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Abstract

Computational Drug Combination
Prediction using Biomedical
Knowledge Graph
Enhancement with Drug-Drug Interaction Data

and Supervised Contrastive Learning

Jeonghyeon Gu
Interdisciplinary Program in Artificial Intelligence
College of Engineering

Seoul National University

Combination therapies have brought significant advancements to the treatment
of various diseases in the medical field. However, searching for effective drug
combinations remains a major challenge due to the vast number of possible
combinations. The utilization of biomedical knowledge graphs, which encompass
intricate relationships among biomedical entities, has demonstrated promising
potential in predicting effective combinations for a wide range of diseases. How-

ever, the absence of reliable negative samples has posed challenges for machine



learning models to establish robust decision boundaries, thereby limiting pre-
diction performance. Additionally, previous methods have relied on raw and
general drug embedding vectors extracted from the knowledge graph, which is
suboptimal and leaves considerable room for improvement.

To address this issue, I propose a novel framework that leverages exist-
ing Drug-Drug Interaction (DDI) data as a reliable negative dataset and em-
ploys Supervised Contrastive Learning (SCL) to transform drug embedding
vectors to be more suitable for drug combination prediction. DDI data and
SCL technique not only improved the performance metrics but also helpful
in building tight decision boundaries for predicting drug combinations. To
demonstrate the effectiveness of this approach, I conducted extensive exper-
iments using various network embedding algorithms, including random walk
and graph neural networks, on a biomedical knowledge graph called multi-
scale interactome (MSI) network. I also provide t-SNE plot of drug pair em-
bedding vectors to visualize the decision boundaries between drug combina-
tion and DDI. Lastly, case study results of drug combination and DDI are
also provided. In summary, this work highlights the potential of using DDI
data and SCL in finding tighter decision boundaries for predicting effective
drug combinations. All source codes are available on the GitHub repository

(https://github.com/gujh14/DC_with_DDI_SupCon.git)

Keywords: Drug combination, Knowledge graph, Drug-drug interaction, Su-
pervised contrastive learning, Random walk, Graph neural network
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Chapter 1

Introduction

1.1 Study Background

Combination therapy involves using two or more medications together to achieve
a desired treatment outcome. This includes combining drugs with different
mechanisms of action to target multiple aspects of a disease or to increase
effectiveness while minimizing side effects. The selection and design of drug
combinations require careful consideration of factors such as drug interactions,
safety profiles, dosing schedules, and patient-specific characteristics. Research
and computational approaches play a crucial role in identifying and optimiz-
ing effective drug combinations. Drug combination is commonly used in the
treatment of various medical conditions such as cancer (Crystal et al., 2014),
infectious diseases (Zheng et al., 2018), cardiovascular diseases (Giles et al.,
2014), and autoimmune diseases (Smilek et al., 2014). An example of this is
the use of Twynsta', a medication that combines telmisartan and amlodipine,

which is used to lower blood pressure by relaxing blood vessels and reducing



the workload on the heart, respectively. Combining these two drugs in a single
tablet can provide additive or synergistic blood pressure-lowering effects and
can also help minimize the side effects that might be associated with taking
high doses of each drug alone (Chalmers, 1999).

Despite the importance of modern drug combination therapy, identifying
the combinations that effectively treat a condition while minimizing side effects
is often a matter of intuition and experience, rather than following established
principles. There are over 10,000 ongoing clinical trials in the US to study com-
bination therapies, but these numbers are quite modest to cover the tremendous
number of possible combinations of drugs. The search for adequate drug pairs
is time consuming and requires lots of clinical experience. It is also difficult
to predict the complex interactions between different drugs and their potential
targets. They can involve multiple mechanisms of action and can vary depend-
ing on the specific cell type or tissue being targeted. Therefore, it is important
to develop powerful computational technologies that can facilitate the identifi-
cation of drug combination therapies and narrow down the search space.

There have been several studies conducted on computational drug combi-
nation predictions. However, they frequently encounter limitations such as the
narrow scope of the drugs covered and/or unreliable negative data. In this ar-
ticle, I introduce a novel framework that addresses these challenges and can
be applied to a wide range of drugs. This framework utilizes drug-drug inter-
action (DDI) data as a reliable negative dataset and employs supervised con-
trastive learning (SCL) technique for pretraining. By adopting this data-centric
approach and leveraging an appropriate pretraining technique, the model signif-
icantly enhances its ability to establish robust and effective decision boundaries

for predicting drug combinations.



1.2 Related works & Limitations

Recently, several methods have proposed computational approaches to narrow
down the broad search space of drug combination prediction problem. One ap-
proach relies on the experimental high-throughput screening (HTS) data. HT'S
is a method used in drug discovery and biology to rapidly test a large number
of compounds or substances against biological targets, such as enzymes, recep-
tors, or cells, in order to assess the effects of the molecules to the biological
system. HT'S data typically includes information on the biological activity of
compounds, such as their ability to inhibit or activate a target, as well as infor-
mation on compound structure, concentration, and assay conditions. These data
are obtained using automated systems that can process hundreds of thousands
or even millions of compounds in a relatively short period of time. The studies
that use HTS data focused exclusively on cancer drugs or anti-bacterial drugs,
as their therapeutic efficacy can be easily measured at the cell line level using
metrics like IC50 (half maximal inhibitory concentration), although this mea-
sure does not always align with clinical response. The degree of synergy in this
framework is typically quantified by its deviation from that simulated according
to a theoretical model. There are a few quantitative metrics to define the degree
of synergy, such as Loewe additivity (Loewe, 1953), Bliss independence (Bliss,
1939), highest single agent (Berenbaum, 1989), and zero interaction potency
(Yadav et al., 2015). DeepSynergy (Preuer et al., 2018) is one of the pioneering
works that use deep learning to predict drug combination synergies and takes
chemical and genomic information as input information. Features of two drugs
and one cell line are fed into a deep neural network, and a synergy score is
predicted. DeepSynergy used a large-scale oncology screen data produced by
Merck & Co (O’Neil et al., 2016). This dataset provides a screen of 22,737 ex-



periments of 583 doublet combinations in 39 diverse cancer cell lines using a
four-by-four dosing regimen. Sidorov et al. (Sidorov et al., 2019) suggested an
in-silico modeling with NCI-ALMANAC (Holbeck et al., 2017) dataset, a large
phenotypic drug combination HTS dataset and contains synergy measures of
pairwise combinations of drugs on cell lines. Each cell line and drug were mod-
eled using Random Forest (Breiman, 2001) and Extreme Gradient Boosting
(XGBoost) (Chen and Guestrin, 2016). PRODeepSyn(Wang et al., 2022) is a
method that leveraged Graph Convolution Network (GCN) to integrate protein-
protein interaction network with omics data and constructed embeddings for
cell lines. Each drug is represented by molecular fingerprints and descriptors.
Cell line features and drug features are fed into the final classifier layer to pre-
dict synergy score. And Jin et al. (Jin et al., 2021) proposed a neural network
architecture that jointly learns drug-target interaction and drug-drug synergy
to identify synergistic drug combinations against SARS-CoV-2.

On the other hand, knowledge graph (KG)-based approaches were used to
predict drug combination pairs on general drugs and diseases. A biomedical
KG is a structured representation of biomedical knowledge that captures re-
lationships between different entities, such as genes, proteins, diseases, drugs,
pathways, and their associated attributes. It serves as a knowledge base that or-
ganizes and links various types of information. More detailed description about
biomedical KG is provided in Section 2.1. They can be further divided into
mining and learning approaches. For instance, Cheng et al. (Cheng et al., 2019)
mined and analyzed a drug-protein-disease KG by quantifying the distance be-
tween drug-target modules for drug combination prediction. They showed that
there are some typical overlapping patterns in the target protein set of the
combinatorial drugs. Recent learning approaches use network embedding al-

gorithms to embed various entities in the biomedical KG and apply machine



learning techniques to infer drug combination scores. For example, Liu et al.
(Liu et al., 2019) used drug similarity network, protein similarity network and
known drug-protein associations to build a drug-protein heterogeneous network.
They then employed the random walk with restart algorithm to get the feature
vectors of each drug combinations, which are later used for the gradient tree
boosting classifier. Another example is the NEWMIN (Yu et al., 2022) method,
which constructed multiplex drug-drug similarity network, including chemical,
side effect, Anatomical Therapeutic and Chemical (ATC) codes, text-mining,
protein, and category-based similarity networks. Random walk was performed
on the networks and the embedding vector of each drug was built with the
word2vec algorithm (Mikolov et al., 2013). Finally, drug combination score was
predicted by applying a Random Forest classifier on the concatenated embed-
ding vectors of drug pair. Although the prediction performance of these works
varies and depends on the selection of the KG, they have shown that biomedical
KGs are useful resources for predicting drug combination.

While both HT'S data-based and KG-based approaches exhibited encourag-
ing results on drug combination predictions, but they have their own limitations.
When utilizing public HTS data-based approaches, one can only perform re-
search for anti-cancer or anti-bacterial drugs as their outcome is cell survival
and/or death. However, there are often no suitable quantitative measures of
drug response at the cell line level for other indications. In other words, it is
hard to use those public HT'S data to infer novel drug combinations for diseases
like hypertension or diabetes for my research.

Alternatively, the KG-based approaches can alleviate this problem and be
easily applied for various diseases and drugs. But these methods often rely on
unreliable negative data, which entails randomly selecting pairs of drugs from

drug lists. A machine learning model typically require negative data to establish



decision boundaries and improve its ability to distinguish between classes, lead-
ing to better performance metrics. While the random negative approach has
been used in tasks related to drug-target interactions and drug-disease associ-
ations, these randomly selected drug pairs are not true negatives, but rather
unlabeled pairs that carry the possibility of actually being positive samples.
Additionally, there is possibility that they are easy negatives, as it is highly
likely to sample two drugs with obviously distinct indications. Furthermore,
the KG-based approaches often use raw drug embeddings learned only from
the network topology for combination prediction. Although this raw vectors
from the biomedical network can serve as good initial representations, they are
too general and need to be projected into a more specific embedding space that

is appropriate to predict drug combination scores.

1.3 Proposed Approach

In this article, I propose a novel strategy that utilizes existing DDI data as
a reliable negative dataset for predicting drug combinations. The proposed
framework also employs SCL to transform the raw embedding vectors into drug
combination-specific embeddings. To elaborate, this framework is a type of KG-
based learning approach and can cover any drug doublet pairs with the target
protein information in biomedical KG. As DDI refers to a phenomenon in which
the effectiveness or toxicity of one drug is affected when taken with another drug
and is usually avoided, it can be used as negative dataset to improve predictions
of combination therapies (Giiveng Paltun et al., 2021). SCL is a type of con-
trastive learning technique that leverages label information to draw embedding
vectors closer to one another if they are of the same class, while pushing them

away if they are not (Khosla et al., 2020).



Overall training scheme is illustrated in Figure 1.1, which can be regarded
as a three-step process: initial, pretraining, and final stage. The initial stage is
obtaining raw drug embedding vectors from the KG using network embedding
algorithms such as random walk or graph neural networks (GNNs). Then the
SCL technique is applied at the pretraining stage to transform each drug embed-
ding vectors into more suitable representations for drug combination prediction.
At the final stage, the embedding vectors are fed into a classifier to predict drug
combination scores.

To the best of my knowledge, the proposed approach is the first work to ex-
plicitly use the DDI dataset as a negative dataset and to employ SCL technique
for drug combination prediction task. Through comprehensive experiments, I
show that this approach has substantially benefited the deep learning model,
not only in terms of enhancing overall predictive performance but also in estab-
lishing tighter decision boundaries for predicting drug combination pairs. This
is clearly demonstrated in the visualization results of the embedding space,
which indicate that the SCL pretraining effectively transformed the initial drug
embedding vectors from the biomedical KG into more appropriate and specific
embeddings for downstream drug combination prediction tasks. Furthermore, I
have included some case studies to illustrate the performance of the approach

in specific scenarios.
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Chapter 2

Materials & Methods

2.1 Biomedical Knowledge Graph

KGs are a way of representing knowledge concepts and their relationships as
nodes and edges. In the biomedical field, KGs have been widely used for inte-
grating entities, such as genes, proteins, drugs, and diseases at various levels,
ranging from molecular to clinical. By structuring assay results, mechanisms
of action, and target protein information in a graph format, computational
methodologies can be applied to infer semantics and uncover unknown associ-
ations. Biomedical KGs thus provide a powerful framework for exploring the
relationships between biomedical entities and unlocking new insights. They can
be used to predict drug combinations due to their ability to capture and rep-
resent complex relationships between drugs, target proteins, and diseases. For
example, KGs can link drugs to their target genes or proteins and capture their
interactions within biological pathways. This information enables the identifi-

cation of drugs that target the same pathways or share common targets.



Node Type Number of Nodes
Drug 1,661
Protein 17,660
Indication (disease) 840
Biological function (GO term) 9,798

Table 2.1: Node types and number of nodes in the MSI network. MSI: multi-scale

interactome; GO: Gene Ontology.

Edge Type Number of Edges
Drug-Protein 8,568
Disease-Protein 25,212
Protein-Protein 387,626
Protein-Biological function 34,777
Biological function-Biological function 22,545

Table 2.2: Edge types and number of edges in the MSI network. MSI: multi-scale

interactome.

The multi-scale interactome (MSI) network is one of the well-known biomed-
ical KGs that contains drug, disease, gene, and biological function annotations
as its nodes. It contains a total of 29,959 nodes and 478,728 edges, including
1,661 drug and 840 disease entities (Ruiz et al., 2021). There are five types
of edge relations in the MSI network: drug-protein, disease-protein, protein-
protein, protein-biological function, and biological function-biological function
interactions. Detailed numerical information about the MSI network is pro-
vided in Table 2.1 and Table 2.2. The authors of the MSI network demonstrate

that the inclusion of biological function entities in a molecular-scale drug-gene-
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disease network offers both better drug-disease treatment prediction perfor-
mance and biological interpretability. I used the MSI network to embed drugs

into vectors for predicting drug combinations.

2.2 Drug Databases

2.2.1 Drug Combination Databases

There are various databases that collect and organize information on drug com-
binations. DCDB 2.0 (Liu et al., 2014) is a curated database from more than
140,000 clinical studies and the Food and Drug Administration (FDA) Orange
Book (Home, 2013). It includes 1,363 drug combination pairs, consisting of 904
unique components. There are three types of combinations in DCDB 2.0, which
are ‘Efficacious’, ‘Need further study’, and ‘Non-efficacious’.

Continuous Drug Combination Database (CDCDB) (Shtar et al., 2022) is
a comparable database that is continuously updated and comprises of 17,107
distinct drug combinations composed of over 4,129 individual drugs. It is cu-
rated from ClinicalTrials.gov (Zarin et al., 2011), the FDA Orange Book, and
Integrity (Clarivate Analytics)" .

I processed and merged the database to curate drug combination pairs as
follows. First, I used only ‘Efficacious’ type of drug pairs from DCDB 2.0.
And the drugs not included in the MSI network were excluded. Then the pairs
from both databases were merged to include as much positive data as possible,
resulting in 4,344 pairs. And they were used as the positive dataset for drug
combination prediction. Detailed numerical information about both databases

is provided in Table 2.3.

]
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DCDB 2.0 | CDCDB | TWOSIDES

Number of unique drugs 904 4,129 645
Number of pairs
1,363 17,107 4,649,442
(before curation)
Number of pairs
455 4,221 16,157

(after curation)

Table 2.3: Number of unique drugs and pairs in DCDB 2.0, CDCDB, and TWO-
SIDES databases.

2.2.2 Drug-Drug Interaction Database

DDIs can occur when two or more drugs are administered simultaneously, lead-
ing to changes in the pharmacokinetics or pharmacodynamics of the drugs
involved. For example, taking warfarin (a blood thinner) and aspirin (anti-
inflammatory and anti-platelet drug) together is not recommended as they can
severely increase the risk of bleeding. Although there are some rare cases, such as
the combination of ritonavir (a potent CYP3A4 enzyme inhibitor) and lopinavir
(CYP3A4 substrate) (Cvetkovic and Goa, 2003), where DDIs are beneficial and
used intentionally to enhance the efficacy, DDIs are generally avoided.

I utilized TWOSIDES database (Tatonetti et al., 2012) as a reliable negative
dataset. The DDI data in this database were curated from the large Adverse
Event Reporting Systems (AERS) developed by FDA, World Health Organiza-
tion, and Health Canada. The TWOSIDES database contains 4,649,442 DDI
pairs between 645 drugs and is included in the Therapeutics Data Commons
(TDC) (Huang et al., 2021), which is a coordinated initiative to access and
evaluate Al models across therapeutic modalities and stages of discovery. I

chose drug pairs whose entity exists in the MSI network, resulting in a 16,157
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DDI pairs. Detailed numerical information about the TWOSIDES database is
provided in Table 2.3.

2.3 Initial Stage: Network Embedding Algorithms

At the initial stage, the initial drug embedding vectors z; is obtained with

various network embedding algorithms.

2.3.1 Random walk-based algorithms

Random walk-based algorithms have been a popular method for graph min-
ing since their introduction in the seminal work of DeepWalk (Perozzi et al.,
2014). The random walk algorithm generates node sequences p = ny,na,...,ny
of length [ from a graph G = (V| F) of node set V' and edge set F from following

distribution:

/2 if (v,z) €E
P(ni:x|n¢,1:v) =
0 otherwise

where m,; is the unnormalized transition probability from node v and z,
and Z is the normalizing constant. The final transition probability varies de-
pending on the various biased traversal strategies. The sequences generated are
then passed through a shallow neural network, such as Skip-gram or C-BOW,
to generate node embedding vectors. The network is trained to maximize the
similarity of the co-occurring neighbors within a given window length. These
embeddings can be used for various downstream tasks, such as node classifica-
tion and link prediction. I tested four random walk-based algorithms, node2vec
(Grover and Leskovec, 2016), edge2vec (Gao et al., 2019), res2vec (Kojaku et al.,
2021), and DREAMwalk (Bang et al., 2022) to embed drug nodes in the MSI
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network and compared their performance.

Node2vec (Grover and Leskovec, 2016) is a variation of the DeepWalk al-
gorithm that allows for more flexibility in generating node sequences by intro-
ducing the parameters p and q. These parameters enable a balance between
Breadth-First Sampling (BFS) and Depth-First Sampling (DFS) during the
random walk sampling strategy. In our experiments, we set p and q to 1, re-
sulting in a uniform random walk sampling strategy. This approach allows for
the examination of various neighborhood structures and the creation of more
informative node embeddings for downstream tasks.

Edge2vec (Gao et al., 2019) is a method specifically designed for mining
graphs from the biomedical domain, where different scales of associations ex-
ist between different types of nodes. To account for these varying edge types,
edge2vec first trains a novel edge-type transition matrix using an Expectation-
Maximization (EM)-like iterative approach. This allows for the assignment of
transition weights to the reachable edge types. During the random walk, the
algorithm traverses the network proportionally to these transition weights, re-
sulting in a more targeted exploration of the biomedical knowledge graphs.

Residual2vec (Kojaku et al., 2021) is another extension of the DeepWalk
algorithm that addresses the bias towards high-degree nodes in random walk
sampling. The algorithm does this by comparing the random walk sampling re-
sults with those of randomly generated graphs. The Residual2vec algorithm can
be applied in two modes: homogeneous and heterogeneous. In the homogeneous
setting, all nodes are treated as the same type, while in the heterogeneous set-
ting, different types of nodes are assigned different transition probabilities. In
our framework, the algorithm was used in both homogeneous and heterogeneous
settings using the default parameters as suggested by the authors.

DREAMwalk (Bang et al., 2022) is a random walk-based algorithm that is

]
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designed for mining biomedical graphs. It uses a teleport-guided random walk
framework to generate node embedding vectors. The aim of this framework is
to guide the traversal of the biomedical network by taking into account the
semantic similarities of drug and disease entities, thereby reducing bias in the
learning process from large and dense protein-protein interaction networks. In
our experiments, we set the semantic similarity cut-off and teleport factor 7 to

0.5 for all experiments.

2.3.2 Graph Neural Network Algorithms

Graph Neural Networks (GNNs) are specialized type of neural network designed
to handle graph-structured data. They are able to learn the topological struc-
ture of a graph in an end-to-end fashion by updating the features of both nodes
and edges based on the characteristics of their neighboring entities. I used mes-
sage passing GNNs, which updates node embeddings by aggregate and combine

step per each layer as follows:

0\1y) = AGGREGATE ({h{™), Vu € N (v)})
hD = o(W® . COMBINE(A{™Y, af\t[)(v)))

where h{") is the feature vector of node v at time step ¢ (t-th layer). N (v)
is the set of neighbor nodes of a node v. At each time step t, a differentiable
aggregation function AGGREGATE collects neighbors’ representation vectors,
and they are combined by the COMBINE function and a weight matrix W is
multiplied and non-linear activation function o is applied to update the hidden
representation of node v.

The message passing scheme allows GNNs to effectively capture dependen-

cies between nodes in the graph. Multiple convolutional methods have been

]
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proposed to aggregate and combine messages from different perspectives. I con-
ducted several experiments using four well-known GNN architectures: GCN
(Kipf and Welling, 2016), Graph Sample and Aggregate Network (GraphSAGE)
(Hamilton et al., 2017), Graph Attention Network (GAT) (Velickovié¢ et al.,
2017), and Graph Isomorphism Network (GIN) (Xu et al., 2018).

GCN (Kipf and Welling, 2016) is an efficient variant of Convolutional Neural
Networks (CNNs) on graphs. It is a basic form of message passing neural net-
works, which applies a local neighborhood aggregation with learned first-order
spectral filters followed by nonlinear activation function to learn node repre-
sentations. In GCN, the AGGREGATE and COMBINE steps are integrated as
follows:

A = o(W® . MEAN{R{™ Yu € N(v) U {v}})

GraphSAGE (Hamilton et al., 2017) was originally designed to inductively
learn node embeddings in large graphs. It first samples a fixed number of nodes
in a node’s local neighborhood, then aggregates feature information from the
sampled neighbor nodes with element-wise max pooling. The AGGREGATE
and COMBINE step of GraphSAGE can be formulated as:

o) = MAX(fo W) 1) Yo € X))
W = o (W . CONCAT(h(, hf))

GAT (Velickovié et al., 2017) is another type of GNN that uses attention
mechanisms to learn node feature representations. This layer learns different at-
tention coeflicients for each neighbor of a node and aggregates them using these
coefficients to update the final representation of the node. The AGGREGATE
and COMBINE step can be merged as follows:

M=o Y caWn{™)
ueN (v)u{v}

T ) 1
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where ay,, is the learned attention weight between node v and u.

GIN (Xu et al., 2018) is a GNN layer that is intended to generalize the WL
test and use MLPs to model injective multiset functions for the neighborhood
aggregation. The AGGREGATE and COMBINE step is unified as follows:

h{ = MLPO((1 4 @) - pf=0 4+ >~ pl=Y)
ueN (v)
€ can be a learnable parameter or a fixed scalar. I set all € to be zero for
simplicity.

The number of layers that achieved the highest performance for GCN,

GraphSAGE, GAT, and GIN are 3, 3, 2, and 2, respectively.

2.4 Pretraining Stage: Supervised Contrastive Learn-

ing

At the pretraining stage, the initial drug embedding vectors z are transformed
into more specific vectors Z by SCL with multilayer perceptron (MLP) layers.

Contrastive learning is a machine learning technique that enables models to
differentiate between data points in a certain embedding space by identifying
their similarities and differences. This approach can be employed in both super-
vised and unsupervised settings, and it involves various types of loss functions
such as contrastive loss (Chopra et al., 2005), triplet loss (Schroff et al., 2015),
and InfoNCE loss (Oord et al., 2018).

Meanwhile, multiple works have pointed out shortcomings of the simple
cross entropy loss, such as its susceptibility to noisy labels (Zhang and Sabuncu,
2018) and poor margins (Liu et al., 2016) that can lead to reduced generaliza-
tion performance. To address this issue, Khosla et al. (Khosla et al., 2020) pro-
posed SCL framework that demonstrated improved performance in robustness

benchmarks and less sensitivity to changes in hyperparameters.

]
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Since the initial drug embeddings from the knowledge graph were too general
for drug combination prediction, I applied SCL during pretraining phase with
training dataset to transform them into a more appropriate embeddings for
downstream drug combination prediction. To achieve this, I implemented a
loss function similar to the supervised contrastive loss (Khosla et al., 2020)
to effectively maximize the cosine similarity between drug combinations while
minimizing the similarity between DDI pairs. The loss function can be expressed

as follows:

ZVyi-:DC exp(Z; - Zj)
J

2 ¥yi;=DC exp(2] - ) + 2 vy, =DDI exp(Z] - %)

L=—log

where Z; and Z; are the transformed drug embedding vectors. If the two
drugs are drug combinations, their label y;; is DC' and if they are DDI pairs,
the label is DDI. By minimizing this loss function, the MLP layers can be
trained to effectively transform the embedding vectors which can be further

used for final drug combination prediction.

2.5 Final Stage: Drug Combination Prediction

Once pretraining the drug embedding vectors is done, I employed them to finally
predict actual drug combination scores. Two drug embeddings are element-wise
multiplied, and the resulting vector is fed into a fully connected classifier layer to
output a score ranging from 0 (DDI) and 1 (drug combination). The classifier
layer consists of one hidden layer and one output layer with dimensions 128
and 1, respectively. Since this is binary classification task, I used binary cross

entropy loss as a loss function at this stage.

]
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2.6 Experimental Setup

To ensure the robustness of the results for performance evaluation, I repeated
each experiment with 10 different random seeds. I used the Adam optimizer and
early stopping technique with a patience of 20 for all experiments. To deter-
mine the best hyperparameter set, I performed grid search to find the optimal

learning rates for both the pretraining and final stages for each algorithm.
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Chapter 3

Results

In this section, I present the experimental results of my framework, along with
visual representations of the drug embedding vectors, comparison of robustness

to class imbalance, and case studies.

3.1 Performance Evaluation

As the performance of KG-based drug combination prediction depends on the
quality of the biomedical KG, I set the baseline framework to use random sam-
pling when composing the negative dataset. I conducted experiments for all the
aforementioned network embedding algorithms, and the results are presented in
the form of an ablation study in Table 3.1 and Table 3.2. The first row of each
algorithm is my framework, which uses the TWOSIDES database as negative
dataset and applied SCL during pretraining. The second row presents the re-
sults without SCL pretraining. The last row represents the baseline framework,

which uses a randomly sampled negative dataset without SCL pretraining. In
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these experiments, I used the same number of negative data as positive data.
The SCL pretraining stage resulted in enhancements for nearly all metrics
across all algorithms, except for the precision metric of GIN. Additionally, the
use of the TWOSIDES dataset led to significant improvements for most metrics
across all algorithms, with the exception of the recall metric of GraphSAGE and
GAT. Given that comparing the performance of two different negative datasets
can lead to debatable issues, I have presented some opinions in the Chapter 4

(Discussion & Conclusion section).

3.2 Visualization of Drug Pair Embedding Vectors

The use of supervised contrastive learning improved model performance sub-
stantially. I hypothesized that this is due to the tight boundary learned to
distinguish between drug combination pairs and DDI pairs. To visualize the
distribution of embedding vectors, I applied t-distributed Stochastic Neighbor
Embedding (t-SNE) algorithm to the multiplied embedding vectors of drug
pairs of three stages: initial, pretraining, and final stage (Figure 2a, b, ¢). This
experiment is performed with the best performing algorithm DREAMwalk, and
the shown vectors are test data, i.e. they were not used as training data for the
model used in the experiment.

Figure 3.1a illustrates the initial raw embedding vectors of the drug pairs.
Combination pairs and DDI pairs are distributed evenly in the embedding space
without any obvious boundaries or clusters, which implies that those embed-
dings might be too general and naive to perform drug combination prediction.
While in Figure 3.1b, the two separate classes seem to be well-separated, and
the combination pairs even developed some clear clusters. It is easy to observe

the effect of the SCL to transform the embeddings of drug combinations to
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be similar and the embeddings of DDIs to be dissimilar. Shown in Figure 3.1c
is the final drug pair embedding vectors and they show much clear boundary

suitable for drug combination binary classification.

3.3 Robustness to Class Imbalance

Since using the TWOSIDES dataset as negative samples showed significant im-
provement in all the performance metrics, I hypothesized that my framework
is more robust in class imbalanced settings. This is a situation where one class
has much more examples than the other class, which can lead to biased or inef-
fective models. In my case, the number of negative samples in the TWOSIDES
dataset was more than three times larger than the positive drug combination
samples. So, I conducted an experiment to verify the robustness of my frame-
work by gradually increasing the size of the negative set, using the Area Under
the Precision-Recall Curve (AUPRC) metric on the test set. For all algorithms,
SCL pretraining was performed.

As seen in Table 3.3, I found that the AUPRC decreased substantially when
the model was trained with randomly sampled negative datasets. However,
when using the TWOSIDES dataset as the negative dataset, the AUPRC ei-
ther decreased less or didn’t decrease at all. I believe that this result provides
strong evidence that utilizing DDI data as negative dataset can guide the deep
learning model in building an appropriate and robust decision boundary for

drug combination prediction.
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3.4 Case Studies: Drug Combination & Drug-Drug In-

teraction

In order to investigate specific cases, I present two types of case study re-
sults: the predicted scores of well-known drug combination pairs and DDI pairs.
For simplicity, I refer to the model trained with a randomly sampled negative
dataset as the random model, and the model trained with the TWOSIDES
dataset as the TWOSIDES model. For case study experiments, I utilized the
best-performing algorithm, DREAMwalk and applied SCL pretraining. I used
an equal number of negative and positive data, and the drug pairs studied in
the case studies were not included in the training data.

To begin, I obtained the prediction scores of previously known drug com-
bination pairs from both the random and TWOSIDES models, as shown in
Table 3.4. One widely used combination is statins (atorvastatin, fluvastatin,
rosuvastatin) and fenofibrate, which is often prescribed together to reduce car-
diovascular risk in patients with dyslipidemia (Jacobson and Zimmerman, 2006;
Davidson et al., 2009; Farnier et al., 2000; Biswas et al., 2021). While the ran-
dom model also predicted scores above 0.5 in these cases, the TWOSIDES
model predicted higher scores close to 1.0. In other cases, the TWOSIDES
model demonstrated a more distinct score difference compared to the random
model. For instance, the combination of dutasteride and tamsulosin showed
optimal control of male lower urinary tract symptoms associated with benign
prostatic hyperplasia (Dimitropoulos and Gravas, 2016). Additionally, the fixed
combination of latanoprost-timolol therapy has been found to be safe and ef-
fective for lowering intraocular pressure in patients with ocular hypertension or
glaucoma (Higginbotham et al., 2010). And the combination of milrinone and

esmolol has shown promising results in clinical trials for treating acute myocar-
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dial infarction or severe sepsis (Huang et al., 2011; Poh et al., 2014). The test
dataset for this case study included 400 drugs and the average of prediction
scores of the test dataset in random model and TWOSIDES model were 0.796
and 0.906, respectively.

Then, I also observed the TWOSIDES model is more effective at identifying
DDIs than the random model. As shown in Table 3.5, the predicted combination
scores of major DDI pairs were significantly lower in the TWOSIDES model
than in the random model. For example, the coadministration of phenytoin and
ondansetron is generally avoided because the former is a strong inducer of the
enzyme CYP 3A4, and the latter is metabolized by it (Zhou, 2008). Similarly,
the DDI between ketoconazole and simvastatin is also related to CYP3A, and
the former drug inhibits the enzyme, increasing the risk of myopathy and rhab-
domyolysis (Gilad and Lampl, 1999). Celecoxib is a moderate CYP2D6 inhibitor
and clonidine is metabolized by CYP2D6. Concomitant administration of these
two drugs may decrease the metabolism of the latter drug and lower potassium
levels in the blood (VandenBrink et al., 2012). And modafinil is an inducer of
various CYP enzyme (1A2, 2C9) and can decrease the blood level of the corre-
sponding CYP substrate, duloxetine (Rendic, 2002). Furthermore, lansoprazole
is an OAT3 (organic anion transporter 3) inhibitor, which can inhibit the ex-
cretion of mercaptopurine (an OAT3 substrate). Since mercaptopurine has a
narrow therapeutic index, it is usually not recommended to administer these
two drugs together (Duan et al., 2012). Lastly, the combination of theophylline
and formoterol, both used to treat asthma or COPD, is not recommended due
to the increased risk of hypokalemic effects of formoterol, which can be poten-
tially caused by theophylline (Van den Berg et al., 1999). The test dataset for
this case study included 400 drugs and the average of prediction scores of the

test dataset in random model and TWOSIDES model were 0.446 and 0.078,
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respectively.
I also provide the visualization of the target maps of the drug pairs in
Appendix (Section 5.1). These maps include the protein targets of the drugs

and corresponding biological functions of the proteins.
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Chapter 4

Discussion & Conclusion

The goal of drug combination prediction is to identify effective drug pairs that
work together to treat a disease while minimizing adverse effects. Given that
the protein target sets of the drugs in combination often exhibit overlapping
patterns (Cheng et al., 2019), I believe a machine learning model can learn these
patterns and represent them as embedding vectors for predicting drug combi-
nations. Additionally, a typical machine learning model requires high-quality
negative data to effectively learn decision boundaries and enhance its ability to
differentiate between classes. Biomedical knowledge graph-based methods can
predict drug combinations for various types of diseases, but previous studies uti-
lized unlabeled drug pairs as negative dataset, which is unreliable. We proposed
a new approach that utilizes DDI pairs as a more reliable source of negative
data for drug combination prediction. To project and transform the initial drug
embeddings from the network into another vector space that is much more suit-
able for drug combination prediction, we applied SCL technique at pretraining

stage.
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Our study yielded some noteworthy findings. One of the most significant
was that using the TWOSIDES DDI dataset as a negative samples significantly
improved performance in various settings compared to using randomly sampled
negative pairs from drug lists. And we found that the supervised contrastive
learning was helpful in drug combination prediction task, and it not only im-
proved the performance of our models, but also helped the model to build better
decision boundaries which was visible in the embedding space visualization us-
ing t-SNE. The robustness of the prediction performance in class imbalanced
settings further demonstrated the effectiveness of our approach.

There are several important points to mention regarding this research. First,
the utilization of KGs can occasionally lead to knowledge leakage problems when
there are shared edges between the training dataset and the test dataset. How-
ever, it should be noted that in the MSI network, there were no drug-drug edges
present. And it is essential to share the protein target layer (protein-protein
edges) in order to embed each drug into vectors using network embedding al-
gorithms. Moreover, many previous studies have also used the same process, as

they form the essence of using KGs.

Second, comparing performance metrics between two different negative datasets,

namely TWOSIDES and random sampling, is not a straightforward task. It can
be argued that it is unfair to directly compare perfomance when the datasets
are different. Despite this issue, it was necessary to provide the results for
the baseline framework that use random sampling in order to demonstrate the
effectiveness of utilizing DDI data as negative dataset for drug combination
prediction.

Furthermore, the recall metric, which measures the ratio of true positive
predictions to the sum of true positives and false negatives, serves as a fair

indicator of the power of using strong negatives for predicting true positives.
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As indicated in Table 3.1 and Table 3.2, the use of the TWOSIDES dataset as
a negative data significantly improved the recall score in most of the algorithms
except GraphSAGE and GAT. This result demonstrates that leveraging strong
negatives such as DDI data contributes to the establishment of more accurate
decision boundaries for predicting true positives, specifically drug combinations.

Lastly, training GNNs on my framework was not easy, occasionally leading
to unstable performance results. I believe this is due to the sparse connection
in the KG, which might made it difficult for an end-to-end neural networks
like GNNs to effectively propagate information across the graph, leading to
instability during training. Also, GNNs are prone to gradient explosion or van-
ishing, where the gradients either become too large or diminish rapidly during
back propagation. Techniques such as gradient clipping can help mitigate these
problems.

There are several limitations in my research that leave room for future re-
search directions. Firstly, my framework does not currently incorporate precise
dosing plans and the assessment of potential side effects, which are crucial fac-
tors in predicting drug combinations for practical situations. To enhance the
applicability of predictions from cellular or systems biology levels to clinical set-
tings, it would be valuable to integrate clinical trial information, thus increasing
the likelihood of success. Secondly, similar to previous methods, my framework
focuses on predicting scores between two drugs, while there are quite a few com-
binations that involve more than three drugs. Therefore, it would be beneficial
to extend the model to encompass interactions among multiple drugs, enabling
the modeling of complex drug combinations. Lastly, my research does not ex-
plicitly consider disease entities when predicting drug combinations. Although
the MSI network utilized disease nodes implicitly during the initial embedding

process using random walk or graph neural network (GNN) algorithms, it would
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be more informative to incorporate disease embeddings, as drug combinations
are typically designed for specific indications. By incorporating disease embed-
dings, the framework can better capture the specificity and relevance of drug
combinations to particular diseases, enhancing the overall expressiveness of the

predictions.
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Chapter 5

Appendix

5.1 Target maps of case study drug pairs

In this section, I present target maps of the drug pairs which were previously
introduced in the case study section (Section 3.4). These target maps display
the protein targets of both drugs and the biological function entities connected
to the respective proteins. By referring to these target maps, one can easily
examine the functional role of the proteins, identify overlapping patterns be-
tween the two drugs, and utilize this information to conduct further studies.
These studies can investigate the possible reasons for synergistic effects in drug
combinations or adverse effects in DDIs. The target maps are visualized using

Cytoscape (Shannon et al., 2003).
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