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Abstract 

 
Objective: This study aimed to identify EEG spectro-spatial 

covariance patterns associated with phenoconversion in patients with 

isolated REM sleep behavior disorder (iRBD) and investigate the 

longitudinal trajectories in iRBD, Parkinson’s disease (PD), and 

dementia with Lewy bodies (DLB) patients. 

Methods: We obtained eye-closed resting EEG data at baseline 

and follow-up from 12 iRBD patients who later developed PD, 6 

patients who later developed DLB, and 17 iRBD patients who did not 

convert. In the source space, we derived PD-RBD and DLB-RBD 

related patterns for each frequency band using EEG data collected 

after phenoconversion in iRBD converters, with 12 age- and sex-

matched healthy control (HC) participants as the reference group. 

We analyzed correlations between pattern expression scores and 

motor and cognitive function measures. Additionally, we examined 

differences between iRBD converters and nonconverters at baseline. 

Finally, we observed the longitudinal trajectory of iRBD 

nonconverters, PD converters, and DLB converters in the combined 

pattern space. 

Results: The delta and alpha spatial covariance patterns 

effectively distinguished both PD converters and DLB converters 

from HC, with the alpha pattern demonstrating the highest 

discriminative power (AUC = 0.9097 for PD-RBD pattern, 0.9306 

for DLB-RBD pattern). MDS-UPDRS part III scores positively 

correlated with delta pattern scores (rho = 0.688, p = 0.00014 for 

PD-RBD pattern, and rho = 0.539, p = 0.0055 for DLB-RBD 

pattern), even after adjusting for age and sex. However, no 

significant correlation was found between MoCA-K scores and any 

of the pattern expression scores. At baseline, converters had higher 

scores for the PD-RBD and DLB-RBD beta2 pattern compared to 

nonconverters, but the two groups were not well distinguished (AUC 

= 0.7751, rank sum p = 0.0062). All three groups showed an overall 

rightward shift in the combined pattern space, with each group 
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exhibiting distinct trajectories. 

Conclusions: PD-RBD and DLB-RBD EEG spectro-spatial 

covariance patterns can be utilized for early detection and monitoring 

of neurodegenerative disorders. The complementary use of patterns 

derived by other modalities may provide a better understanding. 

 

Keyword : REM sleep behavior disorder; EEG; Alpha-

synucleinopathy; Parkinson’s disease; Dementia with Lewy bodies; 

Spatial covariance pattern. 

Student Number : 2021-23744 
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Chapter 1. Introduction 
 

Isolated Rapid eye movement (REM) sleep behavior disorder 

(iRBD) is prodromal stage of α-synucleinopathies, such as 

Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and 

multiple system atrophy (MSA).1,2 More than 70% of iRBD patients 

eventually develop parkinsonism or dementia within 12 years follow-

up.1,3 Therefore, the identification of reliable biomarkers capable of 

predicting neurodegeneration in iRBD patients has become a matter 

of significant importance. 

In recent research, investigations into disease-related spatial 

covariance patterns in neuroimaging have been carried out. Notably, 

several studies have applied Scaled Subprofile Model using principal 

component analysis (SSM/PCA) method to [18F]FDG-PET imaging 

data to identify brain metabolic patterns associated with PD, DLB and 

REM sleep behavior disorder (RBD).4–8 Additionally, the pattern 

expression level was found to be a predictive marker for future 

phenoconversion and its subtype, and also exhibited progressive 

changes as the disease advanced.6,9,10  

However, it is crucial to acknowledge that while neuroimaging 

techniques, such as FDG-PET, offer detailed spatial images and 

valuable metabolic information, they come with certain limitations. 

FDG-PET involves radiation exposure and significant imaging costs, 

making it less feasible for widespread and repeated use.  

In contrast, electroencephalography (EEG) offers a distinct set 

of advantages. It boasts high temporal resolution, allowing for precise 

monitoring of real-time neuronal activity and dynamic changes in 

brain function. Additionally, EEG is a non-invasive method, posing 

minimal risk to patients.  

Notably, EEG slowing, characterized by an increase in delta and 

theta power and a lower dominant occipital frequency in the resting 

state, has been reported in iRBD and several neurodegenerative 

disorders, including PD and DLB.11–14 This slowing of brain activity, 

often observed in α-synucleinopathies, offers a promising window 

to directly observe changes associated with phenoconversion using 
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EEG. 

In light of these considerations, this study aims to leverage the 

unique benefits of EEG, such as high temporal resolution and cost-

effectiveness, to identify and investigate spectro-spatial patterns 

associated with phenoconversion in patients with iRBD. By doing so, 

we hope to contribute valuable insights into the early detection and 

monitoring of neurodegenerative disorders and improve the 

understanding of the underlying mechanisms involved in the 

transition from iRBD to α-synucleinopathies. 
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Chapter 2. Methods 
 

2.1. Participants 
 

We prospectively recruited patients diagnosed with iRBD based 

on the third edition of the International Classification of Sleep 

Disorders at the Seoul National University Hospital between 2014 

and 2022.15 Patients with any neurological disease, psychiatric 

condition, severe medical illness, secondary RBD due to medication, 

or moderate to severe obstructive sleep apnea (apnea-hypopnea 

index (AHI) ≥ 15) in their current state or medical history were 

excluded from the study. Each patient underwent examination by two 

neurologists, JK (specialized in sleep disorders), and KH (specialized 

in movement disorders), to confirm the presence of sleep disorders 

and neurological diseases at baseline.  

We utilized Movement Disorder Society-Sponsored Revision of 

the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part 

III and the Korean version of the Montreal Cognitive Assessment 

(MoCA-K) to assess motor and cognitive function, respectively. 

During the clinical follow-up period, annual assessments of MDS-

UPDRS part III and MoCA-K were conducted. The evaluation of 

phenoconversion in iRBD patients was performed every 6 to 12 

months based on standard criteria.16–18 Patients who subsequently 

developed PD, DLB, or MSA from iRBD were categorized as iRBD 

converters, while those who did not undergo phenoconversion during 

the follow-up period were defined as iRBD nonconverters. Among 

iRBD converters, only patients who converted to PD (PD-RBD) and 

DLB (DLB-RBD) were included in the study. Age- and sex-

matched healthy controls (HC) with MoCA-K scores above 23 were 

also recruited. This study was approved by the Institutional Review 

Board of Seoul National University Hospital (IRB No. 1406-100-

589, 1708-169-883, 1507-100-689), and written informed 

consent was obtained from every participant. 
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2.2. EEG recordings and preprocessing 
 

All participants underwent baseline EEG assessments, and iRBD 

patients had biannual EEG follow-up assessments. For the further 

analysis, we used the baseline EEG data and the most recent EEG 

data from the serial follow-up assessments for the iRBD patients. 

Scalp EEGs were recorded using two different equipment setups due 

to the equipment change in 2020.  

Between 2014 and 2019, a total of 52 datasets were collected 

using an EEG recording device (Grass Technologies, USA) with 60 

electrodes positioned according to the international 10-10 system. 

The data were recorded at a sampling rate of 400Hz, with the linked 

ear as the reference and the AFz electrode as the ground. To capture 

eye movement artifacts, two electrooculography (EOG) channels 

were positioned at the outer canthus of each eye.  

Since 2020, 23 datasets were collected using an EEG recording 

device (Brain Products GmbH, Germany), with 64 electrodes 

positioned based on the international 10-10 system, and a sampling 

frequency of 500 Hz. The FCz electrode served as the reference, and 

the FPz electrode served as the ground. For both equipment settings, 

impedance of electrodes was kept below 10 kΩ during the recording. 

Resting-state EEG data were collected for a total of 5 minutes 

while participants were in awake state. The eye-closed and eye-

open conditions were alternated every 30 seconds, with 5 repetitions 

for each condition. The signals were filtered using a notch filter at 

60Hz and a high pass filter at 0.5Hz. We selected 58 channels 

(excluding AFz, FPz, and FCz) that were common to both EEG 

recording devices. Subsequently, the signals were re-referenced to 

an average reference. For our analysis, only eye-closed resting EEG 

data were extracted and used.  

To remove artifacts, we initially excluded segments that were 

severely contaminated by body movements through visual inspection. 

We then conducted independent component analysis and 

automatically removed components labeled as ‘Eye’ with a 

probability exceeding 90%.19,20 Additionally, we manually rejected 
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other components that significantly affected the signal quality.  

Finally, we extracted uncontaminated segments of 101 seconds 

from the data and resampled them at a frequency of 250 Hz. EEG 

data were preprocessed using EEGLAB v2021.0 in MATLAB R2020b 

(MathWorks, Natick, MA, USA).21 

 

2.3. EEG data analysis 
 

To achieve higher spatial resolution, we employed the source 

localization technique on the scalp EEG data. Source estimation was 

performed using the sLORETA method, implemented through 

Brainstorm version 3.23, which is executable within MATLAB.22,23 

We utilized a diagonal noise covariance matrix, and the current 

dipoles were constrained to be normal to cortex. This resulted in a 

source space consisting of 15002 vertices on the cortical surface. 

For visualization and further analysis to identify significant regions, 

we averaged the values of the 15002 vertices to 148 regions of 

interest defined by Destrieux atlas.24 

We computed the power spectral density (PSD) using Welch’s 

method in the source space. For this analysis, we used a 2-second 

window with 50% overlap, resulting in a frequency resolution of 

0.5Hz for the power spectrum. To obtain relative PSD values for each 

source, we divided the PSD by the total power from 1Hz to 30Hz. 

Next, we calculated the relative band power values for each 

participant based on the conventional frequency bands, including 

delta (1-3.5Hz), theta (4-6.5Hz), alpha (7-12.5Hz), beta1 (13-

19.5Hz), and beta2 (20-30Hz). Additionally, we evaluated dominant 

occipital frequency (DOF) within the range of 4-14Hz. The DOF was 

calculated by averaging the peak frequency values obtained from the 

seeds of all occipital scouts within the Destrieux atlas.  

 

2.4. EEG spectro-spatial covariance pattern 
 

To identify spectro-spatial covariance patterns related to 

phenoconversion, we applied SSM/PCA method to EEG data.4 The 
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input data for the SSM/PCA method consisted of the relative power 

of each frequency band in source space. To derive the PD-RBD 

pattern and the DLB-RBD pattern, we utilized data from each disease 

group, along with age-, and sex- matched HC group data, in a 1:1 

ratio. For the disease group, we used the most recent data collected 

after phenoconversion.  

Following the SSM/PCA method, we obtained principal 

component (PC) and selected the top 5 PCs that explained the highest 

variance in the data. To obtain patterns that best discriminate the 

patients from control group, we performed logistic regression 

iteratively, using every possible combination of scores for the 5 PCs 

as independent variables, and the group as the dependent variable. 

The model with lowest Akaike Information Criterion (AIC) was 

selected to create disease patterns. Patterns were obtained by linear 

combinations of the selected PC patterns and were subsequently Z-

transformed. This process resulted in PD-RBD and DLB-RBD 

patterns for each frequency band, producing a total of 10 patterns. 

Since we did not have an independent prospective dataset of 

patients or a separate HC group, we applied the Leave-one-out 

cross-validation (LOOCV) method to validate our patterns.25,26 In 

LOOCV, each subject from the group used for pattern generation was 

validated using a pattern derived from all other subjects (excluding 

the corresponding subject). This same pattern was also used to 

validate the subject’s baseline data. On the other hand, when 

validating subject from other groups, the pattern obtained from the 

entire set of subjects was used to calculate subject’s score. This 

approach allowed us to obtain the pattern expression scores that 

were independent from pattern derivation.25  

For all participants, the individual pattern expression scores for 

each pattern were evaluated and normalized using Z-transform with 

respect to the HC group. The overall procedure for the derivation and 

validation of patterns is illustrated in Figure 1. 
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Figure 1. SSM/PCA procedure for EEG data 

 

 

Abbreviations: SSM/PCA, Scaled Subprofile Model using principal component analysis. 

This figure illustrates the overall procedure of applying SSM/PCA to EEG data 
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2.5. Statistical analysis 
 

Group differences in demographics and pattern expression z- 

scores were assessed using the Kruskal-Wallis test with Dunn’s 

post-hoc test or Wilcoxon’s rank-sum test for continuous 

variables, and Fisher’s exact test for categorical variables. To 

evaluate the discriminative performance of the patterns, we 

calculated the area under the receiver operating characteristic (ROC) 

curve (AUC). The optimal cutoff for classification was determined 

using Youden’s index. Correlations between clinical information and 

pattern expression were evaluated by partial Spearman’s 

correlation, adjusting for age and sex. Similarly, for the correlation 

between DOF and pattern expression, the same method was used. A 

significance level of 0.05 was used to determine statistical 

significance. All statistical analyses were performed using Python 

3.8.16 (Python Software Foundation, Wilmington, DE, USA) with the 

SciPy 1.10.1 and Pingouin 0.5.3. 
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Chapter 3. Results 
 

3.1. Participant characteristics 
 

In our study, a total of 47 participants were included, consisting 

of 35 patients with iRBD and 12 HC. Among the iRBD patients, 18 

developed an overt α-synucleinopathy, with 12 developing PD 

(PD-RBD) and 6 developing DLB (DLB-RBD). Meanwhile, 17 

patients did not phenoconvert throughout the follow-up period and 

were classified as iRBD nonconverters (iRBD-NC). One DLB-RBD 

subject had no baseline EEG data, and follow-up EEG data of 6 

iRBD-NC subjects were not available. All other iRBD patients had 

both baseline and follow-up EEG data available for analysis.  

Demographic characteristics are shown in Table 1. PD-RBD 

patients were younger than both DLB-RBD patients and iRBD-NC 

patients at both baseline and follow-up time points (Kruskal-Wallis 

test, p=0.0017 at baseline and p=0.0045 at follow-up). The cohort 

follow-up duration was defined from the date of iRBD diagnosis to 

the date of the last clinical visit, while the EEG follow-up duration 

was defined as the time from the baseline EEG examination to the 

follow-up EEG examination. No significant differences were 

observed between groups in terms of sex, cohort follow-up duration, 

and EEG follow-up duration.  

For the cognitive and motor examinations, we used the data 

collected at the follow-up time point for the PD-RBD and DLB-RBD 

groups, whereas we utilized the data collected at the baseline time 

point for the iRBD-NC group. DLB-RBD patients had lower MoCA-

K scores compared to PD-RBD, iRBD-NC patients, and HC 

(Kruskal-Wallis test, p=0.0019, Table 1). Additionally, MDS-

UPDRS part III scores were higher in PD and DLB converters 

compared to iRBD-NC patients (Wilcoxon rank-sum test, 

p=0.00062, Table 1). 
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Table 1. Demographics 

  PD-

RBD 

(n=12) 

DLB-

RBD 

(n=6) 

HC 

(n=12) 

iRBD-

NC 

(n=17) 

P value 

Baseline 

data 

Age 66.8 

(5.37) 

(57-

71) 

78.2 

(3.77) 

(74-82) 

(n=5) 

70.8 

(5.39) 

(58-

76) 

73.2 

(5.76) 

(59-

82) 

0.0017a 

Sex 

(m %) 

58.3% 40.0% 

(n=5) 

58.3% 58.8% 0.92 

Follow-

up data 

Age 71.7 

(6.05) 

(59-

82) 

80.2 

(2.93) 

(76-84) 

 77.8 

(4.87) 

(69-

87) 

(n=11) 

0.0045b 

 

Sex 

(m %) 

58.3% 33.3%  63.6% 

(n=11) 

0.56 

Cohort follow up 

duration (year) 

4.3 

(1.69) 

2.7 

(1.10) 

 4.9 

(2.48) 

0.076 

EEG follow up 

duration (year) 

4.8 

(2.25) 

2.5 

(1.20) 

(n=5) 

 3.6 

(1.86) 

(n=11) 

0.15 

Follow up data for PD-RBD, DLB-RBD, baseline data for iRBD-NC 

MoCA-K 

 

26.0 

(3.67) 

(n=9) 

16.5 

(5.01) 

(n=6) 

26.8 

(1.40) 

24.8 

(3.63) 

(n=17) 

0.0019c 

MDS-UPDRS part 

III 

 

9.1 

(4.94) 

(n=9) 

17.4 

(10.96) 

(n=4) 

 2.5 

(3.63) 

(n=14) 

0.00062* 

Abbreviations: PD-RBD, iRBD patients who converted to PD; DLB-RBD, iRBD patients who 

converted to DLB; HC, healthy controls; iRBD-NC, iRBD nonconverters; MoCA-K, Korean 

version of the Montreal Cognitive Assessment; MDS-UPDRS, Movement Disorder Society-

Sponsored Revision of the Unified Parkinson’s Disease Rating Scale. 

a PD-RBD < DLB-RBD (p=0.0025), PD-RBD < iRBD-NC (p=0.019) 

b PD-RBD < DLB-RBD (p=0.0070), PD-RBD <iRBD-NC (p=0.037) 

c DLB-RBD < PD-RBD (p=0.0052), DLB-RBD < iRBD-NC (p=0.023), DLB-RBD < HC 

(p=0.0016) 

* Wilcoxon rank sum test (PD-RBD, DLB-RBD vs iRBD-NC) due to number of DLB-RBD 

patients <5 

 



 

 １１ 

3.2. PD-RBD related EEG spectro-spatial covariance 

pattern 
 

For each of the five frequency bands, we derived the PD-RBD 

related EEG spectro-spatial covariance pattern using data from 12 

PD-RBD patients and 12 age-, and sex- matched HC (Figure 2). As 

mentioned in the method section, PD-RBD patients’ follow-up data 

after phenoconversion were utilized. Detailed descriptions on derived 

patterns are provided in Table 2. Among the five patterns, the delta 

pattern and alpha pattern showed the best discrimination between 

PD-RBD and HC (AUC=0.8522 and 0.9097 for PD-RBD delta 

pattern, PD-RBD alpha pattern, respectively). Regions that 

significantly positively and negatively contributed to each pattern are 

presented in Table 3.  

The PD-RBD delta pattern was characterized by relatively 

increased power in the left and right occipital poles, while showing 

relatively decreased power in the right precentral gyrus and superior 

part of the precentral sulcus (absolute z-scores > 2.0, Figure 3). We 

evaluated the differences in z-scores for the PD-RBD delta pattern 

between HC, PD-RBD, DLB-RBD, and iRBD-NC groups. For iRBD-

NC group, we used z-scores obtained from baseline data. The 

pattern expression z-scores of the PD-RBD group were higher than 

those of the iRBD-NC group and HC (post-hoc p= 0.038 and 0.011, 

respectively). DLB-RBD patients also have higher z-scores for the 

pattern than the iRBD-NC group and HC (post-hoc p= 0.011 and 

0.0028, respectively).  

The PD-RBD alpha pattern exhibited relatively increased power 

in the right fronto-marginal gyrus and sulcus, transverse frontopolar 

gyri and sulci, postcentral gyrus, and precentral gyrus (absolute z-

scores > 2.0, Figure 3). The pattern expression z-scores of the PD-

RBD group were higher than those of the iRBD-NC group and HC 

(post-hoc p=0.0091 and 0.00078, respectively), and the DLB-RBD 

group also had higher z-scores than the iRBD-NC group and HC 

(post-hoc p= 0.014 and 0.0022, respectively). 
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Figure 2. PD-RBD related EEG spectro-spatial 

covariance pattern 

 

 
Abbreviations: PD-RBD, iRBD patients who converted to PD. 

This figure presents the PD-RBD pattern for all frequency bands. 15002 voxels were averaged 

to 148 regions of interest (ROIs) defined by Destrieux atlas. This figure was displayed in 

neurological convention. Red colors mean regions with relative increased power, and blue 

colors mean regions with relative decreased power. Only the regions with |z| >1.7507 (96%) 

were shown. 
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Table 2. PD-RBD related EEG spectro-spatial 

covariance pattern 

Frequency 

band 

Combinations 

of PCs 

explained 

variance 

AUC P value 

Delta 1, 2, 5 0.87 0.8522 0.00033 

Theta 1, 2 0.85 0.6458 0.015 

Alpha 1, 2, 4, 5 0.85 0.9097 4.74*10-5 

Beta1 1, 5 0.77 0.8333 0.00049 

Beta2 1, 2, 5 0.86 0.8333 0.00034 
Abbreviations: AUC, area under the receiver operating characteristic curve. 

P value: p value of Wilcoxon rank-sum test  
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Table 3. Significant brain regions in PD-RBD 

related spectro-spatial covariance pattern 
Frequency 

band  Positive components  Z Negative components  Z 

delta 
Lingual gyrus L 1.79906 

Paracentral lobule and 

sulcus R 
-1.8801 

Lingual gyrus R 1.87291 Postcentral gyrus R -1.7914 

Occipital pole L 2.77505 Precentral gyrus R -2.2092 

Occipital pole R 2.16212 
Superior part of the 

precentral sulcus R 
-2.4503 

Calcarine sulcus L 1.974   

Posterior transverse 

collateral sulcus L 
1.97541   

theta Posterior-ventral part 

of the cingulate gyrus L 
1.86371 

Triangular part of the 

inferior frontal gyrus L 
-1.7767 

Calcarine sulcus R 1.76388   

Parieto-occipital 

sulcus R 
1.82659   

alpha Fronto-marginal gyrus 

and sulcus R 
2.0888 Occipital pole L -1.9953 

Transverse frontopolar 

gyri and sulci R 
2.01682 

Anterior transverse 

collateral sulcus L 
-1.779 

Middle frontal gyrus R 1.79839   

Superior frontal gyrus 

R 
1.83624   

Postcentral gyrus R 2.35152   

Precentral gyrus L 1.70167   

Precentral gyrus R 2.42486   

Superior frontal sulcus 

R 
1.79227   

beta1 Fronto-marginal gyrus 

and sulcus L 
1.9462 

Posterior-ventral part 

of the cingulate gyrus R 
-1.8651 

Fronto-marginal gyrus 

and sulcus R 
1.78393   

Transverse frontopolar 

gyri and sulci L 
2.0144   

Transverse frontopolar 

gyri and sulci R 
1.96082   

Middle frontal gyrus L 2.2989   

Middle frontal sulcus L 1.95554   

beta2 Subcentral gyrus and 

sulci L 
2.02836 

Posterior-dorsal part 

of the cingulate gyrus L 
-2.2026 

Lateral aspect of the 

superior temporal 

gyrus L 

1.94743 
Posterior-dorsal part 

of the cingulate gyrus R 
-2.2052 

Middle temporal gyrus 

L 
2.22973 Precuneus L -1.8451 
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Transverse temporal 

sulcus L 
1.79819 Precuneus R -1.8776 

    
Marginal branch of the 

cingulate sulcus L 
-1.9727 

    
Marginal branch of the 

cingulate sulcus R 
-1.8792 

    

Intraparietal sulcus and 

transverse parietal 

sulci L 

-1.7786 

  Subparietal sulcus L -2.1814 

  Subparietal sulcus R -2.1979 

Abbreviations: L, left; R, right. 

Only regions with an average z-score greater than 1.7507 (96%) were indicated. 

Regions with z-scores greater than 2.0 were indicated in bold. 
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Figure 3. PD-RBD pattern and pattern 

expression values 

 

 

(a) PD-RBD delta pattern (b) PD-RBD alpha pattern  

(c) PD-RBD delta pattern expression (d) PD-RBD alpha pattern expression 

Abbreviations: HC, healthy controls; PD-RBD, iRBD patients who converted to PD; DLB-RBD, 

iRBD patients who converted to DLB; iRBD-NC, iRBD nonconverters. 

The figure illustrates two PD-RBD patterns that effectively distinguish PD-RBD patients from 

HC. The distribution of subject z-scores for each group corresponding to the respective 

patterns is also shown. 15002 voxels were averaged to 148 regions of interest (ROIs) defined 

by Destrieux atlas. This figure was displayed in neurological convention. Red colors mean 

regions with relative increased power, and blue colors mean regions with relative decreased 

power. Only the regions with |z| >1.7507 (96%) were shown. P values of post-hoc Dunn’s 

test were calculated to compare group differences (*p<0.05, **p <0.01, ***p<0.001) 
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3.3. DLB-RBD related EEG spectro-spatial 

covariance pattern 
 

The DLB-RBD related EEG spectro-spatial covariance pattern 

was derived using the same procedure as the PD-RBD pattern 

(Figure 4). Data from 6 DLB-RBD patients and 6 age- and sex- 

matched HC (age: 74.0±2.10, male %: 33.3%) were used for pattern 

derivation, and the results for all five patterns were presented in 

Table 4. For the DLB-RBD related pattern, the delta, alpha, and beta1 

patterns demonstrated the best discrimination between DLB-RBD 

patients and HC (AUC = 0.9306 for delta, alpha, and beta1 patterns). 

Significant regions for each pattern were listed in Table 5. 

The DLB-RBD delta pattern was characterized by relatively 

increased power in the left posterior-ventral part of the cingulate 

gyrus and the occipital pole, while showing relatively decreased 

power in the left middle frontal gyrus and superior frontal sulcus 

(absolute z-scores > 2.0, Figure 5). DLB-RBD patients exhibited 

higher z-scores for the delta pattern compared to the iRBD-NC 

group and HC (post-hoc p= 0.023 and 0.014, respectively).  

The DLB-RBD alpha pattern exhibited relatively increased 

power in the left and right precentral gyrus, postcentral gyrus, and 

the right superior part of the precentral sulcus (absolute z-scores > 

2.0, Figure 5). DLB-RBD patients had higher z-scores for the alpha 

pattern compared to the iRBD-NC group and HC (post-hoc p= 0.025 

and 0.0045, respectively), and the z-scores of PD-RBD patients 

were also higher than those of the iRBD-NC group and HC (post-

hoc p= 0.019 and 0.0019, respectively).  

The DLB-RBD beta1 pattern showed positive weights in the 

right transverse frontopolar gyri and sulci, middle frontal gyrus, and 

middle frontal sulcus (absolute z-scores > 2.0, Figure 5). DLB-RBD 

patients had higher z-scores for the beta1 pattern compared to the 

iRBD-NC group and HC (post-hoc p= 0.012 and 0.016, 

respectively), and the z-scores of PD-RBD patients were also 

higher than those of the iRBD-NC group and HC (post-hoc p= 0.020 

and 0.028, respectively). 
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Figure 4. DLB-RBD related EEG spectro-

spatial covariance pattern 

 

 
Abbreviations: DLB-RBD, iRBD patients who converted to DLB. 

This figure presents the DLB-RBD pattern for all freuquency bands. 15002 voxels were 

averaged to 148 regions of interest (ROIs) defined by Destrieux atlas. This figure was 

displayed in neurological convention. Red colors mean regions with relative increased power, 

and blue colors mean regions with relative decreased power. Only the regions with |z| >1.7507 

(96%) were shown. 
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Table 4. DLB-RBD related EEG spectro-

spatial covariance pattern 

Frequency 

band 

Combinations 

of PCs 

explained 

variance 

AUC P value 

Delta 1, 2 0.82 0.9306 0.0027 

Theta 1, 2, 4, 5 0.94 0.8194 0.021 

Alpha 1, 2 0.67 0.9306 0.00018 

Beta1 1, 2 0.93 0.9306 0.00088 

Beta2 1, 2, 4, 5 0.94 0.8750 0.0038 
Abbreviations: AUC, area under the receiver operating characteristic curve. 

P value: p value of Wilcoxon rank-sum test  
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Table 5. Significant brain regions in DLB-RBD 

related spectro-spatial covariance pattern 
Frequency 

band  

Positive regions Z Negative regions Z 

delta Posterior-ventral part 

of the cingulate gyrus 

L 

2.10903 
Transverse frontopolar 

gyri and sulci R 
-1.7579 

Posterior-ventral part 

of the cingulate gyrus 

R 

1.87917 Middle frontal gyrus L -2.3328 

Occipital pole L 2.05694 Superior frontal gyrus L -1.9611 

Calcarine sulcus L 1.90939 Superior frontal gyrus R -1.8779 

Posterior transverse 

collateral sulcus L 
1.94669 Superior frontal sulcus L -2.1799 

Collateral sulcus and 

lingual sulcus R 
1.78477 Superior frontal sulcus R -1.8582 

theta Posterior-ventral part 

of the cingulate gyrus 

R 

1.84967 
Fronto-marginal gyrus 

and sulcus L 
-1.9728 

Calcarine sulcus R 1.76605 
Transverse frontopolar 

gyri and sulci L 
-2.0434 

  
Transverse frontopolar 

gyri and sulci R 
-2.0736 

  Middle frontal gyrus L -2.2757 

  

Temporal plane of the 

superior temporal gyrus 

L 

-1.9935 

  Middle frontal sulcus L -1.908 

alpha 
Angular gyrus L 1.83144 

Posterior-ventral part of 

the cingulate gyrus L 
-1.7937 

Supramarginal gyrus R 1.96957 
Posterior-ventral part of 

the cingulate gyrus R 
-1.8918 

Superior parietal lobule 

R 
1.85947 Parahippocampal gyrus R -1.8236 

Postcentral gyrus L 2.04817 
Collateral sulcus and 

lingual sulcus L 
-1.8103 

Postcentral gyrus R 2.73724   

Precentral gyrus L 2.07828   

Precentral gyrus R 2.65041   

Sulcus intermedius 

primus R 
1.77018   

Superior part of the 

precentral sulcus L 
1.83549   

Superior part of the 

precentral sulcus R 
2.07628   

beta1 Fronto-marginal gyrus 

and sulcus R 
1.84943 

Posterior-ventral part of 

the cingulate gyrus L 
-1.8378 

Transverse 

frontopolar gyri and 

sulci R 

2.09625   
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Middle frontal gyrus L 1.85019   

Middle frontal gyrus R 2.07357   

Inferior frontal sulcus 

R 
1.87641   

Middle frontal sulcus R 2.03476   

beta2 Fronto-marginal 

gyrus and sulcus L 

2.07683 Posterior-dorsal part of 

the cingulate gyrus L 
-1.8545 

Fronto-marginal gyrus 

and sulcus R 

1.8827 Posterior-dorsal part of 

the cingulate gyrus R 
-1.7941 

Transverse frontopolar 

gyri and sulci L 

2.08899 
  

Transverse frontopolar 

gyri and sulci R 

2.07202 
  

Middle frontal gyrus L 2.23795   

Middle frontal sulcus L 2.05368   

Middle frontal sulcus R 1.83836   

Only regions with an average z-score less than -1.7507 (96%) were indicated 

Regions with z-scores less than -2.0 were indicated in bold. 
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Figure 5. DLB-RBD pattern and pattern 

expression values 

 

 
(a) DLB-RBD delta pattern (b) DLB-RBD alpha pattern 

(c) DLB-RBD beta1 pattern (d) DLB-RBD delta pattern expression 

(e) DLB-RBD alpha pattern expression (f) DLB-RBD beta1 pattern expression 

Abbreviations: HC, healthy controls; DLB-RBD, iRBD patients who converted to DLB; PD-

RBD, iRBD patients who converted to PD; iRBD-NC, iRBD nonconverters. 

The figure illustrates two DLB-RBD patterns that effectively distinguish DLB-RBD patients 

from HC. The distribution of subject z-scores for each group corresponding to the respective 

patterns is also shown. 15002 voxels were averaged to 148 regions of interest (ROIs) defined 

by Destrieux atlas. This figure was displayed in neurological convention. Red colors mean 

regions with relative increased power, and blue colors mean regions with relative decreased 

power. Only the regions with |z| >1.7507 (96%) were shown. P values of post-hoc Dunn’s 

test were calculated to compare group differences (*p<0.05, **p <0.01, ***p<0.001) 
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3.4. Clustering by combined EEG spectro-spatial 

pattern 
 

In order to identify EEG spectro-spatial patterns as useful 

biomarkers for predicting early phenoconversion and also its subtype, 

we combined two of the patterns derived earlier to create a 2D plane, 

which we termed the “Combined pattern space”. This allowed us 

to visualize the pattern expression of each individual in a 2D plane. 

The analysis of the combined pattern space is divided into two steps: 

first, creating a space that reflects the characteristics of the diseases, 

and second, applying this space to the baseline data for longitudinal 

analysis. In this section, we focused on the first step of creating the 

space, while longitudinal analysis will be discussed in a later section. 

To create the combined pattern space, we set the x-axis as the 

z-score for the pattern that best discriminated the iRBD converters 

(PD-RBD, DLB-RBD) from iRBD nonconverters, which may 

represent a biomarker for early phenoconversion of α-

synucleinopathies. Similarly, the y-axis was set as the z-score for 

the pattern that best distinguished the PD-RBD and DLB-RBD 

groups, which may represent a biomarker for subtypes of 

phenoconversion of α-synucleinopathies. Specifically, we selected 

the PD-RBD alpha pattern z-score (AUC= 0.8856) for the x-axis 

and the DLB-RBD theta pattern z-score (AUC= 0.8611) for the y-

axis. The decision boundaries for the two axes were established 

using Youden’s index from the ROC curve (z= 2.005 for the x-axis 

and z=1.6563 for the y-axis). Combined pattern space was 

represented in Figure 6. 

In addition, we found that the DLB-RBD theta pattern had a 

significant negative correlation with the DOF, which is known to 

reflect cognitive function (rho=-0.6147, p= 0.00014). Thus, the x-

axis represents the overall conversion status, while the y-axis 

reflects the severity of cognitive impairment.  

By applying the decision boundaries, we were able to divide the 

individuals into four groups, each characterized by the following 

features: Group 1: dementia and α-synucleinopathy, Group 2: PD 
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and α-synucleinopathy, Group 3: normal state, and Group 4: mild 

cognitive impairment (MCI) or aging. This combined space will be 

used in the further analysis. 
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Figure 6. Clustering by combined EEG 

spectro-spatial pattern 

 

 
Abbreviations: PD-RBD_fu, follow-up data of iRBD patients who converted to PD; DLB-

RBD_fu, follow-up data of iRBD patients who converted to DLB; iRBD-NC_bl, baseline data of 

iRBD nonconverters; HC, data of healthy controls; MCI, mild cognitive impairment. 

This figure illustrates the combined pattern space, created by combining two patterns. PD-

RBD alpha pattern expression on the x-axis, reflecting early phenoconversion, and DLB-RBD 

theta pattern expression on the y-axis, reflecting phenoconversion subtype. The space is 

divided into four groups, and the characteristics of each group are described on the right side. 

Data points for each group are represented by different colors (PD-RBD_fu: blue, DLB-

RBD_fu: red, iRBD-NC_bl: yellow, HC: green) 
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3.5. Correlation between patterns and clinical 

characteristics 
 

To explore the relevance of pattern expression to clinical 

characteristics, we conducted correlation analysis. Using partial 

Spearman’s correlation, adjusted for age and sex, we analyzed all 

subjects with available MDS-UPDRS part III scores (n= 27) and 

MoCA-K scores (n= 44). Firstly, we found a positive correlation 

between the MDS-UPDRS part III scores, which reflect motor 

symptom severity, and the z-scores for the PD-RBD delta, theta, 

alpha, and beta1 patterns (rho= 0.688, p=0.00014 for PD-RBD delta 

pattern; rho= 0.469, p= 0.018 for PD-RBD theta pattern; rho= 0.582, 

p= 0.0022 for PD-RBD alpha pattern; and rho= 0.415, p= 0.039 for 

PD-RBD beta1 pattern). The strongest correlation was observed 

with the PD-RBD delta pattern (Figure 7(a)).  

Additionally, the MDS-UDPRS part III scores were positively 

correlated with the z-scores for the DLB-RBD delta and beta1 

pattern (rho= 0.539, p= 0.0055 for DLB-RBD delta pattern; rho= 

0.430, p=0.032 for DLB-RBD beta1 pattern), although the 

correlations were weaker compared to the PD-RBD delta pattern 

(Figure 7(b)).  

On the other hand, no significant correlation was found between 

MoCA-K scores and any of the pattern expression values. 
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Figure 7. Correlation between pattern 

expression and MDS-UPDRS part III 

 

 
Abbreviations: MDS-UPDRS, Movement Disorder Society-Sponsored Revision of the Unified 

Parkinson’s Disease Rating Scale; PD-RBD, iRBD patients who converted to PD; DLB-RBD, 

iRBD patients who converted to DLB. 

(a) MDS-UPDRS part III score and PD-RBD delta pattern expression 

(b) MDS-UPDRS part III score and DLB-RBD delta pattern expression 

ρ, p: Partial Spearman’s correlation coefficient and p value, adjusted for age and sex. 
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3.6. Pattern expression level at the baseline 
 

We investigated whether there were differences in pattern 

expression between iRBD converters (PD-RBD, DLB-RBD) and 

nonconverters at baseline. For both PD-RBD and DLB-RBD patterns, 

the beta2 patterns demonstrated the modest differentiation between 

iRBD converters and nonconverters (AUC= 0.7751, rank-sum test 

p= 0.0062 for PD-RBD beta2 pattern and DLB-RBD beta2 pattern, 

Figure 8). 
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Figure 8. Pattern expression at the baseline 

 

 
Abbreviations: PD-RBD, iRBD patients who converted to PD; DLB-RBD, iRBD patients who 

converted to DLB; iRBD-C, iRBD converters; iRBD-NC, iRBD nonconverters; LOOCV, Leave-

one-out cross-validation; FPR, false positive rate; TPR, true positive rate; ROC, receiver 

operating characteristic; AUC, area under the receiver operating characteristic curve. 

(a) PD-RBD beta2 pattern (b) DLB-RBD beta2 pattern 

(c) PD-RBD beta2 pattern expression and ROC curve to discriminate iRBD converters from 

iRBD nonconverters at baseline 

(d) DLB-RBD beta2 pattern expression and ROC curve to discriminate iRBD converters from 

iRBD nonconverters at baseline 

The figure illustrates two patterns that effectively distinguish iRBD converters from iRBD 

nonconverters at baseline. The distribution of subject z-scores and ROC curves to discriminate 

two groups are also shown. 15002 voxels were averaged to 148 regions of interest (ROIs) 

defined by Destrieux atlas. This figure was displayed in neurological convention. Red colors 

mean regions with relative increased power, and blue colors mean regions with relative 

decreased power. Only the regions with |z| >1.7507 (96%) were shown. P values of Wilcoxon 

rank-sum were calculated to compare group differences (*p<0.05, **p <0.01, ***p<0.001) 
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3.7. Longitudinal trajectory in combined pattern space 
 

Finally, we projected the baseline and follow-up data of all 

subjects onto the previously derived combined pattern space to 

visualize the changes over time. At baseline, most subjects were 

located in Group 3, but after the follow-up period, there was a 

noticeable shift of data points towards the right side of the plane.  

We represented individual longitudinal trajectories separately for 

each group (Figure 9). In the PD-RBD patients, most data points 

showed a horizontal rightward shift in their individual trajectories 

over time, moving from Group 3 to Group 2. For DLB-RBD patients, 

most data points moved to the upper right, transitioning from Group 

3 to Group 1. For iRBD nonconverters, most data points did not cross 

the boundary after follow-up, but they exhibited progression in the 

rightward direction or the upper-right direction. 
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Figure 9. Longitudinal trajectory of combined 

spatial pattern expression 

 

 

Abbreviations: PD-RBD, iRBD patients who converted to PD; DLB-RBD, iRBD patients who 

converted to DLB; iRBD-NC, iRBD nonconverters. 

(a) all subjects at baseline (b) all subjects at follow-up 

(c) Longitudinal trajectory of PD-RBD subjects 

(d) Longitudinal trajectory of DLB-RBD subjects 

(e) Longitudinal trajectory of iRBD-NC subjects 

This figure illustrates the longitudinal trajectory in the combined pattern space. (a) and (b) 

show the positions of all subjects at baseline and follow-up in the combined pattern space, 

respectively. (c), (d), and (e) display the individual trajectories of PD-RBD, DLB-RBD, and 

iRBD-NC subjects, respectively. Baseline positions are represented by lighter dots, while 

follow-up positions are indicated by darker dots. 
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Chapter 4. Discussion 
 

In this study, our aim was to identify EEG spectro-spatial 

covariance patterns associated with phenoconversion in iRBD 

patients and investigate their clinical relevance and longitudinal 

trajectories. Notably, the PD-RBD and DLB-RBD related EEG 

patterns exhibited spatial features that were consistent with 

previously identified brain metabolic covariance patterns associated 

with PD and DLB. Furthermore, PD-RBD and DLB-RBD patients 

showed similar spatial characteristics in their EEG patterns, with 

increased expression in patterns derived from each other. Delta and 

alpha patterns appeared to effectively reflect the overall progression 

of α-synucleinopathies. We created a combined pattern space by 

combining pattern expression scores, which effectively distinguished 

groups based on their spatial distributions. However, at the baseline, 

pattern expression scores did not clearly differentiate iRBD 

converters from nonconverters. Longitudinal tracking of PD-RBD, 

DLB-RBD and iRBD-NC groups revealed that individuals gradually 

shifted towards the right or upper-right region of the plane. This 

suggests that the expression of EEG spectro-spatial covariance 

patterns might initiate at a later stage compared to brain metabolism 

patterns in iRBD patients. As a result, the complementary use of 

patterns derived from both modalities may prove valuable in 

assessing the current status and estimating the risk of 

phenoconversion and its subtypes in iRBD patients.  

 

Comparison with the previously identified brain metabolic 

patterns 

Our results demonstrated that both PD-RBD and DLB-RBD delta 

and alpha patterns effectively distinguished PD patients and DLB 

patients from the HC group. Previous studies have reported brain 

metabolic patterns related to PD, DLB, and RBD using [18F]FDG-

PET imaging data. The PD related metabolic pattern (PDRP) showed 

relatively hypermetabolism in putamen, thalamus, globus pallidus, 

cerebellum, and pons, and relatively hypometabolism in the 
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occipitoparietal cortex.5,27 Similarly, the DLB related metabolic 

pattern (DLBRP) exhibited relative metabolic increases in the 

pallidum, putamen, amygdala, hippocampus, parahippocampi, 

cerebellum, and pons, along with decreases in the occipital, parietal 

and temporal cortex, and precuneus.7,28 As for RBD related metabolic 

pattern (RBDRP), they differed among research groups because RBD 

is a transitional state. However, these patterns commonly exhibit 

negative contributions from the occipital, parietal, and temporal 

regions, while being positively contributed to by the premotor cortex, 

frontal cortex, and hippocampus.8,29,30 And pattern derived from de 

novo PD patients with a history of RBD before developing 

parkinsonism (dnPDRBD) shares characteristics of both PDRP and 

RBDRP.6 The dnPDRBD related metabolic pattern (dnPDRBDRP) 

exhibited distinguishing features, such as relative hypometabolism in 

the lingual gyrus and hypermetabolism in the premotor cortex. 

Notably, dnPDRBDRP was reported to have better predictability for 

future phenoconversion in iRBD patients compared to PDRP. Our PD-

RBD related spectro-spatial pattern and the dnPDRBDRP were 

derived from patient groups with almost identical characteristics, 

enabling a direct comparison between them. 

We derived PD-RBD and DLB-RBD delta patterns, both of which 

showed common positive contributions from the occipital cortex. 

Previous studies have shown that the occipital cortex, including the 

lingual gyrus, showed hypometabolism in PD, RBD, and DLB. 

Considering that increased low-frequency power in the occipital 

region has been linked to cognitive impair or functional abnormalities 

in neurological conditions,11,31,32 relative hypometabolism in occipital 

cortex could potentially be reflected as increased delta and theta 

band power in occipital cortex.  

In our results, PD-RBD alpha pattern was characterized by 

increased power in the right frontal and central regions, while the 

DLB-RBD alpha pattern showed increased power in the precentral 

and postcentral gyrus. Some studies reported relative 

hypermetabolism in sensorimotor cortex, or motor cortex in PD, 

idiopathic RBD, and DLB related metabolic patterns.27–30,33 And one 
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MEG study suggested that increased low alpha power (8-10Hz) in 

centroparietal region of de novo PD patients might be linked to 

cognitive impairments, particularly a pathologically elevated level of 

attention.14 The interpretation of increased centroparietal alpha 

power requires further investigation. 

 

Comparison between PD-RBD and DLB-RBD patterns 

There was a significant overlap between PD-RBD and DLB-RBD 

patterns. Moreover, both groups of patients exhibited high pattern 

expression scores for each other’s pattern, suggesting a common 

underlying pathology, which is α-synucleinopathy. This finding is 

consistent with the considerable similarities observed between PD 

and DLB related brain metabolic patterns in their spatial features.7,33 

However, there were slight differences in the specific locations 

where the PD-RBD and DLB-RBD patterns contributed significantly. 

In the delta band, the DLB-RBD pattern showed a negative 

association in the frontal region. The PD-RBD pattern, on the other 

hand, displayed a relative increase in alpha power in the right frontal 

and central region, while the DLB-RBD pattern showed a relative 

increase in alpha power in the precentral and postcentral gyrus, 

slightly posterior to the frontal region. 

 

Combined pattern space 

We successfully divided the groups by combining two of pattern 

expression scores. The use of PD-RBD alpha pattern as the x-axis 

appeared to effectively reflect α -synucleinopathies, considering 

its positive correlation with MDS-UPDRS part III scores and its 

ability to discriminate between iRBD converters and nonconverters. 

On the other hand, the use of DLB-RBD theta pattern as the y-axis 

effectively distinguished DLB from PD. It was observed that subjects 

with low DOF tended to have higher theta scores regardless of the 

group. The shift of dominant occipital rhythm toward lower 

frequencies has been associated with cognitive deterioration in 

several neurodegenerative disorders.11,12,34,35 Indeed, our DLB-RBD 

theta pattern exhibited relative increased power in posterior regions, 
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which might be influenced by the transition of occipital alpha rhythm 

into the theta band frequency range or by theta oscillation itself. In 

an MEG study, posterior delta and theta power were increased in mild 

cognitive impairment group than the cognitive normal group, and 

researchers suggested that increased low-frequency oscillations are 

related to general cognitive decline and hippocampal atrophy.36 Thus, 

the DLB-RBD theta pattern can be considered to reflect overall 

cognitive functioning rather than specific pathology.  

When tracking the longitudinal trajectory of the iRBD-NC, PD-

RBD, and DLB-RBD groups in the combined pattern space, we 

observed changes in pattern expression over time for all three groups. 

This indicates an elevation in alpha pattern expression as the disease 

progresses. The DLB-RBD group’s upward shift suggests that 

cognitive deterioration may occur more prominently and progress at 

a faster rate. Furthermore, the longitudinal tracking of iRBD 

nonconverters revealed that the majority of them remained in Group 

3 (normal state) even after mean 3.6 years of follow-up. However, 

individuals who are close to or cross the boundary may require 

special concern and close monitoring. The combined pattern space 

offers a promising approach for quantitative risk assessment of 

phenoconversion and its subtypes in iRBD patients. 

 

Utility as a biomarker 

Previous studies have demonstrated that brain metabolic 

covariance patterns associated with PD and DLB could predict future 

conversion at the baseline. For instance, one study used a pattern 

derived from dnPDRBD, and another study employed 

phenoconversion-related pattern in iRBD to predict the risk of 

phenoconversion in iRBD patients.6,37 Additionally, a DLB-related 

cortical thickness pattern obtained from magnetic resonance imaging 

(MRI) was able to predict the dementia-first phenoconversion within 

4 years from the baseline.9 These findings suggest that brain 

metabolic or structural covariance patterns hold promise as 

biomarkers for predicting phenoconversion in iRBD patients.  

In our study, we did not clearly discriminate iRBD converters 
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from nonconverters at the baseline using EEG spectro-spatial 

covariance patterns. While this may imply limitations in using EEG 

spectro-spatial covariance pattern as a biomarker for predicting 

phenoconversion, it also suggests that EEG may capture different 

aspects of phenoconversion-related changes compared to brain 

metabolism or structural changes. The lack of clear distinction at 

baseline and the observed increase in pattern expression values 

during follow-up indicate that EEG changes may not manifest clearly 

in the early stages of neurodegeneration. It could be hypothesized 

that pattern expression values may exhibit a nonlinear increase 

shortly before α-synucleinopathies become overt. Compensatory 

mechanisms are known to operate in EEG, as shown in a preclinical 

Alzheimer’s disease study where PSD delta power followed a U 

shaped curve depending on the amyloid burden in the presence of 

neurodegeneration.38 Moreover, our previous study reported 

compensatory mechanisms associated with cognitive impairment in 

iRBD patients.39  

Hence, in iRBD patients, EEG may exhibit a compensatory 

mechanism to maintain normal functioning until a certain threshold is 

surpassed (close to phenoconversion), at which point the 

compensation collapses, and the EEG patterns undergo a rapid 

change. Thus, while our EEG spectro-spatial patterns may not serve 

as strong predictors for phenoconversion in the early stages of iRBD, 

the combined pattern space would offer potentially useful information 

about the risk of phenoconversion in the near future. 

 

EEG spectro-spatial covariance pattern 

In this study, we applied SSM/PCA method to EEG data. To 

maximize the advantage of the simplicity of EEG recording, we 

utilized EEG data in a resting state without performing any tasks. 

Previous studies have suggested that resting EEG alone can serve as 

a valuable biomarker for assessing disease status and cognitive 

function.13,38,40,41 In our results, the pattern expression scores for 

delta and alpha patterns were significantly different between 

converters and nonconverters. This indicates that resting state EEG 
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provides sufficient information about disease status.  

The SSM/PCA method offers several advantages, including the 

ability to visualize disease-specific spatial covariance patterns and 

quantify individual scores for these patterns. As mentioned earlier, 

while EEG slowing phenomenon in PD, DLB, and iRBD has been 

reported in many studies, individual-level evaluation of EEG 

characteristics to assess disease severity has been limited. With this 

approach, we presented disease-related spatial characteristics for 

each frequency band as a single figure. Furthermore, with only 5 

minutes of EEG data, we were able to quantify phenoconversion risk 

using several scores at the individual level. Therefore, the EEG 

spectro-spatial covariance pattern would be a promising tool for 

personalized monitoring and management of neurodegenerative 

diseases.  

 

Limitations 

There are some limitations in our study. Firstly, the use of EEG 

data collected from two different EEG recording devices due to a 

device change may have affected the data quality and characteristics. 

To address this issue, we employed relative band power, a more 

robust measure compared to absolute band power. However, it is 

worth noting that using absolute band power could yield different 

spatial characteristics compared to the pattern obtained in the study.  

Secondly, it is important to note that EEG records cortical 

activity, and signals from subcortical structures are too weak to be 

properly captured. Many regions known to contribute significantly to 

PD or DLB related brain metabolism are located in subcortical 

structures, and their contributions may not be fully represented in 

our EEG patterns since we constrained the source space to the 

cortical surface.  

Additionally, there was no correlation between MoCA-K scores 

and pattern expression after adjusting age and sex. To better 

evaluate the relationship between cognitive function and pattern 

expression, future studies should include more subjects within 

similar age ranges, encompassing varying degrees of cognitive 
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impairment. Moreover, using subtest scores instead of the total score 

in cognitive assessments could provide a more detailed examination 

of the relationship with specific cognitive functions. 

Furthermore, we did not conduct a follow-up on the HC group. 

Incorporating follow-up data on the HC group could have allowed us 

to isolate the effects of normal aging from the effects of diseases.  

 

Conclusion 

Our study is the first to identify EEG spectro-spatial covariance 

pattern related to PD and DLB preceding iRBD and observe 

longitudinal trajectories of PD, DLB, and iRBD nonconverters. 

Utilizing EEG spectro-spatial covariance patterns in combination 

with patterns from other modalities would provide a more 

comprehensive understanding of phenoconversion in iRBD patients.  
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국문 초록 

  

연구 배경: 본 연구에서는 단독 렘수면행동장애(iRBD) 환자에서 신

경퇴행질환으로 전환되는 것과 관련이 있는 뇌파 주파수-공간 공분산 

패턴을 규명하고, iRBD 환자와 파킨슨병(PD)환자, 루이소체치매(DLB)

환자들에서 변화 궤적을 조사하는 것을 목표로 하였다.  

연구 방법: PD로 전환된 12명, DLB로 전환된 6명, 추적기간 동안 

전환되지 않은 iRBD 환자 17명으로부터 눈을 감은 상태의 휴지기 뇌파

를 기준선과 추적 시점에서 수집하였다. PD나 DLB로 전환된 이후에 수

집된 뇌파 데이터와 나이와 성별이 짝지어진 12명의 건강 대조군(HC)

의 뇌파 데이터를 사용하여 소스 공간에서 PD로 전환된 iRBD(PD-

RBD), DLB로 전환된 iRBD(DLB-RBD)과 관련된 패턴을 각 주파수 밴

드에 대해서 얻었다. 패턴 발현 점수와 운동기능, 인지기능을 측정한 점

수 간의 상관관계를 분석하였다. 또한 기준선에서 신경퇴행질환으로 전

환된 환자와 그렇지 않은 환자 간에 패턴발현점수의 차이가 있는 지 확

인하였다. 마지막으로, 패턴을 조합하여 만든 공간에서 질병전환이 되지 

않은 iRBD 환자와 PD로 전환된 환자, DLB로 전환된 환자의 변화 궤적

을 각각 관찰하였다. 

연구 결과: 델타, 알파밴드의 공분산 패턴이 PD나 DLB로 전환된 

환자를 HC로부터 효과적으로 구분하였으며, 알파밴드 패턴이 가장 높은 

구분력을 보였다(수신자 동작 특성 곡선 아래 면적(AUC)=0.9097 

(PD-RBD 알파 패턴), AUC = 0.9306 (DLB-RBD 알파 패턴)). 운동

기능을 반영하는 MDS-UPDRS part III 점수는 나이와 성별을 보정 한 

후에도 델타밴드 패턴의 점수와 양의 상관관계가 있었다(스피어만 상관

계수(rho)=0.688, p=0.00014 (PD-RBD 델타 패턴), rho=0.539, 

p=0.0055 (DLB-RBD 델타 패턴)). 그러나 인지기능을 반영하는 

MoCA-K 점수는 어떠한 패턴의 점수와도 유의미한 상관관계가 발견되

지 않았다. 기준선에서 추후에 질병전환된 환자들의 PD-RBD와 DLB-

RBD 베타2 패턴의 점수가 전환되지 않은 환자에 비해 모두 높았으나, 

두 집단이 잘 분리되지는 않았다(AUC=0.7751, 순위합 검정 

p=0.0062). 세 집단 모두 조합된 패턴 공간에서 오른쪽으로 이동하는 

공통적인 변화 궤적을 보였고, 각 집단의 종적 궤적에서 구분되는 특징

도 존재하였다. 

결론: PD-RBD, DLB-RBD 관련 뇌파 주파수-공간 공분산 패턴은 
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신경퇴행질환의 조기 감지와 질병 모니터링에 활용될 수 있을 것으로 기

대된다. 다른 형태의 데이터에서 얻은 패턴과 상보적으로 사용된다면 

iRBD에서 일어나는 질병전환의 메커니즘을 이해하는 데 도움이 될 것이

다. 

 

주요어 : 렘수면행동장애; 뇌파; 알파-시누클레인병증; 파킨슨병; 

루이소체 치매; 공간 공분산 패턴. 
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