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Abstract

Visual-Inertial Navigation System on
Matrix Lie Group with Semantic Objects

Jae Hyung Jung
Department of Aerospace Engineering

The Graduate School
Seoul National University

A visual-inertial navigation system (VINS) estimates a state of a moving plat-

form based on visual and inertial sensing: The state includes the position and

orientation of the platform and its surrounding map. This has been a backbone

of perception systems in autonomy in which accurate and real-time state estima-

tion is indispensable for safe operation. Despite of breakthroughs in literature,

vulnerability to degraded conditions hinders its deployment in a fail-critical sys-

tem. To bring VINS in fail-critical systems one step closer, the estimator should

be fail-safe meaning it outputs reliable estimates under any circumstances and

fail-aware so that failures can be automatically detected for recovery.

To this end, this study develops VINS under three design principles. First,

the estimator outputs estimation confidence as well as expected value based on

sensor uncertainties. State uncertainty is valuable information for itself acting

as an index to decide perception failure and for downstream tasks, such as path

planning and feedback control. Second, the state-space is modeled on matrix

Lie groups: This representation is a natural tool to propagate uncertainty in
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rigid body motion. Third, semantic objects are incorporated so that this high-

level visual feature provides robustness to appearance and viewpoint changes.

Under the design principle, the theoretical contributions of this study are

introducing the optimal image gradient, object-based SLAM formulation, and

Gaussian merge on matrix Lie groups. The optimal image gradient minimizes

the expectation of the linearization error squared within project uncertainty

in an image domain. In object-based SLAM, the unobservable subspace is

derived analytically to prove that the bases do not depend on linearized points

so that the estimator yields consistent state uncertainty. In addition, a Gaussian

midway-merge method is introduced to fuse Gaussian distributions on matrix

Lie groups. Object-based SLAM with the presented merge addresses ambiguous

object poses due to shape symmetry. As a technical contribution, this study

finally integrates all developed elements to build an object-based VINS.

Through intensive simulations and real-world experiments, the optimal im-

age gradient coupled with the photometric visual-inertial odometry shows ro-

bustness to the large initial velocity error up to 3m/s. This shows a clear con-

trast to the conventional approach in which it fails to cope with such a large

initial error. Object-based SLAM formulation on matrix Lie groups yields con-

sistent estimates giving an average normalized estimation error squared as 1.07,

while the conventional method gains spurious information along the yaw direc-

tion. Ambiguity-aware object SLAM mitigates the large rotation error along

the symmetric axis from a six-dimensional pose detector by 49.5% averaged

over 10k images. Lastly, this study shows that the integrated system achieves

cm-level localization and object mapping accuracy in a room-scale environment.

Keywords: Visual-inertial navigation, state estimation, matrix Lie group, si-

multaneous localization and mapping

Student Number: 2019-32429
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Chapter 1

Introduction

1.1 Background and Motivation

A visual-inertial navigation system (VINS) is a state estimator for a moving

platform in a three-dimensional space using visual and inertial sensing. By

virtue of the small budget and complementary characteristics of a camera and

an inertial measurement unit (IMU), visual-inertial fusion has been intensively

studied and commercialized in the past two decades. A camera captures rich

visual textures that have high potential still not fully exploited in perceiving the

world around the platform (robot). However, a camera cannot infer the absolute

scale and the gravity direction of a scene without prior knowledge. Instead,

an IMU outputs angular rates and specific forces with respect to an inertial

frame so that the absolute scale and the gravity directions are encoded in its

measurements. It is well understood that the error accumulates over time due to

the integration of biased and noisy inertial readings [1]. The accumulated error

from an inertial navigation system can be effectively mitigated by constraints

from multiple-view images.

Real-world applications, as shown in Fig. 1.1, include the Mars helicopter

[2], a robot vacuum cleaner [3], and an entertainment drone [4] to name a few.

The strength of VINS lies in its independence to any infrastructure such as a

map database or the global navigation satellite system (GNSS). For autonomous

1



(a) (b) (c)

Figure 1.1: Applications of visual and visual-inertial SLAM: (a)Mars heli-
copter, (b) entertainment drone, and (c) robot vacuum cleaner.

systems in indoor environments, building canyons, and space exploration in

which GNSS signals are not available or reliable, VINS is a building block for

autonomy.

Visual-inertial odometry (VIO) and visual-inertial simultaneous localization

and mapping (SLAM) are instances to realize VINS. The objective of VIO is

to estimate locally consistent poses and optionally three-dimensional maps in a

given time window. Relative motion between a robot and its surroundings in-

duces visual parallax by which the ego-motion is inferred as shown in Fig. 1.2a.

IMU readings impose temporal constraints (factors) on camera poses, while

visual measurements give relative geometry as well founded in [5]. It outputs

accurate and reliable pose estimates in a short-term scenario but inevitably suf-

fers from error drift due to the nature of odometry. On the other hand, SLAM

builds a globally consistent map so that the drift is bounded. Typically, VIO

provides initial estimates to a mapping module in which poses and the structure

are refined and passed to VIO, as shown in Fig. 1.2b. Extended Kalman fil-

ter (EKF)-based SLAM augments its state vector with landmark positions [6],

while EKF-based VIO stochastically clones past poses to marginalize landmark

positions to bound the state dimension [7]. Since the pioneering works in visual

SLAM [8, 9], it is de facto standard that the full SLAM system consists of a

2



VIO
VI 

Mapping

Visual-inertial SLAM

initial estimates

refinement
Visual feature

Camera pose

IMU measurement

Camera measurement

time

(a)

VIO
VI 

Mapping

Visual-inertial SLAM

initial estimates

refinement
Visual feature

Camera pose

IMU meas.

Camera meas.

time

(b)

Figure 1.2: (a)Working principle of visual-inertial odometry (VIO), images
are from the EuRoC dataset and (b) visual-inertial simultaneous localization
and mapping (SLAM) components

VO/VIO module in a faster sampling time, local bundle adjustment for selected

keyframes, and loop closure with pose graph optimization to reduce drift in a

long baseline.

While SLAM with low-level visual features such as points, lines, and in-

tensities has been widely studied, SLAM with high-level semantic objects is a

relatively new topic [10]. In general terms, the goal of object-level SLAM is to

solve robot and object poses along with associated semantic labels of objects

and the surrounding given sensor measurements. In this dissertation, it is as-

sumed that semantic labels are available from a neural network. Instead, there
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Figure 1.3: x: state and z: measurement; (a)Maximum a-posteriori (MAP)
finds the most probable estimates, while (b) Bayesian filtering propagates the
underlying probability density function with a problem-specific approximation.

is more focus on jointly estimating robot and object poses, and term this prob-

lem as object-based SLAM. On the other perspective, a Lie group is a natural

tool to model kinematics in robotics. It is a very foundation that describes rigid

body motion with rigorous uncertainty representation [11]. In this dissertation,

state-space lives in a matrix Lie group so that the estimators are free from the

inconsistency problem and the process model is a group affine system [12].

Despite of aforementioned seminal works in visual and visual-inertial SLAM,

it is still challenging to have highly accurate localization and mapping with valid

uncertainty under any circumstances, and it is not straightforward how to fuse

inertial and object measurements. Specifically, the motivation for this study is

threefold:

• A fail-safe system should cope with large initial uncertainty. Most es-

timators with linearized systems cannot guarantee stability, thus failure

in addressing the large initial error would lead to error divergence and

catastrophic outcomes in a fully autonomous system. This study tries to

resolve this problem by introducing the optimal image gradient that gives

an optimal update direction given state uncertainty.
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• A fail-safe system should be robust to ambiguous measurements. Artifi-

cial objects such as cups and bricks exhibit shape symmetry from which

a multi-modal likelihood function originates. Not properly handling this

error source yields inaccurate localization and object mapping. This is-

sue is tackled by tracking each hypothesis while bounding the number of

hypotheses in an efficient way.

• Embracing valid state uncertainty paves the way for addressing the above

challenges and eventually leads to a fail-aware system. Most previous

approaches solve the most probable estimates without explicit estimation

confidence, as shown in Fig 1.3a. Knowing the only expected quantity

cannot tell whether the current estimate is reliable or not. Valid state

uncertainty plays an important role to monitor estimation quality and

detect failure to invoke a recovery step. This study formulates VINS

under a framework of Bayesian filtering to account for the underlying

probability density function, as depicted in Fig. 1.3b.

1.2 Objectives and Contributions

Toward a fail-safe and fail-aware VINS1, the objective of this dissertation is to

estimate the position, velocity, and orientation of a six-dimensional rigid body

along with estimation uncertainties. The estimator propagates the underlying

probability density function in the form of the expected state along with its

covariance matrix, and it should be tractable in a real-time and low-powered

system. In particular, for a fail-safe system, this dissertation focuses on ro-

bustness to the large initial velocity error and ambiguous object pose. For a

fail-aware system, this study focuses on estimation consistency meaning it is
1Failure means a condition that the estimation error diverges such that this cannot be

incorporated in downstream tasks.
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unbiased and the covariance matrix reflects the actual errors so that failure

can be detected for a fail recovery step. To this end, this study develops VINS

under three design principles:

• The estimator outputs estimation confidence as well as expected value

based on sensor uncertainties.

• The state-space is modeled on matrix Lie groups for rigorous uncertainty

estimation.

• Semantic objects are incorporated so that this high-level visual feature

provides robustness to appearance and viewpoint changes.

Under the design principle, the main contributions of this dissertation are

as follows:

• The optimal image gradient is introduced. The novelty lies in the stochas-

tic modeling of an image gradient leading to high robustness to the initial

state uncertainty. The gradient is obtained by minimizing the expectation

of the linearization error squared and reduced to the conventional gradi-

ent in a deterministic setting. In photometric VIO, the proposed image

gradient in iterated EKF reflects the state uncertainty giving a more plau-

sible convergent direction. High robustness and consistency to the initial

velocity error are shown in a photo-realistic simulation. Real-world drone

flight tests demonstrate highly accurate pose estimation when compared

to state-of-the-art VINS and real-time feasibility in a low-powered CPU.

• An object-based SLAM problem is formulated on matrix Lie groups. The

contribution is an extension of the classical keypoint measurements to ob-

ject poses so that the consistency problem is resolved in an object-based

SLAM problem. This study analytically derives that the unobservable
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subspace does not depend on a linearized point. In other words, the esti-

mated covariance correctly captures the actual yaw uncertainty along the

gravity direction. The filter consistency and robustness to large orienta-

tion errors are thoroughly investigated through a Monte-Carlo simulation.

Coupled with a deep neural network for six-dimensional pose detection,

evaluation on an open-source driving dataset demonstrates the effective-

ness of exploiting object poses and comparable estimation accuracy when

compared to the state-of-the-art object-based SLAM methods.

• The Gaussian mixture midway-merge method is introduced. The key

idea is to predetermine the common tangent space to merge probability

density functions on a matrix Lie group. This simple yet effective ap-

proach reduces information loss in merging especially when compared to

the conventional merge method. This study presents a promising appli-

cation in an object-based SLAM problem with shape symmetry. It is

experimentally shown that the six-dimensional pose detector suffers from

a large orientation error for symmetric objects. To solve this challenge,

this study adopts Gaussian sum filter to embrace each hypothesis, and the

proposed merge method bounds the exponentially increasing hypotheses.

The effectiveness of the midway-merge method is demonstrated by pre-

venting estimation failure that occurs in the conventional method due to

the large error of pose measurements. Evaluation tests in an open-source

dataset with household objects show that the presented ambiguity-aware

SLAM yields high robustness to ambiguous pose measurements and faster

computing time in merging compared to the previous method.

• Presented methods are integrated for object-based visual-inertial SLAM

in a modular basis. The system is constructed by combining the pose de-
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tector, VIO, and ambiguity-aware SLAM. Validation in a photo-realistic

simulator demonstrates that cm-level localization and object mapping ac-

curacy are achievable in a room-scale environment.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Section 1.4 reviews related

literature divided into three categories depending on how the visual measure-

ment is processed in the context of visual-inertial SLAM.

Chapter 2 covers mathematical preliminaries to build estimators from scratch

in this dissertation. The basic notion of matrix Lie groups, useful formulae, and

invariant error are reviewed. Bayesian filtering and its realization with certain

assumptions are also covered.

Chapter 3 proposes the optimal image gradient and its application in photo-

metric VIO. It starts with the state-space representation on matrix Lie groups

with process and measurement models. Then, this chapter presents the key

contribution and a practical way to implement it. Simulations and real-world

flight experiments along with implementation details are shown.

Chapter 4 presents object-based SLAM formulated on matrix Lie groups.

Beginning with the state-space representation, the unobservable subspace is de-

rived to prove filter consistency. Validation in simulated and real-world driving

datasets is followed to describe the effectiveness of object modeling on manifold.

Chapter 5 introduces a Gaussian mixture merge method on matrix Lie

groups. Detailed mathematical derivation indicates that the proposed approach

yields a lower approximation error than the conventional method. This is fur-

ther supported by a numerical dissimilarity measure on a three-dimensional

rotational group. As a promising example, the merge method is coupled with

Gaussian sum filter to address ambiguous measurements of symmetric objects
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in object-based SLAM.

Chapter 6 integrates all elements developed in this study to build a frame-

work for visual-inertial object-based SLAM. After presenting the overall ar-

chitecture, simulation results show the effectiveness of introducing object pose

measurements in the estimator.

Lastly, Chapter 7 remarks on theoretical contributions and their real im-

pacts on practical applications. This dissertation is concluded with future re-

search that would be built on this study toward fail-critical perception systems.
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1.4 Related Work

This dissertation reviews relevant research in the line of visual-inertial naviga-

tion in three categories: feature-based, intensity-based, and object-based meth-

ods. This literature review is not limited to visual-inertial sensing modality but

also covers vision-only and multi-sensor approaches that have been developed

closely along with VINS.

1.4.1 Feature-based methods

One of the earliest seminal works in visual-inertial navigation includes the multi-

state constraint Kalman filter (MSCKF) [7] by Mourikis and Roumeliotis. The

key idea was to marginalize feature positions in the state space by stochastically

cloning the history of camera poses. This has been the backbone of follow-up

studies. MSCKF 2.0 [13] remedied the filter inconsistency by using the first es-

timate Jacobian and introduced the term visual-inertial odometry (VIO),which

implies the nature of estimation drift due to sequence-to-sequence motion esti-

mation. Sun et al. [14] implemented a stereo measurement in a framework of

MSCKF. More recently, a unified framework called OpenVINS [15] for monoc-

ular and stereo configuration was open-sourced.

On the other side, the Hessian matrix-based approach has been popular

by virtue of its estimation accuracy and efficient implementation, exploiting

the sparsity of the Hessian matrix. Leutenegger et al. [16] followed the prin-

ciple of the keyframe [8] and introduced a marginalization procedure in VIO

that preserves the sparsity pattern of the Hessian matrix. With the advent

of the IMU preintegration [17,18], visual-inertial navigation has become more

mature. Qin et al. [19] proposed a VINS that includes in-flight initialization,

visual-inertial bundle adjustment (BA), and appearance-based loop detection

with a pose-graph optimization. This was extended to [20,21] that includes a
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multi-sensor configuration and GNSS measurements. ORB-SLAM3 by Campos

et al. [22] built on its predecessor [23,24] features a tracking thread using ORB

features, local BA thread, and a multi-map data association to seamlessly fuse

previously mapped areas. Toward globally consistent localization and map-

ping, an efficient way to consider loop closure in sliding windowed factor graph

optimization has been proposed [25,26].

Regardless of its implementation methodology, VINS is heading toward ro-

bustness to a system failure in a constrained computing platform. Eckenhoff et

al. [27] developed a multi-IMU multi-camera system that overcomes measure-

ment depletion due to a limited field of view. Similarly, Zhang et al. [28] pro-

posed a multi-camera system that tracks visual features across multiple cameras

to maintain longer baselines. The asynchronous multi-sensor measurements

were interpolated to efficiently model the state space at a low computational

budget. Huang et al. [29] extended an initialization procedure from a single

camera-IMU pair to a stereo camera configuration. Carlone and Karaman [30]

introduced a feature selection strategy by maximizing pose estimation accu-

racy at limited computational resources. Zhang et al. [31] devised the motion

manifold that constraints a ground vehicle for efficient 6D pose estimation.

In contrast to previous works, this study focuses on the photometric mea-

surement that fuses visual and inertial measurements in a much deeper way than

the geometric model in the sense that the fusion involves feature tracking and

consequently spares explicit feature tracking in a sequence of temporal images.

Therefore, the presented method does not suffer from outliers from feature mis-

matching and implicitly solves the feature correspondence by minimizing the

photometric error.
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1.4.2 Intensity-based methods

A photometric approach, also known as the direct method, minimizes inten-

sity differences rather than a geometric error. It was successfully employed in

2D sparse feature trackers [32, 33]. Extending an optimization parameter to a

6-DOF pose, real-time dense visual odometry (VO) was presented in [34, 35]

that maximizes photoconsistency. Kerl et al. [36] showed that the photometric

residual is well-expressed by the t-distribution and suggested a weight function

that is robust to outliers. Relaxed from an assumption of dense depth measure-

ments, J. Engel et al. [37] introduced semi-dense VO. The key idea was to track

pixels with non-negligible gradients by modeling photometric as well as geomet-

ric disparity uncertainties. This was extended to LSD-SLAM [38] and direct

sparse odometry (DSO) [39]. In DSO, the key contribution was the real-time

photometric BA on a CPU that exploits the sparsity structures of the corre-

sponding Hessian matrix. This seminal work was extended to stereo DSO [40],

DSO with loop closure [41], visual-inertial DSO [42], and direct sparse map-

ping [43]. More recently, a multi-dimensional feature map was trained for the

direct image alignment in a long-baseline and multi-weather condition [44,45].

Hybrid approaches [46–48]use both photometric and geometric errors: while

the photometric model provides accurate pose estimation over short-term track-

ing without data-association, the geometric model gives robustness for a large

baseline. A representative work by Forster et al. [46] proposed semi-direct VO

where the short-term tracking is solved by minimizing the photometric error,

while windowed BA minimizes a reprojection error built from previously estab-

lished matching pairs.

VINS with the photometric measurement includes [42,49,50], [43-46],where

motion prediction from an IMU provides a good initialization for tracking con-
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vergence. Among these, the most relevant work to this dissertation is Robust

VIO (ROVIO) by Bloesch et al. [49], in which pyramidal image patches are

tracked in a framework of the iterated EKF. The key idea was to formulate

the state space in a robocentric frame to reduce nonlinearity in a measurement

model. They also introduced multiple hypotheses for pixel positions to avoid a

tracking failure. ROVIO as an odometry module was also extended to globally

consistent mapping frameworks [51, 52] and multi-sensor fusion [53]. On the

other hand, the presented feature selection strategy adopts locally high gradi-

ent pixels that are uniformly distributed across an image instead of a small set

of feature patches. Aside from the difference in the feature extraction and the

filter formulation, this study suggests an image gradient that is optimal in the

sense of a linearization error within a projective uncertainty.

1.4.3 Object-based methods

Since a pioneering work of SLAM at the level of objects [10], semantic objects

are known to possess geometrically as well as semantically meaningful informa-

tion for localization and mapping. For instance, semantic objects have a high

signal-to-noise ratio in place recognition with a long baseline and appearance

change. On top of that, similar objects of a certain class can be efficiently rep-

resented by their 3D models and individual poses. Otherwise, every point cloud

or voxel should be stored for each object. The early work has been extended

to Fusion++ [54] releasing the assumption of having the prior object database,

multi-instance dynamic (MID)-Fusion [55] releasing the static object assump-

tion, and visual-inertial MID-Fusion [56] incorporating inertial measurements

for robust pose tracking.

In contrast to the aforementioned volumetric representation for objects,

primitive shapes are employed to model objects such as spheres [57], ellip-
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soids [58], cuboids [59], and cylinders [60]. The insight is that most of the

artificial objects and specific natural objects, such as trees are well-fitted in ba-

sic shapes. The intersection over union between measured and predicted shapes

often describes a likelihood function.

In the aspect of estimator consistency, [61] proved that unobservable bases

do not depend on a linearization point in a framework of the invariant ex-

tended Kalman filter (IEKF). This is a generalization of keypoint-based SLAM

problems. However, previous approaches did not explicitly consider ambiguous

object measurements.

To deal with multiple hypotheses due to the ambiguity, PoseRBPF [62] rep-

resents the marginalized pose distribution by the augmented autoencoder [63],

but their method only includes a single object for a detector that ignores the

correlation between objects. Fu et al. [64] utilized a max-mixture [65] for mul-

timodal pose estimates in the back-end implementation, but the approximation

is vulnerable to bad initialization. To overcome the sensitivity in initialization,

Lu et al. [66] proposed a heuristic technique to re-initialize a hypothesis, but

their noise assumption for a mug did not reflect the real-world noise charac-

teristic. Merrill et al. [67] introduced the prior keypoint heatmap as an input

to a deep neural network, but they did not explicitly consider the noise behav-

ior of symmetric objects. This study focuses on representing the actual noise

distribution of a symmetric object and formulating a Kalman filter to account

explicitly for measurement uncertainty.
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Chapter 2

Preliminaries

2.1 Coordinate Frame Definition and Notations

Throughout this dissertation, the global frame {g} is defined as a local tangent

plane frame fixed at the starting point of the body frame {b} of a robot and

leveled in the gravity direction. Its heading is aligned to that of {b} at the

beginning. The IMU frame is coincident with {b} pointing in forward, right,

and down directions. The left camera frame is denoted as {c}1 located on

the optical center of a camera model pointing in right, down, and forward

directions. The right camera frame {r} is defined analogously. The object

frame {o} is coincident with that of a three-dimensional object model. If it is

needed to specify a time instance, this study adopts a subscript to a coordinate

frame, for example, {bk} means {b} at time tk. It is assumed that spatial and

temporal extrinsic parameters are calibrated for {c}, {r}, and {b}.

This study expresses a vector (or a scalar) and a matrix as small and capital

letters such as x and X. When a coordinate frame is placed on the upper

right side of a vector or matrix, it indicates reference and resolved frames. A

subscript means a target frame. For instance, pgb is a position of {b} referenced

at {g}. Identity and zero matrices are expressed as Id and 0, respectively. Their

1This study reuses the notation in a case of a monocular camera where its meaning is clear
depending on the context.
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dimensions should be clear in the context.

2.2 Matrix Lie Groups

A matrix Lie group G is a group as well as a smooth manifold where its elements

are matrices. A group is a set of elements along with an operation that satisfies

the four axioms: closure, associativity, identity, and invertibility [11]. In a

viewpoint of state estimation, a smooth manifold is a constrained surface in a

higher dimensional space with unique tangent spaces at every point [68]. Due

to the nature of a rotation representation, a state space often evolves on a

manifold. A Lie algebra identified on the identity matrix consists of a vector

space g with a Lie bracket. The hat operator (·)∧ transforms an element in g

to a vector element and the inverse mapping is designated as (·)∨. Elements in

both structures are related through the matrix exponential and logarithm map,

exp(A) =
∞∑
n=0

1

n!
An (2.1)

ln(A) =
∞∑
n=0

(−1)n−1

n
(A− Id)n (2.2)

for a square matrix A. Therefore,

exp(a∧) = A (2.3)

ln(A)∨ = a (2.4)

where a ∈ RN , a∧ ∈ g, and A ∈ G2. This section will review rotation and

pose groups in a three-dimensional (3D) space as a minimum tool to develop

materials in this dissertation.

2The matrix logarithm is one-to-many, but it is uniquely defined, for instance, if the
magnitude of the rotational part in SO(3) is ∥ϕ∥ < π.
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2.2.1 Special Orthogonal Group in 3D

The special orthogonal group in 3D designated as SO(3) is a set of elements

with the matrix multiplication and is defined as

SO(3) =
{
R |R ∈ R3×3, RTR = Id, det(R) = 1

}
(2.5)

where (·)T is transpose of a matrix and det(·) is a determinant of a square

matrix. In other words, (2.5) means a set of rotation matrices that transform

the resolved frame. At the identity, the Lie algebra so(3) is a vector space

together with the Lie bracket [·, ·] where

so(3) =
{
Φ | Φ ∈ R3×3, Φ = ϕ∧} (2.6)

[Φ1,Φ2] = Φ1Φ2 − Φ2Φ1 (2.7)

where (·)∧ is a skew-symmetric operator in SO(3) such that

ϕ∧ =


0 −ϕz ϕy

ϕz 0 −ϕx

−ϕy ϕx 0

 . (2.8)

The exponential mapping for the rotation vector R = exp(ϕ∧), ϕ ∈ R3 has a

closed-form expression called Rodrigues’ formula.

exp
(
ϕ∧) = Id+

sin ∥ϕ∥
∥ϕ∥

ϕ∧ +
1− cos ∥ϕ∥
∥ϕ∥2

(ϕ∧)2. (2.9)

where ∥ϕ∥ =
√

ϕTϕ is a 2-norm. The logarithm mapping ϕ = ln(R)∨ is

∥ϕ∥ = cos−1

(
tr(R)− 1

2

)
(2.10)

ϕ =
∥ϕ∥

2 sin ∥ϕ∥
(
R−RT

)∨
(2.11)
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where tr(·) is a trace of a square matrix and it is assumed that ∥ϕ∥ < π and

ϕ ̸= 0. Given that the cos(·) is an even function, the ambiguity on the sign is

resolved by testing exp(·) that yields the correct matrix [11].

2.2.2 Special Euclidean Group in 3D

Pose

The special Euclidean group in 3D designated as SE(3) is a set of elements

with the matrix multiplication and is defined as

SE(3) =

T =

R p

0 1

∣∣∣∣∣∣T ∈ R4×4, R ∈ SO(3), p ∈ R3

 (2.12)

where R and p are a rotation matrix in (2.5) and a position, respectively. In

other words, (2.12) is a rigid body transformation that conserves the Euclidean

distance. At the identity, the Lie algebra se(3) is a vector space with the Lie

bracket [·, ·] where

se(3) =
{
Ξ | Ξ ∈ R4×4, Ξ = ξ∧

}
(2.13)

[Ξ1,Ξ2] = Ξ1Ξ2 − Ξ2Ξ1. (2.14)

In this expression, (·)∧ in SE(3) is defined as

ξ∧ =

ϕ∧ ρ

0 0

 (2.15)

ξ =

ϕ
ρ

 ∈ R6 (2.16)
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where ϕ∧ is defined in (2.8)3. The exponential mapping in SE(3), T = exp(ξ∧),

has a closed-form expression as

exp(ξ∧) =

exp(ϕ∧) Jl(ϕ)ρ

0 1

 (2.17)

where the closed-form expression for ϕ was shown in (2.9). The Jacobian Jl(ϕ)

can be derived as

Jl(ϕ) = Id+
1− cos∥ϕ∥
∥ϕ∥2

ϕ∧ +
∥ϕ∥ − sin∥ϕ∥
∥ϕ∥3

(
ϕ∧)2 . (2.18)

The Jacobian matrix is known as the left Jacobian of SO(3) [11]. The logarithm

mapping ξ = ln(T )∨ includes steps of obtaining ϕ from (2.11) and

p = J−1
l (ϕ)ρ. (2.19)

The matrix, T ∈ SE(3) can be constructed from the above step. The adjoint

matrix of T ∈ SE(3) satisfies Tξ∧T−1 = (AdT ξ)∧ and is

AdT =

 R 0

p∧R R

 ∈ R6×6. (2.20)

Extended Pose

This study models the state space of a visual-inertial system on a matrix Lie

group and derives their corresponding errors on the vector elements of the Lie

algebra. As introduced in the invariant extended Kalman filter [12], the so-

3As the convention in robotics [11], the hat operator is overloaded where its definition is
dependent on the input argument.
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called extended pose is defined as

SE2(3) =

X =


R p v

0 1 0

0 0 1


∣∣∣∣∣∣∣∣∣R ∈ SO(3), p, v ∈ R3

 (2.21)

where R, p, and v represent the attitude, position, and velocity of a robot with

respect to a reference frame. That is the velocity is augmented in the pose

group. Note that this study expresses the robot’s attitude as in Section 2.2.1.

Its associated Lie algebra is

se2(3) =
{
Z | Z ∈ R5×5, Z = ζ∧

}
(2.22)

[Z1, Z2] = Z1Z2 − Z2Z1. (2.23)

In this expression, (·)∧ in SE2(3) is defined as

ζ∧ =


ϕ∧ ρ ν

0 0 0

0 0 0

 (2.24)

ζ =


ϕ

ρ

ν

 ∈ R9 (2.25)

where ϕ∧ is defined in (2.8). As before, elements of X ∈ SE2(3) and ζ ∈ se2(3)

are exactly converted to each other by the matrix exponential and logarithm

mapping,

X = exp(ζ∧) (2.26)

ζ = ln (X)∨ . (2.27)
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The closed-form formula of exp(·) for SE2(3) is derived as similar to SE(3),

exp
(
ζ∧

)
=


exp (ϕ∧) Jl(ϕ)ρ Jl(ϕ)ν

0 1 0

0 0 1

 (2.28)

where the closed-form for SO(3) and the left Jacobian Jl can be found in (2.18)

and (2.9), respectively. The logarithm mapping ζ = ln(X)∨ includes steps of

obtaining ϕ from (2.11) and

ρ = J−1
l (ϕ) p (2.29)

ν = J−1
l (ϕ) v. (2.30)

Note that exp(·) and ln(·) are locally bijective mappings due to the ambiguity in

every ∥ϕ∥ = 2πn with n a non-zero integer. SE(3) is obtained when eliminating

the velocity entries of SE2(3).

2.3 Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff (BCH) formula expresses the compound of the

multiplication of matrix exponential In general, the BCH formula is expressed

by an infinite series. For completeness, this section reproduces the first several

terms of the formula from [11],

ln(exp(A) exp(B)) = A+B +
1

2
[A,B]

+
1

12
[A, [A,B]]− 1

12
[B, [A,B]]− 1

24
[B, [A, [A,B]]]

− 1

720
([[[[A,B], B], B], B] + [[[[B,A], A], A], A])

+
1

360
([[[[A,B], B], B], A] + [[[[B,A], A], A], B])

+
1

120
([[[[A,B], A], B], A] + [[[[B,A], B], A], B]) + · · · (2.31)
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where A and B are square matrices, [·, ·] is a Lie bracket, for instance, as

defined in (2.7). However, an approximated formula is required to develop error

equations. Therefore, given x ∈ RN , x∧ ∈ g, an approximated BCH formula is,

ln
(
exp(x∧1 ) exp(x∧2 )

)∨ ≈ x1 + Jl(−x1)−1x2 (2.32)

where the higher-order term O(∥x2∥2) is assumed to be 0. As a general expres-

sion in matrix Lie groups the Jacobian matrix is

Jl(x) =
∞∑
n=0

ad(x)n
(n+ 1)!

(2.33)

where ad(x) is an adjoint of a Lie algebra. A special case for SO(3) was given

in (2.18).

Based on (2.32), a useful equation is obtained

ln
(
exp(−x∧1 ) exp((x1 + x2)

∧)
)∨ ≈ ln

(
exp(−x∧1 ) exp(x∧1 ) exp((Jl(−x1)x2)∧)

)∨
= Jl(−x1)x2 (2.34)

if x2 is small [69].

2.4 Invariant Errors

This study uses the right-invariant error δX [12] that is defined as

δX = X̂X−1 (2.35)

where X ∈ G and the overhead hat (̂·) represents an estimate for the cor-

responding quantity. This is a generalization of the vector subtraction in the

vector space. This error matrix δX is associated with the tangent space element

at the identity as

ξ = log
(
X̂X−1

)∨
(2.36)
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where ξ∧ ∈ g and exp(·), log(·) are defined in Section 2.2.

2.5 Gaussian Distribution on Matrix Lie Groups

A Gaussian distribution on matrix Lie groups is defined through a vector ele-

ment at the identity [70],

X = exp(−ξ∧)X̂. (2.37)

This study follows the right-invariant error convention [12], X̂ ∈ G is a mean

matrix, and ξ ∼ N(0, P ), a Gaussian distribution with a zero-mean and covari-

ance P . Assuming that ξ is concentrated at the identity and by changing the

coordinate dX = |Jl(ξ)| d ξ,

1 =

∫
RN

(2π)−
N
2 |P |−

1
2 exp

(
−1

2
ξTP−1ξ

)
d ξ

=

∫
G
η exp

(
−1

2
ln(X̂X−1)∨

T
P−1ln(X̂X−1)∨

)
dX (2.38)

where η = (2π)−
N
2

∣∣Jl(ξ)PJl(ξ)
T
∣∣− 1

2 . The last line of (2.38) is denoted as X ∼

NG(X̂, P ). As introduced in [69], a GM on matrix Lie groups is expressed as

∑
i

wiNG(X̂i, Pi) (2.39)

where a weight of the ith component wi satisfies
∑

iwi = 1.

2.6 Moment-Preserving Gaussian Merge in a Vector
Space

It is straightforward to merge two Gaussian distributions in a vector space by

preserving the first and second-moment [71]. Suppose that a GM model with

two components is given,

w∗
1N (x̂1, P1) + w∗

2N (x̂2, P2) (2.40)
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where w∗
1 and w∗

2 are normalized weights. Then, their moment-preserving

merged distribution is N(x̂m, Pm) where

x̂m = w∗
1x̂1 + w∗

2x̂2

Pm = w∗
1P1 + w∗

2P2 + w∗
1w

∗
2(x̂1 − x̂2)(x̂1 − x̂2)

T . (2.41)
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2.7 Bayesian filtering

The goal of the Bayesian filtering is to solve for the marginalized distribution at

the current time step tk given a prior and likelihood distribution. This includes

the two procedures: prediction and update steps.

Prediction

p (xk|zk−1, · · · , z0) =
∫
xk−1

p (xk|xk−1) p (xk−1|zk−1, · · · , z0) dxk−1 (2.42)

Update

p (xk|yk, · · · , y0) =
p (zk|xk) p (xk|zk−1, · · · , z0)

p (zk|zk−1, · · · .z0)

=
p (zk|xk) p (xk|zk−1, · · · , z0)∫

xk
p (zk|xk) p (xk|zk−1, · · · , z0) dxk

(2.43)

In these expressions, xk and zk are the filter state and measurement at the time

step tk, respectively. If the system is linear and Gaussian, then the Bayesian

filtering boils down to the Kalman filtering. However, most systems in the

real-world exhibit nonlinear or non-Gaussian behavior which is the challenging

part to implement Bayesian filtering. Approximated solutions will be covered

to develop estimators used in this dissertation.

2.7.1 Kalman Filtering

Given a linear and Gaussian system,

xk = Fk−1xk−1 + wk−1

zk = Hkxk + vk (2.44)
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where w ∼ N(0, Q) and v ∼ N(0, R) are white Gaussian noise vectors and

mutually uncorrelated, a closed-form solution is tractable. The prediction step

is

x̂−k = Fk−1x̂
+
k−1

P−
k = Fk−1P

+
k−1F

T
k−1 +Qk−1 (2.45)

where the superscripts, ‘‘+ ” and ‘‘− ” means a-posteriori and a-priori. More

specifically,

x̂+k−1 = E [xk−1|yk−1, · · · , y0]

P+
k−1 = E

[
(xk−1 − x̂+k−1)(xk−1 − x̂+k−1)

T
]

(2.46)

and

x̂−k = E [xk|yk−1, · · · , y0]

P−
k = E

[
(xk − x̂−k )(xk − x̂−k )

T
]
. (2.47)

The difference lies in whether it considers the up-to-date measurement at the

current estimate. The update step includes

Sk = HkP
−
k HT

k +Rk

Kk = P−
k HT

k S
−1
k

x̂+k = x̂−k +Kk(yk −Hkx̂
−
k )

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k . (2.48)

In this expression, S is known as the covariance matrix of the filter innovation

(yk − Hkx̂
−
k ) and K is the Kalman gain. This completes a single recursion of

the Bayesian filtering.
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2.7.2 Extended Kalman Filtering

Given a nonlinear system4,

xk = f(xk−1) + wk−1

yk = h(xk) + vk (2.49)

where f(·) and h(·) are nonlinear models. w ∼ N(0, Q) and v ∼ N(0, R)

are white Gaussian noise vectors and mutually uncorrelated. The extended

Kalman filter (EKF) linearizes the nonlinear models at the current estimate.

The prediction step is

x̂−k = f(x̂+k−1)

P−
k = F̂kP

+
k−1F̂

T
k +Qk−1 (2.50)

where the Jacobian matrix is

F̂k =
df

dx

∣∣∣∣
x̂+
k−1

. (2.51)

As in the Kalman filtering, the update step is

Sk = ĤkP
−
k ĤT

k +Rk

Kk = P−
k ĤT

k S
−1
k

x̂+k = x̂−k +Kk(yk − h(x̂−k ))

P+
k = (I −KkĤk)P

−
k (I −KkĤk)

T +KkRkK
T
k . (2.52)

where the measurement Jacobian matrix is

Ĥk =
dh

dx

∣∣∣∣
x̂−
k

. (2.53)

4This section assumes that the noise is linear to ease notations, but this can be generalized
with no difficulties.
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This finishes a single recursion of the EKF.

2.7.3 Iterated Extended Kalman Filtering

When the linearization point is not close enough to the true state, EKF cannot

reasonably capture the true underlying distribution. To improve the lineariza-

tion error the iterated EKF iterates for better linearization in the update step.

To be specific, the update step is iterated until convergence. At the ith itera-

tion,

Sk,i = Ĥk,iP
−
k ĤT

k,i +Rk

Kk,i = P−
k ĤT

k,iS
−1
k,i

x̂+k,i = x̂−k +Kk,i

(
yk − h(x̂−k,i)− Ĥk,i(x̂

−
k − x̂+k,i)

)
(2.54)

where

Ĥk,i =
dh

dx

∣∣∣∣
x̂+
k,i

. (2.55)

After the convergence, the posterior covariance is

P+
k = (I −Kk,iĤk,i)P

−
k (I −Kk,iĤk,i)

T +Kk,iRkK
T
k,i. (2.56)

2.7.4 Gaussian Sum Filtering

A Gaussian mixture model approximates the non-Gaussian posterior distribu-

tion where the early idea dates back to the 70s [72]. The non-Gaussian property

possibly stems from nonlinear functions or multi-modal noise distributions. As-

sume that a linear system with multi-modal noises is given.

xk = Fk−1xk−1 + wk−1

zk = Hkxk + vk (2.57)
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p(w) =
∑
i

αiN
(
w̄i, Qi

)
p(v) =

∑
j

βjN
(
v̄j , Rj

)
(2.58)

where the upper index means the corresponding hypothesis. If the previous

posterior distribution is a Gaussian mixture,

p (xk−1|zk−1, · · · , z0) =
∑
l

wl
k−1N

(
x̂l+k−1, P

l+
k−1

)
, (2.59)

substituting this expression into the prediction, (2.42) yields

p (xk|zk−1, · · · , z0)

=

∫
xk−1

∑
i

αi
k−1N

(
Fk−1xk−1 + w̄i

k−1, Q
i
k−1

)∑
l

wl
k−1N

(
x̂l+k−1, P

l+
k−1

)
dxk−1

=
∑
i,l

wi,l−
k N

(
x̂i,l−k , P i,l−

k

)
. (2.60)

In this expression, x̂i,l−k , P i,l−
k are the (i, l)th estimates obtained from (2.45)with

the corresponding hypothesis in the process noise and the previous distribution.

The weight is

wi,l−
k = η αi

k−1w
l
k−1 (2.61)

with the normalizer η to make the sum over all hypotheses 1.

Now rephrase the prior distribution as

p (xk|zk−1, · · · , z0) =
∑
m

wm−
k N

(
x̂m−
k , Pm−

k

)
(2.62)

and assume the likelihood function is given as

p (zk|xk) =
∑
j

βj N
(
Hkxk + v̄jk, R

j
)
. (2.63)
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Substituting (2.62) and (2.63) into (3.27) yields

p (xk|zk, · · · , z0) =
∑
m,j

wm,j
k N

(
x̂m,j+
k , Pm,j+

k

)
(2.64)

where x̂m,j+
k , Pm,j+

k are the (m, j)th estimates computed from (2.48) with the

corresponding hypothesis in the prior distribution and measurement noise dis-

tribution, respectively. The weight is recursively updated as

wm,j
k = η wm−

k βj
kγ

m,j
k (2.65)

where η is the normalizer. γm,j is the (m, j)the model evidence as below.

γm,j
k = (2π)−

dim(z)
2

∣∣∣Sm,j
k

∣∣∣− 1
2 exp

(
−1

2
ϵm,j T
k (Sm,j

k )−1ϵm,j
k

)
ϵm,j
k = zjk −Hkx̂

m−
k

Sm,j
k = HkP

m−
k HT

k +Rj (2.66)

where zjk is the realization of the measurement with jth noise hypothesis. This

finishes a single recursion of Bayesian filtering.
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Chapter 3

Ensemble Visual-Inertial Odometry

This chapter contains the contents of the following journal publication:

J. H. Jung, Y. Choe, and C. G. Park, “Photometric Visual-Inertial
Navigation With Uncertainty-Aware Ensembles,”
IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2039–2052, Aug. 2022,
doi: 10.1109/TRO.2021.3139964.

This chapter describes a visual-inertial navigation system that directly min-

imizes a photometric error without an explicit data association. The photomet-

ric error parametrized by pose and structure parameters is considered where

the error is highly nonconvex due to the nonlinearity of image intensity. The

key idea is to introduce an optimal intensity gradient that accounts for a pro-

jective uncertainty of a pixel. Ensembles sampled from the state uncertainty

contribute to the proposed gradient and yield a correct update direction even

in a bad initialization point. This study presents two sets of experiments to

demonstrate the strengths of the framework. First, a thorough Monte-Carlo

simulation in a virtual trajectory is designed to reveal robustness to large ini-

tial uncertainty. Second, it is shown that the proposed framework achieves

superior accuracy with efficient computation time over state-of-the-art visual-

inertial estimators in a real-world UAV flight, where most scenes are composed
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of a featureless floor.

3.1 Introduction

Visual navigation is a fundamental building block for higher-level tasks such as

autonomous flight in space exploration [73] and semantic perception [10].While

a camera provides rich information for localization and surrounding perception,

an inertial measurement unit (IMU) ensures interoceptive measurements with-

out outliers that predict motion between images in a faster sampling time. Vi-

sual measurements reduce or bound an error accumulation in a noisy integration

of IMU readings. There has been intensive research on visual-inertial naviga-

tion in the last decade [74]. Previous research has suggested fusion methods

either by filtering or optimization-based estimator, a programming architec-

ture composed of tracking frontend and mapping backend, and visual-inertial

measurement processing techniques.

Depending on how an image measurement is formulated, one can mini-

mize either geometric (indirect) or photometric (direct) error. The former has a

rather long history, where the crucial step includes feature extraction, solving

data-association, and minimizing a reprojection error [75]. The latter directly

minimizes a photometric error that measures an intensity discrepancy between

consecutive images [76]. Apart from a subtle difference in a feature extrac-

tion strategy, the key difference lies in the dependence on a repeatable feature.

While the geometric method has to detect visual features repeatedly across

images to build the reprojection error, the photometric approach relies on an

intensity gradient by which the discrepancy is minimized. There have been a

lot of discussions in the literature to answer the question: Which is better?

At least, it has been reported that the photometric method shows a robust

short-term pose estimation performance over its alternatives in low-textured
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environments [22,39].

However, a cost function formed by the photometric error is highly non-

convex in terms of pose and structure parameters [39]. The main reason for

that is the nonlinearity in image intensities. Except for a gradual brightness

change, intensities do not exhibit linearity. This leads to a huge sensitivity

on an initial point to reach an optimal point. To circumvent this problem,

previous work adopts the coarse-to-fine scheme to flatten local minima over a

multi-resolution in a practical point of view [35, 36, 43]. Others employ image

patches that account for neighboring pixels [39,46,49], provide a better initial

point based on an inertial sensor [42,50], or train a deep neural network to gen-

erate a desirable feature map for the optimization problem [44, 45]. However,

ensuring a highly accurate and robust solution for minimizing the photometric

error parameterized by the pose and structure in real-time is still a challenging

problem.

To achieve high robustness against bad initialization, this study focuses on

an intensity gradient given a projective uncertainty that originates from geo-

metric errors. Inspired by the stochastic linearization in random vibration [77],

an optimal image gradient is derived in the sense that it minimizes the lin-

earization error within the uncertainty. The proposed gradient is implemented

by sampling ensembles from the state uncertainty in a framework of photo-

metric visual-inertial odometry (VIO). There are four key contributions of this

chapter as follows.

• A framework of photometric VIO based on iterated extended Kalman

filter (EKF) is introduced where the state space is modeled on matrix

Lie groups. The photometric method makes the system robust to low-

textured scenes, while most visual-inertial navigation systems adhere to

repeatable and salient features.
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• An optimal intensity gradient is derived so that it accounts for its projec-

tive uncertainty in the proposed pipeline, and this leads to robustness to

the bad initialization.

• To demonstrate the effectiveness of the proposed image gradient, a thor-

ough Monte-Carlo simulation is presented.

• The proposed method is implemented in real-time using C++ and its

estimation accuracy, consistency, and computation time are analyzed in a

real-world UAV flight, where most scenes are constituted by a featureless

floor. The open-source code 1 is available for the benefit of the research

community.

The rest of this chapter is organized as follows. The photometric VIO is

developed starting from the state space definition in Section 3.2. After laying

the foundation, the proposed intensity gradient is derived in Section 3.3. In

Section 3.4, a Monte-Carlo simulation and real-world flight test demonstrate

the proposed framework. Finally, Section 3.5 concludes this chapter.

3.2 Visual-Inertial State Estimation
3.2.1 Problem Definition

Given three-axis angular rates ωm(t0:k), specific force measurements am(t0:k),

and image intensities I0:k from time t0 to tk, the objective is to estimate the

current pose of a robot T g
b (tk) ∈ SE(3) and its surrounding feature map pbf

with their estimate confidences.

Inspired by the direct sparse odometry [39], the state space is defined as

the current extended pose Xg
b (t), IMU biases B(t), the previous pose when an

1https://github.com/lastflowers/envio
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image is captured T g
bl
(t), and depths function at the previous camera pose D(t),

that is

X (t) =


Xg

b (t) 0 0 0

0 B(t) 0 0

0 0 T g
bl
(t) 0

0 0 0 D(t)

 (3.1)

where m is the number of features being tracked in the filter state. The current

and previous poses are

Xg
b (t) =


Rg

b (t) pgb(t) vgb (t)

0 1 0

0 0 1

 ∈ SE2(3) (3.2)

T g
bl
(t) =

Rg
bl
(t) pgbl(t)

0 1

 ∈ SE(3). (3.3)

The bias and depth function matrices are

B(t) =


Id ba(t) 0 0

0 1 0 0

0 0 Id bg(t)

0 0 0 1

 ∈ R8×8 (3.4)

D(t) =



1 d1(t) 0 0

0 1 0 0

. . .

0 0 1 dm(t)

0 0 0 1


∈ R2m×2m (3.5)

where ba, bg are accelerometer and gyroscope biases, and dj is the jth depth

parameterization referenced at tl that would be an inverse depth dj = z−1
j or a
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depth dj = zj . The depth parameterization will be discussed in Section 3.2.3.

The coordinate frame and time argument are omitted in the matrix expres-

sion to ease the readability if the context is clear such that

X = (X, ba, bg, T, d1, · · · , dm) . (3.6)

3.2.2 Process Model

IMU measurements are modeled as the true quantity corrupted by the time-

varying bias and zero-mean white Gaussian processes,

am(t) = at(t) + ba(t) + na(t)

ωm(t) = ωt(t) + bg(t) + ng(t) (3.7)

where noises are na(t) ∼ GP (0, Qaδ(t− τ)) and ng(t) ∼ GP (0, Qgδ(t− τ)).

GP (m,P ) stands for the multivariate Gaussian process whose mean and co-

variance are m and P , and Qa, Qg are power spectral density matrices.

The extended pose and biases are governed by the following differential

equations

Ṙ(t) = R(t) (ωm(t)− bg(t)− ng(t))
∧

ṗ(t) = v(t)

v̇(t) = R(t) (am(t)− ba(t)− na(t)) + g

ḃa(t) = nwa(t)

ḃg(t) = nwg(t) (3.8)

where g is the gravity in {g} and biases are modeled as random walks with their

densities nwa(t) ∼ GP (0, Qwaδ(t− τ)) and nwg(t) ∼ GP (0, Qwgδ(t− τ)). The

previous pose T and jth depth functions dj are modeled as random constants.
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The right-invariant error for the state X (t) is

δX (t) = exp
(
ζ(t)∧

)
= X̂ (t)X (t)−1. (3.9)

The vector element at the corresponding tangent space is

ζ =
[
ϕT ρT νT δbTa δbTg ϕT

l ρTl δd1 · · · δdm

]T
(3.10)

where ϕ, ρ, and ν are defined in (2.28) and ϕl, ρl are a pose error at the previous

time tl. Except for the current extended pose and the previous pose, the rest

of errors are defined by the vector subtraction as defined in (3.9).

The error-state ζ up to the second order term is evolved by

ζ̇(t) ≈ F (t) ζ(t) +G(t) w(t) (3.11)

where F,G are Jacobian matrices to ζ and the noise vector w =
[
nT
a nT

g nT
wa nT

wg

]T
.

It is worthwhile to note that the linearized equation (3.11) is perfect when

δba = δbg = 0 and w = 0 [12]. State uncertainties are well-captured by the

invariant error (2.28) as in SE(3) [70,78]. As detailed in Appendix B, the Ja-

cobian matrix is turned to be

F (t) =

FI(t) 0

0 0

 ,

FI(t) =



0 0 0 0 −R̂(t)

0 0 Id 0 −p̂(t)∧R̂(t)

g∧ 0 0 −R̂(t) −v̂(t)∧R̂(t)

0 0 0 0 0

0 0 0 0 0


. (3.12)

In the implementation, (3.8) and (3.11) are discretized to propagate the mean

X̂ and the covariance matrix P = E
[
ζ ζT

]
.
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3.2.3 Photoconsistency Model

The photoconsistency assumption states that intensities are the same regardless

of the viewpoint of a camera if a ray hits the Lambertian surface. This has been

successfully employed in the direct visual odometry [35] and with illumination

parameter estimation [39] to track the 6-DOF pose of a camera. This model is

adopted as a filter measurement to spare the explicit 2D feature tracking.

For the jth feature at tk, this is written as

yj(X ) = h
(
φ(X , ulj)

)
+ nj

= Il

(
ulj

)
− Ik

(
φ(X , ulj)

)
+ nj (3.13)

where ulj ∈ R2 is the jth pixel coordinate at the reference tl. nj is the zero-

mean white Gaussian noise nj ∼ N(0, σ2
j ) independent to the process noise w.

Il and Ik are images at tl and tk, respectively. Note that yj = 0 without the

noise. The warping function φ is

φ
(
X , ulj

)
= Π

(
T g
bk
T b
c

)−1
T g
bl
T b
c

pclj
1

 (3.14)

where Π is a perspective projection model. The jth feature position viewed at

the previous camera frame {cl} is

pclj = Π−1
(
ulj , dj

)
. (3.15)

The nonlinear function h is linearized to incrementally minimize the photo-

metric error,

δyj = yj − ŷj

≈ Hjζ + nj . (3.16)
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The Jacobian matrix is derived using the chain rule

Hj = −
∂Ik
∂ζ

= − ∂Ik

∂ukj

∂ukj
∂pckj

∂pckj
∂ζ

(3.17)

where ukj is the jth pixel coordinate at Ik and pckj is the 3D jth feature position

referenced at the current camera frame {ck}.

The first block is an image gradient at the predicted pixel coordinate,

∂Ik

∂ukj
= ∇Ik(ûkj ) (3.18)

from which most of the linearization errors originate. An image gradient that

minimizes a linearization error will be introduced in Section 3.3. The second

block is the 2D-to-3D feature point Jacobian,

∂ukj
∂pckj

=

fu(p̂ckj,z)−1 0 −fu p̂ckj,x(p̂
ck
j,z)

−2

0 fv(p̂
ck
j,z)

−1 −fv p̂ckj,y(p̂
ck
j,z)

−2

 (3.19)

where the pin-hole projection model is used with horizontal and vertical focal

lengths fu and fv. p̂ckj,x indicates the first element of p̂ckj and so on. The last

block is filled by the pose and corresponding depth blocks

∂pckj
∂ζ

= R̂T
k

[
−
(
p̂gj

)∧
Id · · ·

(
p̂gj

)∧
−Id · · · R̂lp̂

cl
j d̂

−1
j · · ·

]
(3.20)

where R̂k = R̂g
ck and p̂gj is the jth 3D feature position referenced at {g}.

The inverse depth parameterization [79] has been broadly used because it

yields the high linearity index in a pixel projection function, and exhibits a

long tail in a far region. However, the proposed filter uses a photometric mea-

surement where the majority of nonlinearity comes from an image intensity. A

feature depth is initialized by a stereo baseline with enough parallax. That is
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why this study chooses the depth parameterization in the current implementa-

tion. However, the presented approach can include far features using inverse

depth parameterization as suggested in [80] without any difficulties.

3.2.4 Iterated EKF on Matrix Lie Groups

The iterated EKF is a local maximum a posteriori estimator in a single step [11]

that iteratively minimizes a weighted sum of costs until convergence. In the

robust VIO (ROVIO) [49], the authors presented iterated EKF formulations

that account for rotations and bearing vectors that live in a manifold. In this

chapter, however, the filter update step is derived in matrix Lie groups that

include SE2(3), which is a proper group representation for an inertial navigation

system.

The objective is to maximize

X̂k = argmax
Xk

p (Xk| y0:k, am(t0:k), ωm(t0:k))

= argmax
Xk

p (yk| Xk) p (Xk| y0:k−1, am(t0:k), ωm(t0:k)) (3.21)

where a density function of the matrix Lie group is indirectly defined by its

corresponding Lie algebra [70] and Xk = X (tk), y0:k = y(t0:k). Here, yk is a

vector that collects all measurements at tk. This is equivalent to

X̂k = argmin
Xk

∥yk − h(Xk)∥2R−1
k

+

∥∥∥∥log(X̂−
k X

−1
k

)∨
∥∥∥∥2
(P−

k )−1

≈ argmin
ζk,i

∥∥∥yk − h(X+
k,i−1)−Hi−1ζk,i

∥∥∥2
R−1

k

+

∥∥∥∥log(X̂−
k (X+

k,i−1)
−1

)∨
+ ζk,i

∥∥∥∥2
(P−

k )−1

(3.22)

where

h(Xk) =
[
h
(
φ(Xk, u

l
1)
)
· · · h

(
φ(Xk, u

l
m)

)]T
, (3.23)
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Rk =


σ2
1

. . .

σ2
m

 . (3.24)

In this expression, P−
k is the covariance matrix before the filter update P−

k =

E[ζ−k (ζ−k )T ]. A priori covariance is propagated according to (3.11). X̂−
k is a

priori of Xk. In the second line in (3.22), the current ith a posteriori has been

substituted by the (i − 1)th iteration, Xk = exp(−ζ∧k,i)X̂
+
k,i−1 up to the higher

order terms. Hi−1 is stacked from (3.17) and linearized at X̂+
k,i−1.

By differentiating the cost in (3.22) with respect to ζk,i, the update step is

given as

ζk,i = Ki−1

(
yk − h(X̂+

k,i−1)
)

− (Id−Ki−1Hi−1) log
(
X̂−
k (X̂+

k,i−1)
−1

)∨
(3.25)

where Ki−1 =
(
HT

i−1R
−1
k Hi−1 + (P−

k )−1
)−1 HT

i−1R
−1
k is the Kalman gain lin-

earized at (i− 1)th estimation. The following is defined

ζ̄k,i−1 = log
(
X̂−
k (X̂+

k,i−1)
−1

)∨
, ζ̄k,0 = 0 (3.26)

and a posteriori is updated incrementally

X̂+
k,i = exp

(
−ζ̄∧k,i

)
X̂−
k (3.27)

where

ζ̄k,i ≈ Ki−1

(
(yk − h(X̂+

k,i−1) + Hi−1ζ̄k,i−1

)
. (3.28)

If ζ̄k,i is converged, the covariance matrix is updated as

P+
k = (Id−KiHi)P

−
k . (3.29)

This is a generalization of the iterated EKF on the vector space: if log(X̂X−1)∨
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𝐼𝑙 : image at 𝑡𝑙

iter = 0

.

.

.

𝐼𝑘: image at 𝑡𝑘

iter = 10

Figure 3.1: A converged example in the VIODE dataset: after a couple of
update iterations the pixel point reaches the photometrically as well as the
geometrically consistent region.

is replaced by the vector subtraction, the derivation arrives at the equivalent

formulation.

Fig. 3.1 shows that the iteration step (3.27) and (3.28) is converged to the

photometrically as well as geometrically consistent area by minimizing visual-

inertial costs (3.22) in a sequence of temporal images.

3.2.5 Feature Initialization, Tracking, and Marginalization

Input stereo images are processed as a set of feature points that includes a

pixel coordinate and its initial depth estimate on the left camera frame. First,

incoming stereo images are undistorted and the left grayscale image is converted

into a gradient magnitude map. Then, the gradient map is divided into 25 ×

15 grids and the locally strongest pixel greater than a minimum threshold is

selected. To maintain uniformly distributed points over an image, an image

mask is maintained to ensure a minimum distance among features. As noted

in the DSO [39], this strategy does not depend on corner features and performs

well in low-textured environments.

The depth is initialized by epipolar line search evaluated by the sum of
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squared differences (SSD) within a 13× 13 patch in the stereo baseline. Badly

triangulated features are rejected based on a ratio of the minimum and the sec-

ond minimum SSD, and an inner product of image gradient direction and a unit

epipolar line. After passing the quality check, the feature depth is augmented

in the filter state with a sufficiently large initial uncertainty σz = 1.5 m.

Features in the state space are tracked by minimizing the visual and inertial

costs (3.22). After the convergence of an update step, features at tl are warped

to tk using a posteriori. In this step, normalized cross-correlations (NCC) are

computed in 13×13 patches centered at ûlj and ûkj , and features are marginalized

if the NCC is smaller than a certain threshold. After the feature tracking and

marginalization, the previous pose at tl is replaced by the current pose at tk as

noted in the 15 line of Algorithm 1. In a covariance domain, marginalization

erases the corresponding depth blocks in the covariance matrix.

Due to the nature of the tracking mechanism, the measurement noise nj in

(3.13) is colored noise. This can be handled by Kalman filter with a colored

noise [81]. From a practical point of view, the measurement noise σj is inflated

to tackle this unmodeled error.

3.3 Stochastic Gradient
3.3.1 Motivating Example

The tracked points in an image are interpreted as an estimate revealed from its

projective uncertainty due to camera pose and depth uncertainties. A simple

black and white image in Fig. 3.2a shows a red pixel that travels from ux = 15

to ux = 75, plotting its image gradient in the horizontal and vertical directions

in Fig. 3.2b. It is assumed that the red pixel is the mean of a 2D Gaussian

distribution where ensembles are sampled from the distribution.

In the vicinity of the edges, image gradients are zero: there is no information
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Figure 3.2: A motivating example in a toy problem: (a) the point on the black
and white image moves from ux = 15 to ux = 75 with its ensembles (small green
dots) sampled from a Gaussian distribution; (b) the conventional image gradient
(at the mean) and the proposed stochastic gradient (3.35)when traveling to the
x-direction.
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to minimize the photometric error. However, the approach gives non-negligible

image gradients derived from the pixel uncertainty as in Fig. 3.2b. That is,

it is reasonable to account for the probabilistic property when computing an

image gradient. This study introduces a stochastic gradient that reflects the

projective uncertainty inspired by stochastic linearization [77].

Previous approaches handle the intensity nonlinearity, including this ex-

treme case, by using an iteration over an image pyramid to flatten local minima

(coarse-to-fine scheme) [35,36,43] and image patches to include neighboring pix-

els [39,49]. However, the proposed approach guarantees an optimal gradient in

the sense of a linearization error that helps to converge to the correct direction.

3.3.2 Derivation of Stochastic Gradient

In deriving the stochastic gradient, this study focuses on the image gradient

which is the first matrix block in (3.17). For convenience, the associated jth

feature intensity in time tk is shown,

Y(ukj ) = Ik

(
φ(X , ulj)

)
+ nkj (3.30)

where ukj = φ(X , ulj) and nkj is a zero-mean white Gaussian noise that con-

tributes to the noise nj in (3.13). A naive approach is to linearize (3.30) starting

from the filter state X . However, it is found that the nonlinearity in an image

intensity is higher than that of the perspective projection. Furthermore, the

naive approach will turn to require 13×13 dense matrix inversion per a feature.

This is why (3.30) is linearized at the pixel position ukj that requires only 2× 2

matrix inversion per a feature.

A loss function is defined as

L(H) = I(u)− (I(û) +H δu) (3.31)
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where I(u) = Ik(u
k
j ), u = û + δu and H is an image gradient that has to be

found. Then, the expectation of the squared loss function is minimized,

Ĥ = argmin
H

E
[
L2 (H)

]
. (3.32)

This can be rewritten as

Ĥ = argmin
H

E
[
(Y(u)− n− I(û)−H δu)2

]
= argmin

H

∫
δu

∫
n

(Y(u)− n− I(û)−H δu)2 p(δu, n) dn dδu. (3.33)

Since it is assumed that the measurement and process noises are independent,

the joint density function is decomposed as p(δu, n) = p(δu) p(n). Differentiat-

ing with respect to the gradient yields

dE
[
L2(H)

]
dH

= −2
∫
δu

Y(u) δuT p(δu) dδu

+ 2 I(û)

∫
δu

δuT p(δu) dδu+ 2H
∫
δu

δu δuT p(δu) dδu (3.34)

where the zero-mean measurement noise assumption is employed. Equating

(3.34) as zero gives

Ĥ =

∫
δu

Y(u)δuT p(δu) dδu− I(û)

∫
δu

δuT p(δu) dδu

∫
δu

δu δuT p(δu) dδu

−1

=
(
E
[
Y(u) δuT

]
− I(û)E

[
δuT

]) (
E
[
δu δuT

])−1
. (3.35)

It is interesting to note that (3.35) boils down to a numerical differentiation

in a noise-free model:

Ĥ =
I(û+ δu)− I(û)

δu
(3.36)

where δu ∈ R. Note that (3.35) is an optimal gradient that minimizes the
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mean square of the linearization error. The conventional image gradient (3.18)

is replaced by (3.35).

3.3.3 Stochastic Gradient Implementation

It is not straightforward to compute the correlation between intensities and

pixel position deviation E
[
Y(u) δuT

]
analytically. Therefore, the correlation

is computed by sampling ensembles according to the current state uncertainty.

The ith ensemble is sampled through

X (i) = exp
(
−ζ(i)∧

)
X̂ (3.37)

where ζ(i) is sampled from the IMU-predicted covariance. Each feature point is

projected to the current image plane at tk. The ith ensemble of pixel coordinate

at tk is

u
k,(i)
j = φ

(
X (i), ulj

)
. (3.38)

Therefore, it is possible to compute statistical properties of u. The expec-

tation of its deviation from the estimate is

E
[
δuT

]
=

1

nen

∑
i

(
u
k,(i)
j − û

)T
. (3.39)

where nen is a number of ensembles and the estimate is calculated as û =

φ(X̂ , ulj). The covariance of the projected pixel coordinate is

E
[
δu δuT

]
=

1

nen − 1

∑
i

(
u
k,(i)
j − û

)(
u
k,(i)
j − û

)T
, (3.40)

and the cross-correlation between the image intensity and the position deviation

is

E
[
Y(u) δuT

]
=

1

nen − 1

∑
i

Y(uk,(i)j )
(
u
k,(i)
j − û

)T
. (3.41)

In the process of the filter update, each ensemble contributes to the stochas-
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tic gradient. Thus the proposed method is named as ensemble visual-inertial

odometry (EnVIO). Algorithm 1 summarizes the overall procedure of EnVIO.

Fig. 3.3 shows a pose tracking result in the parking lot sequence of the

VIODE dataset [82] with a 1 m/s initial velocity error. Locally high gradient

features on the lane mark are extracted in the image Il, as shown in Fig. 3.3b.

Features are tracked by minimizing (3.22) using the conventional image gradient

and the proposed stochastic gradient. Features are trapped in badly initialized

points due to weak image gradients in Fig. 3.3c. However, the proposed method

converges to the true minimum by virtue of the uncertainty-aware ensembles in

Fig. 3.3d. A history of a representative feature in Fig. 3.4 is highlighted with

its sampled ensembles. Remarkably, ensembles of the representative feature

point can cover neighboring regions of its true position at the 1st iteration

predicted by an IMU in Fig. 3.4a. The stochastic gradient computed from these

ensembles pulls the pixel position to the correct direction in the minimization

problem as in Fig. 3.4b. These ensembles exhibit non-negligible gradients,

while the conventional gradient only at the mean point gives too weak gradient

to move, as shown in Fig. 3.4c.
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Algorithm 1 Ensemble visual-inertial odometry
1: Input: X̂+

l , P+
l , am(tl:k), ωm(tl:k), Il, Ik, {ulj}j=1:m

2: Output: X̂+
k , P+

k , {ukj }j=1:m

3: (X̂+
0 , P+

0 )← Initialization(am(t0:ni), ωm(t0:ni))

4: (X̂−
k , P−

k )← Time-propagation(X̂+
l , P+

l , am(tl:k), ωm(tl:k))

5: for i = 1 to n do

6: for j = 1 to m do

7: Hj ← StochasticGradient(X̂+
k,i−1, P

−
k , Ik, u

l
j) · · · from (3.35)

8: Hj ← MeasurementJacobian(Hj , X̂+
k,i−1, u

l
j) · · · from (3.17)

9: δyj ← FilterInnovation(X̂+
k,i−1, Il, Ik, u

l
j) · · · from (3.16)

10: end for

11: X̂+
k,i ← Update(X̂+

k,i−1, P
−
k , Hk,i, δyk,i) · · · from (3.27)

12: end for

13: P+
k ← CovarianceUpdate(P−

k , Hk,n) · · · from (3.29)

14: Feature tracking: {ukj }j=1:m ← φ(X̂+
k , {ulj}j=1:m)

15: Replace the previous pose to the current one: Tl ← Tk

16: if (m < nmin) then

17: Initialize new features.

18: end if
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Figure 3.3: An illustrative example in the VIODE parking lot dataset. (a) a
reference image at tl, (b) a close-up of the lane at tl with high gradient features,
(c) pose tracking result at the current time tk using the conventional gradient,
and (d) the proposed stochastic gradient, where the red-to-blue color encodes
iteration steps in the iterated EKF.
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Figure 3.4: A representative pixel coordinate among the extracted features in
Fig. 3.3d with sampled ensembles (nen = 100) at (a) the 1st iteration and (b)
the 10th iteration. (c) Its intensity gradients during the update steps, where
the black and red plots correspond to intensity gradients of the representative
pixel in Fig. 3.3c and Fig. 3.3d, respectively.
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3.4 Experiments

To evaluate EnVIO, two sets of experiments have been conducted. First, this

study analyzes robustness to bad initialization with an increasing initial velocity

uncertainty in a virtual environment generated by AirSim [82, 83] in Section

3.4.1. Second, EnVIO is evaluated in a real-world experiment in Section 3.4.2.

This section compares EnVIO to the state-of-the-art methods [19, 20, 49] in

terms of estimation accuracy and computation time in a visually low-textured

environment where a visual-inertial sensor is installed in a UAV. The number of

ensembles is nen = 100 in the following experiments that shows a good trade-off

between estimation accuracy and computation time.

3.4.1 Monte-Carlo Simulation

To regulate error sources of visual and inertial sensor measurements, the VIODE

dataset generated by AirSim is adopted. Sample images are shown in Fig.

3.5. The camera nonlinear response function, auto exposure, and vignetting

effect can be calibrated for a real-world sensor as suggested in [84]. However,

the objective of this test is to demonstrate the convergence behavior of the

stochastic gradient in bad initialization.

Specifically, the three flight sequences without moving objects are chosen.

Flight trajectory information is reproduced in TABLE 3.1 for convenience. The

true IMU measurements are generated based on the ground-truth pose and

velocity. Then, the true measurements are added by time-varying biases and

noises, where sensor specification is based on Analog Devices ADIS16448 as

summarized in TABLE 3.2. The virtual stereo camera outputs 752×480 images

with 20 fps and a baseline of 5 cm corrupted by a zero-mean white Gaussian

noise with 4 standard deviation in 8-bit intensity.

In the Monte-Carlo simulation, random elements include the initial state
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Table 3.1: Trajectory information in the virtual environment

Parameters parking_lot city_day city_night
Distance [m] 75.8 157.7 165.7
Duration [s] 59.6 66.4 61.6

Table 3.2: IMU specification in the Monte-Carlo simulation

Specifications Gyroscope Accelerometer
Sampling rate 200 Hz 200 Hz
Noise density 0.0135 deg/s/

√
Hz 0.23 mg/

√
Hz

Bias repeatability 0.5 deg/s 20 mg
Bias stability 14.5 deg/hr 0.25 mg

uncertainty, IMU and camera error sources, and sampling of ensembles. In

order to test the robustness to a bad initial point, the pose root mean square

error (RMSE), normalized estimation error squared (NEES), and the number of

failures in the Monte-Carlo runs with the increasing initial velocity uncertainty

σv = {0.1, 0.5, 1.0} m/s are evaluated as presented in Fig. 3.6. A failure is

declared if the position RMSE is larger than 5% of the flight distance or attitude

RMSE is larger than 10 deg. The NEES evaluates the filter consistency and it

is defined as

NEES =
1

nmc ns

nmc∑
i=1

ζTi P
−1
i ζi (3.42)

where nmc = 50, ns is the state dimension, and ζi, Pi are the actual error and

filter covariance in the ith run, respectively.

In Fig. 3.6, Fig. 3.7, and Fig. 3.8, all methods are implemented based

on the proposed architecture but with different settings. While Iterated EKF

(pyr=1) has the maximum 10 iterations on its original resolution, while SG-

iterated EKF (pyr=1) includes the stochastic gradient on top of that. The

maximum number of iterations are 4, 3, and 3 from the coarsest to the finest
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pyramid level for Iterated EKF (pyr=3) and SG-iterated EKF (pyr=3). Note

that an image is downsampled as half-resolution at every pyramid level.

Image pyramid

The image pyramid can handle the measurement nonlinearity to some extent:

Iterated EKF (pyr=3) shows better accuracy and consistency than Iterated EKF

(pyr=1) at σv = {0.5, 1.0} m/s in Fig. 3.6. This would be the reason why this

technique is widely adopted in the literature. However, the image pyramid

still cannot remedy filter divergence due to the bad initialization (σv = 1.0

m/s). This is confirmed by the increasing NEES and failure cases among the

Monte-Carlo trials in Fig. 3.6.

Stochastic gradient

The stochastic gradient in SG-iterated EKF (pyr=1) and SG-iterated EKF

(pyr=3) reflects image gradients within an uncertain region. In general, this

reduces estimation errors, filter inconsistency, and failure runs in combination

with the image pyramid in Fig. 3.6. The more detailed pose ANEES with

elapsed time is shown in Fig. 3.8. Fig. 3.3 and 3.4 provide an intuitive descrip-

tion for the interpretation: ensembles provide the correct direction to minimize

the cost. Velocity estimates are highlighted for all trials in the Monte-Carlo

simulation in the first 20 seconds of the three virtual trajectories in Fig. 3.7.

SG-iterated EKF (iter=3) shows the smallest deviations to the ground-truth

among the three cases.
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(a)

(b)

(c)

Figure 3.5: Sample onboard images in the VIODE dataset in (a) parking_lot,
(b) city_day, and (c) city_night.

55



0.1 0.5 1

0.6

0.8

1

1.2

1.4

1.6

1.8

A
tt
it
u
d
e
 R

M
S

E
 [
d
e
g
]

0.1 0.5 1

0.2

0.4

0.6

0.8

P
o
s
it
io

n
 R

M
S

E
 [
m

]

Iterated EKF (pyr=1) Iterated EKF (pyr=3) SG-iterated EKF (pyr=1) SG-iterated EKF (pyr=3)

0.1 0.5 1
0

2

4

6

8

10

12

P
o
s
e
 N

E
E

S

0.1 0.5 1
0

1

2

3

4

5

6

7

#
 f
a
ilu

re
 i
n
 5

0
 r

u
n
s

(a)

0.1 0.5 1

0.6

0.8

1

1.2

1.4

1.6

1.8

A
tt
it
u
d
e
 R

M
S

E
 [
d
e
g
]

0.1 0.5 1

0.2

0.4

0.6

0.8

P
o
s
it
io

n
 R

M
S

E
 [
m

]

0.1 0.5 1
0

2

4

6

8

10

12

P
o
s
e
 N

E
E

S

0.1 0.5 1
0

1

2

3

4

5

6

7

8

#
 f
a
ilu

re
 i
n
 5

0
 r

u
n
s

(b)

0.1 0.5 1

v
 [m/s]

0.6

0.8

1

1.2

1.4

1.6

A
tt
it
u
d
e
 R

M
S

E
 [
d
e
g
]

0.1 0.5 1

v
 [m/s]

0.2

0.4

0.6

0.8

P
o
s
it
io

n
 R

M
S

E
 [
m

]

0.1 0.5 1

v
 [m/s]

0

2

4

6

8

10

12

P
o
s
e
 N

E
E

S

0.1 0.5 1

v
 [m/s]

0

1

2

3

4

5

6

7

8

#
 f
a
ilu

re
 i
n
 5

0
 r

u
n
s

(c)

Figure 3.6: Attitude and position RMSE, pose NEES, and the number of
failures (position RMSE is larger than 5% of flight distance, or attitude RMSE
is larger than 10 deg) of 50 Monte-Carlo runs with the increasing initial velocity
uncertainty σv = {0.1, 0.5, 1.0} m/s in (a) parking_lot, (b) city_day, and (c)
city_night.

56



 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

      

        

 
 

 
 

 
 

 
 

     

        

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

    

        

 
 

 
 

 
 

 
 

    

        
  
 
  
  
 
  
 
 
  
 
  
 
 
 

  
 
  
  
 
  
 
 
  
 
  
 
 
 

 
 
  
  
  
  
 
  
 
 
  
 
  
 
 
 

 
  
 
 
 
  
  
  

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

    

        

 
 
  

 
 

 
 
  

 
 

 
 
  

 

 
  

 
  

 
 
  

 
  

 
  

 
  

    

 
 
  

 
 

 
 
  

 
 

 
 
  

  
   

 
  

(a
)

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

      

        

 
 

 
 

 
 

 
 

     

        

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

    

        

 
 

 
 

 
 

 
 

    
        

  
 
  
  
 
  
 
 
  
 
  
 
 
 

  
 
  
  
 
  
 
 
  
 
  
 
 
 

 
 
  
  
  
  
 
  
 
 
  
 
  
 
 
 

 
  
 
 
 
  
  
  

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

    

        

 
 
  

 
 

 
 
  

 
 

 
 
  

 

 
  

 
  

 
 
  

 
  

 
  

 
  

    

(b
)

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

      

        

 
 

 
 

 
 

 
 

     

        

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

    

        

 
 

 
 

 
 

 
 

    
        

  
 
  
  
 
  
 
 
  
 
  
 
 
 

  
 
  
  
 
  
 
 
  
 
  
 
 
 

 
 
  
  
  
  
 
  
 
 
  
 
  
 
 
 

 
  
 
 
 
  
  
  

 
 

 
 

 
 

 
 

    

        

 
 

 
 

 
 

 
 

   
 
  
 
 
 
 

    

        

 
 
  

 
 

 
 
  

 
 

 
 
  

 

 
  

 
  

 
 
  

 
  

 
  

 
  

    

(c
)

F
ig

ur
e

3.
7:

Ve
lo
ci
ty

es
tim

at
es

of
al
lt

ria
ls

in
th
e
M
on

te
-C

ar
lo

sim
ul
at
io
n
in

th
e
fir
st

20
se
co
nd

s
fo
r
σ
v
=

1
m
/s

in
(a
)
pa

rk
in
g_

lo
t,
(b
)
ci
ty
_
da

y,
an

d
(c
)
ci
ty
_
ni
gh

t.
T
he

re
su
lts

fro
m

SG
-it

er
at

ed
EK

F
(p

yr
=

1)
ar
e
om

itt
ed

fo
r

cl
ar
ity

.

57



0
1

0
2

0
3

0
4

0
5

0

tim
e

 [s
e
c
]

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

ANEES

Ite
ra

te
d
 E

K
F

 (p
y
r=

1
)

Ite
ra

te
d
 E

K
F

 (p
y
r=

3
)

S
G

-ite
ra

te
d
 E

K
F

 (p
y
r=

1
)

S
G

-ite
ra

te
d
 E

K
F

 (p
y
r=

3
)

(a)

0
1

0
2

0
3

0
4

0
5

0
6

0

tim
e
 [s

e
c
]

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

ANEES

(b
)

0
1

0
2

0
3

0
4

0
5

0
6

0

tim
e
 [s

e
c
]

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

ANEES

(c)

F
igure

3.8:
Pose

Average
norm

alized
estim

ation
error

squared
(A

N
EES)in

(a)parking_
lot,(b)city_

day,and
(c)

city_
night.

58



𝐼𝑙 : image at 𝑡𝑙

iter = 0

.

.

.

𝐼𝑘: image at 𝑡𝑘

iter = 10

forward looking
camera

{𝒃}

{𝒄}

{𝒓}

Figure 3.9: A custom-built UAV and its MYNTEYE S1030 visual-inertial
sensor.

3.4.2 Flight Experiments

The objective of this test is to experimentally show that EnVIO can track a

camera pose even in a low-textured area which is a huge challenge in visual-

inertial navigation. The estimation accuracy is analyzed along with state-of-

the-art methods. Furthermore, the computational budget and validity of the

predicted filter covariance are investigated.

Four trajectories are recorded using a custom-built UAV equipped with

MYNTEYE S1030 (a stereo camera with an IMU) and visual markers for the

ground-truth trajectory as shown in Fig. 3.9. The sensor outputs a pair of

stereo images at 20 fps and raw IMU measurements at 200 Hz. Intrinsic as well

as extrinsic calibration parameters of the visual-inertial sensor are calibrated

in advance using the Kalibr toolbox [85]. The ground-truth pose is provided by

the Qualisys motion capture system with typical mm-level accuracy. The test

environment shown in Fig. 3.10 features a featureless floor: it does not provide

enough corners or edges for localization. Fig. 3.11 shows flight trajectories in

which the first two are made by a human pilot, and the last two are controlled

by an autopilot.

EnVIO is implemented in ROS Kinetic using C++. The recorded dataset
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(a)

(b)

(c)

Figure 3.10: Representative onboard left images with extracted features of
(a) ROVIO, (b) VINS-Fusion, and (c) EnVIO (proposed).
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Figure 3.11: The ground-truth and estimated trajectories in the flight tests
in which flight distances are (a) #1 flight, 49.3m; (b) #2 flight, 44.7m; (c) #3
flight, 32.8m; (d)#4 flight, 37.7m.
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was played on a laptop with Intel i7-7820 CPU at 2.90 GHz. New features are

initialized if the current number of features falls below 250 (nmin = 250) and

the maximum number of iterations is 10 at the original resolution (n = 10).

The filter iteration is stopped when the innovation change is less than 0.1% or

the elapsed time reaches a threshold.

In order to evaluate the absolute trajectory error (ATE) [86], the first 100

estimated poses (5 seconds) are aligned to their corresponding ground-truth

poses. TABLE 3.3 summarizes ATEs and an average computation time in the

same CPU per frame for ROVIO, VINS-Fusion, and EnVIO. Note that this

evaluation uses open-source packages of ROVIO and VINS-Fusion (without

loop-closure), and IMU noise parameters are tuned according to the sensor to

compare them as fairly as possible.

ROVIO vs. EnVIO

ROVIO is one of the pioneering photometric VIO that employs pyramidal corner

patches in robocentric formulation. High-scored FAST corners are initialized

and tracked by minimizing intensity differences. A representative image with

tracked feature patches is visualized in Fig. 3.10a. The feature selection strat-

egy that extracts a small set of the most salient corners leads to the fastest

computation time, but the largest estimation error as reported in TABLE 3.3.

In contrast, EnVIO also utilizes pixels on the low-textured floor in Fig. 3.10c,

and it contributes to the more accurate pose estimation as shown in TABLE

3.3.

VINS-Fusion vs. EnVIO

VINS-Fusion extracts uniformly distributed Shi-Tomasi features tracked by the

KLT tracker. A windowed bundle adjustment (BA)minimizes reprojection er-
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rors to optimize poses and feature depths. Few features on the floor are ex-

tracted and tracked, but their tracking length is much shorter than visually

rich regions, such as the windows in Fig. 3.10b. Therefore, it cannot maintain

long-baseline features across the whole image. It seems that this drawback leads

to larger errors than the proposed approach. Also, note that the computation

time, which is longer than EnVIO, only includes the BA thread.

In contrast, the proposed method is robust to low-textured environments

since it does not depend on repeatable features, such as corners and edges. In-

stead, EnVIO aligns pixel intensities if a non-negligible image gradient is given.

As a result, EnVIO outputs lower pose errors than VINS-Fusion. Furthermore,

the lightweight two-view tracking shows 36.3 ms per frame as in TABLE 3.3.

Iterated EKF vs. EnVIO

Iterated EKF is based on the proposed architecture without the stochastic gra-

dient. Even if the estimator is initialized in a static condition with low motion

uncertainty, the use of the stochastic gradient can further boost estimation ac-

curacy. Since the proposed gradient has a strength that paves the way for the

correct convergence direction when bootstrapped from the large initial state

error, the accuracy gain would be significant if there is a large initial motion

uncertainty. This stress case was thoroughly studied in the simulation environ-

ment in Section 3.4.1. It is noticeable that the computation of the stochastic

gradient for each feature only adds 2.0 ms per frame on average.

Computation time

TABLE 3.4 summarizes an average computation time in the four flights with its

standard deviation for each crucial step in EnVIO. At the implementation, the

measurement Jacobian matrix is divided into sub-block matrices since it has a
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Table 3.4: Timing statistics per frame of EnVIO

Time Filter Feature Meanpropagation update initialization
Time [ms] 0.3 ± 0.1 19.8 ± 8.4 16.2 ± 5.7 36.3 ± 14.2

sparse structure for efficient matrix multiplication. The most time-consuming

part is the filter update due to matrix inversion for the Kalman gain at each

iteration. The proposed method can run at most 27 fps in terms of the mean

computation time, but it can be increased with further optimization.

Filter consistency

Fig. 3.12 draws estimation error along with 3σ bounds to validate the filter

consistency. It can be seen that the uncertainty reflects the four unobservable

bases (global translation and rotation around the gravity direction), and the

autopilot in Fig. 3.12b leads to bigger uncertainties due to limited motion

excitation. In the test time, errors are contained in the predicted uncertainty.

This confirms the validity of the filter covariance.
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Figure 3.12: Attitude and position error with their ±3σ bounds in (a) #1
flight and (b)#3 flight.
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3.5 Conclusion

This chapter has proposed ensemble visual-inertial odometry (EnVIO), a frame-

work of photometric VIO coupled with the stochastic gradient using uncertainty-

aware ensembles. Specifically, this study formulated the brightness consistency

and derived the filter iteration step on matrix Lie groups. As the key contri-

bution, an optimal image gradient termed the stochastic gradient is derived by

minimizing the linearization error within the state uncertainty. The effective-

ness of the stochastic gradient was validated through the Monte-Carlo simula-

tion at the increasing velocity uncertainty. As expected, pixels with stochastic

gradients converged to the true minimum even from bad initialization. Fur-

thermore, the strength of the method was highlighted in the flight test, where

most of the scenes are composed of the visually low-textured floor. Since the

proposed approach releases the dependence on repeatable visual features, the

proposed method outperformed the state-of-the-art VIO in terms of estimation

accuracy. The implementation showed the real-time feasibility at most 27 fps

in terms of the mean computation time.

In future work, EnVIO can include illumination parameters for robustness

to illumination change environments. The estimator can be reformulated as

an information filter: the computation time would be further decreased by

efficiently calculating the matrix inversion for the Kalman gain. Future work

also includes a visual-inertial mapping module to bound error drift and build a

globally consistent map.
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Chapter 4

Object SLAM with Improved
Consistency

This chapter contains the contents of the following conference publication:

J. H. Jung and C. G. Park,
“Object-based Visual-Inertial Navigation System on Matrix Lie Group,”
in IEEE International Conference on Robotics and Automation, 2022,
pp. 9499–9505, doi: 10.1109/ICRA46639.2022.9812443.

This chapter proposes a novel object-based visual-inertial navigation system

fully embedded in a matrix Lie group and built upon the invariant Kalman fil-

tering theory. Specifically, relative pose measurements of objects are considered

and an error equation is derived at the associated tangent space. It is proved

that the observability property does not suffer from the filter inconsistency

and nonlinear error terms are identically zero at the object initialization. A

thorough Monte-Carlo simulation reveals that the proposed approach yields

consistent estimates and is very robust to a large initial state uncertainty.

Furthermore, this study demonstrates a real-world application to the KITTI

dataset with a deep neural network-based 3D object detector. Experimental

results report that noises on pose measurements follow a Gaussian-like den-

sity matching the assumption. The proposed method improves the localization
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and object global mapping accuracy by probabilistically accounting for inertial

readings and object pose uncertainties at multiple views.

4.1 Introduction

The invariant extended Kalman filter (IEKF) has been developed based on

an invariant dynamic system to the group action. It was introduced by S.

Bonnabel [87], where the observer is invariant under the left group action. A.

Barrau and S. Bonnabel [12] broadened a considered system that is called

the group affine system for more practical applications. The IEKF guarantees

local stability for a certain set of nonlinear systems. Recently, the same au-

thors [78] introduced a mathematical technique to bear a high-precision inertial

navigation system (INS) in the group affine system to account for the Earth’s

rotation.

In a deterministic sense, the log-linearity [12] is a powerful property to

express a nonlinear system in Lie groups by linearized error dynamics on the

tangent space. This contributes to the filter stability in part by making the

Kalman gain independent to a trajectory. On the other hand, the banana-

shaped distribution due to sensor noises is known to be well-represented by the

exponential coordinate in robot navigation as a stochastic point of view [70,

78,88]. These are the main reasons why the IEKF outputs superior navigation

results in terms of the estimator accuracy and consistency when compared to

the conventional EKF [12, 89–91]. Especially in a simultaneous localization

and mapping (SLAM) problem, the Lie group structure captures the correct

dimension of the unobservable subspace without any artificial remedies [90,92].

However, most of the previous work remained on the vector space in their

output model, such as a relative point measurement (SLAM), the gravity or

magnetic vector (attitude heading reference system). This chapter extends a
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measurement model on the vector space to the matrix Lie group SE(3) that

represents a rigid body pose to imbue the IEKF into an object-based visual-

inertial navigation system (VINS). In a strict sense, the Kalman gain of the

proposed model depends on a vehicle trajectory, but the derived model does

obey the true dimension of the unobservable space yielding consistent estimates.

On the other hand, in contrast to low-level visual features such as intensi-

ties, points, or lines, objects possess rich information to localize robots, and in

turn, they can geometrically as well as semantically perceive the world around

themselves. With prior knowledge of an object such as dense point clouds or

CAD models [10,93] or without prior information such as spheres, cuboids, or

ellipsoids [57–59, 94], objects serve as visual landmarks to build semantically

meaningful maps for high-level tasks. Despite impressive results on low-level

feature-based VINS by virtue of a complementary characteristic of visual and

inertial sensors [15,16,19,22,95], there are few works on object-level navigation

in the line of visual-inertial fusion. Furthermore, most single image 3D object

detectors concerns about a local pose of objects in which a measurement qual-

ity is hard to be guaranteed. However, a global pose is required to understand

a global map of a scene, and the global mapping accuracy can be improved

when fusing multiple local pose estimates. This motivated us to fuse visual and

inertial measurements to build an object-based VINS.

To achieve consistency and robustness to a large initial error, a new EKF-

based estimator is formulated that is fully embedded in the matrix Lie group. It

is proved that the proposed method captures the true observability characteris-

tic and the nonlinear error terms are identically zero at the object initialization.

The object-based VINS outputs a 6-DOF vehicle pose with semantically labeled

6-DOF objects in a global map. The below summarizes key contributions as

follows.
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• Object-based visual-inertial fusion on the matrix Lie group with observ-

ability and nonlinear error analysis.

• A thorough validation in a Monte-Carlo simulation that reveals the con-

sistency and robustness of the estimator.

• Real-world demonstration using object measurements from a deep neural

network 3D object detector in the KITTI dataset [96] with a comparison

to the state-of-the-art object SLAM methods.

4.2 Visual-Inertial Object SLAM Formulation

4.2.1 Problem Definition

The objective of this chapter is to estimate the current state X (tk) with estimate

confidence given the initial state X (t0), noisy IMU measurements {am, ωm}t1:tk
and relative pose measurements of objects {T b

o}t1:tk . The state includes the

body attitude, position, velocity Xg
b which is defined in (3.2), accelerometer

bias ba, gyroscope bias bg and object poses T g
oj ,

X =



Xg
b 0 0 0 · 0

0 Ba 0 0 · 0

0 0 Bg 0 · 0

0 0 0 T g
o1 · 0

· · · · . . . ·

0 0 0 0 · T g
om


(4.1)

where IMU biases [89] are expressed as

Ba =

Id ba

0 1

 , Bg =

Id bg

0 1

 . (4.2)

71



The proposed state representation X lives in SE2(3)×R3×R3×SE(3)×· · ·×

SE(3).

By defining the right-invariant error exp(δx∧) = X̂X−1, vector elements in

the associated Lie algebra are

δx =
[
ζTb δbTa δbTg ξT1 · · · ξTM

]T
ζb = ln

(
X̂bX

−1
b

)∨

δba = b̂a − ba

δbg = b̂g − bg

ξj = ln
(
T̂jT

−1
j

)∨
(4.3)

where the overhead hat (̂·) is an estimate of the corresponding quantity. It is

simplified that Xg
b as Xb and the jth object pose T g

oj as Tj for readability.

4.2.2 Process Model

The current state is propagated by an inertial navigation system f in the

continuous-time,

d

dt
Xb(t) = fam,ωm (Xb(t), Ba(t), Bg(t)) (4.4)

where f is a group affine system when eliminating the IMU biases [12]. The

linearized model at the current estimate is derived as

d

dt


ζb(t)

δba(t)

δbg(t)

 ≈ F (t)


ζb(t)

δba(t)

δbg(t)

+G(t)n(t) (4.5)

where n(t) follows a Gaussian process, GP (0, Qδ(t− τ)) with a power spectral

density matrix Q. F (t) and G(t) are Jacobian matrices of the error and noise

vector as detailed in Appendix B. It is remarkable to note that the linearized
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system (4.5) is perfect when IMU biases and noises are zero [12].

It is assumed that objects are static in {g} such that dξj/dt = 0. At the

implementation, (4.4) and (4.5) are discretized to propagate the expectation of

the state X̂b and filter covariance E[δx δxT ].

4.2.3 Measurement Model on SE(3)

Previous work on the IEKF was constrained to a limited set of measurement

models on the vector space to make a linearized system independent of the

vehicle trajectory [12, 87]. To deal with the relative pose observation, a mea-

surement model is extended to the matrix Lie group SE(3). In a strict sense,

the measurement model is not invariant observation in the line of [12], but it

will be shown that its unobservable subspace does not depend on the vehicle

trajectory in 4.2.5.

Objects are expressed as a 6-DOF rigid body pose in the global frame {g},

and their poses are observed in the body frame {b}. Denoting Yj ∈ SE(3)

as a relative pose measurement of the jth object pose in the body frame, a

measurement equation at time tk is

Yj(tk) = h(Xb(tk), nj(tk))

= Tb(tk)
−1Tj(tk) exp(nj(tk)

∧) (4.6)

where Tb is the upper left 4×4 matrix of Xb, and nj is a zero-mean white

Gaussian noise uncorrelated to the system noise in the tangent plane. Yj is

measured by a 3D object detector, and a deep learning-based method [97] is

adopted in 4.3.2. Time notation tk is omitted for clarity.

Using the Baker-Campbell-Hausdorff (BCH) formula and defining the right-
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invariant error exp(ϵ∧j ) = ŶjY
−1
j , a linearized model is derived

exp(ϵ∧j ) ≈ exp(AdT̂−1
b

(ξj − ξb −AdT̂j
nj)

∧

+O (∥ξb∥ ∥ξj∥) ) (4.7)

where ξb is the upper 6×1 vector of ζb in (4.3). In the tangent space with a

sufficiently small error, Jacobian matrices are obtained as

ϵj ≈ AdT̂−1
b

(ξj − ξb)−AdT̂−1
b

AdT̂j
nj . (4.8)

The filter innovation is defined as

r =

[
ln

(
Ŷ1Y

−1
1

)∨ T
· · · ln

(
ŶMY −1

M

)∨ T
]T

(4.9)

and a posteriori X+ is updated from a priori X− as

X̂+ = exp
(
−(Kr)∧

)
X̂−. (4.10)

The Kalman gain K and posterior covariance are computed using the prior

covariance and the measurement Jacobian matrices (4.8).

4.2.4 Object Initialization

An object is initialized in the filter state at the first detection with the mean

as T̂j = T̂bYj . A new object has the following relationship,

ξj = ξb +AdT̂j
nj +O (∥ξb∥ ∥nj∥) . (4.11)

Since ξb and nj are statistically independent, the initial covariance matrix is

initialized as

E[ξjξ
T
j ] = E[ξbξ

T
b ] +AdT̂j

E[njn
T
j ]AdTT̂j

. (4.12)
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The cross-correlation terms are initialized based on (4.11)and objects are marginal-

ized if they are not visible for 5 seconds from the latest detection.

The higher order term in (4.7) that depends on the filter state ξb, ξj is further

investigated. Using the BCH formula it is derived as

O (∥ξb∥ ∥ξj∥) =T̂−1
b

(
−1

2

[
ξ∧b , ξ

∧
j

]
− 1

12

[
ξ∧b ,

[
ξ∧b , ξ

∧
j

]]
+

1

12

[
ξ∧j ,

[
ξ∧b , ξ

∧
j

]]
+ · · ·

)
T̂b (4.13)

where
[
ξ∧b , ξ

∧
j

]
= ξ∧b ξ

∧
j − ξ∧j ξ

∧
b is the Lie bracket. It is remarkable to note that

(4.13) is identically zero just after the object initialization in a deterministic

sense. That is ξj = ξb from (4.11). This makes the proposed estimator more

robust to initial errors since the measurement model is perfectly represented

by its linearized equation. In contrast, SO(3)-EKF parameterized by (4.15)

cannot enjoy this property.

4.2.5 Unobservable Subspace

In a linear discrete system, the observability matrix in t ∈ [t0, tk] is defined as

O =


H(t0)

H(t1)Φ(t1, t0)
...

H(tk)Φ(tk, tk−1) · · ·Φ(t1, t0)

 (4.14)

where H is a measurement matrix, and Φ is a state-transition matrix. Without

loss of generality, sensor biases are excluded and only the single jth object is

considered for simplification. One can straightforwardly derive the observability

matrix including sensor biases and multiple objects.
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SO(3)-EKF

Error vectors of the vehicle state ϕb, δpb, δvb and the jth object ϕj , δpj are

defined as

ϕb = ln
(
R̂bR

T
b

)∨

δpb = p̂b − pb

δvb = v̂b − vb

ϕj = ln
(
R̂jR

T
j

)∨

δpj = p̂j − pj (4.15)

that contradicts the nonlinear errors, ζb and ξj in (4.3). Consider a time step tl

between t0 and tk, then the lth observability matrix block is

OEKF
l = H(tl)Φ(tl, tl−1) · · ·Φ(t1, t0)

=

RT
bl

0

0 RT
bl

×
 −Id 0 0 Id 0(

pj − pbl +
∫ tl
t0

∫ t
t0
Rbτa(τ)dτdt

)∧
−Id −∆tlId 0 Id

 (4.16)

where pj is the translational part of Tj , a is the specific force measured by an

accelerometer, and ∆tl = tl − t0. If OEKF
l is evaluated at the true state, the

nullspace of OEKF is

N1 =
[
0 Id 0 0 Id

]T
N2 =

[
gT −(p∧b0g)

T −(v∧b0g)
T gT −(p∧j g)T

]T
. (4.17)

In this expression, g is the gravity vector in {g}. However, N2 no longer exists

when OEKF is evaluated at the linearization point as analogous to the point
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model [92]. Please refer to the detailed derivation in Appendix A.

The proposed formulation

Again consider the lth observability matrix block with the error definition in

(4.3). OIEKF
l is derived using Φ and H in (4.5) and (4.8), respectively.

OIEKF
l = AdT−1

b

 −Id 0 0 Id 0

−∆t2l
2 g∧ −Id ∆tlId 0 Id

 (4.18)

It turns out that the nullspace bases of OIEKF is

N1 =
[
0 Id 0 0 Id

]T
N2 =

[
gT 0 0 gT 0

]T
(4.19)

where N1 and N2 correspond to the global translation and rotation around

the gravity direction, respectively. Remarkably, the nullspace does not depend

on the linearization point. This solves the filter inconsistency problem that

gains spurious information along the unobservable direction due to incorrect

linearization. Please refer to the detailed derivation in Appendix B.
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4.3 Experiments

4.3.1 Monte-Carlo Simulation

To validate the proposed method, 50 runs of a Monte-Carlo simulation sampling

initial state error, IMU and object measurement noises are conducted. The IMU

performance is based on the inertial sensor equipped in OXTS RT3003 [96]. A

virtual camera has a field of view of 81 deg and 29 deg for horizontal and

vertical views, respectively. Object measurement noises are based on the noise

analysis in 4.3.2: σpj = 3m and σRj = 8 deg. A constant speed circular vehicle

trajectory with a radius of 16 m and 12 static objects is generated, as shown in

Fig. 4.1.

The objective of this experiment is to show that 1) the proposed method,

Proposed filter, does not gain fictitious information along the unobservable bases

by inspecting the averaged normalized estimation error squared (ANEES) and

2) Proposed filter is robust to an initial attitude error when compared to a

conventional SO(3)-parametrized EKF (SO(3)-EKF). The ANEES at a certain

instance is defined as

ANEES =
1

MN

M∑
i=1

eTi P
−1
i ei (4.20)

where M is a number of Monte-Carlo runs, N is a dimension of the state, and

e, P are an estimation error and its predicted covariance matrix, respectively.

Note that the ANEES should be 1 in a consistent estimator.

At the first setting with a small attitude uncertainty, 0.001deg of a vehi-

cle, Proposed filter outputs consistent estimates giving ANEES close to 1 as

shown in 4.2b. This improves the localization accuracy as shown in 4.2a. In

contrast, SO(3)-EKF gains spurious information along the rotation about the

gravity direction as shown in 4.2b, and this leads to the degradation on the
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localization accuracy. This confirms the theoretical result in (4.19) that Pro-

posed filter obeys the true observability property, but SO(3)-EKF suffers from

the underestimation.

At the second setting with the increasing initial attitude uncertainty σRb
=

{0.001, 1, 2, 3, 4, 5} deg, an estimated Gaussian distribution of SO(3)-EKF

almost fails to capture the true density due to the large initial uncertainty

showing worse accuracy and consistency as shown in Fig. 4.2c and Fig. 4.2d.

However, Proposed filter is robust to the initial uncertainty since it perfectly

represents the nonlinear system as a linear system in a deterministic sense.

It is originated from the fact that the SE2(3) structure in (4.5) is the proper

group representation and the higher order terms (4.13) are identically zero at

the object initialization. In terms of computational complexity, Proposed filter

only adds additional computing cost for the matrix exponential on SE2(3) and

logarithm on SE(3) compared to SO(3)-EKF. These are effectively computed

using a closed-form expression.
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Figure 4.1: (a) Virtual circular trajectory with 12 objects, (b) vehicle’s true
position and attitude profile.
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Figure 4.2: (a) Pose root mean square error (RMSE) and (b) averaged nor-
malized estimation error squared (ANEES) in the 50 Monte-Carlo runs. The
proposed method outputs accurate and consistent estimates giving ANEES near
1. (c)Pose RMSE and (d) object mapping accuracy with the increasing attitude
initial uncertainty σRb

= {0.001, 1, 2, 3, 4, 5}deg. The proposed method is ro-
bust to the initial attitude error in terms of localization and mapping accuracy
and consistency.
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4.3.2 Driving Datasets

The KITTI dataset [96] is chosen to demonstrate the feasibility of the pro-

posed method since the dataset provides raw IMU measurements as well as the

ground-truth vehicle poses and 3D bounding boxes for quantitative mapping

performance. As a 3D object detector, the Mousavian et al.’s method [97]with

YOLOv3 [98] is adopted. The network was trained on the KITTI 3D object

benchmark and outputs relative position, yaw angle in {c}, and cuboid lengths

of objects. Snapshots of well and bad-fitted cuboids are shown in Fig. 4.3a.

All these local 3D object measurements are fused in a fully probabilistic fash-

ion to obtain better localization and global mapping result. Note that any 3D

detectors can be employed if it provides a relative pose measurement.

Most research on 3D detectors reports the performance as a 3D intersection

over union (IoU). However, in terms of a filter measurement, a pose measure-

ment error before filtering on Lie algebra ξj = ln(T̂jT
−1
j )∨ should be ana-

lyzed. Therefore, a noise distribution of the pose measurements is investigated.

Note that incoming object measurements are matched to the closest ground-

truth cuboid to obtain errors. Error histograms exhibit Gaussian-like densities

matching the assumption in Fig. 4.3b. The position error along the depth (the

x-axis of {b}) shows the largest standard deviation as 2.82 m due to a limita-

tion of monocular vision, while the relative yaw reports the deviation as 8.09

deg. These values are set as a measurement uncertainty in the Monte-Carlo

simulation in 4.3.1 and in Table 4.1 for the rest of the sequences.

The objective of this experiment is to show that 1) the fusion of inertial

and deep object measurement increase not only the localization but also the

objects’ global mapping accuracy, 2) the proposed method shows comparable

localization accuracy to the state-of-the-art methods [59,99] using only object
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(a)

(b)

ID: 16

ID: 43

(c)

Figure 4.3: The representative result on KITTI 2011_09_26_0022 sequence
with (a) well and bad-fitted cuboid measurement by the Mousavian’s method
from which the proposed method is updated, (b) noise statistics of relative
pose measurements, and (c) qualitative localization and mapping results of the
proposed method.
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measurements and the nonholonomic constraint. For the former, the localiza-

tion accuracy by the absolute trajectory error (ATE) and the mapping accuracy

by objects’ global pose error when marginalized out (OBJ RMSE) are reported.

For the latter, the relative pose error (RPE) is evaluated using the evaluation

toolkit provided in [96].

Table 4.1 reports the evaluation result, and the followings are the four key

interpretations. First, while the nonholonomic constraint (NH) reduces much

of a position error in an inertial navigation system (INS), Proposed filter further

decreases the position error by fusing object and inertial measurements. Second,

the rotational error of Proposed filter is slightly worse than INS in the order of

millidegree. This indicates that the visual measurement is not as precise as the

gyroscope, which has a 0.01 deg/s 1σ bias. Third, Proposed filter reduces object

mapping error from 7.31 to 5.51 m and from 13.93 to 9.07 deg by probabilisti-

cally accounting for measurement noises at multiple views. Lastly, RPE of the

proposed approach is comparable to the state-of-the-art methods. Although

it is assumed that the data association is solved using the closest reference

cuboid, it is worth mentioning that the proposed method only utilizes object

measurements and the nonholonomic constraint with a forward speed, while

other methods additionally include corners [59] or semantic keypoints [99].

Fig. 4.3c illustrates the estimated localization and object mapping results

where parked cars are well-aligned to the vehicle trajectory qualitatively. An

estimation history of the highlighted objects is shown in Fig. 4.4 with their

actual errors and predicted standard deviations. It is remarkable to note that

objects are well-converged from their large initial uncertainties (4.12).
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Figure 4.4: Selected object mapping errors (blue) in the KITTI 0022 sequence
versus a number of filter update with their ±3σ confidence (red). Note that the
corresponding objects are drawn in Fig. 4.3c.
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4.4 Conclusion

In this chapter, a consistent and robust object-based VINS has been proposed

that is closely related to the invariant Kalman filtering. The state-space was

fully embedded in the matrix Lie group to formulate the 3D object observation.

The proposed approach solves the filter inconsistency and is very robust to the

initial state uncertainty. Furthermore, it is demonstrated that the fusion of vi-

sual and inertial measurement can improve localization and mapping accuracy.

In future research, object size information and low-level features will be incor-

porated to decrease the estimation error further. The object data association

will be solved using geometric and appearance-based constraints and the static

object assumption will be also relieved.
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Chapter 5

Object SLAM with Pose Ambiguity

This chapter contains the contents of the following journal publication:

J. H. Jung and C. G. Park, “Gaussian Mixture Midway-Merge
for Object SLAM With Pose Ambiguity,”
IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 400–407, Jan. 2023,
doi: 10.1109/LRA.2022.3224665.

This chapter proposes a novel method to merge a Gaussian mixture on

matrix Lie groups and present its application for a simultaneous localization

and mapping problem with symmetric objects. The key idea is to predeter-

mine the weighted mean called a midway point and merge Gaussian mixture

components at the associated tangent space. Through this rule, the covari-

ance matrix captures the original density more accurately, and the need for

the back-projection is spared when compared to the conventional merge. The

strength of the midway-merge is highlighted by numerically evaluating dissimi-

larity metrics of density functions before and after the merge on the rotational

group. Furthermore, it is experimentally discovered that the rotational error

of symmetric objects follows heavy-tailed behavior. Then, the Gaussian sum

filter is formulated to model it by a Gaussian mixture noise. The effectiveness

of the proposed approach is validated through virtual and real-world datasets.
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5.1 Introduction

A Gaussian mixture (GM) is prevalent in engineering problems such as state

estimation and target tracking due to its ability to model multiple hypothe-

ses. A radar altimeter exhibits a GM noise characteristic in vegetated areas by

multiple returns from the ground and vegetation canopy [100, 101]. The pos-

terior intensity is represented by a GM in the probability hypothesis density

filter [102] for the efficient update recursion. Especially in robotics research,

GM is a versatile tool to perceive the surrounding real-world environment. In

simultaneous localization and mapping (SLAM) problems, multiple loop closure

and data association hypotheses can be encoded in GM distributions [65,103].

It is common to model the map as a mixture of local Gaussian distributions for

better registration [104, 105]. Multiple pose hypotheses of symmetric objects

are modeled in a GM distribution [64,66].

The Bayes rule plays a central role in estimation problems, and the Bayesian

filter is solved analytically in a linear Gaussian system. However, once a GM is

introduced in either process or measurement distributions, the Bayesian recur-

sion exponentially increases the number of hypotheses [72], [106]. To maintain

a tractable size of a state dimension, Gaussian components should be merged

or pruned with the minimum information loss. On the other hand, in the as-

pect of modeling a state-space representation, a matrix Lie group is a natural

tool to deal with the underlying geometry, for instance, describing the three-

dimensional position and attitude of a rigid body [11,78]. Filtering on matrix

Lie groups [12, 107] has shown promising consistency and accuracy over the

conventional parameterization in a vector space.

However, dealing with a GM on matrix Lie groups is not straightforward.

A question arises in how to define GMs and a reduction procedure on matrix
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occlusion

Image index = 1 Image index = 600

Figure 5.1: Rotational error estimated by a 6 DOF pose detector (CosyPose)
of a mug in the YCB-Video dataset. The symmetric z-axis exhibits heavy-tailed
noise distribution due to self-occlusion.
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Lie groups. To this end, this study proposes to merge a GM at a common tan-

gent space that is called a midway point, a weighted matrix of mean matrices.

Through this merge rule, it is proved that the approximation error is less than

the conventional merge by Ćesić et al. [69] when deriving the merged covari-

ance matrix. Furthermore, the proposed approach eliminates the need for the

back-projection leading to a lighter computational burden over the conventional

merge.

A promising application example in object SLAM with pose ambiguity is

presented. Since a pioneering work of object-based SLAM [10], these systems

have shown promising results over conventional low-level SLAM by captur-

ing semantically as well as geometrically meaningful information. However,

estimating the 6 degrees of freedom (DOF) pose of a symmetric object with

occlusion is still very challenging. For instance, it is experimentally discovered

that the rotational error along the symmetric axis of a mug behaves as a heavy-

tailed distribution, as shown in Fig. 5.1 and Fig. 5.4. A standard Gaussian

distribution cannot capture this behavior and properly weight these outliers.

To tackle this, the noise distribution is fitted by a GM and a Kalman filter with

the proposed GM merge method is formulated using a 6 DOF pose detector as

a sensor. The main contribution of this chapter is as follows.

• A novel GM merge on matrix Lie groups called Gaussian mixture midway-

merge is proposed, where probability density functions (PDF) are trans-

formed at the tangent space of the predetermined midway point, then

merged.

• The strength of the merge method is validated through the numerical

evaluation of PDF dissimilarity metrics on the special orthogonal group

SO(3).
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• Kalman filter with the proposed merge is formulated for object SLAM

with pose ambiguity and experimental tests demonstrate its effectiveness

in a Monte-Carlo simulation, photo-realistic simulator, and real-world

dataset. The implementation1 is open-sourced for the benefit of the com-

munity.

5.2 Gaussian Mixture Merge

This section reviews the uncertainty transformation in [69] and reveals a limita-

tion that would yield information loss with increasing distance between means

of GM components. Then, a Gaussian mixture midway-merge method is intro-

duced to mitigate this.

5.2.1 Uncertainty at Transformed Mean

To merge a GM on matrix Lie groups, it is straightforward to merge them

at the same mean. Assume that it is required to express NG(X̂i, Pi) at some

common point X̂c. Using notations in Section 2.2, the ith random vector is

ξi = ln(X̂iX
−1)∨. Substituting X = exp(−ξ∧c )X̂c,

ξi = ln
(
X̂iX̂

−1
c exp(ξ∧c )

)∨
= ln

(
exp(∆x∧i ) exp(ξ∧c )

)∨
(2.34)
≈ Jl(∆xi)(ξc +∆xi) (5.1)

if ∆xi is small where exp(∆x∧i ) := X̂iX̂
−1
c . Then, substituting (5.1) to the first

line of (2.38), the below is obtained

1 ≈
∫
RN

(2π)−
N
2

∣∣P̄i

∣∣− 1
2 ×

exp
(
−1

2
(ξc +∆xi)

T P̄−1
i (ξc +∆xi)

)
d ξc (5.2)

1https://github.com/lastflowers/midway
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𝑁𝐺( 𝑋𝑓, 𝑃𝑓)

warping warping

“Midway-merge”

𝑁(−Δ𝑥2, ത𝑃2)

𝑁(−Δ𝑥1, ത𝑃1)

Figure 5.2: Schematic illustration of the proposed merge with the correspond-
ing densities at each step.

where d ξi = |Jl(∆xi)|d ξc and the new covariance is P̄i = J−1
l (∆xi)PiJ

−T
l (∆xi).

Therefore, the random vector at the new mean follows, ξc ∼ N(−∆xi, P̄i) [69].

It is clear that as the distance between mean matrices ∥∆xi∥ increases, (5.2)

is no longer a valid PDF, hence P̄i cannot capture the correct uncertainty. Also,

being a valid density in the line of (2.38) requires back-projection to make a zero-

mean. To mitigate the assumption and remove the additional computation, GM

components are merged at a midway point in the following section.

5.2.2 Midway-Merge

Given two components in a GM on matrix Lie groups,

w1NG(X̂1, P1) + w2NG(X̂2, P2) (5.3)

the key idea is to merge them at the fused mean,

X̂f =
(
X̂2X̂

−1
1

)w∗
2
X̂1 (5.4)
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where w∗
2 = w2/(w1 + w2) is a normalized weight. (5.4) is analogous to linear

interpolation in a Lie algebra [11]. X̂f is termed as a midway point as it is

placed between X̂1 and X̂2 as schematically seen from Fig. 5.2. If NG(X̂1, P1)

is expressed at the midway point using (5.2),

ξf ∼ N
(
−∆x1, P̄1

)
∆x1 = ln

(
X̂1X̂

−1
f

)∨

P̄1 = J−1
l (∆x1)P1J

−T
l (∆x1) (5.5)

where it is assumed that O(∥∆x1∥2) = 0. Likewise, the second component is

transformed to the midway point,

ξf ∼ N
(
−∆x2, P̄2

)
∆x2 = ln

(
X̂2X̂

−1
f

)∨

P̄2 = J−1
l (∆x2)P2J

−T
l (∆x2). (5.6)

Again, it is assumed that O(∥∆x2∥2) = 0. The transformed distributions in

(5.5) and (5.6) are merged at the tangent space on X̂f by preserving moments

as introduced in Section 2.6,

∆xf = −w∗
1∆x1 − w∗

2∆x2

= −w∗
1 ln

(
X̂1X̂

−1
f

)∨
− w∗

2 ln
(
X̂2X̂

−1
f

)∨
. (5.7)

The distance between X̂1 and X̂2 are defined as

exp(∆x∧) := X̂2X̂
−1
1 . (5.8)
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Substituting (5.4) and (5.8) to (5.7) yields

∆xf = −w∗
1 ln

(
exp

(
−w∗

2 ∆x∧
))∨ − w∗

2 ln
(
exp

(
∆x∧

)
exp

(
−w∗

2 ∆x∧
))∨

= w∗
1 w

∗
2∆x− w∗

2(1− w∗
2)∆x = 0. (5.9)

This implies that the merged distribution at the tangent space of X̂f is a valid

distribution as a line of (2.38). Using (2.41), the merged covariance is

Pf = w∗
1 P̄1 + w∗

2 P̄2 + w∗
1 w

∗
2 (∆x2 −∆x1)(∆x2 −∆x1)

T

= w∗
1 P̄1 + w∗

2 P̄2 + w∗
1 w

∗
2 ∆x∆xT , (5.10)

and the weight is

wf = w1 + w2. (5.11)

Fig. 5.2 illustrates the overall procedure of the Gaussian mixture midway-

merge in which each component is transformed to the same mean and merged

in a vector space. It is remarkable to note that the proposed approach does

not require any back-projection to matrix Lie groups by virtue of (5.9) that was

needed in [69]. This spares computing the adjoint when merging the covariance.

5.2.3 Approximated Error Analysis

It has been assumed that both ∥∆x1∥2 and ∥∆x2∥2 are zero when deriving

the merge method. This approximation is actually less significant than the

assumption (∥∆x∥2 = 0) in the previous method [69].

Theorem 1. Given ∥∆x1∥, ∥∆x2∥, and ∥∆x∥ in (5.5), (5.6), and (5.8), respec-
tively, then, ∥∆x1∥2 + ∥∆x2∥2 ≤ ∥∆x∥2

Proof. From the definition it can be seen that the distance between X̂1 and X̂f

is
∆x1 = ln

(
exp(−w∗

2∆x∧)
)∨

= −w∗
2 ∆x. (5.12)
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Likewise, the distance between X̂2 and X̂f is

∆x2 = ln
(
exp((1− w∗

2)∆x∧)
)∨

= (1− w∗
2)∆x. (5.13)

Therefore,

∥∆x1∥2 + ∥∆x2∥2 = (w∗2
1 + w∗2

2 )∥∆x∥2

≤ ∥∆x∥2 (5.14)

since 0 ≤ w∗
1 ≤ 1, 0 ≤ w∗

2 ≤ 1 and w∗
1 + w∗

2 = 1. ■

It is remarkable to note that the approximation error in the Gaussian mix-

ture midway-merge is always less than the conventional method [69] except

when w∗
1 = 1 or w∗

2 = 1. In these extreme cases, a merge is not required. Based

on (5.14), the proposed approach can estimate the merged covariance matrix

more accurately when merging Gaussian distributions on matrix Lie groups.

5.3 Gaussian Merge on SO(3)

The objective of this test is to investigate dissimilarity between densities before

p(X) and after the merge q(X) with increasing distance of mean matrices.

Suppose that densities are given on SO(3) such that

p(X) = 0.5︸︷︷︸
w∗

1

NG(exp(
[
0, 0, 0

]T∧

)︸ ︷︷ ︸
X̂1

, 52I3︸︷︷︸
P1

)

+ 0.5︸︷︷︸
w∗

2

NG(exp(
[
ϕ,−ϕ, ϕ

]T∧

)︸ ︷︷ ︸
X̂2

, 102I3︸ ︷︷ ︸
P2

) (5.15)

q(X) = NG

(
X̂f , Pf

)
(5.16)
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where the angle, ϕ is increased from 5 to 60deg with the interval of 5deg. The

KLD and ISD are defined as follows

DKL(p || q⋆) =
∫
SO(3)

p(X) ln
(

p(X)

q⋆(X)

)
dX

ISD(p, q⋆) =

∫
SO(3)

(p(X)− q⋆(X))2 dX (5.17)

where p(X) is defined in (5.15), and q⋆(X) either could be the proposed merge

q1(X) or the previous method q2(X) [69].

Since a direct numerical integration on SO(3) is intractable, the KLD and

ISD are numerically integrated on so(3) with a 0.3deg interval using the BCH

formula up to the 5th order terms. By the definition of KLD,

DKL(p || q) =∫
so(3)

(
η1 exp

(
−1

2
ξTP−1

1 ξ

)
+ η2 exp

(
−1

2
ξT2 P

−1
2 ξ2

))

× ln

η1 exp
(
−1

2ξ
TP−1

1 ξ
)
+ η2 exp

(
−1

2ξ
T
2 P

−1
2 ξ2

)
ηf exp

(
−1

2ξ
T
f P

−1
f ξf

)
 dξ (5.18)

where ξ, ξ2, and ξf are random vectors on X̂1, X̂2, and X̂f , respectively. The

normalizers are

η1 = w∗
1(2π)

− 3
2 |P1|−

1
2 ,

η2 = w∗
2(2π)

− 3
2 |P2|−

1
2
|Jl(ξ)|
|Jl(ξ2)|

,

ηf = (2π)−
3
2 |Pf |−

1
2
|Jl(ξ)|
|Jl(ξf )|

. (5.19)
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Figure 5.3: The differences of the (a) Kullback-Leibler divergence and (b)
integral square distance between the proposed and the Ćesić’s method.

Using the BCH formula ξ2 is approximated as follows

ξ2 = ln
(
X̂2X

−1
)∨

= ln
(
X̂2X̂

−1
1 X̂1X

−1
)∨

= ln
(
exp(∆x∧) exp(ξ∧)

)∨
≈ Jl(ξ)

−1∆x+ ξ +
1

12
∆x∧∆x∧ξ − 1

24
ξ∧∆x∧∆x∧ξ

+
1

120
∆x∧ξ∧∆x∧ξ∧∆x+

1

120
ξ∧∆x∧ξ∧∆x∧ξ. (5.20)

Likewise, ξf is approximated as analogous to ξ2. (5.18) is solved by the Euler

method with ∆ξi = 0.3deg interval,

12003∑
i=1

p(ξi) ln
(
p(ξi)

q(ξi)

)
∆ξi. (5.21)

Fig. 5.3 shows the differences of each dissimilarity measure: DKL(p || q2)−

DKL(p || q1) and ISD(p, q2)− ISD(p, q1). Since the differences are larger than

zero at all ϕ, the proposed method more accurately captures the original density

p(X) than the conventional method. As expected from the error analysis in
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Section 5.2.3, the differences become larger when ϕ increases. This is originated

from the violation of the assumption that ∥∆x∥2 ≈ 0.

5.4 Object SLAM formulation

A SLAM problem with a symmetric object is considered as a promising example

of the midway-merge. Specifically, this chapter focuses on jointly estimating

robot and object poses parameterized by

X = (TR, T1, . . . , TM ) (5.22)

where TR represents a robot pose and {Tj}Mj=1 are object poses in SE(3). The

robot pose is driven by the odometry model,

d

dt
TR(t) = TR(t) (u(t) + nw(t))

∧ (5.23)

where u(t) ∈ R6 is the true body velocity, and nw(t) ∈ R6 is a zero-mean white

Gaussian noise with E[nw(t)nw(τ)
T ] = Qδ(t − τ). It is assumed that objects

are static d/dt Tj = 0. An onboard sensor (RGB sensor with a deep neural

network)measures a relative pose of the jth object at a discrete time,

Yj(tk) = TR(tk)
−1 Tj(tk) exp(nj(tk)

∧). (5.24)

The measurement noise is a white GM that is uncorrelated to nw such that

nj(tk) ∼ α1N(0, R1) + α2N(0, R2). (5.25)

Around 10k images of a mug in the YCB-Video dataset [108] are investigated

when its handle is self-occluded. The rotational error histogram by CosyPose

[109]with a single view is shown in Fig. 5.4. It is clearly seen that the symmetric

z-axis exhibits heavy-tailed behavior. This is encoded by two GM components
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in nj for a simple but effective representation.

The Gaussian sum filter is implemented where each hypothesis is an ex-

tended Kalman filter parameterized by the right-invariant error based on the

object-based SLAM which is developed in Chapter 4. The weights of each

hypothesis are recursively updated according to the Bayes rule [72]. By in-

troducing the multimodal noise, it is evident that the number of hypotheses

exponentially increases. Unless otherwise noted, two Gaussian components are

sequentially merged, where they have the largest and the smallest weight, until

the number of hypotheses reaches the predefined threshold Nh. Also, the largest

and second-largest weights of Gaussian components are merged to summarize

the estimated quantity. Algorithm 2 shows the Gaussian mixture invariant ex-

tended Kalman filter (GM-IEKF) with the midway-merge. It is implemented

in MATLAB with Intel i5-7600 CPU at 3.50 GHz.
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Algorithm 2 GM-IEKF with midway-merge

1: Input: {w(h), X(h), P (h)}N
−
h

h=1, {Yj}
M
j=1, um

2: Output: {w(h), X(h), P (h)}Nh
h=1

3: for h = 1 to N−
h do // prediction for every hypothesis

4: (X(h), P (h))← Prediction (X(h), P (h), um)

5: end for

6: for h = 1 to N−
h do // update for every hypothesis

7: for i = 1 to 2 do

8: w(h+) ← weightUpdate (w(h), X(h), P (h), Ri)

9: (X(h+), P (h+))← Update (X(h), P (h), {Yj}Mj=1, Ri)

10: end for

11: end for

12: N+
h = 2N−

h

13: while N+
h ≥ Nh do

14: midwayMerge (w(h), X(h), P (h)) · · · from (5.4), (5.10), (5.11)

15: end while
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5.5 Experiments

Throughout this section, GM-IEKF with the proposed midway-merge is desig-

nated as GM(midway), while GM-IEKF with the conventional merge anchored

at the tangent space of the larger weight [69] is designated as GM(TL). Pose

error is defined as

ϵ = ln
(
T̂ T−1

)∨
(5.26)

by the convention in (2.37). In the simulation part, the averaged normalized

estimation error squared (ANEES)measures estimator consistency. At a specific

time, ANEES is defined as

ANEES =
1

N Ns

Ns∑
i=1

ϵTi P
−1
i ϵi (5.27)

where N = 6 + 6M is a dimension of the state, Ns = 100 is the number of

simulative runs, and P is the error covariance. Therefore, ANEES should be

the unity if the covariance fully explains the actual error.

5.5.1 Monte-Carlo Simulation

A virtual trajectory shown in Fig. 5.5a, odometry readings, and pose detection

are generated based on a sensor specification. The odometry noises are set as

0.026deg/s/
√
Hz and 0.002m/s/

√
Hz, respectively. A virtual detector outputs

a 6 DOF pose of the mug where only the rotation z-axis gives the GM noise,

that is

α1 = 0.7,√
R1 = diag(4◦, 4◦, 4◦, 0.01m, 0.01m, 0.01m),

α2 = 0.3,√
R2 = diag(4◦, 4◦, 12◦, 0.01m, 0.01m, 0.01m). (5.28)

103



(a)

Cesic et al. Proposed
0

1

2

3

4

5

6

A
v
g

. 
e

x
e

c
u

ti
o

n
 t

im
e

 /
 r

u
n

 [
s
e

c
]

(b)

Figure 5.5: (a) Virtual trajectory with a mug where the asterisk marks the
first camera pose. (b)Average execution time of a single run in 100 Monte-Carlo
simulations.

To expose merge methods in an extreme case, the most distant components

after the filter update are merged. Given a single object, Nh = 4 is set in the

simulation.

TABLE 5.1 reports averaged rotational root mean square error (RMSE) and

ANEES in 100 runs. The process noise deviation
√
Q is increased to simulate

low-grade sensors. The proposed merge decreases the estimation error further

and outputs more consistent estimates as
√
Q increases. The more uncertain the

process model is, the more opportunities multimodal a posteriori occurs. That

is, ∥∆x∥2 in (5.8)becomes larger. Furthermore, as the proposed method directly

merges distributions at the predetermined midway point, it spares computing

the adjoint to back-project the merged distribution. This reduces execution

time, as shown in Fig. 5.5b.

5.5.2 Photo-realistic Simulation

The objective of this simulation is to quantitatively show the effectiveness of

the Gaussian midway-merge method in terms of localization and object map-
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Table 5.1: Rotational root mean square error and averaged normalized esti-
mation error squared in 100 Monte-Carlo runs

Noise Method Rotation Rotation ANEESlevel robot [deg] object [deg]√
100 Q

GM (TL) 0.919 0.885 1.023
GM (midway) 0.919 0.885 1.023√

101 Q
GM (TL) 1.540 1.246 1.026

GM (midway) 1.540 1.246 1.026√
102 Q

GM (TL) 2.677 2.021 1.036
GM (midway) 2.676 2.020 1.036√

103 Q
GM (TL) 4.564 3.312 1.083

GM (midway) 4.561 3.309 1.082√
104 Q

GM (TL) 7.413 5.096 1.449
GM (midway) 7.400 5.079 1.443√

105 Q
GM (TL) 10.646 6.502 1.890

GM (midway) 10.582 6.396 1.863
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Table 5.2: IMU specification in the virtual environment

Specifications Gyroscope Accelerometer
Sampling rate 100 Hz 100 Hz
Random walk 0.3 deg/

√
hr 0.14 m/s/

√
hr

Bias stability 4.6 deg/hr 0.036 mg

Table 5.3: Drone localization and object mapping error in pose

Methods Robot Robot Object Object
error [m] error [◦] error [m]∗ error [◦]∗

Only propagation 0.69 13.62 - -
GM (TL) 0.25 8.12 0.10 6.35

GM (midway) 0.23 7.68 0.08 3.03
*Mean error of all estimated objects

ping accuracy. To achieve this, a photo-realistic virtual environment based on

AirSim [83] and YCB objects [108,110] in a room-scale environment is designed

as shown in Fig. 5.6. A drone flies following the trajectory shown in Fig. 5.6

capturing stereo images and IMU measurements where TABLE 5.2 shows spec-

ifications of the IMU. A virtual stereo camera has 12cm of a baseline with

960× 600 resolution images in 20 fps.

The main difference to the previous simulation is that the merge distance

increases due to the larger scale scenario. Fig. 5.7 and Fig. 5.8 highlight the suc-

cessful case of the proposed merge method on matrix Lie groups. As expected

from the approximation error analysis in Section 5.2.3 and the Monte-Carlo

simulation, GM(midway) improves the estimation accuracy when compared to

GM(TL). The quantitative results are shown in Table 5.3.
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vehicle

Figure 5.6: A room-scale virtual environment with YCB objects in the scene
and the ground-truth trajectory of a drone with an onboard sample image
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Figure 5.7: The ground-truth and estimated trajectory in the virtual environ-
ment. Only propagation: no object measurements; GM-IEKF with the previous
merge GM (TL) and the proposed merge method GM (midway).
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5.5.3 Real-world Datasets

In the YCB-Video dataset [108], this section validates the object-based SLAM

formulated by GM-IEKF with the midway-merge method. The goal of this test

is to investigate the efficacy of the midway-merge and how estimation error de-

creases with respect to the state-of-the-art 6 DOF pose detector, object SLAM

(RIEKF [61]) and low-level SLAM (ORB-SLAM3 [22] with RGB-D). Among

possible candidates such as CosyPose [109] and PoseRBPF [62],CosyPose with

a single view is adopted as a sensor trained by the authors because of its superior

performance. Data sequences with a mug are selected where the mug possesses

heavy-tailed noise distribution along the symmetric axis as analyzed in Fig. 5.4.

The noise characteristic of CosyPose is predictable since the authors introduce

the symmetric distance in the training loss function. This allows the network

to train symmetric objects, but at the same time, this admits estimation errors

due to the symmetry. This error is modeled by a GM distribution in the filter.

Objects other than the mug in scenes are also modeled as heavy-tailed dis-

tribution for a generalization of the proposed approach. Given multiple objects,

Nh is set as 12. Please note that objects that output very unstable estimates

are excluded, such as bowls. Since odometry measurements are unavailable in

the dataset, a constant velocity model is assumed.

TABLE 5.5 reports RMSE of the robot (camera) and mug pose, and robot-

mug relative pose. GM-IEKF with two merge methods outputs almost identical

estimation error. This is due to the low noise level Q (slow and smooth motion)

as analyzed in TABLE 5.1. However, the midway-merge consistently reduces

execution time with respect to the conventional merge [69] as summarized in

TABLE 5.4 by sparing the back-projection procedure. The execution time for

GM(midway) corresponds to the time to process the 14 line in Algorithm 2
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per frame, while the midway-merge is replaced by the conventional merge in

GM(TL). The back-projection involves two dense matrix multiplication in a

state dimension N . In the YCB-Video dataset, N = 36 depending on the num-

ber of objects, and TABLE 5.4 indicates that 13 times GM merge on average

per frame is not trivial. Note that the Gaussian mixture model sacrifices com-

putational burden due to the multi-hypothesis modeling when compared to the

single hypothesis [61]. However, multiple filter updates are parallelizable, and in

terms of Update per filter, which means execution time per Nh, the time budget

is almost identical when compared to the single hypothesis case. Therefore, if

accuracy is prioritized over the computational burden, the proposed approach

would be a proper choice since it effectively mitigates the large rotational error.

In contrast, filtered pose by the proposed approach GM(midway) reduces

49.5% of relative rotation error when compared to CosyPose. The significant

rotational error reduction is observed in the sequence 0022 where the mug

handle is occluded in most scenes. Fig. 5.9 and Fig. 5.11 highlight that the

pose detector suffers from the large deviation when the handle is occluded, while

the proposed approach mitigates this by perceiving the prior pose. Fig. 5.10

also shows other examples of ambiguous objects. Please see the supplementary

video for further visualization.2 RIEKF [61], fed by the identical 6 DOF pose as

GM methods, also improves pose error when compared to CosyPose thanks to

the prior information. However, the method cannot explicitly address the noise

due to symmetry as opposed to the proposed method, which leads to a large

rotation error as highlighted in Fig. 5.9 and Fig. 5.10. Lastly, GM(midway)

improves the robot localization accuracy with respect to ORB-SLAM3 (RGB-

D) in most sequences, even without using depth measurements. This implies

that objects possess rich information for localization and mapping.

2https://youtu.be/EvtW-mb8YK8
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Table 5.4: Average execution time in millisecond per frame

Sequence Method Update per filter Merge

0000
RIEKF [61] 0.28 -
GM (TL) 0.29 3.10

GM (midway) 0.28 2.92

0007
RIEKF 0.28 -
GM (TL) 0.39 3.95

GM (midway) 0.40 3.52

0022
RIEKF 0.36 -
GM (TL) 0.49 4.93

GM (midway) 0.48 4.28

0027
RIEKF 0.28 -
GM (TL) 0.40 3.97

GM (midway) 0.39 3.48

0033
RIEKF 0.48 -
GM (TL) 0.65 6.70

GM (midway) 0.65 5.90

0039
RIEKF 0.47 -
GM (TL) 0.64 6.72

GM (midway) 0.64 5.91

Mean
RIEKF 0.36 -
GM (TL) 0.48 4.90

GM (midway) 0.47 4.34
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occlusion

Figure 5.9: The rotational error of the symmetric axis of the mug in the 0022
sequence. The filtering method successfully mitigates large errors by virtue of
prior information and the GM noise modeling.
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5.6 Disccusion on different types of symmetric objects

As defined in Lee et al. [111] symmetric objects possesses either discrete (e.g.,

a rectangular table) or continuous ambiguity (e.g., a round table). This section

investigates the pose estimation accuracy of discrete and continuous symmet-

ric objects in the proposed approach along with the recent uncertainty-aware

object SLAM methods: SUO-SLAM [67] and PrimA6D++ [112], and discusses

the strengths and limitations of the proposed approach with promising future

research direction.

Table 5.6 shows the relative camera-object pose error in the 0056 sequence of

the YCB-Video dataset. Results other than the proposed method are obtained

based on the corresponding open-source codes. Note that SUO-SLAM is in slam

mode and PrimA6D++ is with the graph optimization using only RGB for fair

comparison. Fig. 5.12a highlights the rotation error of master chef can where

the object has discrete ambiguity along the ambiguous axis with ±180◦. This

shows the strength of the proposed filtering method: ambiguous observations

by discrete symmetry can be successfully mitigated only with a single pass and

single update iteration leading to comparable accuracy to the state of the art.

On the other hand, Table 5.7 shows results in the 0053 sequence where the

scene includes a bowl having continuous symmetry. Fig. 5.12b represents the

relative rotation error along the ambiguous axis where the proposed method

shows the least accurate estimation. Since the proposed approach does not di-

rectly utilize image intensities but depends on a pose detector, a consistent bias

included in pose detection is not observable in the estimator. Therefore, incor-

porating contour or intensity matching between a prediction and observation

would be a desirable improvement direction to cope with continuous symmetric

objects such as a bowl.
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(a) (b)

Figure 5.12: The rotational error along the ambiguous axis of the (a)master
chef can and (b) bowl

Table 5.6: Time-averaged RMSE of camera-object position [cm] / rotation
[deg] error in the 0056 sequence of YCB-Video

Methods SUO-SLAM [67] PrimA6D++ Proposedw/ opt [112]
master chef can 1.64 / 5.55 0.76 / 1.69 0.49 / 2.80

pitcher base 3.28 / 2.77 2.70 / 1.57 2.43 / 1.26
power drill 3.10 / 9.43 2.50 / 1.92 2.26 / 2.38

Table 5.7: Time-averaged RMSE of camera-object position [cm] / rotation
[deg] error in the 0053 sequence of YCB-Video

Methods SUO-SLAM [67] PrimA6D++ Proposedw/ opt [112]
tomato can 1.24 / 1.53 1.68 / 2.78 1.59 / 3.21

potted meat can 1.10 / 3.01 0.92 / 1.27 0.70 / 4.00
bowl 1.50 / 22.1 0.52 / 2.78 1.24 / 57.7
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5.7 Conclusion

This chapter has proposed the Gaussian mixture midway-merge that merges

Gaussian distributions on matrix Lie groups. Specifically, the proposed ap-

proach computes the merged mean and transforms the covariance matrices at

the corresponding tangent space. This simple but powerful technique decreases

information loss when the distance between mean matrices increases and com-

putation time by sparing the adjoint. As a promising example, GM-IEKF, the

Gaussian sum filter with the proposed merge for a symmetric object SLAM

problem is formulated. A thorough Monte-Carlo simulation and demonstra-

tion on real-world as well as synthetic datasets reveal that the midway-merge

has a lighter computational burden and a nice property when the noise level

increases when compared to the conventional merge. The proposed method

has great potential in state estimation on matrix Lie groups that deals with

Gaussian mixtures.

Future work includes evaluating the presented approach with diverse sym-

metric objects in a long-range scenario. Generalizing the GM noise model to

explain a symmetric object such as a bowl without any distinguished textures

is also a part of future work.
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Chapter 6

Visual-Inertial Object SLAM System
Integration

This chapter contains the contents of the following conference publication:

J. H. Jung and C. G. Park, “A Framework for Visual-Inertial
Object-Level Simultaneous Localization and Mapping,”
in IEEE/ION Position, Location and Navigation Symposium, 2023,
pp. 1335–1340, doi: 10.1109/PLANS53410.2023.10140108

This chapter presents a framework of simultaneous localization and map-

ping (SLAM) by combining the modular visual-inertial odometry (VIO) and

object SLAM estimator. Semantic objects are known to possess rich localiza-

tion information, such as scale and orientation. However, how to tightly couple

these object measurements to an inertial sensor is not straightforward. To an-

swer this, local object poses from a deep neural network are fused to build a

globally consistent object map under precise prior estimates from the VIO mod-

ule. The contribution of this work is the representation of the object map with

six-dimensional poses that enables a robot to exploit orientational, as well as

positional information in the filtering formulation. The proposed method can

output cm-level accuracy localization and mapping in a room-scale environment

in a photo-realistic virtual environment.
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6.1 Introduction

Visual-inertial fusion for autonomous navigation has been tremendously stud-

ied in the last two decades, and the estimator architecture and a method for

processing visual information have been established [74]. Images capture rich

visual textures in a scene for visual navigation, but it does not contain the

absolute scale and are sensitive to motion blur due to fast motion. On the

other hand, an inertial measurement unit (IMU) outputs angular velocity and

specific force in a much higher sampling frequency and contains the absolute

scale for estimating a position of a vehicle. Therefore, an IMU can bridge the

gap between captured images, while the error accumulation can be mitigated

by visual information.

However, most of the previous research focused on the so-called low-level

visual features such as corners and lines [16, 113]. This allows a vehicle to

perceive the metric information, for instance, the vehicle’ s position is described

by the cartesian coordinate. In contrast, high-level visual features such as

semantic objects in an object-level approach have not only geometrically but

also semantically valuable information to localize a moving vehicle and perceive

its surrounding [10,56]. In a semantic sense, a semantically labeled map can be

generated, while rotation or scale information can be exploited in a geometric

sense. The main objective of this chapter is to localize a moving platform

in three-dimensional space while building globally as well as locally consistent

object-level map parameterized by a six-dimensional object pose in a stream of

visual and inertial measurements.

On the other hand, six-dimensional object pose detection from images has

been a challenging task in computer vision. Many previous works have shown

remarkable estimation accuracy in benchmark datasets [62, 63, 109]. However,
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multi-view constraints were not probabilistically exploited and their estimates

contain large errors when facing symmetric objects. More importantly, most

of these approaches did not address globally consistent object mapping while

mainly focusing on the local poses of objects. A global understanding of envi-

ronments is necessary when an intelligent agent performs a semantic task, such

as “fetch me a clamp on the table.”.

To tackle this, this chapter proposes a framework, as shown in Fig. 6.1

of visual-inertial object-level simultaneous localization and mapping (SLAM)

that combines modular visual-inertial odometry (VIO) in Chapter 3 and object

SLAM in Chapter 5 by jointly estimating the robot pose, as well as the objects’

poses. The contribution of this chapter lies in the representation of the object

map that enables a robot to process orientational, as well as positional local-

ization information in the filtering formulation. Furthermore, it is shown that

the proposed method can effectively mitigate pose errors from a deep neural

network in a fully probabilistic way, generating a cm-level accuracy object map

by fusing visual and inertial measurements in a simulation environment.

6.2 The System Overview

The presented system is built upon the previous chapters: the ensemble visual-

inertial odometry and object SLAM with pose ambiguity. Fig. 6.1 shows the

overall block diagram of the system. First, the VIO module minimizes the image

intensity difference of sequential images using iterated extended Kalman filter,

then estimates pose increment from the previous time step. After updating

the estimator by the kth image, the delta pose increment ∆T is passed to the

object SLAM module,

∆T =
(
T g
br

)−1
T g
bk

(6.1)
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delta
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Figure 6.1: Overview block diagram of the presented system

where

T g
bi
=

Rg
bi

pgbi

0 1

 , i ∈ {r, k}. (6.2)

Second, a deep neural network-based six-dimensional pose detector estimates

the relative robot-object pose. Lastly, Gaussian sum filter-based object SLAM

estimates objects, as well as the robot poses in the global frame.

6.3 Simulation Results

The objective of this simulation is to quantitatively evaluate localization and

mapping error decreases when using objects as measurements. The simulation

environment developed in Section 5.5.2 is used. For implementation details,

locally high-gradient visual keypoints are extracted in the left image with a

maximum number of 200 in the VIO module. Then the depth is initialized

based on the stereo baseline. Bad-conditioned keypoints are detected based

on normalized cross-correlation between consecutive two views. For the ob-
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ject SLAM, pre-trained CosyPose with a single view [109] is adopted and the

maximum number of hypotheses is assigned as 12. This means that Gaussian

distributions are merged iteratively until reaching the predefined number after

updating Gaussian sum filter. Also, filter estimates are reported as the merged

mean and covariance matrix of the largest and the second-largest weighted

distributions.

6.3.1 VIO error statistics

The actual delta pose error histogram obtained from the EnVIO is presented.

Fig. 6.2 shows a six-dimensional pose error histogram that has been ob-

tained through the virtual environment. Qualitatively, the histogram follows

Gaussian-like distributions that match the assumption (if ergodic). The noise

standard deviations for object SLAM are set based on the error statistics,

σR = 0.054 deg/
√
s and σp = 0.009 m/

√
s. These parameters would be the

starting point of filter tunning in different environments for generalization.

6.3.2 Pose detector error analysis

In the implementation, CosyPose with a single view pre-trained by the authors

[109] is used as a perception sensor. Fig. 6.3 clearly shows that the deep neural

network inherently possesses measurement noise. In other words, symmetric

objects such as a mug suffer from large yaw errors due to the ambiguous shape.

It is clearly seen in the overlaid image by the estimated mask in Fig. 6.3 as the

handle is not consistent with the true position. This motivated us to model the

object SLAM problem by Gaussian sum filter to account for multi-hypothesis
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measurement error. In this simulation, the noise vector nj in (5.25) is

nj ∼ 0.7N (0, diag(4◦, 4◦, 4◦, 5mm, 5mm, 5mm))

+ 0.3N (0, diag(4◦, 4◦, 8◦, 5mm, 5mm, 5mm)) (6.3)

where the larger noise 8◦ along the z-axis addresses the object symmetry.

6.3.3 Robot Localization

The effectiveness of object measurements is investigated when fused with the

EnVIO. Fig. 6.4 shows the orientation and position errors of the drone at

the global frame {g}. Here, INS is an inertial navigation system without any

measurements for baseline, OpenVINS [15] is a state-of-the-art method for com-

parison, EnVIO is a VIO module that builds the framework, and OBJ VI-SLAM

is the proposed framework that fuses the pose increment and local object poses

from a pose detector. Along with the quantitative summary in TABLE 6.1

for the corresponding errors in Fig. 6.4, it is seen that the VIO module, En-

VIO clearly mitigates large errors of INS and shows comparable results to the

state-of-the-art method, OpenVINS. Given the relatively lower orientation pre-

cision of the pose detector than the IMU, the orientation error of the drone in

OBJ VI-SLAM has not been improved. However, the position error reflects the

effectiveness of object measurements improving position accuracy with large

margins when compared to EnVIO.

Also, the vibrating behavior of the yaw error in Fig. 6.4 is observed when the

drone turns. This originated from the Euler integration in the implementation,

and more sophisticated integration such as the trapezoidal method can mitigate

this issue.
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Table 6.1: Orientation and position root mean square error along time for
each axis in the simulation

Estimators δθx δθy δθz δpx δpy δpz
[deg] [deg] [deg] [cm] [cm] [cm]

INS 0.072 0.029 0.187 131 811 171
OpenVINS [15] 0.045 0.050 0.245 1.69 2.26 13.0

EnVIO 0.027 0.017 0.168 2.64 7.93 6.34
OBJ VI-SLAM 0.026 0.018 0.165 1.15 1.47 2.12

6.3.4 Object mapping

Lastly, this section investigates the effectiveness of object pose filtering by com-

paring the raw measurements from the pose detector and filtered object pose in

the framework. Fig. 6.5 draws object mapping errors in terms of the orienta-

tion and position errors of the two objects. It is evident that the pose network

inherently possesses estimation error due to sensor noise and the discrepancy

between training and test data. Especially, along the symmetric z-axis, the

network suffers from large errors due to shape symmetry. The proposed ap-

proach successfully mitigates this thanks to the prior information from the VIO

module and multi-hypothesis noise modeling in Gaussian sum filter adoption.
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6.4 Conclusion

This chapter has proposed a framework of visual-inertial object-level SLAM

that includes a VIO module and joint estimation of objects, as well as robot

poses. To tackle the measurement ambiguity of artificial objects, a multi-

hypothesis noise vector is encoded in Gaussian sum filter. In the photo-realistic

simulation, test results have shown the effectiveness of using object measure-

ments in the context of visual-inertial SLAM.

Nonetheless, the current study has some limitations that motivate future

work. First, it has been assumed that objects are static. It is desirable to release

this assumption by studying various aspects of the target tracking literature.

Second, this study heuristically sets the noise vector in the measurement model.

Future work includes assigning noises based on the Bayesian neural network for

the principled uncertainty.
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Chapter 7

Conclusion

7.1 Concluding Remarks

Toward a robust visual-inertial navigation system, this study has made theo-

retical contributions built on matrix Lie groups, yet practical implementations

of Bayesian filtering that tracks the underlying posterior distribution. Visual-

inertial state estimation has been tremendously studied and implemented in

commercial products in the past two decades. However, it is still not possible

to cope with every failure case due to degeneracy in sensors. To close the gap

between the research objective and the state of the art, this dissertation focused

on estimation uncertainty in dealing with the photometric and pose measure-

ments. Specifically, this study addressed robustness to large initial uncertainty

and robustness to ambiguous sensor measurements. Through this research, it

is possible to resolve such conditions. Starting with the basic idea followed

by a very fundamental simulation study, the effectiveness of the proposed ap-

proaches is validated through intensive real-world datasets and experiments.

First, this study proposed the optimal image gradient that minimizes the

expectation of the linearization error squared. This is a generalization from

a deterministic to a stochastic system by accounting for the projective un-

certainty in an image domain. The proposed approach was implemented in

visual-inertial odometry (VIO), which directly minimizes the photometric er-
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ror, and the optimal gradient was realized by sampling ensembles according to

the state uncertainty. To deal with the nonlinearity in image intensities, this

study adopted the iterated EKF to propagate the mean and covariance matrix,

and this photometric formulation spares the explicit data association among

keypoints. The strength of the method lies in a nice property that enlarges the

convergence basin for iterative estimators, leading to high robustness to the

initial uncertainty. The ablation study showed the effectiveness of the gradient

in terms of estimation accuracy and consistency with increasing initial velocity

error. In conjunction with the image pyramid, a standard technique to flat-

ten local minima, the proposed method exhibited successful convergence up to

3m/s velocity error that can possibly occur during inflight initialization. Fur-

thermore, this study developed a real-time state estimator and demonstrated

it in a flying robot experiment. The real-world drone flight tests revealed accu-

rate (18cm, 0.60◦) and real-time performance (36ms) in a laptop CPU, in which

state-of-the-art estimators struggled to achieve this accuracy.

Second, this study proposed to formulate an object-based simultaneous lo-

calization and mapping (SLAM) problem in the invariant EKF. The conven-

tional EKF-SLAM suffers from inconsistency since the unobservable bases de-

pend on the linearization point. This previous finding was expanded to a pose

measurement on matrix Lie groups. Specifically, this study derived that the

unobservable directions are independent of the linearization point, leading to

accurate and consistent estimation performance. This is a generalization of the

classical keypoint-based to object-based SLAM. Through a Monte-Carlo simu-

lation, the proposed method achieved consistency giving an average normalized

estimation error squared as 1.07, while the conventional EKF gains spurious

information along the yaw direction. Furthermore, it was shown that the pre-

sented approach can be realized in a real-world driving scenario. This study
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adopted an off-the-shelf deep neural network as a perception sensor to detect

object poses and analyzed the six-dimensional detection error to properly tune

its measurement uncertainty in filtering. In an open-source driving dataset,

the experimental results showed the validity of object measurements, and the

proposed method achieved comparable estimation accuracy (relative pose er-

ror: 1.35%) using only object measurements when compared to state-of-the-art

object-based SLAM methods.

Third, this study proposed the Gaussian mixture midway-merge method to

merge a pair of Gaussian distributions on matrix Lie groups. The key idea

was to determine the common tangent space first, then warped distributions

were merged at the associated space. It was proved that this rule yields less

approximation error than the conventional merge method. This theoretical

contribution was confirmed by investigating the dissimilarity between densi-

ties before and after merging. As a promising application, this study tackled

a challenge in object-based SLAM with a symmetric shape, where the num-

ber of hypotheses exponentially increases over time in a naive approach. To

be specific, the Gaussian sum filter was formulated to address the multiple hy-

potheses where the second work of this dissertation implements each filter. The

increasing hypotheses are bounded by the proposed merge method. Through a

Monte-Carlo simulation and photo-realistic virtual environment, the strength

of the presented merge was highlighted: The longer the distance between dis-

tributions, the less information loss when distributions are merged. This study

focused on mug pose estimation, which exhibits heavy-tailed distribution due

to occlusion, as a real example. The large rotation error of the state-of-the-art

pose detector along the symmetric axis was mitigated. In a room-scale environ-

ment, the filtering method reduced the rotation error by 49.5% (3.99◦ → 1.96◦)

on average over more than 10k images compared to the pose detector.
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Lastly, this study presented a SLAM system combining VIO and ambiguity-

aware SLAM developed in this dissertation. In this framework, the odometry

module estimates a pose increment between images, while a pose detector out-

puts the six-dimensional robot-object pose. Gaussian sum filter embraces all

the measurements and jointly estimates robot and object poses. In a photo-

realistic simulator, this study showcased that the presented system can output

cm-level localization and mapping accuracy in a room-scale environment.

7.2 Future Works

This dissertation has addressed challenges in visual-inertial state estimation.

Nonetheless, there are still promising future works that further advance the

estimation reliability toward a fail-safe and fail-aware system.

Resilient state estimation

Resilience means an ability to recover from a failure, while robustness is an abil-

ity to resist degraded conditions. This dissertation focused on the robustness to

the large initial error and ambiguous measurements, but it is very challenging to

proactively consider all extreme conditions that can occur in real applications.

Therefore, the estimator should be resilient meaning it is aware of failures (i.e.

estimation error diverges) and restarts its process with reconfigured parameters

(i.e. more proper tuning parameters) or a set of sensors (i.e. selecting a lidar

in a low-light condition) automatically. An intelligent agent would monitor es-

timation uncertainties to detect which sensor is failed and reload predefined

parameters. More general system-level resiliency with minimum tuning factors

will be an interesting research direction in this topic.
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End-to-end learning with physics-based knowledge

It is evident that there are elements better dealt with a model-free approach

in state estimation with perception sensors. This example includes perceiving

salient visual features and semantic objects in a camera and finding point cor-

respondences in a lidar. However, model-free approaches have a fundamental

limitation in generalization to unseen novel data. On the other hand, model-

based methods rely on the physical law to describe the relationship between

sensor measurements and kinematics, but it is vulnerable to unmodeled errors.

This complementary characteristic has led to physics-informed machine learn-

ing, and it is a powerful tool to balance between the model and the data. In

this context, this dissertation suggests a fusion of the learning-based pose de-

tector and traditional probabilistic estimator. Yet, the presented approach as

well as the state of the art treat model-based and model-free methods indepen-

dently, causing suboptimal training for a given task. A tight fusion of a deep

neural network and differentiable optimizer in an end-to-end manner would be

a promising future research direction for fail-critical systems.
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Appendix A

Derivation of unobservable subspace
in SO(3)-EKF

Starting with the derivation of error equations, this appendix analytically de-

rives the unobservable subspace for an object-based SLAM problem. Note that

“≈” is used when higher-order terms are neglected or an assumption is made.

Also, note that “=” in the error equation holds up to higher-order terms. The

interested state space is

X = (Rb, pb, vb, Ro, po) (A.1)

where Ro, po is the rotation and position of an object. Then, the underlying

kinematics is

Ṙb = Rb(ωm − bg − ng)
∧

ṗb = vb

v̇b = Rb(am − ba − na) + g

ḃa = nwa

ḃg = nwg

Ṙo = 0

ṗo = 0 (A.2)
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where notations are defined in (3.8).

Jacobian matrix in continuous time

By perturbing (A.2)with the error definition made in (4.15), the error dynamics

for rotation is

exp(−ϕ∧
b )(−ϕ̇∧

b )R̂b + exp(−ϕ∧
b )

˙̂
R = exp(−ϕ∧

b )R̂b

(
ωm − (b̂g − δbg)− ng

)∧

(−ϕ̇∧
b )R̂b + R̂b

(
ωm − b̂g

)∧
≈ R̂b

(
ωm − (b̂g − δbg)− ng

)∧

−ϕ̇∧
b =

(
R̂b(δbg − ng)

)∧

ϕ̇b = R̂b(−δbg + ng). (A.3)

For position,

δṗb = δv̇b. (A.4)

For velocity,

˙̂vb − δv̇b = exp(−ϕ∧
b )R̂b(am − (b̂a − δba)− na) + g

R̂b(am − b̂a)− δv̇b ≈ (I − ϕ∧
b )R̂b(am − (b̂a − δba)− na)

δv̇b ≈ −
(
R̂b(am − b̂a)

)∧
ϕb + R̂b(−δba + na). (A.5)

For biases,

δḃa = nwa,

δḃg = nwg. (A.6)

For the object,

ϕ̇o = 0,

δṗo = 0. (A.7)
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By rewriting the derived equations, the error dynamics is expressed as follows,

d

dt



ϕb

δpb

δvb

δba

δbg

ϕo

δpo


=



0 0 0 0 −R̂b 0 0

0 0 Id 0 0 0 0

−
(
R̂b(am − b̂a)

)∧
0 0 −R̂b 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





ϕb

δpb

δvb

δba

δbg

ϕo

δpo



+



0 R̂b 0 0

0 0 0 0

R̂b 0 0 0

0 0 Id 0

0 0 0 Id

0 0 0 0

0 0 0 0




na

ng

nwa

nwg

 . (A.8)

State transition matrix in discrete time

The deterministic part without biases is the interested quantity in this analysis.

At time t ∈ [tk−1, tk], the velocity error is

δvb(t) = δv(tk−1)−
∫ t

tk−1

(Rb(τ)am(τ))∧ ϕb(τ)dτ. (A.9)

Error states are discretized at {tk−1, tk}. For rotation,

δϕb(tk) = δϕb(tk−1). (A.10)
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For position,

δpb(tk) = δpb(tk−1) +

∫ tk

tk−1

δv(t)dt

= δpb(tk−1) +

∫ tk

tk−1

δv(tk−1)dt−
∫ t

tk−1

(Rb(τ)am(τ))∧ ϕb(τ)dτdt

= δpb(tk−1) + ∆tkδv(tk−1)−
∫ tk

tk−1

∫ t

tk−1

(Rb(τ)am(τ))∧ dτdt ϕb(tk−1),

(A.11)

where ∆tk = tk − tk−1 and ϕb is actually constant at the given time. For

velocity,

δv(tk) = δv(tk−1)−
∫ tk

tk−1

(Rb(τ)am(τ))∧ dτ ϕb(tk−1). (A.12)

Therefore, the state-transition matrix for the error state is expressed as follows.

ϕb(tk)

δpb(tk)

δvb(tk)

ϕo(tk)

δpo(tk)


=



Id 0 0 0 0

−
∫ tk
tk−1

∫ t
tk−1

(Rb(τ)am(τ))∧ dτdt Id ∆tkId 0 0

−
∫ tk
tk−1

(Rb(τ)am(τ))∧ dτ 0 Id 0 0

0 0 0 Id 0

0 0 0 0 Id


︸ ︷︷ ︸

Φ(tk−1,tk)



ϕb(tk−1)

δpb(tk−1)

δvb(tk−1)

ϕo(tk−1)

δpo(tk−1)


(A.13)

Measurement Jacobian

A robot observes the relative robot-object pose in {b} at time tl without loss

of generality since the extrinsic parameter is calibrated,

Rb
o = RT

b Ro exp(n∧
R)

Pb
o = RT

b (po − pb) + np (A.14)
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where the sensor measures the pose up to the white Gaussian noises, nR and

np. By perturbing (A.14) according to the error definition in SO(3)-EKF, the

measurement Jacobian matrix is obtained. For rotation,

exp(−ϕ∧
bo)R̂

b
o = R̂T

b exp(ϕ∧
b ) exp(−ϕ∧

o )R̂o exp(n∧
R)

exp(−ϕ∧
bo) = R̂T

b exp(ϕ∧
b ) exp(−ϕ∧

o ) exp
(
(R̂onR)

∧
)
R̂b

(2.32)
≈ R̂T

b exp
(
(ϕb − ϕo + R̂onR)

∧
)
R̂b

= exp
(
(R̂T

b (ϕb − ϕo + R̂onR))
∧
)

ϕbo = R̂T
b (−ϕb + ϕo − R̂onR). (A.15)

For position,

p̂bo − δpbo = R̂T
b exp(ϕ∧

b ) (p̂o − δpo − (p̂b − δpb)) + np

δpbo ≈ R̂T
b

(
(p̂o − p̂b)

∧ϕb − δpb + δpo
)
− np. (A.16)

By rewriting error equations, the measurement Jacobian is expressed as follows.

ϕbo

δpbo

 =

R̂T
b 0

0 R̂T
b

 −Id 0 0 Id 0

(p̂o − p̂b)
∧ −Id 0 0 Id


︸ ︷︷ ︸

H(tl)



ϕb

δpb

δvb

ϕo

δpo


+

−R̂T
b R̂o 0

0 −Id

nR

np



(A.17)
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Observability matrix

Substituting H(tl) in (A.17) and Φ(tl, t0) in (A.13) into (4.14) yields the lth

observability matrix block as follows.

OEKF
l =

RT
b (tl) 0

0 RT
b (tl)

 −Id 0 0 Id 0

(po(tl)− pb(tl))
∧ −Id 0 0 Id



×



Id 0 0 0 0

−
∫ tl
t0

∫ t
t0
(Rb(τ)am(τ))∧ dτdt Id ∆tlId 0 0

−
∫ tl
t0
(Rb(τ)am(τ))∧ dτ 0 Id 0 0

0 0 0 Id 0

0 0 0 0 Id


=

RT
b (tl) 0

0 RT
b (tl)


×

 −Id 0 0 Id 0(
po(tl)− pb(tl) +

∫ tl
t0

∫ t
t0
Rb(τ)am(τ)dτdt

)∧
−Id −∆tlId 0 Id


(A.18)

where ∆tl = tl − t0 and it is assumed that the system is linearized at the

true state. The right nullspace of the observability matrix is the unobservable

subspace. Assume that the below bases constitute the unobservable subspace,

N1 =



0

Id

0

0

Id


, N2 =



g

−pb(t0)∧g

−vb(t0)∧g

g

−po(tl)∧g


. (A.19)
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Then, it is clear to show that the global translation N1 satisfies

OEKF
l N1 = 0. (A.20)

For the global rotation about the gravity direction N2,

OEKF
l N2 =

RT
b (tl) 0

0 RT
b (tl)


×

 −g + g(
−pb(tl) +

∫ tl
t0

∫ t
t0
Rb(τ)am(τ)dτdt+ pb(t0) + ∆tlvb(t0)

)∧
g


=

RT
b (tl) 0

0 RT
b (tl)

 0

∆t2l
2 g∧g


= 0. (A.21)

Therefore, N1 and N2 span the unobservable subspace.
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Appendix B

Derivation of unobservable subspace
in the proposed formulation

The interested state space is the same as in Appendix A, but it is expressed on

matrix Lie groups. Specifically,

X = (Xb, To) , (B.1)

where

Xb =


Rb pb vb

0 1 0

0 0 1

 , Tb =

Ro po

0 1

 . (B.2)

Then the underlying kinematics in a matrix form is

Ẋb = fu(Xb)−XbB −XbN

Ṫo = 0, (B.3)
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where

fu(Xb) =


Rb ω

∧
m vb Rb am + g

0 0 0

0 0 0

 ,

B =


b∧g 0 ba

0 0 0

0 0 0

 ,

N =


n∧
g 0 na

0 0 0

0 0 0

 . (B.4)

Jacobian matrix in continuous time

For completeness, this appendix rephrases the error dynamics in [114]with the

notations defined in this dissertation. Given the right invariant error, δXb =

X̂bX
−1
b , the error equation is derived as follows.

δẊb =
˙̂
XbX

−1
b + X̂b

˙(X−1
b )

=
˙̂
XbX

−1
b − X̂bX

−1
b ẊbX

−1
b

≈
(
fu(X̂b)− X̂bB̂

)
X−1

b − δXb (fu(Xb)−XbB −XbN)X−1
b

= fu(δXbXb)X
−1
b − δXbfu(Xb)X

−1
b − X̂b(B̂ −B)X̂−1

b δXb + X̂bNX̂−1
b δXb

(B.5)

In the particular case, Xb = Id,

δẊb = fu(δXb)− δXbfu(Id)− X̂bδBX̂−1
b δXb + X̂bNX̂−1

b δXb, (B.6)
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where δB = B̂ −B. Reminding the error state is

δXb = exp(ζ∧b ) ≈ Id+ ζ∧b

=


Id+ ϕ∧

b ρb νb

0 1 0

0 0 1

 , (B.7)

evaluating each term yields

fu(δXb)− δXbfu(Id) ≈


0 νb g∧ϕb

0 0 0

0 0 0

 , (B.8)

X̂bδBX̂−1
b δXb ≈


(R̂bδbg)

∧ (p̂b)
∧R̂bδbg (v̂b)

∧R̂bδbg + R̂bδba

0 0 0

0 0 0

 , (B.9)

and

X̂bNX̂−1
b δXb ≈


(R̂bng)

∧ (p̂b)
∧R̂bng (v̂b)

∧R̂bng + R̂bna

0 0 0

0 0 0

 . (B.10)

Substituting these terms into (B.6) yields

ϕ̇b = −R̂bδbg + R̂bng

ρ̇b = νb − (p̂b)
∧R̂bδbg + (p̂b)

∧R̂bng

ν̇b = g∧ϕb − (v̂b)
∧R̂bδbg + (v̂b)

∧R̂bng − R̂bδba + R̂bna. (B.11)
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By rewriting the derived equations, the error dynamics is expressed as follows.

d

dt



ϕb

ρb

νb

δba

δbg

ϕo

ρo


=



0 0 0 0 −R̂b 0 0

0 0 Id 0 −(p̂b)∧R̂b 0 0

g∧ 0 0 −R̂b −(v̂b)∧R̂b 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





ϕb

ρb

νb

δba

δbg

ϕo

ρo



+



0 R̂b 0 0

0 (p̂b)
∧R̂b 0 0

R̂b (v̂b)
∧R̂b 0 0

0 0 Id 0

0 0 0 Id

0 0 0 0

0 0 0 0




na

ng

nwa

nwg

 . (B.12)

State transition matrix in discrete time

The deterministic part without biases is the interested quantity in this analysis.

At time t ∈ [tk−1, tk], the state-transition matrix is obtained in a closed form,

Φ(tk, tk−1)b = exp



0 0 0

0 0 Id

g∧ 0 0

∆tk



=


Id 0 0

∆t2k
2 g∧ Id Id∆tk

∆tkg
∧ 0 Id

 (B.13)
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where ∆tk = tk−tk−1. Therefore, the state-transition matrix for the error state

is expressed as follows.

ϕb(tk)

ρb(tk)

νb(tk)

ϕo(tk)

ρo(tk)


=



Id 0 0 0 0

∆t2k
2 g∧ Id Id∆tk 0 0

∆tkg
∧ 0 Id 0 0

0 0 0 Id 0

0 0 0 0 Id


︸ ︷︷ ︸

Φ(tk−1,tk)



ϕb(tk−1)

ρb(tk−1)

νb(tk−1)

ϕo(tk−1)

ρo(tk−1)


(B.14)

Measurement Jacobian

As in Appendix B, a robot measures the relative pose of an object at a discrete

time tl. Mathematically the relative pose measurement is,

Y = T−1
b Toexp(n∧

o ) (B.15)

where no is the white Gaussian noise. By perturbing (B.15) according to the

right invariant error definition,

exp(−ϵ∧) = T̂−1
b exp(ξ∧b ) exp(−ξ∧o )T̂o exp(n∧

o )T̂
−1
o T̂b

= T̂−1
b exp(ξ∧b ) exp(−ξ∧o ) exp

(
(AdT̂o

no)
∧
)
T̂b

(2.32)
≈ T̂−1

b exp
(
(ξb − ξo +AdT̂o

no)
∧
)
T̂b

= exp
((

AdT̂−1
b

(ξb − ξo +AdT̂o
no)

)∧
)

ϵ = AdT̂−1
b

(
−ξb + ξo −AdT̂o

no

)
. (B.16)
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In this expression, the adjoint is defined in (2.20). Rewriting with a matrix

expression yields

ϵ = AdT̂−1
b

−Id 0 0 Id 0

0 −Id 0 0 Id


︸ ︷︷ ︸

H(tl)



ϕb

ρb

νb

ϕo

ρo


−AdT̂−1

b
AdT̂o

no. (B.17)

Observability matrix

This appendix derives a block of the observability matrix at time tl by substi-

tuting Φ in (B.14) and H in (B.17) into (4.14).

OIEKF
l = AdT̂−1

b

−Id 0 0 Id 0

0 −Id 0 0 Id




Id 0 0 0 0

∆t2l
2 g∧ Id Id∆tl 0 0

∆tlg
∧ 0 Id 0 0

0 0 0 Id 0

0 0 0 0 Id


= AdT̂−1

b

 −Id 0 0 Id 0

−∆t2l
2 g∧ −Id −∆tlId 0 Id

 (B.18)

Then, it is clear to show that the nullspace of OIEKF
l is

N1 =



0

Id

0

0

Id


, N1 =



g

0

0

g

0


. (B.19)
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국문초록

영상관성항법시스템은영상및관성측정치를기반으로항체의상태변수, 즉

위치, 자세그리고주변지도를추정한다. 안전한자율시스템을위해서는정확

하고실시간성이보장되는영상관성항법과같은상태변수추정기가필수적이다.

최근많은연구에도불구하고센서성능이저하되는도전적인상황에서고장에

치명적인시스템에영상관성항법을적용하기에어려움이있었다. 이를위해서

는어떠한환경에서도안정적인추정치를출력할수있게고장에대해강건해야

하며고장이발생하더라도이를자동으로감지하여회복할수있어야한다.

본 논문에서는강건한영상관성항법시스템을설계하고자세가지의연구

원칙을제시한다. 첫번째로해당시스템은상태변수에대한추정치뿐만아니라

센서의불확실성을고려하는유효한추정신뢰도를출력해야한다. 추정된불확

실성은그자체로서고장감지를위해활용될수있고경로계획과되먹임제어와

같은후속작업에도활용될수있다. 두번째로상태변수공간은강체운동의불

확실성을전파하기에가장알맞은리그룹에서모델링되어야한다. 마지막으로,

개발된시스템은겉보기및시점변화에강건한의미론적물체를항법측정치로

서활용할수있어야한다.

앞서제시한연구원칙에입각하여본논문에서는최적이미지기울기,물체

기반동시적위치추정및지도작성 (SLAM) 그리고리-행렬군에서의정규분포

융합방법을제시한다. 최적이미지기울기는이미지영역에서투영불확실성에

대하여선형화오차제곱의기대값을최소화하게설계되었다. 물체기반 SLAM

에서는비가관측공간이선형화지점에의존적이지않음을해석적으로증명하여

추정기가유효한불확실성을출력함을보였다. 또한,리-행렬군상의정규분포를

융합하는방법을제시하고이를대칭성이포함된물체기반 SLAM에적용하여
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측정치의 모호성을 해결하였다. 최종적으로 본 논문에서 제안하는 방법들을

통합하여물체기반영상관성시스템을제안한다.

본논문에서는시뮬레이션및실제실험을통해제안한방법들의타당성을

검증하였다. 영상관성오도메트리에서기존방법은최대 3m/s속도오차에서

수렴이 실패한 반면 제안한 최적 기울기를 적용할 경우 추정기가 성공적으로

수렴함을보였다. 물체기반 SLAM에서기존의접근방법은추정치의비일관성

문제때문에중력에대한회전방향에대해유효한신뢰도를추정하지못하였다.

하지만본연구에서는물체기반 SLAM을리그룹에서모델링하였고이를통해

유효한추정신뢰도를추정할수있음을보였다. 또한, 물체기반 SLAM의대칭

모호성을해결함으로써 10,000장의이미지에대해 6자유도포즈검출기보다평

균적으로자세오차를 49.5% 감소시켰다. 마지막으로물체기반영상관성항법

시스템을 제안하여 방 크기의 실내 환경에서 cm 수준의 항법 및 지도 작성이

가능함을보였다.

주요어: 영상관성항법,상태추정,리-행렬군,동시적위치추정및지도작성

학번: 2019-32429
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