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Abstract

This dissertation describes the development of a Mesh-transparent convergence

accelerator based on a meshless Method. The mesh-transparent convergnece accel-

erator was named as multicloud method. The multicloud method relies on meshless

discretization on coarse levels not using grid elements. The solutions computed by

meshless discretization on the coarse level lead to the correction of fine-level so-

lutions, resulting in convergence acceleration. The mutlcloud method significantly

advatageous in forming coarse level domain and robust discretization on the coarse

levels. Hence, the method can be implemented to any type of fine level discretization

such as cell finite volume, nodal finite volume, and meshless methods.

A new improved cell coarsening strategy was developed in this study. The new

strategy provide superior coarsening rates than the structured multigrid coarsening.

However, the acceleration effect according to its coarsening rates can be obtained

only if robust meshless discretization is guaranteed. Due to this, meshless discretiza-

tion by least squares method with the geometric conservation law is used for robust

discretization. The application of GC-LSM with the new coarsening strategy showed

a dramatic convergence acceleration effect. In contrast, meshless discretization using

the least squares method(LSM) without the conservation property fails to converge.

Implicit time integration method was also implemented to the multicloud method

using lower-upper symmetric Gauss-Seidel (LU-SGS), which has not been imple-

mented to the multicloud before.

Finally, pressure-based meshless damping functions were developed to accelerate

the convergence of problems involving strong shocks. The results showed not only the

efficacy of the multicloud method for hypersonic problems but also superior speed-

up effect compared to than the structured multigrid method with the new coarsening

method.
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The results obtained from the developed algorithms demonstrate that the im-

proved multicloud method provides a significant enhancement in efficiency for var-

ious types of flows, including inviscid, viscous, and hypersonic flows, regardless of

geometries.

Keywords: meshless, geometric multigrid, convergence acceleration, implicit time

integration, unstructured grid

Student Number: 2016-30190
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Chapter 1

Introduction

1.1 Multigrid methods

A multigrid method is a traditional convergence acceleration method for an iterative

method. The multigrid method was based on the idea of solving a given problem

on multiple grids with different resolutions. By moving the error from one grid to

another resolution, it can be effectively dampened.

The first multigrid technique was proposed by Fedorenko[1]. And the multigrid

techniques were initially applied to elliptic equations[1, 2]. Since then, the multigrid

method has evolved and improved such that the methods have further applied to hy-

perbolic equations such as Euler[3, 4] and Navier-Stokes equations[5]. Furthermore,

the structured multigrid method was applied to reacting flows[6, 7]

Under structured grids, forming grids of different resolutions is straightforward.

However, it is not straightforward for unstructured grids. Then, Algebraic multi-

grid (AMG) method have been used[8, 9] since application geometric multigrid for

unstructured grids is too difficult[10]. AMG does not required coarse meshes. The

1



coarsening procedure for AMG is not making coarse grid but the selection of coarse

indices.

However, various strategies have been proposed to apply geometric multigrid

(GMG) to unstructured grids since GMG provides extremely fast solutions for fluid

problems. The most primitive approach is forming grids of difference resolutions

manually which is called non-nested multigrid as shown in Figure 1.1. However, in

CFD, manual grid generation of different resolutions is not feasible due to the signif-

icant labor and time involved in the process.

Figure 1.1: non-nested multigrid

To meet the demand for automatic coarse grid generation, an adaptation algorithm

proposed by Perez[11] is used to generate unstructured grids of different resolutions,

as shown in Figure 1.2. The strategy is applied to triangle and tetrahedral grids by

Mavriplis[12, 13] for analysis of Euler equations. In numerical analysis, the accuracy

of results is heavily reliant on fine-level resolution. Therefore, the quality of the grid

should be determined based on the specific demands of the user. If fine level grids

are generated from coarse grids, it can be challenging to control the resolution of the

2



fine level grids according to the users’ demands. In other words, coarse grids are not

suitable for the starting grid.

To overcome these challenges, several methodologies that enable automatic gen-

eration of coarse grids from the fine level have been proposed. Guillard[14] pro-

Figure 1.2: subdivision of triangle cell

posed coarsening strategy using Delaunay-Voronoi algorithm. The selected nodes

from fine grids are used as coarse level nodes. Subsequently, coarse level volumes are

regenerated from the selected nodes using the Delaunay-Voronoi method as shown in

Figure 1.3. This re-meshing algorithm was expanded to three-dimensional space by

Adams[15]. Chan and Smith[16] suggested the retriangulation approach. In the retri-

angulation approach, The selected vertices of fine level grid are defined as the coarse

level then coarse level triangulation is generated by the subset of vertices of fine level

grids. In edge collapse approach by Grumpton and Giles[17], a coarse volume is

generated by collapsing edge as shown in Figure 1.4. Finally, grid agglomeration al-

gorithm is the most widely used technique owing to its versatility and automation for

three-dimensional grids. The grid agglomeration merge fine level volume to coarse
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level volume as shown in Figure 1.5. Various automatic merging algorithms have

been studied by many researchers[18, 19, 20, 21, 22, 23, 24, 25].

Figure 1.3: Retriangulation

Figure 1.4: Edge collapsing
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(a) (b)

Figure 1.5: The original grid(a) and its agglomerated grid(b)

1.2 Multicloud algorithm

Although many advanced coarsening strategies for unstructured geometric multigrid

methods have been proposed, they may not be free from problems induced by mesh

complexity[22] such as solution discrepancy or instability issues. Even though ag-

glomeration can automatically yield a coarse-level grid, additional treatment is nec-

essary to effectively handle the multi-faced features of the coarse volumes. Further-

more, grid agglomeration methods are significantly challenged to form high-quality

coarse grids and The range of available numerical algorithms for fine level han-

dling of arbitrary polyhedra has been limited. To overcome the mesh-induced prob-

lems, a new straightforward geometric multigrid method was proposed by Katz and

Jameson[26, 27] which is called multicloud method. The multicloud method takes ad-

vantage of meshless discretization on coarse level domains. Therefore, the multicloud

method only requires a selection process to determine the validity of points, making
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the coarsening procedure simpler and more efficient. Unlike traditional mesh-based

methods, the meshless approach allows for the coarsening process to skip additional

mesh treatment steps such as remeshing or edge fusing. As a result, the coarse-level

domains consist only of points, reducing the computational cost and complexity of

the method. Thus, the multicloud method is available for any type of method such

as cell finite volume(CFV), nodal finite volume(NFV), and meshless schemes. The

detailed description of multicloud coarsening strategy will be discussed at the further

section.

Figure 1.6: The difference between multicloud and grid agglomeration

1.3 Meshless discretization

Meshless methods(also known as gridless, meshfree, gridfree and, etc) are discretiza-

tion strategy for partial derivatives. Unlike traditional CFD methods that rely on a grid

to discretize the computational domain, meshless methods do not require a predefined
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(a) (b)

Figure 1.7: The difference between Cell finite volume method(a) and meshless

method(b)

grid. Instead, they use a set of discrete points that are distributed in the computational

domain to approximate the fluid flow field. For cell finite volume(CFV) methods

fluxes are computed on the cell interface but the midpoint on the edge between two

points is used flux computation for meshless methods as shown in Figure 1.7.

In the early 1980s, Smooth particle hydrodynamics(SPH), a Lagrangian method,

was introduced by Monaghan[28]. In SPH, the fluid is represented as discrete points

interacting each other by the certain physical laws. SPH approximation can be ob-

tained by kernel function defined by nearby particles. SPH usually used in astro-

physics, oceanography, volcanology which have complex boundary dynamics.

Meshless methods based on radial basis functions(RBF) are also widely used

meshless method. RBF is initially used for interpolation by scattered data[29]. Then,

RBF was further applied in solving PDEs by Kansa[30].
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Least squares method(LSM) is popular in solving traditional CFD problems.

LSM approach was first suggested to formulate interpolation function by Shepard[31].

Then, LSM method usually used to estimate gradient for reconstruction[32]. Excel-

lent works in solving PDE using meshless methods have been suggested. Ghosh and

Deshpande[33] used Least Squares Kinetic Upwind Method(LSKUM) to numeri-

cally analyze compressible inviscid flows. Sridar and Balakrishnan[34] presented a

new Least Squares based Upwind Finite Difference(LSBUFD) method in solving

Euler equations. Furthermore, Geometric Conservation Least Squares Method(GC-

LSM) was presented by Huh[35] which can compute compressible flows robustly

and accurately.

1.4 Motivation

Although the multicloud method appears to have significant potential for three-dimensional

applications, a few following studied have been presented on simple grids. Zamolo[36]

applied the multicloud method to the Poisson equation with new correction and re-

striction algorithms. The method was developed based on RBF discretization for all

levels. Radhakrishnan[37] also presented the multicloud application to the Poisson

equation. Barik[38] applied the multicloud method to incompressible Navier-Stokes

equations on two-dimensional Cartesian grid. Ha and Choi[39] developed meshless

multigrid for finie element methods. However, practical usage of mutlicloud method

for three-dimensional CFD problems has not been presented. Considering the po-

tential of the multicloud method, it is necessary to develop the three-dimensional

multicloud method for CFD.

Most of all, the primary challenge of the three-dimensional multicloud method
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is unsatisfactory acceleration for cell-centered methods[27], which is most widely

used CFD method. In order to enhance the acceleration effect, a new cell coarsening

method will be described, which makes coarse grid coarser than the ideal coarsening

rates since the grid size is bigger the errors are damped quickly. Next, the process

of finding an appropriate meshless discretization that works robustly on extremely

coarsened domains will be presented since conventional meshless methods are likely

to incurs problems on the extremely coarsened domains.

Then, implicit multicloud method is also to be presented. The original multicloud

method was tested based on explicit Runge-Kutta 4th order time integration method.

Three-dimensional problems are usually involved with a large number of grids. Con-

sequently, explicit time integration method might not be appropriate for practical

problems since it spent a lot of time in obtaining converged solutions. Therefore,

implicit algorithm for multigrid methods is interest of many researchers[23, 40].

Subsequently, damping functions for multicloud operators will be described in

order to apply the multicloud method to problems involving hypersonic shock.

Finally, the proposals, three-dimensional multicloud method is developed in this

study. The developed method is tested for nodal-centered and cell-centered method.

Comparisons for explicit and implicit time schemes are presented at first. Subse-

quently, the comparison of acceleration effects based on different coarsening strate-

gies and meshless methods will be presented to identify the most effective approach.

Furthermore, numerical experiments are tested from simple geometries such as ONERA-

M6 wing to significantly complex geometries such as DLR-F6 wing body nacelle

pylon model[41] in order to highlight the efficacy of the proposed method.
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Chapter 2

Multicloud

2.1 Coarsening Strategy

A multicloud coarsening strategy is performed in a meshless fashion. A fundamental

idea is the usage of local point clouds. The local point cloud is the set of nearest point

as shown in Figure 2.1. The multicloud coarsening strategy is described in Algorithm

1.

The local point cloud shown in Figure 2.1 is used for not only the next level

coarsening procedure but also meshless discretization on the coarse level.

Therefore, the multicloud coarsening procedure can be adopted if initial local

point clouds are established. The methodology of defining initial local point clouds

is as follows

2.1.1 Node coarsening strategy

For node-centered methods, governing equations are solved at each node(a vertex

of a cell). The edge between nodes act as interfaces which fluxes across. Such that
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Algorithm 1 Original multicloud coarsening

1: For each point vk, Set Γ(vk) = .True., where Γ denotes logical function which

defines validity on the next coarse level

2: Define the set L1(vi) = {vk|vk is nearest point around vi} which is called local

point cloud as shown in Figure 2.2a

3: while i ≤ Nc do, where Nc is the number of computational points

4: if Γ(vi) is .True. then

5: Γ(L1(vi)) =.False.

6: end if

7: end while

8: Figure 2.2b presents the resulting coarse level point cloud. Points whose

Γ(vi) =.False. are filled with nothing

9: Form coarse level local clouds Lk+1
1 (vi) for each Γ(vi) =.True.. Figure 2.2c

represents the local point cloud on the coarse level.

10: Perform the coarsening through coarse level local point clouds until the coarsest

level is reached
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Figure 2.1: The definition of a local point cloud

(a) The local point cloud (b) validity determination (c) Coarse level clouds

Figure 2.2: The multicloud coarsening procedure

nearest neighbors can be composed by nodes forming edges as shown in Figure 2.3.

2.1.2 Cell coarsening strategy

As long as the local point cloud L1(vi) is defined, the coarsening strategy can be

applied to any type of method, such as meshless, NFV, and CFV. In the original

study, the coarsening procedure was described for node-centered method whereas

cell coarsening strategy was unclear. Thus, a cell coarsening procedure should be
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Figure 2.3: The definition of a initial local point cloud for node-centered methods

established for cell-centered method. For this reaosn L1(vi) may be defined as the

adjacent cells, as shown in Figure 2.5a for CFV, because the nodes that form the

edge in NFV correspond to interfacing cells in CFV. The use of common face cells is

named as the common face approach (CFA). The multicloud coarsening procedure,

which is performed based on L1 obtained from CFA, yields the results shown in Fig-

ure 2.5c. The resulting point distribution, however, produces an excessive number of

points on the coarse level, which significantly disagreed with the ideal coarsening

rates. The insufficient amount of neighboring cell information included in the defini-

tion of the local point clouds might be the reason for the excessive point distribution

on the coarse level. For node coarsening, theoretically, a node for triangular grids

can be connected to at least four nodes to an infinite number of nodes allowing for

adequate collection of nearest point information. On the contrary, the number of in-

terfacing cells is strictly limited by the type of polyhedra, as shown in Figure 2.5a.

The limitation obviously degrades coarsening rates for cell coarsening. Therefore,

CFA might not be suitable for the concept of local point clouds in coarsening, due
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to the lack of information. Unsatisfactory coarsening rates hinder acceleration and

increase computational time for multicloud operators.

Consequently, despite its convenience, multicloud for CFV may not be suitable

for practical CFD problems. To address the issue of insufficient size of local point

clouds, the nodes of each cell is utilized. When defining the local point cloud for an

arbitrary cell ci in coarsening, nodes of a cell is used to find nearest cells. Specifically,

as shown in Figure 2.5b, every cell that shares nodes with ci is collected to form the

local point cloud of ci. This approach is referred to as the ’common node approach’

(CNA), where the local point cloud for an arbitrary cell L1(ci) is defined by collect-

ing all cells that share the nodes of cell ci. By defining this new local point cloud, the

same coarsening strategy can be used without any further modifications. The result-

ing point distribution is shown in Figure 2.5d. Compared to the CFA coarsening, it

appears that far fewer points remain with the CNA coarsening strategy. Furthermore,

unlike the CFA method, the CNA method ensures even point distribution by taking

into account the neighboring cells precisely. Furthermore, The average distance for

nearest points, which corresponds to grid size, is much farther for CNA than that of

CFA as seen in Figure 2.5f and 2.5e. In general, The larger grid size grants the more

error damping if coarse level discretization is carried out robustly. CNA coarsening

can be compared to ideal agglomeration straightforwardly as shown in Figure 2.4.

For ideal agglomeration coarsening, four cells merged to a cell as shown in Figure

2.4a, whereas a cell center can remove neighboring twelve cells in CNA coarsening

as shown in Figure 2.4b. It denotes that CNA coarsening yields overly coarsened

domain than that of ideal coarsening, which provides superior acceleration effect if

coarse level discretization is performed robustly.

To compare the coarsening procedures for an practical case, the results obtained
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(a) Ideal coarsening rates (b) CNA coarsening rates

Figure 2.4: Comparison between ideal and CNA coarsening

from CNA, CFA, and agglomeration methods were presented. Several agglomera-

tion methods have been proposed in the literature [25, 42, 19], but for our study, the

agglomeration method proposed by Jones and Vassilevski[19] was evaluated specifi-

cally. Figure 2.6a shows the finest triangular grid, while Figures 2.6b, 2.6d depict an

agglomerated grid based on the algorithm proposed by Jones and Vassilevski[19], and

coarsened point distributions obtained using CNA and CFA, respectively. As can be

seen from Figure 2.6, CFA coarsening results in the least coarsened domain, whereas

agglomeration and CNA provide approximately ideal coarsening rates. In addition,

CNA may result in not only the most well-distributed but also the most coarsened do-

main for the next level because Jones and Vassilevski’s agglomeration procedure may

be dependent on the indexing order due to its element selection algorithm based on

integer weight[19]. Furthermore, the results obtained from various meshless methods

and coarsening strategy will be presented in this study.
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(a) Fine-level local point cloud (CFA) (b) Fine-level local point cloud (CNA)

(c) Coarse-level validity states (CFA) (d) Coarse-level validity states (CNA)

(e) Coarse-level local point cloud (CFA) (f) Coarse-level local point cloud (CNA)

Figure 2.5: Cell coarsening procedures for each method
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(a) Finest grid (924 cells) (b) Level 2 by Jones[19] (218 cells)

(c) Level 2 by CFA (446 points) (d) Level 2 by CNA (162 points)

Figure 2.6: Coarsening results comparison
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2.1.3 Directional coarsening

High-aspect-ratio grids are necessarily involved when solving high Reynolds number

flows. However, Su[43] reported that meshless methods can encounter misalignment

issues on highly skewed grids resulting from high-aspect-ratio geometries. The is-

sues cause serious stability problem to the multicloud method for high-aspect-ratio

grids. Generally, aspect-ratio that is higher than 200 exhibit instability by empiri-

cal data. For the previous mutligrid method, the problems cause by high-aspect-ratio

grids requires additional treatments such as implicit line relaxation and directional

coarsening[22].

In this study, Directional coarsening strategy was developed for the multicloud

method in order to address the issues resulting from high-aspect-ratio grids. In this

strategy, a layer structure for viscous region must be predefined such as prism. The

layer structure is prerequisite in solving high Reynolds flows. In Directional coars-

ening, viscous layer coarsening should be prioritized. Then, viscous layer coarsening

is carried out only along the normal to surface direction in order to alleviate high-

aspect-ratio. In order to coarsen grid in a unidirectional way, viscous grids should

be labelled by its marching direction. Layer cells are assigned their layer number

along their marching direction. The remaining cells are assigned their layer number

as negative 1. Figure 2.8 illustrates the assignment procedure. Then, a rule is estab-

lished that cells with positive layer numbers cannot be blanked by other cells. With

the established rule, the directional coarsening procedure follows the Algorithm 2.

Algorithm 2 with the layer number rule results in Figure 2.9. By directional coars-

ening, only marching direction coarsening is carried out, and then the layer structure

is preserved, which alleviates grid stretching.
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Figure 2.7: Prism grids for high Reynolds number flow

Figure 2.8: Illustration of id labelling

Algorithm 2 Directional coarsening
1: Assign layer number for all cells.

2: blank cells whose layer number does not equal to 2kn− 1 (n = 1, 2, 3, ...).

3: Perform the general coarsening procedure for cells whose layer number is maxi-

mum or negative.
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Figure 2.9: Resulting coarse level point by directional coarsening
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(a) Range of searching (b) Resulting coarse level local point cloud

Figure 2.10: Illustration of procedure of forming coarse level local point cloud

2.1.4 Composing coarse level local point clouds

After coarsening, local point clouds for the next coarse level must be constructed.

Searching algorithm is can be simply established by adopting a meshless fashion.

Similar to coarsening procedure, fine level local point clouds are used in finding

coarse level local point clouds. For an arbitrary coarse level point, searching process

is performed by a radial fashion. the points on its local point cloud are the first can-

didates as indicated as red edge in Figure 2.10a. Then, the points on their local point

cloud as indicated as blue edge in Figure 2.10a are the second candidates. Finally, the

last scanning is performed from the second candidates as indicated as in green edge

in Figure 2.10a. From the candidates, All the valid point are collected as a coarse

level local point cloud as shown in Figure 2.10b. Constructed local point clouds are

taken advantage of every procedure in multicloud such as meshless discretization,

coarsening and forming coarse level local point clouds.
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2.2 Multicloud Operator

The Full Approximation Stroage (FAS) algorithm of Brandt[2] is applied to the mul-

ticloud method. The FAS algorithm is described in Algorithm 3. An advantage of the

Multicloud method in applying the FAS algorithm is that solution interpolation is not

required for coarse-level points. Considering retriagulation as shown in Figure 2.11a,

the state variables of coarse cell must be interpolated by its neighboring cells. On the

contrary, in the multicloud method, the state variables of coarse points can be directly

transferred from fine level coincident cell-averaged or nodal values without the need

for solution interpolation as shown in Figure 2.11b.

Algorithm 3 FAS algorithm
1: Fine level state variables at a node are directly transferred to the coarse level

point. The fine level state vector qk0 at node 0 is transferred to the coincident

coarse level point qk+1
0 .

2: Compute forcing function Pm using fine-level residuals of nearest points as in

Eq.(2.1).

3: Perform iteration on the coarse level with restricted residualsRk+1 + Pm

4: From the solutions computed on the coarse level, correct the fine-level solutions

by the nearest coarse-level valid point denoted as black nodes in Figure 2.12b.

For the multicloud method, restriction and prolongation are performed in a mesh-

less fashion such that neither volume nor surface information is used. Residual forc-

ing function for multicloud is given as

Pm = TRRk−1(qk−1)−Rk(q
(0)
k ) (2.1)
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(a) Illustration of solution interpolation (b) Illustration of solution transfer

Figure 2.11: Illustration of procedure of forming coarse level local point cloud

where,

T T
R =



β0

β1
...

βN


,R =



R0,1 R0,1 . . . R0,m

R1,1 R1,2 . . . R1,m

...
...

. . .
...

RN,1 RN,2 . . . RN,m


(2.2)

In Eq.(2.2), β is given as a distance-based function since multicloud doesn’t re-

quire grid information. Those multicloud operators are demonstrated to exhibit a high

degree of efficacy[26]. The functions are used only with minor modifications to con-

sider new coarsening and three-dimensional space in this study. Then, β is given as

βi =


(

1−β0∑
k∈L1(0)

ck

)
ci if i ̸= 0

(dsk/dsk+1)
d if i = 0

(2.3)

where,
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(a) restriction stencils (NFV) (b) prolongation stencils (NFV)

(c) restriction stencils (CFV) (d) prolongation stencils (CFV)

Figure 2.12: Illustration of stencil for multicloud operators
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ci =


| ri − r0 |−1 if i ̸= 0

1 if i = 0

(2.4)

L1(0) is the set of discrete points in its fine level local point cloud as shown

in Figure 2.12a. In CNA coarsening, L1(0) would be expanded as shown in Figure

2.12c. Such that, multicloud operators are independent of coarsening procedures. In

Eq.(2.3), ds is average length between point 0 and its local point cloud. Such that

β0 is cube of the ratio of average length between fine and coarse levels. Since β0 is

similar function to volume ratio of conventional multigrid methods, the cube of ds

ratio should be considered for three-dimensional flows.

In Eq.(2.3), βi is exactly same with the original multicloud method. As seen in

Eq.(2.4), ci is inverse distance between point 0 and i.

Then, the solutions are updated by relaxation on the coarse level. The updated

solutions correct fine level solutions. In the multicloud method, coarse level state

variables are directly transferred to coincident fine level points, which is called “in-

herited point”, such that only fine level points whose coincident coarse level points

are nonexistent, which is called “orphan point”, should be corrected.

The state variables of orphan points are corrected by its neighboring inherited

points that are located in L(0) as shown in Figure 2.12b and 2.12d. Then solutions

are corrected by inverse distance weighting.

q+0 = q0 +

∑
i∈L(0) ci(q

+
i − q

(0)
i )∑

i∈L(0) ci
(2.5)
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2.3 multicloud operators for hypersonic flows

Multicloud operators cannot be directly applied to hypersonic flows since standard

multigrid methods leads to divergence near strong shock formed by hypersonic flows.

In order to avoid the divergence, various studies have been suggested. Kim[6] pro-

posed prolongation damping using pressure based shock sensing method. Radespiel[44]

presented restriction damping method by detecting shock using pressure. Gerlinger[45]

modified Radespiel’s restriction damping using TVD and pressure based sensor com-

bined with chemical reaction sensor for analysis of turbulent combustion. However,

the damping methods were formulated based on structured grids such that the meth-

ods cannot directly be implemented to unstructured multigrid or multicloud method.

In this section, new damping formulations for multicloud method are described to

apply multicloud method to problems with strong shock.

2.3.1 Damped restriction

Locally damped restriction method was developed to prevent divergence near strong

shock. Damped restriction for fully coarsened structured methods is given as

Rk−1 = T k−1,kR
k =

4∑
l=1

Rk
l max [0,max (1− κl)] (2.6)

As seen in Eq.(2.6), residual of coarse cell can be expressed as sum of damped

residuals of parental fine cells as shown in Figure 2.13. κl in Eq.(2.6) denotes shock

sensor function which is defined as

κ = max
(
νξi,j , ν

ξ
i−1,j , ν

ξ
i+1,j , ν

η
i,j , ν

η
i,j−1, ν

η
i,j+1

)
(2.7)

with
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Figure 2.13: Restriction stencil for structured grids

νξi,j =
|pi+1,j − 2pi,j + pi−1,j |

(1− χ) (|pi+1,j − pi,j |+ |pi,j − pi−1,j |) + χ (pi+1,j + 2pi,j + pi−1,j)

(2.8)

where χ is values between 0.8 and 1. Eq.(2.8) is mixture between pressure-based

and TVD-based shock sensor. Consequently, residual is less transferred where strong

shock is located between cells by Eq.(2.6). Since i− 1 and i+1 cells are not defined

for both unstructured and meshless methods, new formulation is required for damped

restriction. The new meshless damped restriction is given as

Pm = T κ
RRk−1(qk−1)−Rk(q

(0)
k ) (2.9)

with

T κ
R =

[
β0 κ1β1 · · · κNβN

]
(2.10)
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where

κi = min
(
1,
P0

Pi

)
(2.11)

Figure 2.14: Illustration of meshless damped restriction

As shown in Figure 2.14, if strong shock is located between 0 and i, the residual

of i rarely transfers the residuals to point 0. Initial instability can be cured by simply

introducing damping function[45].

2.3.2 Damped prolongation

In order to converge solution near strong shock, damped prolongation is also neces-

sary. For stablization of the multicloud method, prolongation damping proposed by

kim[6] and Zhu[7] is formulated in a meshless fashion. As seen in Figure 2.15, P0 is

interpolated by nearest points P+
1 , P

+
2 , P

+
3 . But P+

2 is located at the postshock posi-

tion. Thus, it is desirable to damp the interpolation value from P+
2 to avoid negative
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pressure. To search for points where are located at the otherside of the shock wave,

pressure weighted function is used

ωp,i = min
(
1,
P0

P+
i

)
(2.12)

Then, prolongation operator with damping is as follows

q+0 = q0 +

∑
i∈L(0) ωp,ici(q

+
i − q

(0)
i )∑

i∈L(0) ci
(2.13)

From Eq.(2.12) and (2.13), ωp,i goes to 0, where abrupt pressure change occur.

Figure 2.15: Illustration of shock sensing
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Chapter 3

Numerical methods

3.1 Governing equations

3.1.1 Navier-Stokes equations

In this study, three-dimensional Navier-stokes equations were considered to verify the

effect of an implicit multicloud convergence accelerator. The equations are expressed

as follows:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=
M∞
Re∞

(
∂fv

∂x
+
∂gv
∂y

+
∂hv

∂z

)
(3.1)

where q represents the set of conservative variables
[
ρ ρu ρv ρw ρE

]T
,

and the convective fluxes f , g,h are expressed as

f =



ρu

ρu2 + p

ρuv

ρuw

ρuH


, g =



ρv

ρvu

ρv2 + p

ρvw

ρvH


,h =



ρw

ρwu

ρwv

ρw2 + p

ρwH


(3.2)
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In Eq.3.2, p is the pressure and ρ, u, v, w,E,H are the mass density, Cartesian

velocity components, total energy, and total enthalpy (that is defined as E + ρ/p),

respectively. From the equation of state of an ideal gas,

E =
p

(γ − 1)ρ
+

1

2

(
u2 + v2 + w2

)
(3.3)

Then, the viscous fluxes are

fv =

[
0 τxx τxy τxz uτxx + vτxy + wτxz −Qx

]T
gv =

[
0 τyx τyy τyz τyx + vτyy + wτyz −Qy

]T
hv =

[
0 τzx τzy τzz τzx + vτzy + wτzz −Qz

]T
(3.4)

where the shear stress and heat flux terms are

τxx = 2µux + λ(ux + vy + wz)

τyy = 2µvy + λ(ux + vy + wz)

τzz = 2µwz + λ(ux + vy + wz)

τxy = τyx = µ(uy + vx)

τxz = τzx = µ(uz + wx)

τyz = τzy = µ(vz + wy)

Qx = −κTx, Qy = −κTy, Qz = −κTz

(3.5)

where, T is temperature and effective viscosity µ is given as µl + µt, where µl

and µt denote laminar viscosity and turbulent viscosity respectively. Also conductiv-

ity κ = κl + κt The laminar viscosity computed by Sutherland’s law and laminar

conductivity are given as
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where, Cp is the constant pressure specific heat T0 = 110.K and Prl = 0.72

are Sutherland’s constant and the laminar Prandtl number respectively. In this study,

Turbulent viscosity and conductivity are given by Spalart and Allmaras one-equation

turbulence model [46, 47]. The one-equation model is also included in multicloud

computation

µl
µ∞

=

(
T

T∞

) 3
2 T∞ + T0
T + T0

, κl =
Cpµl
Prl

(3.6)

3.1.2 Spalart-Allmaras Turbulence Model

In this study, Spalart-Allmaras one equation model is used. Before proceeding to the

S-A model, the eddy viscosity ν̃ is given as follows:

νt = ν̃fv1, fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
(3.7)

The compressible Form of S-A is then as follows

∂ρν̃

∂t
+∇· (ρuν̃)−ρ(P −D)− 1

σ
∇· [ρ(ν + ν̃∇ν̃]− cb2

σ
ρ(∇ν̃)2+ 1

σ
(ν+ ν̃)∇ρ ·∇ν̃

(3.8)

where P and D represent production and destruction, respectively, and are de-

fined as follows

P = cb1(1− ft2)S̃ν̃, D =
(
cw1fw1 −

cb1
κ2
ft2

)[ ν̃
d

]2
(3.9)

with

S̃ = S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
, S = |∇ × V | (3.10)
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where d is the minimum distance to the wall. Then, the remaining unknowns are

given as follows

fw = g

[
1 + c6w3

g6 + c6w3

]
g = r + cw2(r

6 − r), r = min
(

ν̃

S̃κ2d2
, 10

)
(3.11)

Remaining constants are

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41, cw1 = cb1

κ2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2

(3.12)

3.2 Spatial discretization

3.2.1 Cell finite volume

Eq. (3.1) may be semi-discretized by cell finite volume methods as follows

∂q̄0
∂t

+
n∑
i

(
G0i ·

S0i

V0

)
= 0 (3.13)

where q̄ is cell-averaged state vector S0i and V0 denote the cell interface area

vector and cell volume respectively. Then,G0i can be given by various flux schemes.

3.2.2 Least Squares Method

In this study, a Taylor series was used to estimate the derivatives of a trial function ϕ.

A trial function ϕ at point ri can be approximated by its value at a neighboring point

at r0 using the Taylor series expansion:

ϕ̂(ri) ≈ ϕ(r0) + ∆r0i · ∇ϕ(r0) (3.14)
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Figure 3.1: Illustration of cell finite volume method

where ∆r0i = ri − r0 and Eq. (3.14) may be recast as

∆ϕ0i ≈ pT (∆r0i) · ∇ϕ(r0) (3.15)

where ∆ϕ0i = ϕ̂(ri)−ϕ(r0) and p is a three-dimensional monomial basis func-

tion:

p(r) = [x y z]T (3.16)

To estimate the gradient of ϕ(r0), the least squares problem is established using

its nearest points (See Fig.2.1):

J =

N∑
i

ω0i

[
pT (∆r0i) · ∇ϕ̂(r0)−∆ϕ0i

]2
(3.17)

where ω0i = 1/|∆r0i| and N is the number of neighboring points of the point at

r0, as shown in Fig.2.1.
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∇ϕ̂(r0), the estimation of the gradient of ϕ(r0), may be obtained by finding the

coefficients that minimize the function J , expressed as:

∂J

∂∇ϕ̂(r0)
= 0 (3.18)

Eq.(3.18) can be written as

N∑
i

ω0ip(∆r0i) · pT (∆r0i)∇ϕ̂(r0) =
N∑
i

ω0ip(∆r0i)∆ϕ0i (3.19)

Eq.(3.19) may be simplified as

S∇ϕ̂(r0) = T∆ϕ0i (3.20)

where

S =


∑N

i ω0i∆x
2
0i

∑N
i ω0i∆x0i∆y0i

∑N
i ω0i∆x0i∆z0i∑N

i ω0i∆y0i∆x0i
∑N

i ω0i∆y
2
0i

∑N
i ω0i∆y0i∆z0i∑N

i ω0i∆z0i∆x0i
∑N

i ω0i∆z0i∆y0i
∑N

i ω0i∆z
2
0i

 (3.21)

T =

[
ω01∆r01 ω02∆r02 · · · ω0N∆r0N

]
(3.22)

By Eq.(3.21) and (3.22), the estimation of the gradient can be expressed as:

∇ϕ̂(r0) = S−1T∆ϕ0i (3.23)

where

S−1T =


a01 a02 · · · a0N

b01 b02 · · · b0N

c01 c02 · · · c0N

 (3.24)
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Thus, the estimation of the partial derivatives of function ϕ at point r0 may be

expressed as

∂ϕ(r0)

∂x
≈

N∑
i

a0i∆ϕ0i (3.25)

∂ϕ(r0)

∂y
≈

N∑
i

b0i∆ϕ0i (3.26)

∂ϕ(r0)

∂z
≈

N∑
i

c0i∆ϕ0i (3.27)

3.2.3 Geometric Conservative Least Squares Method

The geometric conservation law and first-order consistency with respect to meshless

coefficients may be expressed as

N∑
i=1

a0i = 0,
N∑
i=1

b0i = 0,
N∑
i=1

c0i = 0 (3.28)

N∑
i=1

a0i∆x0i = 1,

N∑
i=1

b0i∆x0i = 0,

N∑
i=1

c0i∆x0i = 0

N∑
i=1

a0i∆y0i = 0,
N∑
i=1

b0i∆y0i = 1,
N∑
i=1

c0i∆y0i = 0

N∑
i=1

a0i∆z0i = 0,

N∑
i=1

b0i∆z0i = 0,

N∑
i=1

c0i∆z0i = 1

(3.29)

In order to satisfy the geometric conservation law and first-order consistency, the

Lagrange multiplier takes the form

Λ = J +

3∑
p=1

µpMp +

3∑
p=1

3∑
q=1

νp,qNp,q (3.30)
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where J is the object function denoted in Eq. (3.17), whereas M and N take the

form

M1 =
N∑
i=1

a0i = 0, M2 =
N∑
i=1

b0i = 0, M3 =
N∑
i=1

c0i = 0

N1,1 =

N∑
i=1

a0i∆x0i = 1, N1,2 =

N∑
i=1

b0i∆x0i = 0, N1,3

N∑
i=1

c0i∆x0i = 0

N2,1 =

N∑
i=1

a0i∆y0i = 0, N2,2 =

N∑
i=1

b0i∆y0i = 1, N2,3

N∑
i=1

c0i∆y0i = 0

N3,1 =

N∑
i=1

a0i∆z0i = 0, N3,2 =

N∑
i=1

b0i∆z0i = 0, N3,3

N∑
i=1

c0i∆z0i = 1

(3.31)

The constrained least squares problem with a Lagrange multiplier can be solved

in a similar fashion to the simple least squares problem by finding ∇Λ = 0 with

respect to ∇ϕ̂0, µp and νp,q. ∇Λ = 0 can be written in matrix form, as follows:

Ax = b (3.32)

where

A =

D E

ET 0

 ,D =



S 0 . . . 0

0 S . . . 0

...
...

. . .
...

0 0 . . . S


,E =



e1

e2
...

eN


(3.33)

ei =

[
I ∆x0iI ∆y0iI ∆z0iI

]
(3.34)
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x =



a01

b01

c01
...

a0N

b0N

c0N

µ1

µ2

µ3

ν1,1

ν1,2
...

ν3,3



, b =



ω01∆r
T
01

...

ω0N∆rT0N

0

0

0

1

0

0

0

1

0

0

0

1



(3.35)

where I is a 3 × 3 identity matrix and S is the matrix in Eq. (3.21). As a conse-

quence, D is a 3N × 3N matrix, because S is a 3 × 3 matrix. The meshless coeffi-

cients may be obtained by multiplying the inverse matrix ofA by b.

The meshless coefficients derived from Eq. (3.32) satisfy geometric conserva-

tion laws because the geometric conservative conditions in Eq.(3.28) are constrained

when solving the least squares problem. It is known that geometric conservative

meshless coefficients are robust, even in randomly distributed point clouds [35].
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3.3 Flux schemes

3.3.1 AUSMPW+

AUSMPW+ was developed by Kim[48] to increase accuracy in capturing shocks

without sacrificing robustness. The numerical flux obtained by AUSMPW+ is given

by as

F 1
2
= M̄+

L c 1
2
ΦL + M̄−

R c 1
2
ΦR + (P+

L ]P L + P−
R ]PR) (3.36)

Φ =

[
ρ ρu ρv ρw ρH

]
,P =

[
0 pnx pny pnz 0

]
(3.37)

where nx, ny, nz are the normalized cell area vectors. Then, M̄±
L,R for m 1

2
=M+

L +

M−
R is given as

M̄+
L =


M+

L +M−
R [(1− ωpw)(1 + fR)− fL] , m 1

2
≥ 0

ωpwM
+
L (1 + fL) , m 1

2
< 0

(3.38)

M̄−
R =


ωpwM

−
R (1 + fR) , m 1

2
≥ 0

M−
R +M+

L [(1− ωpw)(1 + fL) + fL − fR] , m 1
2
< 0

(3.39)

with pressure weighting

ωpw = 1− min
(
pL
pR
,
pR
pL

)3

(3.40)

Then, fL,R is given by

fL,R =

(
pL,R
ps

− 1

)
(3.41)
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where

ps = p+LpL + p−RpR (3.42)

The split Mach number is defined by

M± =


±1

4(M ± 1)2 , |M | ≤ 1

±1
2(M ± |M |)2 , |M | > 1

(3.43)

p± =


±1

4(M ± 1)2(2∓M) , |M | ≤ 1

±1
2(1∓ sign(M)) , |M | > 1

(3.44)

The Mach number of each side is

ML,R =
UL,R

cs,1/2
(3.45)

U is the velocity component that is parallel to meshless coefficient or cell inter-

face area vector for FVM with its corresponding neighbor. And the speed of sound

cs,1/2 is given by

cs,1/2 =


c∗2s

max(|UL|,c∗s)
, 1
2(UL + UR) > 0

c∗2s
max((|UR|,c∗s)

, 1
2(UL + UR) < 0

(3.46)

where

c∗s =
√

2(γ − 1)/(γ + 1)Hnormal (3.47)

Hnormal =
1

2

(
HL − 1

2
V 2
L +HR − 1

2
V 2
R

)
(3.48)
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3.3.2 AUSM+-up

AUSM+-up is also used as a flux scheme for unstructured cell finite volume method

as the flux scheme shows excellent convergence behavior for all speed flows. The

numerical flux of AUSM-family is given by

f1/2 = ṁ1/2ψL/R + p1/2 (3.49)

where, ṁ1/2 = ρu and ψ = (1, u,H)T

the mass flux given by AUSM+-up is expressed as

ṁ1/2 =


a1/2M1/2ρL , M1/2 > 0

a1/2M1/2ρR , M1/2 ≤ 0

(3.50)

The mach number functions are given as follows

M1/2 =M+
(4)(ML) +M−

(4)(MR)−
0.25

fa
max(1− M̄2, 0)

pR − pL
ρ1/2a

2
1/2

(3.51)

ρ1/2 = (ρL + ρR)/2 (3.52)

M̄2 =
u2L + u2R
2a21/2

(3.53)

M2
0 = min(1,max(M̄2,M2

∞)) ∈ [0, 1] (3.54)

fa(M0) =M0(1−M0) ∈ [0, 1] (3.55)

M±
(1)(M) =

1

2
)(M ± |M |),M±

(2)(M) = ±1

4
(M ± 1)2 (3.56)
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M±
(4)(M) =


M±

(1) , |M | ≥ 1

M±
(2)(1∓ 16βM∓

(2) , |M | < 1

(3.57)

a1/2 in Eq.(3.53) is given as

a1/2 = min(âL, âB) (3.58)

â =
a∗2

max(a∗, |u|)
, a∗2 =

2(γ − 1)

γ + 1
H (3.59)

An the pressure flux is as follows

p1/2 = P+
(5)(ML)pL + P−

(5)(MR)pR − 0.75P+
(5)P

−
(5)(ρL + ρR)(faa1/2)(uR − uL)

(3.60)

where

P±
(5)(M) =


1
MM±

(1) , |M | ≥ 1

M±
(2)

[
(±2−M)∓ 16αM∓

(2)

]
, |M | < 1

(3.61)

with

α =
3

16
(−4 + 5f2a ) ∈

[
−3

4
,
3

16

]
(3.62)

β =
1

8
(3.63)

3.4 Limiter

3.4.1 TVD schemes

In this study, total variational diminishing (TVD) is applied for accurate solutions.

The face value ϕi+1/2 is adjusted using the flux limiter function ψ(r). And the flux
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limiter function is a non-linear function of r. r for a structured grid is given as

r1+1/2 =
ϕi − ϕi−1

ϕi+1 − ϕi
(3.64)

The face value is then adjusted as

ϕi+1/2 = ϕi +
1

2
ψ(ri+1/2)(ϕi+1 − ϕi) (3.65)

Among many TVD schemes, MINMOD limiter is used in this study owing to its

robustness with acceptable accuracy[49]. MINMOD limiter is expressed as

ψ(r) = max (0,min(1, r)) (3.66)

For unstructured grids, the left and right values need to be modified since i − 1

and i+1 may not exist for unstructured grids. The modified notation for unstructured

grids of Eq. (3.65) is given as

ϕf = ϕC +
1

2
ψ(rf )(ϕD − ϕC) (3.67)

where

rf =
ϕC − ϕU
ϕD − ϕC

(3.68)

f, C,D and U are illustrated in Figure 3.2.

Figure 3.2: Node notation for unstructured TVD schemes
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a virtual node U is defined by exact r formulation [50], which given as

rf =
(ϕD − ϕU )− (ϕD − ϕC)

ϕD − ϕC
(3.69)

In Eq. (3.69), ϕC and ϕD are given values, while ϕU should be estimated, as U

represents a virtual node, as shown in Figure 3.2. Then ϕD−ϕU may be estimated as

(ϕD − ϕU ) = ∇ϕC · rUD = 2∇ϕC · rCD (3.70)

Then, Eq. (3.69) may be recast as

rf =
2∇ϕC · rCD

ϕD − ϕC
− 1 (3.71)

r can be used for both unstructured and meshless discretization.

3.4.2 Venkatakrishnan limiter

The face flux by the limiter function of Venkatakrishnan is given as

ϕf = ϕC + ψven∇ϕC ·∆rfC (3.72)

ψven = min (ψCi) (3.73)

where i denotes the nodes that compose cell C as shown in Figure 3.3.

ψCi is given by

ψCi =
1

∆−

[
(∆2

+ + ϵ2)∆− + 2∆2
−∆+

∆2
+ + 2∆2

− +∆−∆+ + ϵ2

]
(3.74)

∆+ = max(ϕD)− ϕC (3.75)
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∆− = ∇ϕC ·∆rCi (3.76)

Figure 3.3: Node notation for Venkatakrishnan limiter

In Eq.(3.75), D is a adjacent cell index.

3.4.3 Gradient calculation

In this study, two methods are used to estimate the gradient: the first is the least

squares method, which is described in Section 3.2.2, and the second is the node-based

Green-Gauss theorem. Thus, only node-based Green-Gauss Theorem is described in

this Section.

The gradient of function ϕ using Green-Gauss Theorem is given by

∇ϕC ≈ 1

VC

∑
f

ϕfAf (3.77)

VC denotes the volume of cell C, and f represents the interface index between

C and its neighboring cells. And Af denotes a interface area vector. For node-based

Green-Gauss theorem, ϕf is the average of the nodal values that compose interface
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f . The nodal values are estimated by cells which share node with face f as shown in

Figure 3.4.

Figure 3.4: Illustration of nodal value interpolation

3.5 Time integration

3.5.1 Local time stepping

To accelerate convergence for steady state problems, local time stepping may be em-

ployed in this study. A local time step is estimated based on the spectral radius of the

convective and viscous flux Jacobian. the spectral radius of convective and viscous

flux an arbitrary cell or node ′0′ may be expressed as

Λc =
n∑

i=1

(|V 0 ·A0i|+ ∥ A0i ∥) c0 (3.78)

whereA0i denotesS0i/V0 in Eq. (3.13) and meshless coefficient vector (a0i, b0i, c0i)

for CFV and meshless discretization respectively. And V 0 and c0 denote the velocity

vector and speed of sound at point 0.
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Λv =
γ2/3M∞
Re∞Pr

n∑
i=1

µ0i+1/2

ρ0i+1/2
∥ A0i ∥2 (3.79)

where µ0i+1/2 and ρ0i+1/2 is average viscosity and density between 0 and i. Then,

local time step is given as

∆t0 =
CFL

Λc + Λv
(3.80)

3.5.2 Explicit Runge-Kutta

Eq. (3.1) can be explicitly discretized as

∆qn0
∆t0

= R(qn0 ) (3.81)

The four-stage explicit Runge-Kutta time integration is employed in this study[51].

q00 = q
n
0

q
(1)
0 = q00 + α1∆tR(q00)

q
(2)
0 = q10 + α2∆tR(q10)

q
(3)
0 = q20 + α3∆tR(q20)

q
(4)
0 = q30 + α4∆tR(q30)

qn+1
0 = q

(4)
0

(3.82)

3.5.3 LU-SGS for unstructured grids

LU-SGS was used for the implementation of implicit time integration because its

suitability for this purpose is well established in industrial CFD, for both structured

47



and unstructured methods. Eq. (3.1) can be discretized implicitly on an arbitrary cell

(or node) 0 as follows:

∆qn0
∆t0

+
N∑
i

Hn+1
0i = 0 (3.83)

where, N is the number of nearest neighboring cells or nodes. The flux function

H0i between 0 and i can be expressed in various manners. The flux function using

Meshless discretization may be expressed as

where,

H0i = a0i(f i − f0) + b0i(gi − g0) + c0i(hi − h0)

−
[
a0i(fv,i − fv,0) + b0i(gv,i − gv,0) + c0i(hv,i − hv,0)

] (3.84)

In this study, the flux at the midpoint is used, resulting in the following expression

for Eq.(3.84):

H0i = 2
[
a0i(f i+1/2 − f0) + b0i(gi+1/2 − g0) + c0i(hi+1/2 − h0)

]
−2
[
a0i(fv,i+1/2 − fv,0) + b0i(gv,i+1/2 − gv,0) + c0i(hv,i+1/2 − hv,0)

] (3.85)

For GC-LSM, Eq.(3.83) can be recast as

∆qn0
∆t0

+
N∑
i

2

[(
a0if i+1/2 + b0igi+1/2 + c0ihi+1/2

)
−

(
a0ifv,i+1/2 + b0igv,i+1/2 + c0ihv,i+1/2

)]
= 0

(3.86)

Since,
∑N

i a0i = 0,
∑N

i b0i = 0,
∑N

i c0i = 0. Then, H0i by GC-LSM may be

expressed as

H0i = 2

[(
a0if i+1/2 + b0igi+1/2 + c0ihi+1/2

)
−(

a0ifv,i+1/2 + b0igv,i+1/2 + c0ihv,i+1/2

)] (3.87)
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The flux functionH0i of finite volume methods is given as

H0i =

N∑
i

(
(G0i −Gv,0i) ·

S0i

V0

)
(3.88)

The convective and viscous fluxes are represented by G and Gv, respectively, in

the expression for the flux function H0i. S0i and V0 are the interface surface vector

and volume of the cell 0 respectively. As seen in Eq. (3.87) and (3.88), 1
2(a0i, b0i, c0i)

and S0i/V 0 correspond to each other. Thus, Eq.(3.84) is universal for meshless and

finite volume methods.

As a result, H0i may be linearized independent of methods. Then, H0i is ex-

pressed as

Hn+1
0i =Hn

0i +A
+
0i∆q0 +A

−
0i∆qi (3.89)

where

A±
0i =

1

2
(A0i ± λ0iI) (3.90)

A = ∂H/∂q (3.91)

where λ0i is the eigenvalue of the Jacobian matrixA0i. By Eq.(3.89), (3.83) may

be written as

(
1

∆τ0
+

1

2

N∑
i

λ0i

)
I∆q0 +

N∑
i

A−
0i∆qi −

N∑
i

A0i∆q0 = −
N∑
i

Hn
0i (3.92)
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For finite volume methods, the sum of Jacobian matrix A0i in Eq. (3.92) must

be zero due to the geometric conservation law. Generally, conventional meshless dis-

cretization cannot satisfy
∑N

i A0i = 0 since the methods are not geometric con-

servative discretization, whereas GC-LSM naturally satisfy
∑N

i A0i = 0 due to its

geometric conservative features. Due to this, the original multicloud method used to

implemented to only for explicit schemes since the meshless discretization used does

not satisfy geometric conservation law. Consequently, Eq.(3.92) may be recast as

(
1

∆τ0
+

1

2

N∑
i

λ0i

)
I∆q0 +

N∑
i∈L(0)

A−
0i∆qi +

N∑
i∈U(0)

A−
0i∆qi = R

n
0 (3.93)

where L(0) and U(0) are the set of nearest points whose indices are less than

and greater than those for point 0, respectively. Consequently, Eq.(3.93) may have

the same form with unstructured LU-SGS so that the equation may be decomposed

in the same way as for the unstructured method:

∆q∗0 =D
−
0

Rn
0 −

n∑
i∈L(0)

A−
0i∆q

∗
i

 (3.94)

∆q0 = ∆q∗0 −D−
0

N∑
i∈U(0)

A−
0i∆qi (3.95)

where

D0 =

(
1

∆τ0
+

1

2

N∑
i

λ0i

)
I (3.96)

Eq.(3.95) and (3.94) are forward and backward sweeps, respectively. Thus, LU-

SGS may be implemented to the multicloud method without formulating new algo-

rithm complexity by using only GC-LSM.
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3.5.4 LU-SGS for non-conservative meshless discretization

In this thesis, LU-SGS for non-conservative meshless discretization is also formu-

lated to compare the performances between GC-LSM and LSM discretization. Eq.(3.92)

without the geometric conservation law can be expressed as:

(
1

∆τ0
+

1

2

N∑
i

λ0i

)
I∆q0 +

N∑
i∈L(0)

A−
0i∆qi +

N∑
i∈U(0)

A−
0i∆qi −

N∑
i

A0i∆q0 = R
n
0

(3.97)

Then Eq.(3.97) may be recast as:

D0∆q0 +L∆qi +U∆qi + D̃0∆q0 = R
n
0

(3.98)

where,

L =
∑

i∈L(0)

A−
0i, U =

∑
i∈U(0)

A−
0i (3.99)

D0 =

(
1

∆τ0
+

1

2

N∑
i

λ0i

)
I, D̃0 =

1

2

N∑
i

A0i (3.100)

Eq.(3.98) can be described as:

(L+D0)(D0 + D̃0)
−1(U +D0)∆q0 = R

n
0

(3.101)

Finally, Eq.(3.101) can be solved as:

∆q∗0 =D
−
0

Rn
0 −

n∑
i∈L(0)

A−
0i∆q

∗
i

 : Forward sweep (3.102)
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(a) Configuration of f6wbnp and its flow grid (b) f6wbnp’s level 3 flow point domain

Figure 3.5: Illustration of flow grid for f6wbnp

D0∆q
∗
0 =D0∆q

∗
0 + D̃0∆q

∗
0 : Diagonal sweep (3.103)

D0∆q0 =D0∆q
∗
0 −

N∑
i∈U(0)

A−
0i∆qi : Backward sweep (3.104)

Non-conservative meshless LU-SGS (M-LU) was tested for LSM meshless dis-

cretization. The flow grids is 3 level CNA coarsened grid of Figure 3.5a. The flow

point domain is illustrated in Figure 3.5b. The reason level 3 domain is chosen is that

unstructured LU-SGS (U-LU) generally works well when points are well-distributed,

such as in an unstructured grid, even for non-conservative meshless discretization. In

order to demonstrate M-LU, the points must be randomly distributed, as the coarse-

level point distribution is always random in the multicloud method. The flow condi-

tion is Mach 0.75 with AOA 0.49◦. The CFL condition for M-LU is 15, while for
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U-LU it is 4.2, as a value higher than 4.2 for U-LU leads to divergence right after the

few iterations. 4.2 is threshold CFL numebr for U-LU with LSM.

Figure 3.6 illustrates convergence histrories for M-LU and U-LU. U-LU leads to

converges the order of -2 even for much less CFL number than M-LU. Whereas, M-

LU converges stably to the order of -15 with higher convergence rates than U-LU. It

is evident that M-LU works perfectly for non-conserative meshless dicretization with

randomly distributed points.

Figure 3.6: Comparison between M-LU and U-LU with LSM discretization
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Chapter 4

Numerical Results

4.1 Comparisons for explicit and implicit time integration

Unlike the previous Multicloud methods, An implicit version of multiclut method

method using LU-SGS is developed in this study. The purpose of this section is to

verify the performance of the implicit multicloud by comparing to the explicit mul-

ticloud method. In this study, Runge-Kutta 4th order time integration method is em-

ployed as a explicit scheme. Cases involving tetrahedral grids in three-dimensional

configurations were tested to analyze the acceleration performance according to time

integration methods. The first case is ONERA M6 and The second case is DLR-F6

wing body base configuration with transonic flows. GC-LSM is used to compute both

fine and coarse level solutions in this section. AUSM+-up is used for flux estimation

with MINMOD limiter for both cases.
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4.1.1 ONERA M6

The first test case in this study consists of transonic flow around the ONERA M6

wing, which is the most widely used model for the three-dimensional validation case.

The fine level tetrahedral grid is shown in Figure 4.1b. In this study, meshless dis-

cretization was used for all levels, such that the nodes of the grids were considered

as meshless points, as shown in Figure 4.1c. The coarsening results are shown in

Figure 4.1d. The Mach number of the flow was 0.8395 with an angle of attack of

3.06◦. Four cases were tested: the explicit 4th-order Runge-Kutta (RK4) method and

implicit LU-SGS, for both single grid and multicloud methods.

With respect to the Courant-Friedrich-Lewy (CFL) condition, the CFD numbers

for the explicit and implicit schemes were set to 1 and 20, respectively. Here, we

define the unit work as CPU time per iteration on the finest grid compared to the

single RK4 method, such that the work associated with RK4 is unity, as shown in

Table 4.1. LU-SGS spends much less computational coat than RK4 since RK4 should

calculate 4 residuals for 4 each step. Hence, single-grid LU-SGS spends computation

cost 0.39 of RK4. In the multicloud method, the computational cost of four-level V

cycle is the factor of 1.5-1.6 of single-method. Hence, the given problem, time per

iteration of RK4 four-level V cycle was the factor of 1.59 of single RK4. And LU-

SGS with four-level V cycle was the factor of 0.62. Every compuational cost was

estimated with repect to single RK4. In fact, the computational cost spent on single

RK4 is higher than four-level V cycle LU-SGS.

The convergence history is presented in Figure 4.2a and 4.2b. Figure 4.2a dis-

plays the density residual per iteration on the finest grid, and Figure 4.2b displays the

density residual per unit work. In Figure 4.2a, the four-level procedure with LU-SGS
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exhibits dramatic convergence speedup with respect to the number of iterations. Four

levels with RK4 also exhibited substantial speedup, exceeding that of single LU-SGS.

However, the unit work associated with RK4 exceed those associated with LU, such

that the convergence history with respect to the number of unit work shows a differ-

ent result compared to the history with respect to the number of iterations, as shown

in Figure 4.2a. In terms of unit work, four levels with LU-SGS exhibited the highest

convergence rates, as formulated in this study. For the ONERA M6 wing, inviscid

analyses exhibited slight differences in surface pressure because turbulence is not a

crucial factor in that context[52]. The surface pressure results are compared with the

experimental results[53] in Figure 4.3 4.8. The surface pressure results agree well

with the experimental results. However, slight differences in the location of the shock

on both the 0.2 and the 0.8 span are shown. These differences are typical of invis-

cid methods[54]. Finally, the four-level procedure and single LU display satisfactory

agreement with each other as well as with the experimental results.

Scheme RK4 SG RK4 MC LU SG LU MC

Unit work 1.00 1.59 0.39 0.62

CFL 1 1 20 20

Table 4.1: Units of work and CFL for each case

4.1.2 DLR-F6 wing body configuration

To highlight the performance of the implicit multicloud method, the flow around the

baseline wing-body DLR-F6[41], whose geometry is complicated, was analyzed. The

Mach number of the flow was 0.75 with an angle of attack of 0.49◦. In Figure 4.10,
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(a) ONERA M6 configuration (b) Tetrahedral grids for ONERA M6

(c) Global point cloud obtained from

nodes of tetrahedral grids (d) Coarse level cloud for level 2

(e) Coarse level cloud for level 3 (f) Coarse level cloud for level 4

Figure 4.1: Coarsening results for ONERA M6
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(a) Convergence history in term of iteration

(b) Convergence history in term of unit work

Figure 4.2: Convergence histories for ONERA M6
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Figure 4.3: Surface pressure along y=0.2η

Figure 4.4: Surface pressure along y=0.44η
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Figure 4.5: Surface pressure along y=0.65η

Figure 4.6: Surface pressure along y=0.8η
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Figure 4.7: Surface pressure along y=0.9η

Figure 4.8: Surface pressure along y=0.95η
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the finest and coarse level clouds are shown. It appears that the coarsening procedure

works well, even for complex geometries.

In Figure 4.11, residual history results are plotted in the same manner as for the

ONERA M6 test case. For the complicated geometry, the four-level LU-SGS proce-

dure exhibits the highest convergence speed compared to other methods. In Figure

4.12 and 4.13, the results of surface pressure are compared for the four-level, sin-

gle, and experimental[55] cases. As seen in Figure 4.12 and 4.13, the four-level and

single results show strong agreement. However, a disagreement with the experimen-

tal results is shown downstream, where the shock is located, while strong agreement

is shown around the stagnation line. As mentioned previously, these disagreements

are typical for the inviscid method[54]. Furthermore, the DLR-F6 model is more

sensitive to turbulence than the ONERA M6 model because the DLR-F6 geometry

has a large separation bubble on the wing[41]. Although it is necessary to solve the

Navier-Stokes equations with turbulence modelling to obtain accurate surface pres-

sure results, considering turbulent flow is beyond the scope of this study, and a mul-

ticloud for viscous flow will be discussed in a future study. Such that it seems that

disagreement is acceptable for inviscid method. The L2 norm of the surface pressure

difference between the single and four-level procedures is also less than 1e-11, such

that the four-level and single methods display the same results. As a result, the im-

plicit multicloud method provide significantly dramatic acceleration effect compared

to that of explicit method even for complex configurations.
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Figure 4.9: Surface pressure contour for ONERA M6

4.2 Application to non-primal grid system

The previous results are based on tetrahedral grids. Local point clouds for primal

grids, which are represented as tetrahedron and prism, are generally well-defined.

Thus, an octree-structured grid system[56, 57] with prism (OctP) is tested to demon-

strate the versatility and robustness of the multicloud method. Each level domain is

discretized by GC-LSM based on Octree-prism grids. The nodes of volumes are used

for meshless discretization. AUSMPW+ and minmod limiter were used and LU-SGS

was used for the time integration.

4.2.1 NACA0012

In order demonstrate the efficacy of the multicloud method. NACA0012 airfoil with

2D version of OctP (QuaP) is tested. As shown Figure 4.15, the node of multiscale

Cartesian and O-type mixed grid are used for meshless domain. Numerical experi-

ments are tested for subsonic flows (Mach 0.5 and AOA 3◦ and transonic flows (Mach

0.85 and AOA 1◦). Figure 4.16 shows that convergence history with respect to the it-

eration for subsonic flows. As seen from Figure 4.15, even though the resulting coarse
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(a) ONERA M6 configuration (b) Tetrahedral grids for DLR-F6

(c) Global point cloud based on the nodes (d) Coarse level cloud for level 2

(e) Coarse level cloud for level 3 (f) Coarse level cloud for level 4

Figure 4.10: Coarsening results for DLR-F6
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(a) Convergence history in term of iteration

(b) Convergence history in term of unit work

Figure 4.11: Convergence histories for DLR-F6
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Figure 4.12: Surface pressure along y = 0.239η

Figure 4.13: Surface pressure along y = 0.331η
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Figure 4.14: Surface pressure contour for dlr-f6 wing body

domain is randomly distributed, the convergence acceleration effect is still dramatic

without solution differences(See Figure 4.17). The transonic condition is also inves-

tigated using the same point clouds. Figure 4.18 shows the convergence history for

transonic flows. A slight decrease in acceleration is observed due to the presence of

shock waves, which can degrade the acceleration effect. Nevertheless, the effect of

speed up is significant. The effectiveness of the multicloud method is demonstrated,

even for points that are significantly randomly distributed from the results.

Figure 4.15: Illustration of computational domains for NACA0012
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Table 4.2: The number of point comparisons for each level for NACA0012

level the number

1(points) 32,589

2(points) 8,155

3(points) 1,996

4(points) 485

Figure 4.16: Convergence history for NACA0012, M=0.5 AOA=3◦ (QuaP)

4.2.2 ONERA M6

To verify the validity of the method in three dimension, ONERA M6 with OctP grids

is tested. The coarsening results are shown in Figure 4.20. The number of points

on fine level is 2,215,030. Then, the number of points reduced as 380,957, 64,278,

11,142 as the level decreases. The multicloud coarsening method is effective for OctP

grids, whereas it can be challenging to use traditional geometric multigrid methods.
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Figure 4.17: Surface pressure for NACA0012, M=0.5 AOA=3◦ (QuaP)

Figure 4.18: Convergence history for NACA0012, M=0.85 AOA=1◦ (QuaP)

In addition to the coarsening results, it is necessary to demonstrate the acceleration

effect on convergence. Figure 4.21 represents convergence history in terms of itera-

tion. The multicloud results show a convergence acceleration factor of five compared
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Figure 4.19: Surface pressure for NACA0012, M=0.85 AOA=1◦ (QuaP)

to single grid. The time spent per iteration of the multicloud method is a factor of 1.5

compared to that of the single-grid method. Figure 4.22-4.27 show the comparison

between single and multilevel solutions. It is evident that two solutions rarely show

the discrepancy. Thus, it is evident that the multicloud method provides an effective

convergence acceleration effect for any grid type. It seems that the multicloud defi-

nitely provides the satisfactory convergence acceleration regardless of grid types and

dimension.
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(a) Fine level (b) Level 2

(c) Level 3 (d) Level 4

Figure 4.20: Each level point distribution based on octree-prism for ONERA M6
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Figure 4.21: Convergence history for ONERA M6 (OctP)

Figure 4.22: Surface pressure along y=0.2η
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Figure 4.23: Surface pressure along y=0.44η

Figure 4.24: Surface pressure along y=0.65η
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Figure 4.25: Surface pressure along y=0.8η

Figure 4.26: Surface pressure along y=0.9η
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Figure 4.27: Surface pressure along y=0.95η
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4.3 Cell coarsening strategy comparisons

In this section, the acceleration performance of different cell coarsening procedures

is analyzed. The difference between CFA, the basic approach, and CNA, the improve

approach, is presented. Cell finite volume discretization is employed for fine level

domain and GC-LSM meshless discretization is employed for coarse level domain.

AUSM+-up is used on the all levels as a numerical flux scheme and LU-SGS is also

used for all levels. Numerical experiments are tested for the three-configurations,

ONERA M6, DLR-F6 wing body (f6wb) and DLR-F6 wing body nacelle pylon

(f6wbnp). Especially, f6wbnp geometry is considerably complicated that the robust-

ness of multicloud method might be highlighted.

4.3.1 DLR-F6 wbnp configuration

The first validation case is DLR-F6 wing body nacelle pylon(f6wbnp) configuration

that was used for AIAA drag prediction workshop[41]. The geometries were based

on those of Laflin et al.[41]. f6wbnp has a significantly complex geometry, as shown

in Figure 4.28. For this reason, the robustness of CNA coarsening is uncertain for

other non-conservative meshless methods. In this test, comparisons are provided not

only between CFA and CNA but also between LSM and GC-LSM to demonstrate the

performance of GC-LSM with CNA coarsening. AUSM+up is used for every case.

And Venkakrishnan limiter is used for CFV exclusively.

Then, four-cases are tested for the demonstration as shown in Table 4.4. M-LU is

combined with non-conservative schemes and U-LU is combined with conservative

schemes. Every multicloud strategy is four-level V cycle with CFL condition 15. The

convergence histories for each case are presented in Figure 4.29. As seen in Figure
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Figure 4.28: Configuration of f6wbnp and its flow grid

4.29, CFA with LSM and CNA with GC-LSM showcase dramatic convergence ac-

celeration than single-grid method. It is evident that CNA grants much higher level

of acceleration since average distance among point is further than that of CFA. How-

ever, CNA with LSM cannot converge to the same level of CNA with GC-LSM. This

is because non-conservative meshless discretizations is not guaranteed its stability

for highly coarsened domains such as CNA. It seems that LSM discretization gen-

erated more error than GC-LSM on CNA coarsened domain. Figure 4.30 shows the

surface density contour obtained by fully converged results computed by each mesh-

less discretization on CNA level 2 domain by the single grid method. As seen in

Figure 4.30a & 4.30b, LSM discretization generated more error on the surface than

GC-LSM. Those errors involved by LSM might inhibit convergence in the multi-

cloud method. Thus, only CNA coarsening with GC-LSM might guarantee dramatic

acceleration effect than any other methods.
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Furthermore, Figure 4.31 illustrate convergence histories between Single-grid,

CFA and CNA with respect to walltime, which denotes the wall clock time. CNA 4

level converges only in 2000 seconds while that of CFA 4 level is 3900 seconds. It is

15000 seconds for single-grid method. The speed-up for CNA 4 levels is the factor

of 7.5 while that of CFA 4 levels is 3.84. CNA with GC-LSM provides twice the

speed-up than that of CFA 4 level. The acceleration effect is significantly dramatic

for the highly complex configuration of f6wbnp. As seen in Figure 4.32 and 4.33, no

solution discrepancy appears.

Table 4.3: The number of point comparisons for each level

level CNA CFA

1(cells) 5,809,122

2(points) 229,918 2,123,670

3(points) 46,806 252,575

4(points) 10,170 48,951

Temporal Coarsening Spatial

U-LU Single grid CFV

M-LU CFA 4 level 1 : CFV & 2-4 : LSM

M-LU CNA 4 level 1 : CFV & 2-4 : LSM

U-LU CNA 4 level 1 : CFV & 2-4 : GC-LSM

Table 4.4: Description for test cases
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Figure 4.29: Convergence histories for f6wbnp in term of iteration

(a) LSM (b) GC-LSM

Figure 4.30: Surface results of fully converged solutions on level 2 point domains
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Figure 4.31: Convergence history of f6wbnp in terms of the walltime

Figure 4.32: Convergence history of lift coefficient for f6wbnp in terms of the itera-

tion
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Figure 4.33: Surface pressure comparison for f6wbnp

81



4.3.2 ONERA M6

To verify the performance of the CNA coarsening procedure, the transonic flow

around ONERA M6(M = 0.8395 and α = 3.06◦) was analyzed. To demonstrate

the mesh transparency of CNA coarsening, tetrahedral grids (TG) and hybrid grids

(HG), which are mixtures of tetrahedrons and prisms, were tested, as shown in Figure

4.34. Discreitzation of fine level was carried out by CFV for every case. AUSM+up

was used for numerical flux compuation with unstructured MINMOD limiter. Table

4.5 lists the numbers of points for each case. Figure 4.35 illustrates the coarsening

results of the tetrahedral grid for both the CNA (TG-CNA) and CFA (TG-CFA) sys-

tems. CFL number was 5 for TG and 2 for HG for LU-SGS. As described in Table

4.5, the CNA coarsening procedure provides coarser point clouds than the CFA. At

level 4, the coarsening rate was 0.00187, which was better than the ideal coarsening

rate of 0.00195 obtained in the three-dimensional space, whereas the CFA coarsen-

ing rate was 0.00680. Furthermore, the CFA strategy shows unsatisfactory coarsening

rates at Level 2, which is a dominant factor in determining the success of multigrid

methods in terms of time and iterations. Figure 4.36-4.38 show the convergence his-

tories of TG for each coarsening strategy. As mentioned above, the CFV method was

used at the finest level for all cases; therefore, meshless discretization was used only

on the coarse-levels and four-level V cycle was applied. In Figure 4.36, the x-axis

indicates the number of iterations required on a fine-level grid. As shown in Figure

4.36, both TG-CFA and TG-CNA show a dramatic acceleration effect compared with

the single-grid method in terms of iterations. The CNA strategy reaches an order of

-8.5 in approximately 2800 iterations, such that the required fine-level iterations are

less than half of the 6500 iterations from the CNA strategy. Figure 4.37 shows the
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wall time vs. the residuals. In addition, in terms of the wall time, TG-CNA showed

greater convergence acceleration behavior than TG-CFA. The lift coefficient conver-

gence histories are presented in Figure 4.38. Similar to the residual histories, the lift

coefficient of TG-CNA converged significantly faster than those of the other methods.

Figure 4.39-4.44 show comparisons of the surface pressures. As shown in the figures,

the results from the four-level and single grid CNA rarely differ from the single grid

results. Both the single- and four-level models also showed good agreement with

the experimental results[53]. According to these findings, CNA greatly improves the

speed of these systems without losing its robustness and accuracy, despite the scarcity

of the point distribution on level 2.

To demonstrate the mesh-transparent characteristics of the CNA coarsening strat-

egy, numerical experiments were performed using HG. In Table 4.5, the number

of coarse-level points is described for the HG case (HG-CFA & HG-CNA). Figure

4.45-4.47 show the convergence histories. Similar to TG, CNA presented exceptional

coarsening rates compared to CFA for HG. In comparison to the TG case, all the

other cases exhibit slower convergence due to the presence of HG involving high-

aspect-ratio grids, which can result in delays convergence. However, the acceleration

effect is more significant than that of TG, which can be attributed to the regularity

of the prism coarsening. The results indicate that CNA coarsening provides the most

powerful acceleration effect regardless of grid type.
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(a) (b) (c)

Figure 4.34: Illustration of the unstructured grid for the ONERA M6 wing. (a),(b)

Tetrahedral grid (TG), (c) hybrid grid (HG).

Table 4.5: The number of point comparisons for each level

level TG-CNA TG-CFA HG-CNA HG-CFA

1(cells) 1,540,522 2,336,161

2(points) 62,190 557,926 124,500 923,865

3(points) 12,084 56,371 22,626 117,623

4(points) 2,877 10,484 4,660 22,695

(a) Level 2 point cloud (b) Level 3 point cloud (c) Level 4 point cloud

Figure 4.35: Comparison of the coarsening results between TG-CNA (left) and TG-

CFA (right)
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Figure 4.36: Convergence history in term of iteration for transonic ONERA M6 flows

(Tet)

Figure 4.37: Convergence history in term of walltime for transonic ONERA M6 flows

(Tet)
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Figure 4.38: Lift convergence history in term of iteration for transonic ONERA M6

flows (Tet)

Figure 4.39: Surface pressure along y=0.2η
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Figure 4.40: Surface pressure along y=0.44η

Figure 4.41: Surface pressure along y=0.65η
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Figure 4.42: Surface pressure along y=0.8η

Figure 4.43: Surface pressure along y=0.9η
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Figure 4.44: Surface pressure along y=0.95η

Figure 4.45: Convergence history in term of iteration for transonic ONERA M6 flows

(Hybrid)
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Figure 4.46: Convergence history in term of walltime for transonic ONERA M6 flows

(Hybrid)

Figure 4.47: Lift convergence history in term of iteration for transonic ONERA M6

flows (Hybrid)
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4.3.3 DLR-F6 wing body configuration

To highlight the performance of the CNA coarsening procedure for complex geome-

tries, the DLR-F6 wing body (f6wb) model was tested. CFV was used for the finest

level discretization with unstructured MINMOD limiter and LU-SGS with CFL 2.

The geometries were also based on those of Laflin et al.[41]. The flow simulation

was tested using both CNA and CFA. The tetrahedral grids for this case are shown in

Figure 4.48. A numerical simulation was performed for M = 0.75 and α = 0.48◦.

coarsening results on the surface grid are shown in Figure 4.49-4.51. Surface points

are evenly distributed which provide the robust and effective multicloud computation.

The convergence histories of f6wb are presented in Figure 4.52-4.54. The four-levels

CNA strategy reached an order of -8 in approximately 4800 fine-level iterations,

while CFA required approximately 9000 iterations. Both CNA and CFA achieved

a high acceleration compared to a single grid (55000 iterations). Furthermore, the

results of the multicloud and single-grid methods do not significantly differ, as indi-

cated in Figure 4.54 and 4.55. The results of f6wb demonstrate that the CNA coars-

ening strategy works well for three-dimensional complex geometries.
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Figure 4.48: Configuration of f6wb and its flow grid

Figure 4.49: Frontal view of surface point distribution on level 2 for f6wb

92



Figure 4.50: Frontal view of surface point distribution on level 2 for f6wb

Figure 4.51: Frontal view of surface point distribution on level 4 for f6wb
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Figure 4.52: Convergence history of f6wb in terms of the iteration

Figure 4.53: Convergence history of f6wb in terms of the walltime
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Figure 4.54: Convergence history of lift coefficient for f6wb in terms of iteration

Figure 4.55: Surface pressure comparison for f6wb
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4.4 Laminar flows

In this section, laminar flows were tested to demonstrate the validity of the multicloud

method to viscous flows. NACA0012 and cylinder Laminar flows were tested. four-

level V cycle with CNA coarening is applied to every test case.

4.4.1 NACA0012 Laminar flows

The first test case is Laminar flows around NACA0012 with Mach 0.5 and Reynolds

number 5000. This test case is widely used to demonstrate developed numerical

methods[58]. The goal of this case is not only comparing convergence histories but

also scrutinizing the discrepancy of solution between single and multicloud method

in viscous flows. To analyze viscous flows, blend of quadrature and triangle grids are

used as seen in Figure 4.56. CNA coarsening was applied to the grids since CFV was

used for discretization. the coarsening rates at level 2 is 0.168 and 0.31 for both 3

and 4 levels, which are the satisfactory coarsening rates for two-dimensional grids.

Finally, four-level V cycle was used.

Finite discretization was carried out by CFV and AUSM+up with Venkatakrish-

nan limiter was used for numerical flux computation. LU-SGS was used with CFL

condition 5. Estimation of gradient was computed by Nodal-based Green-Gauss The-

orem for both reconstruction and viscous flux. Figure 4.57 and 4.58 illustrate conver-

gence histories. As seen in Figure 4.57, the multicloud method needs 3537 iterations

to achieve -14 order of convergence whereas the single method takes 77079 itera-

tions. The speed-up is the factor of 22. This speed-up is by far the fastest case. It

might be driven by viscous effect and grid quality. In term of walltime, the acceler-

ation effect is rarely effected. The single grid case takes 2929 seconds whereas the
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Figure 4.56: The flow grid for NACA0012

multicloud case take 235 seconds, which is the factor of 12.

Figure 4.57: Density residual history for NACA0012 terms of iteration
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Figure 4.58: Density residual history for NACA0012 in terms of walltime

Figure 4.59 presents the comparisons of contour between the single and multi-

cloud methods. As seen in Figure 4.59b, the separation exhibit excellent agreement

between methods. Comparisons regarding surface coefficients are illustrated in Fig-

ure 4.60. As seen from the figures, surface pressure and skin friction coefficients ex-

hibit no discrepancy even though the multicloud method convergence 12 times faster

than the single grid method.
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(a) Mach number contour (b) Streamline pattern in the trailing edge

Figure 4.59: Contour comparison for NACA0012 Laminar flows (Upper : Single,

Nether : multicloud 4 levels

(a) Surface pressure coefficient (b) Skin friction coefficient

Figure 4.60: surface coefficient comparison for NACA0012 Laminar flows
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4.4.2 Laminar flows around the cylinder (Re 40)

The next valdiation case for laminar flow is Mach 0.1 flow around the cylinder with

Reynolds number 40. laminar cylinder flows is the famous benchmark for validation

of laminar flows[59]. Re 40 cylinder flows is the famous test case for steady laminar

flows without vortex shedding. Figure 4.61 illustrates the flow grid used in this case,

which is the blend of quadrature and triangle grids. AUSM+up with Venkatakrishnan

limiter and LU-SGS with CFL 2 were used. Furthermore, CNA coarsening with GC-

LSM was applied with four-level V cycle.

Figure 4.61: Flow grid for Re 40 cylinder flows

Convergence histories are plotted in Figure 4.62 and 4.63. The single-grid method

takes 175,000 iterations to convergence which is extreme higher iteration numbers

than those of the multicloud method (19295 iterations). In term of walltime, the mul-

ticloud method spend 13,168 seconds to convergence whereas walltime spent on the

100



single-grid method is 68,249 seconds. It is the factor of five. Re 40 cylinder flows

exhibit less acceleration effect than Re 5000 NACA0012 laminar flows. It seems that

the separation in the downstream that is shown in Figure 4.64 requires more iter-

ations to be stabilized. As seen in Figure 4.64, the comparison of the location of

separation in the downstream between the single-grid and multicloud show excellent

agreements. In fact, the L2 norm of rho solution difference is less than 1E-10. Fur-

thermore, Figure 4.65 illustrates comparisons of skin friction and pressure coefficient

along the surface. It is evident that the two methods provide the same solution though

the multicloud provides the solution 5 time faster.

Figure 4.62: Density residual history of Re 40 cylinder flow in terms of iteration
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Figure 4.63: Density residual history of Re 40 cylinder flow in terms of walltime

Figure 4.64: Streamline pattern in the downstream (upper : single, nether : 4 levels)
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(a) Surface pressure coefficient (b) Skin friction coefficient

Figure 4.65: surface coefficient comparison for Re 40 cylinder flow
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4.5 Turbulent flows

4.5.1 Transonic flows around ONERA M6 (Re 11.75e6)

The results in this section are provided to investigate convergence properties of the

multicloud method with directional coarsening. The transonic flows around ONERA

M6(Reynolds number 11.75E6) was numerically solved by turbulent solver. S-A one

equation model was used to estimate the viscosity. Furthermore, S-A equation was

also included in the multicloud process. However, S-A equation was applied to three-

level V cycle, whereas five basic transport equations (mass, momentum, energy) was

applied to four-level V cycle. Furthermore, only one iteration was conducted for S-

A equations on the coarse levels while five transport equations was performed by

multiple iterations on the coarse levels. The flow grid used in this case is shown in

Figure 4.66 with its coarsening result. Directional coarsening was applied since the

maximum aspect ratio is approximately 500. As seen from Figure 4.66a-4.66c, points

are coarsened along the marching direction of prism in order to alleviate high stretch

of the grids. Furthermore, meshlss discretization work perfectly on the region where

prisms encounter tetrahedral grids. Figure 4.67 and 4.68 show ρ and ν̃ convergence

histories. Significant acceleration effect is shown Both ρ and ν̃ residuals. Although

the results are slightly slower compared to the inviscid results, they are still signifi-

cantly effective.
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(a) level 2 (b) level 3 (c) level 4

Figure 4.66: Illustration of coarsening results for the highly stretched grid for ON-

ERA M6

Figure 4.67: Density residual history of ONERA M6 (Re 11.75e6)
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Figure 4.68: ν̃ residual history of ONERA M6 (Re 11.75e6)
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(a) (b)

Figure 4.69: Unstructured triangle grids for cylinder

4.6 hypersonic flows

4.6.1 Mach 8 flow around the cylinder

In order to validate the performance of damped restriction and prolongation. hyper-

sonic flows over cylinder was tested. the cylinder geometry is most widely used ge-

ometry for validation of schemes dealing with hypersonic flows. Figure 4.69 illus-

trates two dimensional unstructured grids that consist of triangles. Only unstructured

triangle grids are tested in this study since quadrature grids is same as structured

grids which were demonstrated in the early studies. Cell finite volume method is

used for fine level discretization such that CNA coarsening is applied as shown in

Figure 4.70. Inviscid analysis with Mach number 8 is tested for this case. Numerical

fluxes are computed by AUSMPW+ and LU-SGS time integration with CFL 1. Both

damped restriction and prolongation are applied to the multicloud process.

Figure 4.71 and 4.72 illustrate convergence histories. As seen in Figure 4.71,
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(a) Level 2 point cloud (b) Level 3 point cloud (c) Level 4 point cloud

Figure 4.70: Coarse level point cloud generated by CNA coarsening

four-level multicloud method takes 11533 iterations to achieve the order of -8 which

is 4 times faster than the single method (46600 iterations). In terms of wall time,

the single method takes 0.040 seconds for an iteration whereas 0.068 seconds for the

four-level V cycle multicloud method. Thus the speed-up with respect to walltime is

the factor of 2.31. Problems that include strong shocks generally exhibit degraded ac-

celeration. Furthermore the factor of 2.31 is a similar level of acceleration compared

to the structured multigrid methods for hypersonic flows. Furthermore, the multi-

cloud method demonstrated superior acceleration compared to the structured multi-

grid method proposed by Kim[6] even though unstructured multigrid methods often

shows less acceleration than structured multigrid methods. As seen in Figure 4.73,

solution discrepancy does not exhibit since L2 norm of the difference of rho is the

order of 1E-10. Consequently, it is evident that the multicloud method for hypersonic

flows delivers a satisfactory acceleration effect, regardless of the grid types.
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Figure 4.71: Density residual history for Mach 8 cylinder in terms of iteration

Figure 4.72: Density residual history for Mach 8 cylinder in terms of walltime
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(a) Pressure contour (b) Temperature contour

Figure 4.73: Contour comparisons between the single and four-level grid

4.6.2 Mach 8 flows around the sphere

The mach 8 flows around the sphere was tested to verify the performance of the

damping functions in three-dimensional space. Figure 4.74 illustrates the symmetric

flow grid for the sphere. Only the quarter of the sphere is considered since supersonic

inflow and outflow condition is only valid in this case. CFV spatial discretization

was applied to the grid in Figure 4.74. AUSMPW+ and LU-SGS were applied with

CFL condition 0.2. The four-level V cycle multicloud method with CNA coarsening

was used. Figure 4.76 exhibits the convergence history with respect to walltime. The

single-method takes 9375 seconds until convergence whereas that of the four-level

multicloud is 3835, which is the factor of 2.44. The speed-up factor is not degraded

compared to the two-dimension case and even more effective than that of the 2D

structured multigrid method of Kim[6]. Pressure and temperature contours exhibit no

solution discrepancy for this case(See Figure 4.77). The L2norm of the difference of
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rho is approximately 1E-12.

Figure 4.74: Symmetric flow grid for the sphere

Figure 4.75: Density residual history for Mach 8 sphere in terms of iteration
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Figure 4.76: Density residual history for Mach 8 sphere in terms of walltime

(a) Pressure (b) Temperature

Figure 4.77: Surface result comparisons for the Mach 8 sphere (left : single, right :

four-level multicloud)
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4.6.3 HTV-2

In order to demonstrate the performance of developed damping methods for a three-

dimensional practical problem, The DARPA/AF Falcon Hypersonic Technology Vehicle-

2 (HTV-2)[60] is selected. The Mach number conditions of HTV-2 ranged from Mach

6 to Mach 16, which are accompanied by strong shock. The hypersonic flow with

Mach 16 and angle of attack 10◦[61] was tested, which is the maximum mach num-

ber among the test conditions. The prism and tetrahederal hybrid grids are used for

the finest level. CNA coarsening was used until 4 level for four-level V cycle. CFV

method was used with AUSMPW+ and LU-SGS. CFL condition was 0.5. Figure 4.79

and 4.80 illustrate convergence histories in term of iteration and wall time. The single

grid method takes 7600 iterations to converges whereas the multicloud method takes

only 2200 iterations. The speed-up in terms of iteration is the factor of 3. But in terms

of walltime, the time spent per iteration is 0.55 seconds for the single grid method

and 0.96 seconds for the multicloud method. Consequently, the speed-up in terms of

walltime is the factor of 2 approximately. The speed-up is less effective than the pre-

vious results since strong shock intensively damps the restriction and prolongation.

Nonetheless, The results indicate that the acceleration seems to be not only satisfac-

tory but also robust for extremely high speed flows even for the three-dimensional

practical problem. Figure 4.81 compares the results between the single-grid and mul-

ticloud methods at x = 1.5. As seen from the figure, both Mach number and pressure

contours exhibit excellent agreement even for extremely strong shock.
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Figure 4.78: Symmetric flow grid for HTV-2

Figure 4.79: Density residual history for HTV-2 in terms of iteration
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Figure 4.80: Density residual history for HTV-2 in terms of walltime

(a) Pressure (b) Mach number

Figure 4.81: Result comparisons for HTV-2
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Chapter 5

Concluding remarks

5.1 Conclusions

The goal of the thesis is to develop a improved meshless geometric multigrid that

is called as multicloud method. The improvements were achieved in a variety ways

through the thesis.

The main achievement is attained by a new cell coarsening strategy, which is

named as common node approach(CNA) coarsening. The new cell coarsening strat-

egy provides extremely coarsened computational domains than the ideal coarsening

rates. It was obvious that more coarsened domain grants the enhanced acceleration

effect but it was uncertain that the meshless discretization can work robustly on the

extremely coarsened domain. It is proved that the conventional least squares(LSM)

meshless discretization exhibit instability on the CNA coarsening. However, meshless

discretizaion by least squares method with geometric conservation law(GC-LSM)

does not lose it robustness on CNA coarsening. Consequently, by combining GC-

LSM and CNA coarsening, the extremely dramatic convergence acceleration effect
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was obtained since GC-LSM grants the robust and accurate numerical estimation of

fluxes even on the CNA coarsened domain.

Furthermore, lower-upper symmetric Gauss-Seidel (LU-SGS) method was ap-

plied to meshless methods regardless of its conservative properties. Considering the

previous multicloud methods was used based on explicit time integration method,

implementation of LU-SGS is significant progress for the multicloud method since it

is evident that implicit time integration method guarantees much higher CFL number

than that of explicit methods.

The blend of CNA coarsening, LU-SGS and GC-LSM have proven its perfor-

mance for both inviscid and viscous flows. Results obtained from highly complicated

configurations, such as the DLR-F6 wing body nacelle pylon model, clearly high-

lighted the significant effectiveness of the developed method.

Moreover, meshless damping methods were developed to stably accelerate con-

vergence problems with strong shock. It was proved that the meshless damping meth-

ods is significantly effective through results of hypersonic flows regardless of dimen-

sion.

Finally, the results clearly demonstrate that the improved multicloud method

cosnsitently outperforms the original multicloud method through a variety of pro-

posed methodologies, regardless of the dimension, geometries, and flow conditions

involved.

5.2 Future works

Even though the developed method provides successful meshless convergence accel-

erator, following studies are required for more applications. Most of all, the mutlcloud
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application to other turbulence model is needed such as k-w sst[62]. The implemen-

tation may be more difficult than S-A one equation since two equations are added

for k-w sst. Then, the multicloud application to dynamic mesh for unsteady problems

is also highly recommended since meshless discretization can be useful tool for dy-

namic mesh. Furthermore, the adopation to overset grid can be a good application for

the multicloud method.
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[45] P. Gerlinger, H. Möbus, and D. Brüggemann, “An implicit multigrid method for

turbulent combustion,” Journal of Computational Physics, vol. 167, no. 2, pp.

247–276, 2001.

124



[46] P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic

flows,” in 30th aerospace sciences meeting and exhibit, 1992, p. 439.

[47] S. R. Allmaras and F. T. Johnson, “Modifications and clarifications for the im-

plementation of the spalart-allmaras turbulence model,” in Seventh international

conference on computational fluid dynamics (ICCFD7), vol. 1902. Big Island,

HI, 2012.

[48] K. H. Kim, C. Kim, and O.-H. Rho, “Methods for the accurate computations of

hypersonic flows: I. ausmpw+ scheme,” Journal of computational physics, vol.

174, no. 1, pp. 38–80, 2001.

[49] F. Kemm, “A comparative study of tvd-limiters—well-known limiters and an

introduction of new ones,” International Journal for Numerical Methods in Flu-

ids, vol. 67, no. 4, pp. 404–440, 2011.

[50] M. Darwish and F. Moukalled, “Tvd schemes for unstructured grids,” Interna-

tional Journal of heat and mass transfer, vol. 46, no. 4, pp. 599–611, 2003.

[51] A. Jameson, “Analysis and design of numerical schemes for gas dynamics, 1:

artificial diffusion, upwind biasing, limiters and their effect on accuracy and

multigrid convergence,” International Journal of Computational Fluid Dynam-

ics, vol. 4, no. 3-4, pp. 171–218, 1995.

[52] C. Liu and C. Hu, “An immersed boundary solver for inviscid compressible

flows,” International Journal for Numerical Methods in Fluids, vol. 85, no. 11,

pp. 619–640, 2017.

125



[53] V. Schmitt, “Pressure distributions on the onera m6-wing at transonic mach

numbers, experimental data base for computer program assessment,” AGARD

AR-138, 1979.

[54] J. T. Batina, “Accuracy of an unstructured-grid upwind-euler algorithm for the

onera m6 wing,” Journal of aircraft, vol. 28, no. 6, pp. 397–402, 1991.

[55] C. L. Rumsey, S. M. Rivers, and J. H. Morrison, “Study of cfd variation on

transport configurations from the second drag-prediction workshop,” Comput-

ers & fluids, vol. 34, no. 7, pp. 785–816, 2005.

[56] H. McMorris and Y. Kallinderis, “Octree-advancing front method for generation

of unstructured surface and volume meshes,” AIAA journal, vol. 35, no. 6, pp.

976–984, 1997.

[57] S. H. Kim, Development of Point Generation Technique Using Octrees for Nu-

merical Simulation of Steady/Unsteady Flows. Seoul National University,

2018.

[58] R. C. Swanson and S. Langer, “Comparison of naca 0012 laminar flow solu-

tions: structured and unstructured grid methods,” Tech. Rep., 2016.
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초록

본 논문은 무격자 차분법을 이용하여 격자 비종속적인 수렴 가속 기법에 개

발에 대하여 설명하고 있다. 격자 비종속적 수렴 가속 기법은 multicloud 기법이

라불리우며,저해상도에서무격자차분을이용하여계산을수행하여고주파수의

에러를감쇄시키고그결과로고해상도격자의유동값을보정하여수렴을가속시

키는방법이다. Multicloud기법은저해상도에서무격자차분을사용함으로써,기

존의 비정렬 격자 기반의 멀티그리드 기법보다 손쉽게 저해상도의 computational

domain을 만들 수 있고, 저해상도에서 다른 기법보다 강건하게 차분을 수행할 수

있는장점이있다.이장점들로인해고해상도에서셀중심,노드중심그리고무격

자기법과같은어떠한방법의차분법에도적용될수있는기법이다.

본 연구에서는 새로운 무격자 기반의 cell coarsening 기법을 개발하여 사용하

여, 기존의 정렬 및 비정렬 멀티그리드 기법 대비 더 높은 coarsening rates의 저해

상도 질점계의 자동적인 생성에 성공하였다. 하지만 높은 coarsening rates는 에러

감쇄효과를증폭시키지만저해상도에서강건한계산이동반될때에효과를볼수

있다. 이를 위해, 기하학적 보존을 만족하는 최소제곱법을 이용한 무격자 공간 차

분 기법을 도입하여 다른 무격자 기법으로 성공하지 못한 수렴 가속 수준에 도달

하는데성공하였다.

뿐만 아니라, 기존의 multicloud 기법에서는 제안되지 않았던, 내재적인 LU-

SGS 시간 적분법을 multicloud에 적용하는데 성공하여 기존에 사용되던 외재적
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multicloud에비해서높은수준의수렴가속효과를강건하게얻을수있게되었다.

마지막으로는무격자기반의 multicloud감쇄함수를개발하여,극초음속유동

에서의multicloud기법의효용성을보여주었을뿐만아니라새로운 cell coarsening

기법과결합하여기존의정렬격자멀티그리드기법에비하여더높은수렴가속효

과를보여주었다.

결론적으로,본연구를통해개선된multicloud기법은기존의기법에서보여주

지 못했던, 셀 중심 기법에서의 성능 극대화에 성공하였고, 복잡한 삼차원 형상을

포함한점성,비점성그리고극초음속유동에서의효과를증명하였다.

주요어:무격자기법,수렴가속,비정렬격자,내재적시간적분,멀티그리드

학번: 2016-30190
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