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Abstract

Contrary to the theoretical concept, many structural models are
often unstable due to structural flaws. Especially, some of flaws
have a significant effect on the aerospace structure. Thus, it is
necessary to analyze vibration analysis of imperfect ring. In the
circumstance of structural flaws, the natural frequency of structure
i1s divided with higher frequency and lower frequency. This paper
explains to imperfect ring by using perturbation compared to simple
theory assumed that the mode shape of imperfect ring is identical to
perfect ring. Compared to simple theory, perturbation also deals
with how to solve mode shapes as wells as natural frequencies by
applying fourier series and it explains the variance of natural
frequency and mode shape by mass imperfection. Besides this paper
discusses thermo—elastic damping effect (TED) which is the key to
derive Quality factor (Q—factor) and rotating ring. To easily express
equation of motion, the rotating ring is considered by in—extensional
assumption which is related to tangential displacement and radial
displacement and linearization in perturbation. In case study, natural
frequency, mode shape and Q—factor are investigated with the
magnitude and location of imperfect mass and rotational speed by

diverse method in macro—ring and micro—ring. Finally, this paper
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suggests tuning method for reducing higher frequency and lower
frequency which is showed by splitting of mass imperfection. To
match frequency of the perfect ring, it proposes how to find the

magnitude and location of adding or removing point masses.

Keyword : mass imperfection, splitting, tuning, TED, Q—factor,

rotating
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1. Introduction

Many structures are theoretically designed and perfect. However,
it is difficult to manufacture perfectly because of imperfections. To
predict results by imperfection, it is necessary to consider structure
combining imperfections such as point masses, stiffness. Some
imperfections give the effects of frequency, mode shape and Q—
factor in micro ring. Many researchers studied the vibration of
structure and suggested many methods to solve problem.

Soedel [1] investigated rotating classical ring assumed to in—
extension. He [2] also investigated natural frequencies and mode
shapes in non—axisymmetric tire by applying receptance method
which is used to action and reaction of structure and point mass.
Bert [3] studied curved beam and shear deformable ring.
Furthermore, He investigated the frequency and mode shape in
non—axisymmetric tire which is non—uniformity configuration using
the receptance method [4]. Since disadvantage of receptance
method is to be difficult to calculate to some variable and external
environment, Fox explained how to easily solve it using simple
theory [5]. Simple theory is used to calculate the splitting frequency
which occurs in slightly imperfect axisymmetric bodies. Compared

to receptance method, simple theory has restriction to use to the
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ring model such as small imperfection and in—extension. Lee [6]
researched to predict the effects of local deviations which is based
on the laplace transformation method and heavy—side unit step
function. Using Local deviation, the natural frequencies and mode
shapes of the ring are predicted for the point mass, sharp decrease
in stiffness. Amabili [7] used receptance method to apply to the
research of the free vibrations of cylindrical shell that was either
empty or filled. Considering density of free and filled in cylindrical,
he calculated natural frequency and mode shapes. Park [8&8]
investigated structural dynamics modifications based on frequency
response function to obtain optimal structural changes to improve
natural frequencies. The optimal structural modification is calculated
by combining eigenvalue sensitivities and eigenvalue reanalysis
technique. Fox [9] studied when the ring model is connected to
different types of random mass imperfections, how the natural
frequency splits statistically. Bisegma [10] suggested perturbation
method different simple theory. Perturbation method considers
mode shapes as well as natural frequencies resulting from imperfect
mass and stiffness compared to simple theory which is assumed that
mode shape of imperfect ring is identical to perfect ring. Kim [11]
explained strategy of asymmetric ring due to imperfect mass. He
studied clear beats with proper periods in the first and the second

2 2] .
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vibration modes by giving an example of Korean bell. Park [12]
extensively examined the effect of multiple local deviations on the
property of mode pair of ring and bell type structures such as
circular ring, Korean bell using local deviation, [6]. Thao [13]
researched natural frequencies of a clamped—clamped beam with
concentrated masses calculated by receptance method which was
based on theoretically exact. Chang [14] studied frequency derived
by receptance method which is coupling of subsystems such as point
masses, grounded springs, or spring—mass oscillators.

Q—factor is important factor in micro structure. Q—factor is
even considered as variable of design. Zener [15] analyzed local
fluctuations within a vibrating solid structure resulting from internal
friction by heat conduction effects. Lifshitz and Roukes [16]
investigated TED as a dissipation mechanism in micro and nano
mechanical systems. Guo and Rogerson [17] studied the effect of
thermoelastic coupling on a micro—machined resonator. Wong [18]
investigated the application of Zener's theory to thin, circular rings.
He also suggested a simple expression for the Q—factor associated
with in—plane flexural modes of vibration. Furthermore, Wong and
Fox [19] studied thermoealstic damping of the in—plane vibration of
ring to gain advanced expression of energy—dissipation effects in
MEMS resonators. Mioduchowski [20] examined Q—{factor which is

3 2] .
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considered by the effects of hollow geometry on thermoelastic
dissipation of tubular beam resonators of circular corss—section. Hu
[21] calculated frequencies and Q—factor of beam with mass and
network of suspension. Pei [22] investigated Q—factor of rotating
flexible annular micro—disk under thermoelastic coupling. Pawaskar
[23] studied analytical solution for Q—factor in Timoshenko beam
theory. Kim [24] studied Q—factor of ring with irregular mass and
stiffness by using multi—deviation. Kim [25] also studied
thermoelastic damping effect of rotating thin ring assumed to in—
extensional vibration. Furthermore, Kim [26] examined natural
frequency and Q—factor of imperfect rotating ring by point mass.
Kim [27] examined Q—factor divided by higher mode and lower
mode due to imperfection of mass. Kim [28] investigated Q—factor
of toroidal micro ring which splits higher mode and lower mode by
imperfect mass. Using receptance method of cylindrical shell [7],
Kim [29] applied thermoelastic damping effect and Q—factor to
imperfect cylindrical shell by mass.

Trimming (Tuning) is crucial to eliminate higher and lower
frequencies as well as Q—factor by removing or adding point mass.
In this regards, it is necessary to calculate the process of split in
reverse. Rourke and William and Fox [30], [31] studied how to trim

imperfect ring due to point mass by using inverse process. Wu [32]

4 ] 2- 1_l|



investigated trimmed Q-—factor of the trimmed resonator for the
vibratory cupped gyroscopes. Tanaka [33] studied and examined
Q—factor of multi ring in which the trimming location is chosen to
independently modify the Q—factors of each axis.

The objective of this paper is to derive solution for imperfect
rotating ring and calculate natural frequency and Q—factor as well
as mode shape which cannot be calculated in simple theory. By
developing inverse problem of split frequency and Q—factor, this
paper suggests how to tune frequency and Q—factor of imperfect

ring by removing or adding point mass.



2. Formulation

The rotating ring with rectangular cross—section is depicted in
Fig.1 including arbitrary attached point masses. In this figure, R,b
and h are mean radius, height and radial thickness of the model,
respectively. In addition, As the ring model, isothermal Young’s
modulus, moment of inertia, cross—sectional area are defined as
E,I = bh3/12 and A = bh, respectively. The global polar coordinate
system is used to describe the circumferential strain with local
coordinate system. Especially, to show imperfection of masses,

density with respect to the angular position is expressed as p = p(0).

2.1. Equation of Motion in perfect rotating ring

Equation of motion for rotating thin rings are given as [1]

1 aNg n 1 (')Mg (')Zu 120 v _QZ -0 (1 )
Roo RrR* a0 F\oczT o M) T “
L9"My Ny A 0% 20 QCR+v)|=0 2b
R 90 R otz ot )= (2b)
where My , Ny present moment resultant, force resultant,

respectively.



To eliminate radial strain, u for deriving easily, it is assumed that

the ring is axially inextensible so that v = —du/dé,
1 /0u
=—(— =0 3
e=— ( —+ 17) (3)

And the bending moment results on the cross—section of the model

as ref. [1] is

h
Mg = j(TO’g)dA = fzh(TO'g)bdr (4)
A 2

Later, it is replaced to the bending moment with for explaining
Thermal—elastic damping effect and Quality factor.

So eq. (4) is changed

Y — EI (0%*u 5
o= "rz \3az T ©)

Thus the equation of motion of the rotating ring is represented as



£l d N 93 6v+63v
06 063)\o6 063

(6)
p@)art [ 200 0 PV e (0 L) 2o
p 9620t at? 960t 262 ")| T
As it is applied by harmonic vibration,
v(6,t) = v(0)ei®t (7

where v(6) denotes the vibration amplitude, substituting into Eq. (6),
thus,

£l 0 N a3 6v+63v
00 003/\o6 063

0%v , ov
+ p(0)AR* I—a)z(.()) <W - v> + 4iw ()N 20 (8)

, (0%
-0 W—U =0

where the subscripts n, 2 and w() represent rotating condition,

mode number and the natural frequency of the ring.



2.1.1 Perfect Ring

If the perfect ring is perfect, the density of the ring, p, is
independent of angular position, 6. i.e., it is denoted py. The function
v(0) is also denoted by wvy(@). And because of in—extensible
assumption as eq. (3), vy,(8) can be expressed as ref. [10].

Upn(0) is expressed

Uon(68) = 240, cos(nB + @) = Ugne™ + Ug_ne™"° 9)
0ugy, (0
Von(6) = _(()?LH() = —2nA,, sin(nf + ¢,)
(10)
= inUy e — inU, e ~"®
UO,n = AO,nei(pn' UO,—n = Uo,n (11)

an overline denotes the complex conjugate, and A, is set in the
natural number. The eigenmode u,,(0) is known as nth modal shape,
and ¢, is its phase orientation. It is recalled that for every n > 1, two
independent eigenmodes u,, exist, corresponding to the same
eigenfrequency wg, ' hence, they are referred to as degenerate
eigenmodes.

In the perfect ring, the natural frequency is the same whether the
§

9 -":lx_! . "'l::. -T
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equation of the ring is derived by perturbation method or simple
theory. According to forward and backward rotational speed, 2, the
frequencies are divided by higher (asymmetric) mode, lower
(symmetric) mode. To find the natural frequency of the perfect ring,
the displacement vy, in Eq. (10) can be substituted into Eq. (8), then

the natural frequency of the rotating perfect ring is obtained as

20n EI n2(1—n?2)2 (2.(271 )2 ,

0) = +
won) =Tt R 1z 1+n?

(12)

For n =0, Only one independent eigenmode exists. The eigenmodes
relevant to n =0 and 1 correspond to rigid motions of the ring, and
their eigenfrequencies are zero. In the following, the eigenmodes with
n > 2 will be examined. They have nonzero eigenfrequencies and
results in deformations of the ring, so that they are known as elastic
eigenmodes. The natural frequency is if the flawless ring is not

rotating.

El n%(1-—n?)?
PoAR* 14 n? (13)

wOn(O) =

10 2] 21



2.1.2 Imperfect Ring

The coinciding frequency, eq. (12), relevant to couples of
degenerate eigenmodes, eq. (10), splits into two distinct values as
well as the rotational orientation despite the addition of a minor
amount of mass imperfection to a perfect ring. Moreover, their
corresponding eigenmodes deviate from the sinusoidal shape, eq. (9).

This section presents a model that leads to analytical expression of
the eigenfrequencies and modal structures of an imperfect ring under
a general imperfect condition. To solve an imperfect ring with point
masses, it is necessary to include the test function, ¥ in the

formulation for the weak form.
P =e kb (14)
A weak formulation becomes
JZ’T EI [0 N 03 v Rdo
o |AR*\06 703\ ag 693 ¥

2

0 w?(N v 4i .(Z.Qav 15
[ oo o (G- v) + swray 15)

aZ
—..Q <W—U)1Rd9:0

11 -"'\«._E "T.:'.I



By partial derivation, eq. (15) is replaced as

m oY a3¢ ov 93
f AR < ae3> (ae * 693>l Rd6
2T a al/) . 61/1
- 0) |w? (2 2i0(2)N
J;) ,0( )[ ( )(Ull}-l-agae) iw() ( l/)+1769> (16)

2 —— =
+ 10 (U¢+6969>]Rd6 0

The imperfect of mass density is accounted for as follow :

p(8) = po + p(6) (17)

where 8p(0) represents 2m—periodic perturbations of the perfect
ring's mass densityp,. Accordingly, the eigenmodes u,(8) and the
corresponding eigenfrequencies w,(Q) of the imperfect ring are

represented as
wn(Q) = C‘)On(Q) + 60)71(9.) (18)
vn(g) = vOn(H) + 6Un(9) (19)

where &u,(0) , here denoted as "harmonic distortion", is an

undetermined perturbation of the modal shape uy,(8) of the perfect

12 -"x_i';'lll.i



ring, which accounts for the vibration localization and rotational speed
in ref. [10]. The unknown shift of the correspond modal
eigenfrequency is denoted by dw, ().

By substituting eqs. (17), (18) and (19) into Eq. (16), it is
presented as :

_J‘Z" El <61/) 63lp><6(v0n+6vn)
0

AR*\ 29 T 363 20

93 (v0n(6) + 6v,(6))
* 967 >

+ (po + 6p)

(wOn(-Q) + 6wn(ﬂ))2 ((U(m + 6v)Y

(20)
0(vy, + dv,) OY
T3 a0

d(vo, + 6vy)

- Zi(w(m(!)) + 8wn(ﬂ))[2 <Tlp + (UOn + 51771) %)

d + 6v,)0
(UOn Un) ¢> RdO = 0

2 o
+ 0 <(v0n+6vn)1/)+ 50 50

In order to derive closed—form expressions for the rotational modal
frequency shift dw, () and the harmonic distortion Su,, a linearized
version of eq. (20) is here derived. It is obtained by neglecting

higher—order terms in eq. (20) :

13 M Z2-1H %



Bl (060, 9%6v,\ (09 0%
fo AR4< 96 ' 06 ><%+W>Rd9

2m a8, 0P
_J. (w(z)n(-Q)pO - ZionwOn(Q)) (67-7711!} + agn %) Rd6
0
2T
= f (W5 ()P + 2won (V) Sw, (Q)py + Q*5p) (v(mt/f 1)
0
0vyy, 0P
a6 ﬁ) Rd6

o ] oY v,
- j (208w, (Q) + 2iQ8pwy, (Q)) (v(m%+ Y: l[J)RdQ
0

The mass—density perturbation 8p(6) is depicted by the Fourier

series expansion as Ref. [10]:

+ o0

5p(0) = ) {p}y e (22)

k=—o0

where {c} is the vector comprising the Fourier coefficients of a
function c(@), and {c}, is its kth component. Naturally, it turns out
that {c}_, = {c}x. Additionally, the unidentified harmonic distortion
6v,(08) is represented by its Fourier series expansion. Because the
ring is applied to an in—extensional assumption, 6v,(68) can be

replaced with éu,(6).

14 A 2 1TH



6un(@) = ) (Bunhee™ = —ik ) () e (23)

k=—0o0 k=—o0

As mentioned in Ref [10], we can infer, without loss of generality,

that
{6un}n =0 (24)

since the phase orientation ¢, is assumed as unknown quantity.
The Fourier series expansions, eqs. (22) and (23) are substituted

in Eq. (21). The test function, ¥ is taken as follows :
Yp=e* keN (25)

After simple algebra, the following equation is obtained, for k € N

excepted k =n;

{6u, }x ll + k% k*(1-k?)? ,1+k?

Ay |14+72 n2(1—n?)? 1+ n?
_ {6p} sk ion n(1 + nk) n(n —k) n(1 + nk)]
-, ¢ Ik(l +n?) KA+nd) " k(1+n?)| (26)
{60} n+k Cion n(1l —nk) n(n + k) ,n(1—nk) |
T, € lk(l T k@) kAt D) |

15 -':I'-\._E "'::' 1..5



where II is rotating speed ratio, the rotating speed per perfect
frequency, Il = Q/wgy,.

Eq.(26) yields the Fourier coefficients of the harmonic distortion
Suy,.

Alternatively, the following equation is derived for =n :

L50n(@) _ 80k,

= [1+ 2]
Won Po
(27)
) _[1—n? n 1—n?
+{ p}Zn e_l(pn _ l—[ + HZ
Po 1+ n? 1+ n? 1+ n?
This equation results in :
ow, (Q 1{6
nO) __160do
Won 2 po
(28)
1 {8 - [1=n? n 1 —n?
P L — 411 + 112
2 po 1+ n? 14 n? 1+ n?

Since both the left—hand side and the first term on the right—hand
side of the previous equation are real, the second term at the right—

hand side must also be real. Consequently, it follows that :

1 1—n? n 1—n?

= Zarg |[—— — 411
Pn ZaF‘(’rl+n2 1+ n? 1+ n? 2

16 -":lx_i "'l::'lll.: o |



where [ present higher mode and lower mode, [ =0,1

Hence

5w, (1) _ _1{5,0}0
won () -2 Po

-t {6 1—n? n 1 —n?
_( ) {p}Zn _41_[ +H2
2 Po 1+ n? 1+ n? 1+ n?

[1+ 1?]
(30)

As expected, it turns out that for each elastic modes, n = 2, there
are two separate frequencies each with a higher frequency and a
lower frequency. Therefore, the mode n relevant frequency split (or

mistuning) comes out to be

{6p}2n
Po

= — 411 2
Won () 1+ n? 1+ n? 1+ n?

ASw,(Q) [1-n? n 1-— nzl

€2))

2.1.3 Point masses added to the ring

In case of p point masses m; located in the ring at the angular

positions 8 = 0}, imperfection due to point masses is presented as

17 A ""l-.'lll.'i "i T'i



14
6p(6) =Z%6e(0) (32)

where §7(0;) denotes the Dirac delta function supported at ;. The

Fourier coefficients of the mass density perturbation §p are given by

P
m; .
s =2_f - ike 33
{op} _ SR € (33)
j=1
The phase orientation ¢,;, eq. (29) yields

p .
1 j=1M; sin 2n®j

is
= arctan + 1=, =01 34
Pni Zp ,mjcos2n®; 2 (34
from eq. (30) it turns out that
Sw, (@) 1 d
1)
= M, | [1+ 17 ’
Won 2 -
j=1
(35)

n? n 1—n? .
- (=1)! 411 + 11 E m; e =20
( )1+n2 1+ n? 1+nzl - j €

where M, = 2nRp, is the mass of the perfect ring.

Expression of the phase orientation ¢,;, eq. (34) is equivalent to

18 A 2 TH



expression (7) of ¢, derived in Ref. [5], by noting that ¥, =

_(Pn,l/n~

Finally, from Eq. (26), for k # n, the Fourier coefficients of du,,; are

obtained :
{5un}k
AOn
_ 1
_[1+k2_k2(1—k2)2+l_[21+k2]
1+n?2 n2?(1-n?)? 1+n?
p )
( =1y i1+ +0,) n(1 + nk) 40 n(n—k)
M k(1 +n?) k(1 +n?)
(36)
n(1 + nk)
k(1 +n?)
P
2j=1™ _imrigrgny [PAZNK) o nnt k)
M k(1 + n?) k(1 + n?)
I n(1 — nk)
k(1 +n?)

with ¢, given in Eq. (34).

In order to investigate the vibration phenomenon due to the
imperfect of mass, the total harmonic distortion (THD) index is

introduced for each split eigenmode in ref [10]:

19 H 2-1tlH



2
THD = Sl = i |{6un'l}k| (37)
lluonl2 245,

This index measures the contribution of mode shape by imperfection
difference from the fundamental ugy, to the modal shape u,,; of the

imperfect ring.

2.2. Thermo-elastic damping effect

In general, the energy conversion relationship between strain
e=¢& +¢&9+¢, and thermal energies yields TED effect. Then the
Fourier equation for heat conduction is appropriate for determining
the relationship. The heat conduction equation is utilized to obtain the

temperature profile for the thermal flux in conjunction with the strain.

oT EaT, (68) (38)

~C,(1—2v)\at

where T =T(r,0,zt) =Ty(r,0,2)e“t is the difference of the

temperature from the ambient temperature T,. Furthermore, a,y,C,
3 - 11

20 MM =2TH e 3



and v are thermal expansion coefficient, thermal diffusivity, heat
capacity per unit volume and Poisson’s ratio of the material,
respectively.

To express TED in micro—ring structure as displacement and
thermal terms, the components of strain with thermal effect can be

written as

1
gg =—=0ag+al (39)

E
£r=£Z=—%09+aT (40)
Og = E(SQ - C{T) (41)

In order to determine the temperature profile of the ring structure,
Eqgs. (39)—(41) are substituted into Eq. (38) by the process in Ref.
[19] with approximation such as 1+u=~1 and R+r ~R. As the
boundary condition, there is no heat flux at both edges of the radial
thickness. Then the heat conduction equation can be simplified into
one—dimensional as

0°T 10T 1Ap 0 [r 62u+ ”
9602 400  ya 06|R\agz T (42)
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where Ag= Ea’T,/C, is defined as the relaxation strength of the
Young’s modulus.

As in Ref [19], the solution of the temperature profile is obtained as

Ap 1 [(0%u sin kx
TO(X,H) =?ﬁ W+u X——kh (43)
k cos -

where k =k(w) = (1 - i)\/zzx'
Furthermore, the bending moment resultant on the cross—section of

the model with thermal effect (5) is replaced in ref [19]

E,l [(0%u E[1+ Az{1+ f(w)} (0%u
Mo=~®e\goz ™) =~ R 762

+ u) (44)

where E, is Young's modulus with TED according to the natural

frequency with

1= o= [(2) - )

By applying TED, equations to frequency and mode shape in macro

ring, eq. (35) and eq. (36) are changed :
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p
bw,(Q) .
(: =—-M,|[1+0 Z]Zm]
on =1
(46)
l 1- nz * *2 1- nz c —-2in0B;
D e M e Y e Zm'e ]
j=1
{5un}k
AOn

1
- 1+k2 k2(1—k?)?  21+k?
1+n? n?(1—n?)? 1+ n?

( {6p}_nak oi0n (n(1 + nk) . n(n—k) ,n(1+nk) (47)
Po | k(1 +n?) k(1 + n?) k(1 + n?)
{6p}nsr _;, [n(1 —nk) ,n(n+k)
+ e n|— —~ - -
Po | k(1 +n?) k(1 + n?)

L n(l — nk)
k(1 + n?)

where II" means the ratio of rotating speed and combination of
perfect frequency applied TED and without TED, II*=Q/
{00n () won (D)}

Finally, TED effect on the rotating micro—ring with imperfection is
expressed as the ratio of dissipated energy, defined by Q—factor.

The general definition of Q is given as
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1

2

Re(wps () | _ 1
Im(w;s(@) | 2

Re(wan(ﬂ) + 6a);‘ls(ﬂ))
Im(w(’;n(ﬂ) + 6w;‘ls(ﬂ))

(48)

Compared to THD of macro ring, THD is calculated by perfect

frequency with TED in micro ring.

2.3. Tuning of ring

Tuning of frequency in imperfect ring is inverse problem. In the
case of non—rotating, the trimming method is explained in ref [30]
and Ref [31]. This section explains how to solve the trimming method
when rotating a defective ring in a macro—ring and micro—ring with
TED.

The objective of tuning is to eliminate the gap of higher and lower
frequencies by removing or adding a suitable continuous mass
distribution 8p..(0) to the ring. To do this, it is necessary to
calculate proper the magnitude and location of trimming mass through
inverse process. by adding a suitable continuous mass distribution
Spi-(0) to the ring.

In order to acquire trimming, as a first step, it is necessary to

experimentally characterize the imperfect ring.
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Thus it should find the difference of frequency in higher mode and
lower mode.
The difference of higher and lower frequencies of imperfect rotating

ring in eq. (31) :

Awn(Q) = [wOn(-Q-) + 6wnH (Q)] - [wOn(Q) + 6wnL (Q)] (49)

= 0wny(Q) — Swy, (Q)
This is the modal split (mistuning).

Following ref. [10], the trimming procedure here adopted hinges on
determining a continuous mass distribution 8ps,(8), which if added to
a perfect ring, which coincide with the corresponding measured
quantities Aw, () and ¢,, respectively. Hence the mass distribution

8psp(0), according to eq. (34) and eq. (35) must satisfy the equations

1—n? n 1 — n2] [{8pspuic}
_ _ 2 2n 50
Adwn () = won () [1 Tz Mty nz] Po G
1 1—n? n 1 —n2\ {6ps)
I — 41 M2 o I
Prspue =5 a8 <1 +n? TR n2> Po Gh

which yields
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1—n? n ,1 —n2>Awn(ﬂ)
e

Soer) = (=™ _un +10 2o (52
{Pspllt}zn Po <1+n2 1+ n? 14+ n?) wen, () 2)

Consequently, any continuous mass distribution &pgp;(6) whose

Fourier coefficients {Spsplit}m are given by Eq. (52), produces the

calculated modal mistuning Awy s () and phase orientation @y spiie,
when 6pg,:(0) 1s given to the perfect ring with any such continuous
mass distribution. According to Eq. (50), it turns out that the
eigenfrequency wy,(Q) of perfect ring coincides with the average of
the eigenfrequencies w,y(Q) and w,;(Q) of imperfect ring applied
point masses, provided that &psy;;(#) is chosen with null average

(i.e., {5Psplit}0 =0). As a result, wy,(Q) could be identified with the

average of the experimentally measured eigenfrequencies.

The modes n of the imperfect ring can be trimmed by the linear
model, by simply adding any continuous mass distribution 6p:-(8).
This suggests that such a mass distribution §ps-(6) could trim also
the real imperfect ring.

An simple way to obtain distribution of continuous mass is to sample

the function ép;-(8) at N equi—spaced locations : i.e., at the angles
O1tr = 0o + 16, [=0---N-—-1 (53)
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where 6, is an arbitrary initial sampling angle and 65 = 2n/N is the

angular sampling period. Setting n,,,, = maxN, and observing that the

spectrum of the function 6p4-(6) contains spatial circular frequencies

up to 2Myay, according to the Nyquist theorem, it must result :

21

9_ =N> 2(2nmax) = MMy (54)
S

At Eq. (63), 8p-(6) could be also chosen that such that its Fourier

coefficients different from those cited above is zero : accordingly,

such a continuous distribution is

{5 } B 1 Awn(ﬂ)BZi .
Psplit)yy = PO 2 T n2 Wy, () (55)
1+ n? 1+ n? 1+ n?

Accordingly, the continuous mass distribution give in Eq. (55) is

replaced by the sampled one :

2 N-1

T

59rs(0) = 57 ) 8pur(Ou1r) 8o,,, (6 (56)
1=0

The sampled mass distribution given in Eq. (56) corresponds to the

following trimming masses :
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2nR
Mmer = Taptr(el,tr); l=0---N—-1 (57)

which recalling Eq. (52), can be calculated via the following explicit

formula :
M 1
ml,tT = My — —
1—nZ — 411 n > + HZ 1 TLZ
1+n 1+n 1+n 58
Aw, (Q)
(A)OZ(Q) cos Z(ngl,tr + Qon,split) ’ l=0--N—-1

If no target trimming is required, an arbitrary constant term may be
added to the right hand side of eq. (58), i.e., each trimming mass my,
may be increased (or decreased) by the same arbitrary quantity,
without modifying the achieved trimming condition. This freedom
may be used, e.g., to have all trimming masses positive (or negative),
if this situation is preferred for easiness of manufacturing. The Phase
orientation, ¢, is different in higher mode and lower mode. But it is
only used to higher mode in paper. Equation of tuning mass can be

used to imperfect ring regardless of rotating, TED.
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3. Results and Discussions

In this chapter, the frequency and mode shape of the imperfect
rotating ring are investigated. Likewise, the complex frequency and
Q—factor are also calculated. Also, this chapter also suggests how
to change the mistuned frequencies and Q—factor of imperfect ring
like a perfect ring by removing or adding mass (inverse problem).
In addition, it investigates the change of mode shape and total
harmonic distortion by trimming mass. In this paper, ring model is
investigated with the structural parameter as in table 1 (a) in ref
[10] and table 1 (b) in ref. [19]. And Table 2 also presents thermal

parameter in ref. [19].

3.1. Code Verification

In this section, the perfect ring is selected to examine frequency
and Q—factor under macro and micro size. Additionally, the split
frequencies and Q—factor are calculated in imperfect ring with point
mass.

Table 3 (a) and (b) present modal frequencies of perfect macro ring
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and micro ring. Because of the size, the unit of modal frequency in
macro ring is Hz, but the unit of micro ring is kHz. And the frequency
result is greater the higher the mode number.

Table 4 (a) and (b) is modal frequencies of imperfect macro ring
and micro ring with mass ratio, m/M = 0.01. higher frequencies by
perturbation are same as simple theory but lower frequencies by
perturbation are smaller than simple theory.

Fig 2. (a) and (b) present forward frequency and backward
frequency in accordance with rotating speed ratio, Q. There is a
rotating speed ratio where forward frequency and backward
frequency meet, which is the value before the imaginary value in eq.
(30). In the backward rotating, there is a rotating ratio which is
rotating, but its frequency is zero. This phenomenon is 'stationary
condition” which means that the mode does not rotate with the
rotating ring but appears as a stationary distortion of the ring to an
observer who is not rotating with the ring as ref [1].

Table 5 (a), (b) and (c) present Q—factor of no rotating perfect ring.
As the mode number increases, the Q—factor also increases such as
frequency.

Fig. 3 is Q—factor in accordance with rotating speed ratio. Q—factor
by forward increases as the rotating speed ratio increases, but
decreases at some point. On the contrary, Q—factor by forward

30 P

3 =11 =1
|-1-'l| .J!'



decreases as rotating speed ratio, but increases at some point.

3.2. Natural frequency

In this section, it is investigated how the change of frequency
derived by perturbation is calculated based on the rotating speed
ratio and magnitude of mass in macro ring.

Fig 4. shows the difference of higher and lower frequencies In
accordance with magnitude of mass. As the mass ratio increases, the
difference of frequencies increases. Since the lower frequency by
perturbation is less than simple theory, the difference of frequencies
by perturbation is greater than simple theory.

Fig.5 shows the ratio of the difference of higher frequency and lower
frequency in accordance with rotating speed ratio in macro ring at
n=2. In forward rotating, the difference of higher and lower
frequencies by perturbation increases, but the difference by simple
theory has little difference and surges. In backward rotating, the
differences of higher and lower frequencies by perturbation and

simple theory have resonance.
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3.3. Quality factor

In this section, Q—factor is investigated in accordance with

rotating speed ratio and magnitude of mass.

Table 6 (a), (b) and (c) is the Q—factor dependent on rotating speed
ratio, Q/wo, =0, Q/wep =0.5, Q/wo, =1 at T=298K. In forward
situation, higher Q—factor by perturbation is greater than simple
theory but lower Q—factor by perturbation is less.

Fig. 6 (a), (b) and (c) shows the difference of higher Q—factor and
lower Q—factor in accordance with mass ratio at n=2. The higher
rotating speed ratio, the difference of Q—factor is greater.

Likewise, Fig. 7 (a), (b) and (c) shows Q—factor in accordance with
rotating speed ratio at T=298K and n=2. As shown in Fig. 7, the

rotating speed ratio has a big effect on Q—factor as well as frequency.

3.4. Mode shape

In this section, mode shape derived by perturbation 1is
investigated in accordance with mass ratio and rotating speed ratio.
Also total harmonic distortion, eq. (37), which means the change of

mode shape by imperfect mass is investigated in the case of rotating
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speed ratio and magnitude of mass.

Fig. 8 is mode shape of imperfect macro ring with 1% point mass
and rotating speed ratio, Q/wq, = 1.

Fig. 9 shows total harmonic distortion in accordance with mass ratio
and rotating speed ratio. THD can be obtained when there is an
imperfect mass in ring, when the mass ratio is zero, there is no THD
value regardless of rotating speed ratio.

Fig. 10 shows THD in accordance with rotating speed ratio in macro
ring with imperfect mass, m/M = 0.01. This figure is similar to Q—
factor, fig. 7. And it has the value of rotating ratio which is similar to
frequency, fig. 3.

Fig. 11 (a) and (b) show total harmonic distortion of higher mode
and lower mode in accordance with mass ratio in macro ring at n=2.
As mass ratio increases, THD generally increases. In backward
rotating, THD in backward rotating totally is smaller than THD in no—
rotating.

Fig. 12 is total harmonic distortion in accordance with rotating
speed ratio in micro ring. THD in micro ring has no difference of
temperature. In backward rotating, THD appears phenomenon such
as resonance at specific result of rotating speed ratio. This reason is
because the denominator of eq. (47) goes from zero at a certain
rotating speed ratio value.
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Fig. 13 is THD in accordance with mass ratio in micro ring. Similar
to Fig. 11, THD of backward rotating is totally smaller than no—
rotating. Because of size compared to macro ring, THD of forward

rotating is greater than macro ring.

3.5. Tuning

This section explains how to calculate magnitude and location of
trimming mass to eliminate higher and lower frequencies as well as
Q—factor by removing or adding mass in ring model. Through inverse
process, eqs(53)—(58) can get rid of difference of frequencies and
Q—factor.

Before doing tuning, Fig. 14 (a), (b) and (c¢) show the difference of
tuned frequency and perfect frequency Q—factor in accordance with
mass ratio and tuning location at rotating speed ratio in macro ring.
In here, if the gap of tuned frequency and perfect frequency is zero,
this point is tuning point of magnitude and location of trimming mass.
In the case of rotating speed ratio, Q/wqy, = 1, since lower frequency
is resonance such as in fig. 5, it is not possible to compute tuning
results.

Fig. 15 (a), (b) and (c) show the difference of tuned Q—factor and
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perfect Q—factor in accordance with mass ratio and tuning location at
rotating speed ratio in micro ring. If the gap of tuned Q—factor and
perfect Q—factor is zero, this point is likewise tuning point of
magnitude and location of trimming mass. As rotating speed ratio
increases, the maximum of difference of tuned Q—factor and perfect
Q—factor is increased.

Fig. 16 and Fig. 17 present the picture in which magnitude and
location of trimming mass is suitable at n=2, n=3 using eq. (50)—
(52). These positions is located to tune imperfect ring regardless of

rotating.
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4. Conclusion and future work

Although all structures are expected to be manufactured without
flaws, there are sometimes imperfections such as mass, stiffness
which result in frequency split and mistuning of structure.

In this work, analytical model for imperfect rectangular ring with
thermo—elastic damping is investigated. This ring is based on the
assumptions of in—extension and linearization. It shows the changes
of frequency, q—factor and mode shape caused by imperfect mass
using perturbation method in a spinning situation. Compared to
simple theory, because perturbation method is assumed that
frequency and mode shape split due to imperfection, perturbation
method can show mode shape depending on the size of the ring,
rotating speed ratio and imperfect mass. Thus, using the
perturbation method, mistuned frequency and g—factor can be
calculated more precisely from a rotating ring with an imperfect
mass, and the mode shape can also be investigated in greater detail.
The ring mistuned by point mass affects to whole system and results
in split of natural frequencies and increase of the damping effect as
well as mode shape.

In addition, the magnitude and location of the trimming mass are

determined through the use of the inverse process to equalize the

1 1 T
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split frequency and g—factor generated by an imperfect ring to a
perfect ring. Through this procedure, it is expected that unbalanced
ring can be tuned by removing or adding trimming mass.

As future works, studies will be investigated in a variety of
situations. For examples, it can be studied in the case of non—
linearity for improving the accuracy of frequencies and mode shape
by considerable imperfections. And the current study only considers
the case of imperfect mass, but the frequency and mode shape can
be derived by adding the stiffness. In addition, it can be applied to
ring with circular cross—section as well as cylindrical shell. This

paper only consider single mode of tuning but it can do dual mode.
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Table 1 (a) structural parameter of macro ring

young’s modulus, E 206Gpa
mass density, u 7850kg/m3
poisson’s ratio, v 0.3
radius, R 0.3m
thickness, h 0.005m
length, b 0.1m
mass, M, 7.3984kg

Table 1 (b) structural parameter of micro ring

young’s modulus, E 165Gpa
mass density, u 2330kg/m3

radius, R 0.003m
thickness, h 120 X 10™°m
length, b 120 X 107°m
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Table 2 Thermal properties of temperature

Ambient Temperature T, [K]

Thermal expansion coefficient a [107°K™1]
Heat capacity per unit volume

C, [108/m=3K~1]

Thermal diffusivity y [107°m?s~1]

258 298
2.24 2.6
1.52 1.64
11.7 8.6

348
3.06
1.73

6.97
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Table 3 (a) Modal frequencies fy, = wq,/(27)
of the perfect macro—ring

n 2 3 4 5) 6

fon [HZ] 36.78 104.03 199.46 322.57 473.21

Table 3 (b) Modal frequencies fy, = won/(21)
of the perfect micro—ring

n 2 3 4 5) 6

fon [kHz] 13.83 39.12 75.02 121.32 177.97
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Table 4 (a) Modal frequencies of imperfect mass 1%

iIn macro—ring

n 2 3 4 5) 6
present H 36.71 103.92 199.35 322.45 473.09
L 36.49 103.09 197.59 319.48 468.61
ref. [5] H 36.71 103.92 199.35 322.45 473.09
L

36.49 103.10 197.61 319.52 468.68

Table 4 (b) Modal frequencies of imperfect mass 1%

in micro—ring without TED

n 2 3 4 5 6
present H 13.80 39.09 74.97 121.27 177.92
L 13.72 38.77 74.31 120.15 176.24
ref. [5] H 13.80 39.09 7497 121.27 177.92
L

13.72 38.78 74.32 120.17 176.27
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Table 5 (a) Quality factor of perfect ring with rotating,
Q/U)On == 0

n 2 3 4 5) 6

T=258K 14444 24164 42125 65144 92817
T=298K 10731 21606 38574 60007 89878
T=348K 7689 16923 30483 47600 68312

Table 5. (b) Quality factor of perfect ring with rotating,
Q/U)On = 0.5

n 2 3 4 5) 6

T=258K forward 18656 26944 42825 62386 85323
backward 7633 13655 25034 40159 58800

T=298K forward 13859 24090 39213 57463 78940
backward 6231 14665 27778 44996 66360

T=348K forward 9932 18871 30992 45590 62804
backward 4064 9565 18118 29349 43283

Table 5. (c) Quality factor of perfect ring with rotating,

Q/won =1

n 2 3 4 5 6
T=258K forward 18489 17402 18665 19286 19544
backward 1 2 3 4 6
T=298K forward 13736 15559 17093 17768 18089
backward 1 3 5 7 11
T=348K forward 9844 12190 13513 14103 14401
backward 1 3 5 7 11

48 A -‘F-".i &k 3



Table 6 (a) Quality factor of imperfect mass, m = 0.01M

according to the rotating ratio Q/wy, =0 at T=298K

n=2 n=3 n=4 n=>5 n==6

present H 10722 21585 38550 59980 85847
L 10689 21437 38240 59465 85082

ref[5] H 10723 21587 38554 59986 85856
L 10700 21441 38249 59479 85102

Table 6 (b) Quality factor of imperfect mass, m = 0.01M
according to the rotating ratio Q/wy, = 0.5 at T=298K

n=2 n=3 n=4 n=5 n=6

present forward H 13852 24061 39173 57422 78897
L 13788 23956 38986 57121 78460

backward H 5638 12134 22826 36873 54264

L 5611 12124 22758 36723 54010

ref [5] forward H 13853 24067 39186 57436 78911
L 13833 23887 38798 56785 77939

backward H 5655 12187 22899 36965 54375

L 5610 12012 22532 36351 53456

Table 6 (c) Quality factor of imperfect mass, m = 0.01M

according to the rotating ratio Q/wg, =1 at T=298K

n=2 n=3 n=4 n=5 n==6
present forward H 13783 15616 17156 17834 18156
L 13580 15286 16645 17107 17175
backward H 1 2 4 6 9
L 1 2 4 6 9
ref [5] forward H 13716 15512 17036 17706 18024
L 13658 15138 16180 16216 15749
backward H 84 189 348 547 779
L 21 20 19 17 15
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Fig. 1 Coordinate system of ring with imperfections
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Fig. 2 Modal frequency of perfect ring according to rotating ratio
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Fig. 6 The difference of Q—factor according to mass ratio at n=2
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Fig. 8 (a) Mode shape 1% mass with rotating Q/wgy, =1, n=2
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Fig. 8 (b) Mode shape 1% mass with rotating Q/wgy, =1, n=3
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Fig. 8 (e) Mode shape 1% mass with rotating Q/wgy, = 1, n=6
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Fig. 9 THD in accordance with mass ratio and rotating speed ratio

at n=2 in macro ring
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Fig. 10 THD in accordance with rotating speed ratio in micro ring

with imperfect mass %: 0.01
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Fig 11. THD in accordance with mass ratio in macro ring
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Fig. 12 THD in accordance with rotating speed ratio with

imperfect mass in micro ring
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Figure. 13 THD in accordance with mass ratio in micro ring
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Fig. 14 (a) The difference of frequencies of macro ring in

accordance with magnitude and location with trimming mass,

Q/wy, =0, [yellow = Higher mode, blue = Lower mode]
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Fig. 14 (b) The difference of frequencies of macro ring in

accordance with magnitude and location with trimming mass,

Q/wy, = 0.5, [yellow = Higher mode, blue = Lower mode]
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Fig. 14 (c) The difference of frequencies of macro ring in

accordance with magnitude and location with trimming mass,

Q/we, = 1.1, [yellow = Higher mode, blue = Lower mode]
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Fig. 15 (a) The difference of quality factor of ring in accordance
with magnitude and location with trimming mass, Q/wg, =0,
[vellow = 258K, blue = 298K, green=348K]
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Fig. 15 (b) The difference of quality factor of ring in accordance
with magnitude and location with trimming mass, Q/wg, = 0.5,
[vellow = 258K, blue = 298K, green=348K]
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Fig. 15 (¢) The difference of quality factor of ring in accordance
with magnitude and location with trimming mass, Q/wg, =1
[vellow = 258K, blue = 298K, green=348K]
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Fig. 16 magnitude and location of tuning mass at n=2
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Fig. 17 magnitude and location of tuning mass at n=3
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