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Abstract

Computational Drug Combination

Prediction using Biomedical

Knowledge Graph

Enhancement with Drug-Drug Interaction Data

and Supervised Contrastive Learning

Jeonghyeon Gu

Interdisciplinary Program in Artificial Intelligence

College of Engineering

Seoul National University

Combination therapies have brought significant advancements to the treatment

of various diseases in the medical field. However, searching for effective drug

combinations remains a major challenge due to the vast number of possible

combinations. The utilization of biomedical knowledge graphs, which encompass

intricate relationships among biomedical entities, has demonstrated promising

potential in predicting effective combinations for a wide range of diseases. How-

ever, the absence of reliable negative samples has posed challenges for machine
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learning models to establish robust decision boundaries, thereby limiting pre-

diction performance. Additionally, previous methods have relied on raw and

general drug embedding vectors extracted from the knowledge graph, which is

suboptimal and leaves considerable room for improvement.

To address this issue, I propose a novel framework that leverages exist-

ing Drug-Drug Interaction (DDI) data as a reliable negative dataset and em-

ploys Supervised Contrastive Learning (SCL) to transform drug embedding

vectors to be more suitable for drug combination prediction. DDI data and

SCL technique not only improved the performance metrics but also helpful

in building tight decision boundaries for predicting drug combinations. To

demonstrate the effectiveness of this approach, I conducted extensive exper-

iments using various network embedding algorithms, including random walk

and graph neural networks, on a biomedical knowledge graph called multi-

scale interactome (MSI) network. I also provide t-SNE plot of drug pair em-

bedding vectors to visualize the decision boundaries between drug combina-

tion and DDI. Lastly, case study results of drug combination and DDI are

also provided. In summary, this work highlights the potential of using DDI

data and SCL in finding tighter decision boundaries for predicting effective

drug combinations. All source codes are available on the GitHub repository

(https://github.com/gujh14/DC_with_DDI_SupCon.git)

Keywords: Drug combination, Knowledge graph, Drug-drug interaction, Su-

pervised contrastive learning, Random walk, Graph neural network

Student Number: 2021-28284
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Chapter 1

Introduction

1.1 Study Background

Combination therapy involves using two or more medications together to achieve

a desired treatment outcome. This includes combining drugs with different

mechanisms of action to target multiple aspects of a disease or to increase

effectiveness while minimizing side effects. The selection and design of drug

combinations require careful consideration of factors such as drug interactions,

safety profiles, dosing schedules, and patient-specific characteristics. Research

and computational approaches play a crucial role in identifying and optimiz-

ing effective drug combinations. Drug combination is commonly used in the

treatment of various medical conditions such as cancer (Crystal et al., 2014),

infectious diseases (Zheng et al., 2018), cardiovascular diseases (Giles et al.,

2014), and autoimmune diseases (Smilek et al., 2014). An example of this is

the use of Twynsta™, a medication that combines telmisartan and amlodipine,

which is used to lower blood pressure by relaxing blood vessels and reducing
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the workload on the heart, respectively. Combining these two drugs in a single

tablet can provide additive or synergistic blood pressure-lowering effects and

can also help minimize the side effects that might be associated with taking

high doses of each drug alone (Chalmers, 1999).

Despite the importance of modern drug combination therapy, identifying

the combinations that effectively treat a condition while minimizing side effects

is often a matter of intuition and experience, rather than following established

principles. There are over 10,000 ongoing clinical trials in the US to study com-

bination therapies, but these numbers are quite modest to cover the tremendous

number of possible combinations of drugs. The search for adequate drug pairs

is time consuming and requires lots of clinical experience. It is also difficult

to predict the complex interactions between different drugs and their potential

targets. They can involve multiple mechanisms of action and can vary depend-

ing on the specific cell type or tissue being targeted. Therefore, it is important

to develop powerful computational technologies that can facilitate the identifi-

cation of drug combination therapies and narrow down the search space.

There have been several studies conducted on computational drug combi-

nation predictions. However, they frequently encounter limitations such as the

narrow scope of the drugs covered and/or unreliable negative data. In this ar-

ticle, I introduce a novel framework that addresses these challenges and can

be applied to a wide range of drugs. This framework utilizes drug-drug inter-

action (DDI) data as a reliable negative dataset and employs supervised con-

trastive learning (SCL) technique for pretraining. By adopting this data-centric

approach and leveraging an appropriate pretraining technique, the model signif-

icantly enhances its ability to establish robust and effective decision boundaries

for predicting drug combinations.
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1.2 Related works & Limitations

Recently, several methods have proposed computational approaches to narrow

down the broad search space of drug combination prediction problem. One ap-

proach relies on the experimental high-throughput screening (HTS) data. HTS

is a method used in drug discovery and biology to rapidly test a large number

of compounds or substances against biological targets, such as enzymes, recep-

tors, or cells, in order to assess the effects of the molecules to the biological

system. HTS data typically includes information on the biological activity of

compounds, such as their ability to inhibit or activate a target, as well as infor-

mation on compound structure, concentration, and assay conditions. These data

are obtained using automated systems that can process hundreds of thousands

or even millions of compounds in a relatively short period of time. The studies

that use HTS data focused exclusively on cancer drugs or anti-bacterial drugs,

as their therapeutic efficacy can be easily measured at the cell line level using

metrics like IC50 (half maximal inhibitory concentration), although this mea-

sure does not always align with clinical response. The degree of synergy in this

framework is typically quantified by its deviation from that simulated according

to a theoretical model. There are a few quantitative metrics to define the degree

of synergy, such as Loewe additivity (Loewe, 1953), Bliss independence (Bliss,

1939), highest single agent (Berenbaum, 1989), and zero interaction potency

(Yadav et al., 2015). DeepSynergy (Preuer et al., 2018) is one of the pioneering

works that use deep learning to predict drug combination synergies and takes

chemical and genomic information as input information. Features of two drugs

and one cell line are fed into a deep neural network, and a synergy score is

predicted. DeepSynergy used a large-scale oncology screen data produced by

Merck & Co (O’Neil et al., 2016). This dataset provides a screen of 22,737 ex-
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periments of 583 doublet combinations in 39 diverse cancer cell lines using a

four-by-four dosing regimen. Sidorov et al. (Sidorov et al., 2019) suggested an

in-silico modeling with NCI-ALMANAC (Holbeck et al., 2017) dataset, a large

phenotypic drug combination HTS dataset and contains synergy measures of

pairwise combinations of drugs on cell lines. Each cell line and drug were mod-

eled using Random Forest (Breiman, 2001) and Extreme Gradient Boosting

(XGBoost) (Chen and Guestrin, 2016). PRODeepSyn(Wang et al., 2022) is a

method that leveraged Graph Convolution Network (GCN) to integrate protein-

protein interaction network with omics data and constructed embeddings for

cell lines. Each drug is represented by molecular fingerprints and descriptors.

Cell line features and drug features are fed into the final classifier layer to pre-

dict synergy score. And Jin et al. (Jin et al., 2021) proposed a neural network

architecture that jointly learns drug-target interaction and drug-drug synergy

to identify synergistic drug combinations against SARS-CoV-2.

On the other hand, knowledge graph (KG)-based approaches were used to

predict drug combination pairs on general drugs and diseases. A biomedical

KG is a structured representation of biomedical knowledge that captures re-

lationships between different entities, such as genes, proteins, diseases, drugs,

pathways, and their associated attributes. It serves as a knowledge base that or-

ganizes and links various types of information. More detailed description about

biomedical KG is provided in Section 2.1. They can be further divided into

mining and learning approaches. For instance, Cheng et al. (Cheng et al., 2019)

mined and analyzed a drug-protein-disease KG by quantifying the distance be-

tween drug-target modules for drug combination prediction. They showed that

there are some typical overlapping patterns in the target protein set of the

combinatorial drugs. Recent learning approaches use network embedding al-

gorithms to embed various entities in the biomedical KG and apply machine
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learning techniques to infer drug combination scores. For example, Liu et al.

(Liu et al., 2019) used drug similarity network, protein similarity network and

known drug-protein associations to build a drug-protein heterogeneous network.

They then employed the random walk with restart algorithm to get the feature

vectors of each drug combinations, which are later used for the gradient tree

boosting classifier. Another example is the NEWMIN (Yu et al., 2022) method,

which constructed multiplex drug-drug similarity network, including chemical,

side effect, Anatomical Therapeutic and Chemical (ATC) codes, text-mining,

protein, and category-based similarity networks. Random walk was performed

on the networks and the embedding vector of each drug was built with the

word2vec algorithm (Mikolov et al., 2013). Finally, drug combination score was

predicted by applying a Random Forest classifier on the concatenated embed-

ding vectors of drug pair. Although the prediction performance of these works

varies and depends on the selection of the KG, they have shown that biomedical

KGs are useful resources for predicting drug combination.

While both HTS data-based and KG-based approaches exhibited encourag-

ing results on drug combination predictions, but they have their own limitations.

When utilizing public HTS data-based approaches, one can only perform re-

search for anti-cancer or anti-bacterial drugs as their outcome is cell survival

and/or death. However, there are often no suitable quantitative measures of

drug response at the cell line level for other indications. In other words, it is

hard to use those public HTS data to infer novel drug combinations for diseases

like hypertension or diabetes for my research.

Alternatively, the KG-based approaches can alleviate this problem and be

easily applied for various diseases and drugs. But these methods often rely on

unreliable negative data, which entails randomly selecting pairs of drugs from

drug lists. A machine learning model typically require negative data to establish
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decision boundaries and improve its ability to distinguish between classes, lead-

ing to better performance metrics. While the random negative approach has

been used in tasks related to drug-target interactions and drug-disease associ-

ations, these randomly selected drug pairs are not true negatives, but rather

unlabeled pairs that carry the possibility of actually being positive samples.

Additionally, there is possibility that they are easy negatives, as it is highly

likely to sample two drugs with obviously distinct indications. Furthermore,

the KG-based approaches often use raw drug embeddings learned only from

the network topology for combination prediction. Although this raw vectors

from the biomedical network can serve as good initial representations, they are

too general and need to be projected into a more specific embedding space that

is appropriate to predict drug combination scores.

1.3 Proposed Approach

In this article, I propose a novel strategy that utilizes existing DDI data as

a reliable negative dataset for predicting drug combinations. The proposed

framework also employs SCL to transform the raw embedding vectors into drug

combination-specific embeddings. To elaborate, this framework is a type of KG-

based learning approach and can cover any drug doublet pairs with the target

protein information in biomedical KG. As DDI refers to a phenomenon in which

the effectiveness or toxicity of one drug is affected when taken with another drug

and is usually avoided, it can be used as negative dataset to improve predictions

of combination therapies (Güvenç Paltun et al., 2021). SCL is a type of con-

trastive learning technique that leverages label information to draw embedding

vectors closer to one another if they are of the same class, while pushing them

away if they are not (Khosla et al., 2020).
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Overall training scheme is illustrated in Figure 1.1, which can be regarded

as a three-step process: initial, pretraining, and final stage. The initial stage is

obtaining raw drug embedding vectors from the KG using network embedding

algorithms such as random walk or graph neural networks (GNNs). Then the

SCL technique is applied at the pretraining stage to transform each drug embed-

ding vectors into more suitable representations for drug combination prediction.

At the final stage, the embedding vectors are fed into a classifier to predict drug

combination scores.

To the best of my knowledge, the proposed approach is the first work to ex-

plicitly use the DDI dataset as a negative dataset and to employ SCL technique

for drug combination prediction task. Through comprehensive experiments, I

show that this approach has substantially benefited the deep learning model,

not only in terms of enhancing overall predictive performance but also in estab-

lishing tighter decision boundaries for predicting drug combination pairs. This

is clearly demonstrated in the visualization results of the embedding space,

which indicate that the SCL pretraining effectively transformed the initial drug

embedding vectors from the biomedical KG into more appropriate and specific

embeddings for downstream drug combination prediction tasks. Furthermore, I

have included some case studies to illustrate the performance of the approach

in specific scenarios.
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Chapter 2

Materials & Methods

2.1 Biomedical Knowledge Graph

KGs are a way of representing knowledge concepts and their relationships as

nodes and edges. In the biomedical field, KGs have been widely used for inte-

grating entities, such as genes, proteins, drugs, and diseases at various levels,

ranging from molecular to clinical. By structuring assay results, mechanisms

of action, and target protein information in a graph format, computational

methodologies can be applied to infer semantics and uncover unknown associ-

ations. Biomedical KGs thus provide a powerful framework for exploring the

relationships between biomedical entities and unlocking new insights. They can

be used to predict drug combinations due to their ability to capture and rep-

resent complex relationships between drugs, target proteins, and diseases. For

example, KGs can link drugs to their target genes or proteins and capture their

interactions within biological pathways. This information enables the identifi-

cation of drugs that target the same pathways or share common targets.
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Node Type Number of Nodes

Drug 1,661

Protein 17,660

Indication (disease) 840

Biological function (GO term) 9,798

Table 2.1: Node types and number of nodes in the MSI network. MSI: multi-scale

interactome; GO: Gene Ontology.

Edge Type Number of Edges

Drug-Protein 8,568

Disease-Protein 25,212

Protein-Protein 387,626

Protein-Biological function 34,777

Biological function-Biological function 22,545

Table 2.2: Edge types and number of edges in the MSI network. MSI: multi-scale

interactome.

The multi-scale interactome (MSI) network is one of the well-known biomed-

ical KGs that contains drug, disease, gene, and biological function annotations

as its nodes. It contains a total of 29,959 nodes and 478,728 edges, including

1,661 drug and 840 disease entities (Ruiz et al., 2021). There are five types

of edge relations in the MSI network: drug-protein, disease-protein, protein-

protein, protein-biological function, and biological function-biological function

interactions. Detailed numerical information about the MSI network is pro-

vided in Table 2.1 and Table 2.2. The authors of the MSI network demonstrate

that the inclusion of biological function entities in a molecular-scale drug-gene-

10



disease network offers both better drug-disease treatment prediction perfor-

mance and biological interpretability. I used the MSI network to embed drugs

into vectors for predicting drug combinations.

2.2 Drug Databases

2.2.1 Drug Combination Databases

There are various databases that collect and organize information on drug com-

binations. DCDB 2.0 (Liu et al., 2014) is a curated database from more than

140,000 clinical studies and the Food and Drug Administration (FDA) Orange

Book (Home, 2013). It includes 1,363 drug combination pairs, consisting of 904

unique components. There are three types of combinations in DCDB 2.0, which

are ‘Efficacious’, ‘Need further study’, and ‘Non-efficacious’.

Continuous Drug Combination Database (CDCDB) (Shtar et al., 2022) is

a comparable database that is continuously updated and comprises of 17,107

distinct drug combinations composed of over 4,129 individual drugs. It is cu-

rated from ClinicalTrials.gov (Zarin et al., 2011), the FDA Orange Book, and

Integrity (Clarivate Analytics)™.

I processed and merged the database to curate drug combination pairs as

follows. First, I used only ‘Efficacious’ type of drug pairs from DCDB 2.0.

And the drugs not included in the MSI network were excluded. Then the pairs

from both databases were merged to include as much positive data as possible,

resulting in 4,344 pairs. And they were used as the positive dataset for drug

combination prediction. Detailed numerical information about both databases

is provided in Table 2.3.
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DCDB 2.0 CDCDB TWOSIDES

Number of unique drugs 904 4,129 645

Number of pairs

(before curation)
1,363 17,107 4,649,442

Number of pairs

(after curation)
455 4,221 16,157

Table 2.3: Number of unique drugs and pairs in DCDB 2.0, CDCDB, and TWO-

SIDES databases.

2.2.2 Drug-Drug Interaction Database

DDIs can occur when two or more drugs are administered simultaneously, lead-

ing to changes in the pharmacokinetics or pharmacodynamics of the drugs

involved. For example, taking warfarin (a blood thinner) and aspirin (anti-

inflammatory and anti-platelet drug) together is not recommended as they can

severely increase the risk of bleeding. Although there are some rare cases, such as

the combination of ritonavir (a potent CYP3A4 enzyme inhibitor) and lopinavir

(CYP3A4 substrate) (Cvetkovic and Goa, 2003), where DDIs are beneficial and

used intentionally to enhance the efficacy, DDIs are generally avoided.

I utilized TWOSIDES database (Tatonetti et al., 2012) as a reliable negative

dataset. The DDI data in this database were curated from the large Adverse

Event Reporting Systems (AERS) developed by FDA, World Health Organiza-

tion, and Health Canada. The TWOSIDES database contains 4,649,442 DDI

pairs between 645 drugs and is included in the Therapeutics Data Commons

(TDC) (Huang et al., 2021), which is a coordinated initiative to access and

evaluate AI models across therapeutic modalities and stages of discovery. I

chose drug pairs whose entity exists in the MSI network, resulting in a 16,157

12



DDI pairs. Detailed numerical information about the TWOSIDES database is

provided in Table 2.3.

2.3 Initial Stage: Network Embedding Algorithms

At the initial stage, the initial drug embedding vectors zk is obtained with

various network embedding algorithms.

2.3.1 Random walk-based algorithms

Random walk-based algorithms have been a popular method for graph min-

ing since their introduction in the seminal work of DeepWalk (Perozzi et al.,

2014). The random walk algorithm generates node sequences p = n1, n2, ..., nl

of length l from a graph G = (V,E) of node set V and edge set E from following

distribution:

P(ni=x|ni−1=v) =


πvx/Z if (v, x) ∈ E

0 otherwise

where πvx is the unnormalized transition probability from node v and x,

and Z is the normalizing constant. The final transition probability varies de-

pending on the various biased traversal strategies. The sequences generated are

then passed through a shallow neural network, such as Skip-gram or C-BOW,

to generate node embedding vectors. The network is trained to maximize the

similarity of the co-occurring neighbors within a given window length. These

embeddings can be used for various downstream tasks, such as node classifica-

tion and link prediction. I tested four random walk-based algorithms, node2vec

(Grover and Leskovec, 2016), edge2vec (Gao et al., 2019), res2vec (Kojaku et al.,

2021), and DREAMwalk (Bang et al., 2022) to embed drug nodes in the MSI
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network and compared their performance.

Node2vec (Grover and Leskovec, 2016) is a variation of the DeepWalk al-

gorithm that allows for more flexibility in generating node sequences by intro-

ducing the parameters p and q. These parameters enable a balance between

Breadth-First Sampling (BFS) and Depth-First Sampling (DFS) during the

random walk sampling strategy. In our experiments, we set p and q to 1, re-

sulting in a uniform random walk sampling strategy. This approach allows for

the examination of various neighborhood structures and the creation of more

informative node embeddings for downstream tasks.

Edge2vec (Gao et al., 2019) is a method specifically designed for mining

graphs from the biomedical domain, where different scales of associations ex-

ist between different types of nodes. To account for these varying edge types,

edge2vec first trains a novel edge-type transition matrix using an Expectation-

Maximization (EM)-like iterative approach. This allows for the assignment of

transition weights to the reachable edge types. During the random walk, the

algorithm traverses the network proportionally to these transition weights, re-

sulting in a more targeted exploration of the biomedical knowledge graphs.

Residual2vec (Kojaku et al., 2021) is another extension of the DeepWalk

algorithm that addresses the bias towards high-degree nodes in random walk

sampling. The algorithm does this by comparing the random walk sampling re-

sults with those of randomly generated graphs. The Residual2vec algorithm can

be applied in two modes: homogeneous and heterogeneous. In the homogeneous

setting, all nodes are treated as the same type, while in the heterogeneous set-

ting, different types of nodes are assigned different transition probabilities. In

our framework, the algorithm was used in both homogeneous and heterogeneous

settings using the default parameters as suggested by the authors.

DREAMwalk (Bang et al., 2022) is a random walk-based algorithm that is
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designed for mining biomedical graphs. It uses a teleport-guided random walk

framework to generate node embedding vectors. The aim of this framework is

to guide the traversal of the biomedical network by taking into account the

semantic similarities of drug and disease entities, thereby reducing bias in the

learning process from large and dense protein-protein interaction networks. In

our experiments, we set the semantic similarity cut-off and teleport factor τ to

0.5 for all experiments.

2.3.2 Graph Neural Network Algorithms

Graph Neural Networks (GNNs) are specialized type of neural network designed

to handle graph-structured data. They are able to learn the topological struc-

ture of a graph in an end-to-end fashion by updating the features of both nodes

and edges based on the characteristics of their neighboring entities. I used mes-

sage passing GNNs, which updates node embeddings by aggregate and combine

step per each layer as follows:

a
(t)
N (v) = AGGREGATE(t)({h(t−1)

u , ∀u ∈ N (v)})

h(t)v = σ(W (t) · COMBINE(h(t−1)
v , a

(t)
N (v)))

where h
(t)
v is the feature vector of node v at time step t (t-th layer). N (v)

is the set of neighbor nodes of a node v. At each time step t, a differentiable

aggregation function AGGREGATE collects neighbors’ representation vectors,

and they are combined by the COMBINE function and a weight matrix W is

multiplied and non-linear activation function σ is applied to update the hidden

representation of node v.

The message passing scheme allows GNNs to effectively capture dependen-

cies between nodes in the graph. Multiple convolutional methods have been
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proposed to aggregate and combine messages from different perspectives. I con-

ducted several experiments using four well-known GNN architectures: GCN

(Kipf and Welling, 2016), Graph Sample and Aggregate Network (GraphSAGE)

(Hamilton et al., 2017), Graph Attention Network (GAT) (Veličković et al.,

2017), and Graph Isomorphism Network (GIN) (Xu et al., 2018).

GCN (Kipf and Welling, 2016) is an efficient variant of Convolutional Neural

Networks (CNNs) on graphs. It is a basic form of message passing neural net-

works, which applies a local neighborhood aggregation with learned first-order

spectral filters followed by nonlinear activation function to learn node repre-

sentations. In GCN, the AGGREGATE and COMBINE steps are integrated as

follows:

h(t)v = σ(W (t) ·MEAN{h(t−1)
u , ∀u ∈ N (v) ∪ {v}})

GraphSAGE (Hamilton et al., 2017) was originally designed to inductively

learn node embeddings in large graphs. It first samples a fixed number of nodes

in a node’s local neighborhood, then aggregates feature information from the

sampled neighbor nodes with element-wise max pooling. The AGGREGATE

and COMBINE step of GraphSAGE can be formulated as:

a(t)v = MAX({σ(W (t) · h(t−1)
u ), ∀u ∈ N (v)})

h(t)v = σ(W (t) · CONCAT(h(t−1)
v , h

(t)
Nv

))

GAT (Veličković et al., 2017) is another type of GNN that uses attention

mechanisms to learn node feature representations. This layer learns different at-

tention coefficients for each neighbor of a node and aggregates them using these

coefficients to update the final representation of the node. The AGGREGATE

and COMBINE step can be merged as follows:

h(t)v = σ(
∑

u∈N (v)∪{v}

αvuW
(t)h(t−1)

u )
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where αvu is the learned attention weight between node v and u.

GIN (Xu et al., 2018) is a GNN layer that is intended to generalize the WL

test and use MLPs to model injective multiset functions for the neighborhood

aggregation. The AGGREGATE and COMBINE step is unified as follows:

h(t)v = MLP(t)((1 + ϵ(t)) · h(t−1)
v +

∑
u∈N (v)

h(t−1)
u )

ϵ can be a learnable parameter or a fixed scalar. I set all ϵ to be zero for

simplicity.

The number of layers that achieved the highest performance for GCN,

GraphSAGE, GAT, and GIN are 3, 3, 2, and 2, respectively.

2.4 Pretraining Stage: Supervised Contrastive Learn-

ing

At the pretraining stage, the initial drug embedding vectors z are transformed

into more specific vectors ẑ by SCL with multilayer perceptron (MLP) layers.

Contrastive learning is a machine learning technique that enables models to

differentiate between data points in a certain embedding space by identifying

their similarities and differences. This approach can be employed in both super-

vised and unsupervised settings, and it involves various types of loss functions

such as contrastive loss (Chopra et al., 2005), triplet loss (Schroff et al., 2015),

and InfoNCE loss (Oord et al., 2018).

Meanwhile, multiple works have pointed out shortcomings of the simple

cross entropy loss, such as its susceptibility to noisy labels (Zhang and Sabuncu,

2018) and poor margins (Liu et al., 2016) that can lead to reduced generaliza-

tion performance. To address this issue, Khosla et al. (Khosla et al., 2020) pro-

posed SCL framework that demonstrated improved performance in robustness

benchmarks and less sensitivity to changes in hyperparameters.
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Since the initial drug embeddings from the knowledge graph were too general

for drug combination prediction, I applied SCL during pretraining phase with

training dataset to transform them into a more appropriate embeddings for

downstream drug combination prediction. To achieve this, I implemented a

loss function similar to the supervised contrastive loss (Khosla et al., 2020)

to effectively maximize the cosine similarity between drug combinations while

minimizing the similarity between DDI pairs. The loss function can be expressed

as follows:

L = − log

∑
∀yij=DC exp(ẑ⊤i · ẑj)∑

∀yij=DC exp(ẑ⊤i · ẑj) +
∑

∀yij=DDI exp(ẑ
⊤
i · ẑj)

where ẑi and ẑj are the transformed drug embedding vectors. If the two

drugs are drug combinations, their label yij is DC and if they are DDI pairs,

the label is DDI. By minimizing this loss function, the MLP layers can be

trained to effectively transform the embedding vectors which can be further

used for final drug combination prediction.

2.5 Final Stage: Drug Combination Prediction

Once pretraining the drug embedding vectors is done, I employed them to finally

predict actual drug combination scores. Two drug embeddings are element-wise

multiplied, and the resulting vector is fed into a fully connected classifier layer to

output a score ranging from 0 (DDI) and 1 (drug combination). The classifier

layer consists of one hidden layer and one output layer with dimensions 128

and 1, respectively. Since this is binary classification task, I used binary cross

entropy loss as a loss function at this stage.
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2.6 Experimental Setup

To ensure the robustness of the results for performance evaluation, I repeated

each experiment with 10 different random seeds. I used the Adam optimizer and

early stopping technique with a patience of 20 for all experiments. To deter-

mine the best hyperparameter set, I performed grid search to find the optimal

learning rates for both the pretraining and final stages for each algorithm.
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Chapter 3

Results

In this section, I present the experimental results of my framework, along with

visual representations of the drug embedding vectors, comparison of robustness

to class imbalance, and case studies.

3.1 Performance Evaluation

As the performance of KG-based drug combination prediction depends on the

quality of the biomedical KG, I set the baseline framework to use random sam-

pling when composing the negative dataset. I conducted experiments for all the

aforementioned network embedding algorithms, and the results are presented in

the form of an ablation study in Table 3.1 and Table 3.2. The first row of each

algorithm is my framework, which uses the TWOSIDES database as negative

dataset and applied SCL during pretraining. The second row presents the re-

sults without SCL pretraining. The last row represents the baseline framework,

which uses a randomly sampled negative dataset without SCL pretraining. In
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these experiments, I used the same number of negative data as positive data.

The SCL pretraining stage resulted in enhancements for nearly all metrics

across all algorithms, except for the precision metric of GIN. Additionally, the

use of the TWOSIDES dataset led to significant improvements for most metrics

across all algorithms, with the exception of the recall metric of GraphSAGE and

GAT. Given that comparing the performance of two different negative datasets

can lead to debatable issues, I have presented some opinions in the Chapter 4

(Discussion & Conclusion section).

3.2 Visualization of Drug Pair Embedding Vectors

The use of supervised contrastive learning improved model performance sub-

stantially. I hypothesized that this is due to the tight boundary learned to

distinguish between drug combination pairs and DDI pairs. To visualize the

distribution of embedding vectors, I applied t-distributed Stochastic Neighbor

Embedding (t-SNE) algorithm to the multiplied embedding vectors of drug

pairs of three stages: initial, pretraining, and final stage (Figure 2a, b, c). This

experiment is performed with the best performing algorithm DREAMwalk, and

the shown vectors are test data, i.e. they were not used as training data for the

model used in the experiment.

Figure 3.1a illustrates the initial raw embedding vectors of the drug pairs.

Combination pairs and DDI pairs are distributed evenly in the embedding space

without any obvious boundaries or clusters, which implies that those embed-

dings might be too general and näıve to perform drug combination prediction.

While in Figure 3.1b, the two separate classes seem to be well-separated, and

the combination pairs even developed some clear clusters. It is easy to observe

the effect of the SCL to transform the embeddings of drug combinations to
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be similar and the embeddings of DDIs to be dissimilar. Shown in Figure 3.1c

is the final drug pair embedding vectors and they show much clear boundary

suitable for drug combination binary classification.

3.3 Robustness to Class Imbalance

Since using the TWOSIDES dataset as negative samples showed significant im-

provement in all the performance metrics, I hypothesized that my framework

is more robust in class imbalanced settings. This is a situation where one class

has much more examples than the other class, which can lead to biased or inef-

fective models. In my case, the number of negative samples in the TWOSIDES

dataset was more than three times larger than the positive drug combination

samples. So, I conducted an experiment to verify the robustness of my frame-

work by gradually increasing the size of the negative set, using the Area Under

the Precision-Recall Curve (AUPRC) metric on the test set. For all algorithms,

SCL pretraining was performed.

As seen in Table 3.3, I found that the AUPRC decreased substantially when

the model was trained with randomly sampled negative datasets. However,

when using the TWOSIDES dataset as the negative dataset, the AUPRC ei-

ther decreased less or didn’t decrease at all. I believe that this result provides

strong evidence that utilizing DDI data as negative dataset can guide the deep

learning model in building an appropriate and robust decision boundary for

drug combination prediction.
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3.4 Case Studies: Drug Combination & Drug-Drug In-

teraction

In order to investigate specific cases, I present two types of case study re-

sults: the predicted scores of well-known drug combination pairs and DDI pairs.

For simplicity, I refer to the model trained with a randomly sampled negative

dataset as the random model, and the model trained with the TWOSIDES

dataset as the TWOSIDES model. For case study experiments, I utilized the

best-performing algorithm, DREAMwalk and applied SCL pretraining. I used

an equal number of negative and positive data, and the drug pairs studied in

the case studies were not included in the training data.

To begin, I obtained the prediction scores of previously known drug com-

bination pairs from both the random and TWOSIDES models, as shown in

Table 3.4. One widely used combination is statins (atorvastatin, fluvastatin,

rosuvastatin) and fenofibrate, which is often prescribed together to reduce car-

diovascular risk in patients with dyslipidemia (Jacobson and Zimmerman, 2006;

Davidson et al., 2009; Farnier et al., 2000; Biswas et al., 2021). While the ran-

dom model also predicted scores above 0.5 in these cases, the TWOSIDES

model predicted higher scores close to 1.0. In other cases, the TWOSIDES

model demonstrated a more distinct score difference compared to the random

model. For instance, the combination of dutasteride and tamsulosin showed

optimal control of male lower urinary tract symptoms associated with benign

prostatic hyperplasia (Dimitropoulos and Gravas, 2016). Additionally, the fixed

combination of latanoprost-timolol therapy has been found to be safe and ef-

fective for lowering intraocular pressure in patients with ocular hypertension or

glaucoma (Higginbotham et al., 2010). And the combination of milrinone and

esmolol has shown promising results in clinical trials for treating acute myocar-
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dial infarction or severe sepsis (Huang et al., 2011; Poh et al., 2014). The test

dataset for this case study included 400 drugs and the average of prediction

scores of the test dataset in random model and TWOSIDES model were 0.796

and 0.906, respectively.

Then, I also observed the TWOSIDES model is more effective at identifying

DDIs than the random model. As shown in Table 3.5, the predicted combination

scores of major DDI pairs were significantly lower in the TWOSIDES model

than in the random model. For example, the coadministration of phenytoin and

ondansetron is generally avoided because the former is a strong inducer of the

enzyme CYP 3A4, and the latter is metabolized by it (Zhou, 2008). Similarly,

the DDI between ketoconazole and simvastatin is also related to CYP3A, and

the former drug inhibits the enzyme, increasing the risk of myopathy and rhab-

domyolysis (Gilad and Lampl, 1999). Celecoxib is a moderate CYP2D6 inhibitor

and clonidine is metabolized by CYP2D6. Concomitant administration of these

two drugs may decrease the metabolism of the latter drug and lower potassium

levels in the blood (VandenBrink et al., 2012). And modafinil is an inducer of

various CYP enzyme (1A2, 2C9) and can decrease the blood level of the corre-

sponding CYP substrate, duloxetine (Rendic, 2002). Furthermore, lansoprazole

is an OAT3 (organic anion transporter 3) inhibitor, which can inhibit the ex-

cretion of mercaptopurine (an OAT3 substrate). Since mercaptopurine has a

narrow therapeutic index, it is usually not recommended to administer these

two drugs together (Duan et al., 2012). Lastly, the combination of theophylline

and formoterol, both used to treat asthma or COPD, is not recommended due

to the increased risk of hypokalemic effects of formoterol, which can be poten-

tially caused by theophylline (Van den Berg et al., 1999). The test dataset for

this case study included 400 drugs and the average of prediction scores of the

test dataset in random model and TWOSIDES model were 0.446 and 0.078,
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respectively.

I also provide the visualization of the target maps of the drug pairs in

Appendix (Section 5.1). These maps include the protein targets of the drugs

and corresponding biological functions of the proteins.
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Chapter 4

Discussion & Conclusion

The goal of drug combination prediction is to identify effective drug pairs that

work together to treat a disease while minimizing adverse effects. Given that

the protein target sets of the drugs in combination often exhibit overlapping

patterns (Cheng et al., 2019), I believe a machine learning model can learn these

patterns and represent them as embedding vectors for predicting drug combi-

nations. Additionally, a typical machine learning model requires high-quality

negative data to effectively learn decision boundaries and enhance its ability to

differentiate between classes. Biomedical knowledge graph-based methods can

predict drug combinations for various types of diseases, but previous studies uti-

lized unlabeled drug pairs as negative dataset, which is unreliable. We proposed

a new approach that utilizes DDI pairs as a more reliable source of negative

data for drug combination prediction. To project and transform the initial drug

embeddings from the network into another vector space that is much more suit-

able for drug combination prediction, we applied SCL technique at pretraining

stage.
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Our study yielded some noteworthy findings. One of the most significant

was that using the TWOSIDES DDI dataset as a negative samples significantly

improved performance in various settings compared to using randomly sampled

negative pairs from drug lists. And we found that the supervised contrastive

learning was helpful in drug combination prediction task, and it not only im-

proved the performance of our models, but also helped the model to build better

decision boundaries which was visible in the embedding space visualization us-

ing t-SNE. The robustness of the prediction performance in class imbalanced

settings further demonstrated the effectiveness of our approach.

There are several important points to mention regarding this research. First,

the utilization of KGs can occasionally lead to knowledge leakage problems when

there are shared edges between the training dataset and the test dataset. How-

ever, it should be noted that in the MSI network, there were no drug-drug edges

present. And it is essential to share the protein target layer (protein-protein

edges) in order to embed each drug into vectors using network embedding al-

gorithms. Moreover, many previous studies have also used the same process, as

they form the essence of using KGs.

Second, comparing performance metrics between two different negative datasets,

namely TWOSIDES and random sampling, is not a straightforward task. It can

be argued that it is unfair to directly compare perfomance when the datasets

are different. Despite this issue, it was necessary to provide the results for

the baseline framework that use random sampling in order to demonstrate the

effectiveness of utilizing DDI data as negative dataset for drug combination

prediction.

Furthermore, the recall metric, which measures the ratio of true positive

predictions to the sum of true positives and false negatives, serves as a fair

indicator of the power of using strong negatives for predicting true positives.
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As indicated in Table 3.1 and Table 3.2, the use of the TWOSIDES dataset as

a negative data significantly improved the recall score in most of the algorithms

except GraphSAGE and GAT. This result demonstrates that leveraging strong

negatives such as DDI data contributes to the establishment of more accurate

decision boundaries for predicting true positives, specifically drug combinations.

Lastly, training GNNs on my framework was not easy, occasionally leading

to unstable performance results. I believe this is due to the sparse connection

in the KG, which might made it difficult for an end-to-end neural networks

like GNNs to effectively propagate information across the graph, leading to

instability during training. Also, GNNs are prone to gradient explosion or van-

ishing, where the gradients either become too large or diminish rapidly during

back propagation. Techniques such as gradient clipping can help mitigate these

problems.

There are several limitations in my research that leave room for future re-

search directions. Firstly, my framework does not currently incorporate precise

dosing plans and the assessment of potential side effects, which are crucial fac-

tors in predicting drug combinations for practical situations. To enhance the

applicability of predictions from cellular or systems biology levels to clinical set-

tings, it would be valuable to integrate clinical trial information, thus increasing

the likelihood of success. Secondly, similar to previous methods, my framework

focuses on predicting scores between two drugs, while there are quite a few com-

binations that involve more than three drugs. Therefore, it would be beneficial

to extend the model to encompass interactions among multiple drugs, enabling

the modeling of complex drug combinations. Lastly, my research does not ex-

plicitly consider disease entities when predicting drug combinations. Although

the MSI network utilized disease nodes implicitly during the initial embedding

process using random walk or graph neural network (GNN) algorithms, it would

34



be more informative to incorporate disease embeddings, as drug combinations

are typically designed for specific indications. By incorporating disease embed-

dings, the framework can better capture the specificity and relevance of drug

combinations to particular diseases, enhancing the overall expressiveness of the

predictions.
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Chapter 5

Appendix

5.1 Target maps of case study drug pairs

In this section, I present target maps of the drug pairs which were previously

introduced in the case study section (Section 3.4). These target maps display

the protein targets of both drugs and the biological function entities connected

to the respective proteins. By referring to these target maps, one can easily

examine the functional role of the proteins, identify overlapping patterns be-

tween the two drugs, and utilize this information to conduct further studies.

These studies can investigate the possible reasons for synergistic effects in drug

combinations or adverse effects in DDIs. The target maps are visualized using

Cytoscape (Shannon et al., 2003).
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국문초록

약물 병용 요법은 의료 분야에서 다양한 질병의 치료에 중요한 발전을 가져왔다.

그러나가능한약물조합의수가매우많기때문에효과적인약물조합을찾는것은

여전히주요한과제로남아있다.생명의학지식그래프기반의방법들은다양한질

병에대한효과적인조합을예측하는데있어잠재력을보여주지만,신뢰할수있는

음성 데이터의 부재로 기계학습 모델의 예측 성능이 제한되고 있다. 또한, 기존의

방법들은지식그래프에서얻은그대로의약물임베딩벡터를사용하고있고,이는

충분한성능개선여지를남겨두고있다.이문제를해결하기위해,기존약물-약물

상호작용데이터를신뢰할수있는음성데이터셋으로활용하고,지도대조학습을

사용해약물임베딩벡터를약물조합예측에더적합하게변환하는새로운프레임

워크를제안한다.약물-약물상호작용데이터와지도대조학습기법은성능향상에

도움이되었을뿐만아니라,약물조합을찾는데적합한결정경계를구축하는데도

움을 주었다. 이 접근 방식의 구체적인 효과를 증명하기 위해, 랜덤 워크와 그래프

신경망을 포함한 다양한 네트워크 임베딩 알고리즘을 생명 의학 지식 그래프에 사

용하여 광범위한 실험을 수행했다. 또한, 임베딩 공간 시각화를 통해 해당 접근 방

식의효과를추가적으로입증하고결정경계를시극화하였다.마지막으로,약물조

합과 약물-약물 상호작용의 실제 사례 연구를 제공하였다. 정리하면, 이 연구는 약

물-약물상호작용데이터와지도대조학습을사용해효과적인약물조합예측을위

한보다엄격한결정경계를찾는데효과적인방법을제안하고있다.연구에활용된

소스코드는 Github (https://github.com/gujh14/DC_with_DDI_SupCon.git)

에서 확인할 수 있다.

주요어: 약물 조합, 지식 그래프, 약물-약물 상호작용, 지도 대조 학습, 랜덤 워크,

그래프 신경망

학번: 2021-28284
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