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Abstract 

 

Infrared Small Target Detection Using 

Attention Multiscale Feature Fusion U-Net 
 

Won Young Chung 

Department of Aerospace Engineering 

The Graduate School 

Seoul National University 

 

In order to improve detection performance in a U-Net-based Infrared Small Target 

Detection(IRSTD) algorithms, it is crucial to fuse low-level and high-level features. 

Conventional algorithms perform feature fusion by adding a convolutional layer to 

the skip pathway of the U-net and by connection the skip connection densely. 

However, with the added convolutional operation, the number of parameters of the 

network increase, hence the inference time increases accordingly. Therefore, in this 

paper, a UNet3+ based full-scale skip connection U-Net is used as a based network 

to lower the computational cost by fusing the feature with a small number of 

parameters. Moreover, this paper propose an effective encoder and decoder structure 

for improved IRSTD performance. A residual attention block is applied to each layer 

of the encoder for effective feature extraction. As for the decoder, a residual attention 

block is applied to the feature fusion section to effectively fuse the hierarchical 

information obtained from each layer. In addition, learning is performed through full-

scale deep supervision to reflect all the information obtained from each layer. The 



ii 

 

proposed algorithm, coined Attention Multiscale feature Fusion U-Net(AMFU-Net), 

can hence guarantee effective target detection performance and a lightweight 

structure. (mIoU: 0.7512, FPS: 86.1) 
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1.1 Motivation 

     

Figure 1.1 Infrared image 

 

 

Figure 1.2 Infared small target detection result 

Chapter 1   

 

Introduction 
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Infrared(IR) images show robust characteristics for environmental factors 

compared to Electro-Optical (EO) images. Therefore, infrared image-based small 

target detection is widely applied to surveillance and reconnaissance systems, early 

warning systems, and remote sensing. However, IR small target detection has some 

challenging problems. First, it is difficult to effectively detect when the size of the 

target becomes too small. Second, IR images have harsh noise and interferences by 

the clutter around the target. Two types of approaches have been conducted to 

effectively perform IR small target detection in such challenging situations: 1) 

model-based and 2) data-driven [1]. 

First, model-based IR small target detection algorithms include image filter-

based, local information-based, and data structure-based methods. The image filter-

based methods, such as MaxMean, MaxMedian, and Top Hat filters, assume that the 

target is less static than the background and that adjacent pixels are highly correlated. 

However, this assumption is often not satisfied due to clutter and noise in practical 

uses. Local information-based methods consider the targets as locally salient and 

perform target detection through various local contrast filters. As a representative 

algorithm, Local Contrast Measurement (LCM) proposed by Chen et al. [2] obtains 

contrast information of fixed size window through a sliding window and performs 

detection using contrast difference between small targets and the background. The 

LCM algorithms has various variations, such as ILCM [3], RLCM [4], and HB-

MLCM [5]. Gao et al. proposed Infrared Patch Image model (IPI) [6], a 

representative data structure-based method. Structural-based methods such as the IPI 

assume IR image as a combined model of background, target, and noise. Here, the 

background is assumed to be a low-rank matrix and the target as a sparse matrix. 

Based on these assumptions, small target detection is solved as an optimization 
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problem that divides the combined matrix (IR image) into a low-rank matrix 

(background) and a sparse matrix (target). However, these model-based methods 

perform poorly when noise and clutter are severe or when the background of the 

image is complex. 

Second, various data-driven methods have been recently proposed to overcome 

the abovementioned limitations of model-driven methods. Wang et al. [7] designed 

a GAN-based IRSTD network that lowers miss detection and false alarms through a 

two-path conditional Generative Adversarial Network (cGAN) of two generators and 

one discriminator. Dai et al. [8] proposed Asymmetric Contextual Modulation 

(ACM), a feature fusion module that can be used for various IRSTD network 

structures. Li et al. [9] proposed DNA-net, a network using dense nested U-net 

(UNet++) [10] with attention modules. The network performs effective small target 

detection by fusing feature maps obtained from each layer stages. Inspired by the 

DNA-net, we designed an IRSTD network using attention modules and UNet3+ [11], 

a U-net-based network which fuses features through a full-scale skip connection 

between the encoder and the decoder without using dense convolution. 

 

1.2 Objectives and contributions 

In this thesis, the lightweight and effective IR small target detection algorithm 

is propsed. Through the use of UNet3+ architecture and the attention mechanisim, it 

is shown that the effective infrared small target detection performance can be 

achieved with a small number of parameters.  

Since the proposed network structure is designed for infrared small target 

detection from IR images, this thesis verified its performance using the IRSTD open 
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dataset. 

The main contributions of this theis are givne as follows: 

1) We propose Attention Multiscale Feature Fusion U-Net(AMFU-Net), 

a lightweight infrared small target detection network sturcutre based 

on UNet3+, which outperforms the state-of-the-art methods on mIoU 

and still achieves on-line inference speed on an embedded system. 

2) A residual attention block-based encoder is proposed to ensure robust 

feature extraction. 

3) A novel method of utilizinf resdiaul attention blocks in every decoder 

stage is implemented, improving performance of multiscale feature 

fusion. 
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2.1 Model based Infrared Small Target Detection 

In this section, briefly review the major works in model-based infrared small 

target detection algorithms. Model-based algorithms can be divided into three 

categories, each consisting of filter-based methods, local contrast-based methods and 

data structure-based methods. 

 

2.1.1 Filter-based methods 

Various types of image filters are used in filter-based methods to detect dim 

targets in infrared images and facilitate their detection through highlighted images. 

One such method is the high-pass filter method, initially proposed by Peng and Zhou 

[12], which applies six high-pass filters to suppress the background clutter by 

utilizing the differences in gray values between the targets and backgrounds. The 

high-pass filter kernel possesses several characteristics, such as a sum of weights 

equal to zero, a large and positive weight near the center, and a small and negative 

weight near the edges. This enables the targets and isolated noise to pass through the 

kernel while suppressing the slowly changing background. However, the 

effectiveness of this method may be limited in complex scenes, as it performs better 

in scenarios with smooth backgrounds. 

Chapter 2   

 

Related Works 
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The Median filter-based method is widely used for detecting small targets in 

infrared images. It is a traditional nonlinear spatial filter that employs sorting and 

replacing techniques for edge preservation. Deshpande et al [13] subsequently 

introduced the MaxMean/MaxMedian filter method, which incorporated direction 

information. However, these Median filter-based algorithms are highly susceptible 

to performance degradation when dealing with background clutter. However, since 

these Median filter-based algorithms are sensitive to background clutter, if there are 

many clutter, performance degradation can be severe. 

In 1998, Tomasi et al. [14] proposed a method for detecting small targets in 

infrared images using the bilateral filter approach, which comprehensively considers 

the relationship between space and intensity. The bilateral filter comprises two 

Gaussian filter kernels that assign higher weights near the center based on Euclidean 

distance and gray values. It smooths the image while preserving edges and exhibits 

desirable characteristics such as nonlinearity, non-iterativeness, and simplicity. 

However, users often set the two Gaussian filter kernels to constant standard 

deviations. To achieve adaptive adjustment of standard deviation, novel methods 

have been proposed. For instance, Bae et al. [15] employed the target similarity index 

threshold to determine whether a pixel was a target or not. At the same time, Arnold 

[16] combined the dual-window circular structure template with the bilateral filter to 

detect small targets. 

 

2.1.2 Local contrast-based methods  

The visual system encodes contrast as the most significant quantity, enabling 

small targets with high intensity in complex backgrounds to capture attention quickly. 

In light of these observations, several local contrast-based approaches have been 
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developed for infrared small target detection. Generally, these algorithms operate in 

a sequential manner: firstly, a patch window is moved pixel by pixel from left to 

right and top to bottom of the original image; secondly, the patch window is divided 

into central and surrounding parts; thirdly, the saliency image is computed based on 

intensity differences among these parts; and finally, target segmentation with 

adaptive threshold is applied to the saliency image for obtaining the final detection 

outcome. The Local Contrast Measure (LCM) introduced by Chen et al. is the most 

representative local contrast-based method. LCM assumes that the target is brighter 

than its neighbors. To mitigate the high false alarm rate in infrared small target 

detection, Han et al. proposed an improved LCM (ILCM) using an adaptive contrast 

mechanism. However, the sliding window in ILCM should be approximated to the 

target, which is difficult to predict. Subsequently, Qin et al. [17] proposed a novel 

LCM, wherein the sliding window needs only to be larger than the target. Moreover, 

a relative LCM (RLCM) was introduced to detect targets of varying sizes. 

 

2.1.3 Subspace structure-based methods 

Subspace structure-based methods have been proposed to distinguish between 

targets and backgrounds based on their distinct structural characteristics. In infrared 

images, the background is highly correlated, while the target is perceived as a 

disruptor of this correlation. Therefore, the detection of small infrared targets can be 

accomplished by recovering the low-rank matrix. However, this is an NP-hard 

problem, and rank minimization is not always feasible. As a solution, the nuclear 

norm is commonly used as an alternative to the rank function. 

The subspace structure-based methods consist of four steps. First, the original 

infrared image is divided into a sequence of local image patches using a sliding-
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window strategy. Each local image patch is vectorized as a column of a novel image. 

Subsequently, the background patch images and target patch images are obtained 

through diverse algorithms based on the characteristics of the low-rank background 

and sparse target. Next, the background image and target image are reconstructed 

from the corresponding patch images. Finally, the adaptive segmentation method is 

applied to obtain the detection result. 

One of the most representative subspace structure-based methods is the Infrared 

Patch Image (IPI), proposed by Gao et al. This method extends the traditional 

infrared image model to an IPI model, which seeks the low-rank background 

subspace structure and sparse target structure. However, the sparsity measurement 

based on the L1-norm may result in the mis-detection of strong edges (false alarm). 

To address this issue, Dai et al. [18] proposed a weighted IPI (WIPI) model that 

allocates an adaptive weight to the target patch image. Nevertheless, the inaccurate 

estimation of the background patch image still remains a problem. To overcome this 

issue, a nonnegative IPI approach based on partial sum minimization of singular 

values was introduced [19]. Additionally, other methods, such as the re-weighted IPI 

model [20] and principal component pursuit (PCP)-based method [21], have also 

been proposed. 

 

2.2 Deep learning-based Infrared Small Target Detection 

In recent years, the field of computer vision has witnessed a remarkable 

progress in deep learning-based algorithms, which have been extensively applied to 

infrared image small target detection. Compared to traditional model-based 

methodologies, deep learning-based algorithms have demonstrated superior 
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performance and have shown the capability to achieve high accuracy even in the 

presence of noise and cluttered images. 

The main process of deep learning-based algorithms for small target detection 

in infrared images involves the preparation of data containing small targets to train 

the deep learning model. This data is typically acquired in real-world scenarios with 

small targets present. Subsequently, the deep learning model utilizes various 

methods to detect small targets in infrared images. This involves an encoding process 

that extracts feature maps from the input image through multiple convolutional and 

pooling layers. The encoded information is then used to detect small targets in the 

infrared image via dense connection layers and softmax functions or by decoding the 

encoded feature map. 

Dai et al. proposed an asymmetric contextual modulation (ACM) module that 

can be applied to CNN-based networks for target detection. The ACM module 

effectively combines low-level features and high-level features obtained from CNN 

layers through bottom-up local attentional modulation and top-down global 

attentional modulation. 

Wang et al. introduced a novel approach called MDvsFA-cGAN for image 

segmentation that departs from the conventional deep learning-based methods that 

rely on a single objective to minimize the overall segmentation error. The MDvsFA-

cGAN method employs a conditional Generative Adversarial Network, which 

includes two generator models and one discriminator model, and decomposes the 

segmentation task into two subtasks. Through an adversarial training process, both 

generator models are optimized to minimize the miss detection and false alarm loss 

functions, respectively. This approach provides an alternative solution that can 

reduce the complexity of the model and network design by incorporating multiple 
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loss functions. 

Li et al. designed a Dense Nested Attention U-Net (DNA-Net) for infrared small 

target detection using U-Net++, which is a variation of the U-Net-based network. To 

effectively fuse low-level and high-level features, they incorporated convolution 

layers into the skip connection pathway of U-Net and employed the U-Net++ 

structure with additional skip connections and convolutions. While U-Net++ can 

merge features effectively with additional convolutions and skip connections, 

excessive convolutions may dilute the feature map information. Therefore, DNA-

Net applied attention modules to each convolutional neural network to minimize 

information dilution and achieve state-of-the-art performance.  
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3.1 U-Net like networks 

In this section, we discuss the U-Net-based network. U-Net employs an encoder 

to extract features from images and a decoder to reconstruct the encoded information. 

The feature maps obtained from the encoder contain contextual information, 

carrying the positional information of targets within the image. The information 

obtained through decoding serves as localization information, representing the shape 

details of the targets. These two types of information are fused using skip 

connections in U-Net. The subsequent U-Net-like network structures, U-Net++ and 

U-Net3+, which will be described later, reconfigure the skip connections for 

effective information fusion. 

 

3.1.1 U-Net 

U-Net [22] is a neural network architecture proposed by Ronneberger et al. in 

2015 for the purpose of image segmentation. U-Net employs an encoder-decoder 

architecture, where the encoder performs down-sampling on the input image using 

convolutional neural networks, and the decoder performs up-sampling on the 

encoded image using deconvolutional neural networks. 

Chapter 3   

 

Attention Multiscale Feature Fusion U-Net 
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By passing the input image through the encoder of U-Net, which consists of 

multiple convolutional neural networks, the context information of the input image 

can be obtained. Subsequently, through up-sampling and deconvolution from the 

encoded feature map, the spatial resolution of the image is increased, and the detailed 

information of the image is recovered, allowing for the acquisition of localization 

information.However, if only simple up-sampling and deconvolution are performed, 

information loss can occur. This is because the dimension of the image decreases 

through the CNN layers, and up-sampling is performed using linear interpolation 

from the reduced-dimension image. To prevent such information loss, U-Net utilizes 

skip connections between the encoder and decoder. Skip connections involve 

concatenating feature maps from the same level of the encoder and decoder. By 

concatenating the feature map from the encoder, which retains information prior to 

the occurrence of information loss, with the feature map from the decoder, which has 

undergone up-sampling but may have information loss, the reduction of information 

loss can be achieved. Through this approach, U-Net ensures effective performance. 

 

 

Figure 3.1 U-net structure 
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3.1.2 U-Net ++ 

U-Net++ is a network that shares a similar overall structure with U-Net but 

introduces changes to the skip connection architecture for effective feature fusion. 

In the original U-Net, feature maps from the same level are fused through skip 

connections, which allowed for excellent performance. However, this approach 

limits feature fusion across multiple layers. 

To address this limitation, U-Net++ incorporates convolutional neural networks 

into the pathway of skip connections and modifies the skip connections to be dense. 

By using densely nested skip connections, U-Net++ consists of multiple sub U-Nets 

with varying depths, where each sub U-Net is connected through skip connections. 

This architecture enables the fusion of information obtained from multi-level layers. 

Consequently, U-Net++ performs more effective feature fusion compared to the 

original U-Net. 

 

 

Figure 3.2 U-net++ structure 
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3.1.3 U-Net3+ 

UNet 3+ is a network architecture designed to ensure high performance similar 

to UNet++ while also maintaining a low number of parameters. UNet++ minimizes 

information loss in skip connections by adding multiple convolutional neural 

networks to the skip connection pathway and making the skip connections dense. 

However, this approach introduces a drawback of a significant increase in the 

number of parameters due to the addition of multiple convolutional neural networks. 

To address this issue, UNet 3+ introduces the full-scale skip connection 

structure. The full-scale skip connection enables the fusion of multi-scale features 

without additional convolutional operations. It connects all layers of the encoder and 

decoder through skip connections, and additionally adds skip connections between 

decoders to incorporate relationships among decoders. This minimizes information 

loss during the up-sampling process in the decoder and allows for the generation of 

feature maps while minimizing information loss.  

 

 

Figure 3.3 U-net3+ structure 
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3.1.4 Number of parameters 

In thesis, we selected U-net3+ as the base network for IR small target detection. 

U-net3+ ensures effective detection performance while having fewer network 

parameters compared to U-net++. This results in lower power consumption and 

enables efficient operation on low-computing-power embedded systems. 

In this section, an analysis of the number of parameters is presented for U-net, 

U-net++, and U-net3+ to explain how U-net3+ achieves a lower parameter numbers. 

When comparing the parameters of each network, U-net, U-net++, and U-net3+, we 

observe that they have the same number of parameters in the encoder since they share 

the same structure. However, the decoder parameters differ for each network.  

The number of decoder parameters for U-net can be calculated as follows: 

 

 𝑃𝑈−𝐷𝑒
𝑖 = 𝐷𝑓 × 𝐷𝑓 × [𝑑(𝑋𝐷𝑒

𝑖+1) × 𝑑(𝑋𝐷𝑒
𝑖 ) + 𝑑(𝑋𝐷𝑒

𝑖 )
2
   

                    + 𝑑(𝑋𝐸𝑛
𝑖 + 𝑋𝐷𝑒

𝑖 )  × 𝑑(𝑋𝐷𝑒
𝑖 )]   (3.1) 

 

In equation 3.1, 𝐷𝑓 is the size of the convolution kernel, d(∙) is the depth of the 

nodes, 𝑋𝐷𝑒 is the feature map from decoder, 𝑋𝐸𝑛 is the feature map from encoder. 

The number of decoder parameters for U-net++ can be calculated as follows: 

 

 𝑃𝑈++−𝐷𝑒
𝑖 = 𝐷𝑓 × 𝐷𝑓 × [𝑑(𝑋𝐷𝑒

𝑖+1) × 𝑑(𝑋𝐷𝑒
𝑖 ) + 𝑑(𝑋𝐷𝑒

𝑖 )
2
   

           + 𝑑(𝑋𝐸𝑛
𝑖 + ∑ 𝑋𝑀𝑒

𝑖,𝑘𝑁−1−𝑖
𝑘=1 + 𝑋𝐷𝑒

𝑖 ) × 𝑑(𝑋𝐷𝑒
𝑖 )]   (3.2) 
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In equation (), 𝐷𝑓 is the size of the convolution kernel, d(∙) is the depth of the nodes, 

𝑋𝐷𝑒 is the feature map from decoder, 𝑋𝐸𝑛 is the feature map from encoder, and 

𝑋𝑀𝑒 is the feature map from dense convolution section.  

For UNet3+, feature maps from each decoder are derived from the number of 

channels in the first encoder, 𝑁1𝑠𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 , and the scale 𝑁 , yielding 

𝑁1𝑠𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙  × 𝑁 channels. Hence, the number of parameters of  𝑖𝑡ℎ decoder in 

UNet3+, 𝑃𝑈3+−𝐷𝑒
𝑖  is calculated as:  

 

 𝑃𝑈3+−𝐷𝑒
𝑖 = 𝐷𝑓 × 𝐷𝑓 × [(∑ 𝑑(𝑋𝐸𝑛

𝑘 )𝑖
𝑘=1 + ∑ 𝑑(𝑋𝑑𝑒

𝑘 )𝑁
𝑘=𝑖+1 )   

                            × 𝑁1𝑠𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝑑(𝑋𝐷𝑒
𝑖 )

2
]   (3.3) 

 

3.2 Residual attention block 

In this section, we discuss the residual attention block, a network block applied 

in the proposed network. Neural networks have greatly contributed to improving 

accuracy in the field of artificial intelligence. There are various types of neural 

networks, with CNN (Convolutional Neural Network) being primarily used for 

image processing and RNN (Recurrent Neural Network) for natural language 

processing. While these neural networks yield excellent results, they are not without 

drawbacks. One of the challenges arises when the depth of the neural network 

increases, meaning the layers become deeper, making it difficult to train the network. 

This difficulty stems from the occurrence of gradient vanishing, where the gradient 

becomes effectively zero due to the continuous multiplication of derivatives of the 

neural network's activation functions. This renders gradient-based learning methods, 
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such as backpropagation, ineffective. To address this issue, several techniques have 

been proposed, including improving activation functions and utilizing batch 

normalization. However, the most popular approach for mitigating the gradient 

vanishing problem involves modifying the network structure to incorporate skip 

connections between layers, as seen in ResNet (Residual Network). Section 3.2.1 of 

this paper explains the causes of gradient vanishing, while section 3.2.2 describes 

techniques used to prevent gradient vanishing. 

 

 

3.2.1 Causes of gradient vanishing 

Before understanding the issue of gradient vanishing, it is necessary to grasp 

how artificial neural networks learn. An artificial neural network is a layered 

structure consisting of nodes and connections between nodes, as illustrated in Figure 

3.2. The connections between nodes are assigned weights, and the learning process 

of an artificial neural network involves continuously optimizing these weights to 

their optimal values through mathematical operations. To update the weights, a 

criterion is needed, which is defined by a cost function. Updating the weights based 

on the cost function means minimizing the difference between the output obtained 

by passing the input through the artificial neural network, where the weights and 

biases are summed and processed through activation functions, and the target or 

expected output. Since the cost function is often a high-dimensional equation that is 

difficult for us to comprehend, it can be represented graphically as shown in the 

figure3.3 and 3.4, with the parameters and the cost function as axes. 
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Figure 3.4 Fully connected layer 

 

 

Figure 3.5 Cost function 

 

 

Figure 3.6 Cost function – 2D projection 
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Understanding such high-dimensional equations is difficult to grasp, and the 

direction to minimize the cost function can also be ambiguous. Therefore, gradient 

descent is used to determine this direction. Gradient descent is similar to descending 

a mountain while blindfolded. When descending a mountain blindfolded, since one 

cannot see the direction, they explore all the areas with lower slopes from their 

current position and move towards the direction of the lowest slope. By repeating 

this process multiple times, they eventually descend the mountain. 

Applying this concept to gradient descent for neural network learning, the first 

step is to compute the derivatives of the cost function to find the direction of the 

lowest slope. Since the cost function is a high-dimensional equation, these 

derivatives consist of partial derivatives with respect to each variable, and this 

collection of partial derivatives is called the gradient. Taking a step in the direction 

of the lowest slope is equivalent to adjusting the parameters and biases towards the 

direction where the gradient of the cost function is minimized. By continuously 

updating the weights and biases, the neural network strives to minimize the error. 

This iterative process is referred to as neural network training.  

 

 

Figure 3.7 Sigmoid activation function 
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Figure3.2 represents an example of a deep learning network structure. With 

numerous weights and biases, updating all of them requires propagating the error 

values from the output layer to the input layer, updating the weights and biases along 

the way. This process is called error backpropagation. The backpropagation process 

involves continuously multiplying the partial derivatives of the activation functions 

as it progresses from the output layer towards the input layer. The vanishing gradient 

problem arises due to this structural issue. In the field of artificial intelligence, the 

sigmoid function has been widely used as an activation function. The reason for 

using the sigmoid function as an activation function is to mimic human learning 

processes. The initial artificial neural network, the perceptron, has a discontinuous 

structure where it sends a signal if the input exceeds a certain threshold and does not 

transmit a signal otherwise. Learning with such a discontinuous structure makes deep 

learning impossible. 

Human learning is gradual and continuous. Similar to how humans gradually 

acquire knowledge over a long period of time, artificial neural networks introduced 

continuous activation functions to mimic this gradual learning process, and the 

sigmoid function was one of them. Using the sigmoid function allowed artificial 

neural networks to learn in a manner similar to humans. However, as the depth of 

artificial neural networks increased, the problem of gradient vanishing emerged. The 

figure3.5 represents the sigmoid function, and from the graph of the activation 

function, we can observe that the gradient is close to zero in most regions, and the 

region where learning is facilitated is not significantly wider than the other regions. 

In the process of error backpropagation, where the gradient of the activation function 

is continuously multiplied as the neural network goes through layers, the multiplied 

values are likely to be zero or very small. As a result, as the network gets deeper, the 
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backpropagated error values converge to zero, preventing weight updates. In 

summary, as the network deepens, the learning of the artificial neural network is 

hindered. To solve more complex real-world problems, deeper artificial neural 

networks are needed. However, as the network becomes deeper, the problem of 

gradient vanishing arises, eventually preventing effective learning. 

 

3.2.2 Prevent gradient vanishing problem 

The problem of gradient vanishing occurs due to the structural issue in artificial 

neural networks where the error converges to zero as it is backpropagated towards 

the input layer. To address this problem, it is necessary to ensure that the error can 

be effectively transmitted to the input layer without loss. Nowadays, various 

approaches exist to tackle this problem, and they can be broadly categorized into two 

approaches. 

The first approach is to change the activation function. By using activation 

functions that alleviate the gradient vanishing issue, such as Rectified Linear Unit 

(ReLU) or variants of it, the network can maintain a larger gradient flow during 

backpropagation, allowing for better learning in deep networks. The second 

approach is to modify the structure of the artificial neural network. One popular 

solution is the introduction of skip connections, as seen in Residual Neural Networks 

(ResNets), where shortcuts are added to allow direct paths for information flow 

between layers. This helps mitigate the vanishing gradient problem and enables 

effective learning in deeper networks. 

By adopting these approaches, researchers have made significant progress in 

addressing the issue of gradient vanishing and enabling the training of deeper 

artificial neural networks. 
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3.2.2.1 Change activation function 

 

 

Figure 3.8 Rectified Linear Unit activation function 

 

In order to minimize the gradient vanishing problem in deep artificial neural 

networks, the first approach is to change the activation function. The existing 

sigmoid function is replaced with the Rectified Linear Unit (ReLU) function, which 

is a very simple function. The ReLU function outputs 0 for negative input values and 

the input value itself for positive values, and it can be defined by the equation 3.4. 

 

 ReLU(x) ≜ max (0, x)  (3.4) 

 

Replacing the sigmoid function with the ReLU function as the activation 

function in artificial neural networks brings two prominent advantages. Firstly, it 

significantly reduces the likelihood of encountering the gradient vanishing problem 

compared to the sigmoid function. The sigmoid function only takes values between 

0 and 1, whereas the ReLU function outputs values from 0 to infinity. This means 
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that during error backpropagation, there is a higher probability of multiplying by 

non-zero values, mitigating the risk of gradient vanishing. 

 

 sigmoid(x) =  
1

1+e−x  (3.5) 

 

The second advantage is that the ReLU function significantly reduces 

computational complexity compared to the sigmoid function. The sigmoid function, 

as expressed in equation 3.5, involves a fractional function with exponentials. On the 

other hand, the ReLU function takes a simple linear form for values greater than 0. 

When computing the gradients during backpropagation, the computational 

difference between these two functions is considerable. If the neural network is 

shallow and simple, the difference between sigmoid and ReLU may be negligible. 

However, in modern deep and complex neural networks, the lower computational 

complexity of the ReLU function becomes a significant advantage. 

 

3.2.2.2 Using residual network 

In a typical artificial neural network, the structure consists of nodes in each layer 

connected sequentially. This sequential structure makes it challenging for the neural 

network to overcome the vanishing gradient problem as it gets deeper. Not only does 

the error need to pass through multiple layers to reach the input layer, but if the 

network has small weights, effective learning becomes difficult. To address the 

gradient vanishing issue caused by this sequential structure, the concept of skip 

connections has been utilized in artificial neural networks. 

Skip connections, also known as shortcut connections or residual connections, 
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introduce additional connections that bypass one or more layers in the network. By 

allowing the gradient to flow directly from a later layer to an earlier layer, skip 

connections provide an alternative path for information and gradients to propagate 

through the network. This helps mitigate the vanishing gradient problem and allows 

for more effective training of deep neural networks. 

 

 

Figure 3.9 Network structure (a) plain network (b) residual network 

 

The existing structure of an artificial neural network, as depicted in figure 3.7-

(a), aims to learn H(x) for the input x. On the other hand, the neural network with 

skip connections, represented by Figure 3.7-(b), has a structure that optimizes F(x) 

by including the identity mapping (residual) of x in the target H(x) for the input x. 

The skip connections allow the residual to be passed along the network, enabling 

more efficient learning. Residual networks can be represented by equations such as 

equation 3.6 and equation 3.7. 

 

 y1 = ℎ(𝑥𝑙) +  ℱ(𝑥𝑙 , 𝑊𝑙)  (3.6) 
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 𝑥𝑙+1 = 𝑓(𝑦𝑙)  (3.7) 

 

In the equations, 𝑥𝑙   and 𝑥𝑙+1represent the input and output of the l-th unit, 

respectively, while ℎ(∙) represents the function that provides the skip connection. 

ℱ(∙)   represents the residual function, and 𝑓(∙𝑙)   represents the activation 

function, which can be represented by the ReLU function. 

In order to demonstrate the ability of the residual network to minimize gradient 

vanishing, we can restate equation 3.6 and obtain equation 3.8. 

 

 𝑥𝑙+1 = 𝑥𝑙 +  ℱ(𝑥𝑙 , 𝑊𝑙)    (3.8) 

 

The function ℎ(∙) represents the identity mapping, and the activation function is 

ReLU (where 𝑦𝑙 > 0). Therefore, equation 3.6 can be expressed as equation 3.8.  

Also, recursively x𝑙+2 = x𝑙+1 + ℱ(x𝑙+1, 𝑊𝑙+1) = x𝑙 + ℱ(x𝑙 , 𝑊𝑙) + ℱ(x𝑙+1, 𝑊𝑙+1) 

we will have: 

 

 𝑥𝑙 = 𝑥𝑙 + ∑ ℱ(𝑥𝑙 , 𝑊𝑙)𝐿−1
𝑖=𝑙     (3.9) 

 

For any deeper unit L and any shallower unit l.  

Also, equation 3.9 leads to nice backpropagation properties. Denoting the loss 

function as 𝜖, from the chain rule of backpropagation we have: 

 

 
𝜕𝜖

𝜕𝑥𝑙
=  

𝜕𝜖

𝜕𝑥𝐿

𝜕𝑥𝐿

𝜕𝑥𝑙
=  

𝜕𝜖

𝜕𝑥𝐿
(1 +  

𝜕

𝜕𝑥𝑙
∑ ℱ(𝑥𝑙 , 𝑊𝑙)𝐿−1

𝑖=𝑙 ) (3.10) 
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Looking at the first term of equation 3.10, we can observe the addition of a constant 

value of 1. This value is consistently propagated through backpropagation, 

regardless of the depth of the layer. As a result, it guarantees a minimum gradient, 

thereby addressing the issue of gradient vanishing. 

 

3.3 Residual attention block 

Section 3.2 describes the use of a residual network combined with an attention 

module to address the issue of gradient vanishing. In this section, the focus is on the 

residual attention block, which not only minimizes gradient vanishing but also 

performs feature refinement. This combination enables effective Infrared small 

target detection by incorporating both the benefits of the residual network and the 

attention module. 

 

3.3.1 Attention module 

In this section, a simple yet effective convolutional block attention module is 

described. This module operates in two separate stages, sequentially, when given a 

feature map. It generates attention maps for both channel attention and spatial 

attention. These attention maps are then multiplied with the original input feature 

map to perform adaptive feature refinement. The CBAM (Convolutional Block 

Attention Module) [23] used as the attention module in this thesis is lightweight yet 

versatile, allowing it to be attached to various CNN architectures and trained end-to-

end. 

When an image passes through multiple CNN layers, its dimensions decrease 

due to convolutional operations and pooling, while the number of channels increases. 
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These increased channels are obtained from multiple random kernels and are used 

for subsequent target detection tasks. However, these expanded channels are the 

result of random kernels and convolutional operations, meaning that certain channels 

may contain important information for target detection, while others may hold 

irrelevant or meaningless information. Therefore, to achieve effective target 

detection performance, it is necessary to emphasize important channels and attenuate 

unnecessary ones. This can be accomplished through channel attention. 

 

 

Figure 3.10 Channel attention process 

 

Figure 3.8 illustrates the process of generating the channel attention vector 

required to refine the feature map in a channel-wise manner using CNN. Initially, the 

input feature map F undergoes global max pooling and global average pooling, 

resulting in two 1x1xC-sized vectors. These two vectors are then passed through a 

multilayer perceptron with shared weights, introducing non-linearity. The two 

vectors with non-linearity are summed together, and the resulting sum undergoes a 

sigmoid function to obtain a probability-weighted encoding. This process can be 

represented by equation 3.11 and equation 3.12. 

 

 𝑀𝑐(𝑋) = 𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋)))   (3.11) 
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 𝑋′ = 𝑀𝑐(𝑋)  ⊗ 𝑋   (3.12) 

 

The term 𝑀𝑐(⋅) in equation 3.11 and 3.12 represents the channel attention vector, 

which is a probability-weighted representation indicating the importance of different 

feature maps among the C feature maps. The symbol 𝜎  denotes the sigmoid 

function, and the symbol ⊗ represents element-wise multiplication. The channel 

attention process is performed by element-wise multiplication between the generated 

channel attention vector 𝑀𝑐(X)  and the input feature X. 

After performing channel attention to emphasize important channels for target 

detection, spatial attention is now performed to highlight the locations of targets 

within the image. 

 

 

Figure 3.11 Spatial attention process 

 

The figure 3.9 illustrates the process of generating the spatial attention matrix 

for performing spatial attention. The channel-refined feature 𝑋′ is used as the input. 

Global average pooling and global max pooling are applied along the channel axis 

of the channel-refined feature to create two matrices of size WxH each. These two 
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matrices are then concatenated and subjected to convolution with a 7x7 kernel size 

to reduce the channel dimension. Subsequently, the channel-reduced matrix goes 

through the sigmoid activation function to generate the spatial attention matrix. This 

process can be expressed by equation 3.13. 

 

 𝑀𝑠(𝑋′) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋′) ; 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋′)]))   (3.13) 

 𝑋′′ = 𝑀𝑠(𝑋′)  ⊗ 𝑋′   (3.14) 

 

The equation 3.13 represents the spatial attention matrix 𝑀𝑠(∙), which expresses the 

importance of WxH pixels as probabilities. σ denotes the sigmoid function, 𝑓7×7 

represents the convolution with a 7 × 7 kernel size, and [ ; ] indicates concatenation. 

Spatial attention is performed by element-wise multiplication between the channel-

refined feature and the spatial attention matrix. The CBAM (Convolutional Block 

Attention Module) applied in this thesis performs feature refinement by sequentially 

applying channel attention and spatial attention, as shown in the figure 3.10 

 

. 

Figure 3.12 Covolutional block attention module process 
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3.3.2 Residual network with attention module 

The Residual Attention Block is a structure that combines the residual network 

architecture with the Convolutional Block Attention Module (CBAM), as shown in 

figure 3.11. This configured Residual Attention Block can be applied to the encoder 

and decoder sections of the U-net for infrared small target detection. 

By applying the Residual Attention Block to the encoder and decoder, it 

addresses the gradient vanishing issue inherent in residual networks and performs 

feature refinement through the attention module. This enables effective learning even 

with deep layers in the network for infrared small target detection. Additionally, 

feature refinement allows for assigning more weight to meaningful features relevant 

to the detection task and suppressing less important features, leading to improved 

detection performance. 

 

 

Figure 3.13 Residual attention block 

 

3.4 Proposed Network Structure 

3.4.1 Encoder section 

The proposed network applies residual attention block to each encoder layer, as 

shown in figure 3.12. Main components of the block are the residual structure and 

the attention module. The former prevents gradient vanishing, whereas the latter 
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performs adaptive feature refinement that gives weights to the features when learning 

the network. The attention module is comprised of the channel attention and the 

spatial attention. The channel attention can be expressed as: 

 

                Mc(𝑋) = 𝜎[𝑀𝐿𝑃(𝑃𝑎𝑣𝑔(𝑋) + 𝑀𝐿𝑃(𝑃𝑚𝑎𝑥(𝑋))]  (3.15) 

 𝑋′ = Mc(𝑋) ⊗ 𝑋  (3.16) 

 

where σ denotes sigmoid function, and ⊗ denotes element-wise multiplication. The 

spatial attention can be expressed as: 

 

 𝑀𝑠(𝑋′) =  σ[𝑓3×3([𝑃𝑎𝑣𝑔(𝑋′); 𝑃𝑚𝑎𝑥(𝑋′)])]  (3.17) 

 𝑋′′ = Ms(𝑋′) ⊗ 𝑋′  (3.18) 

 

where 𝑓3×3  denotes convolution operation with kernel size 3 × 3 , and [ ; ] 

denotes concatenation. 

The attention process is sequentially performed as follows:  

1) Feature map 𝑋 ∈ ℝ𝐻×𝑊×𝐶  is used as an input to the channel attention 

process. A 1D attention map Mc(𝑋) ∈ ℝ1×1×𝐶   is generated and is 

element-wise-multiplied with 𝑋 to create a channel attention feature 𝑋′. 

2) The output of the previous step, 𝑋′ , is used as an input to the spatial 

attention process. The spatial attention process creates a 2D spatial 

attention map, which is element-wise-multiplied with 𝑋′ to create spatial 

attention feature 𝑋′′. 
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Figure 3.14 Encoder section of proposed network 
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3.4.2 Decoder section 

For the decoder, our network adopts full-scale skip connection and the residual 

attention block to perform multiscale feature fusion. The process of multiscale 

feature fusion of the decoder is shown in figure 3.13-3.16. As an example, the 

process of multiscale feature fusion of the second stage decoder is shown in Fig. 3.14. 

First, by concatenating the feature maps 𝑋𝐷
3 , 𝑋𝐷

4  and 𝑋𝐷
5 obtained from the decoder 

and feature maps 𝑋𝐸
1 and 𝑋𝐸

2 obtained from the encoder, the exquisite information 

from the shallow layer and the semantic information from the deep layer are 

seamlessly merged. The concatenated feature map is used as an input for the residual 

attention block and is channel-wise and pixel-wise refined through the attention 

module. Then, a feature map 𝑋𝐷
2  of the decoder can be obtained through  3 × 3 

convolution, batch normalization, and ReLU activation function. Through this 

process, the refined and fused feature map can reflect both low-level and high-level 

information, apt for an effective IRSTD. 
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Figure 3.15 Decoder of proposed network #4 
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Figure 3.16 Decoder of proposed network #3 
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Figure 3.17 Decoder of proposed network #2 
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Figure 3.18 Decoder of proposed network #1 
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3.4.3 Loss function with deep supervision 

We apply full-scale deep supervision to AMFU-net for hierarchical information 

learning and adopt Soft-IoU loss as the loss function.  

 

 𝑆𝑜𝑓𝑡 − 𝐼𝑜𝑈 =  
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛+𝑠𝑚𝑜𝑜𝑡ℎ 

𝑢𝑛𝑖𝑜𝑛+𝑠𝑚𝑜𝑜𝑡ℎ
  (3.19) 

 𝐿𝑜𝑠𝑠𝑠𝑜𝑓𝑡−𝐼𝑜𝑈 = 1 − 𝑠𝑜𝑓𝑡 − 𝐼𝑜𝑈  (3.20) 

 

For full-scale deep supervision, AMFU-net outputs feature map at every 

decoder stage, which is supervised by the ground truth. In addition to the five 

decoder outputs, the full-scale deep supervision of our network additionally uses the 

average of the 256×256-rescaled outputs to reflect information from every decoder 

stage. Full-scale deep supervision is achieved by averaging the losses from the six 

abovementioned outputs. As a result, training reflects all the essential information: 

the information from the shallow layer, the deep layer, and the overall. 
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Figure 3.19 Deep supervision with soft IoU loss 
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  In Chapter 3, we presented the novel network architectures designed for 

Infrared (IR) small target detection. The focus was on three distinct network 

structures: U-net, U-net++, and U-net3+. Each architecture was carefully examined 

and evaluated to identify the most suitable choice for our proposed method. Through 

a comprehensive analysis of network parameters, it was determined that U-net3+ 

offered a compelling advantage due to its ability to deliver effective performance 

while maintaining a reduced parameter count. This characteristic is particularly 

advantageous as it enables efficient operation even on resource-constrained systems 

with limited computing power. 

Furthermore, in order to enhance the capabilities of the network in detecting 

small targets, we made a significant modification by substituting the conventional 

encoder and decoder blocks with residual attention blocks. This architectural 

refinement aimed to leverage the benefits of attention mechanisms and facilitate 

more efficient and accurate small target detection. 

Building upon these advancements, we proceeded to introduce our proposed 

Infrared small target detection network, named AMFU-net (Attention Multiscale 

Feature fusion U-net). This network was specifically designed to address the 

challenges of detecting small targets in IR imagery. To evaluate its performance, we 

conducted simulations using open-source datasets that are widely accepted within 

Chapter 4   

 

Performance Analysis of Proposed Network 
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the research community. The obtained results were subjected to both quantitative and 

qualitative analysis, allowing for a comprehensive assessment of the network's 

capabilities. 

 

4.1 Simulation results 

In this thesis, we have conducted a comprehensive evaluation of our proposed 

method using the ACM dataset [8]. The ACM dataset consists of infrared small target 

images captured using an IR camera in real-world environments. The dataset 

includes both images with simple backgrounds and images with complex 

backgrounds, providing a diverse range of scenarios for effective training. 

To perform our experiments, we utilized a high-performance computing setup 

comprising an Intel I7-6700K processor clocked at 4.0GHz, an NVIDIA RTX 3090 

graphics card with 24GB of video RAM, and 64GB of RAM. This configuration 

ensured sufficient computational power and memory capacity to handle the 

demanding nature of deep learning tasks. To facilitate the training process, the ACM 

dataset was split into two sets: the training set and the test set. The division was made 

with a ratio of 1:1, ensuring an equal distribution of data between the two sets. 

In preparation for network training, all images in the dataset were normalized 

and resized to a resolution of 256x256. This preprocessing step helped ensure 

consistent input dimensions and improved the convergence of the network during 

training. Furthermore, it is important to mention the hyperparameter settings used 

for network learning. These settings play a crucial role in determining the model's 

performance and training dynamics. The specific hyperparameters employed in our 

experiments were carefully chosen to strike a balance between model complexity 
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and generalization capabilities. The hyperparameter settings for network learning are 

as follows: 1) optimizer: Adagrad, 2) initialization method: Xavier, 3) batch size: 16, 

4) learning rate: 0.05 and 5) epochs: 1500. 

Overall, this experimental setup, including the ACM dataset, hardware 

specifications, dataset partitioning, image preprocessing, and hyperparameter 

settings, allowed us to conduct a rigorous evaluation of our proposed method for 

infrared small target detection. 

 

4.1.1 Open source IRSTD dataset 

In this thesis, the ACM dataset [8] was employed as the training dataset for the 

network. The ACM dataset consists of a collection of infrared (IR) small target 

images captured using an IR camera in real-world scenarios. The dataset was 

designed to encompass various conditions encountered in small target detection tasks, 

including different backgrounds and levels of complexity. To ensure the 

effectiveness of the network training process, the ACM dataset was carefully divided 

into two subsets: a train set and a test set. The train set and the test set were balanced, 

with an equal ratio of 1:1 in terms of the number of samples. 

The train set comprises a diverse range of IR small target images, including both 

simple background scenarios and complex background scenarios. The images with 

simple backgrounds provide a clear and uncluttered context, facilitating the 

network's learning of the target characteristics. On the other hand, the images with 

complex backgrounds simulate challenging real-world conditions, where the small 

targets may be surrounded by noise, clutter, or other distracting elements. Similarly, 

the test set includes IR small target images with both simple and complex 

backgrounds. This enables a comprehensive evaluation of the trained network's 
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performance across various scenarios and provides insights into its generalization 

capability. 

By utilizing the ACM dataset, this thesis aims to develop and assess a robust IR 

small target detection network that can effectively handle diverse background 

conditions and accurately detect small targets amidst complex visual environments.  

The figure 4.1 is an example of dataset. 

 

 

 

Figure 4.1 Infrared small target detection dataset 
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4.1.2 Qualitative analysis of IR small target detection 

 

To evaluate the performance of the proposed AMFU-net, a comparative analysis 

was conducted against conventional deep learning-based Infrared Small Target 

Detection (IRSTD) algorithms. The hyperparameters of the comparative group were 

set based on the guidelines provided in the referenced papers [8] and [9]. 

Figures 4.2 to 4.5 present the detection results of the proposed AMFU-net and 

the comparison group. In Figure 4.2, the robust target detection performance of 

AMFU-net is evident compared to the existing algorithms. False alarms, represented 

by yellow boxes, can be observed in the results of DNA(VGG10) and DNA(Res10). 

In figure 4.3 and 4.4 show that the proposed network is more accurate in terms of 

segmented shape compared to existing algorithms. Furthermore, Figure 4.5 

showcases an instance of a false alarm occurrence in the ACM dataset and a missed 

detection case in DNA(VGG10). These visual examples highlight the advantages of 

the proposed AMFU-net in terms of improved detection accuracy and reduced false 

alarm rates. By providing these comprehensive comparative results, we validate the 

efficacy and superiority of the proposed AMFU-net over conventional IRSTD 

algorithms. The findings demonstrate the network's ability to effectively detect 

infrared small targets while minimizing false alarms and enhancing the accuracy of 

target segmentation. 
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Figure 4.2 IR small target detection results #1 
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Figure 4.3 IR small target detection results #2 
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Figure 4.4 IR small target detection results #3 
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Figure 4.5 IR small target detection results #4 
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4.1.3 Quantitative analysis of IR small target detection 

Table 4.1. is a quantitative analysis of the deep learning-based IRSTD 

algorithms. To analyze the detection performance of each network, mIoU was 

selected as a metric, which can be expressed as: 

 

 IoUi =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
  (4.1) 

 mIoU =  
1

𝑁
∑ 𝐼𝑜𝑈𝑖

𝑁
𝑖   (4.2) 

 

The evaluation results reveal that AMFU-net achieves the highest detection 

performance among the compared algorithms. It demonstrates a significant 

improvement in mean Intersection over Union (mIoU) compared to ACM, DNA 

(VGG10), DNA (ResNet10), and DNA (ResNet18). Specifically, AMFU-net 

increases the mIoU by 10.6% (from 0.6791 to 0.7512) compared to ACM, 4.0% 

(from 0.7219 to 0.7512) compared to DNA (VGG10), 1.8% (from 0.7380 to 0.7512) 

compared to DNA (ResNet10), and 1.3% (from 0.7411 to 0.7512) compared to DNA 

(ResNet18). 

Table 4.1 Quantitative analysis of different methods 

Method ACM 
DNA 

(VGG10) 

DNA 

(Res10) 

DNA 

(Res18) 
Proposed 

mIoU 0.6791 0.7219 0.7380 0.7411 0.7512 

Parameters 

(MB) 
1.48 9.42 10.13 18.24 2.17 

FPS 178.0 73.3 66.2 45.8 86.1 
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Furthermore, the computational efficiency of the algorithms was assessed in 

terms of Frames Per Second (FPS). It was observed that ACM achieves the fastest 

performance in terms of FPS. However, this comes at the cost of compromised 

detection performance, as it exhibits the lowest mIoU among all algorithms. On the 

other hand, the proposed AMFU-net achieves the second fastest performance while 

maintaining the highest mIoU. This indicates that AMFU-net strikes a balance 

between computational efficiency and detection accuracy. 

In summary, the quantitative analysis substantiates that AMFU-net outperforms 

the compared algorithms in terms of detection performance, with notable 

improvements in mIoU. Additionally, despite its high detection accuracy, AMFU-net 

demonstrates competitive computational efficiency, positioning it as a promising 

solution for Infrared Small Target Detection tasks. 

 

4.1.4 Analysis of Receiver Operating Characteristics(ROC) 

 

Figure 4.6 ROC curves of various deep learning algorithms 
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Figure 4.6 presents the Receiver Operating Characteristic (ROC) curves 

obtained from the selected deep learning-based algorithms. The ROC curves provide 

insights into the trade-off between the detection probability (True Positive Rate) and 

the false alarm rate (False Positive Rate). 

From the graph, it is evident that both DNA (ResNet18) and the proposed 

AMFU-net exhibit superior robustness compared to the other tested IRSTD 

algorithms. This is indicated by their ROC curves being closer to the top-left corner 

of the graph, which represents higher detection probabilities and lower false alarm 

rates. Although DNA (ResNet18) and AMFU-net exhibit similar false alarm rates, 

the proposed algorithm demonstrates a higher probability of detection. This indicates 

that AMFU-net achieves a better balance between correctly detecting small targets 

and minimizing false alarms. Based on the analysis of the ROC curves, it can be 

concluded that AMFU-net is the most robust algorithm among the tested IRSTD 

algorithms. Its superior performance in terms of both detection probability and false 

alarm rate makes it a promising choice for accurate and reliable infrared small target 

detection applications. 
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4.2 Ablation study 

To evaluate the impact of the residual attention block in AMFU-net, an ablation 

study was conducted by comparing it against two variants of the network: 1) AMFU-

net without the residual attention block entirely, and 2) AMFU-net with the attention 

module removed. 

Table 4.2 presents the comparison results of these variants in terms of detection 

performance and Frames Per Second (FPS). The variant without the residual 

attention block exhibited a degradation in detection performance of 5%, indicating 

that the residual attention block plays a crucial role in improving the network's ability 

to detect small targets accurately. On the other hand, the variant with only the 

attention module removed showed a degradation of 2% in detection performance. 

This suggests that while the attention module contributes to performance 

improvement, the overall impact is relatively smaller compared to the residual 

attention block. Considering the computational efficiency, the variant without the 

residual attention block achieved a faster FPS of 85%, while the variant with only 

the attention module removed achieved a slower FPS of 65%.  

 

Table 4.2 Ablation study results 

Method 

AMFU-net 

w/o  

residual attention 

block 

AMFU-net 

w/o  

attention module 

AMFU-net 

mIoU 0.7124 0.7328 0.7512 

Parameters (MB) 1.63 1.67 2.17 

FPS 159.5 142.8 86.1 
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This trade-off between detection performance and computational efficiency 

highlights the significance of the residual attention block in achieving a balance 

between accuracy and speed. 

Based on these findings, it is recommended to utilize AMFU-net with the residual 

attention block intact. This configuration demonstrates the highest detection 

performance while still maintaining a relatively fast FPS of 86.1. The presence of 

the residual attention block ensures effective feature refinement and target detection, 

making it a preferred choice for IR small target detection tasks. 

 

4.3 Embedded system applications 

AMFU-net demonstrates its capability to perform effective Infrared Small 

Target Detection (IRSTD) with a reduced number of parameters, enabling its 

operation in low computational environments. In this context, the algorithms were 

validated on an embedded system with limited computational resources, providing a 

practical assessment of their performance. 

The NVIDIA Jetson Orin, equipped with the NVIDIA Ampere architecture 

featuring 2048 CUDA cores and 64 Tensor cores, along with 32GB of RAM and 

running Ubuntu 20.04, was used for the evaluation. It is important to note that all 

networks were tested using the same trained weights as used in producing Table 4.1, 

ensuring consistency in terms of mean Intersection over Union (mIoU) and 

parameter size. The results presented in Table 4.3 confirm that the proposed 

algorithm delivers on-line inference speed, achieving an impressive Frames Per 

Second (FPS) of 29.5 on the embedded system. This demonstrates the algorithm's 

ability to effectively detect small targets even in low-power and low-computational 
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environments.  

The successful validation of the proposed algorithm on the embedded system 

highlights its practical viability and suitability for real-world applications that 

require efficient IRSTD on resource-constrained platforms. The algorithm's ability 

to operate effectively in low computational environments enhances its potential for 

deployment in various scenarios, including embedded systems and other edge 

computing devices. 

 

Table 4.3 Inference time on embedded systems 

Method ACM 
DNA 

(VGG10) 

DNA 

(Res10) 

DNA 

(Res18) 
Proposed 

mIoU 0.6791 0.7219 0.7380 0.7411 0.7512 

Parameters 

(MB) 
1.48 9.42 10.13 18.24 2.17 

FPS 43.9 23.8 21.7 16.1 29.5 

 



55 

 

5.1 Conclusion and summary 

This theis proposed AMFU-net, an efficient IRSTD network. The network, 

based on Unet3+ with the residual attention block, can effectively fuse the output 

feature map obtained from each stage of the network with only few parameters 

through a full-scale skip connection. In addition, the proposed network prevents 

gradient vanishing by applying residual blocks to the encoder and the decoder, and 

performs effective feature extraction using the attention module. Comparative 

evaluation showed that even with 88% less parameters than the runner-up, the 

designed AMFU-net outperformed the state-of-the-art IRSTD networks on detection 

performance with the mIoU of 0.7512, and maintained a fast FPS of 86.1. Moreover, 

we proved that our lightweight network achieves online inference speed (FPS: 29.5) 

even on an embedded system with a low computational setup. 

 

5.2 Future works 

Detected results obtained from the proposed IR small target detection in this 

thesis can be effectively utilized in IR small target tracking research. To achieve this, 

the results obtained from the network can be used as measurements in tracking, 

Chapter 5   

 

Conclusion 
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enabling effective tracking even in noisy IR imagery. 

Furthermore, research efforts can be directed towards enhancing detection 

performance. While the proposed network architecture in this thesis is based on 

Convolutional Neural Networks (CNNs), recent trends in research indicate active 

exploration of Transformer-based algorithms for target detection and segmentation. 

Transformer-based algorithms have shown impressive performance in various tasks. 

Therefore, it is deemed feasible to improve detection performance further by 

employing Transformer-based algorithms rather than CNN-based methods. However, 

it is important to note that Transformer-based algorithms typically have a higher 

number of parameters compared to CNN-based networks and require large-scale 

training datasets. Therefore, research in these areas would be necessary to address 

these challenges. 
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U-Net 기반의 IRSTD(Infrared Small Target Detection)알고리즘에서 탐지 

성능을 향상시키기 위해서는 저차원의 특징과 고차원의 특징을 융합하는 

것이 중요하다. 기존 알고리즘은 U-Net의 스킵 경로에 컨볼루션 레이어를 

추가하고 스킵 연결을 보다 조밀하게 연결하여 저차원 – 고차원 특징 융합

을 수행한다. 그러나 컨볼루션 연산이 추가되면 네트워크의 매개 변수 수

가 증가하므로 추론시간이 그에 따라 증가하게 된다. 따라서 본 논문에서

는 풀 스케일 스킵 연결(Full-scale skip connection) U-Net을 기반 네트워크로 

사용하여 적은 수의 매개 변수만으로 저차원 – 고차원의 특징을 융합함으

로써 계산 비용을 낮춘다. 또한, 본 논문은 높은 수준의 IRSTD 결과를 보

장하기 위해 효과적인 인코더 및 디코더 구조를 제안한다. 잔여 주의 블록

(Residual attention block)은 효과적인 특징 추출을 위해 인코더의 각 레이어

에 적용된다. 디코더에서는 네트워크의 각 계층으로부터 얻어진 저차원 – 

고차원 정보 융합을 효과적으로 수행하기 위해 특징 융합 모듈에 잔여 주

의 블록을 적용하였다. 또한 네트워크 학습 수행 시, 각 계층에서 얻어진 

모든 특징을 반영하여 학습을 진행하기 위하여 심층 감독(Deep supervision)

을 통해 손실 함수를 계산한다. 제안된 알고리즘인 주의집중 멀티스케일 

특징 융합 U-Net(Attention Multiscale Feautre Fusion U-Net, AMFU-Net)은 효과

적인 표적 탐지 성능과 경량 구조를 보장할 수 있다.  

 

주요어: 적외선 소형 표적 탐지, 주의집중 알고리즘, 특징 융합, U-Net3+ 

학번: 2021-26553 
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