

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Efficient Aerodynamic Design

via Data-driven Approaches

데이터 기반 기법을 통한 공력 설계 효율화

2023년 8월

서울대학교 대학원

항공우주공학과

양 선 웅

Efficient Aerodynamic Design

via Data-driven Approaches

데이터 기반 기법을 통한 공력 설계 효율화

지도교수 이 관 중

이 논문을 공학박사 학위논문으로 제출함

2023년 5월

서울대학교 대학원

항공우주공학과

양 선 웅

양선웅의 공학박사 학위논문을 인준함

2023년 6월

위 원 장 김 현 진

부위원장 이 관 중

위 원 강 남 우

위 원 정 신 규

위 원 이 상 아

Abstract

Efficient Aerodynamic Design
via Data-driven Approaches

Sunwoong Yang

Department of Aerospace Engineering

The Graduate School

Seoul National University

The development of high-performance computing (HPC) technologies has

led to increased interest in accelerating the aerodynamic design process, which

has been hindered by its demanding computational cost. Despite advances in

computational methods and simulation techniques, the aerodynamic design pro-

cess is still burdensome and remains a significant bottleneck. The iterative

nature of the process, coupled with the need for high-fidelity computational

fluid dynamics solvers makes it challenging to achieve short turnaround times

and creative design exploration. To address these challenges, regression models

trained on existing datasets have gained popularity as a way to replace expen-

sive flow simulations or experiments. They help mitigate the overuse of HPC

by improving the efficiency of the design process, from simple prediction of

quantities of interest to design optimization and knowledge extraction.

However, there are several bottlenecks that limit the use of regression mod-

els in the aerodynamic design process. First, aerodynamic design often requires

a high-dimensional input space and therefore, traditional regression models suf-

fer from the curse of dimensionality. As the number of input variables increases,

the number of possible configurations within the input space grows exponen-

1

tially. This leads to a sparsity problem, where the number of available data

points is insufficient to cover the high-dimensional space. Second, most popular

regression models are designed to predict a single output, which limits their ap-

plication in high-dimensional output spaces. In multi-output regression tasks,

they are trained independently for each output, so that the required training

time increases linearly with the output dimension, and the correlations within

the outputs are completely ignored. Finally, reliable and efficient uncertainty

quantification (UQ) should be coupled with regression models to account for

the inherent risk associated with the aerodynamic design process. In the con-

text of regression models, since there is always a chance that the predicted

values will not match the actual values, UQ is particularly crucial to provide

information about the reliability or trustworthiness of their predictions. There

are popular regression models for UQ, such as Gaussian process regression and

Bayesian neural networks, but their computational complexity and inefficiency

prevent them from being viable options for engineers who prioritize practicality,

highlighting the need for a reliable and efficient regression model for UQ.

In this regard, the contributions of the dissertation can be summarized as

follows:

1. The high-dimensional input space in aerodynamic design is reduced to the

low-dimensional latent space using dimensionality reduction (DR) tech-

niques. By alleviating the curse of dimensionality with DR techniques,

the feasibility of applying gradient-free optimizers to the reduced input

space is also investigated. For this purpose, inverse design optimization

of the wind turbine airfoil is adopted as a case study. Finally, it is proved

that the original high-dimensional input space can be successfully reduced

using a deep learning-based DR technique, and also the genetic algorithm

is applied within its framework to validate its feasibility to be coupled

2

with gradient-free optimizers.

2. The prediction of high-dimensional data is performed using reduced-order

modeling (ROM) techniques. The DR process is required in its procedure

to construct the latent space and this study focuses on the fact that since

it acts as an intermediary in ROM for predicting high-dimensional data,

the latent space inevitably affects ROM performance. In this regard, the

prediction of flow fields around a transonic airfoil is adopted as a case

study, and the physical interpretability of the latent space constructed by

various machine learning-based DR techniques is investigated. Further-

more, the impact of its interpretability on ROM performance is analyzed,

and finally, its significance for the accuracy and efficiency of predicting

high-dimensional output space via ROM is validated.

3. Regression model capable of reliable and efficient UQ is investigated. To

this end, the deep ensembles (DE) approach is analyzed in the task of

predicting missile aerodynamic performance. This simple and scalable DE

method is validated for multi-output regression tasks. Also, since the poor

reliability of the uncertainty quantified by DE is observed, a simple post-

hoc calibration method is applied to DE models to correct the unsatis-

factory uncertainty quality. The results show that the DE technique can

perform more reliable and efficient UQ compared to GPR, which is most

commonly used in engineering fields. Finally, the impact of the proposed

calibration method on DE-based Bayesian optimization is investigated.

Keywords: Aerodynamic Design, Data-driven Approaches, Regression Model-

ing, Generative Modeling, Reduced-order Modeling, Uncertainty Quantification

Student Number: 2020-34020

3

Contents

Abstract 1

1 Introduction 15

1.1 Motivation and objectives . 15

1.2 Contributions of the dissertation 22

1.3 Overview of the dissertation . 24

2 High-dimensional input space 25

2.1 Introduction . 25

2.2 Methodologies . 29

2.2.1 Multi-layer perceptron (MLP) 29

2.2.2 Autoencoder (AE) . 30

2.2.3 Variational autoencoder (VAE) 31

2.3 Inverse design optimization framework 34

2.3.1 Two-step deep learning approach 34

2.3.2 Target distribution optimization 34

2.3.3 Active learning and transfer learning 35

2.4 Framework validation: optimization of the airfoil for wind turbine

blades . 38

4

2.4.1 Optimization of the airfoil in wind turbine blades 38

2.4.2 Architectures of the two-step deep learning models 43

2.4.3 Single-objective optimization results and discussion 46

2.4.4 Multi-objective optimization results and discussion 51

2.5 Summary . 59

2.6 Additional results . 61

3 High-dimensional output space 62

3.1 Introduction . 62

3.2 β-variational autoencoder (β-VAE) 68

3.3 Physics-aware reduced-order modeling 70

3.4 Numerical experiments . 74

3.4.1 Data preparation . 74

3.4.2 Training details . 75

3.5 Results and discussion . 79

3.5.1 Training results . 79

3.5.2 Independence of LVs . 81

3.5.3 Information intensity of LVs 82

3.5.4 Physics-awareness of LVs 87

3.5.5 Physics-aware ROM . 93

3.6 Summary . 99

3.7 Additional results . 101

3.7.1 POD results . 101

3.7.2 Scalability of extracting physics-aware LVs in practical

problem . 103

4 Reliable and efficient uncertainty quantification 106

4.1 Introduction . 106

5

4.2 Implementation and evaluation of DE 112

4.2.1 Deep ensembles (DE) . 112

4.2.2 Uncertainty quality evaluation 116

4.2.3 Uncertainty calibration: STD scaling 121

4.3 Application of DE to aerodynamic performance regression task . 125

4.3.1 Data preparation and training details 125

4.3.2 Evaluation of regression performance 127

4.3.3 Evaluation of UQ performance 129

4.3.4 Theoretical derivation: underconfidence of DE in regres-

sion tasks . 131

4.4 DE models with STD calibration 135

4.4.1 STD calibration of DE models 135

4.4.2 Effects of STD calibration on Exploratory Behavior in

Bayesian optimization . 139

4.5 Summary . 143

4.6 Additional results . 146

4.6.1 Controversial issues on MC-dropout 146

4.6.2 Hyperparameter tuning results in Sec. 4.3.1 146

4.6.3 Additional results in Sec. 4.3.3 149

4.6.4 Additional results in Sec. 4.4.1 149

5 Concluding remarks 152

5.1 Summary of the dissertation . 152

5.2 Limitations of the dissertation . 156

5.3 Embarking on a journey towards acceleration of 3D aerodynamic

simulations . 159

6 References 160

6

국문 초록 187

7

List of Figures

2.1 Flowchart of the two-step deep learning approach. 34

2.2 Flowchart of the inverse design optimization framework. 37

2.3 Comparison of pressure distributions from Xfoil and experimen-

tal results in Ref. [1] (adopted airfoil configuration is also visu-

alized). 39

2.4 Shape parameters for airfoil representation: six PARSEC param-

eters are used. 40

2.5 Architecture of the VAE. 46

2.6 Convergence history of single-objective optimization with active

learning. 47

2.7 Loss history of (a) MLP, and (b) VAE. For both models, the

history of the first iteration and last (24th) iteration of active

learning is represented. 47

2.8 Comparison of the baseline and optimum airfoil shape of single-

objective optimization. 48

2.9 Comparison of the generated and calculated pressure distribu-

tion of the optimum airfoil (baseline pressure distribution is also

included). 49

8

2.10 Comparison of 50 randomly selected Cp training data (black

lines, a) and 50 generated Cp distributions by the VAE (red lines,

b). The black dashed box near the leading-edge of the lower curve

indicates clear distinctions between generated distributions. . . . 50

2.11 Loss history of (a) MLP, and (b) VAE. For both models, the

history of the first iteration and last (59th) iteration of active

learning is represented. 52

2.12 Pareto solutions of multi-objective optimization. The discontinu-

ity in the Pareto solutions is due to Cd constraint violation. . . . 53

2.13 Airfoil shape comparison of six selected Pareto solutions. 53

2.14 Comparison of generated and calculated Cp distributions of six

selected Pareto solutions. 55

2.15 Heatmaps of two objective functions within the latent space: (a)

L/D and (b) area. Twelve points are selected to investigate the

rapid change at z2 ≈ 0.55 (top), and the latent space of six

selected Pareto solutions is shown in the heatmap of area (b). . . 56

2.16 Cp distributions of 12 points selected in Fig. 2.15. 58

2.17 Trends in the leading-edge radius (RL.E.) of 12 selected points

in Fig. 2.15. 58

2.18 Pareto solutions of multi-objective optimization without Cd con-

straint. For comparison with Fig. 2.12, six designs previously

selected from the Pareto solutions with Cd constraint are also

shown. 61

3.1 Overall structure of physics-aware reduced-order modeling. . . . 70

9

3.2 Illustrative schematic showing the process of extracting physics-

aware LVs by β-VAE: the ideal case is to extract the actual

physical parameters (Ma and AoA) from the given dataset. . . . 72

3.3 Computational grid used for the flow analysis; structured O-grid

with a size of 512× 256. 75

3.4 Structures of the AE and VAE/β-VAE. 75

3.5 Loss history of the trained AE/VAE/β-VAE models. 80

3.6 MSE and KL-divergence of the trained VAE/β-VAE models. . . 80

3.7 Reconstructed pressure fields of the trained models. 81

3.8 Absolute values of the components in the Pearson correlation

matrix for LVs. 83

3.9 Determinants of Pearson correlation matrices for combinations

of 2 to 7 LVs. 83

3.10 KL-divergence and Sobol results with respect to LVs from the

training dataset. 85

3.11 Standard deviations of LVs from the training dataset. 86

3.12 Latent traversal plots of pressure flow fields for two extreme LVs:

first (most dominant) and last (most trivial) LVs ranked by KL-

divergence. 87

3.13 Investigation of physical features contained in the top two LVs:

(a) distributions of training dataset and boundary data with re-

spect to Ma and AoA, and (b) distributions of training dataset

for 1st and 2nd LVs (the left figures are colored by Ma, and the

rights by AoA). 90

3.14 The results of the single variable LR: (a) Ma=f(LVMa), and (b)

AoA=f(LVAoA). 92

10

3.15 Latent traversal plots of airfoil surface pressure distributions in

1000-VAE: (a) traversal of LVMa, and (b) traversal of LVAoA. . . 93

3.16 MSE of the regression models in ROM. 94

3.17 Comparison of the response surface of two LVs in the 1000-VAE:

(a) physics-aware LV, (b) physics-unaware LV. 95

3.18 MSE of ROM prediction with the exclusion of kth LV. 96

3.19 Comparison of prediction MSE between physics-aware ROM and

physics-unaware ROM. 97

3.20 Pressure contour predicted from AE/β-VAE-based ROMs: (a)

prediction, (b) absolute error. 98

3.21 Pressure contour predicted from POD-based ROM: (a) predic-

tion, (b) absolute error. 102

3.22 Latent traversal plots of airfoil surface pressure distributions in

POD: (a) traversal of 1st LV, and (b) traversal of 2nd LV. 102

3.23 Preprocessed training dataset consisting of (a) 32 surface pres-

sure values, (b) Cl, (c) Cd, and (d) Cm. 104

3.24 Investigation of physical features contained in the top two LVs

for sparse and noisy datasets. 105

4.1 Flowchart of Bayesian optimization. 108

4.2 Flowchart of DE approach. 116

4.3 (a) Illustration of well-calibrated/miscalibrated models: 60% CI

of the well-calibrated model contains 60% of the test data, whereas

that of the underconfident and overconfident model contains 80%

and 40% of the data, respectively. (b) Illustration of CI-based re-

liability plot. 118

11

4.4 Illustration of error-based reliability plot. Underconfident model

overestimates RMV relative to RMSE, while overconfident model

underestimates RMV. The ideal model estimates the equivalent

RMV and RMSE as the y = x black dashed line. 121

4.5 Loss history of all trained models. NLL calculated by the test

dataset is adopted the results of the hyperparameter tuning (Ta-

ble 4.3 in Sec. 4.6.2). 126

4.6 Comparison of regression accuracy between GPR and DE-2: ker-

nel density estimation (KDE) of test dataset with respect to NLL

and RMSE (averaged values of all six QoIs). The stars and cir-

cles represent the maximum and median points of each model,

respectively. 128

4.7 Comparison of regression accuracy between GPR and all DE

models: comprehensive results in terms of all aerodynamic QoIs.

(a) NLL, (b) RMSE. 129

4.8 Reliability plots of GPR: (a) CI-based reliability plot, (b) Error-

based reliability plot. 130

4.9 Reliability plots of DE: for simplicity, only the CSF results of

different DE models are shown. (a) CI-based reliability plot, (b)

Error-based reliability plot. In (b), to clearly show the decreasing

tendency of UQ quality with increasing M , the linear regression

model of the scatter points of each DE model is shown as a

dashed line with the corresponding color. 132

4.10 Reliability plots of DE after STD calibration: (a) CI-based relia-

bility plot, (b) Error-based reliability plot. The noticeable effects

of STD calibration can be found when compared with the corre-

sponding figure before STD calibration, Fig. 4.9. 137

12

4.11 AUCE and ENCE of DE models before and after STD calibra-

tion. Those of GPR are also shown for comparison. 138

4.12 CIs of 68% confidence level predicted by DE-16: comparison be-

tween before and after STD calibration. 140

4.13 Effects of STD calibration for DE models on Bayesian optimiza-

tion results. 142

4.14 Reliability plots of vanilla DE models: (left) CI-based reliability

plots, (right) error-based reliability plots. 150

4.15 Reliability plots of DE models after STD calibration: (left) CI-

based reliability plots, (right) error-based reliability plots. 151

13

List of Tables

2.1 Design space of the six airfoil shape parameters: the baseline

airfoil is selected as the median value of each range 41

2.2 Flight conditions, objective functions, and constraints for single-

objective and multi-objective optimizations 42

2.3 Summary of the QoIs of the optimum solution 49

2.4 Summary of the QoI of six selected Pareto solutions 54

2.5 Nomenclatures of twelve points extracted to investigate the sharp

changes in the QoI heatmaps . 56

3.1 Details of the blocks and layers of VAE/β-VAE used in this study. 76

3.2 Network structure of the VAE/β-VAE used in this study. 76

4.1 Optimized scaling factors for STD calibration 136

4.2 Comprehensive comparison between GPR and DE-2 144

4.3 Results of hyperparameter tuning: several structures of proba-

bilistic NN used in the DE model are tested. 147

4.4 Results of hyperparameter tuning: several GPR models are tested.148

14

Chapter 1

Introduction

1.1 Motivation and objectives

The advent of high-performance computing (HPC) technologies has had

a significant impact on the fields of aerospace design by dramatically reduc-

ing the time required to acquire vast amounts of data. With the ability to

handle large-scale scientific computations with ease, these HPC systems have

greatly advanced the capabilities of computational fluid dynamics (CFD). In

fact, NASA has recognized the pivotal role of HPC in enhancing the impact

of CFD on the aerospace design process by providing improved understand-

ing and insight into critical physical phenomena [2]. Progress in data storage

technologies has also made it possible to store large datasets, including simula-

tion results, historical data, and auxiliary data augmented from existing data,

which can be utilized to enhance the reliability and efficiency of the traditional

aerospace design process. In essence, the combination of HPC technologies and

the resulting big datasets has revolutionized the aerospace design process by

15

enabling engineers to explore creative and superior design candidates, thereby

improving overall performance.

Despite the development of advanced computational methods and simula-

tion techniques, the computational cost of the aerodynamic design process still

remains a significant bottleneck. The iterative nature of its process makes it

challenging to achieve short turnaround times and creative exploration within

the design space. It becomes even worse when coupled with the repetitive exe-

cution of expensive flow simulations such as Reynolds-averaged Navier-Stokes

(RANS) or large eddy simulation (LES), which can significantly increase the

computational time and resources required for the design process. It should be

noted that even RANS has limitations in reliably and accurately capturing tur-

bulent flows with significant regions of separation [2], highlighting that there are

still limitations to using HPC naively in aerodynamic design. Nevertheless, the

benefits of well-designed objects with enhanced aerodynamic efficiency make it

imperative to invest resources in conducting an accurate but demanding aerody-

namic analysis. As a result, aerospace engineers are constantly looking for new

ways to reduce the computational cost of aerodynamic analysis while leveraging

high-fidelity CFD results to improve the accuracy of the aerodynamic design

process.

To overcome this bottleneck, researchers have investigated various tech-

niques to alleviate the computational cost of aerodynamic design. To name a

few, they have attempted to utilize multi-fidelity flow solvers [3, 4, 5, 6], parallel

computing [7, 8, 9], and advanced optimization algorithms [10, 11, 12, 13, 14, 15]

to speed up the flow field calculations or improve the design process efficiency.

Last but not least, one of the most popular approaches is to simply replace

the implementation of flow simulation or experiment by training a regression

model (also known as a surrogate model) on a given dataset and then using it

16

to predict quantities of interest (QoIs) [16, 17, 18]. The regression model aims

to mitigate the naive overuse of HPC in the aerodynamic design process, where

computational cost is still limited and burdensome, by exploiting already ob-

tained datasets. This data-driven approach can be extensively extended: from

design space exploration during the design optimization process [19] to the pre-

diction of high-dimensional fields by reduced-order modeling (ROM) [20]. Even

when there are multiple data sources due to different fidelities of data collection

processes, regression models can also be utilized to fuse them [21]. There are a

variety of regression models that engineers can use; to name a few, radial basis

function (RBF) [22], support vector regression (SVR) [23], Gaussian process

regression (GPR) [24], and multilayer perceptron (MLP) [25]. From the per-

spective that the regression model can facilitate the realization of digital twins

by replacing the demanding simulations required within their process [26], its

potential seems boundless.

There are numerous studies that leveraged regression models to accelerate

the aerodynamic design procedure, and their use can be categorized into three

groups: 1) prediction of QoIs, 2) design optimization, and 3) knowledge extrac-

tion. First, the prediction of QoIs based on regression models can be considered

as the simplest application. Espinosa Barcenas et al. [27] used MLP to pre-

dict aerodynamic coefficients of various airfoil and wing configurations. Balla

et al. [28] also used MLP to predict not just the aerodynamic coefficients, but

also the pressure distribution on the surface of airfoils and wings. Sun et al.

[29] conducted the inverse design of airfoil and wing configurations based on

MLP, which directly provides airfoil shapes that fit the required aerodynamic

characteristics.

Second, regression models can be used to speed up the aerodynamic opti-

mization process by serving as cheap-to-evaluate functions. Lee et al. [30] ap-

17

plied cluster-based GPR to mitigate prediction errors in composite rotor blade

optimization problems with highly nonlinear QoIs. Chae et al. [31] leveraged

GPR for helicopter rotor shape optimization to improve hover aeroacoustic per-

formance. Song and Keane [32] built GPR model and then conducted a multi-

objective genetic algorithm considering the aerodynamic performance and noise

effects of a three-dimensional subsonic engine nacelle.

Finally, regression models can be leveraged for knowledge extraction from

the given dataset, as the data can be massively augmented by using previously

trained models. This means that engineers can gain insights from large datasets

that are augmented by previously trained models, rather than by collecting new

data. In this regard, Martins and Ning [21] noted that regression models are

helpful when we want to understand the design space, that is, how outputs vary

with respect to inputs. In fact, there are a number of studies that have exploited

regression models to extract insights from the datasets they are interested in.

Obayashi et al. [33] performed data mining techniques to efficiently explore

the design space of a fly-back booster and regional jet wing. Obayashi et al.

[34] demonstrated that design knowledge discovered from visual data mining

techniques can lead to an improved regional jet wing design even after a brief

design exploration. Also, Kanazaki et al. [35] derived the design rules in a three-

element airfoil that the gap and the deflection of the flap have a notable effect

on the lift coefficient during landing and near-stall conditions.

However, there are several bottlenecks that hinder the application of regres-

sion models to the aerodynamic design process. First, aerodynamic design often

demands high-dimensional input (design) space due to high geometric deforma-

tion freedom and various flight conditions. For example, Lyu et al. [36] noted

that at least 200 design variables are required to take full advantage of aerody-

namic shape optimization in transonic wing design. With this high-dimensional

18

input space, traditional regression models encounter the curse of dimensionality.

As the number of input variables increases, the number of possible configura-

tions within the input space grows exponentially, making it difficult to explore

the design space thoroughly. This leads to a sparsity problem, where the number

of available data points is insufficient to cover the high-dimensional space, pre-

venting accurate capture of the complex relationships between input and output

variables. Furthermore, also in terms of optimization, high-dimensional design

space makes it infeasible to apply gradient-free optimizers, which typically re-

quire a massive number of evaluations to find reasonable solutions [37, 38].

Considering the fact that gradient-free optimizers are adopted by numerous en-

gineers due to their ability to obtain global optimal solutions in discontinuous

and multimodal problems [16], the infeasibility of gradient-free optimizers can

be considered as an obstacle that we should overcome in order to fully exploit

the advantages of regression models. Finally, in terms of knowledge extraction,

high-dimensional input spaces reduce the ease of physical interpretation due to

the complex relationships between a large number of design variables.

Second, most of the popular regression models, such as RBF, SVR, and

GPR, are devised for predicting a single output, limiting their use in high-

dimensional output spaces. More specifically, in multi-output regression tasks,

these models are trained independently for each output, so that the following

two drawbacks exist. One is that the required training time increases linearly

with the output dimension, which indicates severely degraded efficiency espe-

cially in high-dimensional output tasks. The other is that the correlations within

the outputs are completely ignored [39], so the complex and intricate physical

systems in the real world cannot be accurately modeled. In this context, it has

been demonstrated that multi-output regression methods generally yield better

predictive performance when compared to single-output methods [40, 41, 42].

19

Considering that the trend of regression tasks in aerodynamics is moving from

the simple multi-output predictions (e.g., prediction of Cl, Cd, and Cm) to the

prediction of high-dimensional output data such as pressure and velocity fields

around the objects [43, 44, 45], there should be a way to break through this

barrier to the prediction of high-dimensional output spaces.

Finally, reliable uncertainty quantification (UQ) should be coupled with

regression models to account for the inherent risk associated with the aerody-

namic design process. Aerodynamic systems are inherently complex and un-

certainties arise from various sources such as modeling assumptions, numerical

approximations, and experimental measurements. Therefore, neglecting these

uncertainties can lead to significant deviations between the predicted and ac-

tual performance of an aircraft, resulting in suboptimal designs and unexpected

failures in the final system. In the context of regression models, since there is al-

ways a chance that the predicted values will not match the actual values, UQ is

particularly crucial to provide information about the reliability or trustworthi-

ness of their predictions. By coupling the regression models with UQ techniques

such as Bayesian inference or Monte Carlo simulation, engineers can obtain not

only the predictive values but also the variance or confidence intervals of those

predicted outputs. This information can help engineers evaluate the reliabil-

ity of the prediction and make informed decisions about design parameters.

Although there are two popular regression models for UQ, namely GPR and

Bayesian neural networks (BNNs), they cannot be considered efficient for the

purpose of UQ. GPR is notorious for its time complexity of O(n3) and mem-

ory complexity of O(n2), where n denotes the dataset size [46, 47]. Even in

multi-output regression tasks, as mentioned above, the GPR should be trained

for each output independently, which requires linearly increasing training time

with respect to the output dimension. BNNs can perform the multi-output pre-

20

diction only with a single regression model, but they require cumbersome and

complicated training algorithms due to significant modifications to the conven-

tional framework of NNs [48, 49, 50], and their additional model parameters

lead to slower convergence [51]. Such computational complexity and inefficiency

prevent GPR and BNNs from being viable options for engineers who prioritize

practicality, highlighting the need for a reliable and efficient regression model

for UQ.

In summary, overcoming these bottlenecks is a prerequisite for applying

regression-based data-driven approaches to real-world engineering problems,

which is directly related to the contributions of this dissertation in the next

section.

21

1.2 Contributions of the dissertation

This section summarizes the contributions of the dissertation in terms of

alleviating the three previously mentioned bottlenecks of regression models in

aerodynamic design: 1) high-dimensional input space, 2) high-dimensional out-

put space, and 3) reliable and efficient UQ.

1. The high-dimensional input space in aerodynamic design is reduced to

the low-dimensional latent space using dimensionality reduction (DR)

techniques. Also known as representation learning or manifold learning,

these techniques find the low-dimensional latent representation of high-

dimensional original data. They can significantly reduce the dimension-

ality of the input space to a level suitable for effectively training the

regression models. By alleviating the curse of dimensionality with DR

techniques, the feasibility of applying gradient-free optimizers to the re-

duced input space is also investigated. For this purpose, inverse design

optimization of the wind turbine airfoil is adopted as a case study. This

case study finally proves that the original high-dimensional input space

can be successfully reduced using a deep learning-based DR technique,

and also the genetic algorithm (GA) is applied to its framework to vali-

date its feasibility to be coupled with gradient-free optimizers.

2. Prediction of high-dimensional data is performed using reduced-order

modeling (ROM) techniques. ROM specializes in predicting high-dimensional

QoIs by treating a high-fidelity CFD simulation as a black-box function

and learning simplified models in a data-driven manner. As in the case

of the high-dimensional input space, the DR process is again required in

its procedure to construct the latent space. And this study focuses on

the fact that since this latent space acts as an intermediary in ROM, it

22

inevitably affects the performance of ROM. In this regard, the prediction

of flow fields around a transonic airfoil is adopted as a case study, and

the physical interpretability of the latent space constructed by various

machine learning-based DR techniques is investigated. Furthermore, the

impact of its interpretability on ROM performance is analyzed, and fi-

nally, its significance is validated in terms of accuracy and efficiency for

predicting high-dimensional output space via ROM.

3. Regression model capable of reliable and efficient UQ is investigated. To

this end, the deep ensembles (DE) approach is analyzed in the task of pre-

dicting missile aerodynamic performance. DE is based on neural networks

so all of the following are viable: universal approximation capability, scal-

ability to large datasets, and multi-output regression. Last but not least,

it is able to quantify the predictive uncertainty by a simple modification

of the MLP structure. This dissertation aims to validate this simple and

scalable DE method for multi-output regression tasks, which are the most

common problems in practical engineering disciplines. The most popular

regression model capable of UQ in engineering fields but not scalable to

large datasets, GPR, is also compared with DE. Not only the validation is

performed, but since the poor reliability of quantified uncertainty by DE

is observed, a simple post-hoc calibration method is applied to DE models

to correct the unsatisfactory uncertainty quality. The results show that

the DE technique with calibration can perform more reliable and efficient

UQ compared to GPR. Finally, the impact of the calibration method

on Bayesian optimization is examined, verifying the fact that whether

the DE is calibrated or not can result in completely different exploration

characteristics during Bayesian optimization.

23

1.3 Overview of the dissertation

The remaining chapters of this dissertation are structured as follows:

• Chapter 2 explores effective training approaches for regression models

in the context of high-dimensional input spaces. The case study focuses

on the inverse design optimization of wind turbine blade airfoils.

• Chapter 3 then analyzes how the high-dimensional output space can be

efficiently predicted by ROM. In this case, the flow field prediction of the

transonic airfoil is conducted.

• Chapter 4 examines the feasibility of the DE regression model to quan-

tify reliable predictive uncertainty in the multi-output regression task. To

this end, the case study of predicting multiple aerodynamic coefficients of

the missile configuration is adopted.

• Chapter 5 presents the concluding remarks and outlines future directions

of this dissertation.

24

Chapter 2

High-dimensional input space

The work in this chapter was published in the Engineering with Computers

[18].

2.1 Introduction

This chapter aims to address the high-dimensional input space that hinders

the efficient application of regression models to aerodynamic design by reducing

it to the low-dimensional latent space using DR techniques. By alleviating the

curse of dimensionality with DR techniques, the feasibility of applying gradient-

free optimizers to the reduced input space is also investigated. For this purpose,

an inverse design optimization of the wind turbine airfoil is adopted as a case

study, since the inverse design often requires high-dimensional input consisting

of physical characteristics. The rest of this section highlights why the selected

case study—inverse design optimization for the airfoil—is crucial in the aero-

dynamic design discipline, and how this dissertation successfully mitigates the

25

problems arising from the high-dimensional design space.

Recent advances in high-performance computing have enabled aerodynamic

engineers to use high-fidelity analyses, offering a wide range of options in the

aerodynamic shape design process. Accordingly, numerous novel design method-

ologies have been developed, most of which are based on two conventional aero-

dynamic design methods: inverse and direct design approaches [52, 53, 54].

In particular, inverse design is computationally efficient in that the desired

target performance distribution is explicitly defined and the corresponding de-

sign shape can be calculated with a few iterations coupled with a flow solver

[55, 56, 57].

However, the inverse method also has a critical disadvantage: whenever the

target distribution changes, an iterative process to find the design shape match-

ing the target distribution should be repeated. Considering that most design

stages require significant trial and error, this process undermines the efficiency

of the inverse design. Therefore, several researchers have used a surrogate model

in inverse design to avoid this iterative process. In particular, multi-layer per-

ceptron (MLP) surrogate models have been widely used owing to their universal

approximation property [58]. Kharal and Saleem [59] and Sun et al. [29] used

aerodynamic QoIs as the inputs of a MLP model to obtain airfoil shape param-

eters as the output during the inverse design procedure. Wang et al. [60] also

applied MLP for the same purpose, but additionally performed dimensional

reduction of input data to reduce the database size required for model training.

Though these studies do not require iterative procedures coupled with the

flow solver, they still require the predefined performance distribution. For an

efficient inverse design, an appropriate aerodynamic performance should be de-

fined, which is highly dependent on the designer’s engineering knowledge and

experience. This ambiguity in specifying the target distribution has inspired

26

researchers to optimize it. Obayashi and Takanashi [61] and Kim and Rho [62]

used control points-based techniques to parameterize the pressure distributions,

and then optimized the distribution using GA. In these inverse design optimiza-

tion processes, the aerodynamic QoIs of the distribution were obtained through

theoretical/empirical predictions, and a number of constraints were imposed to

ensure the reality of the distribution. For instance, Obayashi and Takanashi [61]

estimated the viscous drag using the Squire–Young empirical formula and im-

posed six constraints for realistic pressure coefficient (Cp) distributions. Though

these studies attempted to deal with the fundamental limitation of the inverse

design method, the following problems still exist: 1) loss of the diverse repre-

sentation capacity of the Cp distribution due to parameterization; 2) excessive

constraints to ensure a realistic Cp distribution; 3) discrepancies between the

QoI predicted theoretically/empirically and those calculated using a flow solver;

and 4) impossibility of explicitly imposing geometric constraints on the design

shape.

To address the limitations of the representation capacity, QoI discrepancies,

and excessive constraints, Zhu et al. [63] reduced the dimension of the Cp dis-

tribution data via proper orthogonal decomposition (POD) and used the SVR

model to predict the aerodynamic performance of the airfoil from the reduced

Cp data. Then, a GA was implemented to optimize the Cp distribution coupled

with POD and SVR. Finally, the airfoil shape corresponding to the optimized

pressure distribution was obtained in an iterative manner coupled with the flow

solver. However, the limitation of geometric constraints has not been still ad-

dressed since the prediction of the design shape is separated from the pressure

optimization process. Therefore, when the shape predicted by the inverse design

violates geometric constraints, the design process should be traced back to the

optimization process. Additionally, at the optimum solution, the discrepancy

27

between the pressure distributions from prediction and calculation is noticeable,

which indicates the low accuracy of its framework.

The drawbacks of the previous inverse design studies presented so far should

be overcome by applying novel techniques in that computational efficiency, an

essential advantage of inverse design, cannot be fully exploited. Therefore, this

chapter proposes an inverse design optimization framework with a two-step deep

learning approach. This approach refers to the sequential coupling of two deep

learning models: variational autoencoder (VAE) [64] and MLP [25]. The VAE

and MLP were used to generate a realistic target distribution and to predict the

QoI and shape parameters from the generated distribution, respectively. Then,

target distribution optimization was performed as the inverse design optimiza-

tion based on this approach. Active learning and transfer learning strategies

were applied to improve the accuracy of the two-step approach-based optimiza-

tion with reasonable computational cost. The proposed inverse design optimiza-

tion framework via a two-step deep learning approach was validated through

aerodynamic shape optimization problems of the airfoil in wind turbine blades,

where inverse design is actively being applied.

This chapter is organized as follows. Sec. 2.2 describes the mathematical

background of two deep learning models used in the inverse design optimization

framework. Sec. 2.3 presents the scheme of the proposed framework. In Sec.

2.4, validation of the framework with application to a wind turbine airfoil is

performed and the results are discussed. Finally, Sec. 2.5 concludes the study,

emphasizing the flexibility of the presented framework.

28

2.2 Methodologies

2.2.1 Multi-layer perceptron (MLP)

Engineers from various disciplines have been drawn to MLP due to their

universal approximation capability [58, 65], scalability to large datasets through

mini-batch training [66], and capability of predicting multi-output using a single

regression model. This section provides a brief theoretical overview of the MLP,

which is often referred to as neural networks (NNs).

The feed-forward mechanism propagates the data obtained from the input

layer of MLP to the output layer. In this procedure, information moves via an

affine transformation from the input layer to the output layer as follows:

y = Wx+ b, (2.1)

where x is a vector of nodes in the input layer and y is that in the output

layer. W and b are the weight matrix and bias vector between the input and

output layers, respectively. Regardless of the number of hidden layers between

the input and output layers, nonlinearity between x and y cannot be captured

since they are linearly correlated in Eq. 2.1. In this context, the concept of

an activation function that modifies the output of MLP is introduced. By in-

corporating nonlinear activation functions at each layer, MLP becomes able

to perform nonlinear modeling. A variety of nonlinear activation functions are

available, including the LeakyReLU function [67], which is as follows:

f(x) =

x, if x ≥ 0

ax, otherwise

(2.2)

where a stands for a non-zero small gradient (0.01 for this study). In order to

simulate nonlinear behavior, the MLP model then applies an activation function

29

(Eq. 2.2) to the output of the previous layer. The correspondingly transformed

output is then utilized as the input for the subsequent layer. This process,

known as feed-forward, is repeated through the hidden layers.

However, the feed-forward itself cannot achieve the expected accuracy be-

cause it lacks an algorithm for adaptively training the parameters of MLP,

namely weights (W) and biases (b). To address this issue, the backpropaga-

tion training algorithm was introduced, which minimizes the loss function by

adjusting the parameters to make the predicted values of the MLP similar to

the desired target values as the training progresses [68]. To achieve this, gradi-

ent descent optimization techniques, such as Adagrad [69], RMSprop [70], and

Adam [71], are utilized to minimize the loss function. In particular, Adam has

become increasingly popular due to its strengths in dealing with sparse gra-

dients and non-stationary objectives, combining Adagrad and RMSprop [71].

As the feed-forward process and backpropagation with gradient descent are re-

peated iteratively, the loss function will decrease to the desired level so that the

training can be stopped. The converged weights and biases of the MLP model

can then be used to perform almost real-time predictions using the feed-forward

operation. Only the essential aspects of MLP are presented here, as many stud-

ies have already described them. More information on MLP can be found in

Goodfellow et al. [25].

2.2.2 Autoencoder (AE)

The AE model is a widely used deep learning-based DR technique. The main

objective of the AE is to output exactly what is inputted. Its structure consists

of two parts: an encoder and a decoder. The input of the AE, x, is entered into

the encoder for the compression and exits as latent variables (LVs), z. Then, z

enters the decoder and exits as reconstructed data x̃. The encoder and decoder

30

consist of MLP, which makes it possible to model nonlinearity in the reduction

and reconstruction processes. Because the objective of training the AE model

is to reconstruct x̃ similar to the original data x, the loss function is defined

by Eq. 2.3, where N denotes the number of data samples. Although its loss

function is defined by the mean square error (MSE) in this study, any other

error metrics, such as the binary cross entropy between x and x̃, can be used

depending on the properties of the data. Note that the adopted MSE is the

summation in both sample-wise and element-wise directions.

LAE =
1

N

N∑
i=1

(xi − x̃i)
2, (2.3)

However, this AE model has an obvious limitation: there is no training

algorithm for guaranteeing a regularized latent space. Herein, the expression

“regularized latent space” means that the latent space is trained to be smooth

and continuous; thus, when inputs x1 and x2 are similar (or close), their cor-

responding mapped latent values, z1 and z2, should also be similar [72]. In AE

model, as the original input x becomes condensed layer-by-layer through the

encoder, its representation becomes increasingly abstract [73]. Therefore, the

output of the encoder z is not guaranteed to be regularized in the training pro-

cedure of the AE. This explains why the decoder part of the AE model cannot

be used as a generative model: the trained latent space is irregular and therefore

its correlation with the reconstructed data is abstract.

2.2.3 Variational autoencoder (VAE)

A number of studies have focused on the limitations of this unregularized

latent space trained by an AE and have alternatively applied VAE in their

framework. The structure of the VAE is similar to that of the AE. One major

difference is that VAE stochastically extracts the latent space z via random

31

sampling, whereas the AE model obtains its latent space deterministically.

The mathematical formulae for the VAE model are presented below (for

further details, please refer to these references [64, 18]). Let’s consider reducing

the original dataset X = {xi}Ni=1 (assumed to be independently and identically

distributed) to the latent space z using the VAE model. In the inference of z

fromX, variational inference is adopted due to the intractability of the posterior

pθ(z|x), where θ is a parameter of the VAE model (to be more specific, it is in-

tractable owing to the likelihood of pθ(z)). Therefore, instead of the intractable

posterior pθ(z|x), the VAE is trained to obtain its substitute, qϕ(z|x) (ϕ is a

variational parameter). Then, the log-likelihood of pθ(x) can be expressed as:

log(pθ(x)) =

∫
log (

pθ(x, z)

qϕ(z|x)
)qϕ(z|x)dz+

∫
log (

qϕ(z|x)
pθ(z|x)

)qϕ(z|x)dz, (2.4)

where the second term on the right-hand side (RHS) is the KL-divergence of

qϕ(z|x) from pθ(z|x), KL(qϕ(z|x)||pθ(z|x)), which is always non-negative ac-

cording to its definition (KL-divergence is a measurement of the statistical dis-

tance between two probability distributions). Therefore, the first term on the

RHS becomes the lower bound of the log-likelihood and the problem of maxi-

mizing the log-likelihood becomes the problem of maximizing the lower bound.

This lower bound can be expressed as:∫
log (

pθ(x, z)

qϕ(z|x)
)qϕ(z|x)dz = Eqϕ(z|x)[log pθ(x|z)]−

∫
log (

qϕ(z|x)
pθ(z)

)qϕ(z|x)dz,

(2.5)

where the first and second terms on the RHS are the reconstruction error and

KL-divergence of qϕ(z|x) from pθ(z), respectively. However, owing to the exis-

tence of qϕ(z|x) in the reconstruction error, the back-propagation process can-

not be performed, and calculating the gradient of the reconstruction error with

respect to ϕ is problematic due to the posterior qϕ(z|x). Therefore, a “repa-

rameterization trick” is adopted, which allows for back-propagation during the

32

sampling process. The concept behind this trick is to sample z from the auxil-

iary noise variable ϵ ∼ N(0, 12): this random sampling makes the latent space

in the VAE stochastically determined. To be more specific, the kth LV (zk) is

assumed to follow the distribution below:

zk = µk + σk ⊙ ϵ. (2.6)

where ⊙ denotes Hadamard product (element-wise product). Accordingly, the

KL-divergence, the second term on the RHS in Eq. 2.5 can be rewritten as

below when the posterior qϕ(z|x) and prior pθ(z) are assumed to follow the

Gaussian distribution N(µ, σ2) and N(0, I2), respectively.

KL(qϕ(z|x)||pθ(z)) =
1

2

d∑
k=1

(σ2
k + µ2

k − (log(σ2
k) + 1)), (2.7)

where µk and σk represent the mean and standard deviation used during the

reparameterization of zk, and d denotes the dimension of the latent space.

Herein, as the posterior approximation qϕ(z|x) becomes similar to the prior

pθ(z), the KL-divergence decreases. Finally, the loss function of VAE model

can be formulated as in Eq. 2.8, which consists of the reconstruction error

(MSE term) and regularizer (KL-divergence term). Since the KL-divergence

term serves to regularize the latent space to be trained, it is also called regu-

larization loss. It induces a sparser latent space [64, 74, 75, 76] just as the L1

regularization term makes the model sparse in the Lasso regression [77].

LV AE = LAE +KL(qϕ(z|x)||pθ(z))

=
1

N

N∑
i=1

(xi − x̃i)
2

︸ ︷︷ ︸
reconstruction

error

+
1

2

d∑
k=1

(σ2
k + µ2

k − (log(σ2
k) + 1))︸ ︷︷ ︸

regularization
error

. (2.8)

33

2.3 Inverse design optimization framework

2.3.1 Two-step deep learning approach

This section demonstrates the two-step deep learning approach, which is

the combination of the VAE and MLP models. First, VAE is trained with the

target performance distributions of the training data. When the training is

completed, only the decoder part of the VAE model is used; it operates as a

data generator that receives a low-dimensional latent variable and outputs a

realistic high-dimensional target distribution. Then, the MLP is trained to pre-

dict QoIs and shape parameters from the target distribution. This regression

process is more efficient and accurate than previous inverse design studies by

eliminating the need for iterations and theoretical/empirical assumptions (pre-

diction can be performed almost in real-time). In this study, these two deep

learning models, the decoder of the VAE and MLP, are utilized sequentially;

the decoder generates the distribution once it receives the latent variable, and

the MLP outputs QoIs and shape parameters from this generated distribution.

This structure refers to a two-step deep learning approach and its flowchart is

shown in Fig. 2.1.

Figure 2.1: Flowchart of the two-step deep learning approach.

2.3.2 Target distribution optimization

The two-step deep learning approach allows mapping from the latent space

of the target performance distribution to QoIs and shape parameters. Therefore,

34

the optimization of the target distribution can be performed based on this

approach, where the inputs of the corresponding approach (LVs) are used as

the optimization variable, and the outputs (QoIs and shape parameters) as the

objective functions and constraints. In this study, since the shape parameters

are incorporated into the target distribution optimization procedure, geometric

constraints can be imposed explicitly. At the end of the optimization, numerical

validation is performed regarding the optimum solutions by comparing the QoIs

predicted using the two-step approach and QoIs calculated using the numerical

flow solver. The inverse design optimization framework terminates when the

differences in these values satisfy the error criterion. If not, the process described

in Sec. 2.3.3 is repeated until it is satisfied.

2.3.3 Active learning and transfer learning

Since VAE and MLP models are trained with initial training data, the opti-

mization based on them is unlikely to meet the desired accuracy at once. There-

fore, surrogate-based optimization studies usually add training data repeatedly

to increase the accuracy of the surrogate model. This technique is called the

pool-based active learning strategy (or adaptive sampling) and is adopted in

this study for an accurate inverse design optimization framework [78, 79]. When

the error criterion at optimum solutions is not satisfied (as presented at the end

of Sec 2.3.2), these solutions were added to the previous dataset and the deep

learning models were trained again. In the training procedure based on data

splitting, which splits the full dataset into training and test data, the designs

newly added at every iteration in the active learning process should be incor-

porated into the training data to maximize the efficiency of its process. This is

because to reflect the newly added designs directly in the model training, they

should be included in the training dataset, not the test dataset (test data is not

35

used directly in model training). Then, optimization and numerical validation

were performed based on these retrained models. This active learning strategy

continues until the error between the QoI from the two-step deep learning ap-

proach and those from the numerical solver decreases so that they satisfy a

predefined error criterion.

Although the active learning process was applied to effectively improve the

accuracy of the framework, restarting model training with randomly initialized

weights and biases at every iteration can severely degrade the computational

efficiency. Moreover, in general, when adding new data via active learning, the

model does not change significantly compared with that of the previous itera-

tion, as only a small amount of data is added to the existing data. Therefore,

this study used a parameter-based transfer learning strategy [80]. This tech-

nique ensures that the weights and biases of the previously trained models are

transferred to the models to be newly trained [81, 82, 83]. Combining these

two strategies, iterative active learning for model accuracy can be efficiently

performed through transfer learning. The flowchart of the inverse design op-

timization framework, which summarizes the contents of Sec. 2.3, is shown in

Fig. 2.2.

36

Figure 2.2: Flowchart of the inverse design optimization framework.

37

2.4 Framework validation: optimization of the airfoil

for wind turbine blades

The proposed inverse design optimization framework can be applied to

all inverse design problems in any engineering field. Specifically, in aerospace

engineering, inverse design is actively being applied to wind turbine design

[84, 85, 86]; therefore, to verify the accuracy, effectiveness, and robustness of

this framework, airfoil optimization of a megawatt-class wind turbine is chosen

as the application. For its airfoil design, structural and aerodynamic perfor-

mances are mainly considered. In particular, the airfoil at the blade tip is known

to be critical for the aerodynamic performance of the blade. This study aims

to optimize the airfoil at the tip of the blade, mostly taking into account its

aerodynamic properties (structural performance is indirectly considered by the

airfoil area). Single-objective and multi-objective optimizations are performed

to demonstrate the versatility of the proposed framework in different optimiza-

tion problems. The following sections describe the optimization problems (Sec.

2.4.1), architectures of the two-step deep learning models used in the inverse

design optimization (Sec. 2.4.2), and the results and discussion of the single-

objective and multi-objective optimizations (Sec. 2.4.3 and 2.4.4).

2.4.1 Optimization of the airfoil in wind turbine blades

This section presents the optimization problems of the airfoil of a wind

turbine blade tip region. Sec. 2.4.1.1 presents the validation of the numerical

flow solver used in this study, and Sec. 2.4.1.2 presents the problem definitions

for the optimization.

38

2.4.1.1 Flow solver

Xfoil is a two-dimensional panel code capable of viscous/inviscid analysis,

and it derives accurate results in a very short time when used appropriately

[87]. Because a wind turbine operates at relatively low Reynolds numbers, nu-

merous wind turbine airfoil design studies have used this solver [88, 89, 90]. In

this study, Xfoil is adopted to calculate the aerodynamic QoIs with reasonable

computational cost. It should be noted that the proposed inverse design opti-

mization framework can be coupled with any numerical solver with arbitrary

QoIs.

Although Xfoil is a well-known and widely used solver, solver validation

using experimental results is performed [1]. The experimental data are based on

the GA(W)-1 airfoil with Reynolds of 6.3106, Mach of 0.15, and angle of attack

of 8.02° (the flow conditions of the validation are intended to be similar to

those of subsequent airfoil optimizations). Accordingly, it is confirmed that this

flow solver is appropriate for the wind turbine airfoil optimization performed

in this study since it predicts a pressure distribution almost identical to that

from experiments (Fig. 2.3).

Figure 2.3: Comparison of pressure distributions from Xfoil and experimental

results in Ref. [1] (adopted airfoil configuration is also visualized).

39

2.4.1.2 Optimization problem definitions

Before performing the optimization, the optimization problems are defined

first. There are numerous parameterization methods for representing the airfoil

shape, such as PARSEC, B-spline, and class-shape transformation (CST) [91,

92, 93]. In this study, PARSEC parameters are adopted as they were originally

introduced due to their close relationship with the aerodynamic characteristics

[19]. There are 11 PARSEC variables and among them, six are used as shown

in Fig. 2.4: namely RL.E. (leading-edge radius), Xup (x-coordinate of the upper

crest), Zup (z-coordinate of the upper crest), Xlow (x-coordinate of the lower

crest), Zlow (z-coordinate of the lower crest), and ZT.E. (z-coordinate of the

trailing-edge). These variables are selected from the prior sensitivity test, which

demonstrated that they have a significant impact on the flow characteristics,

whereas the other five PARSEC variables have little impact. The corresponding

multi-dimensional design space to be explored in the optimization process is

summarized in Table. 2.1 (the baseline airfoil shape is selected as the median

value of each variable’s range).

Figure 2.4: Shape parameters for airfoil representation: six PARSEC

parameters are used.

When the airfoil shape is determined using PARSEC parameters, flow anal-

ysis proceeds. Xfoil is executed under predefined settings including the flight

conditions, and the aerodynamic QoIs that will be used as objective func-

tions or constraints in the optimization are calculated. The corresponding flight

40

Table 2.1: Design space of the six airfoil shape parameters: the baseline airfoil

is selected as the median value of each range

Design variables Lower bound Baseline Upper bound

RL.E. 0.015 0.0275 0.04

Xup 0.3 0.375 0.45

Zup 0.09 0.12 0.15

Xlow 0.3 0.375 0.45

Zlow 0.09 0.12 0.15

ZT.E. 0.09 0.12 0.15

conditions, objective functions, and constraints for single-objective and multi-

objective airfoil optimizations are summarized in Table 2.2. In single-objective

optimization, the objective is to maximize the lift-to-drag ratio (L/D), which

is the most crucial factor for aerodynamic efficiency. Furthermore, some con-

straints are considered to exclude undesirable performance [94]: the drag should

be less than the baseline value, the pitching moment coefficient at c/4 (c is the

chord length) should be greater than the specific value to limit blade torsion,

and the airfoil area should be at least 90% of the baseline area to prevent serious

degradation of the structural performance. Note that the geometric constraint,

airfoil area in this study, can be directly imposed in this framework as QoI in

the target distribution optimization process (PARSEC parameters can also be

set as geometric constraints, such as Zup < 0.15, but these were realized by

limiting the design space herein). In multi-objective optimization, the two ob-

jectives are to maximize the L/D ratio and airfoil area, considering the trade-off

between aerodynamic and structural performances. Other constraints are the

same as those in the single-objective optimization.

41

Table 2.2: Flight conditions, objective functions, and constraints for

single-objective and multi-objective optimizations

Flight conditions

Reynolds number 6× 106

Mach number 0.25

AoA 7◦

Single-objective
optimization

Objective function Maximize L/D

Constraints

Cd < Baseline Cd

Cm > −0.08

Area > 0.9 ∗ Baseline Area

Multi-objective
optimization

Objective functions
Maximize L/D

Maximize Area

Constraints
Cd < Baseline Cd

Cm > −0.08

Then, DoE is performed to train the MLP and VAE models; the sampled de-

signs are used as the initial training data. Latin hypercube sampling is selected

considering its uniformity in the design space [95]. A total of 500 initial designs

are sampled and two deep learning models are trained based on them. Finally,

the optimization proceeds regarding the trained LVs of the VAE as the optimiza-

tion variables, and the QoIs and shape parameters as the objective functions

and constraints, as shown in Fig. 2.2. For single-objective optimization, GA

is adopted owing to its efficient global exploration in discontinuous and multi-

modal problems [96]. For multi-objective optimization, the non-dominated sort-

ing genetic algorithm-II (NSGA-II) is adopted to obtain the diversified Pareto

solutions of both objective functions [97]. Both optimization algorithms are

implemented using Python package pymoo [98].

42

When the first optimization ends with two-step deep learning models trained

using 500 DoE designs, active learning with a transfer learning strategy is con-

ducted iteratively. Because there is only one optimal solution obtained in the

single objective optimization, the single optimal solution is selected as the de-

sign to be infilled. On the other hand, there are several optimal solutions for

multi-objective optimization (Pareto solutions). In this case, the leftmost, mid-

dle, and rightmost designs in the Pareto solutions are selected to be infilled

in order to increase the overall accuracy of the Pareto solutions. These crite-

ria for infilling can be determined arbitrarily by the engineer (the number of

points to be added for each iteration and their distribution in the Pareto fron-

tier can be determined as appropriate). Through these iterative procedures, the

framework consisting of the two deep learning models will be able to satisfy the

given error criterion. Again, note that the proposed framework can be applied

to any inverse design problem (any design configuration, corresponding shape

parameters, QoIs, numerical solver, and optimizer can be selected arbitrarily).

2.4.2 Architectures of the two-step deep learning models

In the two-step approach, the MLP model is trained to take the Cp dis-

tribution as input and output QoIs and shape parameters. First, all airfoils

are discretized to share 199 identical x-coordinates: they are extracted using a

two-sided hyperbolic tangent distribution function [99] from NACA 0012 airfoil

(where the spacing at the leading-edge and trailing-edge is constrained as 0.001c

and 0.005c, respectively). Then, the pressure coefficients of the corresponding

points are used as the input of the MLP. And six shape parameters (RL.E.,

Xup, Zup, Xlow, Zlow, and ZT.E.) and four QoIs (L/D, Cd, Cm, and area) are

concatenated to form the 10 output nodes. Finally, the MLP has 199 input

nodes, 10 output nodes (all the inputs and outputs are normalized), and two

43

hidden layers with 100 nodes: the MLP with the corresponding hidden layers

was found to have sufficient accuracy for the regression in this problem. Then,

LeakyReLU activation functions are applied to all the layers for nonlinearity.

Adam is used as the optimizer with the MSE loss function to train this MLP

architecture, and the initial learning rate starts at 0.001. For the first iteration

in active learning, 500 initial samples are split into training and test data in the

ratio of 8:2 (the same ratio was also used to train the VAE). A total of 30000

epochs with a mini-batch size of 100 are performed using a scheduler that multi-

plies the learning rate by 0.8 for every 3000 epochs. Because there are no weight

or bias values to be used as a reference in the first iteration, they are initialized

using He initialization [100]. Then, active and transfer learning are performed.

Interestingly, during the MLP training, it is observed that if the parameters of

all layers from the previous model are passed, the training terminates without

any meaningful change from the previous model. This is because the number of

newly added designs is small compared with that of existing training data, and

their effect on the loss function becomes negligible. Therefore, active learning,

which is intended to increase accuracy by appending previous optimum solu-

tions to the current training data, becomes meaningless. In this regard, only the

parameters of other layers are transferred from the previous model, and those

of the last layer of the MLP are initialized using He initialization (in other

words, transfer learning is applied except for the last layer). For subsequent

iterations, the total epochs are set to 10000 with the same initial learning rate

and scheduler as the first iteration. As a result, training the MLP in the first

iteration using a personal computer (Intel Core i7-8700 3.2 GHz with 16 GB

2400 MHz DDR4 RAM) took 508 s, and subsequent iterations took an average

of 186 s per iteration using Python package PyTorch [101]. The fact that sub-

sequent iterations during active learning require a much shorter training time

44

than the first iteration emphasizes the effect of applying the transfer learning

technique in this study: with transfer learning, active learning can be efficiently

performed.

For the VAE model, the 199 Cp data previously inputted into the MLP are

used as inputs and outputs (VAE has the same input and output). The 199-

dimensional input data is reduced to four-dimensions using an encoder with

hidden layers of 120, 60, and 30 nodes. Herein, the four-dimensions represent

distribution parameters for random sampling in the latent space: two for the

mean and the other two for the standard deviation of the Gaussian distribution.

From these parameters, random sampling is performed, and the dimension is

finally reduced to a two-dimensional latent space. These two dimensions are

again reconstructed to 199 dimensions using a decoder with hidden layers of

30, 60, and 120 nodes. The corresponding architecture of the VAE is shown

visually in Fig. 2.5. As in the MLP, the LeakyReLU activation function and

Adam optimizer with MSE loss function are used. The initial learning rate

starts at 0.001, and a total of 30000 epochs are performed with a mini-batch

size of 100 and a scheduler multiplying the learning rate by 0.5 for every 5000

epochs. In contrast to the MLP, the situation in which the learning process

terminates without reflecting information on a newly added design point is

hardly observed in the VAE. Therefore, the parameters of all the layers from

the previous iteration are transferred to the next iteration (in other words,

transfer learning is applied to all layers). For subsequent iterations, a total of

10000 epochs are performed with the same initial learning rate and scheduler

as the first iteration. As a result, training the VAE in the first iteration took

627 s, and subsequent iterations took an average of 226 s per iteration (again,

the efficiency of transfer learning can be verified). Note all the hyperparameters

of the MLP and VAE mentioned in this section are applied identically in the

45

single-objective and multi-objective optimizations.

Figure 2.5: Architecture of the VAE.

2.4.3 Single-objective optimization results and discussion

Active learning of the single-objective optimization satisfies the error crite-

rion (the error of the objective function at optimum solutions should be lower

than 1%) after the 24 infilling iterations. The convergence history of optimiza-

tion with active learning can be observed in Fig. 2.6 and the loss function

histories of MLP and VAE are shown in Fig. 2.7. The objective function starts

at approximately 65 and increases gradually, reaching a value of approximately

72 after 24 iterations. After that, no better optimal point was found. Subsequent

analysis of the single-objective optimization results is based on the trained VAE

and MLP at iteration 24. The total learning time for 24 iterations is (508+627)

+ (186+226) * 24 = 11,023 s.

The final optimal airfoil shape is shown in Fig. 2.8, and its QoIs (objective

function and constraints) are summarized in Table 2.3. Its objective function

(L/D) has a value of 72.22, which increased by 39% compared with the baseline.

46

Figure 2.6: Convergence history of single-objective optimization with active

learning.

(a) (b)

Figure 2.7: Loss history of (a) MLP, and (b) VAE. For both models, the

history of the first iteration and last (24th) iteration of active learning is

represented.

However, this value is just a prediction from the MLP model, and it is not

certain whether the L/D calculated by Xfoil will have this value. Therefore, the

47

QoIs from Xfoil are compared with the predicted values from the MLP model.

It is confirmed that the four QoI values have an error (between predicted and

calculated) of less than 1%, and all the imposed constraints are satisfied. Note

that the airfoil area satisfies the constraint imposed with little margin (0.6%),

whereas other constraints (drag and pitching moment) are satisfied with some

margin. Additionally, numerical validation is performed to verify whether the

optimal airfoil actually shows the Cp distribution generated by the VAE model.

Fig. 2.9 demonstrates that the Cp generated by the VAE and that calculated

using Xfoil are almost indistinguishable. These results validate the accuracy of

the MLP model in the two-step approach for single-objective optimization.

Figure 2.8: Comparison of the baseline and optimum airfoil shape of

single-objective optimization.

Then, validation of the VAE model is performed. The VAE model reduces

199-dimensional Cp distribution data to a two-dimensional latent space and re-

constructs it back to 199-dimensional data. The trained decoder in this study is

used as a data generator that receives a two LVs and creates 199-dimensional Cp

distribution data from them. However, if the generated distribution cannot rep-

resent the overall training data or has completely different characteristics from

them, the optimization results from this generator become inaccurate and inef-

48

Figure 2.9: Comparison of the generated and calculated pressure distribution

of the optimum airfoil (baseline pressure distribution is also included).

Table 2.3: Summary of the QoIs of the optimum solution

L/D Cd Cm Area [m2]

Baseline 51.93 0.01436 -0.0040 0.1574

Optimum predicted (MLP) 72.22 0.01301 -0.0173 0.1420

Optimum calculated (Xfoil) 71.52 0.01305 -0.0172 0.1426

Error (Xfoil vs MLP) [%] 0.98 -0.28 0.72 -0.46

Comparison with baseline [%] 39.08 -9.40 332.50 -9.82

ficient. Therefore, the generated Cp distributions by the trained VAE decoder

are analyzed. Fig. 2.10 shows 50 randomly selected Cp distributions from the

500 initial training Cp data (black lines, Fig. 2.10a) and 50 randomly generated

Cp distributions by the decoder (red lines, Fig. 2.10b). Herein, the following

points are confirmed. First, the data generated using the decoder covers the

range of the training data. Moreover, although no other technique is applied

to smoothen the Cp distribution during the VAE training, the decoder success-

fully generated smooth distributions indistinguishable from the training data.

49

This supports the reason for adopting a VAE in this framework instead of a

GAN; the VAE generates sufficiently realistic data (continuous Cp in this case)

without adopting auxiliary layers or filters to ensure the continuity of the data.

Second, from the generated Cp distributions, we can also identify their domi-

nant features. As the black dashed box indicates, significant shape differences

are observed near the suction peak (near the leading-edge of the airfoil’s upper

surface), whereas most differences in the other regions are just slight shifts in

the Cp values. From the fact that these dominant features near the suction

peak are also observed in the training data (Fig. 2.10a), it can be concluded

that the VAE model successfully learned the dominant characteristics of the

training data. In summary, since we have confirmed that the data generated

by the VAE can be well representative of the training data, the trained VAE

model will perform successfully as a data generator in this framework.

Figure 2.10: Comparison of 50 randomly selected Cp training data (black

lines, a) and 50 generated Cp distributions by the VAE (red lines, b). The

black dashed box near the leading-edge of the lower curve indicates clear

distinctions between generated distributions.

50

2.4.4 Multi-objective optimization results and discussion

In Sec. 2.4.3, it was confirmed that the proposed inverse design optimization

framework yields outstanding results when single-objective optimization is per-

formed. In this section, results of multi-objective optimization are presented to

ensure the universality of the framework in various optimization problems. In

the previous single objective problem, which uses L/D as an objective function

and airfoil area as a constraint, the area of the optimum solution barely satisfied

the imposed constraint with little margin, 0.6%. This indicates that a potential

increase in the objective function L/D is suppressed by the area constraint.

Therefore, in the multi-objective optimization, these two QoIs are set as ob-

jective functions to consider their trade-off relationships between aerodynamic

and structural performance. Refer to Table 2.2 for the problem definition of

multi-objective optimization.

The active learning process of the multi-objective optimization converged

after 59 iterations and the loss function histories of MLP and VAE are shown in

Fig. 2.11. Accordingly, 677 data consisting of initial 500 designs and 177 infilled

designs are calculated (the total learning time for 59 iterations is (508+627) +

(186+226) * 59 = 25,443 s). The resultant Pareto frontier of the two objective

functions is shown in Fig. 2.12. We observed a discontinuity in the middle of the

calculated Pareto solutions, and it is concluded that this is due to Cd constraint

violation (the Pareto frontier from the optimization without the Cd constraint

is smoothly connected: this result is shown in Sec. 2.6). Among the Pareto

solutions, six designs (A1-A3 and B1-B3) are selected for further analysis, and

their airfoil shapes are shown in Fig. 2.13. Herein, it can be seen that along with

the Pareto frontier, airfoil shapes of selected six designs change sequentially: as

the performance criterion changes from area to L/D (from A1 to B3), the airfoil

51

thickness gradually decreases. Xfoil is performed on these six designs to estimate

the error between the QoIs from framework prediction and solver calculation,

as in single-objective optimization. The corresponding results are summarized

in Table 2.4: the errors between the QoI predicted using the framework and

those obtained using Xfoil are within a reasonable range. In particular, A2 and

B1 have quite large errors because there are few points added nearby in the

active learning process (the percentage errors of Cm are also large, but this is

due to their scale). The accuracy near these points can be increased by adding

points close to them (it is up to the engineer where to infill points in the Pareto

solutions). The accuracy of the trained MLP model is evaluated in Fig. 2.14 by

verifying that the six selected designs actually have Cp distributions generated

by the VAE: it shows that the MLP is accurate enough in that the Cp calculated

using Xfoil and that generated using the VAE are almost indistinguishable, as

in single-objective optimization.

(a) (b)

Figure 2.11: Loss history of (a) MLP, and (b) VAE. For both models, the

history of the first iteration and last (59th) iteration of active learning is

represented.

52

Figure 2.12: Pareto solutions of multi-objective optimization. The

discontinuity in the Pareto solutions is due to Cd constraint violation.

Figure 2.13: Airfoil shape comparison of six selected Pareto solutions.

In this framework, the LVs go through the VAE decoder and MLP sequen-

tially to predict the QoI values. Based on this two-step approach, an optimiza-

tion technique is applied to obtain LVs that maximize/minimize QoIs. There-

fore, for efficient optimization through this two-step deep learning approach,

two-step deep learning models should learn the precise correlation between the

two spaces (the latent space and QoI space). However, in real engineering prob-

lems, this can be difficult due to abrupt changes in physical conditions such

53

Table 2.4: Summary of the QoI of six selected Pareto solutions

L/D Area [m2] Cd Cm

Baseline 51.93 0.1574 0.01436 -0.0040

A1

Predicted 34.56 0.1844 0.01436 0.0513

Calculated 34.26 0.1840 0.01445 0.0514

Error [%] -0.85 -0.21 0.63 0.17

A2

Predicted 42.16 0.1781 0.01434 0.0318

Calculated 40.63 0.1789 0.01461 0.0343

Error [%] -3.64 0.44 1.91 7.71

A3

Predicted 49.86 0.1697 0.01423 0.0124

Calculated 49.52 0.1697 0.01428 0.0124

Error [%] -0.68 0.03 0.35 0.19

B1

Predicted 54.13 0.1585 0.01436 -0.0027

Calculated 55.22 0.1579 0.01442 -0.0075

Error [%] 2.01 -0.38 0.43 179.92

B2

Predicted 64.42 0.1493 0.01433 -0.0256

Calculated 64.99 0.1488 0.01445 -0.0333

Error [%] 0.89 -0.36 0.86 30.05

B3

Predicted 75.99 0.1396 0.01307 -0.0387

Calculated 76.32 0.1396 0.01299 -0.0383

Error [%] 0.43 -0.05 -0.63 -1.12

as shock waves. When the mapping is inaccurate, the efficiency of the opti-

mization technique based on their mapping will be significantly undermined. In

this context, this study investigates the mapping between the latent space and

QoI through heatmaps to verify how they are correlated, as shown in Fig. 2.15:

54

Figure 2.14: Comparison of generated and calculated Cp distributions of six

selected Pareto solutions.

heatmap of L/D and area is shown in Fig. 2.15a and Fig. 2.15b, respectively. In

this figure, it can be observed that the latent space is mapped continuously to

both objective functions, indicating how optimization in this framework could

be performed successfully. On the other hand, sharp changes in both objectives

are detected when z2 has a value of approximately 0.55 (as indicated by the

yellow squares). To investigate the changes occurring in the flowfield across this

boundary, a total of 12 points are extracted nearby, as shown at the top of Fig.

2.15. The nomenclatures of these 12 points are summarized in Table 2.5.

To find the reason for the sharp change in QoIs at z2 ≈ 0.55, the Cp distribu-

tions generated through VAE from 12 selected LVs are shown in Fig. 2.16 (the

horizontal and vertical axes of the subplots represent x/c and Cp, respectively,

and they are scaled to the same range for the comparison). In this figure, the

local leading-edge suction peaks on the lower curve are not observed in the Cp

plots of z2 > 0.55, whereas they are observed in the plots of z2 < 0.55. There-

55

Figure 2.15: Heatmaps of two objective functions within the latent space: (a)

L/D and (b) area. Twelve points are selected to investigate the rapid change

at z2 ≈ 0.55 (top), and the latent space of six selected Pareto solutions is

shown in the heatmap of area (b).

Table 2.5: Nomenclatures of twelve points extracted to investigate the sharp

changes in the QoI heatmaps

z1

-2 -1.5 -1

z2

-0.4 L4 M4 R4

-0.5 L3 M3 R3

-0.55 Boundary of rapid change

-0.6 L2 M2 R2

-0.7 L1 M1 R1

56

fore, it can be inferred that z2 ≈ 0.55 is the boundary between the presence

and absence of the leading-edge suction peak. In this regard, it is known that

the sharper the leading-edge of the airfoil, the larger the suction peak behind

the leading-edge (as the leading edge radius decreases, the angle at which the

flow should bend increases, thereby increasing the suction in order to attach

the flow to the airfoil surface [102]). Therefore, the trends in the leading-edge

radius (RL.E.) are depicted in Fig. 2.17 to verify whether the rapid changes in

Cp are accompanied by the changes in RL.E.. Indeed, as z2 decreases (as the

number corresponding to the second character of the nomenclature decreases),

the leading-edge radius decreases, which is consistent with the prior knowledge.

Moreover, in all cases of L, M, and R, there are noticeable gaps between 2 and

3. Considering that nomenclatures 1, 2, 3, and 4 are equally spaced in the z2-

direction, it can be concluded that a rapid change in the leading-edge radius

at the boundary between 2 and 3 (z2 ≈ 0.55) leads to a sudden change in the

trend of the leading-edge suction. Additionally, the six points selected from the

Pareto solutions in Fig. 2.12 are scrutinized in a similar way. In Fig. 2.14, the

leading-edge suction peaks are not found in the Cp distributions of A1-A3, but

are found in B1-B3. In fact, when the latent variables of these designs are visu-

alized as shown in Fig. 2.15b, the two groups (A1-A3 and B1-B3) are separated

by a boundary of z2 ≈ 0.55. In summary, by analyzing the heatmaps, map-

ping between the latent space and QoIs using the two-step approach is verified

to be generally continuous. Additionally, this mapping is verified to accurately

reflect the rapid changes in QoIs, which occur frequently in real-world engineer-

ing applications. This flexibility of the two-step deep learning approach enables

the optimization to be performed efficiently owing to the continuous and ac-

curate mapping between the optimization inputs and outputs, highlighting the

capability of the proposed inverse design optimization framework.

57

Figure 2.16: Cp distributions of 12 points selected in Fig. 2.15.

Figure 2.17: Trends in the leading-edge radius (RL.E.) of 12 selected points in

Fig. 2.15.

58

2.5 Summary

This study proposed a novel inverse design optimization framework with a

two-step deep learning approach, which refers to consecutive coupling of VAE

and MLP. Herein, the VAE generates a realistic target distribution and MLP

predicts QoIs and shape parameters from the generated distribution. Then, the

target distribution was optimized based on this two-step approach. To increase

the accuracy, we used active learning to retrain the models with newly added

designs. Herein, transfer learning was coupled to reduce the computational cost

required for retraining. These techniques increase the accuracy of the frame-

work with efficient computational resources. Finally, the limitations of previous

inverse design studies can be eliminated through the proposed framework as

follows:

1. The conventional inverse design process is substituted with the MLP sur-

rogate model so that the iterations coupled with the flow solver are not

required.

2. From the target distribution, the MLP surrogate model not only predicts

the design shape, but also QoIs. Therefore, theoretical/empirical assump-

tions are not required for predicting QoIs from the target distribution,

and the geometric constraints can be imposed explicitly in the target

distribution optimization process.

3. For the inverse design optimization, realistic target performance distri-

butions are generated using a VAE deep generative model so that the

loss of the diverse representation capacity due to the parameterization of

the distribution is mitigated, and excessive constraints for the realistic

distribution are not required.

59

The proposed framework was validated using two constrained optimization

problems: single-objective and multi-objective airfoil optimizations of the tip

region of a megawatt-class wind turbine blade. In the single objective optimiza-

tion, the prediction accuracy of the trained MLP model and the validity of the

trained VAE model for generating realistic data were verified. In the multi-

objective results, continuous mapping between the inputs and outputs of the

framework was verified, which enabled successful optimization through the two-

step approach. Furthermore, this mapping was confirmed to accurately reflect

the rapid changes in QoIs, which occur frequently in real-world engineering ap-

plications. In summary, the results of the optimizations show that the proposed

inverse design optimization framework via a two-step deep learning approach is

accurate, efficient, and flexible enough to be applied to any other inverse design

problem.

Considering that this novel framework can be coupled with any numerical

solver with arbitrary design shape and QoIs, it can be easily applied and ex-

tended to various engineering fields. Moreover, the deep learning models in the

two-step approach can be replaced by other suitable alternatives: the VAE by

any data generator model and the MLP by any other regression model. For in-

stance, the MLP, a widely used but quite simple model, was used in this study

since the problem we investigated is not much complex to apply other advanced

deep learning models. However, when the problem is complicated, other models

such as convolutional neural networks or recurrent neural networks can be used

instead of a simple MLP model. This flexibility contributes to the versatility

of the framework by allowing it to be utilized with any model suitable for the

engineering problem to which it applies.

60

2.6 Additional results

The Pareto frontier from the optimization without the Cd constraint is

shown in Fig. 2.18: from the continuous Pareto solutions, it can be inferred

that the discontinuity in the Pareto solutions in Fig. 2.12 was due to Cd con-

straint violation. Also, as the constraint is eliminated, Pareto solutions without

Cd constraint have better performance near B1 design than Pareto solutions

with Cd constraint.

Figure 2.18: Pareto solutions of multi-objective optimization without Cd

constraint. For comparison with Fig. 2.12, six designs previously selected from

the Pareto solutions with Cd constraint are also shown.

61

Chapter 3

High-dimensional output space

The work in this chapter was published in the Physics of Fluids [20].

3.1 Introduction

This chapter aims to address the high-dimensional output space that hinders

the efficient application of regression models to aerodynamic design by adopting

ROM techniques. Specifically, this chapter focuses on the fact that since latent

space acts as an intermediary in ROM for predicting high-dimensional data,

it inevitably affects ROM performance. To this end, the prediction of high-

dimensional flow fields around a transonic airfoil is adopted as a case study,

and the physical interpretability of the latent space among various machine

learning-based DR techniques is investigated. Furthermore, the impact of its

interpretability on the ROM performance is analyzed, and finally, its signif-

icance on the accuracy and efficiency in predicting high-dimensional QoIs is

verified. The remainder of this section highlights why the selected case study

62

(flow field prediction of transonic airfoil) is important in the aerodynamic de-

sign discipline, and how this chapter successfully leverages physics-aware latent

space in the ROM procedure, alleviating the impediment arising from the high-

dimensional output space.

CFD has been widely applied in numerous engineering disciplines. However,

high-fidelity CFD simulations are often computationally intensive due to the

fine discretization of space and time domains. A practical approach to reduc-

ing its computational burden is to use a regression model as a cost-efficient

alternative to time-consuming flow analysis [19]. Such regression models have

been developed extensively, to name a few, cubic spline interpolation [103],

RBF [104], and GPR [105, 106]; however, these models are only suitable for

estimating scalar quantities such as lift coefficients of the airfoil. Consequently,

when the QoIs are high-dimensional vectors, such as pressure or the velocity

field, the computational complexity becomes prohibitive due to “the curse of

dimensionality.”

Data-driven ROM has recently attracted attention for its potential to deal

with this problem. It treats a high-fidelity computer simulation as a “black-box

function” and generates simplified models in a data-driven manner without any

modification of the governing equation. The main purpose of this approach is

to reduce the degrees of freedom of the data using the DR technique (also

known as representation learning or manifold learning), which finds the low-

dimensional latent representation of high-dimensional original data. Through

this technique, the dimensionality of the data can be significantly reduced to a

level that is suitable for training the regression models effectively.

One of the most widely used DR techniques is POD [107], which is also

referred to as principal component analysis or the Karhunen-Loève theorem.

Given the training data, POD extracts a set of orthogonal bases (also referred to

63

as modes) that maximizes the variance of the projected data. Extracted modes

are ranked by their energy content so that the dimensionality can be reduced

by truncating non-dominant modes. Specifically, the original high-dimensional

data can be represented in a low-dimensional subspace using linear combina-

tions of the dominant modes. However, its linearity makes POD-based ROM

suffer from performance degradation in nonlinear problems [108, 109, 110, 111],

requiring an excessive number of modes compared to nonlinear DR methods

for the same reconstruction accuracy.

In this regard, deep neural networks (DNNs) have become an alternative to

POD for their performance on highly nonlinear problems. The most commonly

used DNN-based DR technique is the AE, which learns the low-dimensional la-

tent space of the original data in an unsupervised manner [112]. The nonlinear

functions between its multiple hidden layers enable it to model nonlinearity, and

in this context Hinton and Salakhutdinov [113] referred to AE as a nonlinear

generalization of POD. Owing to this property, it was confirmed that the AE-

based ROM shows higher reconstruction accuracy than the POD-based ROM

in various nonlinear problems [114, 115, 116]. Moreover, the flow field recon-

struction using AE can be further improved by applying convolutional neural

networks (CNNs), which were introduced to train grid-pattern data efficiently

[117, 118, 119, 120, 121, 122, 123].

However, there are several issues to be addressed in AE-based ROM. First,

AE does not guarantee disentangled latent representation since its training al-

gorithm only aims to reduce the reconstruction error without considering the

regularity in latent space. Its irregularity allows multiple features to be en-

tangled in a single latent variable (LV) [75], making it difficult to interpret the

physical meanings of LVs. Second, since the model architecture of AE should be

predetermined before training, its latent dimension needs to be blindly selected

64

large enough to contain the entire information (otherwise, a trial-and-error pro-

cess should be performed). In POD, it is possible to truncate trivial LVs since

it provides the energy contents of LVs (or modes). However, in AE, its algo-

rithm does not treat LVs hierarchically according to their information intensity

so that theoretically, the entire information is evenly distributed to each LV.

Therefore, all dimensions blindly selected should be used, as truncation of even

only one LV can severely compromise its reconstruction accuracy. As a result,

the resultant redundancy of the latent dimension will degrade both the physi-

cal interpretability of LVs (too many LVs are entangled) and the efficiency of

AE-based ROM (too many regression models should be trained).

The introduction of a VAE and its improved understanding has been pro-

viding a clue to these problems. While AE only minimizes reconstruction error,

VAE also regularizes latent space by minimizing KL-divergence term [64]. The

balance between these two terms in VAE can be adjusted by the hyperparameter

β, which is referred to as β-VAE [75]. It is known that by weighting the KL-

divergence term in β-VAE, two notable effects can be achieved. First, it learns

disentangled latent representations: a single LV encodes only one representation

feature of the original dataset and therefore becomes interpretable. This ensures

independence between each LV as the POD extracts orthogonal bases. Second,

the regularization loss (KL-divergence) encourages learning the most efficient

latent representation [75, 124, 125]. Therefore, regardless of the predetermined

latent dimension, only necessary LVs are automatically activated to contain the

essential information [126]. In summary, unlike AE model, β-VAE enables its

latent space to be information-intensive without being entangled, indicating its

potential to further improve the performance of AE-based ROM.

However, there are few studies related to β-VAE in the field of fluid dy-

namics. Eivazi et al. [126] adopted β-VAE to extract interpretable nonlinear

65

modes for time-dependent turbulence flows and proposed a method to rank

LVs by measuring their energies. However, their ranking method requires sep-

arate post-processing of the reconstructed data after model training, and the

energies of LVs are indirectly calculated in the output space rather than in the

latent space. Accordingly, the approach is unrelated to KL-divergence which is

the main cause of information discrepancies between LVs. Though they finally

concluded that their framework successfully extracted interpretable features of

turbulent flows, it lacks objectivity since it was based on the visual analysis

of the flow fields. Last but not least, their research ended up with nonlinear

mode decomposition without showing how interpretable LVs can be efficiently

utilized for the ROM process. Indeed, Wang et al. [118] already have applied β-

VAE to ROM for transonic flow problems and verified its superior performance

over POD. Though they extended β-VAE to practical application, they only

focused on the implementation of β-VAE for ROM so that the interpretabil-

ity of extracted features (main purpose of β-VAE) and their effects on ROM

performance were not addressed and referred to as their future work.

This study aims to utilize physically interpretable and information-intensive

LVs obtained by β-VAE, which are referred to as “physics-aware LVs”, for the

efficient ROM process. For this purpose, a two-dimensional (2D) transonic flow

problem is adopted as benchmark case, and the independence and information

intensity of LVs are investigated first to confirm whether they are physics-aware.

Herein, we suggest applying the KL-divergence to rank LVs by their amount of

information, which is the direct cause of their discrepancies and does not require

the reconstruction process. Then, “physics-aware ROM”, ROM which utilizes

only physics-aware LVs is proposed for its efficiency in that the number of

required regression models can be reduced significantly. The presented physics-

aware ROM is compared with conventional ROMs, and finally, we successfully

66

verify its validity and efficiency.

The rest of this chapter is organized as follows. In Sec. 3.2, the β-VAE DR

technique is described in detail, and in Sec. 3.3, the physics-aware ROM is newly

proposed. In Sec. 3.4, the setup of the numerical experiment is presented. In

Sec. 3.5, the process of extracting physics-aware LVs and the discovery of their

actual physical meanings are described, and the effectiveness of physics-aware

ROM based on them is investigated. And finally, in Sec. 3.6, the summary of

this chapter and future work are presented.

67

3.2 β-variational autoencoder (β-VAE)

Higgins et al. [75] focused on the trade-off relationship between the recon-

struction error and KL-divergence in the loss function of the VAE (Sec. 2.2.3).

As the reconstruction accuracy increases, the degree of regularization in the

latent space decreases. To tune the balance between these two performances,

Higgins et al. [75] proposed the β-VAE, which can control the relative impor-

tance of the KL-divergence term using the adjustable hyperparameter β. It is

a simple modification of the VAE: they have exactly the same structures but

slightly different loss functions. The loss function of the β-VAE is as follows:

Lβ-V AE =
1

N

N∑
i=1

(xi − x̃i)
2 + β ·KL(qϕ(z|x)||pθ(z)). (3.1)

The only difference in the loss functions between the VAE and β-VAE is whether

the KL-divergence term is weighted by hyperparameter β. By introducing this

hyperparameter, Higgins et al. [75] achieved quantitative and qualitative im-

provements in the disentanglement within the latent representations over the

traditional VAE model. Finally, they concluded that owing to the disentan-

gling performance of β-VAE, the interpretable representations of the indepen-

dent generating factors of the given dataset can be discovered automatically. In

this chapter, the terminologies “disentanglement”, “interpretability”, “indepen-

dence”, and “orthogonality” are used interchangeably to refer to the following

property of LVs: single LV stands for a single representation feature without the

intervention of other LVs. However, what makes β-VAE special is not only its

disentangling performance. The regularization loss (KL-divergence) is known to

have sparsification effect to encourage the most efficient representation learning

[75]. Burda et al. [124] and Sønderby et al. [127] practically confirmed this effect

in that some LVs become inactive during the training process of VAE. In par-

68

ticular, Burda et al. [124] confirmed that inactive LVs have a negligible effect on

the reconstruction. This finding indicates that VAE trains its LVs in an efficient

manner by selectively activating LVs to contain the only necessary information.

Since the β-VAE model has a regularization term in the loss function weighted

by the hyperparameter β, it can be easily inferred that the sparsification effect

in the β-VAE model will become more dominant as β increases. Taking these

two outstanding advantages of β-VAE, disentangled and information-intensive

latent space, a novel ROM framework is proposed in the next section.

69

3.3 Physics-aware reduced-order modeling

The main goal of ROM is to predict high-dimensional data with low com-

putational cost. As described in previous sections, the high-dimensional data

can be effectively reduced to the low-dimensional LVs, and reconstructed back

to high-dimensions through DR techniques. In this context, ROM aims to pre-

dict high-dimensional data efficiently by predicting these LVs from input pa-

rameters using regression models. The overall structure of ROM is illustrated

in Fig. 3.1. In the reconstruction process (solid arrows), the high-dimensional

data is encoded into LVs and reconstructed back into high-dimensional data by

the decoder. In the prediction process (dashed arrows), LVs are first predicted

from input parameters through regression models (GPR [105, 106] is adopted

for regression in this study), and then predicted LVs are decoded into high-

dimensional data. Since the high-dimensional data can be repeatedly predicted

from input parameters at a very low computational cost, this prediction process

is often referred to as the online phase.

Figure 3.1: Overall structure of physics-aware reduced-order modeling.

Since LVs act as intermediaries in ROM for predicting high-dimensional

70

data, they inevitably affect ROM performance. In this regard, AE model has

two critical drawbacks to be applied to ROM. First, it trains the entangled

and therefore uninterpretable latent space. Second, its latent dimension need

to be blindly selected large enough since the model architecture should be pre-

determined before the training. Therefore, the AE-based ROM has the disad-

vantages of utilizing physically uninterpretable LVs due to entangled LVs and

the degraded efficiency due to excessive regression models. This study newly

proposes physics-aware ROM via β-VAE to deal with the above issues, consid-

ering the following characteristics of β-VAE. As stated in Sec. 3.2, the latent

space in β-VAE is trained to be disentangled and information-intensive. When

LVs satisfy these two properties simultaneously, they can be regarded as the

latent representations which contain both interpretable and necessary informa-

tion. In that this study uses physical dataset, LVs will correspondingly contain

physical information, and accordingly, we refer to those LVs as “physics-aware

LVs.” To ease the understanding of physics-aware LVs, the ideal schematic of

their extraction with β-VAE is shown in Fig. 3.2: when the dataset is generated

through Mach number (Ma) and angle of attack (AoA), the ideally extracted

physics-aware LVs will be Ma and AoA. Finally, the ROM only utilizing these

physics-aware LVs (which refers to “physics-aware ROM”) is proposed for its ef-

ficiency that the number of regression models required in the prediction process

can be significantly reduced.

In order to extract physics-aware LVs, we first estimate the independence

of LVs. In this regard, Eivazi et al. [126] have already measured it using a

Pearson correlation matrix and the same approach is applied herein. Then, the

information intensity of LVs is quantified. Similar attempt has been made by

Eivazi et al. [126], who proposed a strategy to rank LVs by energy percentage,

which quantifies the contribution of each LV to the reconstruction quality. How-

71

Figure 3.2: Illustrative schematic showing the process of extracting

physics-aware LVs by β-VAE: the ideal case is to extract the actual physical

parameters (Ma and AoA) from the given dataset.

ever, they ranked LVs not in the latent space which is directly related to them,

but in the output space so that there exist two problems. First, its low practi-

cality due to cumbersome post-processing: flow fields should be reconstructed

using a forward selection of LVs and then energy percentage is calculated from

them. Second, since this method is irrelevant to KL-divergence, which is the

main cause of the inactiveness of LVs [124, 127], it cannot be regarded as a

fundamental approach for ranking LVs based on their amount of information.

Therefore, another ranking criterion should be proposed that estimates the in-

formation intensity of each LV without such burdensome post-processing. For

this purpose, we propose to apply the KL-divergence (Eq. 2.7), the immediate

cause for the sparser latent space due to its regularization effect. Since the cal-

culation of KL-divergence is performed directly in the latent space, the decoder

part of β-VAE does not even need to be utilized (no reconstruction required),

solving all the limitations of the previous ranking approach.

In physics-aware ROM framework, only physics-aware LVs are utilized so

72

that the number of regression models required in the prediction process can

be significantly reduced. For example, suppose that AE-based ROM and β-

VAE-based ROM are performed where both AE and β-VAE have the latent

dimension of 16. In the case of AE-based ROM, 16 regression models should

be trained because exclusion of just one LV can degrade ROM performance

significantly in that all 16 LVs contain information in an entangled manner.

However, in β-VAE-based ROM, since physics-unaware LVs are judged not to

contain any meaningful information, it is sufficient to utilize only the regression

models of physics-aware LVs. The overall procedure of physics-aware ROM is

summarized in Algorithm 1.

Algorithm 1 Physics-aware ROM via β-VAE

(1) Preparation of training dataset generated by physical parameters.

(2) Train β-VAE with dataset in (1).

(3) Extract activated LVs through estimating their independence by correla-

tion coefficient and information intensity by KL-divergence.

(4) Train regression models to predict activated LVs from physical parameters

in (1).

(5) Prediction of high-dimensional dataset from physical parameters based

on regression models in (4) and decoder part of β-VAE trained in (2). During

this process, deactivated LVs are fixed to their estimated mean values.

73

3.4 Numerical experiments

3.4.1 Data preparation

A 2D transonic flow problem, the benchmark case that is widely used in

previous ROM studies [110, 111, 109, 118], is adopted for validation of the

physics-aware ROM. The transonic flow field is generated by the KFLOW finite-

volume-based CFD solver [128, 129]. Specifically, the Reynolds-averaged Navier-

Stokes equation is solved coupled with the Spalart-Allmaras turbulence model.

RAE 2822 airfoil is selected as the baseline geometry, and a structured O-grid

with a shape of 512× 256 (wall-tangential direction × wall-normal direction) is

generated; the corresponding grid is shown in Fig. 3.3. The Reynolds number is

fixed at 6.5× 106, and two physical parameters are chosen: Ma and AoA. The

design space of each variable is set to [0.5, 0.8] and [0◦, 3◦], respectively. Latin

hypercube sampling is used to generate 500 sample points in 2D parameter

space. A flow analysis of these samples is then conducted and the resultant

velocity and pressure fields are normalized by their far-field conditions. As the

variations of flow properties far from the airfoil are negligible, only the inner

half of the entire grid with respect to the normal direction from the airfoil is

used so that the resultant grid becomes 512×128. Consequently, a total dataset

with a shape of 500 × 3 × 512 × 128 (dataset size × flow field components ×

wall-tangential direction grids × wall-normal direction grids) is obtained, where

the flow-field components are the x-velocity, y-velocity, and pressure. Finally,

the dataset size of 500 is split into a ratio of 9:1 so that the size of the training

dataset is 450, and that of the test dataset is 50.

74

Figure 3.3: Computational grid used for the flow analysis; structured O-grid

with a size of 512× 256.

Figure 3.4: Structures of the AE and VAE/β-VAE.

3.4.2 Training details

In this study, AE, VAE, and β-VAE, are trained to investigate their differ-

ences in terms of DR for transonic flow. In particular, several β-VAE models

are trained (β ∈ [10, 20, 30, 40, 50, 100, 150, 200, 500, 750, 1000,

2000, 3000, 4000]) to investigate the effects of the β value (technically speaking,

β-VAE can be regarded as the VAE when β has a value of 1). For all models, the

75

Table 3.1: Details of the blocks and layers of VAE/β-VAE used in this study.

Name Layer type FilterKernelStrideActivationBatch Norm.

Up
Max-polling – 2 × 2 – – –

Convolution 64 3 × 3 1 LeakyReLU o

Down
Upsampling – 2 × 2 – – –

Convolution 64 3 × 3 1 LeakyReLU o

Conv1 in Convolution 64 1 × 1 1 LeakyReLU o

Conv1 out Convolution 3 1 × 1 1 – –

FC Fully Connected – – – – –

Table 3.2: Network structure of the VAE/β-VAE used in this study.

Encoder Bottleneck Decoder

Layer Output size Layer Output size Layer Output size

Input 3 × 512 × 128 Flatten 256 Up1 64 × 8 × 2

Conv1 in 64 × 512 × 128 FC1: µ 16 Up2 64 × 16 × 4

Down1 64 × 256 × 64 FC2: σ 16 Up3 64 × 32 × 8

Down2 64 × 128 × 32 Resampling 16 Up4 64 × 64 × 16

Down3 64 × 64 × 16 FC3 256 Up5 64 × 128 × 32

Down4 64 × 32 × 8 Unflatten 64 × 4 × 1 Up6 64 × 256 × 64

Down5 64 × 16 × 4 – – Up7 64 × 512 × 128

Down6 64 × 8 × 2 – – Conv1 out 3 × 512 × 128

Down7 64 × 4 × 1 – – Output 3 × 512 × 128

dimension of the latent space should be determined blindly before the model

training. The selected dimensions should be sufficient for encoding the training

data generated from the 2D parameter domain (Ma and AoA). In this regard,

76

we adopted the approach suggested by Wang et al. [118] to infer the latent

dimension of β-VAE considering the accuracy of the POD with corresponding

dimension (their assumption was that POD requires much more dimensions

than β-VAE for the equivalent reconstruction accuracy, which was also proved

in their work). Finally, the dimension of the latent space in this study is deter-

mined to be 16 since it conserves 99.18% in terms of energy contents of POD,

which is judged to be sufficient.

An appropriate encoder/decoder structure should be selected to effectively

compress/reconstruct the data, from dimensions of 3×512×128 to 16 and vice

versa. To determine suitable structures, hyperparameter tuning based on a

grid search was conducted. Finally, it was confirmed that the MSE recon-

struction error, which represents the overall accuracy of the trained model,

does not strongly depend on whether batch normalization, max-pooling, and

up-sampling are applied. However, their application significantly affects the

smoothness of the reconstructed flow field: it can be inferred that this is due

to the effects of batch normalization and max-pooling that prevent overfitting,

and the interpolation effect of up-sampling. If an artificial discontinuity (rather

than a discontinuity that reflects a physical phenomenon, such as a shock wave)

is observed in the reconstructed flow field, the flow field cannot be considered

realistic. In this context, these points are important for predicting realistic flow

fields using CNN-based deep learning models. Finally, the architectures of the

selected models, which are considered to be sufficient in terms of MSE error

and the smoothness of the reconstructed flow field, are shown in Tables 3.1

and 3.2 and Fig. 3.4. The only difference between the structures of the AE and

VAE/β-VAE is the bottleneck, and the structures of the VAE and β-VAE are

exactly the same.

The Adam optimizer is adopted to train selected models. The initial learning

77

rate is set to 10−3, and it decays at a rate of 0.1 every 1000 epochs. The

maximum epoch should be selected carefully because a model that does not

fully converge can make significantly different predictions than a converged

model [130]. The maximum number of epochs is set to 3000 since it is verified

to guarantee sufficient convergence in terms of the loss function. A mini-batch

size of 50 is selected so that nine iterations are performed per epoch (as the

size of the training dataset is 450). Using a Tesla P100-PCIE-16GB GPU with

Pytorch deep learning library [101], the average training time for each model is

calculated to be approximately 3 h.

78

3.5 Results and discussion

In this section, the results of physics-aware ROM are presented in the fol-

lowing order. First, training results of β-VAE are demonstrated to investigate

the effect of β on flow reconstruction. Next, the methods to measure the inde-

pendence and information intensity of LVs are orderly presented to determine

whether the LVs obtained by β-VAE are physics-aware LVs. At the same time,

the validity of the KL-divergence ranking method to measure the information

intensity of LVs is confirmed both quantitatively and qualitatively. Then, it

is thoroughly investigated whether the physics-aware LVs actually have inter-

pretable physical features through various techniques. In the end, it is verified

that the physics-aware ROM based on these physics-aware LVs has equivalent

prediction accuracy much more efficiently than physics-unaware ROM.

3.5.1 Training results

First, the loss function history of the trained models is shown in Fig. 3.5,

and the decomposition of the resultant loss functions is shown in Fig. 3.6. More

specifically, the loss function is decomposed into the MSE and KL-divergence (as

in Eq. 3.1) to confirm their trade-off relationship. The MSE and KL-divergence

of the VAE/β-VAE models are indicated by blue and red symbols, respectively.

The β and KL-divergence values cannot be defined in the AE model; there-

fore, only its MSE loss is indicated separately by a dashed line. Herein, a clear

trade-off relationship between MSE and KL-divergence can be confirmed, as

mentioned by Higgins et al. [75]. As β increases, KL-divergence decreases, while

MSE increases. This is consistent with the concept of the β-VAE, which sup-

presses KL-divergence by increasing β. In particular, when β > 1000, the MSE

increases significantly so that an accurate reconstruction of the flow field is no

79

Figure 3.5: Loss history of the trained AE/VAE/β-VAE models.

Figure 3.6: MSE and KL-divergence of the trained VAE/β-VAE models.

longer possible.

Second, the reconstructed pressure flow fields of the three test cases (which

are not used during the training process) are shown in Fig. 3.7 to compare

the trained models more intuitively and visually. The selected test cases are as

follows: test case 1 is in the absence of a shock wave (Ma = 0.61 and AoA =

2.12◦), test case 2 is in the presence of a weak shock wave (Ma = 0.72 and

80

AoA = 1.68◦), and test case 3 is in the presence of a strong shock wave (Ma =

0.78 and AoA = 1.57◦). Five models are compared, including the AE, VAE,

30-VAE (β-VAE with β = 30), 100-VAE (β = 100), and 1000-VAE (β = 1000).

In Fig. 3.7, it can be confirmed that the reconstructed pressure contours for all

three cases and all models do not exhibit any significant difference, indicating

all models have been trained to reconstruct the accurate flow fields.

Figure 3.7: Reconstructed pressure fields of the trained models.

3.5.2 Independence of LVs

This section is to confirm whether LVs of β-VAE are actually trained to

be disentangled from each other so that they are interpretable. In Fig. 3.8,

the absolute values of the components in the Pearson correlation matrix are

shown from AE to 1000-VAE. Since there is no algorithm in AE model to

promote the independence of LVs, it has the largest values. However, in β-VAEs,

their values decrease as β increases, which indicates that the LVs gradually

become independent of each other. These results practically prove that the

KL-divergence actually encourages the independence of each LV. Eivazi et al.

[126] also computed the determinant of the correlation matrix to measure the

degree of correlation within the entire set of LVs (when the determinant is

81

0/1, it indicates that these variables are completely correlated/uncorrelated).

However, given the fact that the KL-divergence term leads to a sparser latent

space, which will be discussed in detail in Sec. 3.5.3, examining the determinant

of the whole matrix size of 16× 16 is contradictory.

Therefore, the independence of various LV combinations is further analyzed.

First, all possible combinations of two to seven LVs are obtained. Then, the

determinants of these combinations are calculated and their statistics are sum-

marized in Fig. 3.9. For any number of LVs used in a combination, the β-VAE

models have significantly higher determinants than the AE and VAE models.

In summary, the results presented in Fig. 3.8 and 3.9 consistently show that the

β-VAE successfully learns uncorrelated LVs compared to AE and VAE models,

owing to the KL-divergence, which forces the LVs to be independent. These

independent (or uncorrelated) LVs are expected to have interpretable (or dis-

entangled) physical features, which will be investigated in Sec. 3.5.4.

3.5.3 Information intensity of LVs

It was verified in Sec. 3.5.2 that the LVs in β-VAE are trained to contain

disentangled and therefore interpretable information. In this section, we tried

to rank such disentangled LVs according to their information intensity using

KL-divergence. Fig. 3.10 shows the KL-divergence of each LV in AE/VAE/β-

VAE. It can be confirmed that both the AE and VAE models do not have any

inactive LVs. On the contrary, notable trends are observed in 30-VAE, 100-

VAE, and 1000-VAE models: each model has only four (LV index 6, 8, 11, and

15), three (index 8, 11, and 15), and two (index 8 and 11) activated LVs, re-

spectively. These results are consistent with those of Eivazi et al. [126] in that

the number of activated LVs decreases as beta increases in the β-VAE model.

In fact, a similar approach was applied by Sønderby et al. [127], who judged

82

Figure 3.8: Absolute values of the components in the Pearson correlation

matrix for LVs.

Figure 3.9: Determinants of Pearson correlation matrices for combinations of 2

to 7 LVs.

whether the LV is activated via the KL-divergence. However, the relationship

between the activeness of the LV and KL-divergence was not described clearly.

Therefore, we also attempt to clarify it: further investigations are conducted to

83

check whether the LV judged to be more active in terms of the KL-divergence

actually has a greater effect on the reconstructed flow field. Sobol sensitivity

analysis is utilized for this analysis [131]: a total 18432 latent vectors are sam-

pled using the Saltelli sampler in the range of [µ̂k − 2σ̂k, µ̂k + 2σ̂k], and their

corresponding reconstructed flow fields are obtained through the decoder parts

of the AE/VAE/β-VAE models. Since Sobol analysis should be conducted on

the scalar output, a set of 3×512×128 pixels of the flow fields is converted to

a scalar value (the sum of all pixel components is used in this study, but any

scalar value representing the main characteristics of the flow field can be used).

Fig. 3.10 shows the calculated first-order Sobol indices. It can be confirmed

that the higher the KL-divergence, the larger the value of the Sobol indices in

the VAE/β-VAE models (because KL-divergence has nothing to do with the

algorithm of the AE model, it does not exhibit a clear trend with the Sobol

indices).

Additionally, since the standard deviation represents the dispersion of the

variable, which can be regarded as its activeness, estimated standard deviations

of the LVs (σ̂k) from the training dataset are also investigated. When σ̂k is low

for a specific LV, it can be understood that the corresponding LV remains inac-

tive (or less dispersed) in the latent space during training: a situation where the

value of the LV does not change even if the input data changes. In Fig. 3.11, it

can be confirmed again that both AE and VAE models do not have any inactive

LVs (all σ̂k values are larger than 0.5). However, the most interesting point is

that compared to Fig. 3.10, LVs with high KL-divergence also have high σ̂k in

30-VAE, 100-VAE, and 1000-VAE models (the LV indices of the activated LVs

in terms of KL-divergence exactly match those of σ̂k). To sum up, we suggest

the use of KL-divergence as a criterion for ranking the activeness (information

amount) of LVs for the two reasons. First, in that it is a regularization term

84

Figure 3.10: KL-divergence and Sobol results with respect to LVs from the

training dataset.

that directly causes the inactiveness of the latent space and does not require

any cumbersome post-processing. The justification of this decision-making pro-

cess is successfully performed through intuitive but quantitative investigations

by comparing its ranking with the Sobol indices (Fig. 3.10) and the σ̂k from

the training dataset (Fig. 3.11).

So far, using the proposed KL-divergence criterion, the inactiveness within

the latent space has been investigated in a quantitative manner, but it does

not provide straightforward information on what these activated/inactivated

85

Figure 3.11: Standard deviations of LVs from the training dataset.

variables actually contain. Accordingly, each LV is visualized via a traversal

of itself, which is the most widely adopted approach for this purpose (e.g.,

latent traversal plots of celebA, 3D chairs, and 2D shape dataset in the study

by Higgins et al. [75] and those of pressure distribution over an airfoil in the

study by Yang et al. [18]): it shows the traversal of a single LV while other LVs

remain fixed so that one can visually understand the features of a specific LV

without the intervention of other variables. In this study, a latent traversal plot

is applied to identify the physical features of the flow field contained in the LV.

Fig. 3.12 shows the pressure flow fields for two extreme LVs: one is the most

dominant LV, which is ranked first by KL-divergence, and the other is the most

trivial LV, which is ranked last. In AE, the pressure field changes abruptly as

the most dominant LV changes; when the most trivial LV changes, the field

changes gradually, but not as significantly as that of the most dominant LV.

Since the sparsification effect does not occur in AE due to the absence of KL-

divergence term in the loss function, all the variables are activated and therefore

contain uninterpretable (or entangled) physical features. However, in VAE and

86

1000-VAE models, the most trivial LVs cause indistinguishable variations in the

flow fields. This is because the KL-divergence forces inactiveness in the latent

space, therefore, only necessary LVs become activated to contain meaningful

physical features: it can be regarded as a virtue of β-VAE model. When β

increases, information is packed into LVs more compactly [126], as observed in

the traversal of the most dominant LV in the 1000-VAE model. This LV can

be interpreted as containing information on the occurrence of the shock wave,

and the variation it arouses is the largest compared to other models.

Figure 3.12: Latent traversal plots of pressure flow fields for two extreme LVs:

first (most dominant) and last (most trivial) LVs ranked by KL-divergence.

3.5.4 Physics-awareness of LVs

The two requirements for physics-aware LVs are investigated so far: whether

LVs are disentangled (Sec. 3.5.2) or information-intensive (Sec. 3.5.3). In this

87

section, physics-oriented investigations are performed to figure out the physical

meanings each physics-aware LV contains.

First, the relationship between the two physical parameters used in this

study (whose distribution is shown in Fig. 3.13a) and the top two ranked LVs

by KL-divergence (1st LV and 2nd LV) is visually investigated as β varies. Ac-

cordingly, in Fig. 3.13b, the distributions of the training dataset with respect to

those two LVs are shown. For the AE, VAE, 100-VAE, and 1000-VAE models,

the plots of the first column are colored by Ma value, and the second column by

AoA. Moreover, to confirm that how physical parameters can be represented

by top two LVs, we also draw the trajectories of the boundary data in Fig.

3.13b (they are extracted from the boundary of the physical parameter space,

as in Fig. 3.13a). In AE, neither Ma nor AoA have any noticeable trends. In

contrast, in VAE, the plot in the first column exhibits a trend that is not clear,

but still noticeable: as the 1st/2nd LV increases, AoA/Ma increases. However,

the increase in Ma cannot be explained by the increase in the 2nd LV alone

(the same goes for 2nd LV and AoA). These ambiguous correlations between

the two LVs and two physical parameters become more clear in 100-VAE (for

this case, as the 1st/2nd LV increases, Ma/AoA increases). Though 100-VAE

shows a much more obvious relationship than AE, it can be confirmed that

the physical parameters cannot be fully represented only by two dominant LVs

in that its trajectory does not cover the entire training dataset. Considering

the fact that there are three physics-aware LVs in 100-VAE, this may be an

expected result. However, it should be noted here that the top two variables

sorted by KL-divergence almost succeeded in representing the physical parame-

ters, whereas when the plot is drawn with the 1st and 3rd dominant LVs, a very

irregular pattern is observed. In this regard, the validity of ranking LVs through

KL-divergence is confirmed once again. Finally, the 1000-VAE is investigated.

88

Since this model has two physics-aware LVs, one can expect that in the ideal

case, they correspond to the two physical parameters (this ideal situation is de-

picted in Fig. 3.2). And these conjectures are actually happening in 1000-VAE:

the correlations between two physical parameters and two LVs become clear,

and the latent space of the training dataset is perfectly closed by its boundary

trajectory. Here is the key finding of this study: though β-VAE has no infor-

mation about the physical parameters used to generate the training data, it

effectively extracts only two LVs out of total 16 LVs (especially when β=1000),

which correspond to actual physical parameters Ma and AoA. It can be con-

cluded that these marvelous results are owing to the orthogonality effect that

makes LVs disentangled and the regularization effect that makes redundant LVs

inactive. To make this clear, it should be noted that AE, one of the most widely

used nonlinear DR techniques, fails to construct a physics-aware latent space

in that it learns all 16 entangled LVs and therefore physically uninterpretable

despite the same training dataset as β-VAE.

As the visual analysis in the previous paragraph is qualitative, a quantitative

analysis is performed herein to verify whether LVMa or LVAoA in 1000-VAE cor-

responds to Ma or AoA (for the sake of brevity, LVMa refers to the 1st LV, and

LVAoA refers to the 2nd LV, which implies that LVMa and LVAoA are the LVs re-

sponsible for Ma and AoA, respectively). Single-variable linear regression (LR)

models are trained for this purpose (since the relationships between physical

parameters and LVs appear linear in Fig. 3.13, the LR model is considered to be

sufficient). For example, LR model for Ma is trained with the input variable as

LVMa and the output variable as Ma,which can be expressed as Ma=f(LVMa).

The training dataset is the same as in Sec. 3.4.1 and physical parameters and

LVs are standardized before training. If LVMa and Ma (or LVAoA and AoA)

have a linear relationship, the fitted LR models will perform well on the test

89

(a)

(b)

Figure 3.13: Investigation of physical features contained in the top two LVs:

(a) distributions of training dataset and boundary data with respect to Ma

and AoA, and (b) distributions of training dataset for 1st and 2nd LVs (the

left figures are colored by Ma, and the rights by AoA).

90

dataset. The results are shown in Fig. 3.14. In each subplot, the equation of

the trained LR model is also included. For both LR models Ma=f(LVMa)

and AoA=f(LVAoA), their equations clearly show that each physical param-

eter and LV are almost identical in that the coefficients are approximately 1

and the intercepts are 0. Also, the coefficients of determination (R2) calculated

based on the test dataset are 0.950 and 0.969, respectively, indicating that each

physical parameter can be represented by the linear relationship of only one

LV with sufficient accuracy. In addition, we train two additional LR models

with both LVs as input features: one as Ma=f(LVMa, LVAoA) and the other as

AoA=f(LVMa, LVAoA). If Ma needs both LVs for its expression, the R2 value

of the LR model Ma=f(LVMa, LVAoA) will be significantly higher than that of

Ma=f(LVMa). The trained LR models are described as follows:Ma

AoA

 =

 0.978 −0.011

−0.017 0.981

LV Ma

LV AoA

 . (3.2)

Herein, there are two notable points. First, the coefficient of LVAoA is negligible

(approximately 0) compared to that of LVMa (approximately 1) when modeling

Ma, which indicates that LVAoA is redundant variable for representing Ma

(same principal applies when modeling AoA). The second interesting point is

that the values of R2 do not change compared to those of the single-variable

LR models. The R2 of LR model Ma=f(LVMa, LVAoA) only increases 0.001

than Ma=f(LVMa), and AoA=f(LVMa, LVAoA) model has the same R2 as

AoA=f(LVAoA). These two points quantitatively suggest that the two active

LVs represent Ma and AoA in a disentangled (or independent) manner.

Since the physical meanings of LVMa and LVAoA are verified both qualita-

tively and quantitatively, the latent traversal plots of airfoil surface pressure

distributions are shown in Fig. 3.15 to check their influence on the flow field

more intuitively. In the traversal of LVMa (Fig. 3.15a), when the LV is in the

91

(a) (b)

Figure 3.14: The results of the single variable LR: (a) Ma=f(LVMa), and (b)

AoA=f(LVAoA).

range of µ̂k−3σ̂k to µ̂k, there is no shock wave, but as it increases to µ̂k+1.5σ̂k

and µ̂k + 3σ̂k, the occurrence of a shock wave is shown, indicating that LVMa

corresponds to Ma. In the traversal of LVAoA (Fig. 3.15b), a variation in the

magnitude of the leading edge suction peak is observed, indicating LVAoA corre-

sponds to AoA. This visual analysis of the actual effects of LVMa and LVAoA on

the pressure distributions also leads to the consistent conclusion that they cor-

respond to Ma and AoA, respectively. Recall that the previous Fig. 3.2 showed

the ideal schematic for extracting physics-aware LVs. It is marvelous that 1000-

VAE enables this ideal situation exactly where physics-aware LVs correspond

to the physical generating factors of the training dataset. Although the ability

of β-VAE to extract physics-aware LVs is first observed with simple physical

parameters in this study, it has tremendous potential to be utilized to extract

generating factors from any dataset in any discipline. The scalability of this

framework to sparse and noisy dataset can be verified in Sec. 3.7.2.

92

(a) (b)

Figure 3.15: Latent traversal plots of airfoil surface pressure distributions in

1000-VAE: (a) traversal of LVMa, and (b) traversal of LVAoA.

3.5.5 Physics-aware ROM

To summarize the results so far, physics-aware LVs are first extracted by

estimating the independence and information intensity of each LVs. These

physics-aware LVs are strongly correlated to physical parameters which are

the generating factor of training dataset, significantly increasing the inter-

pretablilty. Since LVs act as intermediaries in the prediction process of ROM,

their impact on the ROM is bound to be enormous. In this regard, this section

further investigates the effect of physics-awareness of LV on ROM.

Fig. 3.16 shows the MSE of the regression models (MSEreg) in each ROM; It

is calculated by the difference between true LV and predicted LV by regression

model. The reason that the scale of MSEreg is much smaller than that of MSE in

Fig. 3.6 is because the dimension of LV is much smaller than that of flow fields.

In that 16 regression models are required for 16 LVs, each point represents

the MSE of each model, and the symbol o/x indicates whether each LV is

physics-aware or physics-unaware. The results show that the MSEreg values of

93

physics-unaware LVs are considerably higher than those of physics-aware LVs.

It is because the correlations between physical parameters and physics-unaware

LVs are too trivial to be trained by regression models. Fig. 3.17 supports this;

the response surface of the physics-unaware LV (Fig. 3.17b) is much noisier

than that of the physics-aware LV (Fig. 3.17a). Another interesting point in

Fig. 3.16 is that MSEreg values of the physics-aware LVs decrease as β increases.

This implies that the tight coupling/correlation between physics-aware LVs and

physical parameters is advantageous in terms of regression performance in the

ROM process.

Figure 3.16: MSE of the regression models in ROM.

Then, the MSE between the ground truth flow fields and those predicted by

ROM with the exclusion of kth LV is calculated, which is denoted as MSEpred,−k

where−k indicates the exclusion of the kth LV; note that the prediction by ROM

means obtaining the flow field from unknown input parameters, as already de-

scribed in Fig. 3.1. Specifically, kth LV is assumed to be constant as µ̂k, whereas

the other LVs are predicted from regression models so that the importance of

94

(a) (b)

Figure 3.17: Comparison of the response surface of two LVs in the 1000-VAE:

(a) physics-aware LV, (b) physics-unaware LV.

kth LV can be estimated. Fig. 3.18 demonstrates their results, where the x-axis

indicates KL-divergence ranking of the LVs. An important observation is that

the effect of the LV on MSEpred,−k decreases as the LV ranks down. From the

fact that the LV ranked higher by KL-divergence has a greater effect on ROM

accuracy, it can be concluded that the proposed ranking approach is also valid in

terms of ROM performance. Moreover, the physics-unaware LVs (those ranked

after 4th in 30-VAE, after 3rd in 100-VAE, and after 2nd in 1000-VAE) have

negligible effects on MSEpred,−k. This implies that training regression models of

physics-unaware LVs are meaningless with respect to the prediction accuracy

of ROM; in other words, it is sufficient enough to train regression models of

only physics-aware LVs. In this regard, to examine the necessity of each LV in

ROM prediction, Fig. 3.19 visualizes the MSEpred values of physics-aware ROM

via β-VAE, where all physics-unaware LVs are excluded (e.g., only two LVs are

used for ROM via 1000-VAE). For the comparison, those of physics-unaware

95

ROM via AE are also shown: herein, MSEpred utilizing all 16 LVs or 15 LVs with

one LV excluded is presented. Although a considerably small number of LVs

are used in physics-aware ROM, the accuracy of them is comparable to that of

AE-16LV, physics-unaware ROM. This can also be confirmed by the pressure

contour presented in Fig. 3.20. Furthermore, even if only one LV is excluded in

AE (AE-15LV), its ROM accuracy becomes equivalent to or even lower than

that of 1000-VAE only with two LVs (1000-VAE-2LV). This result highlights

the inefficiency of ROM through AE, in that it requires all 16 entangled LVs

and therefore requires training 16 regression models. Using physics-aware ROM

via 30-VAE, the equivalent accuracy can be achieved with only 4 regression

models.

Figure 3.18: MSE of ROM prediction with the exclusion of kth LV.

96

Figure 3.19: Comparison of prediction MSE between physics-aware ROM and

physics-unaware ROM.

97

(a)

(b)

Figure 3.20: Pressure contour predicted from AE/β-VAE-based ROMs: (a)

prediction, (b) absolute error.

98

3.6 Summary

This study proposed the physics-aware ROM based on physics-aware LVs,

which are interpretable and information-intensive LVs extracted by β-VAE. The

proposed framework is validated against the 2D transonic benchmark prob-

lem in the following order: first, the process of extracting physics-aware LVs

is scrutinized by quantitatively estimating their independence and information

intensity. Then, the actual physical meanings of these LVs are thoroughly inves-

tigated. Finally, the effectiveness of the proposed physics-aware ROM compared

to conventional ROMs is verified. The key contributions of our study can be

summarized as follows:

1. The impacts of hyperparameter β on the independence of LVs were scruti-

nized, and its effect on the independence of LVs was practically confirmed

in that LVs become disentangled from each other as β increases.

2. KL-divergence ranking method was proposed to measure the information

intensity of each LV. This approach has two following advantages over the

previous ranking method: KL-divergence is the direct cause of the discrep-

ancies in their information intensity and it does not require cumbersome

post-processing of reconstructed data. The proposed criterion was con-

firmed to have a consistent trend with estimated standard deviations and

Sobol indices, indicating their validity. Through this ranking method, the

effect of β on the latent space regularization was practically confirmed in

that LVs become information-intensive as β increases.

3. The physical meanings contained in physics-aware LVs were thoroughly

investigated. The correlation between the physical generating factors of

the training dataset and the information physics-aware LVs contain was

99

scrutinized as β varies. Finally, it was confirmed quantitatively and qual-

itatively that the extracted physics-aware LVs in 1000-VAE actually cor-

respond to the generating factors, which were Ma and AoA in this study.

To the best of the authors’ knowledge, this is the first observation of

physics-aware LVs in the fluid dynamics discipline.

4. The effects of physics-awareness of LVs on the accuracy of regression and

prediction processes in ROM were analyzed and it was confirmed that only

physics-aware LVs had a significant effect on their accuracy. Therefore,

physics-aware ROM, which utilizes only physics-aware LVs is proposed

for its efficiency in that the number of required regression models can be

reduced significantly. Finally, compared to the conventional ROMs, its

validity and efficiency were successfully verified.

The presented data-driven physics-aware ROM has great potential in two

engineering applications. First, the extraction process of physics-aware LVs can

be applied to discover generating factors from the given dataset. For example,

this application can be extended to identify fault-causing factors in sensor data

from manufacturing processes. Second, physics-aware ROM can be an efficient

alternative to conventional black-box ROMs in that it utilizes necessary re-

gression models of only physically interpretable and information-intensive LVs,

rather than redundant regression models of all uninterpretable LVs. Though the

application of this framework was demonstrated via 2D transonic benchmark

problem, it can be easily applied and extended to numerous engineering disci-

plines since no special assumptions have been made on this specific problem.

For future work, a more comprehensive investigation on physics-aware LVs will

be conducted, such as their scalability to the temporal dataset or their ability

to discern redundant physical parameters.

100

3.7 Additional results

3.7.1 POD results

This study mainly focused on the nonlinear-based DRmethods (AE/VAE/β-

VAE). In this section, additional results by POD, which is the gold standard

of the linear-based DR approach, are presented. Fig. 3.21 shows the pressure

contour predicted by POD-based ROM and its absolute error contour. Herein,

POD-16LV and POD-2LV each represent ROM with 16 and 2 LVs (or modes)

of POD. When compared to Fig. 3.20, the error contour of POD-16LV is com-

parable to that of AE/VAE/β-VAE, whereas POD-2LV is much more worse.

Indeed, MSEpred of ROM based on POD-2LV (4.94 × 104) is 26 times higher

than that of 1000-VAE-2LV (1.87× 103), while POD-16LV (2.07× 103) is only

1.1 times higher than 1000-VAE-2LV. It is noteworthy that the ROM accuracy

based on only 2 LVs (1000-VAE-2LV) is higher than that based on 16 LVs

(POD-16LV).

Fig. 3.22 shows the same results as in Fig. 3.15 except it is based on POD.

Due to the poor ROM accuracy of POD-2LV mentioned above, it is shown that

the physical discontinuity (shock wave in this case) cannot be accurately cap-

tured. Furthermore, when compared to 1000-VAE in Fig. 3.15, the two dominant

LVs of POD encode the physical characteristics (shock wave and leading edge

suction peak) in an entangled manner; the traversals of them are not physically

interpretable, unlike 1000-VAE. It indicates that despite its orthogonality, the

physical interpretability of its latent space cannot be guaranteed. This section

shows the obvious superiority of nonlinear-based DR methods over linear-based

DR method (POD) in terms of reconstruction accuracy of ROM and physical

interpretability of latent space, both of which are the main interests of this

study.

101

(a) Predicted pressure contour (b) Absolute error contour

Figure 3.21: Pressure contour predicted from POD-based ROM: (a)

prediction, (b) absolute error.

(a) (b)

Figure 3.22: Latent traversal plots of airfoil surface pressure distributions in

POD: (a) traversal of 1st LV, and (b) traversal of 2nd LV.

102

3.7.2 Scalability of extracting physics-aware LVs in practical

problem

In the main text, the framework for extracting physics-aware LVs using β-

VAE is validated with regularized and well-organized CFD dataset. However,

most of the data in real-world engineering is sparse and noisy. Accordingly,

in this section, the practical scalability of the proposed method is verified by

utilizing only a small portion of the training dataset with artificial noises. For

this purpose, the training dataset in the main text (which is the tensor of

3× 512× 128) is preprocessed to be a vector with only 35 elements: 32 surface

pressure values, lift coefficient (Cl), drag coefficient (Cd), and pitching moment

coefficient (Cm). Artificial Gaussian noises are added considering the scale of

each element, and the final dataset is shown in Fig. 3.23. Then, AE and β-

VAE models (β ∈ [0.01, 0.1, 1]) are trained and their top two ranked LVs are

visualized in Fig. 3.24 (which corresponds to Fig. 3.13 in Sec. 3.5.4). Again, it

can be seen that LVs of AE are highly entangled. On the other hand, LVs of

β-VAE become more and more disentangled as β increases so that eventually

in 1-VAE, each LV solely represents Ma and AoA, respectively. Accordingly, it

can be concluded that the extraction of physics-aware LVs via β-VAE, which

is first observed and reported in this study, has the potential to be applied to

real-world engineering problems where training datasets are sparse and noisy.

103

(a) (b)

(c) (d)

Figure 3.23: Preprocessed training dataset consisting of (a) 32 surface pressure

values, (b) Cl, (c) Cd, and (d) Cm.

104

Figure 3.24: Investigation of physical features contained in the top two LVs for

sparse and noisy datasets.

105

Chapter 4

Reliable and efficient uncertainty
quantification

The work in this chapter is currently under review [132].

4.1 Introduction

This chapter aims to achieve a reliable and efficient UQ, which is crucial

for the application of regression models to aerodynamic design, by using a DE

approach that is capable of all of the following: universal approximation capabil-

ity, scalability to large datasets, and multi-output regression. Specifically, this

chapter aims to comprehensively investigate the DE model in the multi-output

regression task, which is the most common problem in practical engineering

disciplines, to predict the aerodynamic performance of a missile configuration.

The most popular regression model capable of UQ in engineering fields but

not scalable to large datasets, GPR, is also compared with DE. Not only the

validation is performed, but since the poor reliability of the quantified uncer-

tainty by DE is observed, a simple post-hoc calibration method is applied to

106

DE models to correct the unsatisfactory uncertainty quality. Finally, the im-

pact of the proposed calibration method on Bayesian optimization is examined,

verifying the fact that whether the DE is calibrated or not can result in un-

intended exploration characteristics when extended to Bayesian optimization.

The remainder of this chapter highlights why the reliable UQ of the regression

model is inevitable in the aerodynamic design process and how this dissertation

extensively investigates the performance of the DE approach for this purpose.

Finally, the main contributions of this chapter are summarized.

We are entering an era of high-performance computing technologies and

they have enabled engineers to efficiently obtain vast amounts of data, so-called

big data. Accordingly, numerous data-driven approaches have been studied to

derive physical insights from the growing number of available datasets. The

most popular but most fundamental one is to utilize a given dataset to train

a regression model (also referred to as a surrogate model), which is used to

predict quantities of interest (QoIs) [16, 17, 18]. This straightforward approach

can be leveraged for a variety of applications, from exploration during the de-

sign optimization process [19] to the prediction of high-dimensional data via

reduced-order modeling [20]. Furthermore, from the perspective that the re-

gression model can accelerate the realization of digital twins by replacing the

high-demand simulations required within its procedure [26], its potential seems

boundless.

However, such impacts cannot be fully achieved by the regression model

alone. In real-world engineering problems, knowing what it does not know and

therefore improving interpretability is an indispensable issue. In the decision-

making process based on the regression model, engineers should consider the

predictive uncertainty derived from insufficient train data and imperfect regres-

sion model [133]. Otherwise, blind faith in regression models, especially during

107

risk assessment and management procedures, can lead to unexpected and there-

fore disastrous outcomes. The most common approach to deal with this issue

is to perform Bayesian optimization, also known as efficient global optimiza-

tion in engineering fields [134, 19, 31, 35]. Briefly, it aims to reduce model

uncertainty by iteratively updating the model based on the acquisition func-

tion [135, 136, 137], which contains uncertainty information (Fig. 4.1). Since

the Bayesian optimization process requires uncertainty quantification (UQ),

whether the model quantifies the uncertainty over its prediction is the key con-

sideration for engineers in determining which regression model to utilize.

Figure 4.1: Flowchart of Bayesian optimization.

Gaussian process regression (GPR)—also known as Kriging—is one of the

most widely used regression models capable of UQ in various engineering fields

[138, 139, 140, 141, 142, 143, 144, 130, 145, 146, 147, 148, 149]. GPR allows

engineers to identify which predictions are unreliable by providing predictive

uncertainty, and it has become the most prevalent regression model for Bayesian

optimization [16, 19, 150, 137]. However, GPR is notorious for its time com-

108

plexity of O(n3) and memory complexity of O(n2), where n denotes the dataset

size [46, 47]. Even in multi-output regression tasks, since a GPR is trained for

each output independently, the required training time increases linearly with

respect to the output dimension, and the correlations within outputs become

completely ignored [39].

In this regard, Bayesian neural networks (BNNs) [151, 152, 153] can be ef-

fective alternatives for the following reasons: 1) their universal approximation

capability [58, 65]; 2) scalability to large datasets due to mini-batch training

[66]; and 3) multi-output prediction only with a single regression model. Since

BNNs aim to learn the probability distributions of the model parameters on the

basis of Bayesian inference, they can estimate the uncertainty of their predic-

tion, whereas traditional neural networks (NNs) only provide point estimates.

However, their additional model parameters lead to slower convergence during

the training [51] and require significant modifications to the conventional frame-

work of NNs, leading to cumbersome and knotty training algorithms [48, 49, 50].

Such computational complexity and inefficiency prevent BNNs from being a vi-

able option for engineers who prioritize practicality and are not familiar with

Bayesian formalism.

Recently, easy-to-use but scalable approaches for approximating Bayesian

inference have attracted the attention of engineers. Especially, deep ensem-

bles (DE) [49] and MC-dropout [154, 155] require only a few modifications to

standard (or vanilla) NNs, demonstrating their applicability to the fields of en-

gineering. However, since MC-dropout has controversial issues about whether

or not it is Bayesian inference [156, 157, 158, 159], it is out of our focus; see

4.6.1. DE, an approach to quantify the predictive uncertainty by leveraging

ensembles of NNs, was first proposed by Lakshminarayanan et al. [49]. Their

idea is so “simple and straightforward” that it only requires training multiple

109

NNs in parallel on the same training dataset. Despite its simplicity, several re-

searchers have recognized that the DE provides not only accurate predictions,

but also robust, reliable, and practically useful uncertainty on a wide vari-

ety of architectures and datasets, even on out-of-distribution (OOD) examples

[160, 161, 162, 163]. Finally, it has come to be treated as the “gold standard

for accurate and well-calibrated predictive distributions” [164].

However, most previous studies have focused on verifying whether DE ac-

curately estimates the uncertainty in classification tasks [49, 165, 166, 161, 162,

163]. Its comprehensive validation has not been conducted in multi-output re-

gression tasks, which are the most common problems in practical engineering

disciplines. For example, de Becdelievre and Kroo [167] and Pawar et al. [168]

utilized DE for tailless aircraft range optimization and boundary layer flow pre-

diction tasks, respectively, without any validation of the estimated uncertainty

in their problems. In this sense, our research focuses on a thorough validation

of the DE approach in multi-output regression tasks, while comparing it with

GPR, both in terms of regression accuracy and reliability of the estimated un-

certainty. Especially, we seek to overcome the limitations of existing studies

that blindly adopted the number of NNs used in DE without sufficient expla-

nation of their effects [169, 162, 170, 167, 171, 165, 167, 172, 173]. Finally, a

tendency of the quantified uncertainty to become underconfident with the num-

ber of NNs is observed and a practical calibration method is proposed to be

applied. The corresponding effects are verified quantitatively with two uncer-

tainty evaluation criteria, and their potential impact on Bayesian optimization

is briefly investigated. The main contributions of this work can be summarized

as follows:

110

1. First attempt to validate DE approach in the multi-output regression

task.

2. The effect of the number of NNs used for DE is comprehensively investi-

gated and two different criteria are utilized for rigorous validation of its

uncertainty quality.

3. Accordingly, an increasing trend of underconfidence with the increasing

number of NNs is first empirically observed in the regression task, and its

analytical explanation is derived.

4. A simple post-hoc calibration method is applied to DE models for the

correction of unsatisfactory uncertainty quality and its effectiveness is

verified both qualitatively and quantitatively.

5. The potential impact of the proposed calibration method on Bayesian

optimization is briefly examined: the possibility that different estimates

of uncertainty could lead to different exploration behavior is examined.

6. Throughout the above procedures, GPR—the most well-known UQmodel—

is compared with DE, and the effectiveness of DE over GPR is confirmed.

The rest of this chapter is organized as follows. In Sec. 4.2, the background

on how to implement DE and evaluate its uncertainty quality is described. In

Sec. 4.3, the application of DE to a multi-output regression task in aerospace

engineering is elaborated. It provides a thorough validation of DE models com-

pared to GPR models, both in terms of prediction accuracy and uncertainty

quality. In Sec. 4.4, a simple post-hoc calibration method is applied and its ef-

fects on uncertainty quality and Bayesian optimization are investigated. Finally,

in Sec. 4.5, the conclusion and future work of this study are presented.

111

4.2 Implementation and evaluation of DE

DE was first proposed by Lakshminarayanan et al. [49] for the simple and

scalable estimation of predictive uncertainty. Although its idea can be seen as

a straightforward extension of NNs (making use of multiple NNs), DE has re-

ceived little attention in the engineering disciplines, in contrast to its reputation

in computer science. This is due to the lack of previous works explaining its

algorithm friendly and comprehensively, and therefore the purpose of this sec-

tion is to fill the academic gap by elaborating on the DE methodology and its

validation. First, we introduce the background of how to implement DE in Sec.

4.2.1 and then how to evaluate its uncertainty quality is described in Sec. 4.2.2.

4.2.1 Deep ensembles (DE)

The NNs discussed in Sec. 2.2.1 are often considered “overconfident” because

they do not provide any measure of uncertainty. For those who are interested

in UQ, DE can be an alternative approach. DE is based on an ensemble of

NNs, but there is a key distinction: unlike a standard NN, which only outputs

QoIs as µ(x), the NN used for DE outputs them as a Gaussian distribution,

N
(
µ(x), σ2(x)

)
. That is, it assumes that QoIs are sampled from N

(
µ(x), σ2(x)

)
and aims to provide information about this distribution by outputting µ(x) and

σ2(x). Here, µ(x) refers to the estimated/predicted value and σ2(x) refers to the

estimated/predicted variance. It should be noted that the estimated variance

σ2(x) indicates the aleatory uncertainty (uncertainty arising from noise inherent

in the training data) regarding the estimated value µ(x) [174, 175]. With this

specific NN architecture, the number of final nodes is doubled since it outputs

not only the standard outputs, µ(x), but also the uncertainty about them, σ2(x).

Due to the probabilistic distribution it provides, this type of NN is referred to

112

as a probabilistic NN.

The probabilistic NN architecture is adopted in the DE model since the

vanilla NN structure cannot apply the proper scoring rule, which is the criterion

for estimating the quality of predictive uncertainty [176]. Lakshminarayanan

et al. [49] emphasized that with the vanilla NN architecture, which provides

only the estimated value µ(x), the mean squared error (MSE) would be used

as the loss function:

MSE =
(
y − µ(x)

)2
(4.1)

and therefore the information about the predictive uncertainty is entirely dis-

regarded during the training. To address this issue, they proposed utilizing a

probabilistic NN that can output both µ(x) and σ2(x). It allows the use of the

proper scoring rule, negative log-likelihood (NLL), which is the standard metric

for assessing the quality of probabilistic models [177]:

NLL(µ(x), σ2(x), y) = −log
(
pθ(y|x)

)
=

logσ2(x)

2
+

(
y − µ(x)

)2
2σ2(x)

+
log2π

2
(4.2)

This NLL allows the intuitive interpretations as follows [178, 179]. 1) When

some training points have high MSE,
(
y − µ(x)

)2
, the impact of the term(

y−µ(x)
)2

2σ2(x)
is relatively significant compared to logσ2(x)

2 . Therefore, the model is

trained to output high denominator value, σ2(x), at the corresponding points to

reduce the NLL. 2) At training points with low MSE, the term logσ2(x)
2 becomes

relatively dominant and thus the model is encouraged to output low σ2(x) at

those points. In summary, the NLL scoring rule-based training algorithm for

the probabilistic NN facilitates the learning of reliable predictive uncertainty

by estimating high uncertainty where prediction error is high and low uncer-

tainty where prediction error is low. It should be noted that this cannot be

accomplished in vanilla NN with MSE loss function.

113

However, using a single probabilistic NN is limited to estimating the aleatory

uncertainty. To estimate the epistemic uncertainty arising from the model pa-

rameters due to insufficient training data, a further step is required. Lakshmi-

narayanan et al. [49] suggested the use of multiple probabilistic NNs, called deep

ensembles (DE), to quantify both aleatory and epistemic uncertainties. Specif-

ically, they aimed to capture the epistemic uncertainty by using the multiple

probabilistic NNs trained on the identical dataset (also identical architectures

for NNs are used). The overall training procedure is summarized in Algorithm

2. There are two notable points herein: 1) the random initialization of the model

parameters of the NNs in line 2; and 2) the random shuffling of the training

dataset due to mini-batches in line 5. These two factors are regarded as the

main causes of the individual NN with identical architecture in the ensemble

being able to be trained with enough diversity [49]. See Fort et al. [161] for

further information, which examined the effects of random initialization and

random shuffling.

To see how the ensemble of probabilistic NNs trained in Algorithm 2 es-

timates two types of uncertainty, let µi(x) and σ2
i (x) be the predictive mean

and predictive variance output by the ith individual NN. Herein, the predicted

probabilities of y from the ith NN can be expressed as N
(
µi(x), σ

2
i (x)

)
, indi-

cating that there are multiple Gaussian distributions according to each NN in

the ensemble. Lakshminarayanan et al. [49] suggested approximating the final

probability of the output as a mixture of Gaussian probabilities as follows:

µ̂ =
1

M

M∑
i=1

µi, (4.3)

114

Algorithm 2 Training procedure of DE

1: Split the train dataset X (with input x and output y) into J mini-batches.

2: Randomly initializes model parameters of the M probabilistic NNs and set

training epochs.

3: for i = 1 : M do ▷ Loop for NN (parallelizable)

4: for epochs do ▷ Loop for epoch

5: for j = 1 : J do ▷ Loop for mini-batch

6: µij , σ
2
ij = NNi(xij) ▷ Feed-forward with mini-batch xj

7: Lij =NLL(µij , σ
2
ij , yij) ▷ Calculate NLL

8: θi = θi − learning rate ∗ δLij/δθ ▷ Update model NNi

9: end for

10: end for

11: end for

σ̂2︸︷︷︸
predictive
uncertainty

=
1

M

M∑
i=1

σ2
i + (

1

M

M∑
i=1

µ2
i − µ̂2)

= E(σi)︸ ︷︷ ︸
aleatory

uncertainty

+ V ar(µi)︸ ︷︷ ︸
epistemic
uncertainty

(4.4)

where M is the number of probabilistic NNs used for the ensemble. Accordingly,

the final predictive value of DE is µ̂ and the final predictive uncertainty is σ̂2.

As in Eq. 4.4, the predictive uncertainty can be decomposed into aleatory and

epistemic uncertainty; see Scalia et al. [180] and Hu et al. [181] for more details.

It should be noted that no additional training algorithm is required after the

training of probabilistic NNs in Algorithm 2: only the mixture process of already

trained NNs in Eq. 4.3 and Eq. 4.4 is required. The overall flowchart of DE from

the training of probabilistic NNs to the final prediction is schematically shown

115

in Fig. 4.2.

Figure 4.2: Flowchart of DE approach.

4.2.2 Uncertainty quality evaluation

In the previous Sec. 4.2.1, we explored the ability of the DE technique

to determine predictive uncertainty. However, engineers who are interested in

predicting uncertainty require more than just the feasibility of UQ; they also

require confidence in the reliability of the estimated uncertainty. Unfortunately,

previous studies that employed GPR to evaluate predictive uncertainty in en-

gineering fields have disregarded this point. Consequently, the purpose of this

section is to address this gap by presenting two criteria for assessing the accu-

116

racy/reliability of estimated predictive uncertainty. These techniques are appli-

cable to any regression model performing UQ, such as GPR and DE.

4.2.2.1 AUCE

The most widely used metric to evaluate the reliability of uncertainty is the

area under the calibration error curve (AUCE) [182, 160]. The primary goal of

this measure is to ensure that the confidence intervals (CI) estimated by the

model are accurate in practice. The concept of AUCE is shown schematically

in Fig. 4.3. In Fig. 4.3a, the CI labeled “Well-calibrated 60% CI” contains 60%

of the test dataset (6 out of 10 points), where test dataset indicates the dataset

used to verify the quality of the estimated uncertainty. Thus, a well-calibrated

model would have a 60% CI that actually contains 60% of the test data. On

the other hand, if the 60% CI contains more than 60% of the dataset (8 out of

10 points), the model is considered underconfident, which corresponds to the

case of “Underconfident 60% CI.” This means that the model is not confident

enough about its prediction and overestimates its CI. Conversely, if the 60%

CI contains less than 60% of the dataset (4 out of 10 points, “Overconfident

60% CI” case), the model is considered overconfident, meaning that it is too

confident in its prediction and thus estimates a narrower CI than it actually

should.

The difference between the CI estimated by the model and the actual data it

contains can be assessed visually by the CI-based reliability plot shown in Fig.

4.3b. This plot compares the predicted CI from the model on the x-axis with the

observed CI measured with the test dataset on the y-axis. To clarify, consider the

situation depicted in Fig. 4.3a. In the underconfident case, which corresponds

to point P1 (x=0.6, y=0.8), the predicted 60% CI actually corresponds to the

observed 80% CI because 8 out of 10 points are included. Point P2 represents

117

(a)

(b)

Figure 4.3: (a) Illustration of well-calibrated/miscalibrated models: 60% CI of

the well-calibrated model contains 60% of the test data, whereas that of the

underconfident and overconfident model contains 80% and 40% of the data,

respectively. (b) Illustration of CI-based reliability plot.

the well-calibrated case, where the predicted 60% CI by the model matches the

actual 60% of data contained in the CI. In contrast, point P3 represents the

overconfident case, where the model predicts a 60% CI that actually contains

118

only 40% of the data. In this context, the line y = x represents an ideally well-

calibrated model where the predicted CI perfectly matches the observed CI.

The algorithm for the CI-based reliability plot is summarized in Algorithm 3.

Algorithm 3 Procedure for CI-based reliability plot

1: Prepare the test dataset X (with input x and output y).

2: Define candidates of CI to be investigated: P = {p1, p2, ..., pK}.

3: D = ∅ ▷ Initialize dataset D to be plotted as y-axis

4: for i = 1 : K do ▷ Loop for P

5: count = 0 ▷ Initialize count

6: Find Q(
pi + 1

2
|µ, σ2), which is

pi + 1

2
quantile of N(µ, σ2).

7: for j = 1 : length(X) do ▷ Loop for X

8: if −Q
(pi + 1

2
|µ(xj), σ2(xj)

)
≤ yj ≤ Q

(pi + 1

2
|µ(xj), σ2(xj)

)
then

9: count+ = 1

10: ▷ Increase count if test data is within the estimated CI

11: end if

12: end for

13: p̂ = count/length(X) ▷ Calculate observed CI

14: D = D ∪ p̂ ▷ Append p̂ to D

15: end for

16: Plot CI-based reliability plot: x-axis with P and y-axis with D.

By utilizing this CI-based reliability plot, the AUCE, which is a metric that

evaluates the quality of the estimated uncertainty, can be derived. In detail,

it is calculated as the area between the ideal line y = x and the reliability

plot of the model. The hatched area in Fig. 4.3b corresponds to the AUCE of

the underconfident model, and the mathematical expression for the AUCE is

provided in the following equation [160]:

119

AUCE =
1

K

K∑
i=1

|p̂− pi| (4.5)

where K refers to the number of CI candidates as in Algorithm 3. By definition,

a low AUCE value implies that the predictive uncertainty quantified by the

model is reliable (or well-calibrated). Additional information on AUCE can be

found in Naeini et al. [183], Gustafsson et al. [160], and Scalia et al. [180].

4.2.2.2 ENCE

Despite its reputation as a metric of uncertainty quality, AUCE has a criti-

cal shortcoming in that it only considers the average over the entire test dataset

rather than individuals as mentioned by Levi et al. [184]. Moreover, they ana-

lytically and empirically elaborated that AUCE can be zero even when the pre-

dicted distribution is statistically independent from that of the ground truth. In

this context, they proposed a novel approach to evaluate the quality of uncer-

tainty, the expected normalized calibration error (ENCE). It was first proposed

based on the intuitive assumption: for the well-calibrated model, the estimated

uncertainty σ2(x) will be equal to
(
y − µ(x)

)2
, MSE. This condition can be

expressed mathematically as follows, implying that a higher estimated variance

should correspond to a higher expected MSE [185]:

Ex,y[
(
y − µ(x)

)2|σ2(x)] = σ2(x) (4.6)

The above Eq. 4.6 indicates that the ideally (perfectly) well-calibrated model

will have an expected error exactly equal to predictive uncertainty. In this

sense, whether the model is well-calibrated can be visually inspected using

the error-based reliability plot [180, 184]: x-axis as root mean squared error

(RMSE), y − µ(x), and y-axis as root of the mean variance (RMV), σ(x). Fig.

4.4 illustrates it, and by its definition in Eq. 4.6, y = x line indicates the ideally

120

calibrated model. The procedure for its plotting is summarized in Algorithm 4.

Figure 4.4: Illustration of error-based reliability plot. Underconfident model

overestimates RMV relative to RMSE, while overconfident model

underestimates RMV. The ideal model estimates the equivalent RMV and

RMSE as the y = x black dashed line.

Then, the area between the ideal y = x line and the error-based reliability

plot can be calculated. The normalized version of this value refers to ENCE,

the second uncertainty quality metric, and is as follows:

ENCE =
1

B

B∑
i=1

|RMV(i)− RMSE(i)|
RMV(i)

(4.7)

where B indicates the number of bins in Algorithm 4. Therefore, the ENCE

of the underconfident model in Fig. 4.4 can be calculated as the hatched area

divided by RMV. As with AUCE, the lower the ENCE value, the better the

model is calibrated.

4.2.3 Uncertainty calibration: STD scaling

In situations where the estimated uncertainty from the model is imprecise

in terms of AUCE (refer to Sec. 4.2.2.1) and ENCE (refer to Sec. 4.2.2.2), there

121

Algorithm 4 Procedure for error-based reliability plot

1: Prepare the test dataset X (with input x and output y).

2: Sort X according to y values.

3: Define the number of bins: B (assume B divides length(X)).

4: Divide sorted X into B bins, X̃ = {X̃1, X̃2, ..., X̃B}, such that each X̃i has

the same size of length(X)/B.

5: DRMSE = ∅ ▷ Initialize dataset DRMSE to be plotted as x-axis

6: DRMV = ∅ ▷ Initialize dataset DRMV to be plotted as y-axis

7: for i = 1 : B do ▷ Loop for X̃

8: DRMSE = DRMSE ∪
√

1

|X̃i|
∑

x∈X̃i

(
y(x)− µ(x)

)2
9: ▷ Append RMSE to DRMSE

10: DRMV = DRMV ∪
√

1

|X̃i|
∑

x∈X̃i

σ2(x)

11: ▷ Append RMV to DRMV

12: end for

13: Plot error-based reliability plot: x-axis withDRMSE and y-axis withDRMV .

are various techniques for calibrating uncertainty. Some of these methods in-

clude histogram binning [186], isotonic regression [187], and temperature scaling

[179]. The first two techniques are non-parametric, and therefore, the number

of parameters utilized is dependent on the training dataset size. Conversely,

temperature scaling is a parametric approach that needs a fixed number of

parameters.

Given the practicality being a crucial consideration in applying UQ tech-

niques to the engineering domain, this research adopts a straightforward ap-

proach: temperature scaling. More specifically, the study employs STD scaling,

which is a regression task version of temperature scaling [184]. With STD scal-

ing, it is only necessary to determine a scalar parameter, denoted as s, which is

122

used to multiply the standard deviation initially estimated by the DE model,

σ̂. The value of s used in the calibration process is selected to minimize the

NLL, as shown below:

s = argmin
s

(
log

(
sσ̂(x)

)2
2

+

(
y − µ̂(x)

)2
2
(
sσ̂(x)

)2 +
log2π

2
), (4.8)

Please note that this equation is the simple modification of Eq. 4.2, where σ(x)

is replaced by sσ̂(x). This calibration procedure is completely separate from

the training procedure of DE; it is performed after the mixture step in Fig.

4.2, so it is called the post-hoc or post-process calibration method. It should be

emphasized that the model parameters (weights and biases in the NN model)

remain unchanged throughout the calibration process. The STD scaling method

is intuitively explained as follows: if the estimated uncertainty from the trained

model
(
σ̂(x)

)
is poorly calibrated, the calibrated version of the uncertainty

sσ̂(x) is used in its place. It is important to note that this calibration pro-

cess is intended solely to correct the estimated uncertainty, and therefore, only

the output σ̂(x) of the DE changes, while the predictive value µ̂(x) remains

unaltered. The steps involved in the STD calibration process are outlined in

Algorithm 5. For calibration, a separate dataset should be used that is distinct

from the training and test datasets to ensure calibration generalization [184],

and therefore, a validation dataset is utilized for the calibration. In multi-output

regression tasks, every DE output can be calibrated independently using the

number of scaling parameters s equal to the output dimension (this is imple-

mented by the for-loop in line 3 of Algorithm 5). In conclusion, this study uses

a straightforward STD calibration method for uncertainty calibration, which

involves tuning scalar parameters without modifying trained NNs.

123

Algorithm 5 STD calibration procedure

1: Prepare calibration dataset X (with input x and output y).

2: Define candidates of scaling factor: S

3: for i = 1 : length(y) do ▷ Loop for output dimension of DE

4: si = argmin
s∈S

(
log

(
sσ̂i(x)

)2
2

+

(
yi − µ̂i(x)

)2
2
(
sσ̂i(x)

)2 +
log2π

2
)

5: end for

6: Utilize si to calibrate estimated uncertainty over ith output

7: ▷ Use siσ̂i in lieu of σ̂i.

124

4.3 Application of DE to aerodynamic performance

regression task

This section applies the DE method to a real-world engineering problem

of predicting aerodynamic coefficients for a specific missile configuration with

varying flow conditions. It aims to validate the performance of DE in multi-

output regression tasks since no comprehensive study has been conducted on

this topic. The section evaluates both the regression and uncertainty estimation

performance of DE and investigates the impact of M , the number of NNs used

for the ensemble.

4.3.1 Data preparation and training details

After obtaining the training dataset, the next step is to determine the struc-

ture of the probabilistic NN to be used for the ensemble: following the work

by Lakshminarayanan et al. [49], the identical architectures of the probabilistic

NNs are used for ensembling in this study. To this end, grid search is carried

out with hyperparameters such as the number of layers, number of nodes, and

size of the mini-batch. Other hyperparameters such as the optimizer algorithm,

initial learning rate, and total epochs are selected as Adam, 10−3, and 13,000,

respectively. The results of the tuning are available in 4.6.2.1. A probabilistic

NN with 7 hidden layers and 128 nodes is selected based on both NLL and

RMSE, and the mini-batch size is set to 512. Subsequently, different values of

the hyperparameter M (2, 4, 8, and 16) are adopted, with each corresponding

DE model referred to as DE-2, DE-4, DE-8, and DE-16 in this manuscript.

That is, for DE-16, 16 probabilistic NNs with 7 hidden layers and 128 nodes

are trained with a mini-batch size of 512, sharing identical hyperparameters

with other DE models except M .

125

GPR models with different kernels are also trained for their hyperparameter

tuning. To this end, Matérn 5/2, radial basis function, rational quadratic, and

dot-product kernels are examined [188], and their results also can be found in

4.6.2.2. In addition, not only single-output GPR models are tested, but also the

multi-output GPR (MOGPR) with radial basis function kernel is trained for

more comprehensive comparison with DE [188, 189, 190, 191]. Among them,

GPR with Matérn 5/2 kernel shows the best performance, and is therefore se-

lected for the comparison with DE throughout this paper. The required training

times for DE with selected NN structure (7 hidden layers and 128 nodes) and

GPR (Matérn 5/2 kernel) models using Intel(R) Xeon(R) CPU @ 2.20GHz are

as follows: 10.9 hours for GPR, 2.4 hours for DE-2, 5 hours for DE-4, 9.7 hours

for DE-8, and 19.4 hours for DE-16. The loss function history of the trained

models is shown in Fig. 4.5.

Figure 4.5: Loss history of all trained models. NLL calculated by the test

dataset is adopted the results of the hyperparameter tuning (Table 4.3 in Sec.

4.6.2).

126

4.3.2 Evaluation of regression performance

In this section, the regression performances of all selected models are pre-

sented using a test dataset that is not used in model training. Before going into

details, DE-2 (which required the least training time among the DE models)

is compared with GPR to highlight the efficiency of the DE models. Fig. 4.6

shows the results of kernel density estimation (KDE), which demonstrates the

generalization performance of the models by visualizing the distributions of the

test data in terms of NLL and RMSE (those of all six QoIs are averaged to

be shown in this figure). For both criteria, the obvious superiority of DE-2 can

be identified: most of the test data is concentrated in the lower error region in

DE-2. More specifically, the KDE of NLL shows that the density peak of DE-2

represented by a star with long dashed line is located at NLL of -4.6, while

that of GPR is located at -3.1. When it comes to RMSE, the peak of DE-2

is at RMSE of 0.003 while GPR is at 0.09. The medians of the error metrics

are also shown as circles with dotted lines. For both metrics, those of DE-2

are much lower than those of GPR, indicating that DE-2 performs better than

GPR overall. The most interesting point here is that although DE-2 requires

only 22% of the training time of GPR, it achieves superior regression accuracy.

Fig. 4.7 provides the comprehensive results of the regression performance.

Fig. 4.7a shows the NLL results of all models with respect to the six aerody-

namic QoIs, and their averaged NLL is also shown at the right end. Throughout

all QoIs, GPR shows inferior regression accuracy than all other DE models. The

results on NLL could be expected as each NN in the DE model is trained to

minimize NLL. However, the results on RMSE in Fig. 4.7b are highly inspiring:

they also achieve higher regression accuracy even in terms of RMSE. Consider-

ing that numerous engineers use RMSE to evaluate regression models, the fact

127

Figure 4.6: Comparison of regression accuracy between GPR and DE-2: kernel

density estimation (KDE) of test dataset with respect to NLL and RMSE

(averaged values of all six QoIs). The stars and circles represent the maximum

and median points of each model, respectively.

that the average RMSE of DE models is less than half that of GPR is quite

encouraging. Also, contrary to the claim that DE-5 would be sufficient in the

work first proposed DE approach [49], DE-2 seems to be sufficient enough in this

study, at least in terms of predictive accuracy: its values between all DE models

are insignificant. However, the conventional belief is that the more models used

in the ensemble, the more accurate the prediction will be due to the robustness

that comes from averaging multiple predictions. The underlying reason for this

counter-intuitive result (that is, insignificant differences in predictive accuracy

between DE models) is judged to be the insufficient diversity between individual

models due to the strategy adopted by DE: identical dataset and model archi-

tecture [49]. However, note that blindly ensuring excessive diversity by using

different datasets and model architectures should be done with caution, since

it can degrade UQ performance (which will be mentioned in Remark 2 of Sec.

4.3.4).

128

(a)

(b)

Figure 4.7: Comparison of regression accuracy between GPR and all DE

models: comprehensive results in terms of all aerodynamic QoIs. (a) NLL, (b)

RMSE.

4.3.3 Evaluation of UQ performance

This section examines the quality of the predictive uncertainty, using AUCE

and ENCE criteria for the quantitative investigation. For this purpose, reliabil-

ity plots should be drawn first, using the test dataset split in Sec. 4.3.1 (dataset

size of 980). Also, as in Algorithm 3, CI-based reliability plots require the set

of CI candidates (P) and error-based reliability plots in Algorithm 4 need the

number of bins (B). In this study, P = {0.1, 0.2, ..., 0.9} and B = 20 are chosen.

Fig. 4.8 shows the results of GPR, and it appears that GPR has a satis-

factory uncertainty quality with respect to the error-based reliability plot (Fig.

4.8b), while the CI-based plot (Fig. 4.8a) shows relatively poor quality. In a

129

CI-based plot, since the predicted CI (x-axis) is underestimated compared to

the actual observed CI (y-axis), it can be inferred that GPR is trained to be

“underconfident”: it is underconfident itself, so it overestimates its uncertainty.

(a)

(b)

Figure 4.8: Reliability plots of GPR: (a) CI-based reliability plot, (b)

Error-based reliability plot.

The results of the DE models are then shown in Fig. 4.9. Note that unlike

GPR in Fig. 4.8, only the results of output CSF are visualized to highlight the

130

differences between DE models: comprehensive results can be found in Fig. 4.14

in 4.6.3. For DE-2, the CI-based plot (Fig. 4.9a) shows a similar trend to that of

GPR, while the error-based plot (Fig. 4.9b) shows slightly better quality. Mean-

while, a notable trend is observed along the increase of M : as it increases, the

uncertainty quality with respect to both reliability plots apparently degrades.

More specifically, both types of plots move upward away from the y = x ideal

line as M increases, indicating that DE models tend to become “underconfi-

dent”. Considering that DE-16 requires about 8 times as much training time

as DE-2, it can be confirmed that using large M values for the ensemble does

not necessarily lead to better results, but rather the opposite in terms of uncer-

tainty quality. In this context, assuming that the performance of DE-5 will be

between DE-4 and DE-8, it can be inferred that using M = 5 as suggested by

Lakshminarayanan et al. [49] does not guarantee sufficient UQ quality in this

case. In fact, the insight behind this underconfident tendency when ensembling

networks in classification tasks can be found in Rahaman et al. [165], while the

corresponding tendency in regression has not been proven. Accordingly, in the

next section, we provide the mathematical explanation for this underconfident

tendency in regression tasks.

4.3.4 Theoretical derivation: underconfidence of DE in regres-

sion tasks

This section is for the mathematical derivation of why the ensemble of NNs

becomes underconfident, as discovered in the previous section. For this purpose,

the deviation from calibration (DC) score is introduced as in Rahaman et al.

[165]; their work focused only on classification tasks, so their DC score consisted

of the Brier score and the entropic term. Meanwhile, since our work focuses on

the regression task, we adopted the different DC score consisting of the MSE

131

(a)

(b)

Figure 4.9: Reliability plots of DE: for simplicity, only the CSF results of

different DE models are shown. (a) CI-based reliability plot, (b) Error-based

reliability plot. In (b), to clearly show the decreasing tendency of UQ quality

with increasing M , the linear regression model of the scatter points of each

DE model is shown as a dashed line with the corresponding color.

and predictive variance. In this context, the following proposition and its proof

can be considered as one of the contributions of this paper.

132

Proposition. When DC score is defined as follows,

DC(µ, σ) ≡ (y − µ)2 − σ2 (4.9)

DC score of the ensemble becomes less than or equal to the averaged DC

score of the individual NNs.

DC(µ̂, σ̂) ≤
1

M

M∑
i=1

DC(µi, σi) (4.10)

Proof. The averaged DC score of the individual NNs (right-hand side of the

Eq. 4.10) can be expressed as:

1

M

M∑
i=1

DC(µi, σi) =
1

M

M∑
i=1

(y2 − 2yµi + µi
2 − σi

2)

= y2 − 2yµ̂+
1

M

M∑
i=1

µi
2 −

1

M

M∑
i=1

σi
2

= (y2 − 2yµ̂+ µ̂2 − σ̂2) + (
1

M

M∑
i=1

µi
2 − µ̂2) + (σ̂2 −

1

M

M∑
i=1

σi
2)

= (y2 − 2yµ̂+ µ̂2 − σ̂2)︸ ︷︷ ︸
=DC(µ̂,σ̂)

+2 (
1

M

M∑
i=1

µi
2 − µ̂2)︸ ︷︷ ︸

=V ar(µi)

(∵ Eq. 4.4)

(4.11)

Hence,

DC(µ̂, σ̂) =
1

M

M∑
i=1

DC(µi, σi)− 2 · V ar(µi)︸ ︷︷ ︸
≥0

(4.12)

133

Remark 1. The DC used in the above proposition indicates the degree of cali-

bration. When DC equals 0, it means that the estimated uncertainty σ2 exactly

matches the MSE, (y − µ)2. If DC < 0, the uncertainty is overestimated com-

pared to the MSE, which is an underconfident case. Therefore, the proposition

that the DC score decreases after ensembling has mathematically explained the

underconfidence of DE models observed in Sec. 4.3.3.

Remark 2. In Sec. 4.3.2, it was mentioned that introducing excessive diversity

to individual NNs can lead to degraded UQ performance as a trade-off for pre-

dictive accuracy. This can be easily inferred by the term V ar(µi) in Eq. 4.12:

the more variance NNs have, the more underconfidence their ensemble shows.

134

4.4 DE models with STD calibration

The underconfidence tendency of DE models in regression tasks is observed

and explained in the previous section. This section suggests the use of post-hoc

STD calibration to mitigate this undesirable tendency and examines its effects.

4.4.1 STD calibration of DE models

The findings presented in Sec. 4.3.3 suggest that, despite the prevailing view

that DE models are well-calibrated, this is not always the case, as illustrated

in this straightforward multi-output regression task within an engineering do-

main. To address this issue, we propose using the STD calibration method

on the trained DE models. This technique, as described in Algorithm 5, is

straightforward and practical, as it requires only a single for-loop and leverages

the existing models without additional training. This makes it a feasible option

for our study, which focuses on the application of DE in engineering, where

practicality is crucial.

Algorithm 5 first requires a set of candidates for scaling factors, S. Since the

scaling factor of 1 corresponds to the case without calibration, the candidates

s are set around 1. Accordingly, s = 10x are chosen as candidates, where x are

100 uniformly distributed points from -2 to 0.18, so that the resulting range

of scaling factors to explore is from 0.01 to 1.5. Note that with s less than 1,

underconfident models that overestimate the standard deviations (uncertainty)

can be calibrated. Finally, the STD calibration is performed using validation

dataset split in Section 4.3.1 (dataset size of 980) and the optimized scaling

factors for each DE model with respect to each output (QoI) are summarized

in Table 4.1. The STD calibration for all models is performed within 60 seconds,

which is negligible compared to their training time.

135

Table 4.1: Optimized scaling factors for STD calibration

Methods
Optimized scaling factors

CNF CAF CPM CRM CYM CSF Avg

DE-2 0.549 1.061 0.608 1.009 0.824 0.578 0.771

DE-4 0.385 0.405 0.284 0.472 0.257 0.270 0.345

DE-8 0.147 0.270 0.133 0.270 0.155 0.140 0.186

DE-16 0.103 0.199 0.088 0.189 0.120 0.108 0.135

Herein, the scaling factors for all six aerodynamic coefficients and their

average value in each model are presented. The most notable point is that almost

all s values are less than 1 and they decrease as M increases: see the bold values

in Table 4.1 to confirm their average trend. Taken together with the results from

Section 4.3.3 that DE models overestimate their σ2 (become underconfident) as

M increases, one might expect optimized s < 1 to mitigate this underconfident

tendency. And Fig. 4.10 proves that this actually happens: reliability plots of

the DE models after STD calibration are drawn with the test dataset. Note that

the validation dataset used during the STD calibration should not be reused in

this process for generalization purposes. When compared to the previous plots

in Fig. 4.9, the obvious improvement due to the calibration technique can be

observed. See 4.6.4 for comprehensive results on the calibration effects with

respect to all six QoIs.

Then, the quantitative effects of the calibration in terms of AUCE and

ENCE will be analyzed, and from now on DE before and after calibration will

be referred to as DE-bef and DE-aft, respectively. The AUCE and ENCE of the

GPR will also be presented for the comparison, but please note that the GPR

can be considered inherently STD-calibrated since its training algorithm already

aims to minimize NLL as in the STD calibration process. This means that the

136

(a)

(b)

Figure 4.10: Reliability plots of DE after STD calibration: (a) CI-based

reliability plot, (b) Error-based reliability plot. The noticeable effects of STD

calibration can be found when compared with the corresponding figure before

STD calibration, Fig. 4.9.

GPR does not require additional STD calibration for a fair comparison with

DE-aft because it can be seen as having already undergone STD calibration.

Finally, the results are summarized in Fig. 4.11. It consists of the sub-figures,

where the row indicates each UQ metric, the column indicates each QoI, and the

x-axis in each sub-figure indicates whether the DE undergoes STD calibration

(as explained, GPR metrics have a constant value along the x-axis regardless of

the STD calibration). Before the calibration, the AUCE (upper row) of GPR is

137

between DE models: DE-2 is better than GPR, DE-4 is similar, and DE-8 and

DE-16 are worse. However, the STD calibration completely changes this situa-

tion: AUCE of all DE models for all aerodynamic QoIs decreases dramatically.

For all outputs, DE-aft clearly outperforms GPR. The significant improvement

of ENCE (lower row) due to the calibration of DE can also be verified. DE

models show worse performance than GPR without calibration, but this gap

narrows and even reverses, as seen in the rightmost subplot “Avg”, which shows

the average performance of all outputs. In summary, vanilla DE outperformed

GPR in terms of training efficiency and regression accuracy, but not in terms

of quality of estimated uncertainty. However, when used with a simple post-hoc

STD calibration (which requires negligible additional post-processing time), DE

demonstrated its strong potential as an alternative to GPR in terms of training

time, prediction accuracy, and also UQ quality.

Figure 4.11: AUCE and ENCE of DE models before and after STD

calibration. Those of GPR are also shown for comparison.

138

4.4.2 Effects of STD calibration on Exploratory Behavior in

Bayesian optimization

Since the scaling factors are optimized to have values less than 1 during the

STD calibration process (Table 4.1), it is obvious that the overall predictive

uncertainty of DE models would decrease. To provide a more intuitive under-

standing of the practical implications of calibration, this section aims to briefly

point out that applying STD calibration to DE can lead to different exploratory

behavior during Bayesian optimization. Specifically, the importance of calibra-

tion is highlighted by comparing the next query candidates before and after

STD calibration obtained in the first iteration of Bayesian optimization. Note

that only the first iteration is implemented in this paper for the following two

reasons. First, the goal of this section is simply to show how calibrated DE leads

to different exploratory behavior than vanilla DE. Second, the purpose of this

section is not to claim that the final converged results of Bayesian optimization

can be different depending on the calibration. Rather, it is to point out that

the intended balance between exploitation and exploration may not be realized

due to the miscalibrated uncertainty of the vanilla DE, which may affect the

convergence history of the Bayesian optimization.

Before moving on to Bayesian optimization, CIs of the 68% confidence level

predicted by DE-16 model are shown in Fig. 4.12 to visually understand the

impact of calibration. Only one input variable, AoA, is used for the illustration.

And its value is standardized to distinguish between its ID (in-distribution)

region and the OOD (out-of-distribution) region: in Fig. 4.12, the ID region is

defined as the area containing 95% of the train data, while the OOD region

is the remaining area. Overall, both results—those obtained before and after

STD calibration—show diverging CIs in OOD and relatively narrow CIs in ID

for all six QoIs. However, as expected from the scaling factors less than 1, the

139

CIs from the DE-aft models become significantly narrower than those from the

DE-bef models, indicating that these discrepancies will lead to differences in

the subsequent Bayesian optimization process.

Figure 4.12: CIs of 68% confidence level predicted by DE-16: comparison

between before and after STD calibration.

Then, the multi-objective Bayesian optimization problem is defined is adopted

to practically investigate their effects on Bayesian optimization: maximization

of both CNF and CAF within five varying input parameters (Ma, ϕ, δp, δr,

and AoA). These optimizations, coupled with the expected improvement (EI)

acquisition function, are performed separately for DE-bef and DE-aft models.

The former searches for the maximum EI point where EI is calculated from

the uncertainty quantified by the DE-bef model, while the latter does so using

the uncertainty quantified by DE-aft. To find the Pareto solutions of EI(CNF)

and EI(CAF), NSGA-II in the Python package pymoo is utilized [98, 18, 192].

inally, the obtained Pareto solutions from the first iteration are shown in Fig.

4.13a. Since the uncertainty estimated by DE-bef and DE-aft are different as

140

shown in Fig. 4.12, the Pareto solutions of EI(CNF) and EI(CAF) are also

different: EI values of both QoIs after calibration are much smaller than those

before calibration.

In Bayesian optimization, however, the most valuable information to the

user is not the EI value itself (Fig. 4.13a). More important are the values of

the input variable sets (Fig. 4.13b) obtained from the EI Pareto solutions: they

are the next query candidates, the main purpose of implementing Bayesian

optimization. Additional experiments/simulations will be performed on these

candidate queries, indicating that their selection has a significant impact on

the convergence of the iterative Bayesian optimization process. If unintended

candidates are obtained due to inaccurate UQ and therefore inaccurate EI cal-

culation, the convergence of Bayesian optimization can be much different from

the intention of the user. That is, the intended balance between exploitation

and exploration during Bayesian optimization may differ due to unintention-

ally overestimated/underestimated uncertainty. To inspect its unintended ex-

ploratory behavior more specifically, the parallel coordinates plot (PCP) in Fig.

4.13b shows how the first query candidates in Bayesian optimization can vary

due to the STD calibration in the DE model. This PCP has five vertical lines

corresponding to each input variable, and the y-axis indicates their standard-

ized values. Each red/blue line represents each point of the Pareto solutions in

Fig. 4.13a. Comparing them, large variations are found especially in the input

variable δr. That is, Bayesian optimization coupled with DE-bef discourages ex-

ploration of the variable δr (which was not intended by the user), while DE-aft

encourages exploration within δr (which was the original intention). In con-

clusion, whether the DE is calibrated by STD calibration or not can result in

exploration characteristics that differ from the user’s intended balance between

exploitation and exploration in Bayesian optimization, which cautions against

141

blindly applying vanilla DE models to Bayesian optimization in regression tasks.

(a) Pareto solutions obtained from multi-objective

EI optimization

(b) PCP of design variables in Pareto solutions

Figure 4.13: Effects of STD calibration for DE models on Bayesian

optimization results.

142

4.5 Summary

This chapter comprehensively investigated the state-of-the-art approximate

Bayesian inference approach, DE. It is applied to the multi-output regression

task, which is the most common task in the engineering fields: a simple test

case is adopted where aerodynamic QoIs of the specific missile configuration

are predicted under varying flow conditions. DE models with different numbers

of NNs are trained and then examined in the following order. First, their regres-

sion performance and the quality of estimated uncertainty are scrutinized while

being compared with GPR. Then, a simple post-hoc STD calibration method

is proposed to be applied to miscalibrated DE models. Finally, the effective-

ness of the calibration on DE is highlighted by the improvement of two UQ

quality criteria and the different exploratory behavior in Bayesian optimization

before and after calibration. The key findings of this study can be summarized

as follows:

1. The effect of the number of NNs used in ensemble, M , is comprehensively

investigated in the simple multi-output regression task. For regression ac-

curacy, DE models show superior performance to GPR in terms of RMSE

and NLL, while showing indistinguishable differences among themselves.

For UQ quality, however, they show the obvious trend toward undercon-

fidence as M increases, both in terms of AUCE and ENCE criteria. The

mathematical proof of why DE tends to be miscalibrated in regression

tasks is also derived.

2. The post-hoc STD calibration method, which simply modifies the esti-

mated uncertainty from DE, is proposed to be applied to miscalibrated

DE models. Finally, the reliability of the UQ performance after calibra-

tion is dramatically improved for both AUCE and ENCE, also surpassing

143

that of GPR.

3. The impact of the calibration approach on the exploratory behavior in

Bayesian optimization is examined. Finally, whether or not the DE is cal-

ibrated via STD calibration can result in completely different exploration

characteristics when extended to Bayesian optimization, which cautions

against blindly applying vanilla DE models to Bayesian optimization in

regression tasks.

4. We have demonstrated that by applying a simple post-hoc STD calibra-

tion technique that requires negligible additional post-processing time,

DE models can have enormous potential compared to GPR, which is

the most commonly used regression model for UQ in engineering. These

results are summarized in Table 4.2, where the DE-2 model after STD

calibration outperforms GPR in terms of regression performance (−56%

NLL & −55% RMSE), reliability of UQ (−77% AUCE & −38% ENCE),

and training efficiency (−78% training time).

Table 4.2: Comprehensive comparison between GPR and DE-2

Before calibration After calibration

NLL -2.653 (−%) -4.145 (↓ 56%) -4.145 (↓ 56%)

RMSE 0.029 (−%) 0.013 (↓ 55%) 0.013 (↓ 55%)

AUCE 0.150 (−%) 0.076 (↓ 49%) 0.034 (↓ 77%)

ENCE 0.256 (−%) 0.206 (↓ 20%) 0.159 (↓ 38%)

39081 (−%) 8640 (↓ 78%) 8640+30 (↓ 78%)

Metrics GPR
DE-2

Regression

UQ

Training time [s]

The presented DE framework has great promise in two engineering applica-

tions. First, DE with STD calibration has the potential to replace the most com-

144

mon regression model, GPR, owing to its following advantages: more scalable to

large datasets, higher regression accuracy, and last but not least, more reliable

uncertainty estimation. Second, DE with STD calibration can be leveraged in

Bayesian optimization by ensuring a reliable balance between exploitation and

exploration due to its trustworthy UQ performance. Although the application

of this framework has been demystified using the simple multi-output regression

task, it can be easily applied and extended to high-dimensional input/output

problems since it is based on the deep neural network structures and no spe-

cial assumptions have been made for this specific problem. For future work,

a more comprehensive investigation of DE models will be conducted, such as

their scalability to other practical engineering regression problems. Also, since

the extension of DE to the whole Bayesian optimization was outside the focus

of our paper, comparing the convergence history of DE-bef and DE-aft over the

entire iterations can be a future work.

145

4.6 Additional results

4.6.1 Controversial issues on MC-dropout

Osband [156] pointed out that what MC-dropout (MCD) estimates is a

risk, not an uncertainty, and also emphasized the pitfalls of MCD when used

as a naive tool for estimating uncertainty. Moreover, its algorithm does not

perform adequately even in very simple examples [193, 194], and its posterior

samples are often too spiky to provide a reliable predictive uncertainty trend

[154, 48, 193, 195, 51], which makes it unattractive to be exploited for Bayesian

optimization.

4.6.2 Hyperparameter tuning results in Sec. 4.3.1

4.6.2.1 Results of DE models

The results of the hyperparameter tuning for DE models performed in

Sec. 4.3.1 are shown in Table 4.3. Three hyperparameters are used: the num-

ber of hidden layers (Nlayer ∈ {3, 5, 7}), the number of nodes in each hid-

den layer (Nnode ∈ {32, 64, 128}), and the size of the mini-batch (Nbatch ∈

{512, 1024, 2048}). The corresponding regression performance in terms of NLL

and RMSE of all hyperparameter combinations are shown (total training time

of 6944 seconds). Since Nlayer = 7, Nnode = 128, Nbatch = 512 shows the best

RMSE performance, it is selected as the best hyperparameter combination.

146

Table 4.3: Results of hyperparameter tuning: several structures of

probabilistic NN used in the DE model are tested.

Nlayer Nnode Nbatch NLL RMSE Time [s]

3

32

512 -2.50 0.125 183

1024 -2.22 0.200 174

2048 -2.13 0.183 183

64

512 -2.98 0.076 202

1024 -2.69 0.087 179

2048 -2.52 0.100 213

128

512 -3.37 0.036 256

1024 -3.34 0.040 257

2048 -2.55 0.052 271

5

32

512 -2.62 0.137 187

1024 -2.23 0.173 214

2048 -2.25 0.137 202

64

512 -3.21 0.039 236

1024 -2.79 0.055 210

2048 -2.01 0.085 255

128

512 -3.83 0.017 342

1024 -3.53 0.019 327

2048 -3.16 0.035 349

7

32

512 -2.49 0.088 212

1024 -2.36 0.119 224

2048 -2.17 0.104 244

64

512 -3.38 0.031 286

1024 -3.05 0.042 247

2048 -2.45 0.062 262

128

512 -3.82 0.016 428

1024 -3.56 0.024 399

2048 -3.13 0.035 402

147

4.6.2.2 Results of GPR models

The results of the hyperparameter tuning for GPR models performed in Sec.

4.3.1 are shown in Table 4.4. For conventional single-output GPR (SOGPR),

Matérn 5/2, radial basis function, rational quadratic, and dot-product kernels

are explored. Additionally, multi-output GPR (MOGPR) with radial basis func-

tion is also tested. The corresponding regression performance in terms of NLL

and RMSE of all GPR models are summarized in Table 4.4 (total training time

is 205493 seconds, which is significantly longer than Sec. 4.6.2.1). MOGPR

requires the least training time, but single-output GPR with Matérn 5/2 is

selected since it shows the best performance with respect to NLL and RMSE.

Table 4.4: Results of hyperparameter tuning: several GPR models are tested.

Kernels NLL RMSE Time [s]

Matérn 5/2 -2.653 0.029 39081

Radial basis function (SOGPR) -1.657 0.039 64250

Radial basis function (MOGPR) -1.4236 0.044 8136

Rational quadratic -0.747 0.061 66363

Dot-product 0.440 0.547 27663

148

4.6.3 Additional results in Sec. 4.3.3

Fig. 4.9 in Sec. 4.3.3 shows the reliability plots with respect to only one QoI,

CSF . In this section, more comprehensive results are provided as Fig. 4.14. For

each vanilla DE model, all six QoIs are shown with different colors. Again, the

trend of underconfidence as M increases can be seen from DE-2 to DE-16.

4.6.4 Additional results in Sec. 4.4.1

In 4.6.3, the reliability plots of DE models before STD calibration (vanilla

DE models) are shown; this section shows the results after STD calibration as

Fig. 4.15. It is shown that all DE models become well-calibrated after calibra-

tion, even for the DE-16 model, which was the most miscalibrated DE model.

149

(a) DE-2

(b) DE-4

(c) DE-8

(d) DE-16

Figure 4.14: Reliability plots of vanilla DE models: (left) CI-based reliability

plots, (right) error-based reliability plots.

150

(a) DE-2

(b) DE-4

(c) DE-8

(d) DE-16

Figure 4.15: Reliability plots of DE models after STD calibration: (left)

CI-based reliability plots, (right) error-based reliability plots.

151

Chapter 5

Concluding remarks

5.1 Summary of the dissertation

This dissertation aims to address three major bottlenecks that hinder the

effective use of regression models in the aerodynamic design process. First, the

curse of dimensionality poses a challenge due to the high-dimensional input

space required for aerodynamic design resulting from geometric deformation

freedom and various flight conditions. The exponential growth in the number

of possible configurations within the input space makes it difficult to thor-

oughly explore the design space, leading to a sparsity problem and inaccurate

capture of complex input-output relationships. In addition, the curse of dimen-

sionality makes it impractical to apply gradient-free optimizers to optimization

tasks, limiting the ability to find reasonable solutions. Second, popular regres-

sion models are primarily designed for single-output prediction, which limits

their applicability in high-dimensional output spaces. Training these models in-

dependently for each output not only increases training time linearly with the

152

output dimension but also neglects correlations within outputs, limiting their

accuracy in modeling complex physical systems. Finally, reliable UQ is essential

to account for the inherent risk in the aerodynamic design process as neglecting

uncertainty can lead to suboptimal designs and unexpected failures. Therefore,

coupling regression models with UQ techniques allows engineers to obtain not

only predictive values, but also variance or confidence intervals, enabling in-

formed decision-making and evaluation of the reliability of design parameters.

By addressing these bottlenecks, this dissertation focuses on improving the ef-

fectiveness and reliability of regression models in aerodynamic design.

The first bottleneck, the high-dimensional input space in aerodynamic de-

sign, was addressed by the DR technique that finds the low-dimensional latent

representation of the high-dimensional original data (Chapter 2). The DR tech-

nique can significantly reduce the dimensionality of the input space to a level

suitable for effective training of the regression models. By alleviating the curse

of dimensionality, the feasibility of applying gradient-free optimizers to the re-

duced input space was also investigated. For this purpose, the inverse design op-

timization of the wind turbine airfoil was taken as a case study. Finally, a novel

inverse design optimization framework with a two-step deep learning approach,

which refers to the successive coupling of VAE and MLP, was proposed. Here,

VAE generates a realistic target distribution, and MLP predicts the QoIs and

shape parameters from the generated distribution. Then, the target distribution

is optimized based on this two-step approach. To increase the accuracy, active

learning was used to retrain the models with newly added designs. In addition,

transfer learning was coupled to reduce the computational cost of retraining,

thereby increasing the accuracy of the framework with efficient computational

resources. The proposed framework was validated using two constrained opti-

mization problems: single-objective and multi-objective airfoil optimizations of

153

the tip region of a megawatt-class wind turbine blade. In the single objective

optimization, the predictive accuracy of the trained MLP model and the valid-

ity of the trained VAE model for generating realistic data were verified. The

multi-objective results verified a continuous mapping between the inputs and

outputs of the framework, which enables successful optimization through the

two-step approach. Furthermore, this mapping was confirmed to accurately re-

flect the rapid changes in QoIs, which frequently occur in real-world engineering

applications. In summary, the results of the optimizations showed that the pro-

posed framework for inverse design optimization via a two-step deep learning

approach is accurate, efficient, and flexible enough to be applied to any other

regression task with a high-dimensional design space.

To address the second bottleneck, the high-dimensional output space, this

dissertation focused on the application of ROM techniques (Chapter 3). ROM

specializes in predicting high-dimensional QoIs by treating a high-fidelity CFD

simulation as a black-box function and learning simplified models in a data-

driven manner. Similar to dealing with the high-dimensional input space, the

DR process is required to construct a latent space in the ROM. This disserta-

tion specifically investigated the influence of this latent space, which acts as an

intermediary for predicting high-dimensional data, on ROM performance. To

validate this approach, the prediction of flow fields around a transonic airfoil

was used as a case study. In this study, a novel framework was proposed: a

physics-aware ROM based on physics-aware LVs. These LVs are interpretable

and information-intensive, extracted using the β-VAE. The validation process

for this framework follows a systematic approach. First, the process of extracting

physically meaningful LVs was thoroughly investigated by quantitatively esti-

mating their independence and information intensity. Next, the actual physical

meanings associated with these LVs were investigated in detail. Finally, the ef-

154

fectiveness of the proposed physics-aware ROM was compared to conventional

ROMs and its superiority was established. Through these validation steps, the

dissertation successfully demonstrated the effectiveness of the physics-aware

ROM framework for the 2D transonic benchmark problem. The proposed frame-

work not only addressed the challenges posed by the high-dimensional output

space, but also provided valuable insights into the independence, information

intensity, and physical interpretations of the extracted LVs. This research con-

tributed to the improvement of the regression task of high-dimensional data

and to the understanding of the underlying physics in aerospace design.

The last bottleneck, reliable and efficient UQ of the regression model, was

addressed by the DE approach (Chapter 4). Since DE is based on neural net-

works, it offers all of the following: universal approximation capability, scala-

bility to large datasets, and multi-output regression. Last but not least, it is

able to quantify the predictive uncertainty by a simple modification of the con-

ventional MLP structure. This dissertation aimed to validate this simple and

scalable DE method for multi-output regression tasks, which are the most com-

mon problems in practical engineering disciplines. To this end, a simple test

case was adopted where aerodynamic QoIs of the specific missile configuration

are predicted under varying flow conditions. DE models with different numbers

of NNs were trained and then investigated in the following order. First, their

regression performance and the quality of the estimated uncertainty were in-

vestigated and compared with GPR. Then, a simple post-hoc STD calibration

method was proposed to be applied to miscalibrated DE models. Finally, the

effectiveness of calibration on DE was highlighted by the improvement of two

UQ quality criteria and the difference in Bayesian optimization results before

and after calibration.

155

5.2 Limitations of the dissertation

This dissertation attempted to speed up the aerodynamic design process

by alleviating the following three bottlenecks: 1) high-dimensional input space,

2) high-dimensional output space, and 3) reliable and efficient UQ. However,

since the case study for each bottleneck was selected independently, the com-

prehensive case study can be the future work of this dissertation. In fact,

there is an ongoing project to create a Python library named “SubDamian:

SUrrogate-Based DAta MIning ANalysis.” It is currently under construction

(https://github.com/sunwoong-yang/SubDamian), including all the methods

used in this dissertation. Specifically, it will be divided into three categories:

surrogate (regression) models, dimensionality reduction, and data mining tech-

niques. For the category of regression models, the most popular models used

in engineering disciplines are covered, including GPR, MLP, and DE, which

are used in this study. For the dimensionality reduction category, various DR

approaches are considered, including POD, AE, VAE, and β-VAE, all of which

are also adopted in this dissertation. By using regression models and dimen-

sionality reduction techniques simultaneously, the ROM performed in this dis-

sertation can be implemented. Finally, since this dissertation focused on the

regression models, the post-processing methods including data mining analysis

and optimization based on them will also be incorporated for the practicality of

this library. For the data mining analysis, various techniques such as sensitiv-

ity analysis, analysis of variance, self-organizing maps, parallel coordinate plot,

and decision tree will be incorporated [19]. With this library, the comprehensive

case study that copes with all three bottlenecks mentioned in this thesis, that

is, high-dimensional input and output with reliable and efficient UQ, can be

explored as future work.

156

https://github.com/sunwoong-yang/SubDamian

Also, the three case studies adopted in this dissertation for each bottleneck,

pose limitations in terms of their engineering practicality. In this regard, the

following are the suggestions for future work of each case study that can promote

their practicality in engineering-oriented problems.

For the case study of the high-dimensional input space, the inverse design

of the airfoil was performed (Chapter 2). However, it is known that training

the network for the inverse design alone can be inefficient due to the non-

uniqueness mapping from the performance distribution to the design parameters

[196, 197]. Although the non-uniqueness mapping did not significantly affect the

effectiveness of the inverse design framework in this case study, it can be an

obstacle with respect to the scalability of the proposed framework. For example,

the extension to a 3-dimensional flow analysis or high-fidelity CFD solvers may

lead to the impossibility of a one-to-one correspondence due to the complex

physical characteristics. In this context, attaching a pre-trained forward network

at the end of the inverse network can be a solution [197]. During training, only

the inverse network is trained, while the pre-trained network is frozen: the loss

function is the discrepancy between the performance distribution input to the

inverse network and the predicted performance distribution output from the

forward network.

Then, in Chapter 3, the flow field around the transonic airfoil was predicted

for the case study of the high-dimensional output space. It is assumed that the

generating factors were known, which is not the case in real engineering prob-

lems. Therefore, the physics-aware latent variables cannot be straightforwardly

determined in engineering applications; in this study, the 1000-VAE model could

be selected for physics-aware ROM because there were two generating factors

and the corresponding β-VAE activated only two latent variables. However,

there is no need to extract the exact physical generating factors for ROM. That

157

is, ROM with β-VAE does not require the use of the exact generating factors

of the dataset: the main goal of physics-aware ROM was to find and leverage

compact latent space, unlike conventional AE-based ROM, and to prevent the

naive use of entangled and therefore physics-unaware latent space during the

ROM process. In this context, physics-aware ROM was summarized in Algo-

rithm 1 to emphasize that it does not require the extraction of exact generating

factors, but only makes use of the compact and therefore physics-aware latent

space. Therefore, this framework can be extended to real-world engineering ap-

plications regardless of whether the generating factors are known in advance or

not. In this regard, future work can be more practical applications to various

real-world problems to demonstrate its effectiveness and generality.

Finally, the prediction of the missile aerodynamic performance was con-

ducted in Chapter 4. Despite the use of the low-fidelity flow solver, the scalabil-

ity of the proposed UQ approach based on STD-calibrated DE can be considered

insignificant with respect to the fidelity of the flow solver, since only the general

trends of the physics are considered through the form of the aerodynamic coef-

ficients. However, there need to be further studies on the aleatory uncertainty

and the dimension of the output space. This study exploited a deterministic

computer solver (Missile Datcom), so the ability of DE to decompose the pre-

dictive uncertainty into the aleatory and epistemic uncertainty cannot be ver-

ified. Also, since the case study was adopted as a multi-output regression task

with six QoIs, a high-dimensional prediction task (such as in Chapter 3) needs

to be performed to investigate the scalability of the proposed UQ framework in

the much higher output space dimension.

158

5.3 Embarking on a journey towards acceleration of

3D aerodynamic simulations

The academic progress sparked by this dissertation will evolve into the

following visionary framework: uncertainty-aware multi-fidelity reduced-

order modeling aiming at acceleration of 3D aerodynamic simulations.

And this framework will stretch its boundaries to the computationally expen-

sive aerodynamic design process of the 3D configurations with the following

three phases. 1) Harness AI-driven generative modeling to create diverse 3D

design configurations. 2) Deploy multi-fidelity reduced-order modeling to eval-

uate the aerodynamic performances of the generated designs. 3) Recommend

design candidates taking into account the uncertainty inherent in evaluated

performances. Beyond academia, the breakthrough pioneered by this design

framework has the potential to illuminate a path to the realization of digital

twins that will resonate across industries as a beacon of innovation.

159

Chapter 6

References

[1] R. J. McGhee and W. D. Beasley, “Low-speed aerodynamic characteris-

tics of 17-percent-thick airfoil section designed for general aviation appli-

cations,” no. NASA TN D-7428, 1973.

[2] J. P. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp,

E. Lurie, and D. J. Mavriplis, “Cfd vision 2030 study: a path to revo-

lutionary computational aerosciences,” Tech. Rep., 2014.

[3] L. Huang, Z. Gao, and D. Zhang, “Research on multi-fidelity aerodynamic

optimization methods,” Chinese Journal of Aeronautics, vol. 26, no. 2, pp.

279–286, 2013.

[4] Y. Kim, S. Lee, K. Yee, and D.-H. Rhee, “High-to-low initial sample

ratio of hierarchical kriging for film hole array optimization,” Journal of

Propulsion and Power, vol. 34, no. 1, pp. 108–115, 2018.

160

[5] Z.-H. Han and S. Görtz, “Hierarchical kriging model for variable-fidelity

surrogate modeling,” AIAA Journal, vol. 50, no. 9, pp. 1885–1896, 2012.

[6] X. Zhang, F. Xie, T. Ji, Z. Zhu, and Y. Zheng, “Multi-fidelity deep neural

network surrogate model for aerodynamic shape optimization,” Computer

Methods in Applied Mechanics and Engineering, vol. 373, p. 113485, 2021.

[7] A. Jameson and J. Alonso, “Automatic aerodynamic optimization on dis-

tributed memory architectures,” in 34th Aerospace Sciences Meeting and

Exhibit, 1996, p. 409.

[8] R. B. Langtry and F. R. Menter, “Correlation-based transition modeling

for unstructured parallelized computational fluid dynamics codes,” AIAA

journal, vol. 47, no. 12, pp. 2894–2906, 2009.

[9] P. Khayatzadeh and S. Nadarajah, “Aerodynamic shape optimization of

natural laminar flow (nlf) airfoils,” in 50th AIAA Aerospace Sciences

Meeting including the New Horizons Forum and Aerospace Exposition,

2012, p. 61.

[10] G. K. Kenway, C. A. Mader, P. He, and J. R. Martins, “Effective adjoint

approaches for computational fluid dynamics,” Progress in Aerospace Sci-

ences, vol. 110, p. 100542, 2019.

[11] B. Christianson, “Reverse accumulation and attractive fixed points,” Op-

timization Methods and Software, vol. 3, no. 4, pp. 311–326, 1994.

[12] A. Griewank and C. Faure, “Piggyback differentiation and optimization,”

in Large-scale PDE-constrained optimization. Springer, 2003, pp. 148–

164.

161

[13] M. B. Giles, M. C. Duta, J.-D. Muller, and N. A. Pierce, “Algorithm

developments for discrete adjoint methods,” AIAA journal, vol. 41, no. 2,

pp. 198–205, 2003.

[14] S. Xu, D. Radford, M. Meyer, and J.-D. Müller, “Stabilisation of discrete

steady adjoint solvers,” Journal of computational physics, vol. 299, pp.

175–195, 2015.

[15] T. A. Albring, M. Sagebaum, and N. R. Gauger, “Efficient aerodynamic

design using the discrete adjoint method in su2,” in 17th AIAA/ISSMO

multidisciplinary analysis and optimization conference, 2016, p. 3518.

[16] S. Jeong, M. Murayama, and K. Yamamoto, “Efficient optimization de-

sign method using kriging model,” Journal of Aircraft, vol. 42, no. 5, pp.

1375–1375, 2005.

[17] S. Nikolopoulos, I. Kalogeris, and V. Papadopoulos, “Non-intrusive surro-

gate modeling for parametrized time-dependent partial differential equa-

tions using convolutional autoencoders,” Engineering Applications of Ar-

tificial Intelligence, vol. 109, p. 104652, 2022.

[18] S. Yang, S. Lee, and K. Yee, “Inverse design optimization framework via

a two-step deep learning approach: application to a wind turbine airfoil,”

Engineering with Computers, pp. 1–17, 2022.

[19] S. Yang and K. Yee, “Design rule extraction using multi-fidelity surrogate

model for unmanned combat aerial vehicles,” Journal of Aircraft, pp. 1–

15, 2022.

[20] Y.-E. Kang, S. Yang, and K. Yee, “Physics-aware reduced-order modeling

162

of transonic flow via β-variational autoencoder,” Physics of Fluids, vol. 34,

no. 7, p. 076103, 2022.

[21] J. R. Martins and A. Ning, Engineering design optimization. Cambridge

University Press, 2021.

[22] M. D. Buhmann, Radial basis functions: theory and implementations.

Cambridge university press, 2003, vol. 12.

[23] N. Cristianini, J. Shawe-Taylor et al., An introduction to support vector

machines and other kernel-based learning methods. Cambridge university

press, 2000.

[24] J. Wang, “An intuitive tutorial to gaussian processes regression,” arXiv

preprint arXiv:2009.10862, 2020.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge,

Massachusetts: MIT press, 2016.

[26] E. VanDerHorn and S. Mahadevan, “Digital twin: Generalization, char-

acterization and implementation,” Decision Support Systems, vol. 145, p.

113524, 2021.

[27] O. U. Espinosa Barcenas, J. G. Quijada Pioquinto, E. Kurkina, and

O. Lukyanov, “Surrogate aerodynamic wing modeling based on a mul-

tilayer perceptron,” Aerospace, vol. 10, no. 2, p. 149, 2023.

[28] K. Balla, R. Sevilla, O. Hassan, and K. Morgan, “An application of neural

networks to the prediction of aerodynamic coefficients of aerofoils and

wings,” Applied Mathematical Modelling, vol. 96, pp. 456–479, 2021.

163

[29] G. Sun, Y. Sun, and S. Wang, “Artificial neural network based inverse

design: Airfoils and wings,” Aerospace Science and Technology, vol. 42,

pp. 415–428, 2015.

[30] D. Lee, Y.-E. Kang, D.-H. Kim, and K. Yee, “Aeroelastic design and

comprehensive analysis of composite rotor blades through cluster-based

kriging,” AIAA Journal, vol. 60, no. 10, pp. 5984–6004, 2022.

[31] S. Chae, K. Yee, C. Yang, T. Aoyama, S. Jeong, and S. Obayashi, “He-

licopter rotor shape optimization for the improvement of aeroacoustic

performance in hover,” Journal of Aircraft, vol. 47, no. 5, pp. 1770–1783,

2010.

[32] W. Song and A. J. Keane, “Surrogate-based aerodynamic shape optimiza-

tion of a civil aircraft engine nacelle,” AIAA journal, vol. 45, no. 10, pp.

2565–2574, 2007.

[33] S. Obayashi, S. Jeong, and K. Chiba, “Multi-objective design exploration

for aerodynamic configurations,” in 35th AIAA fluid dynamics conference

and exhibit, 2005, p. 4666.

[34] S. Obayashi, S. Jeong, K. Chiba, and H. Morino, “Multi-objective design

exploration and its application to regional-jet wing design,” Transactions

of the Japan Society for Aeronautical and Space Sciences, vol. 50, no. 167,

pp. 1–8, 2007.

[35] M. Kanazaki, K. Tanaka, S. Jeong, and K. Yamamoto, “Multi-objective

aerodynamic exploration of elements setting for high-lift airfoil using krig-

ing model,” Journal of Aircraft, vol. 44, no. 3, pp. 858–864, 2007.

164

[36] Z. Lyu, G. K. Kenway, and J. R. Martins, “Aerodynamic shape opti-

mization investigations of the common research model wing benchmark,”

AIAA journal, vol. 53, no. 4, pp. 968–985, 2015.

[37] W. Chen, “Data-driven geometric design space exploration and design

synthesis,” Ph.D. dissertation, University of Maryland, College Park,

2019.

[38] J. Li and M. Zhang, “On deep-learning-based geometric filtering in aero-

dynamic shape optimization,” Aerospace Science and Technology, vol.

112, p. 106603, 2021.

[39] B. Wang and T. Chen, “Gaussian process regression with multiple re-

sponse variables,” Chemometrics and Intelligent Laboratory Systems, vol.

142, pp. 159–165, 2015.

[40] Z. Han, Y. Liu, J. Zhao, and W. Wang, “Real time prediction for con-

verter gas tank levels based on multi-output least square support vector

regressor,” Control Engineering Practice, vol. 20, no. 12, pp. 1400–1409,

2012.

[41] D. Kuznar, M. Mozina, and I. Bratko, “Curve prediction with kernel

regression,” in Proceedings of the 1st workshop on learning from multi-

label data, 2009, pp. 61–68.

[42] A. J. Burnham, J. F. MacGregor, and R. Viveros, “Latent variable mul-

tivariate regression modeling,” Chemometrics and Intelligent Laboratory

Systems, vol. 48, no. 2, pp. 167–180, 1999.

[43] T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition

165

with convolutional neural networks for fluid dynamics,” Journal of Fluid

Mechanics, vol. 882, p. A13, 2020.

[44] K. Fukami, K. Fukagata, and K. Taira, “Super-resolution reconstruction

of turbulent flows with machine learning,” Journal of Fluid Mechanics,

vol. 870, pp. 106–120, 2019.

[45] K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata, “Synthetic turbulent

inflow generator using machine learning,” Physical Review Fluids, vol. 4,

no. 6, p. 064603, 2019.

[46] C.-A. Cheng and B. Boots, “Variational inference for gaussian process

models with linear complexity,” Advances in Neural Information Pro-

cessing Systems, vol. 30, 2017.

[47] H. Wang, B. van Stein, M. Emmerich, and T. Bäck, “Time complexity

reduction in efficient global optimization using cluster kriging,” in Pro-

ceedings of the Genetic and Evolutionary Computation Conference, 2017,

pp. 889–896.

[48] Y. Gal et al., “Uncertainty in deep learning,” 2016.

[49] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scal-

able predictive uncertainty estimation using deep ensembles,” Advances

in neural information processing systems, vol. 30, 2017.

[50] J. Fernández, M. Chiach́ıo, J. Chiach́ıo, R. Muñoz, and F. Herrera, “Un-

certainty quantification in neural networks by approximate bayesian com-

putation: Application to fatigue in composite materials,” Engineering Ap-

plications of Artificial Intelligence, vol. 107, p. 104511, 2022.

166

[51] D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis, “Quantifying total

uncertainty in physics-informed neural networks for solving forward and

inverse stochastic problems,” Journal of Computational Physics, vol. 397,

p. 108850, 2019.

[52] A. H. Ibrahim and S. N. Tiwari, “A variational method in design optimiza-

tion and sensitivity analysis for aerodynamic applications,” Engineering

Computations, vol. 20, no. 1, pp. 88–95, 2004.

[53] V. Sekar, M. Zhang, C. Shu, and B. C. Khoo, “Inverse design of airfoil

using a deep convolutional neural network,” AIAA Journal, vol. 57, no. 3,

pp. 993–1003, 2019.

[54] S. A. Renganathan, R. Maulik, and J. Ahuja, “Enhanced data efficiency

using deep neural networks and gaussian processes for aerodynamic design

optimization,” Aerospace Science and Technology, vol. 111, p. 106522,

2021.

[55] K. Daneshkhah and W. Ghaly, “Aerodynamic inverse design for vis-

cous flow in turbomachinery blading,” Journal of Propulsion and Power,

vol. 23, no. 4, pp. 814–820, 2007.

[56] Z. Li and X. Zheng, “Review of design optimization methods for turbo-

machinery aerodynamics,” Progress in Aerospace Sciences, vol. 93, pp.

1–23, 2017.

[57] K. Lane and D. Marshall, “Inverse airfoil design utilizing cst parameter-

ization,” in 48th AIAA Aerospace Sciences Meeting Including the New

Horizons Forum and Aerospace Exposition. American Institute of Aero-

nautics and Astronautics, 2010.

167

[58] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-

works are universal approximators,” Neural networks, vol. 2, no. 5, pp.

359–366, 1989.

[59] A. Kharal and A. Saleem, “Neural networks based airfoil generation for a

given using bezier-parsec parameterization,” Aerospace Science and Tech-

nology, vol. 23, no. 1, pp. 330–344, 2012.

[60] X. Wang, S. Wang, J. Tao, G. Sun, and J. Mao, “A pca-ann-based inverse

design model of stall lift robustness for high-lift device,” Aerospace Science

and Technology, vol. 81, pp. 272–283, 2018.

[61] S. Obayashi and S. Takanashi, “Genetic optimization of target pressure

distributions for inverse design methods,” AIAA Journal, vol. 34, no. 4,

pp. 881–886, 1996.

[62] H. J. Kim and O. H. Rho, “Aerodynamic design of transonic wings using

the target pressure optimization approach,” Journal of Aircraft, vol. 35,

no. 4, pp. 671–677, 1998.

[63] Y. Zhu, Y. Ju, and C. Zhang, “Proper orthogonal decomposition assisted

inverse design optimisation method for the compressor cascade airfoil,”

Aerospace Science and Technology, vol. 105, p. 105955, 2020.

[64] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[65] A. R. Barron, “Universal approximation bounds for superpositions of a

sigmoidal function,” IEEE Transactions on Information theory, vol. 39,

no. 3, pp. 930–945, 1993.

168

[66] X. Meng, H. Babaee, and G. E. Karniadakis, “Multi-fidelity bayesian

neural networks: Algorithms and applications,” Journal of Computational

Physics, vol. 438, p. 110361, 2021.

[67] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities

improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1.

Atlanta, Georgia, USA, 2013, p. 3.

[68] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-

tions by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536,

1986.

[69] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-

line learning and stochastic optimization,” Journal of Machine Learning

Research, vol. 12, pp. 2121–2159, 2011.

[70] T. Tieleman, G. Hinton et al., “Lecture 6.5-rmsprop: Divide the gradi-

ent by a running average of its recent magnitude,” COURSERA: Neural

networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[72] P. Ghosh, M. S. Sajjadi, A. Vergari, M. Black, and B. Schölkopf,

“From variational to deterministic autoencoders,” arXiv preprint

arXiv:1903.12436, 2019.

[73] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting

and composing robust features with denoising autoencoders,” in Proceed-

ings of the 25th international conference on Machine learning, 2008, pp.

1096–1103.

169

[74] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint

arXiv:1606.05908, 2016.

[75] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mo-

hamed, and A. Lerchner, “beta-vae: Learning basic visual concepts with

a constrained variational framework,” 2016.

[76] A. Pati and A. Lerch, “Attribute-based regularization of latent spaces for

variational auto-encoders,” Neural Computing and Applications, vol. 33,

no. 9, pp. 4429–4444, 2021.

[77] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal

of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,

pp. 267–288, 1996.

[78] B. Settles, Active Learning, ser. Synthesis Lectures on Artificial Intelli-

gence and Machine Learning, 2012, vol. 6, no. 1.

[79] X. Yang, X. Cheng, Z. Liu, and T. Wang, “A novel active learning method

for profust reliability analysis based on the kriging model,” Engineering

with Computers, 2021.

[80] G. Pinto, R. Messina, H. Li, T. Hong, M. S. Piscitelli, and A. Capoz-

zoli, “Sharing is caring: An extensive analysis of parameter-based trans-

fer learning for the prediction of building thermal dynamics,” Energy and

Buildings, vol. 276, p. 112530, 2022.

[81] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey

on deep transfer learning,” in Artificial Neural Networks and Machine

Learning–ICANN 2018: 27th International Conference on Artificial Neu-

170

ral Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III

27. Springer, 2018, pp. 270–279.

[82] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359,

2010.

[83] Y. Li, W. Jiang, G. Zhang, and L. Shu, “Wind turbine fault diagnosis

based on transfer learning and convolutional autoencoder with small-scale

data,” Renewable Energy, vol. 171, pp. 103–115, 2021.

[84] B. Moghadassian and A. Sharma, “Designing wind turbine rotor blades

to enhance energy capture in turbine arrays,” Renewable Energy, vol. 148,

pp. 651–664, 2020.

[85] L. E. Kollar and R. Mishra, “Inverse design of wind turbine blade sections

for operation under icing conditions,” Energy Conversion and Manage-

ment, vol. 180, pp. 844–858, 2019.

[86] B. Moghadassian and A. Sharma, “Inverse design of single-and multi-rotor

horizontal axis wind turbine blades using computational fluid dynamics,”

Journal of Solar Energy Engineering, vol. 140, no. 2, p. 021003, 2018.

[87] M. Drela, “Xfoil: an analysis and design system for low reynolds number

airfoils,” in Low Reynolds number aerodynamics. Springer, 1989, pp.

1–12.

[88] A. Ceruti, “Meta-heuristic multidisciplinary design optimization of wind

turbine blades obtained from circular pipes,” Engineering with Comput-

ers, vol. 35, no. 2, pp. 363–379, 2018.

171

[89] W. J. Zhu, W. Z. Shen, and J. N. Sørensen, “Integrated airfoil and blade

design method for large wind turbines,” Renewable Energy, vol. 70, pp.

172–183, 2014.

[90] S. Mohammadi, M. Hassanalian, H. Arionfard, and S. Bakhtiyarov, “Op-

timal design of hydrokinetic turbine for low-speed water flow in golden

gate strait,” Renewable Energy, vol. 150, pp. 147–155, 2020.

[91] E. Tandis and E. Assareh, “Inverse design of airfoils via an intelligent hy-

brid optimization technique,” Engineering with Computers, vol. 33, no. 2,

pp. 361–374, 2017.

[92] S. Barone, “Gear geometric design by b-spline curve fitting and sweep

surface modelling,” Engineering Computations, vol. 17, no. 1, pp. 66–74,

2001.

[93] Y. Li, K. Wei, W. Yang, and Q. Wang, “Improving wind turbine blade

based on multi-objective particle swarm optimization,” Renewable En-

ergy, vol. 161, pp. 525–542, 2020.

[94] F. Grasso, “Usage of numerical optimization in wind turbine airfoil de-

sign,” Journal of Aircraft, vol. 48, no. 1, pp. 248–255, 2011.

[95] H. Hamad and A. Al-Smadi, “Space partitioning in engineering design via

metamodel acceptance score distribution,” Engineering Computations,

vol. 23, no. 2, pp. 175–185, 2007.

[96] L. Liu, H. Moayedi, A. S. A. Rashid, S. S. A. Rahman, and H. Nguyen,

“Optimizing an ann model with genetic algorithm (ga) predicting load-

settlement behaviours of eco-friendly raft-pile foundation (erp) system,”

Engineering with Computers, vol. 36, pp. 421–433, 2019.

172

[97] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolu-

tionary Computation, vol. 6, pp. 182–197, 2002.

[98] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,”

IEEE Access, vol. 8, pp. 89 497–89 509, 2020.

[99] M. Vinokur, “On one-dimensional stretching functions for finite-difference

calculations,” Journal of Computational Physics, vol. 50, pp. 215–234,

1983.

[100] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” arXiv

preprint arXiv:1502.01852, 2015.

[101] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imper-

ative style, high-performance deep learning library,” Advances in neural

information processing systems, vol. 32, 2019.

[102] N. G. Verhaagen, “Leading-edge radius effects on aerodynamic character-

istics of 50-degree delta wings,” Journal of Aircraft, vol. 49, pp. 521–531,

2012.

[103] S. McKinley and M. Levine, “Cubic spline interpolation,” College of the

Redwoods, vol. 45, no. 1, pp. 1049–1060, 1998.

[104] H.-M. Gutmann, “A radial basis function method for global optimiza-

tion,” Journal of Global Optimization, vol. 19, no. 3, pp. 201–227, 2001.

[105] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer

school on machine learning. Springer, 2003, pp. 63–71.

173

[106] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on gaussian pro-

cess regression: Modelling, exploring, and exploiting functions,” Journal

of Mathematical Psychology, vol. 85, pp. 1–16, 2018.

[107] L. Sirovich, “Turbulence and the dynamics of coherent structures. i. co-

herent structures,” Quarterly of Applied Mathematics, vol. 45, no. 3, pp.

561–571, 1987.

[108] D. Amsallem, M. J. Zahr, and C. Farhat, “Nonlinear model order re-

duction based on local reduced-order bases,” International Journal for

Numerical Methods in Engineering, vol. 92, no. 10, pp. 891–916, 2012.

[109] D. J. Lucia, P. I. King, and P. S. Beran, “Domain decomposition for

reduced-order modeling of a flow with moving shocks,” AIAA Journal,

vol. 40, no. 11, pp. 2360–2362, 2002.

[110] Y.-E. Kang, S. Shon, and K. Yee, “Local non-intrusive reduced order mod-

eling based on soft clustering and classification algorithm,” International

Journal for Numerical Methods in Engineering, 2022.

[111] R. Dupuis, J.-C. Jouhaud, and P. Sagaut, “Surrogate modeling of aerody-

namic simulations for multiple operating conditions using machine learn-

ing,” AIAA Journal, vol. 56, no. 9, pp. 3622–3635, 2018.

[112] M. A. Kramer, “Nonlinear principal component analysis using autoas-

sociative neural networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243,

1991.

[113] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of

data with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

174

[114] M. Milano and P. Koumoutsakos, “Neural network modeling for near wall

turbulent flow,” Journal of Computational Physics, vol. 182, no. 1, pp.

1–26, 2002.

[115] H. Eivazi, H. Veisi, M. H. Naderi, and V. Esfahanian, “Deep neural net-

works for nonlinear model order reduction of unsteady flows,” Physics of

Fluids, vol. 32, no. 10, p. 105104, 2020.

[116] J. Zhang and X. Zhao, “Machine-learning-based surrogate modeling of

aerodynamic flow around distributed structures,” AIAA Journal, vol. 59,

no. 3, pp. 868–879, 2021.

[117] K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata, “Machine-

learning-based reduced-order modeling for unsteady flows around bluff

bodies of various shapes,” Theoretical and Computational Fluid Dynam-

ics, vol. 34, no. 4, pp. 367–383, 2020.

[118] J. Wang, C. He, R. Li, H. Chen, C. Zhai, and M. Zhang, “Flow field

prediction of supercritical airfoils via variational autoencoder based deep

learning framework,” Physics of Fluids, vol. 33, no. 8, p. 086108, 2021.

[119] N. T. Mücke, S. M. Bohté, and C. W. Oosterlee, “Reduced order mod-

eling for parameterized time-dependent PDEs using spatially and mem-

ory aware deep learning,” Journal of Computational Science, vol. 53, p.

101408, 2021.

[120] P. Wu, S. Gong, K. Pan, F. Qiu, W. Feng, and C. Pain, “Reduced order

model using convolutional auto-encoder with self-attention,” Physics of

Fluids, vol. 33, no. 7, p. 077107, 2021.

[121] R. Maulik, B. Lusch, and P. Balaprakash, “Reduced-order modeling of

175

advection-dominated systems with recurrent neural networks and convo-

lutional autoencoders,” Physics of Fluids, vol. 33, no. 3, p. 037106, 2021.

[122] A. Gruber, M. Gunzburger, L. Ju, and Z. Wang, “A comparison of neural

network architectures for data-driven reduced-order modeling,” Computer

Methods in Applied Mechanics and Engineering, vol. 393, p. 114764, 2022.

[123] T. Kadeethum, F. Ballarin, Y. Choi, D. O’Malley, H. Yoon, and N. Bouk-

las, “Non-intrusive reduced order modeling of natural convection in

porous media using convolutional autoencoders: comparison with linear

subspace techniques,” Advances in Water Resources, p. 104098, 2022.

[124] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted au-

toencoders,” arXiv preprint arXiv:1509.00519, 2015.

[125] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Des-

jardins, and A. Lerchner, “Understanding disentangling in beta-vae,”

arXiv preprint arXiv:1804.03599, 2018.

[126] H. Eivazi, S. Le Clainche, S. Hoyas, and R. Vinuesa, “Towards extraction

of orthogonal and parsimonious non-linear modes from turbulent flows,”

Expert Systems with Applications, p. 117038, 2022.

[127] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,

“Ladder variational autoencoders,” Advances in Neural Information Pro-

cessing Systems, vol. 29, 2016.

[128] S. H. Park and J. H. Kwon, “Implementation of kw turbulence models in

an implicit multigrid method,” AIAA journal, vol. 42, no. 7, pp. 1348–

1357, 2004.

176

[129] Y. Hong, D. Lee, K. Yee, and S. H. Park, “Enhanced high-order scheme

for high-resolution rotorcraft flowfield analysis,” AIAA Journal, vol. 60,

no. 1, pp. 144–159, 2022.

[130] S. Yang and K. Yee, “Comment on “novel approach for selecting low-

fidelity scale factor in multifidelity metamodeling”,” AIAA Journal,

vol. 60, no. 4, pp. 2713–2715, 2022.

[131] J. Herman and W. Usher, “SALib: An open-source python library for

sensitivity analysis,” The Journal of Open Source Software, vol. 2, no. 9,

jan 2017. [Online]. Available: https://doi.org/10.21105/joss.00097

[132] S. Yang and K. Yee, “Towards quantifying calibrated uncertainty

via deep ensembles in multi-output regression task,” arXiv preprint

arXiv:2303.16210, 2023.

[133] H. Zhang, W. W. Chen, A. Iyer, D. W. Apley, andW. Chen, “Uncertainty-

aware mixed-variable machine learning for materials design,” Scientific

reports, vol. 12, no. 1, pp. 1–13, 2022.

[134] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization

of expensive black-box functions,” Journal of Global Optimization, vol. 13,

no. 4, pp. 455–492, 1998.

[135] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-

tion of machine learning algorithms,” Advances in neural information

processing systems, vol. 25, 2012.

[136] S. Shin, Y. Lee, M. Kim, J. Park, S. Lee, and K. Min, “Deep neural

network model with bayesian hyperparameter optimization for prediction

177

https://doi.org/10.21105/joss.00097

of nox at transient conditions in a diesel engine,” Engineering Applications

of Artificial Intelligence, vol. 94, p. 103761, 2020.

[137] K. Shimoyama, K. Sato, S. Jeong, and S. Obayashi, “Updating kriging

surrogate models based on the hypervolume indicator in multi-objective

optimization,” Journal of Mechanical Design, vol. 135, no. 9, p. 094503,

2013.

[138] S. Rhode, “Non-stationary gaussian process regression applied in valida-

tion of vehicle dynamics models,” Engineering Applications of Artificial

Intelligence, vol. 93, p. 103716, 2020.

[139] B. Wang, W. Wang, Z. Qiao, G. Meng, and Z. Mao, “Dynamic selective

gaussian process regression for forecasting temperature of molten steel

in ladle furnace,” Engineering Applications of Artificial Intelligence, vol.

112, p. 104892, 2022.

[140] H. Yang, S. H. Hong, R. ZhG, and Y. Wang, “Surrogate-based optimiza-

tion with adaptive sampling for microfluidic concentration gradient gen-

erator design,” RSC advances, vol. 10, no. 23, pp. 13 799–13 814, 2020.

[141] N. Quirante, J. Javaloyes-Antón, and J. A. Caballero, “Hybrid simulation-

equation based synthesis of chemical processes,” Chemical Engineering

Research and Design, vol. 132, pp. 766–784, 2018.

[142] N. Quirante and J. A. Caballero, “Optimization of a sour water stripping

plant using surrogate models,” in Computer Aided Chemical Engineering.

Elsevier, 2016, vol. 38, pp. 31–36.

[143] T. Keßler, C. Kunde, K. McBride, N. Mertens, D. Michaels, K. Sund-

macher, and A. Kienle, “Global optimization of distillation columns using

178

explicit and implicit surrogate models,” Chemical Engineering Science,

vol. 197, pp. 235–245, 2019.

[144] W. Zhong, C. Qiao, X. Peng, Z. Li, C. Fan, and F. Qian, “Operation

optimization of hydrocracking process based on kriging surrogate model,”

Control Engineering Practice, vol. 85, pp. 34–40, 2019.

[145] K. Sugimura, S. Jeong, S. Obayashi, and T. Kimura, “Kriging-model-

based multi-objective robust optimization and trade-off rule mining of a

centrifugal fan with dimensional uncertainty,” Journal of computational

science and technology, vol. 3, no. 1, pp. 196–211, 2009.

[146] K. Park, J. Jung, and S. Jeong, “Multi-objective shape optimization of

airfoils for mars exploration aircraft propellers,” International Journal of

Aeronautical and Space Sciences, pp. 1–15, 2022.

[147] J. Muñoz, B. López, F. Quevedo, S. Garrido, C. A. Monje, and L. E.

Moreno, “Gaussian processes and fast marching square based informative

path planning,” Engineering Applications of Artificial Intelligence, vol.

121, p. 106054, 2023.

[148] B. S. Yıldız, “Slime mould algorithm and kriging surrogate model-based

approach for enhanced crashworthiness of electric vehicles,” International

Journal of Vehicle Design, vol. 83, no. 1, pp. 54–68, 2020.

[149] ——, “Marine predators algorithm and multi-verse optimisation algo-

rithm for optimal battery case design of electric vehicles,” International

Journal of Vehicle Design, vol. 88, no. 1, pp. 1–11, 2022.

[150] N. Namura, S. Obayashi, and S. Jeong, “Efficient global optimization of

179

vortex generators on a supercritical infinite wing,” Journal of Aircraft,

vol. 53, no. 6, pp. 1670–1679, 2016.

[151] D. J. MacKay, “Information-based objective functions for active data se-

lection,” Neural computation, vol. 4, no. 4, pp. 590–604, 1992.

[152] ——, “Probable networks and plausible predictions-a review of practical

bayesian methods for supervised neural networks,” Network: computation

in neural systems, vol. 6, no. 3, p. 469, 1995.

[153] J. Fernández, J. Chiach́ıo, M. Chiach́ıo, J. Barros, and M. Corbetta,

“Physics-guided bayesian neural networks by abc-ss: Application to re-

inforced concrete columns,” Engineering Applications of Artificial Intel-

ligence, vol. 119, p. 105790, 2023.

[154] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning,” in international conference

on machine learning. PMLR, 2016, pp. 1050–1059.

[155] T. Deruyttere, V. Milewski, and M.-F. Moens, “Giving commands to

a self-driving car: How to deal with uncertain situations?” Engineering

applications of artificial intelligence, vol. 103, p. 104257, 2021.

[156] I. Osband, “Risk versus uncertainty in deep learning: Bayes, bootstrap

and the dangers of dropout,” in NIPS workshop on bayesian deep learning,

vol. 192, 2016.

[157] J. Hron, A. G. d. G. Matthews, and Z. Ghahramani, “Variational gaussian

dropout is not bayesian,” arXiv preprint arXiv:1711.02989, 2017.

[158] J. Hron, A. Matthews, and Z. Ghahramani, “Variational bayesian

180

dropout: pitfalls and fixes,” in International Conference on Machine

Learning. PMLR, 2018, pp. 2019–2028.

[159] L. L. Folgoc, V. Baltatzis, S. Desai, A. Devaraj, S. Ellis, O. E. M. Man-

zanera, A. Nair, H. Qiu, J. Schnabel, and B. Glocker, “Is mc dropout

bayesian?” arXiv preprint arXiv:2110.04286, 2021.

[160] F. K. Gustafsson, M. Danelljan, and T. B. Schon, “Evaluating scalable

bayesian deep learning methods for robust computer vision,” in Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recog-

nition workshops, 2020, pp. 318–319.

[161] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss land-

scape perspective,” arXiv preprint arXiv:1912.02757, 2019.

[162] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,

B. Lakshminarayanan, and J. Snoek, “Can you trust your model’s uncer-

tainty? evaluating predictive uncertainty under dataset shift,” Advances

in neural information processing systems, vol. 32, 2019.

[163] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of in-

domain uncertainty estimation and ensembling in deep learning,” arXiv

preprint arXiv:2002.06470, 2020.

[164] A. G. Wilson and P. Izmailov, “Bayesian deep learning and a probabilistic

perspective of generalization,” Advances in neural information processing

systems, vol. 33, pp. 4697–4708, 2020.

[165] R. Rahaman et al., “Uncertainty quantification and deep ensembles,” Ad-

vances in Neural Information Processing Systems, vol. 34, pp. 20 063–

20 075, 2021.

181

[166] X. Wu and M. Gales, “Should ensemble members be calibrated?” arXiv

preprint arXiv:2101.05397, 2021.

[167] J. de Becdelievre and I. Kroo, “A bayesian approach to collaborative

optimization with application to tailless aircraft range maximization,” in

AIAA AVIATION 2021 FORUM, 2021, p. 3063.

[168] S. Pawar, O. San, P. Vedula, A. Rasheed, and T. Kvamsdal, “Multi-

fidelity information fusion with concatenated neural networks,” Scientific

Reports, vol. 12, no. 1, p. 5900, 2022.

[169] M. Pocevičiūtė, G. Eilertsen, S. Jarkman, and C. Lundström, “General-

isation effects of predictive uncertainty estimation in deep learning for

digital pathology,” Scientific Reports, vol. 12, no. 1, pp. 1–15, 2022.

[170] E. Ilg, O. Cicek, S. Galesso, A. Klein, O. Makansi, F. Hutter, and T. Brox,

“Uncertainty estimates and multi-hypotheses networks for optical flow,”

in Proceedings of the European Conference on Computer Vision (ECCV),

2018, pp. 652–667.

[171] J. Linmans, J. van der Laak, and G. Litjens, “Efficient out-of-distribution

detection in digital pathology using multi-head convolutional neural net-

works.” in MIDL, 2020, pp. 465–478.

[172] R. Egele, R. Maulik, K. Raghavan, B. Lusch, I. Guyon, and P. Bal-

aprakash, “Autodeuq: Automated deep ensemble with uncertainty quan-

tification,” in 2022 26th International Conference on Pattern Recognition

(ICPR). IEEE, 2022, pp. 1908–1914.

[173] R. Maulik, R. Egele, K. Raghavan, and P. Balaprakash, “Quantifying un-

certainty for deep learning based forecasting and flow-reconstruction using

182

neural architecture search ensembles,” arXiv preprint arXiv:2302.09748,

2023.

[174] O. Solopchuk and A. Zénon, “Active sensing with artificial neural net-

works,” Neural Networks, vol. 143, pp. 751–758, 2021.

[175] M.-H. Laves, S. Ihler, J. F. Fast, L. A. Kahrs, and T. Ortmaier, “Re-

calibration of aleatoric and epistemic regression uncertainty in medical

imaging,” arXiv preprint arXiv:2104.12376, 2021.

[176] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction,

and estimation,” Journal of the American statistical Association, vol. 102,

no. 477, pp. 359–378, 2007.

[177] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The el-

ements of statistical learning: data mining, inference, and prediction.

Springer, 2009, vol. 2.

[178] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep

learning for computer vision?” Advances in neural information processing

systems, vol. 30, 2017.

[179] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of

modern neural networks,” in International conference on machine learn-

ing. PMLR, 2017, pp. 1321–1330.

[180] G. Scalia, C. A. Grambow, B. Pernici, Y.-P. Li, and W. H. Green,

“Evaluating scalable uncertainty estimation methods for deep learning-

based molecular property prediction,” Journal of chemical information

and modeling, vol. 60, no. 6, pp. 2697–2717, 2020.

183

[181] S. Hu, N. Pezzotti, and M. Welling, “Learning to predict error for mri re-

construction,” in International Conference on Medical Image Computing

and Computer-Assisted Intervention. Springer, 2021, pp. 604–613.

[182] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep

learning using calibrated regression,” in International conference on ma-

chine learning. PMLR, 2018, pp. 2796–2804.

[183] M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well calibrated

probabilities using bayesian binning,” in Twenty-Ninth AAAI Conference

on Artificial Intelligence, 2015.

[184] D. Levi, L. Gispan, N. Giladi, and E. Fetaya, “Evaluating and calibrating

uncertainty prediction in regression tasks,” Sensors, vol. 22, no. 15, p.

5540, 2022.

[185] B. Phan, R. Salay, K. Czarnecki, V. Abdelzad, T. Denouden, and

S. Vernekar, “Calibrating uncertainties in object localization task,” arXiv

preprint arXiv:1811.11210, 2018.

[186] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates

from decision trees and naive bayesian classifiers,” in Icml, vol. 1. Cite-

seer, 2001, pp. 609–616.

[187] ——, “Transforming classifier scores into accurate multiclass probabil-

ity estimates,” in Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, 2002, pp. 694–699.

[188] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine

learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

184

[189] M. A. Alvarez, L. Rosasco, N. D. Lawrence et al., “Kernels for vector-

valued functions: A review,” Foundations and Trends® in Machine

Learning, vol. 4, no. 3, pp. 195–266, 2012.

[190] Q. Lin, J. Hu, Q. Zhou, Y. Cheng, Z. Hu, I. Couckuyt, and T. Dhaene,

“Multi-output gaussian process prediction for computationally expensive

problems with multiple levels of fidelity,” Knowledge-Based Systems, vol.

227, p. 107151, 2021.

[191] Q. Lin, J. Hu, L. Zhang, P. Jin, Y. Cheng, and Q. Zhou, “Gradient-

enhanced multi-output gaussian process model for simulation-based en-

gineering design,” AIAA Journal, vol. 60, no. 1, pp. 76–91, 2022.

[192] N. Öztürk, A. R. Yıldız, N. Kaya, and F. Öztürk, “Neuro-genetic design

optimization framework to support the integrated robust design optimiza-

tion process in ce,” Concurrent Engineering, vol. 14, no. 1, pp. 5–16, 2006.

[193] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via

bootstrapped dqn,” Advances in neural information processing systems,

vol. 29, 2016.

[194] T. Pearce, N. Anastassacos, M. Zaki, and A. Neely, “Bayesian inference

with anchored ensembles of neural networks, and application to explo-

ration in reinforcement learning,” arXiv preprint arXiv:1805.11324, 2018.

[195] C. Riquelme, G. Tucker, and J. Snoek, “Deep bayesian bandits show-

down: An empirical comparison of bayesian deep networks for thompson

sampling,” arXiv preprint arXiv:1802.09127, 2018.

[196] D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks

185

for the inverse design of nanophotonic structures,” Acs Photonics, vol. 5,

no. 4, pp. 1365–1369, 2018.

[197] S. Kim, M. Jwa, S. Lee, S. Park, and N. Kang, “Deep learning-based

inverse design for engineering systems: multidisciplinary design optimiza-

tion of automotive brakes,” Structural and Multidisciplinary Optimiza-

tion, vol. 65, no. 11, p. 323, 2022.

186

국문 초록

데이터 기반 기법을 통한 공력 설계 효율화

양선웅

서울대학교 대학원

항공우주공학과

최근 고성능 컴퓨팅 기술의 발달로 높은 계산 비용을 요구하는 공기역학 설계

프로세스의 가속화에 대한 관심이 높아지고 있다. 하지만 계산 기술 및 시뮬레이

션 기법의 발전에도 불구하고 공기역학 설계 프로세스의 계산 비용은 여전히 큰

걸림돌로 남아 있다. 해당 프로세스의 반복적인 특성과 고충실도 전산 유체 역학

해석자의 필요성은 짧은 설계 수행 시간의 달성을 어렵게 만들고 창의적인 설계

탐색을 방해한다. 그럼에도 불구하고 성공적으로 설계된 공기역학적 물체의 높은

가치 덕분에 엔지니어들은 정확한 유동 해석에 자원을 투자하고 있다. 이러한 문

제를해결하기위해그들은여러가지기법을연구해왔으며,주어진데이터로부터

학습된 회귀 모델은 높은 비용이 요구되는 유동 시뮬레이션이나 실험을 대체할 수

있는 방법으로서 인기를 얻고 있다. 회귀 모델은 고성능 컴퓨팅의 남용을 방지하

고 설계 프로세스 효율성을 개선하는 데 도움이 되며, 성능 값 예측, 설계 최적화,

지식 추출 등을 목적으로 공학 분야에서 광범위하게 사용되고 있다.

하지만 공기 역학 설계 프로세스에서 회귀 모델의 활용을 방해하는 몇 가지

장애물이 있다. 첫째, 공기역학 설계에는 고차원의 입력 공간이 필요한 경우가 많

은데 이 때 회귀 모델은 차원의 저주에 직면한다. 입력 변수의 수가 증가하면 입력

공간 내에서 가능한 디자인의 경우의 수가 기하급수적으로 증가한다. 이로 인해

187

사용 가능한 데이터의 수가 고차원 공간을 대표하기에 충분하지 않은 sparsity 문

제가 발생한다. 둘째, 널리 사용되는 대부분의 회귀 모델은 단일 출력을 예측하기

위해고안되었기때문에고차원출력공간에서는사용이제한된다.다중출력회귀

문제에서는 각 출력에 대해 회귀 모델이 독립적으로 학습되므로 필요한 학습 시간

이 출력 차원에 따라 선형적으로 증가하고 출력들 간의 상관관계는 전혀 고려되지

않는다. 마지막으로, 신뢰할 수 있고 효율적인 불확실성 정량화 과정이 회귀 모델

과결합되어공기역학설계프로세스과정에서발생할수있는내재적불확실성이

고려되어야 한다. 회귀 모델의 경우 예측 값이 실제 값과 일치하지 않을 가능성이

항상 존재하기 때문에 예측 값의 신뢰성에 대한 정보를 제공하기 위한 불확실성

정량화 과정이 특히 중요하나 기존의 가우시안 프로세스 회귀, 베이지안 신경망

등의 기법들은 효율성에 있어 큰 한계를 갖는다.

이러한 측면에서 본 논문의 의의는 다음과 같이 요약될 수 있다:

1. 공력 설계 과정에서의 고차원 입력 공간을 차원 축소 기법을 사용하여 저차

원잠재공간으로축소하고자하였고,축소된잠재공간에서의 gradient-free

최적화 기법의 적용 가능성을 확인하고자 하였다. 이를 위해 풍력 터빈 에어

포일의 역설계 문제가 사례로서 활용되었다. 결과적으로 딥러닝 기반 차원

축소 기법을 통해 기존의 고차원 입력 공간을 성공적으로 축소할 수 있음을

확인하고, 축소된 차원에 유전 알고리즘을 적용하여 gradient-free 최적화

기법의 활용 가능성 또한 검증하였다.

2. 고차원 데이터의 예측을 위해 차수 감수 모델링 기법을 활용하였다. 이를

위해 잠재 공간을 생성하는 차원 축소 프로세스가 필요한데, 본 연구에서

는 차수 감수 모델링 과정에서 잠재 공간이 매개체 역할을 한다는 점에서

잠재 공간은 필연적으로 차수 감수 모델링 성능에 영향을 미친다는 사실에

주목하였다. 이에 따라 천음속 에어포일 주변의 유동장 예측을 연구 사례로

선정하고, 다양한 머신러닝 기반 차원 축소 기법을 바탕으로 구축된 잠재 공

간들의 물리적 해석 가능성을 조사하였다. 또한 잠재 공간의 해석가능성이

188

차수 감수 모델링 성능에 미치는 영향을 종합적으로 분석하고, 최종적으로

차수 감수 모델링을 통한 고차원 출력 공간 예측의 정확성과 효율성에 잠재

공간이 미치는 영향을 확인하였다.

3. 신뢰성 있고 효율적인 불확실성 정량화가 가능한 회귀 모델을 연구하였다.

이를 위해 미사일 형상의 공기역학적 성능을 예측하는 문제에서 딥 앙상블

접근법을 활용하였다. 구체적으로 본 연구는 실제 공학 분야에서 빈번하게

요구되는 다중 출력 회귀 작업에 대해 간단하고 확장이 쉬운 딥 앙상블 방법

을 검증하는 것을 목표로 하였다. 검증 과정에서 딥 앙상블을 통해 정량화된

불확실성의 낮은 신뢰도를 발견하였으며, 만족스럽지 못한 불확실성 품질

을 보정하기 위해 간단한 사후 보정 방법을 모델에 적용하였다. 결과적으로

공학 분야에서 가장 빈번하게 사용되는 가우시안 프로세스 회귀에 비해 딥

앙상블기법이더신뢰성있고효율적인불확실성정량화가가능함을확인하

였고, 끝으로 제안된 보정 기법이 딥 앙상블 기반 베이지안 최적화에 미치는

영향을 살펴보았다.

주요어: 공력 설계, 데이터 기반 기법, 예측 모델링, 제너레이티브 모델링, 차수

감소 모델링, 불확실성 정량화

학번: 2020-34020

189

	Abstract
	1 Introduction
	1.1 Motivation and objectives
	1.2 Contributions of the dissertation
	1.3 Overview of the dissertation
	2 High-dimensional input space
	2.1 Introduction
	2.2 Methodologies
	2.2.1 Multi-layer perceptron (MLP)
	2.2.2 Autoencoder (AE)
	2.2.3 Variational autoencoder (VAE)
	2.3 Inverse design optimization framework
	2.3.1 Two-step deep learning approach
	2.3.2 Target distribution optimization
	2.3.3 Active learning and transfer learning
	2.4 Framework validation: optimization of the airfoil for wind turbine blades
	2.4.1 Optimization of the airfoil in wind turbine blades
	2.4.2 Architectures of the two-step deep learning models
	2.4.3 Single-objective optimization results and discussion
	2.4.4 Multi-objective optimization results and discussion
	2.5 Summary
	2.6 Additional results
	3 High-dimensional output space
	3.1 Introduction
	3.2 β-variational autoencoder (β-VAE)
	3.3 Physics-aware reduced-order modeling
	3.4 Numerical experiments
	3.4.1 Data preparation
	3.4.2 Training details
	3.5 Results and discussion
	3.5.1 Training results
	3.5.2 Independence of LVs
	3.5.3 Information intensity of LVs
	3.5.4 Physics-awareness of LVs
	3.5.5 Physics-aware ROM
	3.6 Summary
	3.7 Additional results
	3.7.1 POD results
	3.7.2 Scalability of extracting physics-aware LVs in practical problem
	4 Reliable and efficient uncertainty quantification
	4.1 Introduction
	4.2 Implementation and evaluation of DE
	4.2.1 Deep ensembles (DE)
	4.2.2 Uncertainty quality evaluation
	4.2.3 Uncertainty calibration: STD scaling
	4.3 Application of DE to aerodynamic performance regression task
	4.3.1 Data preparation and training details
	4.3.2 Evaluation of regression performance
	4.3.3 Evaluation of UQ performance
	4.3.4 Theoretical derivation: underconfidence of DE in regression tasks
	4.4 DE models with STD calibration
	4.4.1 STD calibration of DE models
	4.4.2 Effects of STD calibration on Exploratory Behavior in Bayesian optimization
	4.5 Summary
	4.6 Additional results
	4.6.1 Controversial issues on MC-dropout
	4.6.2 Hyperparameter tuning results in Sec. 4.3.1
	4.6.3 Additional results in Sec. 4.3.3
	4.6.4 Additional results in Sec. 4.4.1
	5 Concluding remarks
	5.1 Summary of the dissertation
	5.2 Limitations of the dissertation
	5.3 Embarking on a journey towards acceleration of 3D aerodynamic simulations
	6 References
	국문 초록

<startpage>6
Abstract 1
1 Introduction 15
1.1 Motivation and objectives 15
1.2 Contributions of the dissertation 22
1.3 Overview of the dissertation 24
2 High-dimensional input space 25
2.1 Introduction 25
2.2 Methodologies 29
2.2.1 Multi-layer perceptron (MLP) 29
2.2.2 Autoencoder (AE) 30
2.2.3 Variational autoencoder (VAE) 31
2.3 Inverse design optimization framework 34
2.3.1 Two-step deep learning approach 34
2.3.2 Target distribution optimization 34
2.3.3 Active learning and transfer learning 35
2.4 Framework validation: optimization of the airfoil for wind turbine blades 38
2.4.1 Optimization of the airfoil in wind turbine blades 38
2.4.2 Architectures of the two-step deep learning models 43
2.4.3 Single-objective optimization results and discussion 46
2.4.4 Multi-objective optimization results and discussion 51
2.5 Summary 59
2.6 Additional results 61
3 High-dimensional output space 62
3.1 Introduction 62
3.2 β-variational autoencoder (β-VAE) 68
3.3 Physics-aware reduced-order modeling 70
3.4 Numerical experiments 74
3.4.1 Data preparation 74
3.4.2 Training details 75
3.5 Results and discussion 79
3.5.1 Training results 79
3.5.2 Independence of LVs 81
3.5.3 Information intensity of LVs 82
3.5.4 Physics-awareness of LVs 87
3.5.5 Physics-aware ROM 93
3.6 Summary 99
3.7 Additional results 101
3.7.1 POD results 101
3.7.2 Scalability of extracting physics-aware LVs in practical problem 103
4 Reliable and efficient uncertainty quantification 106
4.1 Introduction 106
4.2 Implementation and evaluation of DE 112
4.2.1 Deep ensembles (DE) 112
4.2.2 Uncertainty quality evaluation 116
4.2.3 Uncertainty calibration: STD scaling 121
4.3 Application of DE to aerodynamic performance regression task 125
4.3.1 Data preparation and training details 125
4.3.2 Evaluation of regression performance 127
4.3.3 Evaluation of UQ performance 129
4.3.4 Theoretical derivation: underconfidence of DE in regression tasks 131
4.4 DE models with STD calibration 135
4.4.1 STD calibration of DE models 135
4.4.2 Effects of STD calibration on Exploratory Behavior in Bayesian optimization 139
4.5 Summary 143
4.6 Additional results 146
4.6.1 Controversial issues on MC-dropout 146
4.6.2 Hyperparameter tuning results in Sec. 4.3.1 146
4.6.3 Additional results in Sec. 4.3.3 149
4.6.4 Additional results in Sec. 4.4.1 149
5 Concluding remarks 152
5.1 Summary of the dissertation 152
5.2 Limitations of the dissertation 156
5.3 Embarking on a journey towards acceleration of 3D aerodynamic simulations 159
6 References 160
국문 초록 187
</body>

