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Abstract 

 
Contrary to the theoretical concept, many structural models are 

often unstable due to structural flaws. Especially, some of flaws 

have a significant effect on the aerospace structure. Thus, it is 

necessary to analyze vibration analysis of imperfect ring. In the 

circumstance of structural flaws, the natural frequency of structure 

is divided with higher frequency and lower frequency. This paper 

explains to imperfect ring by using perturbation compared to simple 

theory assumed that the mode shape of imperfect ring is identical to 

perfect ring. Compared to simple theory, perturbation also deals 

with how to solve mode shapes as wells as natural frequencies by 

applying fourier series and it explains the variance of natural 

frequency and mode shape by mass imperfection. Besides this paper 

discusses thermo-elastic damping effect (TED) which is the key to 

derive Quality factor (Q-factor) and rotating ring. To easily express 

equation of motion, the rotating ring is considered by in-extensional 

assumption which is related to tangential displacement and radial 

displacement and linearization in perturbation. In case study, natural 

frequency, mode shape and Q-factor are investigated with the 

magnitude and location of imperfect mass and rotational speed by 

diverse method in macro-ring and micro-ring. Finally, this paper 
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suggests tuning method for reducing higher frequency and lower 

frequency which is showed by splitting of mass imperfection. To 

match frequency of the perfect ring, it proposes how to find the 

magnitude and location of adding or removing point masses.   

 

Keyword : mass imperfection, splitting, tuning, TED, Q-factor, 

rotating 

Student Number : 2021-26006 
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1. Introduction 
 

Many structures are theoretically designed and perfect. However, 

it is difficult to manufacture perfectly because of imperfections. To 

predict results by imperfection, it is necessary to consider structure 

combining imperfections such as point masses, stiffness. Some 

imperfections give the effects of frequency, mode shape and Q-

factor in micro ring. Many researchers studied the vibration of 

structure and suggested many methods to solve problem. 

Soedel [1] investigated rotating classical ring assumed to in-

extension. He [2] also investigated natural frequencies and mode 

shapes in non-axisymmetric tire by applying receptance method 

which is used to action and reaction of structure and point mass. 

Bert [3] studied curved beam and shear deformable ring. 

Furthermore, He investigated the frequency and mode shape in 

non-axisymmetric tire which is non-uniformity configuration using 

the receptance method [4]. Since disadvantage of receptance 

method is to be difficult to calculate to some variable and external 

environment, Fox explained how to easily solve it using simple 

theory [5]. Simple theory is used to calculate the splitting frequency 

which occurs in slightly imperfect axisymmetric bodies. Compared 

to receptance method, simple theory has restriction to use to the 
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ring model such as small imperfection and in-extension. Lee [6] 

researched to predict the effects of local deviations which is based 

on the laplace transformation method and heavy-side unit step 

function. Using Local deviation, the natural frequencies and mode 

shapes of the ring are predicted for the point mass, sharp decrease 

in stiffness. Amabili [7] used receptance method to apply to the 

research of the free vibrations of cylindrical shell that was either 

empty or filled. Considering density of free and filled in cylindrical, 

he calculated natural frequency and mode shapes. Park [8] 

investigated structural dynamics modifications based on frequency 

response function to obtain optimal structural changes to improve 

natural frequencies. The optimal structural modification is calculated 

by combining eigenvalue sensitivities and eigenvalue reanalysis 

technique. Fox [9] studied when the ring model is connected to 

different types of random mass imperfections, how the natural 

frequency splits statistically. Bisegma [10] suggested perturbation 

method different simple theory.  Perturbation method considers 

mode shapes as well as natural frequencies resulting from imperfect 

mass and stiffness compared to simple theory which is assumed that 

mode shape of imperfect ring is identical to perfect ring. Kim [11] 

explained strategy of asymmetric ring due to imperfect mass. He 

studied clear beats with proper periods in the first and the second 
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vibration modes by giving an example of Korean bell. Park [12] 

extensively examined the effect of multiple local deviations on the 

property of mode pair of ring and bell type structures such as 

circular ring, Korean bell using local deviation, [6]. Thao [13] 

researched natural frequencies of a clamped-clamped beam with 

concentrated masses calculated by receptance method which was 

based on theoretically exact. Chang [14] studied frequency derived 

by receptance method which is coupling of subsystems such as point 

masses, grounded springs, or spring-mass oscillators.  

 Q-factor is important factor in micro structure. Q-factor is 

even considered as variable of design. Zener [15] analyzed local 

fluctuations within a vibrating solid structure resulting from internal 

friction by heat conduction effects. Lifshitz and Roukes [16] 

investigated TED as a dissipation mechanism in micro and nano 

mechanical systems. Guo and Rogerson [17] studied the effect of 

thermoelastic coupling on a micro-machined resonator. Wong [18] 

investigated the application of Zener's theory to thin, circular rings. 

He also suggested a simple expression for the Q-factor associated 

with in-plane flexural modes of vibration. Furthermore, Wong and 

Fox [19] studied thermoealstic damping of the in-plane vibration of 

ring to gain advanced expression of energy-dissipation effects in 

MEMS resonators. Mioduchowski [20] examined Q-factor which is 
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considered by the effects of hollow geometry on thermoelastic 

dissipation of tubular beam resonators of circular corss-section. Hu 

[21] calculated frequencies and Q-factor of beam with mass and 

network of suspension. Pei [22] investigated Q-factor of rotating 

flexible annular micro-disk under thermoelastic coupling. Pawaskar 

[23] studied analytical solution for Q-factor in Timoshenko beam 

theory. Kim [24] studied Q-factor of ring with irregular mass and 

stiffness by using multi-deviation. Kim [25] also studied 

thermoelastic damping effect of rotating thin ring assumed to in-

extensional vibration. Furthermore, Kim [26] examined natural 

frequency and Q-factor of imperfect rotating ring by point mass. 

Kim [27] examined Q-factor divided by higher mode and lower 

mode due to imperfection of mass. Kim [28] investigated Q-factor 

of toroidal micro ring which splits higher mode and lower mode by 

imperfect mass. Using receptance method of cylindrical shell [7], 

Kim [29] applied thermoelastic damping effect and Q-factor to 

imperfect cylindrical shell by mass.  

 Trimming (Tuning) is crucial to eliminate higher and lower 

frequencies as well as Q-factor by removing or adding point mass. 

In this regards, it is necessary to calculate the process of split in 

reverse. Rourke and William and Fox [30], [31] studied how to trim 

imperfect ring due to point mass by using inverse process. Wu [32] 
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investigated trimmed Q-factor of the trimmed resonator for the 

vibratory cupped gyroscopes. Tanaka [33] studied and examined 

Q-factor of multi ring in which the trimming location is chosen to 

independently modify the Q-factors of each axis.  

  The objective of this paper is to derive solution for imperfect 

rotating ring and calculate natural frequency and Q-factor as well 

as mode shape which cannot be calculated in simple theory. By 

developing inverse problem of split frequency and Q-factor, this 

paper suggests how to tune frequency and Q-factor of imperfect 

ring by removing or adding point mass. 
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2. Formulation 
 

The rotating ring with rectangular cross-section is depicted in 

Fig.1 including arbitrary attached point masses. In this figure, 𝑅, 𝑏 

and ℎ are mean radius, height and radial thickness of the model, 

respectively. In addition, As the ring model, isothermal Young’s 

modulus, moment of inertia, cross-sectional area are defined as 

𝐸, 𝐼 = 𝑏ℎ3/12 and 𝐴 = 𝑏ℎ, respectively. The global polar coordinate 

system is used to describe the circumferential strain with local 

coordinate system. Especially, to show imperfection of masses, 

density with respect to the angular position is expressed as 𝜌 = 𝜌(𝜃). 

 

 

2.1. Equation of Motion in perfect rotating ring 

Equation of motion for rotating thin rings are given as [1] 

1

𝑅

𝜕𝑁𝜃

𝜕𝜃
+

1

𝑅2

𝜕𝑀𝜃

𝜕𝜃
− 𝜌𝐴 (

𝜕2𝑢

𝜕𝑡2
+ 2Ω

𝜕𝑣

𝜕𝑡
− Ω2𝑢) = 0 (1.a) 

1

𝑅

𝜕2𝑀𝜃

𝜕𝜃2
−

𝑁𝜃

𝑅
− 𝜌𝐴 (

𝜕2𝑣

𝜕𝑡2
− 2Ω

𝜕𝑢

𝜕𝑡
− Ω2(𝑅 + 𝑣)) = 0 (2.b) 

where 𝑀𝜃 , 𝑁𝜃  present moment resultant, force resultant, 

respectively. 



 

 ７ 

To eliminate radial strain, 𝑢 for deriving easily, it is assumed that 

the ring is axially inextensible so that 𝑣 = −𝜕𝑢/𝜕𝜃, 

𝜀 =
1

𝑅
(

𝜕𝑢

𝜕𝜃
+ 𝑣) = 0 (3) 

And the bending moment results on the cross-section of the model 

as ref. [1] is  

𝑀𝜃 = ∫(𝑟𝜎𝜃)𝑑𝐴
𝐴

= ∫ (𝑟𝜎𝜃)𝑏𝑑𝑟

ℎ
2

−
ℎ
2

 (4) 

Later, it is replaced to the bending moment with for explaining 

Thermal-elastic damping effect and Quality factor. 

So eq. (4) is changed  

𝑀𝜃 = −
𝐸𝐼

𝑅2
 (

𝜕2𝑢

𝜕𝜃2
+ 𝑢) (5) 

Thus the equation of motion of the rotating ring is represented as  
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𝐸𝐼 (
𝜕

𝜕𝜃
+

∂3

∂θ3
) (

𝜕𝑣

𝜕𝜃
+

𝜕3𝑣

𝜕𝜃3
)

+ 𝜌(𝜃)𝐴𝑅4 [
𝜕4𝑣

𝜕𝜃2𝜕𝑡2
−

𝜕2𝑣

𝜕𝑡2
+ 4Ω

𝜕2𝑣

𝜕𝜃𝜕𝑡
− Ω2 (

𝜕2𝑣

𝜕𝜃2
− 𝑣)] = 0 

(6) 

As it is applied by harmonic vibration, 

𝑣(𝜃, 𝑡) = 𝑣(𝜃)𝑒𝑖𝜔𝑡 (7) 

where 𝑣(𝜃) denotes the vibration amplitude, substituting into Eq. (6), 

thus, 

[𝐸𝐼 (
𝜕

𝜕𝜃
+

𝜕3

𝜕𝜃3
) (

𝜕𝑣

𝜕𝜃
+

𝜕3𝑣

𝜕𝜃3
)]

+ 𝜌(𝜃)𝐴𝑅4 [−𝜔2(𝛺) (
𝜕2𝑣

𝜕𝜃2
− 𝑣) + 4𝑖𝜔(𝛺)𝛺

𝜕𝑣

𝜕𝜃

− 𝛺2 (
𝜕2𝑣

𝜕𝜃2
− 𝑣)] = 0 

(8) 

where the subscripts 𝑛 , 𝛺  and 𝜔(Ω) represent rotating condition, 

mode number and the natural frequency of the ring. 
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2.1.1 Perfect Ring  

  

If the perfect ring is perfect, the density of the ring, 𝜌 , is 

independent of angular position, 𝜃. i.e., it is denoted 𝜌0. The function 

𝑣(𝜃)  is also denoted by 𝑣0(𝜃) . And because of in-extensible 

assumption as eq. (3), 𝑣0𝑛(𝜃) can be expressed as ref. [10].  

𝑢0𝑛(𝜃) is expressed  

𝑢0𝑛(𝜃) = 2𝐴0,𝑛 𝑐𝑜𝑠(𝑛𝜃 + 𝜑𝑛) = 𝑈0,𝑛𝑒𝑖𝑛𝜃 + 𝑈0,−𝑛𝑒−𝑖𝑛𝜃 (9) 

𝑣0𝑛(𝜃) = −
𝜕𝑢0𝑛(𝜃)

𝜕𝜃
= −2𝑛𝐴0,𝑛 𝑠𝑖𝑛(𝑛𝜃 + 𝜑𝑛) 

              = 𝑖𝑛𝑈0,𝑛𝑒𝑖𝑛𝜃 − 𝑖𝑛𝑈0,𝑛𝑒−𝑖𝑛𝜃 

(10) 

𝑈0,𝑛 = 𝐴0,𝑛𝑒𝑖𝜑𝑛 , 𝑈0,−𝑛 = 𝑈̅0,𝑛 (11) 

an overline denotes the complex conjugate, and 𝐴0𝑛  is set in the 

natural number. The eigenmode 𝑢0𝑛(𝜃) is known as 𝑛th modal shape, 

and 𝜑𝑛 is its phase orientation. It is recalled that for every 𝑛 ≥ 1, two 

independent eigenmodes 𝑢0𝑛  exist, corresponding to the same 

eigenfrequency 𝜔0𝑛  : hence, they are referred to as degenerate 

eigenmodes.  

In the perfect ring, the natural frequency is the same whether the 
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equation of the ring is derived by perturbation method or simple 

theory. According to forward and backward rotational speed, 𝛺, the 

frequencies are divided by higher (asymmetric) mode, lower 

(symmetric) mode. To find the natural frequency of the perfect ring, 

the displacement 𝑣0𝑛 in Eq. (10) can be substituted into Eq. (8), then 

the natural frequency of the rotating perfect ring is obtained as  

𝜔0𝑛(𝛺) =
2𝛺𝑛

1 + 𝑛2
± √

𝐸𝐼

𝜌0𝐴𝑅4

𝑛2(1 − 𝑛2)2

1 + 𝑛2
+ (

2𝛺𝑛

1 + 𝑛2
)

2

− 𝛺2  (12) 

For 𝑛 = 0, Only one independent eigenmode exists. The eigenmodes 

relevant to 𝑛 = 0 and 1 correspond to rigid motions of the ring, and 

their eigenfrequencies are zero. In the following, the eigenmodes with 

𝑛 ≥ 2 will be examined. They have nonzero eigenfrequencies and 

results in deformations of the ring, so that they are known as elastic 

eigenmodes. The natural frequency is if the flawless ring is not 

rotating.  

𝜔0𝑛(0) = √
𝐸𝐼

𝜌0𝐴𝑅4

𝑛2(1 − 𝑛2)2

1 + 𝑛2
  (13) 
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2.1.2 Imperfect Ring  

 

   The coinciding frequency, eq. (12), relevant to couples of 

degenerate eigenmodes, eq. (10), splits into two distinct values as 

well as the rotational orientation despite the addition of a minor 

amount of mass imperfection to a perfect ring. Moreover, their 

corresponding eigenmodes deviate from the sinusoidal shape, eq. (9). 

This section presents a model that leads to analytical expression of 

the eigenfrequencies and modal structures of an imperfect ring under 

a general imperfect condition. To solve an imperfect ring with point 

masses, it is necessary to include the test function, 𝜓  in the 

formulation for the weak form. 

𝜓 = 𝑒−𝑖𝑘𝜃  (14) 

A weak formulation becomes  

∫ [
𝐸𝐼

𝐴𝑅4
(

𝜕

𝜕𝜃
+

𝜕3

𝜕𝜃3
) (

𝜕𝑣

𝜕𝜃
+

𝜕3𝑣

𝜕𝜃3
)] 𝜓

2𝜋

0

𝑅𝑑𝜃 

+ ∫ 𝜌(𝜃)𝜓 [−𝜔2(𝛺) (
𝜕2𝑣

𝜕𝜃2
− 𝑣) + 4𝑖𝜔(𝛺)𝛺

𝜕𝑣

𝜕𝜃

2𝜋

0

− 𝛺2 (
𝜕2𝑣

𝜕𝜃2
− 𝑣)] 𝑅𝑑𝜃 = 0 

(15) 
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By partial derivation, eq. (15) is replaced as   

− ∫ [
𝐸𝐼

𝐴𝑅4
(

𝜕𝜓

𝜕𝜃
+

𝜕3𝜓

𝜕𝜃3
) (

𝜕𝑣

𝜕𝜃
+

𝜕3𝑣

𝜕𝜃3
)]

2𝜋

0

𝑅𝑑𝜃 

− ∫ 𝜌(𝜃) [𝜔2(𝛺) (𝑣𝜓 +
𝜕𝑣

𝜕𝜃

𝜕𝜓

𝜕𝜃
) − 2𝑖𝜔(𝛺)𝛺 (

𝜕𝑣

𝜕𝜃
𝜓 + 𝑣

𝜕𝜓

𝜕𝜃
)

2𝜋

0

+ 𝛺2 (𝑣𝜓 +
𝜕𝑣

𝜕𝜃

𝜕𝜓

𝜕𝜃
)] 𝑅𝑑𝜃 = 0 

(16) 

The imperfect of mass density is accounted for as follow :  

𝜌(𝜃) = 𝜌0 + 𝛿𝜌(𝜃) (17) 

where 𝛿𝜌(𝜃) represents 2𝜋-periodic perturbations of the perfect 

ring's mass density𝜌0. Accordingly, the eigenmodes 𝑢𝑛(𝜃) and the 

corresponding eigenfrequencies 𝜔𝑛(Ω)  of the imperfect ring are 

represented as  

𝜔𝑛(Ω) = 𝜔0𝑛(Ω) + 𝛿𝜔𝑛(Ω) (18) 

𝑣𝑛(𝜃) = 𝑣0𝑛(𝜃) + 𝛿𝑣𝑛(𝜃) (19) 

where 𝛿𝑢𝑛(𝜃) , here denoted as "harmonic distortion", is an 

undetermined perturbation of the modal shape 𝑢0𝑛(𝜃) of the perfect 
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ring, which accounts for the vibration localization and rotational speed 

in ref. [10]. The unknown shift of the correspond modal 

eigenfrequency is denoted by 𝛿𝜔𝑛(Ω). 

 By substituting eqs. (17), (18) and (19) into Eq. (16), it is 

presented as : 

− ∫ [
𝐸𝐼

𝐴𝑅4
(

𝜕𝜓

𝜕𝜃
+

𝜕3𝜓

𝜕𝜃3
) (

𝜕(𝑣0𝑛 + 𝛿𝑣𝑛)

𝜕𝜃

2𝜋

0

+
𝜕3(𝑣0𝑛(𝜃) + 𝛿𝑣𝑛(𝜃))

𝜕𝜃3
)

+ (𝜌0 + 𝛿𝜌) [(𝜔0𝑛(Ω) + 𝛿𝜔𝑛(Ω))
2

((𝑣0𝑛 + 𝛿𝑣𝑛)𝜓

+
𝜕(𝑣0𝑛 + 𝛿𝑣𝑛)

𝜕𝜃

𝜕𝜓

𝜕𝜃
)

− 2𝑖(𝜔0𝑛(𝛺) + 𝛿𝜔𝑛(Ω))𝛺 (
𝜕(𝑣0𝑛 + 𝛿𝑣𝑛)

𝜕𝜃
𝜓 + (𝑣0𝑛 + 𝛿𝑣𝑛)

𝜕𝜓

𝜕𝜃
)

+ 𝛺2 ((𝑣0𝑛 + 𝛿𝑣𝑛)𝜓 +
𝜕(𝑣0𝑛 + 𝛿𝑣𝑛)

𝜕𝜃

𝜕𝜓

𝜕𝜃
)]] 𝑅𝑑𝜃 = 0 

(20) 

In order to derive closed-form expressions for the rotational modal 

frequency shift 𝛿𝜔𝑛(Ω) and the harmonic distortion 𝛿𝑢𝑛, a linearized 

version of eq. (20) is here derived. It is obtained by neglecting 

higher-order terms in eq. (20) :  
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∫
𝐸𝐼

𝐴𝑅4
(

𝜕𝛿𝑣𝑛

𝜕𝜃
+

𝜕3𝛿𝑣𝑛

𝜕𝜃3
) (

𝜕𝜓

𝜕𝜃
+

𝜕3𝜓

𝜕𝜃3
)

2𝜋

0

𝑅𝑑𝜃 

− ∫ (𝜔0𝑛
2 (Ω)𝜌0 − 2𝑖Ω𝜌0𝜔0𝑛(Ω)) (𝛿𝑣𝑛𝜓 +

𝜕𝛿𝑣𝑛

𝜕𝜃

𝜕𝜓

𝜕𝜃
)

2𝜋

0

𝑅𝑑𝜃 

= ∫ (𝜔0𝑛
2 (Ω)𝛿𝜌 + 2𝜔0𝑛(Ω)𝛿𝜔𝑛(Ω)𝜌0 + Ω2𝛿𝜌) (𝑣0𝑛𝜓

2𝜋

0

+
𝜕𝑣0𝑛

𝜕𝜃

𝜕𝜓

𝜕𝜃
) 𝑅𝑑𝜃

− ∫ (2𝑖Ω𝜌0𝛿𝜔𝑛(Ω) + 2𝑖Ω𝛿𝜌𝜔0𝑛(Ω)) (𝑣0𝑛

𝜕𝜓

𝜕𝜃
+

𝜕𝑣0𝑛

𝜕𝜃
𝜓)

2𝜋

0

𝑅𝑑𝜃 

(21) 

The mass-density perturbation 𝛿𝜌(𝜃) is depicted by the Fourier 

series expansion as Ref. [10]:  

𝛿𝜌(𝜃) = ∑ {𝛿𝜌}𝑘

+∞

𝑘=−∞

𝑒𝑖𝑘𝜃 (22) 

where {𝑐}  is the vector comprising the Fourier coefficients of a 

function 𝑐(𝜃), and {𝑐}𝑘 is its 𝑘th component. Naturally, it turns out 

that {𝑐}−𝑘 = {𝑐}̅̅ ̅̅
𝑘 . Additionally, the unidentified harmonic distortion 

𝛿𝑣𝑛(𝜃) is represented by its Fourier series expansion. Because the 

ring is applied to an in-extensional assumption, 𝛿𝑣𝑛(𝜃)  can be 

replaced with 𝛿𝑢𝑛(𝜃). 
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𝛿𝑣𝑛(𝜃) = ∑ {𝛿𝑣𝑛}𝑘

+∞

𝑘=−∞

𝑒𝑖𝑘𝜃 = −𝑖𝑘 ∑ {𝛿𝑢𝑛}𝑘

+∞

𝑘=−∞

𝑒𝑖𝑘𝜃 (23) 

As mentioned in Ref [10], we can infer, without loss of generality, 

that   

{𝛿𝑢𝑛}𝑛 = 0 (24) 

since the phase orientation 𝜑𝑛 is assumed as unknown quantity. 

 The Fourier series expansions, eqs. (22) and (23) are substituted 

in Eq. (21). The test function, 𝜓 is taken as follows :  

𝜓 = 𝑒−𝑖𝑘𝜃, 𝑘 ∈ ℕ (25) 

After simple algebra, the following equation is obtained, for  𝑘 ∈ ℕ 

excepted 𝑘 = 𝑛; 

{𝛿𝑢𝑛}𝑘

𝐴0𝑛
 [

1 + 𝑘2

1 + 𝑛2
−

𝑘2(1 − 𝑘2)2

𝑛2(1 − 𝑛2)2
+ Π2

1 + 𝑘2

1 + 𝑛2
] 

= −
{𝛿𝜌}−𝑛+𝑘

𝜌0
𝑒𝑖𝜑𝑛 [

𝑛(1 + 𝑛𝑘)

𝑘(1 + 𝑛2)
+ 2Π

𝑛(𝑛 − 𝑘)

𝑘(1 + 𝑛2)
+ Π

𝑛(1 + 𝑛𝑘)

𝑘(1 + 𝑛2)
] 

+
{𝛿𝜌}𝑛+𝑘

𝜌0
𝑒−𝑖𝜑𝑛 [

𝑛(1 − 𝑛𝑘)

𝑘(1 + 𝑛2)
− 2Π

𝑛(𝑛 + 𝑘)

𝑘(1 + 𝑛2)
+ Π2

𝑛(1 − 𝑛𝑘)

𝑘(1 + 𝑛2)
 ]  

(26) 
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where Π  is rotating speed ratio, the rotating speed per perfect 

frequency, Π = Ω/𝜔0𝑛. 

Eq.(26) yields the Fourier coefficients of the harmonic distortion 

𝛿𝑢𝑛.  

 Alternatively, the following equation is derived for = 𝑛 : 

0 = 2
𝛿𝜔𝑛(Ω)

𝜔0𝑛
−

{𝛿𝜌}0

𝜌0
𝑒𝑖𝜑𝑛[1 + Π2] 

+
{𝛿𝜌}2𝑛

𝜌0
 𝑒−𝑖𝜑𝑛 [

1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
 ] 

(27) 

This equation results in : 

𝛿𝜔𝑛(Ω)

𝜔0𝑛
= −

1

2

{𝛿𝜌}0

𝜌0

[1 + Π2] 

+
1

2
 

{𝛿𝜌}2𝑛

𝜌0
 𝑒−2𝑖𝜑𝑛 [

1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
 ] 

(28) 

Since both the left-hand side and the first term on the right-hand 

side of the previous equation are real, the second term at the right-

hand side must also be real. Consequently, it follows that :  

 𝜑𝑛 =
1

2
arg [

1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
 ] + 𝑙

𝜋

2
   (29) 
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where 𝑙 present higher mode and lower mode, 𝑙 = 0,1 

Hence 

𝛿𝜔𝑛(Ω)

𝜔0𝑛(Ω)
= −

1

2

{𝛿𝜌}0

𝜌0

[1 + Π2] 

−
(−1)𝑙

2
 |

{𝛿𝜌}2𝑛

𝜌0
 [

1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
 ]| 

(30) 

As expected, it turns out that for each elastic modes, 𝑛 ≥ 2, there 

are two separate frequencies each with a higher frequency and a 

lower frequency. Therefore, the mode 𝑛 relevant frequency split (or 

mistuning) comes out to be  

∆𝛿𝜔𝑛(Ω)

𝜔0𝑛(Ω)
= [

1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
] |

{𝛿𝜌}2𝑛

𝜌0
 | 

(31) 

 

 

2.1.3 Point masses added to the ring   

 

   In case of 𝑝 point masses 𝑚𝑗 located in the ring at the angular 

positions 𝜃 = 𝛩𝑗, imperfection due to point masses is presented as  
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𝛿𝜌(𝜃) = ∑
𝑚𝑗

𝑅

𝑝

𝑗=1

𝜹𝜽(𝛩𝑗) (32) 

where 𝛿𝜃(Θ𝑗) denotes the Dirac delta function supported at Θ𝑗. The 

Fourier coefficients of the mass density perturbation 𝛿𝜌 are given by  

{𝛿𝜌}𝑘 = ∑
𝑚𝑗

2𝜋𝑅

𝑝

𝑗=1

𝑒−𝑖𝑘Θj (33) 

The phase orientation 𝜑𝑛,𝑙, eq. (29) yields  

𝜑𝑛,𝑙 = −
1

2
arctan

∑ 𝑚𝑗
𝑝
𝑗=1 sin 2𝑛Θj

∑ 𝑚𝑗
𝑝
𝑗=1 cos 2𝑛Θj

+ 𝑙
𝜋

2
, 𝑙 = 0,1 (34) 

from eq. (30) it turns out that  

𝛿𝜔𝑛(Ω)

𝜔0𝑛
= −

1

2
𝑀0 ([1 + Π2] ∑ 𝑚𝑗

𝑝

𝑗=1

  

− (−1)𝑙 [
1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
 ] |∑ 𝑚𝑗

𝑝

𝑗=1

𝑒−2𝑖𝑛Θj|) 

(35) 

where 𝑀0 = 2𝜋𝑅𝜌0 is the mass of the perfect ring. 

 Expression of the phase orientation 𝜑𝑛,𝑙, eq. (34) is equivalent to 
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expression (7) of 𝜓𝑛,𝑙  derived in Ref. [5], by noting that 𝜓𝑛,𝑙 =

−𝜑𝑛,𝑙/𝑛.  

Finally, from Eq. (26), for 𝑘 ≠ 𝑛, the Fourier coefficients of 𝛿𝑢𝑛,𝑙 are 

obtained :  

{𝛿𝑢𝑛}𝑘

𝐴0𝑛
  

= −
1

[
1 + 𝑘2

1 + 𝑛2 −
𝑘2(1 − 𝑘2)2

𝑛2(1 − 𝑛2)2 + Π2 1 + 𝑘2

1 + 𝑛2]
 

(
∑ 𝑚𝑗

𝑝
𝑗=1

𝑀
𝑒𝑖{(−𝑛+𝑘)𝜃+𝜑𝑛} [

𝑛(1 + 𝑛𝑘)

𝑘(1 + 𝑛2)
+ 2Π

𝑛(𝑛 − 𝑘)

𝑘(1 + 𝑛2)

+ Π
𝑛(1 + 𝑛𝑘)

𝑘(1 + 𝑛2)
] 

+
∑ 𝑚𝑗

𝑝
𝑗=1

𝑀
𝑒−𝑖{(𝑛+𝑘)𝜃+𝜑𝑛} [

𝑛(1 − 𝑛𝑘)

𝑘(1 + 𝑛2)
− 2Π

𝑛(𝑛 + 𝑘)

𝑘(1 + 𝑛2)

+ Π2
𝑛(1 − 𝑛𝑘)

𝑘(1 + 𝑛2)
 ])  

(36) 

with 𝜑𝑛,𝑙 given in Eq. (34). 

 In order to investigate the vibration phenomenon due to the 

imperfect of mass, the total harmonic distortion (THD) index is 

introduced for each split eigenmode in ref [10]:  



 

 ２０ 

𝑇𝐻𝐷 =
‖𝛿𝑢𝑛,𝑙‖2

‖𝑢0𝑛‖2
= √

∑ |{𝛿𝑢𝑛,𝑙}𝑘
|

2
+∞
𝑘=−∞

2𝐴0𝑛
2  (37) 

This index measures the contribution of mode shape by imperfection 

difference from the fundamental 𝑢0𝑛 to the modal shape 𝑢𝑛,𝑙 of the 

imperfect ring. 

 

 

2.2. Thermo-elastic damping effect 
 

In general, the energy conversion relationship between strain  

𝜀 = 𝜀𝑟 + 𝜀𝜃 + 𝜀𝑧  and thermal energies yields TED effect. Then the 

Fourier equation for heat conduction is appropriate for determining 

the relationship. The heat conduction equation is utilized to obtain the 

temperature profile for the thermal flux in conjunction with the strain.  

𝜕𝑇

𝜕𝑡
− 𝜒∇2𝑇 = −

𝐸𝛼𝑇𝑎

𝐶𝑣(1 − 2𝜈)
(

𝜕𝜀

𝜕𝑡
) (38) 

where 𝑇 = 𝑇(𝑟, 𝜃, 𝑧, 𝑡) = 𝑇0(𝑟, 𝜃, 𝑧)𝑒𝑖𝜔𝑡  is the difference of the 

temperature from the ambient temperature 𝑇𝑎. Furthermore, 𝛼, 𝜒, 𝐶𝑣 
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and 𝜈  are thermal expansion coefficient, thermal diffusivity, heat 

capacity per unit volume and Poisson’s ratio of the material, 

respectively. 

 To express TED in micro-ring structure as displacement and 

thermal terms, the components of strain with thermal effect can be 

written as  

𝜀𝜃 =
1

𝐸
𝜎𝜃 + 𝛼𝑇 (39) 

𝜀𝑟 = 𝜀𝑧 = −
𝜇

𝐸
𝜎𝜃 + 𝛼𝑇 (40) 

𝜎𝜃 = 𝐸(𝜀𝜃 − 𝛼𝑇) (41) 

In order to determine the temperature profile of the ring structure, 

Eqs. (39)-(41) are substituted into Eq. (38) by the process in Ref. 

[19] with approximation such as 1 + 𝜇 ≈ 1  and 𝑅 + 𝑟 ≈ 𝑅 . As the 

boundary condition, there is no heat flux at both edges of the radial 

thickness.  Then the heat conduction equation can be simplified into 

one-dimensional as  

𝜕2𝑇

𝜕𝜃2
−

1

𝜒

𝜕𝑇

𝜕𝜃
= −

1

𝜒

∆𝐸

𝛼

𝜕

𝜕𝜃
[

𝑟

𝑅
(

𝜕2𝑢

𝜕𝜃2
+ 𝑢)] (42) 
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where ∆𝐸= 𝐸𝛼2𝑇𝑎/𝐶𝑣  is defined as the relaxation strength of the 

Young’s modulus. 

 As in Ref [19], the solution of the temperature profile is obtained as  

𝑇0(𝑥, 𝜃) =
∆𝐸

𝛼

1

𝑅2
(

𝜕2𝑢

𝜕𝜃2
+ 𝑢) (𝑥 −

sin 𝑘𝑥

𝑘 cos
𝑘ℎ
2

)  (43) 

where 𝑘 = 𝑘(𝜔) = (1 − 𝑖)√
𝜔

2𝜒
. 

 Furthermore, the bending moment resultant on the cross-section of 

the model with thermal effect (5) is replaced in ref [19] 

𝑀𝜃 = −
𝐸𝜔𝐼

𝑅2
(

𝜕2𝑢

𝜕𝜃2
+ 𝑢) = −

𝐸[1 + ∆𝐸{1 + 𝑓(𝜔)}]𝐼

𝑅2
(

𝜕2𝑢

𝜕𝜃2
+ 𝑢) (44) 

where 𝐸𝜔  is Young's modulus with TED according to the natural 

frequency with  

𝑓(𝜔) =
24

𝑘3ℎ3 
= [(

𝑘ℎ

2
) − tan (

𝑘ℎ

2
)]  (45) 

By applying TED, equations to frequency and mode shape in macro 

ring, eq. (35) and eq. (36) are changed : 
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𝛿𝜔𝑛(Ω)

𝜔0𝑛
= −

1

2
𝑀0 ([1 + Π∗2] ∑ 𝑚𝑗

𝑝

𝑗=1

− (−1)𝑙 [
1 − 𝑛2

1 + 𝑛2
− 4Π∗

𝑛

1 + 𝑛2
+ Π∗2 1 − 𝑛2

1 + 𝑛2
 ] |∑ 𝑚𝑗

𝑝

𝑗=1

𝑒−2𝑖𝑛Θj|) 

(46) 

 

{𝛿𝑢𝑛}𝑘

𝐴0𝑛
  

= −
1

[
1 + 𝑘2

1 + 𝑛2 −
𝑘2(1 − 𝑘2)2

𝑛2(1 − 𝑛2)2 + Π∗2 1 + 𝑘2

1 + 𝑛2]
 

( 
{𝛿𝜌}−𝑛+𝑘

𝜌0
𝑒𝑖𝜑𝑛 [

𝑛(1 + 𝑛𝑘)

𝑘(1 + 𝑛2)
+ 2Π∗

𝑛(𝑛 − 𝑘)

𝑘(1 + 𝑛2)
+ Π∗

𝑛(1 + 𝑛𝑘)

𝑘(1 + 𝑛2)
] 

+
{𝛿𝜌}𝑛+𝑘

𝜌0
𝑒−𝑖𝜑𝑛 [

𝑛(1 − 𝑛𝑘)

𝑘(1 + 𝑛2)
− 2Π∗

𝑛(𝑛 + 𝑘)

𝑘(1 + 𝑛2)

+ Π∗2 𝑛(1 − 𝑛𝑘)

𝑘(1 + 𝑛2)
 ] )  

(47) 

where Π∗  means the ratio of rotating speed and combination of 

perfect frequency applied TED and without TED, Π∗ = Ω/

{𝜔0𝑛
∗ (Ω)ω0n(Ω)}. 

Finally, TED effect on the rotating micro-ring with imperfection is 

expressed as the ratio of dissipated energy, defined by Q-factor. 

The general definition of Q is given as  
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𝑄 =
1

2
 |

𝑅𝑒(𝜔𝑛𝑠
∗ (Ω))

𝐼𝑚(𝜔𝑛𝑠
∗ (Ω))

 | =
1

2
|
𝑅𝑒(𝜔0𝑛

∗ (Ω) + 𝛿𝜔𝑛𝑆
∗ (Ω))

𝐼𝑚(𝜔0𝑛
∗ (Ω) + 𝛿𝜔𝑛𝑆

∗ (Ω))
 | (48) 

 Compared to THD of macro ring, THD is calculated by perfect 

frequency with TED in micro ring.  

 

 

2.3. Tuning of ring 
 

Tuning of frequency in imperfect ring is inverse problem. In the 

case of non-rotating, the trimming method is explained in ref [30] 

and Ref [31]. This section explains how to solve the trimming method 

when rotating a defective ring in a macro-ring and micro-ring with 

TED. 

The objective of tuning is to eliminate the gap of higher and lower 

frequencies by removing or adding a suitable continuous mass 

distribution δρtr(𝜃)  to the ring.  To do this, it is necessary to 

calculate proper the magnitude and location of trimming mass through 

inverse process. by adding a suitable continuous mass distribution 

δρtr(𝜃) to the ring.  

In order to acquire trimming, as a first step, it is necessary to 

experimentally characterize the imperfect ring. 
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Thus it should find the difference of frequency in higher mode and 

lower mode.  

The difference of higher and lower frequencies of imperfect rotating 

ring in eq. (31) :  

∆𝜔𝑛(Ω) = [𝜔0𝑛(Ω) + 𝛿𝜔𝑛𝐻(Ω)] − [𝜔0𝑛(Ω) + 𝛿𝜔𝑛𝐿(Ω)] 

                 = 𝛿𝜔𝑛𝐻(Ω) − 𝛿𝜔𝑛𝐿(Ω)  

(49) 

This is the modal split (mistuning).  

Following ref. [10], the trimming procedure here adopted hinges on 

determining a continuous mass distribution 𝛿𝜌𝑠𝑝(𝜃), which if added to 

a perfect ring, which coincide with the corresponding measured 

quantities ∆𝜔𝑛(Ω) and 𝜑𝑛, respectively. Hence the mass distribution 

𝛿𝜌𝑠𝑝(𝜃), according to eq. (34) and eq. (35) must satisfy the equations :  

∆𝛿𝜔𝑛(Ω) = 𝜔0𝑛(Ω) [
1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
] |

{𝛿𝜌𝑠𝑝𝑙𝑖𝑡}
2𝑛

𝜌0
| (50) 

𝜑𝑛,𝑠𝑝𝑙𝑖𝑡 =
1

2
 arg [(

1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2
)

{𝛿𝜌𝑠𝑝}
2𝑛

𝜌0
] (51) 

which yields  
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{𝛿𝜌𝑠𝑝𝑙𝑖𝑡}
2𝑛

= 𝜌0  (
1 − 𝑛2

1 + 𝑛2
− 4Π

𝑛

1 + 𝑛2
+ Π2

1 − 𝑛2

1 + 𝑛2)
∆𝜔𝑛(Ω)

𝜔0𝑛(Ω)
𝑒2𝑖𝜑𝑛 (52) 

Consequently, any continuous mass distribution 𝛿𝜌𝑠𝑝𝑙𝑖𝑡(𝜃)  whose 

Fourier coefficients {𝛿𝜌𝑠𝑝𝑙𝑖𝑡}
2𝑛

 are given by Eq. (52), produces the 

calculated modal mistuning ∆𝜔𝑛,𝑠𝑝𝑙𝑖𝑡(Ω) and phase orientation  𝜑𝑛,𝑠𝑝𝑙𝑖𝑡, 

when 𝛿𝜌𝑠𝑝𝑙𝑖𝑡(𝜃) is given to the perfect ring with any such continuous 

mass distribution. According to Eq. (50), it turns out that the 

eigenfrequency 𝜔0𝑛(Ω) of perfect ring coincides with the average of 

the eigenfrequencies 𝜔𝑛𝐻(Ω) and 𝜔𝑛𝐿(Ω) of imperfect ring applied 

point masses, provided that 𝛿𝜌𝑠𝑝𝑙𝑖𝑡(𝜃) is chosen with null average 

(i.e., {𝛿𝜌𝑠𝑝𝑙𝑖𝑡}
0

= 0). As a result, 𝜔0𝑛(Ω) could be identified with the 

average of the experimentally measured eigenfrequencies.  

 The modes 𝑛 of the imperfect ring can be trimmed by the linear 

model, by simply adding any continuous mass distribution 𝛿𝜌𝑡𝑟(𝜃). 

This suggests that such a mass distribution 𝛿𝜌𝑡𝑟(𝜃) could trim also 

the real imperfect ring.  

 An simple way to obtain distribution of continuous mass is to sample 

the function 𝛿𝜌𝑡𝑟(𝜃) at 𝑁 equi-spaced locations : i.e., at the angles 

𝜃𝑙,𝑡𝑟 = 𝜃0 + 𝑙𝜃𝑠, 𝑙 = 0 ⋯ 𝑁 − 1 (53) 
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where 𝜃0 is an arbitrary initial sampling angle and 𝜃𝑠 = 2𝜋/𝑁 is the 

angular sampling period. Setting 𝑛𝑚𝑎𝑥 = max 𝑁, and observing that the 

spectrum of the function 𝛿𝜌𝑡𝑟(𝜃) contains spatial circular frequencies 

up to 2𝑛𝑚𝑎𝑥, according to the Nyquist theorem, it must result : 

2𝜋

𝜃𝑠
= 𝑁 > 2(2𝑛𝑚𝑎𝑥) = 4𝑛𝑚𝑎𝑥 (54) 

At Eq. (53), 𝛿𝜌𝑡𝑟(𝜃) could be also chosen that such that its Fourier 

coefficients different from those cited above is zero : accordingly, 

such a continuous distribution is  

{𝛿𝜌𝑠𝑝𝑙𝑖𝑡}
2𝑛

= 𝜌0

1

1 − 𝑛2

1 + 𝑛2 − 4Π
𝑛

1 + 𝑛2 + Π2 1 − 𝑛2

1 + 𝑛2

∆𝜔𝑛(Ω)

𝜔0𝑛(Ω)
𝑒2𝑖𝜑𝑛 (55) 

Accordingly, the continuous mass distribution give in Eq. (55) is 

replaced by the sampled one :  

𝛿𝜌𝑡𝑟,𝑠(𝜃) =
2𝜋

𝑁
∑ 𝛿𝜌𝑡𝑟(𝜃𝑙,𝑡𝑟)

𝑁−1

𝑙=0

𝜹𝜽𝒍,𝒕𝒓
(𝜃) (56) 

The sampled mass distribution given in Eq. (56) corresponds to the 

following trimming masses :  
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𝑚𝑙,𝑡𝑟 =
2𝜋𝑅

𝑁
𝛿𝜌𝑡𝑟(𝜃𝑙,𝑡𝑟), 𝑙 = 0 ⋯ 𝑁 − 1 (57) 

which recalling Eq. (52), can be calculated via the following explicit 

formula :  

𝑚𝑙,𝑡𝑟 = 𝑀0

1

1 − 𝑛2

1 + 𝑛2 − 4Π
𝑛

1 + 𝑛2 + Π2 1 − 𝑛2

1 + 𝑛2

 

∆𝜔𝑛(Ω)

𝜔0𝑛(Ω)
cos 2(𝑛𝜃𝑙,𝑡𝑟 + 𝜑𝑛,𝑠𝑝𝑙𝑖𝑡) , 𝑙 = 0 ⋯ 𝑁 − 1 

(58) 

If no target trimming is required, an arbitrary constant term may be 

added to the right hand side of eq. (58), i.e., each trimming mass 𝑚𝑙,𝑡𝑟 

may be increased (or decreased) by the same arbitrary quantity, 

without modifying the achieved trimming condition. This freedom 

may be used, e.g., to have all trimming masses positive (or negative), 

if this situation is preferred for easiness of manufacturing. The Phase 

orientation, 𝜑𝑛 is different in higher mode and lower mode. But it is 

only used to higher mode in paper. Equation of tuning mass can be 

used to imperfect ring regardless of rotating, TED. 
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3. Results and Discussions 

 

In this chapter, the frequency and mode shape of the imperfect 

rotating ring are investigated. Likewise, the complex frequency and 

Q-factor are also calculated. Also, this chapter also suggests how 

to change the mistuned frequencies and Q-factor of imperfect ring 

like a perfect ring by removing or adding mass (inverse problem). 

In addition, it investigates the change of mode shape and total 

harmonic distortion by trimming mass. In this paper, ring model is 

investigated with the structural parameter as in table 1 (a) in ref 

[10] and table 1 (b) in ref. [19]. And Table 2 also presents thermal 

parameter in ref. [19]. 

 

 

3.1. Code Verification 

 

In this section, the perfect ring is selected to examine frequency 

and Q-factor under macro and micro size. Additionally, the split 

frequencies and Q-factor are calculated in imperfect ring with point 

mass.   

 Table 3 (a) and (b) present modal frequencies of perfect macro ring 
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and micro ring. Because of the size, the unit of modal frequency in 

macro ring is Hz, but the unit of micro ring is kHz. And the frequency 

result is greater the higher the mode number. 

 Table 4 (a) and (b) is modal frequencies of imperfect macro ring 

and micro ring with mass ratio, m/M = 0.01. higher frequencies by 

perturbation are same as simple theory but lower frequencies by 

perturbation are smaller than simple theory. 

 Fig 2. (a) and (b) present forward frequency and backward 

frequency in accordance with rotating speed ratio, Ω. There is a 

rotating speed ratio where forward frequency and backward 

frequency meet, which is the value before the imaginary value in eq. 

(30). In the backward rotating, there is a rotating ratio which is 

rotating, but its frequency is zero. This phenomenon is 'stationary 

condition’ which means that the mode does not rotate with the 

rotating ring but appears as a stationary distortion of the ring to an 

observer who is not rotating with the ring as ref [1]. 

 Table 5 (a), (b) and (c) present Q-factor of no rotating perfect ring. 

As the mode number increases, the Q-factor also increases such as 

frequency.  

Fig. 3 is Q-factor in accordance with rotating speed ratio. Q-factor 

by forward increases as the rotating speed ratio increases, but 

decreases at some point. On the contrary, Q-factor by forward 
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decreases as rotating speed ratio, but increases at some point. 

 

 

3.2. Natural frequency 
 

In this section, it is investigated how the change of frequency 

derived by perturbation is calculated based on the rotating speed 

ratio and magnitude of mass in macro ring.  

 Fig 4. shows the difference of higher and lower frequencies in 

accordance with magnitude of mass. As the mass ratio increases, the 

difference of frequencies increases. Since the lower frequency by 

perturbation is less than simple theory, the difference of frequencies 

by perturbation is greater than simple theory.  

 Fig.5 shows the ratio of the difference of higher frequency and lower 

frequency in accordance with rotating speed ratio in macro ring at 

n=2. In forward rotating, the difference of higher and lower 

frequencies by perturbation increases, but the difference by simple 

theory has little difference and surges. In backward rotating, the 

differences of higher and lower frequencies by perturbation and 

simple theory have resonance.  
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3.3. Quality factor 
 

In this section, Q-factor is investigated in accordance with 

rotating speed ratio and magnitude of mass. 

Table 6 (a), (b) and (c) is the Q-factor dependent on rotating speed 

ratio, Ω/ω0n = 0,  Ω/ω0n = 0.5 , Ω/ω0n = 1  at T=298K. In forward 

situation, higher Q-factor by perturbation is greater than simple 

theory but lower Q-factor by perturbation is less.  

Fig. 6 (a), (b) and (c) shows the difference of higher Q-factor and 

lower Q-factor in accordance with mass ratio at n=2. The higher 

rotating speed ratio, the difference of Q-factor is greater. 

Likewise, Fig. 7 (a), (b) and (c) shows Q-factor in accordance with 

rotating speed ratio at T=298K and n=2. As shown in Fig. 7, the 

rotating speed ratio has a big effect on Q-factor as well as frequency.  

 

 

3.4. Mode shape 
 

In this section, mode shape derived by perturbation is 

investigated in accordance with mass ratio and rotating speed ratio.  

Also total harmonic distortion, eq. (37), which means the change of 

mode shape by imperfect mass is investigated in the case of rotating 
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speed ratio and magnitude of mass.  

Fig. 8 is mode shape of imperfect macro ring with 1% point mass 

and rotating speed ratio, Ω/ω0n = 1.  

Fig. 9 shows total harmonic distortion in accordance with mass ratio 

and rotating speed ratio. THD can be obtained when there is an 

imperfect mass in ring, when the mass ratio is zero, there is no THD 

value regardless of rotating speed ratio.  

 Fig. 10 shows THD in accordance with rotating speed ratio in macro 

ring with imperfect mass, m/M = 0.01. This figure is similar to Q-

factor, fig. 7. And it has the value of rotating ratio which is similar to 

frequency, fig. 3. 

Fig. 11 (a) and (b) show total harmonic distortion of higher mode 

and lower mode in accordance with mass ratio in macro ring at n=2. 

As mass ratio increases, THD generally increases. In backward 

rotating, THD in backward rotating totally is smaller than THD in no-

rotating. 

Fig. 12 is total harmonic distortion in accordance with rotating 

speed ratio in micro ring. THD in micro ring has no difference of 

temperature. In backward rotating, THD appears phenomenon such 

as resonance at specific result of rotating speed ratio. This reason is 

because the denominator of eq. (47) goes from zero at a certain 

rotating speed ratio value.  
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 Fig. 13 is THD in accordance with mass ratio in micro ring. Similar 

to Fig. 11, THD of backward rotating is totally smaller than no-

rotating. Because of size compared to macro ring, THD of forward 

rotating is greater than macro ring. 

 

 

3.5. Tuning 
 

This section explains how to calculate magnitude and location of 

trimming mass to eliminate higher and lower frequencies as well as 

Q-factor by removing or adding mass in ring model. Through inverse 

process, eqs(53)-(58) can get rid of difference of frequencies and 

Q-factor.  

Before doing tuning, Fig. 14 (a), (b) and (c) show the difference of 

tuned frequency and perfect frequency Q-factor in accordance with 

mass ratio and tuning location at rotating speed ratio in macro ring. 

In here, if the gap of tuned frequency and perfect frequency is zero, 

this point is tuning point of magnitude and location of trimming mass. 

In the case of rotating speed ratio, Ω/ω0n = 1, since lower frequency 

is resonance such as in fig. 5, it is not possible to compute tuning 

results. 

 Fig. 15 (a), (b) and (c) show the difference of tuned Q-factor and 
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perfect Q-factor in accordance with mass ratio and tuning location at 

rotating speed ratio in micro ring. If the gap of tuned Q-factor and 

perfect Q-factor is zero, this point is likewise tuning point of 

magnitude and location of trimming mass. As rotating speed ratio 

increases, the maximum of difference of tuned Q-factor and perfect 

Q-factor is increased.  

Fig. 16 and Fig. 17 present the picture in which magnitude and 

location of trimming mass is suitable at n=2, n=3 using eq. (50)-

(52). These positions is located to tune imperfect ring regardless of 

rotating.  
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4. Conclusion and future work 
 

Although all structures are expected to be manufactured without 

flaws, there are sometimes imperfections such as mass, stiffness 

which result in frequency split and mistuning of structure.  

In this work, analytical model for imperfect rectangular ring with 

thermo-elastic damping is investigated. This ring is based on the 

assumptions of in-extension and linearization. It shows the changes 

of frequency, q-factor and mode shape caused by imperfect mass 

using perturbation method in a spinning situation. Compared to 

simple theory, because perturbation method is assumed that 

frequency and mode shape split due to imperfection, perturbation 

method can show mode shape depending on the size of the ring, 

rotating speed ratio and imperfect mass. Thus, using the 

perturbation method, mistuned frequency and q-factor can be 

calculated more precisely from a rotating ring with an imperfect 

mass, and the mode shape can also be investigated in greater detail. 

The ring mistuned by point mass affects to whole system and results 

in split of natural frequencies and increase of the damping effect as 

well as mode shape. 

In addition, the magnitude and location of the trimming mass are 

determined through the use of the inverse process to equalize the 
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split frequency and q-factor generated by an imperfect ring to a 

perfect ring. Through this procedure, it is expected that unbalanced 

ring can be tuned by removing or adding trimming mass.  

As future works, studies will be investigated in a variety of 

situations. For examples, it can be studied in the case of non-

linearity for improving the accuracy of frequencies and mode shape 

by considerable imperfections. And the current study only considers 

the case of imperfect mass, but the frequency and mode shape can 

be derived by adding the stiffness. In addition, it can be applied to 

ring with circular cross-section as well as cylindrical shell. This 

paper only consider single mode of tuning but it can do dual mode. 
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Table 1 (a) structural parameter of macro ring 

young’s modulus, 𝐸 206𝐺𝑝𝑎 

mass density, 𝜇 7850𝑘𝑔/𝑚3 

poisson’s ratio, 𝜈 0.3 

radius, 𝑅 0.3𝑚 

thickness, ℎ 0.005𝑚 

length, 𝑏 0.1𝑚 

mass, 𝑀0 7.3984𝑘𝑔 

 

 

 

Table 1 (b) structural parameter of micro ring 

young’s modulus, 𝐸 165𝐺𝑝𝑎 

mass density, 𝜇 2330𝑘𝑔/𝑚3 

radius, 𝑅 0.003𝑚 

thickness, ℎ 120 × 10−6𝑚 

length, 𝑏 120 × 10−6𝑚 
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Table 2 Thermal properties of temperature 

Ambient Temperature 𝑇𝑎  [𝐾] 258 298 348 

Thermal expansion coefficient 𝛼 [10−6𝐾−1] 2.24 2.6 3.06 

Heat capacity per unit volume 

𝐶𝑣  [106𝐽𝑚−3𝐾−1] 

1.52 1.64 1.73 

Thermal diffusivity 𝜒 [10−5𝑚2𝑠−1] 11.7 8.6 6.97 
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Table 3 (a) Modal frequencies 𝑓0𝑛 = 𝜔0𝑛/(2𝜋)  

of the perfect macro-ring 

𝑛 2 3 4 5 6 

𝑓0𝑛 [𝐻𝑧] 36.78 104.03 199.46 322.57 473.21 

 

 

 

Table 3 (b) Modal frequencies 𝑓0𝑛 = 𝜔0𝑛/(2𝜋) 

of the perfect micro-ring 

𝑛 2 3 4 5 6 

𝑓0𝑛 [𝑘𝐻𝑧] 13.83 39.12 75.02 121.32 177.97 
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Table 4 (a) Modal frequencies of imperfect mass 1%  

in macro-ring 

 𝑛 2 3 4 5 6 

present H 36.71 103.92 199.35 322.45 473.09 

 L 36.49 103.09 197.59 319.48 468.61 

ref. [5] H 36.71 103.92 199.35 322.45 473.09 

 L 36.49 103.10 197.61 319.52 468.68 

 

 

 

Table 4 (b) Modal frequencies of imperfect mass 1%  

in micro-ring without TED 

 𝑛 2 3 4 5 6 

present H 13.80 39.09 74.97 121.27 177.92 

 L 13.72 38.77 74.31 120.15 176.24 

ref. [5] H 13.80 39.09 74.97 121.27 177.92 

 L 13.72 38.78 74.32 120.17 176.27 
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Table 5 (a) Quality factor of perfect ring with rotating, 

Ω/ω0n = 0 

𝑛 2 3 4 5 6 

T=258K 14444 24164 42125 65144 92817 

T=298K 10731 21606 38574 60007 85878 

T=348K 7689 16923 30483 47600 68312 

 

 

 

Table 5. (b) Quality factor of perfect ring with rotating, 

Ω/ω0n = 0.5 

 𝑛 2 3 4 5 6 

T=258K forward 18656 26944 42825 62386 85323 

 backward 7633 13655 25034 40159 58800 

T=298K forward 13859 24090 39213 57463 78940 

 backward 6231 14665 27778 44996 66360 

T=348K forward 9932 18871 30992 45590 62804 

 backward 4064 9565 18118 29349 43283 

 

 

 

Table 5. (c) Quality factor of perfect ring with rotating, 

Ω/ω0n = 1 

 𝑛 2 3 4 5 6 

T=258K forward 18489 17402 18665 19286 19544 

 backward 1 2 3 4 6 

T=298K forward 13736 15559 17093 17768 18089 

 backward 1 3 5 7 11 

T=348K forward 9844 12190 13513 14103 14401 

 backward 1 3 5 7 11 
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Table 6 (a) Quality factor of imperfect mass, 𝑚 = 0.01𝑀  

according to the rotating ratio Ω/𝜔0𝑛 = 0 at T=298K 

  𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

present H 10722 21585 38550 59980 85847 

 L 10689 21437 38240 59465 85082 

ref[5] H 10723 21587 38554 59986 85856 

 L 10700 21441 38249 59479 85102 

 

Table 6 (b) Quality factor of imperfect mass, 𝑚 = 0.01𝑀  

according to the rotating ratio Ω/𝜔0𝑛 = 0.5 at T=298K 

   𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

present forward H 13852 24061 39173 57422 78897 

  L 13788 23956 38986 57121 78460 

 backward H 5638 12134 22826 36873 54264 

  L 5611 12124 22758 36723 54010 

ref [5] forward H 13853 24067 39186 57436 78911 

  L 13833 23887 38798 56785 77939 

 backward H 5655 12187 22899 36965 54375 

  L 5610 12012 22532 36351 53456 

 

Table 6 (c) Quality factor of imperfect mass, 𝑚 = 0.01𝑀  

according to the rotating ratio Ω/𝜔0𝑛 = 1 at T=298K 

   𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

present forward H 13783 15616 17156 17834 18156 

  L 13580 15286 16645 17107 17175 

 backward H 1 2 4 6 9 

  L 1 2 4 6 9 

ref [5] forward H 13716 15512 17036 17706 18024 

  L 13658 15138 16180 16216 15749 

 backward H 84 189 348 547 779 

  L 21 20 19 17 15 
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Fig. 1 Coordinate system of ring with imperfections  
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 (a) in macro ring 

 

(b) in micro ring without TED 

Fig. 2 Modal frequency of perfect ring according to rotating ratio 
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Fig. 3 Q-factor of perfect ring in accordance with rotating speed 

ratio at n=2 
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Fig. 4 The difference of higher and lower frequencies 

 in accordance with mass ratio at no rotating    
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Fig. 5 The difference of higher and lower frequencies  

in accordance with rotating speed ratio 
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(a) no rotating speed 

 

(b) Ω/𝜔0𝑛 = 0.5 

 

(c) Ω/𝜔0𝑛 = 1 

Fig. 6 The difference of Q-factor according to mass ratio at n=2 
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Fig. 7 Q-factor in accordance with rotating speed ratio applied by 

perturbation at T=298K 
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Fig. 8 (a) Mode shape 1% mass with rotating Ω/𝜔0𝑛 = 1, n=2 
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Fig. 8 (b) Mode shape 1% mass with rotating Ω/𝜔0𝑛 = 1, n=3 
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Fig. 8 (c) Mode shape 1% mass with rotating Ω/𝜔0𝑛 = 1, n=4 
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Fig. 8 (d) Mode shape 1% mass with rotating Ω/𝜔0𝑛 = 1, n=5 
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Fig. 8 (e) Mode shape 1% mass with rotating Ω/𝜔0𝑛 = 1, n=6 
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Fig. 9 THD in accordance with mass ratio and rotating speed ratio 

at n=2 in macro ring 
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Fig. 10 THD in accordance with rotating speed ratio in micro ring 

with imperfect mass 
m

M
= 0.01 
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(a) Higher mode 

 

 (b) Lower mode 

Fig 11. THD in accordance with mass ratio in macro ring 
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 (a) T=258K  

 

(b) T=298K 

 

(c) T=348K 

Fig. 12 THD in accordance with rotating speed ratio with 

imperfect mass in micro ring 
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Figure. 13 THD in accordance with mass ratio in micro ring  
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Fig. 14 (a) The difference of frequencies of macro ring in 

accordance with magnitude and location with trimming mass, 

Ω/𝜔0𝑛 = 0, [yellow = Higher mode, blue = Lower mode] 
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Fig. 14 (b) The difference of frequencies of macro ring in 

accordance with magnitude and location with trimming mass, 

Ω/𝜔0𝑛 = 0.5, [yellow = Higher mode, blue = Lower mode] 
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Fig. 14 (c) The difference of frequencies of macro ring in 

accordance with magnitude and location with trimming mass, 

Ω/𝜔0𝑛 = 1.1, [yellow = Higher mode, blue = Lower mode] 
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Fig. 15 (a) The difference of quality factor of ring in accordance 

with magnitude and location with trimming mass, Ω/𝜔0𝑛 = 0, 

[yellow = 258K, blue = 298K, green=348K] 
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Fig. 15 (b) The difference of quality factor of ring in accordance 

with magnitude and location with trimming mass, Ω/𝜔0𝑛 = 0.5, 

[yellow = 258K, blue = 298K, green=348K] 
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Fig. 15 (c) The difference of quality factor of ring in accordance 

with magnitude and location with trimming mass, Ω/𝜔0𝑛 = 1 

[yellow = 258K, blue = 298K, green=348K] 
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Fig. 16 magnitude and location of tuning mass at n=2 
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Fig. 17 magnitude and location of tuning mass at n=3 
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국 문 초 록 
 

많은 구조물들은 완벽하게 설계 및 디자인을 하여 제작한다. 그러나 

실제로는 몇몇의 불안정성 때문에 완전한 구조물에 영향을 끼친다. 

또한, 시간이 지남으로써 무게가 떨어지거나 단면적 또는 부피의 

변형으로 인해 구조물의 진동이 달라진다. 그래서 구조물 불안전성에 

대한 진동을 예측하기 위해서는 식 전개과정에서 같이 고려해서 

계산해야한다. 그리고 회전속도비가 구조물의 주파수와 모드 형상에 

영향을 끼친다. 그래서 Receptance 방법을 사용하여 질량에 의한 

불안정 구조물이 회전하고 있는 상황에서 불안정한 질량에 의해 

갈라지는 주파수 증가량을 구하여 simple theory와 비교한다. 더 

나아가, simple theory에서 못 구하는 모드 형상을 구해 모드 형상 

변화값을 계산한다. 특히, 회전 속도 비에 의해서도 전진 회전 

주파수와 후진 회전 주파수로 나누어진다. 후진 회전 주파수에서 

회전하고 있는데 주파수가 없는 상황인 정지 상태를 볼 수 있다.  

마이크로 구조물에서는 주파수 뿐만 아니라 성질 계수가 중요한데 

receptance로 구한 주파수로 열탄성 감폭 효과를 적용시켜 

마이크로에서의 성질 계수를 계산 할 수 있다. 마찬가지로, 불안정한 

질량에 의해 주파수와 같이 성질 계수도 갈라진다.  불안정한 구조물을 

안정한 구조물로 만들 수 있는 방법을 알아내기 위해 불안정한 

구조물의 주파수를 구한 과정을 역으로 도출한다. 그래서 불안정한 

구조물로 인해 갈라지 주파수를 다시 합치거나 없앨 수 있는 새로운 
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질량의 무게와 위치를 계산할 수 있는 과정을 제시한다.   

 

주요어 :  불안정 질량, 스플릿, 열탄성 감폭 효과, 성질 계수, 마이크로 

링 

학 번 : 2021-26006 
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