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Abstract 

 

A Robust and Accurate Reconstruction 

Method based on Machine Learning 

for High-Speed Flow Simulation 

on Unstructured Meshes 

 

Joo Jayeon 

Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Developing a robust and accurate shock-capturing method in 

computational fluid dynamics (CFD) has long been a challenging task, 

despite extensive research efforts based on mathematical analysis. As 

a breakthrough, this study proposes a new reconstruction method 

using a data-driven approach to achieve high levels of robustness and 

accuracy in multi-dimensional compressible flows based on the finite 

volume method. The proposed method divides the computational 

domain into discontinuous and smooth regions using a tree model. 

Subsequently, fully connected neural network (FCNN) models are 

trained specifically for each region, allowing for high robustness in 

capturing shocks in the discontinuous region and high accuracy in 
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modeling the smooth region. 

To train the models in this study, four types of datasets were 

constructed: one representing discontinuous flows and the other 

representing smooth flows for quadrilateral and triangular element 

types. These datasets incorporated a variety of analytic functions, 

ensuring comprehensive coverage of different flow scenarios. 

Additionally, suitable input features were defined to enable efficient 

extension to unstructured meshes, enhancing the method's 

applicability. 

Extensive numerical tests were conducted to validate the 

robustness and accuracy of the proposed method. This study 

highlights the potential of data-driven methods in improving the 

accuracy and robustness of complex flow simulations and presents a 

promising approach for developing more effective shock-capturing 

methods in CFD. 
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Chapter 1 Introduction 

 
1.1 Research Background 

 
In engineering applications, the finite volume method (FVM) [1], 

which can be applied regardless of grid topologies, is widely used as 

a standard. Also, FVM can obtain high-order accuracy by using high-

order polynomials in the reconstruction process [2]. However, 

numerical oscillations can occur in the shock wave region with abrupt 

flow variable changes when solving supersonic and hypersonic flows 

with second-order or higher accuracy. These oscillations cause 

numerical instability. In addition, Godunov's theorem demonstrates 

that linear and monotonic numerical schemes cannot exceed first-

order accuracy [3]. 

Many shock-capturing methods have been developed based on 

different stability conditions. These methods aim to eliminate the 

oscillations while maintaining the desired accuracy.  

One such condition is the Total Variation Diminishing (TVD) 

condition [4], which ensures that the total variation of the solution 

does not increase over time. However, this approach inevitably results 

in first-order accuracy in regions of smooth extrema, known as the 
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clipping phenomenon. Another approach is the Total Variation 

Bounded (TVB) condition [5], which guarantees that the total variation 

of the solution remains bounded. Representative TVB-based 

reconstruction methods are the Essentially Non-Oscillatory (ENO) [6] 

and Weighted Essentially Non-Oscillatory (WENO) [7] methods. 

However, they require tunable parameters to define the boundness of 

the total variation. Additionally, since TVD and TVB were developed 

through one-dimensional analysis, extending the scheme to multi-

dimensional problems requires a dimensional splitting method. It still 

leads to limitations in reconstructing high-order polynomials in 

irregular meshes. Therefore, in multi-dimensional problems, the 

maximum principle has been introduced to ensure the positivity and 

boundedness of the solution. Representative maximum principle-

based shock-capturing methods are the Barth and Jespersen limiter 

[8], Venkatakrishnan limiter [9], and Multi-dimensional Limiting 

Process (MLP) limiter [10]. The MLP limiter has greatly improved 

robustness, accuracy, and convergence in high-speed flow by 

appropriately considering multi-dimensional effects overlooked in 

developing conventional high-accuracy numerical methods.  
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However, the methods mentioned above have been developed 

based on mathematical analysis. Recently, there has been a growing 

interest in developing shock-capturing methods using data-driven 

approaches, which offer several advantages. First, these approaches 

can eliminate user-defined parameters, making the method more 

objective. Second, they do not need to rely on a single explicit 

condition, allowing them to combine the advantages of various 

schemes by training datasets based on multiple conditions. 

Furthermore, data-driven approaches can be trained using datasets 

based on analytic functions or exact solutions, thereby improving the 

accuracy of the solutions. 

Examples of data-driven shock-capturing methods are followed. 

At first, Ray and Hesthaven developed a troubled-cell indicator by 

training an artificial neural network (ANN) with shock wave data 

generated using an analytical function. They verified the performance 

by applying the indicator to the high-order discrete Galerkin method 

in one/two-dimensional benchmark problems [11],[12]. Yu et al. used 

ANN to develop a smoothness indicator and combined it with an 

artificial viscosity technique [13]. Beck et al. treated the solution 

distribution of each sub-cell as a single image. They applied edge 

detection techniques to classify cells in the shock region (shock 
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detection) and localize the shock wave location in sub-cells (shock 

localization). They combined the method with the artificial viscosity 

technique and verified it through one/two-dimensional benchmark 

problems [14], [15]. Feng et al. trained an ANN using rigorous 

solution data of the one-dimensional Burgers equation and extended 

it to multi-dimensional shock wave flow through dimensional splitting 

[16], [17]. Additionally, Discacciati et al. developed a universal 

artificial viscosity model that learns several artificial viscosity 

methods suitable for flow situations, eliminating the need for 

parameter adjustment [18]. 

However, it is important to note that many of these previous 

studies have primarily focused on using high-order methods rather 

than the FVM. Additionally, most of these studies have only partially 

replaced certain aspects of the shock-capturing methods with machine 

learning techniques. 
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1.2 Research Objective 

 

The objective of this study is to introduce a novel data-driven 

reconstruction method based on the FVM. The primary goal is to 

achieve a data-driven approach that maintains high robustness in 

discontinuous regions while enhancing accuracy in smooth regions, all 

using only the MLP stencil.  

To achieve this objective, the study incorporates a tree model to 

effectively distinguish between discontinuous and smooth cells within 

the computational domain. In addition to the tree model, two fully 

connected neural network (FCNN) models are employed to compute 

the cell interface values for each cell. These FCNN models play a 

crucial role in accurately and robustly reconstructing cell interface 

values, ensuring high-quality simulations in both discontinuous and 

smooth regions.  

To train these models, the method constructs a discontinuous 

dataset by using limited values at the cell interface, thereby ensuring 

robustness in discontinuous regions. Conversely, a smooth dataset is 

generated by using exact values at the cell interface with a compact 

stencil, aiming to enhance accuracy in smooth regions. Furthermore, 

the proposed data-driven reconstruction method is extended to 
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accommodate irregular mixed meshes by defining appropriate input 

features, allowing the method to handle more complex and diverse 

flow scenarios. 

Finally, through a comprehensive set of numerical tests and 

application problems, the study aims to rigorously demonstrate the 

proposed data-driven reconstruction method's robustness and 

accuracy in handling different flow scenarios. By examining the 

method's performance in various challenging scenarios, including 

discontinuous and smooth flow fields, the study seeks to validate the 

method's potential as an effective and versatile approach for fluid 

simulations. 
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Chapter 2 Finite Volume Method 

In this section, an overview of finite volume method (FVM) on 

unstructured meshes are presented. 

 

 

Figure 2.1: Quadrilateral cell and its neighborhood 

 

Consider the multi-dimensional hyperbolic conservation laws 

given by the partial differential equation: 

𝜕𝐐
𝜕𝑡

+ ∇ ⋅ 𝐅 = 0, Eq. 2.1 

where 𝐐 is the state variable vector and 𝐅 is the flux function vector. 

In FVM, Equation, Eq. 2.1 is integrated over the control volume 𝑇#, 

resulting in the following Eq. 2.2. 

9
𝜕𝐐
𝜕𝑡

+
$!

9 𝐅 ⋅ 𝐧𝑑𝑆 = 0.
%$!

	 Eq. 2.2 

Here, 𝐧  represents the outward normal vector. Depending on the 
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location of physical variables, FVM allows for the use of either a cell-

centered or cell-vertex approach. In this study, a cell-centered 

approach is adopted. After numerically approximating the flux function, 

the semi-discrete form of Eq. 2.3 is obtained: 

=𝑇#=
𝜕𝐐>#
𝜕𝑡

+ ? 𝐇(𝐐>#& , 𝐐>&#)
'!"∈$!

=𝑒#&=. Eq. 2.3 

In this equation, 𝐐># represents the cell-averaged state vector, while 

𝐐>#& represents the cell interface state vector in the direction from cell 

𝑇# to 𝑇&. |𝑇#| denotes the area of cell 𝑇#, and 𝑒#& represents the edge 

between 𝑇#  and 𝑇&  with a length =𝑒#&= . The vector 𝐇(𝐐>#& , 𝐐>&#) 

represents the numerical flux function, and the midpoint rule is applied 

to calculate the numerical flux. 

 To achieve high-order accuracy, various reconstruction 

methods have been developed to compute the cell interface values. 

One such method, known as the multi-dimensional limiting process 

(MLP), will be discussed in more detail in Ch. 3. Additionally, in this 

study, an improved reconstruction method using machine learning will 

be introduced in Ch. 4.  
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Chapter 3 Multi-dimensional Limiting Process 

 

The multi-dimensional limiting process (MLP) limiter is a robust 

and accurate method that incorporates both cell-centered and cell-

vertex points, making it effective for non-grid-aligned flow 

distributions. In this study, the MLP limiter is utilized to generate a 

discontinuous dataset, ensuring strong robustness. This section 

provides a concise explanation of the MLP limiter and its 

implementation steps. 

 

Figure 3.1: MLP stencil of the cell 𝑇# (shaded region: neighboring 

cells of the vertex 𝑣)) 
 

The condition satisfied by the MLP limiter is expressed by Eq. 3.1, 

which ensures that the estimated value of the vertex point (𝑞E*#) lies 

within the range of the averaged values of neighboring cells. 

 𝑞F+'),-./0123 ≤ 𝑞E*# ≤ 𝑞F+'),-./0145 , ∀𝑣) ∈ Θ# , Eq. 3.1 
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In this equation, Θ# represents the set of vertices of the target cell 𝑇#, 

and 𝑣) represents each vertex. The neighboring cells refer to the cells 

that share the vertex point, and 𝑞F+'),-./06)+  and 𝑞F+'),-./0678  represent the 

minimum and maximum averaged values of neighboring cells. The 

estimated value of vertex point (𝑞E*#) can be calculated by Eq. 3.2.   

𝑞E*# = 𝑞F# + 𝜙∇𝑞# ⋅ 𝑟*#,# .	 Eq. 3.2 

In this equation, 𝑞F# represents the averaged value of the target cell 𝑇#, 

∇𝑞# represents the gradient of target cell 𝑇#, and �⃗�*#,# represents the 

distance vector from cell center point of 𝑇# to vertex point 𝑣). Finally,	

𝜙	 represents limiter value. To ensure that the estimated value at the 

vertex point satisfies the condition mentioned earlier, the MLP limiter 

is applied to the estimated gradient, restricting its slope, and 

preventing unphysical oscillations or overshoots in the solution. The 

range of MLP limiter is then obtained by Eq. 3.1 and Eq. 3.2 as follows. 

0 ≤ 𝜙 ≤ maxQ
𝑞F*#
123 − 𝑞F#
∇𝑞F# ⋅ 𝑟*#,#

,
𝑞F*#
145 − 𝑞F#
∇𝑞F# ⋅ 𝑟*#,#

S . Eq. 3.3 

From Eq 3.3, the MLP limiters can be obtained as follows.  

𝜙 = min VΦ(𝑟*#,#) if	∇𝑞F# ⋅ �⃗�*#,# < 0
1 otherwise

, Eq. 3.4 

where 

Φ(𝑟*#,#) = max Q
𝑞F*#
123 − 𝑞F#
∇𝑞F# ⋅ 𝑟*#,#

,
𝑞F*#
145 − 𝑞F#
∇𝑞F# ⋅ 𝑟*#,#

	S . Eq. 3.5 
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Chapter 4 Data-driven Reconstruction Method 

 

 

Figure 4.1: Overall process of the data-driven reconstruction method 

 

The primary objective of this study, as discussed in Ch. 1, is 

to maintain high robustness in discontinuous regions and enhance 

accuracy in smooth regions using only the MLP stencil. To accomplish 

this objective, this study employs a two-step procedure, as illustrated 

in Figure 4.1. In the first step, a tree model is used to distinguish the 

whole computational domain into two distinct cells: discontinuous cells 
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and smooth cells. In the second step, appropriate fully connected 

neural network (FCNN) models are employed to reconstruct the 

interface values of the cells. For robustness in discontinuous cells, the 

discontinuous FCNN (D-FCNN) model is employed, trained on a 

dataset representing discontinuous solution distribution. Conversely, 

the smooth FCNN (S-FCNN) model, trained on a dataset representing 

smooth solution distribution, is used to achieve enhanced accuracy in 

smooth regions. 

 

Figure 4.2: Datasets and models used in this study 

 

The datasets and models employed in this study are depicted 

in Figure 4.2. The primary objective of the study is to develop a 

method applicable to irregular mixed grids. To achieve this, both 
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triangular and quadrilateral elements are considered. For each type of 

element, two types of analytic functions are used: one representing 

discontinuous solution distributions and the other representing smooth 

solution distributions. This results in four datasets combining the 

element types with their corresponding solution distribution types. 

To address the distinction between function types for each 

element, two tree models are trained for each element type. These 

tree models are specifically designed to differentiate between 

discontinuous and smooth function types. 

Additionally, each dataset is associated with a corresponding 

FCNN model. This ensures that each dataset is paired with an 

appropriate FCNN model for accurate predictions. Consequently, four 

FCNN models are employed in this study, aligning with the four 

datasets. 

The following section provides a comprehensive description of 

the datasets and models utilized in this study. 
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4.1 Datasets 

 

Before diving into the detailed explanations, let's provide a 

summary of the data construction and preprocessing in this study: 

1. Mesh generation: Two types of meshes, regular and 

irregular, are generated for both quadrilateral and 

triangular element types. 

2. MLP stencil extraction: From the generated mesh, the MLP 

stencil is extracted.  

3. Assignment of analytic function: An analytic function is 

assigned to represent the desired solution distribution. This 

function can capture both discontinuous and smooth 

characteristics. 

4. Calculation of flow variables: Flow variables are calculated 

based on the assigned analytic function. These variables 

provide essential information for computing the proper 

input features and label values required for model training. 

In the following sections, a detailed explanation of each step will be 

provided. 
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4.1.1 Data Construction  

 

The first step to construct data is the generation of the mesh. 

In this study, two types of elements, quadrilateral and triangular, are 

considered to ensure the method's extension to irregular mixed 

meshes. For each element type, the dataset is constructed using two 

types of meshes: regular and irregular. As a result, four types of 

meshes are employed: regular quadrilateral (RQ), irregular 

quadrilateral (IQ), regular triangular (RT), and irregular triangular (IT), 

as illustrated in Figure 4.3.  

The quadrilateral dataset is generated using both RQ and IQ 

meshes, while the triangular dataset is created using RT and IT 

meshes. The IT mesh is constructed using the Delaunay algorithm, 

while the IQ mesh is formed by introducing random perturbations 

ranging from 0% to 20% to the regular quadrilateral mesh. 
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(a) Regular quadrilateral (RQ) (b) Irregular quadrilateral (IQ) 

  

(c) Regular triangular (RT) (d) Irregular triangular (IT) 

 

Figure 4.3: Four types of meshes 
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Once the meshes are generated, the MLP stencils are 

extracted from each mesh. 

 

 

 Figure 4.4: MLP stencil extraction 

 

Following that, two distinct types of random functions, namely 

discontinuous and smooth, are applied to the stencils. This process 

produces discontinuous and smooth data. The discontinuous data 

exhibits abrupt changes in the flow field, while the smooth data 

represents a smoother variation. Once the random functions are 

assigned, the subsequent process varies based on the type of function. 
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• Discontinuous data 

 

 

Figure 4.5: Process of assigning cell-averaged values for 

discontinuous data 

 

1. Two points are randomly selected within the target cell.  

2. Then, a line is defined based on these two points, and the 

cells that the line crosses and the cells that the line does 

not cross are distinguished. 

3. The distance between the cell-centered coordinates and 

the line is calculated for the crossed cells. 

4. Cell-averaged values (𝑞F)	are assigned to the crossed cells 

based on the corresponding distances. 

5. The assigned values are multiplied by weight values, 𝑤: 

for the upward direction and 𝑤;  for the downward 

direction, to create various distributions. 𝑤:	and 𝑤;  are 

randomly selected between 0 and 1. 
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6. The assigned values are scaled to set them within the range 

of 1 to 3. 

7. The assigned values are re-scaled using the formula 

(𝑞F𝐶) +	(2	– 	2𝐶), where 𝐶 is randomly selected between 0 

and 1. This formula sets the assigned values in the range 

from (2	– 	𝐶) to (2	 + 	𝐶). 

8. For the non-crossed cells, values are assigned in the 

upward direction from (2	 + 	𝐶)  to (2	 + 	10𝐶)  and in the 

downward direction from (2	 − 	10𝐶) to (2	 − 	𝐶). 

By following this process, the computation is efficient in generating 

discontinuous distributions, making it a reliable alternative to using 

mensuration by parts. The examples of the generated data are 

illustrated in Figure 4.6. 

  

(a) case1 (b) case2 

Figure 4.6: Examples of discontinuous data (RQ) 
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• Smooth data 

 

On the other hand, for generating smooth data, the coefficients 

of the equation given in Eq. 4.1 are randomly selected within a 

specified range. The range of coefficients is determined through a 

trial-and-error process to ensure a smooth variation in the data. The 

specific range of coefficients can be found in Table 4.1. 

 

𝑞 = 𝑎g𝑥 − 𝑥<i
= + 𝑏g𝑦 − 𝑦<i

= + 𝑐g𝑥 − 𝑥<ig𝑦 − 𝑦<i. Eq. 4.1 

 

In this equation, 𝑥 and 𝑦 represent the coordinates of the cell-center, 

while 𝑥< and 𝑦< are two randomly selected points within the target 

cell. 

Table 4.1: Range of the coefficients for smooth data 

Coefficient Range 

𝑎 ℝ[-10,10] 

𝑏 ℝ[-10,10] 

𝑐 ℝ[-5,5] 
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(a) case1 (b) case2 

Figure 4.7: Examples of smooth data (RQ) 

 

To compute the inner-face values for training the fully 

connected neural network (FCNN) model, distinct methods are 

employed for discontinuous and smooth datasets.  

In the case of discontinuous data, the MLP limiter function is 

employed to ensure robustness. The computation of the MLP limiter 

value involves calculating the gradient vector of the target cell using 

the previously assigned values (𝑞F) and the least-square method. The 

MLP limiter value is then derived following Eq. 3.4 and Eq. 3.5. 

Subsequently, this MLP limiter value is applied to compute limited 

reconstructed values at the face center, which are used as the inner-

face values for training the FCNN model.  

On the other hand, for smooth data, the values extracted 
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directly from the analytic function are used to enhance accuracy. Since 

smooth data does not require the calculation of gradients or MLP 

limiter values, the inner-face values for training the FCNN model are 

simply obtained as the average value along the face. This approach 

ensures accurate representation of the smooth data for the FCNN 

training process. 

 

4.1.2 Data Preprocessing 

  

Data preprocessing plays a crucial role in machine learning 

(ML) by preparing raw data for effective model training. It involves 

various tasks, such as feature selection, feature ordering, and scaling. 

In this study, both tree and fully connected neural network 

(FCNN) models require fixed-dimensional input features. Therefore, 

data preprocessing is essential to ensure consistent input dimensions 

for the models, especially due to the varying number of cells in MLP 

stencils in unstructured meshes. To achieve this, a compact stencil is 

extracted from the MLP stencil. This compact stencil includes the 

target cell and its neighboring cells, forming a subset of the original 

MLP stencil. The input features are then defined based on this compact 

stencil. 
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Figure 4.8: Extraction of compact stencil from MLP stencil  

 

The input features consist of two components. Firstly, cell-

averaged values (𝑞F) are extracted from the compact stencil, providing 

essential information about the flow field. Secondly, inverse distance 

weighted values (𝑞E) are calculated for the vertices of the target cell 

using Eq. 4.2. These values incorporate both the coordinate 

information of the target cell and information from the full MLP stencil. 

𝑞E*# =
∑ 𝑞F& ⋅

1
=𝑟*$&oooooo⃗ =$"∈>%!

∑ 1
=𝑟*$&oooooo⃗ =$"∈>%!

. Eq. 4.2 

Here, 𝑆$! represents the full MLP stencil of target-cell (𝑇#), and |𝑟*$&oooooo⃗ | 

represents the distance between cell 𝑇& and vertex 𝑣).  

This extraction process ensures that the input features have a 

fixed dimension for each element type. For quadrilateral element types, 

the input features have a dimension of 9, while for triangular element 

types, the dimension is set to 7. 
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(a) Quadrilateral element (b) Triangular element 

Figure 4.9: Extracted input features of MLP stencil 

 

Additionally, to satisfy the rotational symmetry condition, an 

extra step is taken to order the input features. The target-cell 

averaged value (𝑞F?)	 is placed first, and then the minimum cell-

averaged value is selected. The remaining features are then arranged 

in a counterclockwise rotation around the target cell. This ordering 

scheme ensures that the input features maintain rotational symmetry. 

Furthermore, the label values (inner-face values) are matched with 

the order of cell-averaged values, guaranteeing that the input features 

and corresponding label values are correctly aligned and consistent 

during the training process. The input features (𝒒) expressed by Eq. 

4.3 and label values are illustrated in Figure 4.10. 

 

V
𝒒@:7; = {𝑞F?, 𝑞FA, 𝑞E?, 𝑞F=, 𝑞EA, 𝑞FB, 𝑞E=, 𝑞FC, 𝑞EB}

𝒒D0) = {𝑞F?, 𝑞FA, 𝑞E?, 𝑞F=, 𝑞EA, 𝑞FB, 𝑞E=}
. Eq. 4.3 
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(a) Quadrilateral element (b) Triangular element 

Figure 4.10: Order of input-features and label values 

 

Additionally, it is important to normalize the input features. 

This normalization step involves scaling the features to a range of 0 

to 1, considering the minimum and maximum values of the MLP stencil. 

By normalizing the input features in this manner, the information from 

the MLP stencil is incorporated into the compact stencil, ensuring that 

the models can effectively utilize the data. 

𝑞 =
𝑞 − 𝑞F6)+

𝑞F678 − 𝑞F6)+
, Eq. 4.4 

where 𝑞F6)+ denotes minimum cell averaged value of the MLP stencil 

and 𝑞F678 denotes maximum cell averaged value of the MLP stencil. 

Overall, the data preprocessing steps described in this study 

ensure that the input features have fixed dimensions, satisfy rotational 

symmetry, and are normalized appropriately, providing a suitable and 

standardized format for training the ML models. 
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The final dataset used to train is summarized in Table 4.2. 

 

Table 4.2: Datasets used in this study 

Type of element Type of function # of data 

Quadrilateral 

element 

Discontinuous function 100,000 

Smooth function 100,000 

Triangular 

element 

Discontinuous function 100,000 

Smooth function 100,000 
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4.2 Tree Models for Shock Indicator 

 

In this study, two tree models are employed as shock indicators 

to differentiate between discontinuous and smooth cells. One model is 

designed for triangular element type cells, while the other is tailored 

for quadrilateral element type cells. In the subsequent section, we 

provide a comprehensive explanation of the training algorithm 

employed for the tree models, including the hyperparameter settings 

and the obtained results. 

 

4.2.1 Decision Tree 

 

 

Figure 4.11: Structure of a decision tree (depth = 3) 
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The decision tree [19] as shown in Figure 4.11 is a widely 

used machine learning algorithm for classification tasks. It is known 

for its simplicity and interpretability, as it employs if/else/then rules, 

making it easy to understand and implement. The algorithm partitions 

the dataset by conditions that maximize the homogeneity of the 

resulting groups. The final score which is the output of the tree is 

assigned to the leaf nodes of the tree.  

 

4.2.2 Ensemble Method    

 

To enhance the accuracy of a tree model, ensemble methods 

[20], [21] are introduced. Ensemble methods are machine learning 

techniques that combine multiple individual models to create a more 

robust and accurate predictive model. The idea behind ensemble 

methods is that by aggregating the predictions of multiple models, the 

collective result can outperform any individual model.  
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Figure 4.12: Comparison of single method and ensemble methods 

 

There are different types of ensemble methods, but two 

commonly used ones are:  

1. Bagging (Bootstrap Aggregating): In bagging, multiple 

models are trained on different subsets of the training data, 

which are randomly sampled with replacement. Each model 

is trained independently, and the final prediction is made by 

averaging or voting on the predictions of all the models. 

2. Boosting: Boosting is a sequential ensemble method where 

models are trained iteratively. Each model in the sequence 

focuses on correcting the mistakes or misclassifications 

made by the previous models. The final prediction is made 

by combining the predictions of all the models, often using 

weighted voting. 

Ensemble methods offer several benefits. They can improve 
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the predictive performance and generalization of models by reducing 

bias and variance. By combining multiple models, ensemble methods 

can capture different patterns and make more accurate predictions. 

They are also effective at handling noisy or uncertain data.  

In the study, the gradient boosting method (GBM) is selected 

as the boosting algorithm to build tree models for the shock-indicator. 

 

4.2.3 Gradient Boosting Method (GBM) Algorithm 

 

GBM [22] is a popular and powerful machine learning 

technique that combines weak models, typically decision trees, to 

create a strong predictive model. It is an iterative algorithm that 

sequentially trains models to minimize a loss function. Here, we will 

describe the algorithm and its key equations. 

 The gradient boosting algorithm starts by initializing the model 

with a constant value, which serves as the initial prediction for all 

instances in the dataset. In each iteration, a weak model, often a 

decision tree, is trained to predict the negative gradient of the loss 

function based on the current ensemble's predictions. This negative 

gradient indicates the direction in which the model needs to be 

adjusted to minimize the loss, and it can be interpreted as the residual 
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or error. 

The prediction of the current ensemble at iteration 𝑚  is 

denoted as 𝐹6(𝑋). Here, 𝑋 represents input features. The negative 

gradient of the loss function, denoted as 𝑟6, is calculated by the Eq. 

4.5. 

𝑟6 = −
𝜕𝐿g𝑦, 𝐹6(𝑋)i
𝜕𝐹6(𝑋)

. Eq. 4.5 

Here, 𝐿g𝑦, 𝐹6(𝑋)i represents the loss function, which measures the 

discrepancy between the true target values 𝑦  and the current 

ensemble's predictions 𝐹6(𝑋).  

The weak model is trained to fit the negative gradient, acting 

as a so-called "residual" model. It learns to predict the remaining 

errors of the ensemble. The weak model is trained on the dataset 

(𝑋, 𝑟6), where the inputs 𝑋 are the features and the target values 𝑟6 

are the negative gradients. 

Once the weak model is trained, its predictions are added to 

the current ensemble: 

𝐹6EA(𝑋) = 	𝐹6(𝑋) + 	𝜂 ∙ 𝑓6EA(𝑋). Eq. 4.6 

In this equation, 𝜂 is the learning rate, which controls the contribution 

of each weak model to the ensemble. It is a hyperparameter that needs 

to be tuned. The weak model 𝑓6EA(𝑋) is scaled by the learning rate 𝜂 

and added to the current ensemble's predictions 𝐹6(𝑋). 
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This process continues for a predetermined number of 

iterations or until a convergence criterion is met. The final ensemble 

prediction is the sum of all weak model predictions: 

𝐹(𝑋) = 	𝐹?(𝑋) +	∑ (𝜂 ∙ 	𝑓)(𝑋))F
)GA . Eq. 4.7 

Here, 𝑀 represents the total number of iterations or the number of 

weak models in the ensemble. The final model 𝐹(𝑋) is the output of 

the gradient boosting algorithm, which can be used to make predictions 

on new, unseen instances. 

 

4.2.4 Hyperparameter Settings 

 

To train the tree models, the XGBoost library [23] is employed 

in this study. In the XGBoost, to build the models, the number of trees 

and the maximum depth of each tree are important hyperparameters 

that need to be determined. The number of trees refers to the total 

number of decision trees that will be trained in the ensemble. The 

maximum depth of each tree defines the maximum number of splits or 

levels in the tree structure. 

Another crucial hyperparameter is the base value, which 

represents the initial prediction made by the first tree in the ensemble. 

In addition, the learning rate, another important hyperparameter, 
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controls the contribution of each tree to the final ensemble. A smaller 

learning rate allows for more conservative updates to the model, while 

a larger learning rate can lead to faster convergence but may also 

introduce instability. Moreover, the choice of loss function depends on 

the specific problem being addressed. In this study, since the tree 

models are used as classification models, the logistic loss function is 

selected.  

In the Table 4.3, the hyperparameters used in this study are 

summarized, including the number of trees, maximum depth, base 

value, and learning rate for both triangular and quadrilateral models. 

These hyperparameters are carefully chosen through experiments and 

optimization to achieve the best performance for the specific task at 

hand.  

 

Table 4.3: Hyperparameter setting of tree models 

Hyperparameter Value 

# of estimators (trees) 3 

Maximum depth 5 

Base score 0.5 

Learning rate 0.1 

Loss function Logistic 
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4.2.5 Training Results 

 

 The training results are summarized in Table 4.4. The table 

presents the total accuracy of the models, as well as the accuracy for 

both the discontinuous data and the smooth data. 

 

Table 4.4: Results of tree models 

Model Type of Accuracy Value 

Tri-tree 

model 

Total accuracy 98.85% 

Discontinuous data accuracy 99.4% 

Smooth data accuracy 98.2% 

Quad-tree 

model 

Total accuracy 99.5% 

Discontinuous data accuracy 99.0% 

Smooth data accuracy 99.9% 

 

 Using the tree model, the importance of input features can be 

determined, which indicates their significance in partitioning the data. 

The importance of input features was evaluated for both the triangular 

and quadrilateral datasets, and the results are shown in Figure 4.12. 

The results reveal that all input features are important, with particular 

emphasis on the averaged values of face-neighboring cells (f1, f3, f5, 

f7), which are found to be more influential than the inverse distance 
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weighted values of the vertices of the target-cell (f2, f4, f6, f8). 

 

 

(a) Triangular dataset 

 

(b) Quadrilateral dataset 

Figure 4.13: Feature importance 

 

To test the performance of the quadrilateral tree model, 

different initial conditions are considered, including both discontinuous 

and smooth wave distributions. The tree mode is then applied to these 

conditions, and the resulting flow field is analyzed. 

Figure 4.14 demonstrates the results for the discontinuous 

wave case, where the tree model effectively captures the 
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discontinuities in the flow field. This highlights the model's ability to 

accurately represent the sharp changes in the solution. On the other 

hand, Figure 4.15 presents the results for the smooth wave case, 

showcasing the tree model's capability to accurately represent the 

entire cell as a smooth region.  

 

  

(a) Solution distribution (b) Indicating value contour 

Figure 4.14: Result of square wave problem (50 × 50) 

 

 

  

(a) Solution distribution (b) Indicating value contour 

Figure 4.15: Result of double sine wave problem (50 × 50) 
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It is important to note that these tests represent simplified 

problems aimed at testing the performance of the tree model. More 

advanced and complex tests, along with their results, are discussed in 

Ch. 5. 
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4.3 Fully Connected Neural Network Models for 

Reconstruction 

 

In this study, fully connected neural networks (FCNNs) [24] 

are employed to develop inner-face regression models. The FCNN 

models are categorized into four types: tri-D-FCNN, tri-S-FCNN, 

quad-D-FCNN, and quad-S-FCNN. Each model is specifically trained 

on a particular dataset, with tri-D-FCNN trained on a triangular 

discontinuous dataset, tri-S-FCNN trained on a triangular smooth 

dataset, quad-D-FCNN trained on a quadrilateral discontinuous 

dataset, and quad-S-FCNN trained on a quadrilateral smooth dataset. 

The subsequent section provides comprehensive explanations 

about the structure of the FCNN models. The model comparative study 

conducted to establish the criteria for successful training is presented. 

Additionally, the implementation of a grid search method to determine 

the optimal size of the FCNN models is discussed. Lastly, the outcomes 

of training these models are presented. 
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4.3.1 Fully Connected Neural Network (FCNN) 

 

 

Figure 4.16: Structure of a FCNN model and computation process 

 

 A fully connected neural network (FCNN) is an artificial neural 

network architecture where each neuron in all layers is connected to 

every neuron in the preceding layer. This connectivity pattern can be 

visualized in Figure 4.16, where 𝐱 represents the feature vector of 

the input layer, 𝐡 represents the feature vector of the hidden layer, 

𝐖 represents the weight matrix, 𝐛 represents the bias vector, and 𝐲 

represents the feature vector of the output layer. The architecture is 

well-suited for a variety of tasks due to its ability to capture complex 

relationships and learn from data.  
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4.3.2 Model Comparative Study 

 

 Before training models, it is crucial to establish that ensures 

their reliable performance. To determine this criterion, we conduct a 

model comparative study which is grid convergence test using MLP 

limiter and three quad-D-FCNN models, each having a distinct mean 

squared error (MSE) value: order of 10HC, 10HI, and 10HJ.  

If the training is successful, the quad-D-FCNN models should 

exhibit similar convergence rates of L1 and L2 errors, as well as a 

similar error range, compared to the MLP limiter. This is because the 

D-FCNN models are trained on the dataset using the MLP limiter. By 

comparing the performance of the quad-D-FCNN models to the MLP 

limiter, we can assess the reliability and effectiveness of our trained 

models. 

For the grid convergence test, a linear advection problem of a 

smooth wave is employed. The initial condition for this test is 

described by Eq 4.8 and depicted in Figure 4.16. The advection speed 

vector is set to (1,0.5). In the computation process, the local Lax-

Friedrichs flux is selected as the numerical flux scheme. The TVK-

RK3 method is employed for time integration. 

𝑞 = sin(2𝜋(𝑥 + 𝑦)). Eq. 4.8 
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Figure 4.17: Initial condition contour (50 × 50)	 

 

  

(a) L1 error (b) L2 error 

Figure 4.18: Convergence rates of L1 and L2 errors 

 

In Figure 4.18, the convergence rates of the L1 and L2 errors 

are presented. The results indicate that the model with an MSE of 10HC 

shows an erratic convergence rate. However, the models with an MSE 

below 10HI	demonstrate a consistent second-order convergence rate. 

This suggests that achieving an MSE of 10HC	  is insufficient for 

achieving accurate training. 
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To further analyze the results, the absolute errors between the 

initial solution and the advected solution using the MLP limiter and 

three D-FCNNs are examined. Figure 4.19 illustrates that the absolute 

error using the MLP limiter is concentrated only in the peak region. 

Similarly, the D-FCNN with an MSE below 10HI  exhibits a similar 

behavior to the MLP limiter, with localized errors around the peak. 

However, the absolute error using the model with an MSE of 10HC 

shows more widespread errors throughout the domain. 

Based on the results of the model comparative study, a 

criterion for successful training has been established: an MSE value 

below 10HI.  
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(a) MLP limiter (b) D-FCNN (10e-6) 

  

(c) D-FCNN (10e-5) (d) D-FCNN (10-4) 

Figure 4.19: Absolute error contour (200 × 200) 

 

4.3.3 Grid Search  

  

 The size of FCNN models directly impacts the computational 

cost of the computational fluid dynamics (CFD) solver. As each cell 

requires the FCNN models to perform feed-forward calculations for 

determining inner-face values, it is essential to minimize the 

computational cost by selecting the minimum size of the FCNN models. 
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To determine the minimum size of the FCNN models, a grid 

search is conducted. The grid search involves varying the number of 

hidden layers and the number of neurons within those hidden layers in 

the FCNN models. The objective is to identify the optimal size that 

satisfies the criteria established through the model comparative study 

for successful training. 

The range of hidden layers explored ranged from 1 to 3, while 

the number of hidden neurons varied between 4, 8, and 16. During 

training, the adam optimizer was utilized, and the learning rate was 

scheduled using CosineAnnealingLR. A batch size of 1,000 was 

employed, and the maximum number of epochs for the grid search test 

was set to 2,000. To ensure robustness, each case was tested 5 times. 

A summary of the hyperparameter settings for this grid search test 

can be found in Table 4.5. 

Table 4.5: Hyperparameter setting for grid search test 

Hyperparameter Value 

# of hidden layers [1,2,3] 

# of hidden neurons [4,8,16] 

Optimizer Adam 

Scheduler CosineAnnealingLR (0.01-0.0001) 

Learning rate 0.01 

Batch size 1,000 

Maximum epoch 2,000 
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Figure 4.20 illustrates the results of the grid search test 

conducted for D-FCNNs. The values in the figure represent the MSE 

(Mean Squared Error) values on a logarithmic scale, indicating the 

performance of the models on the test dataset. 

The findings reveal that for the triangular discontinuous 

dataset, the optimal D-FCNN size entails 2 hidden layers, each 

consisting of 16 neurons. Similarly, for the quadrilateral discontinuous 

dataset, the optimal size comprises 2 hidden layers, with 8 neurons in 

each layer. These sizes were determined based on their ability to yield 

low MSE values and effectively capture the desired patterns in the 

respective datasets. 

 

  

(a) Triangular dataset (b) Quadrilateral dataset 

Figure 4.20: Results of grid search test (D-FCNN) 
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In contrast, for both types of smooth datasets (triangular and 

quadrilateral), a smaller model size consisting of 1 hidden layer with 8 

neurons proved to be sufficient. Consequently, no grid search test was 

conducted for these cases, as the optimal size was readily identified. 

 

4.3.4 Training Results 

 

 Figure 4.21, Figure 4.22, Figure 4.23, and Figure 4.24 illustrate 

the training results. The histogram represents the distribution of the 

label values, giving an overview of the dataset. The red line represents 

the line where the real value is equal to the predicted value. 

Additionally, the predicted values are represented by dots, providing 

a visual representation of how well the model aligns with the actual 

values. 

 

Table 4.6: Training results of FCNN models 

Model MSE of test dataset 

(quad) D-FCNN 7.9 × 10HI 

(quad) S-FCNN 7.1 × 10HI 

(tri) D-FCNN 7.5 × 10HI 

(tri) S-FCNN 7.3 × 10HI 

 



 

 

５０ 

 

 

 

  

(a) y1 (b) y2 

  

(c) y3 (d) y4 

Figure 4.21: Training results of (quad) D-FCNN 
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(a) y1 (b) y2 

  

(c) y3 (d) y4 

Figure 4.22: Training results of (quad) S-FCNN 
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(a) y1 (b) y2 

 

(c) y3 

Figure 4.23: Training results of (tri) D-FCNN 
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(a) y1 (b) y2 

 

(c) y3 

Figure 4.24: Training results of (tri) S-FCNN 

 

 



 

 

５４ 

Chapter 5 Numerical Results 

 

To evaluate the performance of the newly proposed data-

driven reconstruction method on unstructured grids, extensive 

numerical experiments have been conducted. These experiments 

cover various test cases, including the linear wave problem, shock 

tube problems, isentropic vortex problem, and other well-known 

numerical test cases. The accuracy and robustness characteristics of 

the method are compared with conventional limiters such as MLP-u1 

limiter and Barth's limiter. In these experiments, unless stated 

otherwise, the interpolation of variables is performed using primitive 

variables. The choice of numerical fluxes includes the local Lax-

Friedrichs scheme and Roe-type schemes. For time integration, the 

third-order TVD Runge-Kutta method is employed.  
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5.1 Linear Advection Equation 

 

In this section, scalar linear wave problems governed by Eq. 

5.1 are considered. 

𝑞D + 𝒂	 ⋅ ∇𝑞 = 0, Eq. 5.1 

where 𝑞 is a scalar quantity, 𝒂 is a constant wave velocity vector of 

(1,0.5), and ∇𝑞  is a gradient vector of 𝑞 . The numerical flux was 

calculated using a local Lax-Friedrichs (LLF) scheme. The 

computation domain for all simulations was [0,1] × [0,1], and periodic 

boundary conditions were applied. To assess the performance of both 

quadrilateral and triangular models, irregular mixed meshes are used 

for all simulations, with grid resolution of 50 × 50 as shown in Figure 

5.1. 

 

Figure 5.1: Irregular mixed mesh (50 × 50) 
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5.1.1 Discontinuous Wave Problems 

  

To analyze the oscillatory behavior across a discontinuity, two 

initial condition problems are considered: a square wave described by 

Eq. 5.2 and a circular wave described by Eq. 5.3. 

 

1.  Square wave problem: 

𝑞 = �1 if	0.25 ≤ 𝑥, 𝑦 ≤ 0.75
0 otherwise

 Eq. 5.2 

2. Circle wave problem: 

𝑞 = V1 if	(𝑥 − 0.5)= + (𝑦 − 0.5)= ≤ 0.25=
0 otherwise

 Eq. 5.3 

 

 

  

(a) Square wave (b) Circle wave 

Figure 5.2: Initial condition of discontinuous wave problems 
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(a) Square wave (b) Circle wave 

Figure 5.3: Solution contour of discontinuous wave problems of the 

data-driven reconstruction method 

 

 

  

(a) Square wave (b) Circle wave 

Figure 5.4: Solution distributions along the magenta line 

of discontinuous wave problems 
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Figure 5.3 and Figure 5.4 illustrate the numerical results of the 

square wave and circle wave at 𝑡 = 2.0.  In particular, Figure 5.3 

presents a contour map of the solutions obtained using the data-driven 

reconstruction method. Figure 5.4 displays a comparison of the 

solution distributions along the magenta line depicted in Figure 5.3. 

The results demonstrate that both the Barth & Jespersen limiter and 

the MLP-u1 limiter, along with the data-driven reconstruction method, 

produce monotone solutions near the discontinuous profile. However, 

the MLP-u1 limiter and data-driven method capture the discontinuous 

region more sharply. These results highlight the successful replication 

of the robustness observed with the MLP-u1 limiter in discontinuous 

regions by the data-driven reconstruction method. 
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5.1.2 Smooth Wave Problems 

 

 To examine the accuracy of the smooth wave, a Gaussian wave 

described by Eq. 5.4 and a double sine wave described by Eq. 5.5 are 

considered. 

 

1. Gaussian wave problem: 

𝑞 = 𝑒H=?(8H?.I)&(NH?.I)& Eq. 5.4 

2. Double sine wave problem: 

𝑞 = sin(2𝜋𝑥) sin(2𝜋𝑦) Eq. 5.5 

 

  

(a) Gaussian wave (b) Double sine wave 

Figure 5.5: Initial condition of smooth wave problems 
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(a) Gaussian wave (b) Double sine wave 

Figure 5.6: Solution contour of smooth wave problems of the data-

driven reconstruction method 
 

  

(a) Gaussian wave (b) Double sine wave 

Figure 5.7: Solution distributions along the magenta line 

of smooth wave problems 
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Figure 5.6 and Figure 5.7 illustrate the numerical results of the 

Gaussian wave and double sine wave at 𝑡 = 2.0.  In Figure 5.6, a 

contour map of the solutions obtained using the data-driven 

reconstruction method is presented. Figure 5.7 displays a comparison 

of the solution distributions along the magenta line depicted in Figure 

5.6. The results show that both the Barth & Jespersen limiter and the 

MLP-u1 limiter exhibit a clipping phenomenon that is diffusive at 

smooth extrema. However, the data-driven reconstruction method 

does not show diffusion at smooth extrema. Table 5.1 and Table 5.2 

shows the peak values of the results, and as shown in the table, the 

quantitative values are validated. 
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Table 5.1: Peak value of Gaussian wave problem at 𝑡 = 2.0 

Scheme Peak value 

Barth & Jespersen limiter 0.8801 

MLP-u1 limiter 0.9517 

Data-driven reconstruction 0.9943 

 

Table 5.2: Peak value of double sine wave problem at 𝑡 = 2.0 

Scheme Peak value 

Barth & Jespersen limiter -0.8045 0.8211 

MLP-u1 limiter -0.9307 0.9448 

Data-driven reconstruction -0.9917 0.9957 
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5.2 Shock-tube Problems 

 

These problems are designed to assess the capability of 

resolving different types of linear and nonlinear waves on unstructured 

grids. The computational domain covers the range [0,1] in the x-

direction and [0,0.1] in the y-direction. The simulation utilizes a grid 

composed of irregular triangles, as shown in Figure 5.8. This grid 

configuration consists of a total of 101 vertices in the x-direction and 

11 vertices in the y-direction. 

 

 

Figure 5.8: Irregular triangular mesh (100 × 10) 

 

For the calculation of the numerical flux, a local Lax-

Friedrichs (LLF) scheme was employed. The horizontal direction 

boundary conditions were implemented using periodic boundaries, 

while the vertical direction boundary conditions were applied using 

supersonic outflow conditions. 
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Two Riemann-type initial conditions are considered, described 

by Eq. 5.6 and 5.7. 

 

1. Modified Sod problem: 

(𝜌O , 𝑢O , 𝑣O , 𝑝O) = (1,0,0,1),	

(𝜌P , 𝑢P , 𝑣P , 𝑝P) = (0.125,0,0,0.1) 
Eq. 5.6 

2. Supersonic expansion problem: 

(𝜌O , 𝑢O , 𝑣O , 𝑝O) = (1.0, −2.0,0.0,0.4),	

(𝜌P , 𝑢P , 𝑣P , 𝑝P) = (1.0,2.0,0.0,0.4) 
Eq. 5.7 

 

Figure 5.9 and Figure 5.10 present the density distribution for 

each problem. The overall comparison confirms the robustness and 

accuracy of the data-driven reconstruction method. Notably, in the 

contact region as shown in Figure 5.9-(b), the method slightly captures 

the solution more sharply compared to the other limiters. Additionally, 

the method is tested for the rotational symmetry condition through the 

supersonic expansion problem, as depicted in Figure 5.10. The results 

show that the condition is indeed satisfied, which can be attributed to 

the proper ordering of input features in our method.  
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(a) Whole region (b) Closed-up view of A region 

Figure 5.9: Density distributions along the center line of modified 

Sod problem 

 

  
(a) Whole region (b) Closed-up view of A region 

Figure 5.10: Density distributions along the center line of supersonic 

expansion problem 
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5.3 Shock and Entropy Wave Interaction Problem 

 

The Shu-Osher problem [25], a standard benchmark problem, 

is employed to evaluate the performance of high-resolution schemes 

in handling the interaction between a shock wave and an entropy wave. 

The computational domain spans [0,1] in the x-direction and [0,0.04] 

in the y-direction. For this test, two types of grids are used: a regular 

quadrilateral grid and an irregular triangular grid, both discretized with 

dimensions of 400 × 4. The convective numerical flux is computed 

using the local Lax-Friedrichs (LLF) scheme. This problem is 

essential to assess the accuracy and robustness of the data-driven 

reconstruction method in capturing shock and entropy waves. 

 

The initial conditions are as follows: 

(𝜌O , 𝑢O , 𝑣O , 𝑝O) = (3.857143,2.629369,0,10.333333),	

(𝜌P , 𝑢P , 𝑣P , 𝑝P) = (1 + 0.2 sin(16π𝑥) , 0,0,1). 
Eq. 5.8 
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(a) Whole region (b) Closed-up view of A region 

Figure 5.11: Density distributions along the center line of Shu-Osher 

problem on RQ mesh 
 

  
(a) Whole region (b) Closed-up view of A region 

Figure 5.12: Density distributions along the center line of Shu-Osher 

problem on IT mesh 
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Figure 5.11 and Figure 5.12 display a comparison of the 

density distributions along the centerline using the Barth & Jespersen 

limiter and MLP-u1 limiter with the data-driven reconstruction 

method at 𝑡 = 0.178. The reference solution is obtained using a first-

order scheme with fine meshes containing 4,000  points in the x-

direction. The results highlight that the data-driven reconstruction 

method effectively suppresses unwanted oscillations. Specifically, the 

method accurately resolves the interaction, while the other limiters 

exhibit diffusivity at smooth extrema. These findings highlight the 

successful achievement of robustness and accuracy in both the 

quadrilateral and triangular models. 
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5.4 Double Mach Reflection Problem 

 

 

Figure 5.13: Initial/boundary condition of double Mach reflection 

problem 

 

This benchmark problem [26] presents a highly strong moving 

shock wave with a Mach number of 𝑀Q 	= 	10 impacting a 30° wedge. 

The intensity of the impinging shock and the presence of a Kelvin-

Helmholtz instability along the contact discontinuity lead to intricate 

and complex flow interactions and phenomena. The collision of the 

shock wave with the wedge generates a variety of flow features, 

including turbulent shear layers, vortices, and shock-induced 

instabilities. As a result, this problem poses significant challenges for 
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numerical simulations and requires robust and accurate shock-

capturing methods to effectively capture and resolve these complex 

flow phenomena.  

The downstream condition is defined as (𝜌, 𝑢, 𝑣, 𝑝); 	=

	(1.4, 0, 0, 1.0), and the upstream condition is computed using the moving 

shock relation with 𝑀Q 	= 	10. The CFL number used in the simulation 

is 0.5, and the end time for the simulation is set to 0.2. The numerical 

flux scheme employed in the simulation is RoeM. The mesh used for 

the simulation is an irregular triangular (IT) mesh with a grid size of 

ℎ = 1/200. 

Figure 5.14 displays the density contour obtained using the 

MLP-u1 limiter and the data-driven reconstruction method. Both 

schemes successfully capture shock waves, but the MLP-u1 limiter 

overly diffuses the Kelvin-Helmholtz instability from the shock triple 

point. On the other hand, the data-driven reconstruction method 

effectively captures the small-scale vortices of the Kelvin-Helmholtz 

instability. Figure 5.15 displays the tagging contour for each primitive 

variable obtained by the tree model, and the results demonstrate its 

proper functioning. 
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(a) Result of MLP-u1 

 

(b) Result of data-driven reconstruction 

Figure 5.14: Density contour of double Mach reflection problem at 
𝑡 = 0.2  
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(a) Pressure (b) Velocity (x component) 

  

(c) Velocity (y component) (d) Temperature 

Figure 5.15: Indicating value contour of double Mach reflection 

problem at 𝑡 = 0.2 
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5.5 Shock Wave and Wedge Interaction Problem 

 

 
Figure 5.16: Initial/boundary condition of shock wave-wedge 

interaction problem 

 

This benchmark problem [27] involves a planar moving shock 

with a Mach number of 𝑀Q = 1.34 impinging on a 60° finite wedge. 

The impinging shock undergoes reflection and diffraction, generating 

complex wave structures such as multiple Mach stems, reflected and 

scattered shocks, slip lines with a series of small vortices, acoustic 

waves, and shock-vortex interactions. These intricate flow features 

are ideal for evaluating the shock-capturing performance in high-

speed unsteady flows.  

The initial downstream condition is given by (𝜌, 𝑢, 𝑣, 𝑝); =

	(1.04, 0, 0, 1.0) , and the upstream condition is computed from the 

moving shock relation with 𝑀Q = 	1.34 , resulting in (𝜌, 𝑢, 𝑣, 𝑝): =

	(2.196, 0.495, 0, 1.928). The numerical simulations are performed using 



 

 

７４ 

an irregular triangular (IT) mesh with a grid spacing of ℎ = 1/200. The 

CFL number used in the simulation is 0.5, and the end time for the 

simulation is set to 3.25. The numerical flux scheme employed in the 

simulation is RoeM.  

 

 

 

(a) MLP-u1 limiter 

 

(b) Data-driven reconstruction method 

Figure 5.17: Density contour of shock wave-wedge interaction 

problem at 𝑡	 = 	3.25 
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(a) MLP-u1 limiter (b) Data-driven reconstruction 

method 

Figure 5.18: Density contour of shock wave-wedge interaction 

problem at 𝑡	 = 	3.25 (close-up view near the primary vortex) 

 
 

 

 
 

Figure 5.19: Density distributions of shock wave-wedge interaction 

problem along the primary vortex core at 𝑡	 = 	3.25 
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Figure 5.17 and Figure 5.18 display the density contour 

obtained using the MLP-u1 limiter and the data-driven reconstruction 

method. Both schemes successfully capture the basic shock structure, 

and their performance in resolving local flow physics appears to be 

similar, particularly in terms of the Kelvin-Helmholtz instability from 

the edge corner and the downstream wave pattern. However, as shown 

in Figure 5.19, the density distribution along the primary vortex core 

differs between the two schemes. The MLP-u1 limiter exhibits more 

diffusion at the vortex core, while the data-driven reconstruction 

method is more accurate in capturing the vortex core. The reference 

solution used for comparison is obtained using SPID with a grid spacing 

of ℎ = 1/100. 
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5.6 Stationary Isentropic Vortex Problem 

 

This benchmark problem [28] aims to assess the accuracy of 

a numerical scheme in multi-dimensional flows without shock waves 

and turbulence. The problem involves inviscid vortex flow, where the 

flow field is inviscid, and the exact solution is the same as the initial 

condition. The free stream is 𝜌R = 1, 𝑝R = 1 and (𝑢R, 𝑣R) = (0,0). The 

perturbed values are given by (𝛿𝑢, 𝛿𝑣) = S
=T
𝑒?.I(AH0&)(−𝑦F, �̅�)	and 𝛿𝑇 =

− (UHA)S
VUT&

𝑒AH0&. Here, the strength of the vortex is 𝜖 = 5, and the vortex 

center is defined as (�̅�, 𝑦F) = (𝑥 − 𝑥?, 𝑦 − 𝑦?), where (𝑥?, 𝑦?) represents 

the coordinates of the vortex core. In this specific problem, the vortex 

core is located at (0,0). The parameter 𝑟= is given by (�̅�= + 𝑦F=), and 

𝛾  represents the specific heat ratio. These perturbed values are 

essential for defining the initial conditions for the inviscid vortex flow 

problem. By using the equations 𝜌 = 𝜌R + 𝛿𝜌, 𝑢 = 𝑢R + 𝛿𝑢, 𝑣 = 𝑣R +

𝛿𝑣, 𝑇 = 𝑇R + 𝛿𝑇 and the isentropic relation, other physical variables 

can be obtained.  

The computational domain spans −5 ≤ 𝑥 ≤ 5 and −5 ≤ 𝑦 ≤ 5, 

and periodic boundary conditions are applied. Irregular triangular 

meshes are discretized with ℎ = 1/40  and 1/80 . The local Lax-

Friedrichs flux is employed as the numerical flux for the simulations.  
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(a) 40 × 40 (a) 80 × 80 

Figure 5.20: Density distributions of stationary isentropic vortex 

problem at 𝑡	 = 	10 
 

 
  

 Figure 5.20 illustrates the comparison of density distribution 

across the vortex center. The results demonstrate the accurate 

characteristic of the data-driven reconstruction method. Particularly, 

in the coarse mesh, the accuracy is more evident, highlighting the 

method's effectiveness in capturing the flow features around the 

vortex core with better precision. 
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5.7 Viscous Shock-tube Problem 

 

This test case [29] demonstrates the flow structure of a 

viscous flow involving the interaction between a shock wave, boundary 

layer, and vortex.  The interaction occurs between the viscous 

boundary layer at the horizontal wall and the reflective shock wave 

from the vertical wall. Notably, a 𝜆-shock wave and vortices can be 

observed in this problem. 

The computational domain has a width of 1 length unit and a 

height of 0.5 length unit. The diaphragm is positioned at 𝑥 = 0.5. The 

initial condition is defined by the following Eq 5.9. 

 

(𝜌O , 𝑢O , 𝑣O , 𝑝O) = (120, 0,0,120/𝛾),		 

(𝜌P , 𝑢P , 𝑣P , 𝑝P) = (1.2,0, 0, 1.2/𝛾).	 
Eq. 5.9 

  

The Reynolds number for this case is 200, and the Prandtl 

number is 0.73. The inviscid flux is calculated using the RoeM scheme, 

while the discretization of the viscous flux follows the method 

described in [30]. A third-order accurate TVD Runge-Kutta method 

is applied to integrate the equations in time with a CFL number of 0.5. 
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 Figure 5.21 shows density contours computed by Barth and 

MLP limiter and data-driven reconstruction method at 𝑡 = 1. Regular 

quadrilateral (RQ) grid with grid size ℎ = 1/200	is considered. It is 

evident that the Barth limiter exhibits excessive numerical diffusion, 

leading to noticeably smeared (or less rotated) shapes of vortices. In 

comparison, the data-driven reconstruction method shows 

significantly reduced smearing, even when compared to the MLP 

limiter. 

 

Table 5.3: Height of the primary vortex of viscous shock-tube 

problem 

 

Scheme Height 

Barth & Jespersen limiter 0.127 

MLP-u1 limiter 0.140 

Data-driven reconstruction 0.143 
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(a) Barth limiter 

 
(c) MLP limiter 

 
(e) Data-driven reconstruction method 

Figure 5.21: Density contour of viscous shock-tube problem at 𝑡 = 1 
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Chapter 6 Conclusion 

 

This study presents a groundbreaking data-driven approach 

for designing a new shock-capturing method. It represents the first 

attempt at developing a data-driven shock-capturing approach 

tailored for irregular meshes in the context of the Finite Volume 

Method (FVM). The proposed method possesses unique strengths, 

achieving both high robustness comparable to the MLP limiter and 

improved accuracy beyond the MLP limiter when utilizing only the 

MLP stencil. 

The core of the method lies in the adoption of tree models, 

which effectively distinguish troubled cells, and the application of 

appropriate fully connected neural network (FCNN) models to 

reconstruct inner-face values of target cells. To train these models 

effectively, four distinct datasets are constructed, focusing on 

different elements and solution distributions. Specifically, the datasets 

comprise triangular elements with discontinuous or smooth solution 

distributions and quadrilateral elements exhibiting similar 

characteristics. The selection of proper input features is crucial for 

model performance, and the method skillfully utilizes only target-cell 

and face-neighboring cell information. 
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A notable advantage of this data-driven approach is its ability 

to operate without user-defined parameters once the model training is 

completed. Consequently, it offers objective flow modeling without the 

need for manual parameter tuning, streamlining the simulation process. 

In terms of future work, the method will be extended to handle 

three-dimensional geometries encompassing various element types, 

such as tetrahedrons, hexahedrons, prisms, and pyramids. Additionally, 

efforts will be made to adapt the method to address steady-state 

problems, enabling efficient simulations of time-independent 

scenarios. Furthermore, the convergence performance of the method 

will be thoroughly assessed to ensure its reliability and applicability in 

various flow scenarios. 

Overall, this study showcases a promising direction for 

advancing shock-capturing methods through the innovative use of 

data-driven techniques, empowering more accurate and efficient 

simulations in computational fluid dynamics (CFD). 
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국문 초록 

 

기존의 수학적 배경을 바탕으로 수행된 많은 연구에도 불구하고, 

전산유체역학에서 강건하고 정확한 충격파 포착 기법을 개발하는 것은 

어려운 과제이다. 이를 해결하기 위하여 본 연구에서는 기존의 수학적 

접근 방법이 아닌 새로운 데이터 기반 접근 방법을 사용하여 유한체적법

에서의 강건하고 정확한 재구성 기법을 개발하였다. 특히 해당 기법은 

유동 영역을 트리 모델을 사용하여 불연속 및 연속 영역으로 분할한 뒤, 

각 영역에 대해 알맞은 완전 연결 신경망 모델을 사용하여 불연속 영역

에서는 충격파를 강건하게 포착하고 연속 영역에서는 높은 정확도를 확

보하고자 한다. 

이러한 모델들을 훈련시키기 위해 임의의 해석함수를 활용하여 

불연속 유동과 연속 유동을 나타내는 두 가지 유형의 데이터셋을 

구축하였으며, 적절한 입력변수를 정의하여 비정렬 격자계에 효율적으로 

적용할 수 있도록 하였다. 또한 제안된 방법의 강건성과 정확성을 

검증하기 위해 광범위한 수치 시험을 수행하였다.  

최종적으로 본 연구는 데이터 기반의 접근 방법을 활용하여 

복잡한 유동 해석의 정확성과 강건성을 향상시키는 잠재력을 강조하며, 

CFD에서 더 효과적인 충격파 포착 방법을 개발하는 데 대한 새로운 

가능성을 제시한다. 

 

 

 
주요어: 전산유체역학, 유한체적법, 기계학습, 완전 연결 신경망, 트리 

모델, 재구성 기법  
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