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Abstract 

 

Adaptive Attitude Reference System 

Using Center-of-Rotation Estimation 
 

 
Minseok Lee 

Department of Aerospace Engineering 

The Graduate School 

Seoul National University 

 

This master’s thesis proposes a novel augmented Kalman filter-based attitude 

reference system (ARS) that uses an inertial sensor comprised of a tri-axial 

gyroscope and a tri-axial accelerometer. For accurate estimation of attitude using an 

inertial sensor, effective compensation of the non-gravitational acceleration is crucial. 

The proposed method resolves this issue by using a novel rotational motion detector 

to adaptively eliminate non-gravitational acceleration. The types of motions that the 

system experiences are accurately distinguished by augmenting center of rotation to 

the state vector. Due to the unconventional augmented state vector, the reformed 

filter properties have been thoroughly examined, and an observability analysis has 

been carried out. An extensive experimental validation was conducted under six 

diversified scenarios from the author-collected and open-source datasets, including 

both rotation-only and translation-rotation-combined motions. The results 

demonstrate that the proposed method accurately estimates attitude with sub-degree 

errors for most trials, proving robustness and accuracy under various motions. A 

comparative analysis reveals that the proposed method outperforms the conventional 



 

 ii 

method and the MTx algorithm. 
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Chapter 1. Introduction 
 

 

1.1. Motivation 
 

Since the development of Micro Electro-Mechanical Systems (MEMS) 

technology, inertial measurement units (IMUs) has been widely utilized on various 

applications, including indoor navigation [1], motion capture [2], unmanned aerial 

vehicles (UAVs) [3], and many more.  Thanks to their small-sized, low-cost, and 

low power consuming nature, IMUs have very little restrictions on which platform 

they are mounted on, namely smartphones, quadrotors, and wearable devices. Using 

measurements from the gyroscope, the inertial navigation system (INS) algorithm 

can deliver orientation (roll, pitch, and yaw) through integrating angular rates, when 

initial angles are known. However, gyroscopes are vulnerable to a drift which rapidly 

increases over time. Hence, to achieve long-term stability and accuracy, other 

sensors are often used together. The most common one is the accelerometer, which 

outputs specific force. When stationary, the accelerometer can be used to estimate 

gravity vector, and thus provide attitude (roll and pitch) information of the platform. 

A system which fuses measurements from gyroscope and accelerometer to estimated 

attitude is called Attitude Reference System (ARS). When outputs from 

magnetometer is combined with ARS, the system is now able to estimate heading 

(yaw), hence called Attitude and Heading Reference System (AHRS). Though the 

scope of this thesis is ARS, previous works covered in this thesis are not limited to 

ARS, since many works of AHRS still propose methods to deals with acceleration. 

After surveying on existing attitude estimating methods, the author has gathered 

a few insights and motivations towards developing the novel method proposed in 

this thesis. First, sensor fusion technique combining outputs of gyroscope and 

accelerometer that enables robust estimation of attitude is in need. Second, a system 

should deliver excellent performance under changing circumstances through an 
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adaptation method that withstands dynamic motions with severe acceleration for a 

prolonged time. Third, appropriate modelling of the kinematics should be in place to 

not only facilitate a more accurate attitude estimation but also improve versatility of 

the system regarding various scenarios and platforms ARS may be utilized. When 

doing so, using predetermined parameters should be shunned. 

 

1.2. Objectives and Contribution 
 

This thesis presents a novel indirect Kalman filter-based ARS that estimates 

attitude and gyro bias along with center of rotation. The state vector of the filter is 

augmented to include center of rotation, which not only improves accuracy of 

attitude estimation but also robustness towards various types of dynamic not limited 

to rotation-only or translation-only motions. To adaptively cope with changing 

dynamics, a rotational motion detector is developed to efficiently equip the proposed 

system with appropriate measurement model consistent with current dynamics. The 

structure of the filter is thoroughly explained, with a detailed derivation of newly 

devised measurement noise covariance matrix and an observability analysis. The 

performance of the proposed ARS is verified experimentally against the MTx 

algorithm by Xsens and a conventional method based on the work of Li and Wang 

[14]. The tested scenarios consist of six cases, four of which are from the author-

collected dataset and the rest from the open-source dataset Berlin Robust Orientation 

Estimation Assessment Dataset (BROAD) [36]. To highlight the accuracy and 

robustness of the proposed algorithm, the tested datasets are comprised of differing 

values of accelerations, centers of rotation, and types of motion, including rotation-

only and rotation-translation-combined motions. 

The main contributions of this thesis are restated as follows: 

An indirect Kalman filter-based ARS estimating center of rotation online is 

proposed. Estimation of the rotational arm improves accuracy as well as the 
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versatility of the proposed system. 

A rotational motion detector is proposed to robustly adapt to ever-changing 

dynamics with a corresponding measurement model and a noise covariance. 

The unconventional measurement noise covariance matrix pertinent to the 

proposed system is meticulously derived. 

 

1.3. Organization of the Thesis 
 

The thesis is organized as follows. In Chapter 2, the thesis explains conventional 

ARS algorithms in two parts. The first part contains the two sensor fusion techniques 

and the attitude reference systems that adopts the two methods: the complimentary 

filter-based and the Kalman filter-based. A simple formulation of the Kalman filter-

based Attitude Reference System, and a brief summary of previous methods that deal 

with external acceleration is also provided. The second part deals with the two 

methods adopted by previous works on ARS to compensate non-gravitational 

acceleration in dynamic situations: the adaptation methods and the kinematic 

modeling methods. In Chapter 3, the thesis proposes a novel indirect Kalman filter-

based ARS, with a rotational motion detector, that estimates center of rotation online. 

The chapter includes derivation of the newly developed measurement noise 

covariance matrix, and an observability analysis of the proposed system. Chapter 4 

presents a performance evaluation of the proposed method, compared with 

conventional methods against several different scenarios, including highly 

challenging motions. The thesis concludes with Chapter V.  

Notations used throughout this thesis is presented in Table 1.1. Less frequently 

used notations and abbreviations are defined separately when they first appear in this 

thesis. 
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Table 1.1. Notations 

Frames 

b Body frame 

n Local navigation frame 

N, E, D North, East, Down of the navigation 

frame 

Kinematic quantities 

𝛾, 𝜃, 𝜓 Roll, Pitch, Yaw 

𝝓 [𝛾 𝜃 𝜓]𝑇 

𝐂𝑏
𝑛 Direction Cosine Matrix (DCM, 

body frame to local navigation 

frame) 

g Gravitational acceleration 

𝑟 Center of rotation (|𝐫𝑏|) 

Sensor-related quantities 

𝐟 Accelerometer measurement 

𝝎 Gyroscope measurement 

Δ𝑡 Sampling time 

𝑏𝑔 Gyroscope bias 

Kalman filter quantities 

𝐱 State vector 

𝚽 System matrix (continuous) 

𝐅 System matrix (discrete) 

𝐰 Process noise (𝐰 ~ 𝑁(0, 𝐐)) 

𝐳 Measurement 

𝐇 Observation matrix 

𝐯 Measurement noise (𝐯 ~ 𝑁(0, 𝐑)) 

𝐊 Kalman gain 

𝐏 Error covariance matrix 

𝐐 Process noise covariance matrix 

𝐑 Measurement noise covariance 

matrix 

(∙)+ Posteriori value 

(∙)− Priori value 

Others 

𝐈n×n n-by-n Identity matrix 

𝟎m×n m-by-n Zeros matrix 

[(∙) ×] Skew-symmetric matrix 

(∙)̂ Estimate value of (∙) 

(∙)̃ Measured value of (∙) 

δ(∙) Error of (∙) 

𝐝 External acceleration 

E[∙] Expectation of (∙) 

|∙| Norm of (∙) 

PSD Power Spectral Density 
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Chapter 2. Conventional ARS 
 

 

2.1. Sensor Fusion of Gyro and Accelerometer 
 

2.1.1. Complimentary Filter based Attitude Reference System 
 

Plentiful works have addressed the means of sensor fusion with respect to ARS 

and AHRS. The most common approaches, by far, are complementary filter [4]-[10] 

and Kalman filter or its variants [1], [11]-[29]. Complementary filter is a simple data 

fusion technique which combines complementary information from two different 

sensors in the frequency domain. [4] showed that the gyroscope and accelerometer 

to have complementary frequency response, making them suitable candidates for 

complementary filter. Generally, gyroscopes and accelerometers are passed through 

a high-pass filter and a low-pass filter, respectively, as the former experience a drift 

in the low-frequency domain, and the latter are susceptible to noises of high-

frequency domain. Mahony [5] proposed a design of nonlinear complementary filter 

on special orthogonal group. Madgwick [30] adopted Gradient Descent Algorithm 

(GDA) to estimate orientation in a computationally efficient manner. More recently, 

Liu [6] proposed an attitude estimation algorithm of multi-sample equivalent rotation 

vector using angular rates rather than angular increments. Wu [7] contributed with a 

quaternion-based fast complementary filter (FCF) that has much less convergence 

time than the previous works. Despite many advantages including efficiency, above 

works of complementary filter still suffer from lack of adaptability as their 

parameters, namely gains, are usually fixed and performance deteriorates quickly 

when circumstances regarding motions change. To resort to a more robust fusion 

technique, the proposed method is based on Kalman filter. 

 

2.1.2. Kalman Filter based Attitude Reference System 
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An ARS usually employs the Kalman filter for the fusion of gyro and 

accelerometer information. The relationship between attitude and accelerometer 

measurements when the sensor is static is as follows. 

 

 𝛾 = arctan(
𝑓𝑦

𝑓𝑧
) (2.1) 

 𝜃 = arctan

(

 
𝑓𝑥

√𝑓𝑦
2 + 𝑓𝑧

2

)

  (2.2) 

 

The nominal state vector 𝐱 is defined as 

 

 𝐱 = [𝛾 𝜃 | 𝑏𝑔,𝑥 𝑏𝑔,𝑦 𝑏𝑔,𝑧]𝑇 (2.3) 

 

where 𝑏𝑔,𝑥, 𝑏𝑔,𝑦, and 𝑏𝑔,𝑧 are the gyro bias in the x-, y-, and z-axes, respectively. 

The error state vector δ𝐱 is defined as 

 

 δ𝐱 = [𝜑𝑁 𝜑𝐸 | 𝛿𝑏𝑔,𝑥 𝛿𝑏𝑔,𝑦 𝛿𝑏𝑔,𝑧]𝑇 (2.4) 

 

where 𝝋  is known as the Psi-angle error, used by numerous previous works 

including [14], representing the difference between the true navigation frame and the 

computed navigation frame.  

𝐂𝑏
𝑛 is expressed in terms of Euler angles as follows. 

 

𝐂𝑏
𝑛 = [

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛾 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝛾 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝛾
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛾 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛾 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝛾
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛾

] (2.5) 

 

The relationship between the Euler angle error and the Psi-angle error is defined as 
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follows. 

 

 

[
𝜑𝑁
𝜑𝐸
] = [

𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

] ([
𝑐𝑜𝑠𝜃 0
0 1

] [
δ𝛾
0
] + [

0
δ𝜃
]) 

= [
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

] [
δ𝛾
δ𝜃
] 

(2.6) 

 

The Euler angle errors shown in above equation are defined as follows. 

 

 
δ𝛾 = 𝛾 − 𝛾 

δ𝜃 = 𝜃 − 𝜃 
(2.7) 

 

As for the gyro bias, the relationship between the nominal value and the error is as 

follows. 

 

 δ𝒃g = 𝒃𝑔 − �̂�𝑔 (2.8) 

 

The indirect Kalman filter corrects the nominal state 𝐱  with the error state δ𝐱 

using equations (2.7) and (2.8). 

In the absence of external acceleration, the nonlinear continuous system and 

measurement models adopted from [37] are as follows. 

System model (nonlinear, continuous): 

 

 

 

 

 

�̇� = 𝜔x +𝜔𝑦(𝑠𝑖𝑛𝛾𝑡𝑎𝑛𝜃) + 𝜔𝑧(𝑐𝑜𝑠𝛾𝑡𝑎𝑛𝜃) + 𝑏𝑔,𝑥

+ 𝑏𝑔,𝑦(𝑠𝑖𝑛𝛾𝑡𝑎𝑛𝜃) + 𝑏𝑔,𝑧(𝑐𝑜𝑠𝛾𝑡𝑎𝑛𝜃) + w𝑥

+w𝑦(𝑠𝑖𝑛𝛾𝑡𝑎𝑛𝜃) + w𝑧(𝑐𝑜𝑠𝛾𝑡𝑎𝑛𝜃) 

 

(2.9) 
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θ̇ = 𝜔𝑦𝑐𝑜𝑠𝛾 − 𝜔𝑧𝑠𝑖𝑛𝛾 + w𝑦𝑐𝑜𝑠𝛾 + 𝑏𝑔,𝑦𝑐𝑜𝑠𝛾 − w𝑧𝑠𝑖𝑛𝛾

− 𝑏𝑔,𝑧𝑠𝑖𝑛𝛾 

�̇�𝑔 = 𝐰𝑔 

(2.9) 

continued 

 

Measurement model (nonlinear, continuous): 

 

 
𝐳 = 𝐟b = 𝐂𝑛

𝑏[0 0 −𝑔]𝑇 + 𝐯 

= �̂�𝑛
𝑏(𝐈 − [𝝋 ×])[0 0 −𝑔]𝑇 + 𝐯 

(2.10) 

 

The relationship between �̂�𝑛
𝑏  and 𝐂𝑛

𝑏  is adopted from [38], which also provides a 

detailed derivation. 

From above models, the linearized discrete error state models can be shown as 

follows. 

System model (linear, discrete): 

 

 δ𝐱𝑘 = 𝚽𝑘−1δ𝐱𝑘−1 +𝐰𝑘−1 (2.11) 

 𝚽𝑘 = 𝐈5×5 + 𝐅𝑘Δ𝑡, 𝐅𝑘 = [
𝟎2×2 𝐂1,2𝑟
𝟎3×2 𝟎3×3

] (2.12) 

 

where 𝐂1,2𝑟  is the first two rows of �̂�𝑏
𝑛 . The discretization method of 𝚽  is 

explained in Chapter 3.1. 

Measurement model (linearized, discrete): 

 

 δ𝐳𝑘 = 𝐟𝑘 + �̂�𝑛
𝑏[0 0 𝑔]𝑇 = 𝐇𝑘δ𝐱𝑘 + 𝐯𝑘 (2.13) 

 𝐇𝑘 = [𝐂1,2𝑐 𝟎3×3] (2.14) 

 

where 𝐂1,2𝑐 is the first two columns of �̂�𝑛
𝑏[𝐠 ×], δ𝐳𝑘 is the measurement residual, 
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and 𝐟𝑘 is the measurement specific force. 

However, in the presence of dynamic motion, the accelerometer measurements 

also measure non-gravitational acceleration, and hence the force measurement 

equation is as follows. 

 

 𝐟𝑘 = 𝐂𝑛
𝑏[0 0 −𝑔]𝑇 + 𝐝𝑘 (2.15) 

 

Note here that the measurement noise 𝐯𝑘  is incorporated in external 

acceleration 𝐝𝑘 . To deal with such external acceleration, previous studies adopt 

methods such as adaptation and modeling, which will be explained in Chapter 2.2. 

 

2.2. Non-gravitational Acceleration Compensation in Dynamic 

Situations 
 

2.2.1. Adaptation based Methods 
 

When the outputs of gyroscope and accelerometer are fused together, it is 

imperative to correctly estimate the gravity vector from the accelerometer 

measurements. Ideally, the system should experience little to no acceleration 

compared to accelerometer noise to achieve so. However, handheld devices such as 

smartphones and smartwatches are subject to dynamic motions, making it difficult 

for accelerometer to estimate a pure gravity vector. To deal with such non-

gravitational acceleration, or external acceleration, numerous approaches have been 

proposed, and most can be categorized into two: adaptation [1], [10], [14]-[23], [31], 

[32] and modelling [3], [24]-[29], [33]. Works that adopt adaptation methods usually 

distinguishes motion as static and dynamic, and adapts accordingly. Li and Wang [14] 

proposed a Kalman filter-based AHRS that adaptively tunes the measurement noise 

covariance depending on three different scenarios of non-acceleration, low-

acceleration, and high-acceleration modes. Munguía [15] presented an extended 
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Kalman filter-based (EKF) AHRS in a quaternion form that detects static mode with 

the well-known Stance Hypothesis Optimal Detector (SHOE) [34]. Makni [1] 

proposed an energy-efficient quaternion-based adaptive Kalman filter with a hybrid 

detector that completely switches off the gyroscope when static. Tong [16] 

implemented a hidden Markov Model (HMM) recognizer to a multiplicative 

extended Kalman filter (MEKF) to adaptively tune noise covariance depending on 

disturbance caused by motion. While stated works show satisfactory results, using 

adaptation method alone will result in large attitude error when the system is under 

dynamic situation for an extended period of time. Furthermore, information on the 

nature of the motion are not fully exploited, since modelling of the non-gravitational 

acceleration and/or the kinematics itself is absent. 

 

2.2.2. Kinematic Modeling based Methods 
 

Dealing with external acceleration through modelling is also a frequently used 

method in the field of ARS/AHRS. Lee [24] proposed a Kalman filter-based ARS 

that models the external acceleration as a first-order low-pass filtered white noise 

process. Though such modelling approach is adopted by several works that followed 

[11], [25], [26], yet, the model is not based on the actual nature of the non-

gravitational acceleration, lacking justification behind the approach. [27] adopts the 

model of [24] and employs an augmented Kalman filter to describe the dynamics, 

similar to the proposed work. However, [27] is limited to a ball-and-socket joint 

application, contrary to this study which can be applied to complex motions with 

varying center of rotation. Kim [3] studied attitude estimation on a small aerial 

vehicle, where the external acceleration has certain frequency profile as it is induced 

by the platform vibration of the actuators, and hence implemented second-order 

infinite impulse response (IIR) notch filter. Maliňák [28] proposed an EKF-based 

AHRS with a newly developed concept of synthetic acceleration that models the 
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non-gravitational acceleration differently depending on whether the dynamics of the 

body is in a nominal or a rare-normal situation. Park [29] presented an indirect 

Kalman filter-based AHRS where the measurement noise covariance was modelled 

using ellipsoidal method, rather than modelling the external acceleration itself. 

Takeda [35] estimated attitude by placing inertial sensors on specific points on limb 

segments, modelling human gait as a series of rigid body rotation. However, such 

modelling demanded many parameters that must be measured prior to motion. 

Although numerous attempts have been made to accurately model the acceleration 

or the kinematics, the results are still unsatisfactory. The models are either unrealistic 

with no basis on the actual dynamics, too tailored to a specific application, or in need 

of predetermined parameters. 
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Chapter 3. Center-of-Rotation-based ARS 
 

 

This chapter presents the proposed center-of-rotation based ARS that uses a 

rotational motion detector to estimate attitude, gyro bias, and center of rotation. The 

structure of the proposed indirect Kalman filter-based system and a detailed 

derivation of the measurement noise covariance matrix are also described in depth. 

The structure of the proposed algorithm is illustrated as a schematic block 

diagram in Fig. 3.1. The system is based on the indirect Kalman filter, where 

accelerometer measurements with the priori values from time propagation go 

through the novel rotational motion detector. Depending on which step of the 

detector the system is determined to be dynamic, the filter adaptively adopts specific 

measurement model and noise covariance apt for each circumstance. The details of 

the adaptive algorithm are explained thoroughly in the following subchapters. 
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3.1. Center-of-Rotation-Augmented Kalman Filter 
 

This thesis proposes a kinematic modelling method where the model parameter, 

center of rotation, is estimated online. The parameters to be estimated are the x, y, 

and z positions of center of rotation in the sensor frame. The center of rotation vector 

with respect to sensor frame is denoted as 𝐫b, while its x, y, z, positions are denoted 

as 𝑟𝑥, 𝑟𝑦, and 𝑟𝑧, respectively. The estimated center of rotation is augmented to the 

nominal state vector as follows. 

 

 𝐱 = [𝛾 𝜃  | 𝑏𝑔,𝑥 𝑏𝑔,𝑦 𝑏𝑔,𝑧 | 𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇 (3.1) 

 

The error state, which the author uses for the proposed indirect Kalman filter, is as 

follows. 

 

 δ𝐱 = [𝜑𝑁 𝜑𝐸  | δ𝑏𝑔,𝑥 δ𝑏𝑔,𝑦 δ𝑏𝑔,𝑧| δ𝑟𝑥 δ𝑟𝑦 δ𝑟𝑧]𝑇 (3.2) 

 

The roll, pitch, and gyro bias errors are defined the same as shown in Chapter 2.1.2. 

The augmented center of rotation error is defined as follows. 

 

 δ𝐫𝑏 = 𝐫𝑏 − �̂�𝑏 (3.3) 

 

By including center of rotation into the state vector, the nature of the dynamics can 

be estimated and explained in terms of any rotational movement that the system 

might be experiencing. More importantly, the expected effect of such augmentation 

is improvement in the accuracy of estimating attitude, which is proven 

experimentally in Chapter 4. 

The Kalman filter equations, including those of time propagation and 

measurement update, are adopted from [39]. To practice economy, this thesis only 
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presents filter properties and equations that deviate from [39]. 

Expanded from equation (2.9), the nonlinear continuous augmented state 

system model is as follows. 

System model (nonlinear, continuous): 

 

 
�̇�, �̇�, �̇�𝑔 𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.9) 

�̇�𝑏 = 0 

(3.4) 

 

The augmented error state system model is as follows. 

System model (linearized, discrete): 

 

 δ𝐱𝑘 = 𝚽𝑘−1δ𝐱𝑘−1 +𝐰𝑘−1 (3.5) 

 𝚽𝑘 = 𝐈8×8 + 𝐅𝑘Δ𝑡, 𝐅𝑘 = [
𝟎2×2 𝐂1,2𝑟 𝟎2×3
𝟎6×2 𝟎6×3 𝟎6×3

] (3.6) 

 

with process noise covariance matrix, 𝐐, as a diagonal matrix consisted of noise 

standard deviation of each state. The noise standard deviation for the augmented δ𝐫𝑏 

is assumed as 10−3m/√Hz. Some literatures suggest that methods such as Runge-

Kutta ensure a more accurate discretization than the method chosen in equation (3.6) 

[40]. Yet, equation (3.6) is used instead for three reasons: in the context of a low-

grade IMU (such as the IMU used for the experiments in Chapter 4), the numerical 

error from the discretization is far smaller than errors from other sources; the 

discretization error is kept small with a small time-step, Δ𝑡 [40]; the Runge-Kutta 

method is computationally heavier than the chosen method. 

 

3.2. Adaptation using Rotational Motion Detector 
 

The priori values from performing time propagation of the Kalman filter with 
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above system model, together with the accelerometer measurement, faces the static 

detector. The static detector determines whether the system is static by comparing 

the acceleration measurement with the gravity vector with respect to a threshold. If 

the system is deemed static, the measurement noise covariance matrix is set as 𝐑𝑎𝑐𝑐, 

which is 𝐑  originating from accelerometer only. Then, measurement update is 

performed to update only the attitude and the gyroscope bias. The adaptive 

determination of the measurement noise covariance and the measurement model 

when deemed static by the static detector are as follows. 

Adaptive R: 

 

 𝐑𝑘 = {
𝑔𝑜 𝑡𝑜 𝑟𝑜𝑡. 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑖𝑓 |𝐟𝑘 + �̂�𝑛

𝑏[0 0 𝑔]𝑇| > 𝜎𝑧
𝐑𝑎𝑐𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.7) 

 

Measurement model (linearized, discrete): 

 

 δ𝐳𝑘 = 𝐟𝑘 + �̂�𝑛
𝑏[0 0 𝑔]𝑇 = 𝐇𝑘δ𝐱𝑘 + 𝐯𝑘 (3.8) 

 𝐇𝑘 = [𝐂1,2𝑐 𝟎3×6] (3.9) 

 

where 𝜎𝑧  is the measurement noise standard deviation. The above measurement 

model is similar to the linearized discrete measurement model of equations (2.13) 

and (2.14) from Chapter 2.1.2, with the difference being the new observation matrix 

for the augmented error state vector. As for the threshold of the detectors, the value 

was heuristically set it as the measurement noise standard deviation, 𝜎𝑧 , but the 

value is a user-determined parameter that may be chosen differently. If the threshold 

is set too low for any of the detectors, it would inflate the measurement covariance 

matrix; if the threshold is set too high, it would deflate the measurement covariance 

matrix. Both cases of false detection would hinder the filter from accurately 
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capturing the true dynamics, and thus deteriorate the performance of the proposed 

algorithm. 

However, if deemed dynamic, the system goes through a rotational motion 

detector. The rotational motion detector checks whether the system is rotationally 

dynamic by comparing gravity vector with acceleration measurement compensated 

for the acceleration with respect to the estimated center of rotation. When deemed 

rotationally static, 𝐑 is set as 𝐑𝑎𝑐𝑐 + 𝐑′, where the definition and derivation of 𝐑′ 

is presented in Chapter 3.3. Conversely, when deemed rotationally dynamic, 𝐑 is 

set as 𝑠(𝐑𝑎𝑐𝑐 + 𝐑′). The parameter 𝑠 is a user-set parameter, which was chosen as 

107 for experiments carried out in this thesis. Though very large, the results in 

Chapter 4 shows that the measurement was still able to influence attitude estimation. 

The optimal value was chosen through a set of trials. It is also confirmed that the 

degradation of performance due to using other values that are not widely different 

from the optimal value is minimal. As the system undergoes the rotational motion 

detector, the measurement update performs an update on not only the attitude and 

the gyroscope bias, but also the center of rotation. The adaptive determination of the 

measurement noise covariance and the measurement model of the second step are as 

follows. 

Adaptive R: 

 

 𝐑𝑘 = {
𝑠(𝐑𝑎𝑐𝑐 + 𝐑′) 𝑖𝑓 |(𝐟𝑘 +𝐇𝑟�̂�

𝑏) + �̂�𝑛
𝑏[0 0 𝑔]𝑇| > 𝜎𝑧

𝐑𝑎𝑐𝑐 + 𝐑′ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.10) 

 

Measurement model (linearized, discrete): 

 

 δ𝐳𝑘 = 𝐟𝑘 + �̂�𝑛
𝑏[0 0 𝑔]𝑇 +𝐇𝑟�̂�

𝑏 = 𝐇𝑘δ𝐱𝑘 + 𝐯𝑘 (3.11) 

 𝐇𝑘 = [𝐂1,2𝑐 𝟎3×3 𝐇𝑟] (3.12) 
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where �̂�𝑏 is the current estimate of the center of rotation in the sensor frame. Also, 

𝐇𝑟 = [�̃�𝑘 ×]
2 + [�̃�𝑘 ×] , and �̃�𝑘 =

�̃�𝑘−�̃�𝑘−1

Δ𝑡
 , where �̃�𝑘  is the tri-axial gyro 

measurements at time 𝑘 with following relation.  

 

 �̃�𝑘 = 𝝎𝑘 + δ𝝎𝑘 (3.13) 

 

From the measurement model shown in equation (3.11), the centripetal acceleration 

due to rotational motion about the fixed point at 𝐫𝑏 corresponds to −[𝛚𝑘 ×]
2𝐫𝑏, 

whereas the tangential acceleration corresponds to −[𝛂𝑘 ×]𝐫
𝑏. 

 

3.2. Derivation of Measurement Noise Covariance Matrix 
 

With the presence of an error in 𝐇𝑟 from the gyroscope error, the measurement 

noise covariance matrix 𝐑𝑘  is now larger than conventional measurement noise 

covariance matrix, 𝐑𝑎𝑐𝑐. The increment is defined as 𝐑′, such that 

 

 𝐑𝑘 = 𝐑𝑎𝑐𝑐 + 𝐑′ (3.14) 

 

To derive 𝐑′ , the polysemous notations l, m, and n are first defined. The 

notations correspond to numbers 1, 2, or 3 when denoting components of 𝐇𝑟, and 

correspond to x, y, or z when denoting the axes of gyroscope measurement, 𝛚. To 

elaborate, in case of 𝐇𝑟(2, 3) , l and m are assigned to y and z axes, and n is 

automatically assigned to the x axis. Let us define 𝛿𝐇𝑟(𝑙, 𝑚) to be the error in the 

(𝑙,𝑚) -th component of 𝐇𝑟 . Then, using the definition of 𝐇𝑟 , following error 

expressions can be derived: 

 

 δ𝐇𝑟(𝑙, 𝑙) = −(𝛿𝜔𝑚
2 + 𝛿𝜔𝑛

2) (3.15) 
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δ𝐇𝑟(𝑙,𝑚 ≠ 𝑙) = δ(𝜔𝑙𝜔𝑚) + δ(𝛼𝑛) 

= (�̃�𝑙�̃�𝑚 + α̃𝑛) − (𝜔𝑙𝜔𝑚 + 𝛼𝑛) 

= (�̃�𝑙�̃�𝑚 +
�̃�𝑛,𝑡 − �̃�𝑛,𝑡−𝛥𝑡

Δt
)

− (𝜔𝑙𝜔𝑚 +
𝜔𝑛,𝑡 −𝜔𝑛,𝑡−𝛥𝑡

Δt
) 

= 𝛿𝜔𝑙𝛿𝜔𝑚 +𝜔𝑙𝛿𝜔𝑚 +𝜔𝑚𝛿𝜔𝑙

+
𝛿𝜔𝑛,𝑡 − 𝛿𝜔𝑛,𝑡−Δ𝑡

Δt
 

(3.16) 

 

With such derivations of each component of the error matrix, the expectations 

of squared-error terms are drawn. Their derivations are spanned out for all six cases 

as followed. The final outcome of each case and the full process of the derivations 

are presented as follows. 

Case 1: 

 

𝐄[𝛿𝐇𝑟(𝑙, 𝑙)
2] = 𝐄[𝛿𝜔𝑚

4 + 𝛿𝜔𝑛
4 + 2𝛿𝜔𝑚

2 𝛿𝜔𝑛
2] 

= 𝐄[𝛿𝜔𝑚
4 ] + 𝐄[𝛿𝜔𝑛

4] + 2𝐄[𝛿𝜔𝑚
2 ]𝐄[𝛿𝜔𝑛

2] 

                                 (∵ 𝛿𝜔𝑚 &𝛿𝜔𝑛 𝑖𝑛𝑑𝑒𝑝. ) 

= 3σ4 + 3𝜎4 + 2σ4 

= 8σ4 

= 8(PSD)2Δ𝑡2 

(3.17) 

 

Case 2: 

 

 

 

 

𝐄[𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2] 

= 𝐄 [𝛿𝜔𝑙
2𝛿𝜔𝑚

2 +𝜔𝑙
2𝛿𝜔𝑚

2 +𝜔𝑚
2 𝛿𝜔𝑙

2 +
𝛿𝜔𝑛,𝑡

2 + 𝛿𝜔𝑛,𝑡−Δ𝑡
2

Δ𝑡2

+ (𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝛿𝜔 𝑡𝑜 𝑜𝑑𝑑 𝑝𝑜𝑤𝑒𝑟𝑠)

] 

 

 

(3.18) 

 



 

 ２０ 

 = 𝐄[𝛿𝜔𝑙
2]𝐄[𝛿𝜔𝑚

2 ] + 𝜔𝑙
2𝐄[𝛿𝜔𝑚

2 ] + 𝜔𝑚
2 𝐄[𝛿𝜔𝑙

2]

+
𝐄[𝛿𝜔𝑛,𝑡

2 ] + 𝐄[𝛿𝜔𝑛,𝑡−Δ𝑡
2 ]

Δ𝑡2
 

= σ4 + 𝜔𝑙
2𝜎2 +𝜔𝑚

2 𝜎2 +
𝜎2 + 𝜎2

Δ𝑡2
 

= σ4 + (𝜔𝑙
2 +𝜔𝑚

2 +
2

Δ𝑡2
)𝜎2 

= (PSD)2Δ𝑡2 +
2(PSD)2

Δ𝑡2
+ (𝜔𝑙

2 +𝜔𝑚
2 )(PSD)Δ𝑡⏟            

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑛 𝑚𝑜𝑡𝑖𝑜𝑛

 

 

 

 

(3.18) 

continued 

 

Case 3: 

 

𝐄[𝛿𝐇𝑟(𝑙, 𝑙)𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)] 

= 𝐄[𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝛿𝜔 𝑡𝑜 𝑜𝑑𝑑 𝑝𝑜𝑤𝑒𝑟𝑠] 

= 0 

(3.19) 

 

Case 4: 

 

𝐄[𝛿𝐇𝑟(𝑙, 𝑙)𝛿𝐇𝑟(𝑚 ≠ 𝑙,𝑚)] 

= 𝐄 [
𝛿𝜔𝑚

2 𝛿𝜔𝑙
2 + 𝛿𝜔𝑚

2 𝛿𝜔𝑛
2 + 𝛿𝜔𝑙

2𝛿𝜔𝑛
2 + 𝛿𝜔𝑛

4

+(𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝛿𝜔 𝑡𝑜 𝑜𝑑𝑑 𝑝𝑜𝑤𝑒𝑟𝑠)
] 

= 𝐄[𝛿𝜔𝑚
2 ]𝐄[𝛿𝜔𝑙

2] + 𝐄[𝛿𝜔𝑚
2 ]𝐄[𝛿𝜔𝑛

2] + 𝐄[𝛿𝜔𝑙
2]𝐄[𝛿𝜔𝑛

2]

+ 𝐄[𝛿𝜔𝑛
4] 

= σ4 + σ4 + σ4 + 3σ4 

= 6σ4 

= 6(PSD)2Δ𝑡2 

(3.20) 

 

Case 5: 

 

 

𝐄[𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)𝛿𝐇𝑟(𝑙, 𝑛 ≠ 𝑙&𝑚)] (3.21) 

 



 

 ２１ 

= 𝐄 [ 𝜔𝑚𝜔𝑛𝛿𝜔𝑙
2 +

𝜔𝑙𝛿𝜔𝑚
2

Δ𝑡
+
𝜔𝑙𝛿𝜔𝑛

2

Δ𝑡
+(𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝛿𝜔 𝑡𝑜 𝑜𝑑𝑑 𝑝𝑜𝑤𝑒𝑟𝑠)

] 

= 𝜔𝑚𝜔𝑛𝐄[𝛿𝜔𝑙
2] +

𝜔𝑙
Δ𝑡
𝐄[𝛿𝜔𝑚

2 ] +
𝜔𝑙
Δ𝑡
𝐄[𝛿𝜔𝑛

2] 

= 𝜔𝑚𝜔𝑛𝜎
2 +

2𝜔𝑙𝜎
2

Δ𝑡
 

= 𝜔𝑚𝜔𝑛(PSD)Δ𝑡 + 2𝜔𝑙(PSD)⏟                  
𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑛 𝑚𝑜𝑡𝑖𝑜𝑛

 

 

(3.21) 

continued 

 

Case 6: 

 

𝐄[𝛿𝐇𝑟(𝑙, 𝑙)𝛿𝐇𝑟(𝑚 ≠ 𝑙, 𝑛 ≠ 𝑙&𝑚)] 

= 𝐄[𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝛿𝜔 𝑡𝑜 𝑜𝑑𝑑 𝑝𝑜𝑤𝑒𝑟𝑠] 

= 0 

(3.22) 

 

Assuming that the rotational rate is much smaller than 1/𝛥𝑡 , which 

corresponds to 100 rad/s for a sampling rate of 100Hz, above six cases can be 

approximated and reduced down as follows. 

 

For case 2 from above: 

 𝐄[𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2] ≈
2(PSD)2

Δ𝑡2
 (3.23) 

 

For all other cases: 

 𝐄[𝛿𝐇𝑟(𝑙,𝑚)𝛿𝐇𝑟(𝑛, 𝑜)] ≈ 0 (3.24) 

 

𝐑′  is the measurement noise covariance matrix induced from the gyroscope 

error, or more specifically, from the 𝐇𝑟�̂�
𝑏 of the measurement equation (3.11). In 

Kalman filter, the measurement noise covariance matrix is the expectation of the 
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error squared. Accordingly, R′  can be expressed as E [(𝛿𝐇𝑟�̂�
𝑏)(𝛿𝐇𝑟�̂�

𝑏)
𝑇
] . 

Expansion of this is shown as follows. 

 

 

E [(𝛿𝐇𝑟�̂�
𝑏)(𝛿𝐇𝑟�̂�

𝑏)
𝑇
] 

= E

[
 
 
 
 

[

𝛿𝐇𝑟(1,1) ∙ 𝑟𝑥 + 𝛿𝐇𝑟(1,2) ∙ 𝑟𝑦 + 𝛿𝐇𝑟(1,3) ∙ 𝑟𝑧
𝛿𝐇𝑟(2,1) ∙ 𝑟𝑥 + 𝛿𝐇𝑟(2,2) ∙ 𝑟𝑦 + 𝛿𝐇𝑟(2,3) ∙ 𝑟𝑧
𝛿𝐇𝑟(3,1) ∙ 𝑟𝑥 + 𝛿𝐇𝑟(3,2) ∙ 𝑟𝑦 + 𝛿𝐇𝑟(3,3) ∙ 𝑟𝑧

]

∙ [

𝛿𝐇𝑟(1,1) ∙ 𝑟𝑥 + 𝛿𝐇𝑟(1,2) ∙ 𝑟𝑦 + 𝛿𝐇𝑟(1,3) ∙ 𝑟𝑧
𝛿𝐇𝑟(2,1) ∙ 𝑟𝑥 + 𝛿𝐇𝑟(2,2) ∙ 𝑟𝑦 + 𝛿𝐇𝑟(2,3) ∙ 𝑟𝑧
𝛿𝐇𝑟(3,1) ∙ 𝑟𝑥 + 𝛿𝐇𝑟(3,2) ∙ 𝑟𝑦 + 𝛿𝐇𝑟(3,3) ∙ 𝑟𝑧

]

𝑇

]
 
 
 
 

 

(3.25) 

 

From equation (3.23) and (3.24), the above equation is only left with the 

𝛿𝐇𝑟(𝑙, 𝑚 ≠ 𝑙)2 terms, as shown below. 

 

 E [(𝛿𝐇𝑟�̂�
𝑏)(𝛿𝐇𝑟�̂�

𝑏)
𝑇
] = [𝒗1 𝒗2 𝒗3] (3.26) 

 

where 

 

 𝒗1 = [

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑦
2 + 𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑧

2

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑥𝑟𝑦

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑧𝑟𝑥

] (3.27) 

 

 𝒗2 = [

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑥𝑟𝑦

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑧
2 + 𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑥

2

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑦𝑟𝑧

] (3.28) 
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 𝒗3 = [

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑧𝑟𝑥
𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑦𝑟𝑧

𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑥
2 + 𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2 ∙ 𝑟𝑦

2

] (3.29) 

Hence, the derivation can be concluded by simplifying the above: 

 

 

𝐑′ = E [(𝛿𝐇𝑟�̂�
𝑏)(𝛿𝐇𝑟�̂�

𝑏)
𝑇
] 

= E[𝛿𝐇𝑟(𝑙,𝑚 ≠ 𝑙)2] [

𝑟𝑦
2 + 𝑟𝑧

2 𝑟𝑥𝑟𝑦 𝑟𝑧𝑟𝑥

𝑟𝑥𝑟𝑦 𝑟𝑧
2 + 𝑟𝑥

2 𝑟𝑦𝑟𝑧

𝑟𝑧𝑟𝑥 𝑟𝑦𝑟𝑧 𝑟𝑥
2 + 𝑟𝑦

2

] 

=
2(PSD)2

Δ𝑡2
[

𝑟𝑦
2 + 𝑟𝑧

2 𝑟𝑥𝑟𝑦 𝑟𝑧𝑟𝑥

𝑟𝑥𝑟𝑦 𝑟𝑧
2 + 𝑟𝑥

2 𝑟𝑦𝑟𝑧

𝑟𝑧𝑟𝑥 𝑟𝑦𝑟𝑧 𝑟𝑥
2 + 𝑟𝑦

2

] 

(3.30) 

 

For a gyroscope with amplitude spectral density (ASD) of 0.05 deg/√Hz 

sampled at 100Hz, √
2(PSD)2

Δ𝑡2
≈ 0.01 rad/s2. When 𝑟 = |𝐫𝑏| = 1m, this value is 

comparable to an accelerometer noise with standard deviation of 0.01 m/s2. 

Note that 𝐑′ increases as the rotational radius increases. Since the rotational 

radius during translational motion is conventionally considered infinite, 𝐑′ would 

become infinite under such assumption. This implies that the measurement update 

of the Kalman filter has practically no effect as 𝐑𝑘 is infinite. Instead, the rotational 

radius is set to zero, in the sense of resetting the value until the system is under a 

rotational acceleration again. In the implementation aspect, this is much more 

practical as 𝐑𝑘 equals to 𝑠𝐑𝑎𝑐𝑐 under translational motion, meaning the filter still 

performs an update, just with a larger measurement noise covariance matrix to reflect 

the dynamicity of the motion. Kinematically speaking, setting the rotational radius 

to zero does not imply a pure translation, but rather a pure rotation. However, despite 

the rotational radius being both zero, the proposed algorithm is still able to 

distinguish between the two motions with its static detector: in a purely translational 
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case, an external acceleration is present, whereas in a purely rotational case, it does 

not. Furthermore, the outperforming results shown in Chapter 4 also corroborate the 

validity of the assumption. 

 

3.4. Observability Analysis 
 

Since proposed algorithm assumes handheld device applications, where 

dynamics is limited by the maximum speed of human motion, the Piece-Wise 

Constant System (PWCS) assumption is employed to analyze the observability of 

the proposed system. The observability matrix for a PWCS [41] is as follows. 

 

 𝐎 = [

𝑂1
𝑂2
⋮

𝑂𝑟𝚽𝑟−1
𝑛−1𝚽𝑟−2

𝑛−1⋯𝚽1
𝑛−1

]

𝑇

 (3.31) 

 

where 

 

 𝐎𝑗
𝑇 = [𝐇𝑗

𝑇 | (𝐇𝑗𝚽𝑗)
𝑇

| ⋯ | (𝐇𝑗𝚽𝑗
𝑛−1)

𝑇
] (3.32) 

 

The proposed system is fully observable for rotations about two or more axes. 

However, for rotations around a single axis, it is only partially observable. In the 

latter case, the position of center of rotation along the rotation axis is unobservable. 

A detailed derivation and explanation of the observability matrix is presented as 

follows:  

First, a full expansions of 𝐇 and 𝚽 is conducted. 

 

 𝐇 = [𝐂1,2𝑐 𝟎3×3 𝐇𝑟] (3.33) 

 



 

 ２５ 

 

𝐂1,2c = 𝑓𝑖𝑟𝑠𝑡 𝑡𝑤𝑜 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝐂𝑛
𝑏[𝐠 ×] 

= 𝐂𝑛
𝑏 [
0 −𝑔
𝑔 0
0 0

] 

= [

𝐂𝑛
𝑏(1,2)𝑔 −𝐂𝑛

𝑏(1,1)𝑔

𝐂𝑛
𝑏(2,2)𝑔 −𝐂𝑛

𝑏(2,1)𝑔

𝐂𝑛
𝑏(3,2)𝑔 −𝐂𝑛

𝑏(3,1)𝑔

] 

(3.34) 

 

 

𝐇𝑟 = [�̃� ×]
2 + [�̃� ×] 

= [

−(𝝎𝑦
2 +𝝎𝑧

2) 𝝎𝑥𝝎𝑦 𝝎𝑥𝝎𝑥

𝝎𝑥𝝎𝑦 −(𝝎𝑧
2 +𝝎𝑥

2) 𝝎𝑦𝝎𝑧

𝝎𝑧𝝎𝑥 𝝎𝑦𝝎𝑧 −(𝝎𝑥
2 +𝝎𝑦

2)

]

+ [

0 −𝜶𝑧 𝜶𝑦
𝜶𝑧 0 −𝜶𝑥
−𝜶𝑦 𝜶𝑥 0

] 

= [𝒗4 𝒗5 𝒗6] 

(3.35) 

 

where 

 

 𝒗4 = [

𝝎𝑥𝝎𝑦𝜶𝑧 −𝝎𝑧𝝎𝑥𝜶𝑦

−(𝝎𝑧
2 +𝝎𝑥

2)𝜶𝑧 −𝝎𝑦𝝎𝑧𝜶𝑦

𝝎𝑦𝝎𝑧𝜶𝑧 + (𝝎𝑧
2 +𝝎𝑥

2)𝜶𝑦

] (3.36) 

 

 𝒗5 = [

(𝝎𝑦
2 +𝝎𝑧

2)𝜶𝑧 +𝝎𝑥𝝎𝑦𝜶𝑥
−𝝎𝑥𝝎𝑦𝜶𝑧 +𝝎𝑦𝝎𝑧𝜶𝑥

−𝝎𝑧𝝎𝑥𝜶𝑧 − (𝝎𝑥
2 +𝝎𝑦

2)𝜶𝑥

] (3.37) 

 

 𝒗6 = [

−(𝝎𝑦
2 +𝝎𝑧

2)𝜶𝑦 −𝝎𝑥𝝎𝑦𝜶𝑥

𝝎𝑥𝝎𝑦𝜶𝑦 − (𝝎𝑧
2 +𝝎𝑥

2)𝜶𝑥
𝝎𝑧𝝎𝑥𝜶𝑦 −𝝎𝑦𝝎𝑧𝜶𝑥

] (3.38) 

 

As for 𝚽, 
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𝚽 = 𝐈8×8 + 𝐅Δ𝑡 

= 𝐈8×8 + [
𝟎2×2

𝐂𝑛
𝑏(1,1) 𝐂𝑛

𝑏(1,2) 𝐂𝑛
𝑏(1,3)

𝐂𝑛
𝑏(2,1) 𝐂𝑛

𝑏(2,2) 𝐂𝑛
𝑏(2,3)

𝟎2×3

𝟎6×2 𝟎6×3 𝟎6×3

]Δ𝑡 

=

[
 
 
 
 
 
 
 
1 0 𝐂𝑛

𝑏(1,1)Δ𝑡 𝐂𝑛
𝑏(1,2)Δ𝑡 𝐂𝑛

𝑏(1,3)Δ𝑡 0 0 0

0 1 𝐂𝑛
𝑏(2,1)Δ𝑡 𝐂𝑛

𝑏(2,2)Δ𝑡 𝐂𝑛
𝑏(2,3)Δ𝑡 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

(3.39) 

 

Hence, 𝐇𝚽 from the observability matrix can be expressed as follows. 

 

 𝐇𝚽 = [𝐂1,2c 𝒗7 𝒗8 𝒗9 𝒗4 𝒗5 𝒗6] (3.40) 

 

where 

 

 𝒗7 = [

𝐂𝑛
𝑏(1,2)𝑔 ∙ 𝐂𝑛

𝑏(1,1)Δ𝑡 − 𝐂𝑛
𝑏(1,1)𝑔 ∙ 𝐂𝑛

𝑏(2,1)Δ𝑡

𝐂𝑛
𝑏(2,2)𝑔 ∙ 𝐂𝑛

𝑏(1,1)Δ𝑡 − 𝐂𝑛
𝑏(2,1)2𝑔 ∙ 𝐂𝑛

𝑏(2,1)Δ𝑡

𝐂𝑛
𝑏(3,2)𝑔 ∙ 𝐂𝑛

𝑏(1,1)Δ𝑡 − 𝐂𝑛
𝑏(3,1)𝑔 ∙ 𝐂𝑛

𝑏(2,1)Δ𝑡

] (3.41) 

 

 𝒗8 = [

𝐂𝑛
𝑏(1,2)𝑔 ∙ 𝐂𝑛

𝑏(1,2)Δ𝑡 − 𝐂𝑛
𝑏(1,1)𝑔 ∙ 𝐂𝑛

𝑏(2,2)Δ𝑡

𝐂𝑛
𝑏(2,2)𝑔 ∙ 𝐂𝑛

𝑏(1,2)Δ𝑡 − 𝐂𝑛
𝑏(2,1)𝑔 ∙ 𝐂𝑛

𝑏(2,2)Δ𝑡

𝐂𝑛
𝑏(3,2)𝑔 ∙ 𝐂𝑛

𝑏(1,2)Δ𝑡 − 𝐂𝑛
𝑏(3,1)𝑔 ∙ 𝐂𝑛

𝑏(2,2)Δ𝑡

] (3.42) 

 

 𝒗9 = [

𝐂𝑛
𝑏(1,2)𝑔 ∙ 𝐂𝑛

𝑏(1,3)Δ𝑡 − 𝐂𝑛
𝑏(1,1)𝑔 ∙ 𝐂𝑛

𝑏(2,3)Δ𝑡

𝐂𝑛
𝑏(2,2)𝑔 ∙ 𝐂𝑛

𝑏(1,3)Δ𝑡 − 𝐂𝑛
𝑏(2,1)𝑔 ∙ 𝐂𝑛

𝑏(2,3)Δ𝑡

𝐂𝑛
𝑏(3,2)𝑔 ∙ 𝐂𝑛

𝑏(1,3)Δ𝑡 − 𝐂𝑛
𝑏(3,1)𝑔 ∙ 𝐂𝑛

𝑏(2,3)Δ𝑡

] (3.43) 

 

To give an example of an unobservable case, a rotation purely about the z-axis 



 

 ２７ 

is assumed. In this case, 𝝎𝑥, 𝝎𝑦, 𝜶𝑥, and 𝜶𝑦 are all zeros. This makes 𝒗6, the 

last column of 𝐇𝚽 , a null vector, hence indicating that δrz  is unobservable. 

Despite the unobservable case, the stability of the system is believed not to be 

compromised as a circumstance where the rotation axis aligns perfectly with one of 

the axes is highly unrealistic. This thesis further explains the case with regards to the 

rate table experiment in Chapter 4.1. 
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Chapter 4. Experimental Results 
 

 

To verify the accuracy and robustness of the proposed algorithm, this study 

conduct an extensive evaluation on total of six scenarios, four collected by the author 

and two from the benchmark dataset BROAD [36]. In this chapter, the setups and 

results of each scenario are presented. 

For all experiments, the performance evaluation was conducted in terms of root 

mean square error (RMSE). For fair comparison, an algorithm, referred to as 

“conventional” hereafter, was devised, adopting measurement noise covariance 

adaptation scheme based on the work of Li and Wang [14], combined with the states 

and filter structure described in Chapter 2.1.2. Hence, for attitude estimation, the 

proposed algorithm was compared with the conventional algorithm and the MTx 

output, whereas for external acceleration estimation, it was only compared with the 

conventional algorithm as the MTx output was used to derive the reference value, as 

explained earlier in this chapter. Since the BROAD dataset does not provide attitude 

output by Myon Aktos-t, this study compares only with the conventional algorithm 

for the two BROAD trials. 

 

4.1. Rate Table Experiments 
 

The inertial measurement unit (IMU) used to evaluate the proposed attitude 

estimating algorithm in the author-collected experiments is the Xsens MTx, with its 

specifications [42] listed in Table 4.1. As a reference, the VICON infrared camera 

motion capture system was used to track three markers 10cm apart from one another. 

However, since VICON only provides attitude values, MTx output was used as 

acceleration reference. Hence, DCM from VICON attitude multiplied by the gravity 

vector was deducted from the MTx acceleration value to derive the reference values 
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of the external acceleration. The external acceleration reference is calculated as 

below: 

 

 𝐝𝑟𝑒𝑓,𝑘 = 𝐟𝑘 − 𝐂𝑛
𝑏
𝑉𝐼𝐶𝑂𝑁

[0 0 −𝑔]𝑇 (4.1) 

 

A static calibration of gyroscope bias was performed prior to each motion for 20 

seconds. The remaining gyro bias after 𝑇𝑎𝑙𝑖𝑔𝑛 seconds of calibration is as follows. 

 

 𝛿𝑏𝑔 =
𝜎𝑔𝑦𝑟

√𝑇𝑎𝑙𝑖𝑔𝑛
≈ 0.01deg/s (4.2) 

 

where 𝜎𝑔𝑦𝑟 is the noise standard deviation of the gyroscope. Above value was used 

in setting the initial gyroscope bias error covariance.  

 

 

Of the four author-collected experiments, the first two were rate table 

experiments with different rates. The setup of the rate table experiments is as shown 

in Fig. 4.1. The first scenario is termed as “Rate Table Slow” and the second scenario 

as “Rate Table Fast.” Both scenarios involved periodic bang-bang maneuvers, 

depicted in Fig.4.2, with trapezoidal velocity profiles. For “Rate Table Slow,” the 

Table 4.1. MTx Specifications 

 

 Gyroscope Accelerometer 

Measurement range ± 1200 deg/s ± 5g 

Sampling rate 100Hz 

Noise density 0.05 deg/s/√Hz 200 μg/√Hz 
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average and maximum norm deviations from static acceleration was 0.54m/s2and 

1.03 m/s2, respectively. For “Rate Table Fast,” the average and maximum norm 

deviations from static acceleration was 1.25 m/s2 and 1.95 m/s2, respectively.  

 

 

 

The results of “Rate Table Slow” scenario are summarized in Table 4.2. The 

proposed algorithm outperforms both the conventional algorithm and MTx in most 

cases of attitude estimation, the former by 20-30%, though the conventional 

algorithm also shows satisfactory results of sub-degree error. For external 

acceleration estimation, the proposed outperforms the conventional algorithm in all 

trials by far, showing 80% less error.  

         
 
Figure 4.2. Schematic view of the rate table experiments. The orange 

object is the IMU in use. 

 

 
 

Figure 4.1. Setup of the rate table experiments. 
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Fig. 4.5 shows a full graphical comparison of attitude estimation of a single trial. 

Estimated external acceleration of a single trial compared to the reference value, 

magnified to show results of 5 seconds, is shown in Fig. 4.3. It can be seen that the 

proposed algorithm presents superb performance of 80% less error on average. The 

estimated center of rotation is shown in Fig. 4.4. The sensor was indeed attached 

10cm from the center of the rate table, indicating that the algorithm has successfully 

estimated the center of rotation. Though accurate estimation of center of rotation 

itself is not the focus of this research, such accuracy undoubtedly improves the 

performance of the filter. 

 

 

 

 

 

 

 

 

 

 

Table 4.2. RMSE Results of Rate Table Slow 

 

Trial 

No. 

Roll [deg] Pitch [deg] Ext. Acc. [m/s2] 

Conv. MTx Prop. Conv. MTx Prop. Conv. Prop. 

1 0.54 1.48 0.37 0.59 2.83 0.68 0.98 0.19 

2 0.55 1.64 0.42 0.64 3.61 0.60 0.97 0.19 

3 0.57 1.86 0.39 0.64 3.91 0.53 0.97 0.19 

4 0.55 1.69 0.40 0.63 3.48 0.57 0.97 0.18 
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Figure 4.3. Estimated external acceleration from a single trial of “Rate Table 

Slow”. 

 

               
  

    

 
 
 
  

  
 
 

               
  

 

 

 
 
  

  
 
 

               

          

    
 

   
   

 
 
  

  
 
 

    

         

 
 
Figure 4.4. Estimated center of rotation from a single trial of “Rate Table 

Slow”. 
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Table 4.3 summarizes the results of “Rate Table Fast” scenario. Similar to the 

previous scenario, the proposed algorithm outperforms both the conventional 

algorithm and MTx in most cases of attitude estimation. For external acceleration 

estimation, the proposed outperforms the conventional algorithm in all trials by an 

even greater discrepancy than the previous scenario.  

 

 

Fig. 4.8 shows a full graphical comparison of attitude estimation of a single trial. 

Estimated external acceleration of a single trial compared to the reference value, 

magnified to show results of 5 seconds, is shown in Fig. 4.6. Similar to previous 

scenario, it can be seen that the proposed algorithm presents superb performance of 

88% less error on average. The estimated center of rotation is shown in Fig. 4.7. The 

algorithm has successfully estimated the center of rotation, which is 10cm, same as 

the Rate Table Slow experiment.  

 

 

 

 

 

 

 

Table 4.3. RMSE Results of Rate Table Fast 

 

Trial 

No. 

Roll [deg] Pitch [deg] Ext. Acc. [m/s2] 

Conv. MTx Prop. Conv. MTx Prop. Conv. Prop. 

1 1.08 1.57 0.91 3.53 3.89 3.01 2.15 0.27 

2 0.48 1.08 0.38 0.86 4.08 0.87 2.11 0.23 

3 1.13 2.35 0.77 2.02 3.76 1.72 2.24 0.21 

4 0.98 1.86 0.65 1.79 4.15 1.49 2.08 0.30 
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Figure 4.6. Estimated external acceleration from a single trial of “Rate Table 

Fast”. 

 

               

  

  

 
 
 
  

  
 
 

               

  

 

 

 
 
  

  
 
 

               

          

    

 

   

 
 
  

  
 
 

    

         

 
 
Figure 4.7. Estimated center of rotation from a single trial of “Rate Table 

Fast”. 
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4.2. Handheld Experiments 
 

The latter two of the author-collected experiments are the handheld experiments 

to demonstrate performance in actual usage. The setup of the handheld experiments 

is as shown in Fig. 4.9. The third scenario involved high-dynamic forearm rotations 

about the vertical axis, as in Fig. 4.10. We call this scenario “Handheld Yaw.” The 

average norm deviation from static acceleration was 7.46 m/s2 , and at times it 

reached up to 31.18 m/s2 . The fourth and last scenario involved high-dynamic 

swings in figure-of-eight curves, as in Fig. 4.11. The motion is similar to putting an 

elbow on a table and drawing and “X” with the fist, resulting in a trajectory 

comprised of two arcs with the center as the elbow. We call this scenario “Handheld 

Eight.” The average acceleration norm deviation from the gravity was 3.87 m/s2, 

and at times it reached up to 12.39 m/s2. All four sequences have fixed center of 

rotation and are comprised of primarily rotational motion to highlight the efficacy of 

our contribution. We present quantitative results for all sequences, but only provide 

full graphical representation for “Rate Table Fast” and “Handheld Eight” to practice 

economy. 

 

 

 
 

Figure 4.9. Setup of the handheld experiments. 
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The results of “Handheld Yaw” scenario are summarized in Table 4.4. For roll 

estimation, the proposed algorithm demonstrates the best results of near sub-degree 

error, while MTx shows comparable performance. The proposed algorithm also 

shows best performance on pitch estimation, while all three methods show 

performance of sub-degree error. In case of external acceleration estimation, the 

proposed greatly outperforms the conventional method with 68% less error. 

Considering that “Handheld Yaw” is the most dynamic of all four scenarios, it is 

proven that the proposed algorithm indeed delivers superb performance, 

withstanding such harsh and challenging conditions. Compared to the rate table 

         
 
Figure 4.10. Schematic view of the “Handheld Yaw” experiment. The 

orange object is the IMU in use. 

 

         
 
Figure 4.11. Schematic view of the “Handheld Eight” experiment. The 

orange object is the IMU in use. 
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experiments, the accuracy of estimating external acceleration is compromised due to 

harsh nature of the motion. Yet, the proposed algorithm still outperforms the 

conventional algorithm by a great deal, proving improved robustness towards harsh 

motion.  

 

 

A graphical comparison of attitude estimation of a single trial is presented in 

Fig. 4.14. Fig. 4.13 shows estimated center of rotation of this scenario. When 

compared to other scenarios, it can be noted that the estimation has a delay in 

converging to accurate value of center of rotation, which is the length of the forearm. 

Finally, Fig. 4.12 shows estimated external acceleration of a single trial compared to 

the reference value, magnified for 5 seconds. 

 

 

 

 

 

 

 

 

 

Table 4.4. RMSE Results of Handheld Yaw 

 

Trial 

No. 

Roll [deg] Pitch [deg] Ext. Acc. [m/s2] 

Conv. MTx Prop. Conv. MTx Prop. Conv. Prop. 

1 1.73 0.82 0.75 0.47 0.56 0.40 11.90 4.23 

2 1.94 1.17 1.00 0.48 0.31 0.48 12.58 4.27 

3 2.17 0.67 0.69 0.49 0.71 0.40 18.15 5.61 

4 1.45 0.54 0.47 0.49 0.57 0.34 12.99 3.81 
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Figure 4.12. Estimated external acceleration from a single trial of 

“Handheld Yaw”. 

 

            
   

  

 

 
 
 
  

  
 
 

            
   
 

  
  

 
 
  

  
 
 

            

          

  

 

 

 
 
  

  
 
 

    

         

 
 
Figure 4.13. Estimated center of rotation from a single trial of “Handheld 

Yaw”. 
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The results of “Handheld Eight” scenario are summarized in Table 4.5. The 

proposed method outperforms both conventional and MTx results in most cases, with 

sub-degree error for both roll and pitch of all four trials. As for estimating external 

acceleration, proposed algorithm shows better performance compared to the 

conventional algorithm with 62% less error, consistent with the results of other 

scenarios. Together with the results from “Handheld Yaw”, it can be confidently 

claimed that the proposed method successfully estimates attitude and external 

acceleration in highly dynamic conditions, especially with motions regarding center 

of rotation. A graphical comparison of attitude estimation of a single trial is presented 

in Fig. 4.17. Fig. 4.16 shows estimated center of rotation of this scenario, where the 

same delay also shown in Handheld Yaw can be observed. Such delay can explain a 

slightly higher error within the timeframe of 0-40 seconds than the rest of the time, 

shown in Fig. 4.17. Finally, Fig. 4.15 shows estimated external acceleration of a 

single trial compared to the reference value, magnified for 5 seconds. 

 

 

 

 

 

 

 

Table 4.5. RMSE Results of Handheld Eight 

 

Trial 

No. 

Roll [deg] Pitch [deg] Ext. Acc. [m/s2] 

Conv. MTx Prop. Conv. MTx Prop. Conv. Prop. 

1 1.26 4.58 0.76 0.59 1.68 0.69 5.75 2.52 

2 1.88 2.14 0.99 0.54 2.19 0.50 7.32 2.71 

3 1.57 2.36 0.78 0.73 1.91 0.62 7.02 2.74 

4 1.96 3.51 0.81 0.86 2.84 0.75 8.01 2.62 
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Figure 4.15. Estimated external acceleration from a single trial of “Handheld 

Eight”. 

 

               
   

  

 
 
 
  

  
 
 

               
   

 

  

 
 
  

  
 
 

               

          

   
  
 
 

 
 
  

  
 
 

    

         

 
 
Figure 4.16. Estimated center of rotation from a single trial of “Handheld 

Eight”. 
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4.3. BROAD Dataset 
 

BROAD dataset [36] is comprised of 39 trials that vary in types of motions, the 

speeds of motions, and existence of accelerometer and/or magnetometer 

disturbances. All trials were recorded with 9-axis IMU Myon Aktos-t from Myon 

AG, Switzerland, with its specifications [36] listed in Table 4.6. For the ground truth 

data, an Optitrack OMC system of eight cameras was used, providing angular 

accuracy of 0.2 degrees [36]. 

 

 

Of the 39 trials, this study chose two, the 20th and the 39th, to evaluate the 

proposed algorithm on real-world scenarios of complex motions and with varying 

center of rotation. The former is an undisturbed trial with combination of rotational 

and translational motions lasting 360 seconds, named “BROAD Combined 360s” 

hereafter. The sequence goes under average acceleration norm of 4.00 m/s2 and 

maximum of 11.70 m/s2. The latter, named “BROAD Disturbed Mixed” hereafter, 

is a trial of 280 seconds with disturbed and undisturbed phases coexisting. The trial 

is comprised of several segments of combined motion of rotation and translation with 

short breaks in between. The sequence goes under average acceleration norm of 3.25 

m/s2  and maximum of 40.22  m/s2 . Unlike the author-collected datasets, the 

Table 4.6. Myon Aktos-t Specifications 

 

 Gyroscope Accelerometer 

Measurement range ± 2000 deg/s ± 16g 

Sampling rate 286Hz 

Noise standard 

deviation 
0.10 deg/s 0.056 m/s2 
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chosen BROAD trials present more complex motions closer to real-world situations 

with varying center of rotation, shown by their 3D motion paths in Fig. 4.18 and 4.19, 

thus appropriate for evaluating robustness of the proposed algorithm. 

 

 

 

 
 

Figure 4.18. 3D motion path of the “BROAD Combined 360s” 

experiment. 

 

 
 

Figure 4.19. 3D motion path of the “BROAD Disturbed Mixed” 

experiment. 
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The results of “BROAD Combined 360s” scenario are summarized in the first 

row of Table 4.7. The proposed method outperforms the conventional algorithm by 

38%, with sub-degree error for both roll and pitch. A graphical comparison of attitude 

estimation of a single trial is presented in Fig. 4.22. The accuracy of estimating 

external acceleration is also improved compared to the conventional method, 

showing 56% less error, consistent with the results of author-collected scenarios. Fig. 

4.21 shows estimated center of rotation of this scenario. When compared to the 

previous author-collected dataset, it can be seen that the center of rotation changes 

irregularly, hence proving that estimating center of rotation online serves a purpose 

in situations with arbitrary motions. Fig. 4.20 shows estimated external acceleration 

compared to the reference value, magnified for 5 seconds.  

 

 

 

 

 

 

 

 

 

 

Table 4.7. RMSE Results of BROAD Dataset 

 

Dataset 
Roll [deg] Pitch [deg] Ext. Acc. [m/s2] 
Conv. Prop. Conv. Prop. Conv. Prop. 

Combined 

360s 
0.91 0.58 0.59 0.36 0.82 0.36 

Disturbed 

Mixed 
1.24 0.88 0.98 0.65 2.49 1.06 
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Figure 4.20. Estimated external acceleration from a single trial of “BROAD 

Combined 360s”. 

 

               

  
    

 
   

 
 
  

  
 
 

               
  
  
  
 
 

 
 
  

  
 
 

               

          

  
 
 
 

 
 
  

  
 
 

    

         

 
 
Figure 4.21. Estimated center of rotation from a single trial of “BROAD 

Combined 360s”. 
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The second row of Table 4.7 presents the results of “BROAD Disturbed Mixed” 

scenario. The results show that the proposed method outperforms the conventional 

method by 32% in attitude estimation. A full graphical representation of attitude 

estimation is presented in Fig. 4.25. The proposed algorithm also outperforms the 

conventional in estimating external acceleration with 57% less error. Fig. 4.23 shows 

estimated external acceleration of a single trial compared to the reference value, 

magnified for 5 seconds. From the graph, we can see that there has been a false 

detection of external acceleration from 74 to 77 second of the sequence. Judging 

from the provided sensor data, this deviation can be explained by a sudden change 

in the gyroscope measurements within that window, which results in an erroneous 

deduction of the gravity vector. Such false detection leads to deterioration of 

accuracy in attitude estimation, as explained in Chapter 3.2. The zoomed graph of 

Fig. 4.25 corroborates the effect of false detection, showing increased attitude 

estimation error for both roll and pitch. However, it is also shown that false detection 

does not have a lasting effect on degradation of performance as the error normalizes 

when the filter starts to correctly detect external acceleration. Lastly, the estimated 

center of rotation is shown in Fig. 4.24. It is proven once again that the proposed 

method estimates center of rotation well through the areas with near-zero values, 

which coincide with the intermittent short breaks between the dynamic phases that 

“BROAD Disturbed Mixed” has. 

The evaluation on both BROAD sequences effectively demonstrate the 

robustness of the proposed algorithm, proving that the applicability of the proposed 

method is not limited to situations with rotation-only motions or a fixed center of 

rotation. 
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Figure 4.23. Estimated external acceleration from a single trial of “BROAD 

Disturbed Mixed”. 

 

          

  
  
 
 

 
 
  

  
 
 

          
   

 

  

 
 
  

  
 
 

          

          

   

 

  

 
 
  

  
 
 

    

         

 
 
Figure 4.24. Estimated center of rotation from a single trial of “BROAD 

Disturbed Mixed”. 
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Chapter 5. Conclusion 
 

 

In this thesis, an augmented Kalman filter-based ARS is presented. The 

proposed system accurately estimates attitude with center of rotation augmented to 

its error-state vector. 

As an accurate estimation of the external acceleration is a key to a successful 

ARS, knowing the types of undergoing motion is crucial. The augmentation of center 

of rotation precisely does that: estimated center of rotation allows us to describe the 

motion with respect to rotational motions as well as translational ones, unlike 

previous works that do not distinguish whether the motion is translational, rotational, 

or both. 

With a more specific understanding of the motion, the system employs two 

motion detectors to adaptively adopt a measurement model and noise covariance 

matrix more fitting to the undergoing motion. The static detector, the first of the two 

detectors, is similar to those of the conventional threshold-based algorithms: 

determining whether the system is static or not, without considering the nature of the 

dynamicity. The superiority of the proposed algorithm lies with the second detector, 

the rotational motion detector. Effectively taking advantage of the estimated center 

of rotation, the detector not only distinguishes whether the dynamicity of the system 

inherits a rotational motion but also provides the filter with a more accurate 

measurement model that incorporates rotational acceleration. This includes a newly 

defined component of the measurement noise covariance matrix, 𝐑′, with its full 

derivation thoroughly presented in Chapter 3.3. 

The proposed algorithm is validated through the author-collected experiments 

and existing benchmark dataset [36] in Chapter 4. The former is comprised of four 

experiments: “Rate Table Slow”, “Rate Table Fast”, “Handheld Yaw”, and 

“Handheld Eight”. These experiments are intended to highlight the contribution as 
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they are almost purely rotational with fixed center of rotation. With the estimated 

center of rotation and the rotational motion detector, the proposed algorithm 

outperforms the conventional algorithm and the MTx output in terms of accuracy in 

estimating the attitude and the external acceleration in almost all sequences. From 

the benchmark dataset, two sequences were chosen, “BROAD Combined 360s” and 

“BROAD Disturbed Mixed”, to prove the robustness of the proposed algorithm 

against challenging situations. The sequences consist complex motions, in 

combination of translational and rotational motions with varying center of rotation. 

Even in such adverse circumstances, the proposed algorithm outperformed the 

conventional method with sub-degree errors, proving that the superb performance of 

the proposed algorithm is not limited to purely rotational motion with fixed center 

of rotation. 

This work may be extended to an ARS for robot applications or generally for 

any dynamic system, preferably with unknown model parameters and/or under 

rotational motions. For future work, the relationship between the magnitude of 

acceleration and performance can be further investigated through additional 

experiments. 
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국문초록 
  

 

본 논문에서는 회전 반경을 상태변수에 추가한 관성 측정 장치 기반 

적응형 자세 추정 기법(ARS: Attitude Reference System)을 제안한다. 관성 

측정 장치를 이용해 정확한 자세 추정을 하기 위해서는 중력 이외의 

비력을 효과적으로 보상해주는 것이 중요하다. 제안된 기법은 회전 동작 

검출기를 통해 현재 시스템의 동적 상황에 따라 적응적으로 중력 이외의 

비력을 보상하게 된다. 칼만필터의 상태 벡터에 회전 반경을 

증강함으로써 기존의 자세 추정 기법들과는 달리 시스템의 동적 특성을 

회전 상황까지도 구분해 낼 수 있다. 증강된 상태 벡터로 인해 

일반적이지 않은 칼만필터 특성들은 면밀히 설명되었으며, 특히 새로이 

고안된 측정치 잡음 공분산 행렬 유도와 가관측성 분석 또한 진행되었다. 

실험을 통한 성능 검증은 총 6개의 시나리오에 대해 다방면으로 

이루어졌으며, 회전 동작만 있는 시나리오 뿐만 아니라 병진운동과 같이 

복합적인 동작을 포함하는 시나리오에 대해서도 검증하였다. 검증 결과, 

제안된 자세 추정 기법은 기존의 기법들보다 우수한 자세 추정 성능을 

보이며 대부분의 실험에서 1도 미만의 오차를 보여 다양한 상황에서 

강건성과 정확성을 가지는 것을 확인하였다. 

 

 

주요어 : 자세 추정 기법, 관성 측정 장치, 칼만필터, 적응형 알고리즘, 
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