23) 13| |
SH,(3,1) "7 + 6H,(3,2) -5 + 6H,(3,3) - JI

<

<

zZ

From equation (3.23) and (3.24), the above equation is only left with the

SH,. (L, m # 1)? terms, as shown below.
E[(sH,°)(sH,#0) | =1 v2 w3 (3.26)

where

SH.(Lm # )% 1 + SH.(Lm # )? - 12
v, = SH, (I, m # 1)? - 1ymy, (3.27)
SH,.(Lm # )2 1,1y,

SH, (I, m # 1)? - 1pms,
v, = [SH,.(Lm # D212 + SH,(Lm # [)? - 12 (3.28)
SH, (L m # )?-ryr,
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SH,.(Lm # D? 1,1,
vy = SH (L m # D?-1yr, (3.29)
SH, (I, m # D? - r¢ + SH, (L, m # D)? -1y}

Hence, the derivation can be concluded by simplifying the above:

R’ = E[(6H,#)(sH,#?)"|

L o S PV T,Ty
=E[H,(,Lm#=D?]| nry 12418  nn
T Ty nr, ety (3.30)
2(PSD)? R G 0 Ty
ik it 2412 1
A2 Ty 1z X yTz

Ty nr, o ety

For a gyroscope with amplitude spectral density (ASD) of 0.05 deg/vHz

2(PSD)2
At?

sampled at 100Hz,

~ 0.01rad/s?. When r = |r?| = 1m, this value is

comparable to an accelerometer noise with standard deviation of 0.01 m/s?.

Note that R’ increases as the rotational radius increases. Since the rotational
radius during translational motion is conventionally considered infinite, R" would
become infinite under such assumption. This implies that the measurement update
of the Kalman filter has practically no effect as R, is infinite. Instead, the rotational
radius is set to zero, in the sense of resetting the value until the system is under a
rotational acceleration again. In the implementation aspect, this is much more
practical as Ry equals to sR,.. under translational motion, meaning the filter still
performs an update, just with a larger measurement noise covariance matrix to reflect
the dynamicity of the motion. Kinematically speaking, setting the rotational radius
to zero does not imply a pure translation, but rather a pure rotation. However, despite
the rotational radius being both zero, the proposed algorithm is still able to

distinguish between the two motions with its static detector: in a purely translational
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case, an external acceleration is present, whereas in a purely rotational case, it does
not. Furthermore, the outperforming results shown in Chapter 4 also corroborate the

validity of the assumption.

3.4. Observability Analysis

Since proposed algorithm assumes handheld device applications, where
dynamics is limited by the maximum speed of human motion, the Piece-Wise
Constant System (PWCS) assumption is employed to analyze the observability of

the proposed system. The observability matrix for a PWCS [41] is as follows.

0, T
0= 02 (3.31)
0, @I 1P - P!
where
o-T—[HT Hd,)" (H;®r! ] (3.32)
i =[H | (He) | | ) -

The proposed system is fully observable for rotations about two or more axes.
However, for rotations around a single axis, it is only partially observable. In the
latter case, the position of center of rotation along the rotation axis is unobservable.
A detailed derivation and explanation of the observability matrix is presented as
follows:

First, a full expansions of H and @ is conducted.

H=[Ci2c 0343 H;] (3.33)

B o T |
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Cy2c = first two columns of C4[g x]

0 —g
=Calg O
0 0 (3.34)
Cr(1,2)g -Cr(L1)g
= |G (22)g -Cr(21)g
2329 -CaBDyg
H, = [@ x]? + [@ x]
— (w3 + w?) W, W, Wy W,
= W W, —(w? + w? Wy, w,
w,0 w,w w2 + w?
o v O (3.35)
0 -a, a,
+| a, 0 -—a,
—a, 0

=[Vsy Vs Vg

where

W0y 0A, — W0, A,
v, = |~ (@} + 0)a, -~ w,w,a, (3.36)
w,w,a, + (w; + w)a,

(w2 + w2)a, + w,w,a,
Vs = _wxwyaz + wywzax (337)
—w,w,a, — (0% + w?)a,

2 2
—(w? + w2)a, — w,w,a,
Vs = | wywya, — (0; + wi)a, (3.38)
W, 0,0, — ©yW, 0,

As for @,
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P = ngs + FAt

_ 2x2
= Igxg +

06><2

1

cCoococoo o R
cocoocoo

ch(1,1) ch(12) cha
Cch(21) €422 42
06><3

cb(1,1)At cb(@1,2)At CB(1,3)At
C(2,1)At €2(2,2)At CB(2,3)At

0 0

SO OO
S OO RO

3)
3)

(3.39)

orocoocococo o
RoOOoOOO0O O O

Hence, H® from the observability matrix can be expressed as follows.

H® = [Cy ;¢

where

C5(1,2)g
v, =|C2(2,2)g
C5(3,2)g

c(1,2)g-
c5(2,2)g -
C52(3,2)g-

178=

C5(1,2)g-
c(2,2)g-
C5(3,2)g-

V9:

V; Vg Vg Vq4

-Ch(1,1)At — C5(1,1)g -
- C5(1,1)At — C5(2,1)?g -
-C5(1,1)At — C5(3,1)g -

C5(1,2)At — C5(1,1)g -
C5(1,2)At — C5(2,1)g -
C5(1,2)At — C5(3,1)g -

C5(1,3)At — C5(1,1)g -
Ch(1,3)At — C5(2,1)g -
C5(1,3)At — C5(3,1)g

L4

A (3.40)

ci(2,1)At
cb(2,1)At
Ccb(2,1)At

(3.41)

Ccb(2,2)At
C2(2,2)At
C2(2,2)At

(3.42)

C2(2,3)At

c2(2,3)At (3.43)

. CB(2,3)At

To give an example of an unobservable case, a rotation purely about the z-axis
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is assumed. In this case, w,, w,, @y, and a, are all zeros. This makes v, the

last column of H®, a null vector, hence indicating that &r, is unobservable.
Despite the unobservable case, the stability of the system is believed not to be
compromised as a circumstance where the rotation axis aligns perfectly with one of
the axes is highly unrealistic. This thesis further explains the case with regards to the

rate table experiment in Chapter 4.1.
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Chapter 4. Experimental Results

To verify the accuracy and robustness of the proposed algorithm, this study
conduct an extensive evaluation on total of six scenarios, four collected by the author
and two from the benchmark dataset BROAD [36]. In this chapter, the setups and
results of each scenario are presented.

For all experiments, the performance evaluation was conducted in terms of root
mean square error (RMSE). For fair comparison, an algorithm, referred to as
“conventional” hereafter, was devised, adopting measurement noise covariance
adaptation scheme based on the work of Li and Wang [14], combined with the states
and filter structure described in Chapter 2.1.2. Hence, for attitude estimation, the
proposed algorithm was compared with the conventional algorithm and the MTx
output, whereas for external acceleration estimation, it was only compared with the
conventional algorithm as the MTx output was used to derive the reference value, as
explained earlier in this chapter. Since the BROAD dataset does not provide attitude
output by Myon Aktos-t, this study compares only with the conventional algorithm

for the two BROAD trials.

4.1. Rate Table Experiments

The inertial measurement unit (IMU) used to evaluate the proposed attitude
estimating algorithm in the author-collected experiments is the Xsens MTx, with its
specifications [42] listed in Table 4.1. As a reference, the VICON infrared camera
motion capture system was used to track three markers 10cm apart from one another.
However, since VICON only provides attitude values, MTx output was used as
acceleration reference. Hence, DCM from VICON attitude multiplied by the gravity

vector was deducted from the MTx acceleration value to derive the reference values
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of the external acceleration. The external acceleration reference is calculated as

below:

dref,k = i:'k - CZVICON[O 0 _g]T (41)

A static calibration of gyroscope bias was performed prior to each motion for 20

seconds. The remaining gyro bias after Ty, seconds of calibration is as follows.

o,
&by = —I9X_ ~ 0.01deg/s (4.2)

Y, Talign

where gy, is the noise standard deviation of the gyroscope. Above value was used

in setting the initial gyroscope bias error covariance.

Table 4.1. MTx Specifications

Gyroscope Accelerometer
Measurement range + 1200 deg/s + 59
Sampling rate 100Hz
Noise density 0.05 deg/s/vHz 200 pg/VHz

Of the four author-collected experiments, the first two were rate table
experiments with different rates. The setup of the rate table experiments is as shown
in Fig. 4.1. The first scenario is termed as “Rate Table Slow” and the second scenario
as “Rate Table Fast.” Both scenarios involved periodic bang-bang maneuvers,
depicted in Fig.4.2, with trapezoidal velocity profiles. For “Rate Table Slow,” the

%]
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average and maximum norm deviations from static acceleration was 0.54m/s?and
1.03 m/s? respectively. For “Rate Table Fast,” the average and maximum norm

deviations from static acceleration was 1.25 m/s? and 1.95 m/s?, respectively.

Figure 4.1. Setup of the rate table experiments.

Figure 4.2. Schematic view of the rate table experiments. The orange
object is the IMU in use.

The results of “Rate Table Slow” scenario are summarized in Table 4.2. The
proposed algorithm outperforms both the conventional algorithm and MTx in most
cases of attitude estimation, the former by 20-30%, though the conventional
algorithm also shows satisfactory results of sub-degree error. For external
acceleration estimation, the proposed outperforms the conventional algorithm in all
trials by far, showing 80% less error.
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Table 4.2. RMSE Results of Rate Table Slow

Trial Roll [deg] Pitch [deg] Ext. Acc. [m/s?]
No. | Conv. MTx Prop. |Conv. MTx Prop. | Conv.  Prop.
054 148 037 | 059 283 068 | 098 0.19
055 164 042 | 064 361 060 | 097 0.19
057 18 039 | 0.64 391 053 | 097 0.19
055 169 040 | 063 348 057 | 097 0.18

Al WIN|PF

Fig. 4.5 shows a full graphical comparison of attitude estimation of a single trial.
Estimated external acceleration of a single trial compared to the reference value,
magnified to show results of 5 seconds, is shown in Fig. 4.3. It can be seen that the
proposed algorithm presents superb performance of 80% less error on average. The
estimated center of rotation is shown in Fig. 4.4. The sensor was indeed attached
10cm from the center of the rate table, indicating that the algorithm has successfully
estimated the center of rotation. Though accurate estimation of center of rotation
itself is not the focus of this research, such accuracy undoubtedly improves the

performance of the filter.
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Figure 4.3. Estimated external acceleration from a single trial of “Rate Table
Slow”.
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Figure 4.4. Estimated center of rotation from a single trial of “Rate Table
Slow”.
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Table 4.3 summarizes the results of “Rate Table Fast” scenario. Similar to the

previous scenario, the proposed algorithm outperforms both the conventional

algorithm and MTx in most cases of attitude estimation. For external acceleration

estimation, the proposed outperforms the conventional algorithm in all trials by an

even greater discrepancy than the previous scenario.

Table 4.3. RMSE Results of Rate Table Fast

Trial Roll [deg] Pitch [deg] Ext. Acc. [m/s?]

No. | Conv. MTx Prop. |Conv. MTx Prop. | Conv.  Prop.
1 | 108 157 091 | 353 389 301 | 215 0.27
2 | 048 108 038 | 08 408 087 | 211 0.23
3 | 113 235 077 | 202 376 172 | 224 0.21
4 | 098 186 065 | 179 415 149 | 208 0.30

Fig. 4.8 shows a full graphical comparison of attitude estimation of a single trial.

Estimated external acceleration of a single trial compared to the reference value,

magnified to show results of 5 seconds, is shown in Fig. 4.6. Similar to previous

scenario, it can be seen that the proposed algorithm presents superb performance of

88% less error on average. The estimated center of rotation is shown in Fig. 4.7. The

algorithm has successfully estimated the center of rotation, which is 10cm, same as

the Rate Table Slow experiment.
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Figure 4.6. Estimated external acceleration from a single trial of “Rate Table
Fast”.
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Figure 4.7. Estimated center of rotation from a single trial of “Rate Table
Fast”.
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4.2. Handheld Experiments

The latter two of the author-collected experiments are the handheld experiments
to demonstrate performance in actual usage. The setup of the handheld experiments
is as shown in Fig. 4.9. The third scenario involved high-dynamic forearm rotations
about the vertical axis, as in Fig. 4.10. We call this scenario “Handheld Yaw.” The
average norm deviation from static acceleration was 7.46 m/s?, and at times it
reached up to 31.18 m/s?. The fourth and last scenario involved high-dynamic
swings in figure-of-eight curves, as in Fig. 4.11. The motion is similar to putting an
elbow on a table and drawing and “X” with the fist, resulting in a trajectory
comprised of two arcs with the center as the elbow. We call this scenario “Handheld
Eight.” The average acceleration norm deviation from the gravity was 3.87 m/s?,
and at times it reached up to 12.39 m/s?. All four sequences have fixed center of
rotation and are comprised of primarily rotational motion to highlight the efficacy of
our contribution. We present quantitative results for all sequences, but only provide
full graphical representation for “Rate Table Fast” and “Handheld Eight” to practice

economy.

Figure 4.9. Setup of the handheld experiments.
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Figure 4.10. Schematic view of the “Handheld Yaw” experiment. The
orange object is the IMU in use.

Figure 4.11. Schematic view of the “Handheld Eight” experiment. The
orange object is the IMU in use.

The results of “Handheld Yaw” scenario are summarized in Table 4.4. For roll
estimation, the proposed algorithm demonstrates the best results of near sub-degree
error, while MTx shows comparable performance. The proposed algorithm also
shows best performance on pitch estimation, while all three methods show
performance of sub-degree error. In case of external acceleration estimation, the
proposed greatly outperforms the conventional method with 68% less error.
Considering that “Handheld Yaw” is the most dynamic of all four scenarios, it is
proven that the proposed algorithm indeed delivers superb performance,

withstanding such harsh and challenging conditions. Compared to the rate table
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experiments, the accuracy of estimating external acceleration is compromised due to
harsh nature of the motion. Yet, the proposed algorithm still outperforms the
conventional algorithm by a great deal, proving improved robustness towards harsh

motion.

Table 4.4. RMSE Results of Handheld Yaw

Trial Roll [deg] Pitch [deg] Ext. Acc. [m/s?]
No. | Conv. MTx Prop. | Conv. MTx Prop. | Conv.  Prop.
173 082 075 | 047 056 040 | 11.90 4.23
194 117 100 | 048 031 048 | 1258 4.27
217 067 069 | 049 0.71 040 | 1815 5.61
145 054 047 | 049 057 034 | 1299 3.81

AIWIN|F

A graphical comparison of attitude estimation of a single trial is presented in
Fig. 4.14. Fig. 4.13 shows estimated center of rotation of this scenario. When
compared to other scenarios, it can be noted that the estimation has a delay in
converging to accurate value of center of rotation, which is the length of the forearm.
Finally, Fig. 4.12 shows estimated external acceleration of a single trial compared to

the reference value, magnified for 5 seconds.
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Figure 4.12. Estimated external acceleration from a single trial of
“Handheld Yaw”.
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Figure 4.13. Estimated center of rotation from a single trial of “Handheld
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Figure 4.14. Errors of estimated attitude from a single trial of “Handheld Yaw”. The conventional method, MTx output, and the

proposed method are colored in green, blue, and red, respectively, denoted as “Li & wang”, “MTx”, and “CR-ARS” (short for
Center-of-Rotation based ARS), respectively.
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The results of “Handheld Eight” scenario are summarized in Table 4.5. The
proposed method outperforms both conventional and MTx results in most cases, with
sub-degree error for both roll and pitch of all four trials. As for estimating external
acceleration, proposed algorithm shows better performance compared to the
conventional algorithm with 62% less error, consistent with the results of other
scenarios. Together with the results from “Handheld Yaw”, it can be confidently
claimed that the proposed method successfully estimates attitude and external
acceleration in highly dynamic conditions, especially with motions regarding center
of rotation. A graphical comparison of attitude estimation of a single trial is presented
in Fig. 4.17. Fig. 4.16 shows estimated center of rotation of this scenario, where the
same delay also shown in Handheld Yaw can be observed. Such delay can explain a
slightly higher error within the timeframe of 0-40 seconds than the rest of the time,
shown in Fig. 4.17. Finally, Fig. 4.15 shows estimated external acceleration of a

single trial compared to the reference value, magnified for 5 seconds.

Table 4.5. RMSE Results of Handheld Eight

Trial Roll [deg] Pitch [deg] Ext. Acc. [m/s?]
No. | Conv. MTx Prop. | Conv. MTx Prop. | Conv.  Prop.
126 458 076 | 059 168 069 | 575 2.52
188 214 099 | 054 219 050 | 7.32 2.71
157 236 078 | 0.73 191 062 | 7.02 2.74
196 351 081 | 086 284 075 | 8.01 2.62
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Figure 4.15. Estimated external acceleration from a single trial of “Handheld
Eight”.
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Figure 4.16. Estimated center of rotation from a single trial of “Handheld
Eight”.
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Figure 4.17. Errors of estimated attitude from a single trial of “Handheld Eight”. The conventional method, MTx output, and the

proposed method are colored in green, blue, and red, respectively, denoted as “Li & wang”, “MTx”, and “CR-ARS” (short for
Center-of-Rotation based ARS), respectively.
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4.3. BROAD Dataset

BROAD dataset [36] is comprised of 39 trials that vary in types of motions, the
speeds of motions, and existence of accelerometer and/or magnetometer
disturbances. All trials were recorded with 9-axis IMU Myon Aktos-t from Myon
AG, Switzerland, with its specifications [36] listed in Table 4.6. For the ground truth
data, an Optitrack OMC system of eight cameras was used, providing angular

accuracy of 0.2 degrees [36].

Table 4.6. Myon Aktos-t Specifications

Gyroscope Accelerometer
Measurement range + 2000 deg/s + 169
Sampling rate 286Hz
Noise standard 0.10 degs 0.056 m/s?

deviation

Of the 39 trials, this study chose two, the 20" and the 39", to evaluate the
proposed algorithm on real-world scenarios of complex motions and with varying
center of rotation. The former is an undisturbed trial with combination of rotational
and translational motions lasting 360 seconds, named “BROAD Combined 360s”
hereafter. The sequence goes under average acceleration norm of 4.00 m/s? and
maximum of 11.70 m/s?. The latter, named “BROAD Disturbed Mixed” hereafter,
is a trial of 280 seconds with disturbed and undisturbed phases coexisting. The trial
is comprised of several segments of combined motion of rotation and translation with
short breaks in between. The sequence goes under average acceleration norm of 3.25

2

m/s? and maximum of 40.22 m/s?. Unlike the author-collected datasets, the
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chosen BROAD trials present more complex motions closer to real-world situations
with varying center of rotation, shown by their 3D motion paths in Fig. 4.18 and 4.19,

thus appropriate for evaluating robustness of the proposed algorithm.

BROAD Combined 360s motion path

Figure 4.18. 3D motion path of the “BROAD Combined 360s”
experiment.

BROAD Disturbed Mixed motion path

Figure 4.19. 3D motion path of the “BROAD Disturbed Mixed”
experiment.

,
. PR,



The results of “BROAD Combined 360s” scenario are summarized in the first
row of Table 4.7. The proposed method outperforms the conventional algorithm by
38%, with sub-degree error for both roll and pitch. A graphical comparison of attitude
estimation of a single trial is presented in Fig. 4.22. The accuracy of estimating
external acceleration is also improved compared to the conventional method,
showing 56% less error, consistent with the results of author-collected scenarios. Fig.
4.21 shows estimated center of rotation of this scenario. When compared to the
previous author-collected dataset, it can be seen that the center of rotation changes
irregularly, hence proving that estimating center of rotation online serves a purpose
in situations with arbitrary motions. Fig. 4.20 shows estimated external acceleration

compared to the reference value, magnified for 5 seconds.

Table 4.7. RMSE Results of BROAD Dataset

. 2
Dataset Roll [deg] Pitch [deg] Ext. Acc. [m/s”]
Conv. Prop. Conv. Prop. Conv. Prop.
Combined | ) 5 0.58 0.59 0.36 0.82 0.36
360s
Disturbed | , ., 0.88 0.98 0.65 2.49 1.06
Mixed
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Figure 4.20. Estimated external acceleration from a single trial of “BROAD
Combined 360s”.

8
— | —x
g 6
O, y
o 4 z
c

2 -
8 M
-O 0 [V‘
2 Il
o | Y '
E-27
0 -4t

6 : : : :

0 100 200 300 400

Time [sec]

Figure 4.21. Estimated center of rotation from a single trial of “BROAD
Combined 360s”.
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Figure 4.22. Errors of estimated attitude from a single trial of “BROAD Combined 360s”. The conventional method and the

proposed method are colored in green and red, respectively, denoted as “Li & wang” and “CR-ARS” (short for Center-of-Rotation
based ARS), respectively.
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The second row of Table 4.7 presents the results of “BROAD Disturbed Mixed”
scenario. The results show that the proposed method outperforms the conventional
method by 32% in attitude estimation. A full graphical representation of attitude
estimation is presented in Fig. 4.25. The proposed algorithm also outperforms the
conventional in estimating external acceleration with 57% less error. Fig. 4.23 shows
estimated external acceleration of a single trial compared to the reference value,
magnified for 5 seconds. From the graph, we can see that there has been a false
detection of external acceleration from 74 to 77 second of the sequence. Judging
from the provided sensor data, this deviation can be explained by a sudden change
in the gyroscope measurements within that window, which results in an erroneous
deduction of the gravity vector. Such false detection leads to deterioration of
accuracy in attitude estimation, as explained in Chapter 3.2. The zoomed graph of
Fig. 4.25 corroborates the effect of false detection, showing increased attitude
estimation error for both roll and pitch. However, it is also shown that false detection
does not have a lasting effect on degradation of performance as the error normalizes
when the filter starts to correctly detect external acceleration. Lastly, the estimated
center of rotation is shown in Fig. 4.24. It is proven once again that the proposed
method estimates center of rotation well through the areas with near-zero values,
which coincide with the intermittent short breaks between the dynamic phases that
“BROAD Disturbed Mixed” has.

The evaluation on both BROAD sequences effectively demonstrate the
robustness of the proposed algorithm, proving that the applicability of the proposed
method is not limited to situations with rotation-only motions or a fixed center of

rotation.
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Figure 4.23. Estimated external acceleration from a single trial of “BROAD
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Figure 4.25. Errors of estimated attitude from a single trial of “BROAD Combined 360s”. The conventional method and the

proposed method are colored in green and red, respectively, denoted as “Li & wang” and “CR-ARS” (short for Center-of-Rotation
based ARS), respectively.
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Chapter 5. Conclusion

In this thesis, an augmented Kalman filter-based ARS is presented. The
proposed system accurately estimates attitude with center of rotation augmented to
its error-state vector.

As an accurate estimation of the external acceleration is a key to a successful
ARS, knowing the types of undergoing motion is crucial. The augmentation of center
of rotation precisely does that: estimated center of rotation allows us to describe the
motion with respect to rotational motions as well as translational ones, unlike
previous works that do not distinguish whether the motion is translational, rotational,
or both.

With a more specific understanding of the motion, the system employs two
motion detectors to adaptively adopt a measurement model and noise covariance
matrix more fitting to the undergoing motion. The static detector, the first of the two
detectors, is similar to those of the conventional threshold-based algorithms:
determining whether the system is static or not, without considering the nature of the
dynamicity. The superiority of the proposed algorithm lies with the second detector,
the rotational motion detector. Effectively taking advantage of the estimated center
of rotation, the detector not only distinguishes whether the dynamicity of the system
inherits a rotational motion but also provides the filter with a more accurate
measurement model that incorporates rotational acceleration. This includes a newly
defined component of the measurement noise covariance matrix, R’, with its full
derivation thoroughly presented in Chapter 3.3.

The proposed algorithm is validated through the author-collected experiments
and existing benchmark dataset [36] in Chapter 4. The former is comprised of four
experiments: “Rate Table Slow”, “Rate Table Fast”, “Handheld Yaw”, and

“Handheld Eight”. These experiments are intended to highlight the contribution as
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they are almost purely rotational with fixed center of rotation. With the estimated
center of rotation and the rotational motion detector, the proposed algorithm
outperforms the conventional algorithm and the MTx output in terms of accuracy in
estimating the attitude and the external acceleration in almost all sequences. From
the benchmark dataset, two sequences were chosen, “BROAD Combined 360s” and
“BROAD Disturbed Mixed”, to prove the robustness of the proposed algorithm
against challenging situations. The sequences consist complex motions, in
combination of translational and rotational motions with varying center of rotation.
Even in such adverse circumstances, the proposed algorithm outperformed the
conventional method with sub-degree errors, proving that the superb performance of
the proposed algorithm is not limited to purely rotational motion with fixed center
of rotation.

This work may be extended to an ARS for robot applications or generally for
any dynamic system, preferably with unknown model parameters and/or under
rotational motions. For future work, the relationship between the magnitude of
acceleration and performance can be further investigated through additional

experiments.
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