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Abstract

Deep learning-based survival prediction

using DNA methylation-derived 3D

genomic information

Jeewon Yang

Interdisciplinary Program in Artificial Intelligence

College of Engineering

Seoul National University

The development of cancer is strongly linked to the three-dimensional (3D)

genome structure. However, the valuable information related to the 3D genome

states has not been effectively used in clinical applications, to the best of

my knowledge. The main reason for this is the expensive production of Hi-

C data, the manifest source of 3D genome information. Therefore, there is

a requirement for a new measurement that can be derived from 3D genome-

related data, making it more readily available for the 3D genome information

to be clinically used.

In this study, I present a novel approach for extracting 3D genome-aware

epigenetic features, the epigenetic features that are reflective of the three-
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dimensional (3D) genome structure, from DNA methylation data. Addition-

ally, I conducted a deep learning-based survival analysis utilizing these fea-

tures. To generate the 3D genome-aware epigenetic features, the 3D genome

structures were reconstructed using the 450K DNA methylation data at an

individual level. The results demonstrate that utilizing these features signif-

icantly improves the accuracy of risk prediction for seven cancer types. This

suggests that the 3D genome information embedded in the 3D genome-aware

epigenetic features is highly valuable for predicting the survival, or cancer

prognosis.

Furthermore, an in-depth biological analysis revealed that altered DNA

methylation levels in risk-high group as defined by the deep learning model

are associated with the aberrant activation of genes involved in various cancer-

related pathways. Overall, the usage of 3D genome-aware epigenetic features as

survival predictors demonstrates their significant clinical importance in seven

types of cancer, in addition to their biological significance. All source codes

are available on the GitHub repository (https://github.com/jwyang21/3D-

genome-risk-prediction).

Keywords: Deep learning, Bioinformatics, DNA methylation, Cancer prog-

nosis prediction, 3D genome, Epigenetics, Survival analysis

Student Number: 2021-26775
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Chapter 1

Introduction

1.1 Background

The 3D genome structure plays a crucial role in determining cell fate and

establishing cell identity. It provides spatial constraints that regulate the ac-

tivity of transcription factors (Stadhouders et al., 2019). This implies that a

misconfiguration of the 3D genome structure can activate abnormal transcrip-

tional programs, potentially leading to the malignant transformation of cells

and the development of cancer (Gröschel et al., 2014; Umlauf and Mourad,

2019). Moreover, the 3D genome organization is known to drive oncogenic

structural variations (Rheinbay et al., 2020), including driver fusion events in

which proto-oncogenes hijack enhancers of other genes to promote their expres-

sion (Dubois et al., 2022). Collectively, it can be inferred that the 3D genome

structure plays a significant role in multiple facets of cancer biology, and any

disturbance to its organization can have harmful effects to the cell fate deci-

sion. However, as far as I know, there has been no investigation that employs

quantified information about the 3D genome in predicting cancer prognosis.
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This can be attributed to two primary factors: the limited availability of data

capturing the 3D genome conformation in cancer samples and the absence of

quantitative measures to assess perturbations in the 3D genome. The most

preferred data representation for capturing the 3D genome landscape is con-

tact matrices or contact maps, which are obtained from the high-throughput

chromosome conformation capture (Hi-C) experiments (Van Berkum et al.,

2010). These matrices/maps offer direct information about the interactions

between various genomic regions. In detail, contact maps provide information

about the frequency of contact between any two genomic loci, which can help

estimate the strength of their interaction. Nevertheless, there are significant

constraints when it comes to generating contact matrices, due to the high ex-

pense and intricate processes involved in Hi-C experiments (Yardımcı et al.,

2019; Zhang et al., 2019a). These difficulties ultimately lead to a restricted

supply of 3D genome contact maps. As a result, an alternative dataset that is

more abundant and encompasses 3D genomic information is required for the

development of prognostic score.

1.2 Motivation

Surprisingly, it has been found that 3D genome configurations can also be

reconstructed using DNA methylation data alone (Fortin and Hansen, 2015).

This is because the interaction between distant genomic regions results in co-

varying DNA methylation levels of CpG sites within those regions. As a result,

the correlative patterns observed in DNA methylation profiles could reflect the

organization of the 3D genome. In particular, the distribution of A/B com-

partments, which are distinguished from each other in terms of chromatin

conformation on a large scale spanning multiple megabases (Liu et al., 2021;

Di Stefano and Cavalli, 2022; Magaña-Acosta and Valadez-Graham, 2020), was

reconstructed from the DNA methylation data (Fortin and Hansen, 2015). For
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this purpose, data generated through the DNA methylation microarray tech-

niques, including Illumina Infinium HumanMethylation450 (450K) BeadChip

array, were utilized (Bibikova et al., 2011). Unlike Hi-C contact matrices, DNA

methylation profiles are available for each patient in numerous cancer types,

providing us with more extensive and detailed information.

From Fortin and Hansen (2015), it is observed that the 3D genome infor-

mation reconstructed from the DNA methylation data (i.e., the PC1 vector

representing the A/B compartment distribution) can reproduce that from the

Hi-C data to a reliable extent. The authors of (Fortin and Hansen, 2015) at-

tribute the successful replication of 3D genomic information to the long-range

correlations embedded in the 450K DNA methylation data. The authors ex-

plain that there is a high correlation between DNA methylation levels from

two loci belonging to the same compartment compared to the two loci from

different compartments, and leveraging these long-range correlations enabled

extracting the 3D genome structure from the DNA methylation data.

While the potential of DNA methylation data in inferring the 3D genome

has been recognized, the ability to accurately speculate the individual 3D

genome state has not yet been attainable. Although the Hi-C data are obtain-

able at an individual level, the low availability of the Hi-C data itself limits

clinical utilization of the Hi-C data. Inspired from this limitation, I have de-

vised a technique for extracting individual 3D genome information from DNA

methylation data, henceforth referred to as 3D genome-aware epigenetic fea-

tures, and used these features to predict the risk of failures for different survival

events. Specifically, the differential structure of DNA methylation that approx-

imates the correlative pattern was captured. Using the observation that open

sea CpG positions located far from the CpG islands demonstrated the high-

est predictive capability in 3D genome reconstruction (Fortin and Hansen,

2015), the same probes were employed for my analysis. I employed a deep
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learning model for survival prediction, utilizing (Katzman et al., 2018). The

model used the 3D genome-aware epigenetic features as input to predict risks.

Subsequently, a comprehensive survival analysis across multiple cancer types

was performed, followed by the interpretation of biological implications. This

research introduces a novel method for predicting risks by utilizing the 3D

genome-aware epigenetic features. The pan-cancer analysis uncovered notable

differences in survival patterns between the risk-high and risk-low groups, in-

dicating the potential of predicted risks as a significant prognostic predictor.

The functional annotation of genes located in differentially methylated regions

(DMRs) revealed the engagement of DMR genes in numerous cancer-related

pathways. Notably, the retinoic acid (RA) signaling pathway, essential for the

developmental process (Ozgun et al., 2021), emerged as one of the distinctive

pathways. Analysis on the chromatin states of DMRs revealed that the ma-

jority of DMRs exhibited inactive or moderately activated states, suggesting a

relationship between the altered DNA methylation levels and abnormal gene

activation. In conclusion, the epigenetic features reflecting the 3D genome hold

significant predictive information for cancer prognosis and carry biological im-

portance.
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Chapter 2

Task design and Approach

2.1 Underlying concepts

The entire methodology comprises two main parts: feature engineering and

survival prediction using a deep learning model. Initially, features encompass-

ing the 3D genome information are extracted from DNA methylation data,

which are subsequently utilized as input for the pan-cancer survival predic-

tion. This section provides a concise overview, and a detailed description of

each key concept is presented in the Methods section.

1. The ability to infer individual 3D genome enables quantification of the

3D genome state for each cancer patient, enhancing the clinical applica-

bility of inferred 3D genome structure.

2. The inferred 3D genome structures are expressed as vectors, specifically

the first principal components (PC1s), enabling the assessment of dis-

similarities between two distinct individual 3D genome states.

3. To construct representations of normal or stem cells’ 3D genome struc-
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tures, or stem/normal references, the 3D genome states of multiple sam-

ples are averaged.

4. The degree of dissimilarity between each individual’s 3D genome state

and the normal/stem reference is determined by calculating the dis-

tances. These distances, hereafter called stem/normal distances, enable

the quantification of stem closeness of each sample.

5. Three risk prediction scenarios were examined: utilizing 3D genome-

aware, 3D genome-unaware, or no epigenetic features in a deep learning-

based risk prediction model.

2.2 Task definition

My research suggests that the 3D genome organization can be represented

as PC1 vectors from the DNA methylation levels of open sea CpG positions.

These vectors play a crucial role in enhancing the accuracy of risk prediction

for cancer patients. In fact, the representation of differential DNA methyla-

tion states as PC1s is widely utilized to illustrate chromatin conformation

(Lieberman-Aiden et al., 2009; Wang et al., 2016). These PC1 vectors stand

for the inferred 3D genome states, with each entry indicating the A/B com-

partment of the corresponding genomic bins. By utilizing these vectors, it

becomes possible to quantify dissimilarities between distinct individual 3D

genome structures and extract 3D genome-aware features.

Fig. 2.1 provides an overview of the entire pipeline. In contrast to the ap-

proach in (Fortin and Hansen, 2015), which infers a single 3D genome state spe-

cific to a particular tissue type using multiple samples (Fig. 2.2), my method

rebuilds the 3D genome structure for each individual separately. The dissimi-

larities between individual 3D genome states are quantified by measuring the

distance between PC1s.

6



Figure 2.1: Overview of the whole pipeline.

(A) Construction of the binned difference matrix (BDM) using the 450K DNA

methylation data. (B) Construction of stem and normal reference of 3D genome

states. (C) Computation of normal and stem distances of each sample. (D) Usage

of 3D genome-aware epigenetic features, age and gender for a deep learning-based

risk prediction.

By utilizing normal/stem references, stem closeness of each individual is

assessed. These 3D genome-aware epigenetic features are concatenated along

with age and gender, and employed as input for the risk prediction by a feed-

forward neural network. Prior to concatenation, each input feature was prop-

erly normalized to the range of [0, 1] to prevent the problems which might

arise from the inconsistent scales among different features. Subsequently, a

pan-cancer survival analysis is conducted, followed by functional analysis of
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DMRs to investigate the biological significance of the predicted risks. For a

more quantitative explanation of the extraction of 3D genome-aware epigenetic

features, please refer to Fig. 2.3.

Figure 2.2: The comparison between existing method and the pro-

posed methods for inferring 3D genome structure from the DNA

methylation data.

(A) An existing method. DNA methylation data from multiple samples of the

same tissue type are utilized to infer a single consensus 3D genome structure. (B)

The method proposed in this study. This method focuses on single-sample-based

inference of the 3D genome structure using DNA methylation data.
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Figure 2.3: A quantitative explanation of the entire pipeline involved

in extracting 3D genome aware epigenetic features from DNA methy-

lation data.

(A) Inference of the 3D genome structure from each autosome of a single sample.

(B) Construction of normal/stem references. (C) Measurement of normal/stem

distances. (D) Measurement of stem closeness.
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Collectively, the deep learning model takes as input the concatenation of

3D genome-aware epigenetic features and features related to survival (age and

gender), and outputs the predicted risk for each survival event per individual.

A deep learning model is necessitated for this task because of its ability to

learn the underlying pattern from the large-dimensional input feature. The

feature dimension of fully concatenated input feature exceeds 2700, which

makes learning meaningful pattern out of this data a very complicated task.

Although there are many other alternative methods for risk prediction which

is not deep learning-based, it is considered that the ability of deep learning

model to learn the underlying pattern accurately and rapidly is needed for this

task. The more detailed explanation on how the deep learning model was used

for training and evaluation, including the specifications and the loss function,

is provided in 3.8.
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Chapter 3

Materials and Methods

3.1 Deriving 3D genome-aware epigenetic features in

an individual-level

The 3D genome organization consists of two distinct classes of large genomic

compartments with contrasting characteristics: euchromatic A and heterochro-

matic B compartments, which form the top-level hierarchy of 3D genome struc-

ture (Rowley and Corces, 2018). The identification of these compartments can

be achieved by analyzing high-throughput measurements of genomic contacts,

as inter-compartment contacts are considerably rarer than intra-compartment

contacts. This correlative structure of the 3D genome is observed as a promi-

nent plaid pattern in the Hi-C contact frequency matrix or the PC1 values de-

rived from the normalized Hi-C matrix. The Hi-C PC1 values, which capture

the largest variability in the Hi-C matrix, indicate the compartmentalization

states of different genomic bins (Du et al., 2021; Golloshi et al., 2022; Schmitt

et al., 2016).

Inspired by the previous observations of co-varying DNA methylation lev-
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els across genomic regions (Fortin and Hansen, 2015), I hypothesized that a

matrix representing the absolute difference in DNA methylation levels between

two arbitrary genomic bins could also capture the correlative structure of the

3D genome. In other words, I anticipated that regions exhibiting spatial asso-

ciation would display smaller differences in methylation levels. To reflect this

concept, I designed a matrix, henceforth called the binned difference matrix

(BDM), which quantifies the absolute differences in methylation levels between

genomic regions. The detailed procedures for constructing BDM is provided

in section 3.2.

3.2 Construction of BDM

This section provides a detailed explanation of the process involved in con-

structing BDM. BDM aims to capture the differential structure of DNAmethy-

lation s across different regions of the genome. To achieve this, it is important

to establish a representative value that stands for the overall DNA methylation

level for each region, enabling the measurement of differences between these

values. To begin, each autosome is divided into bins of size 1Mb. Within each

genomic bin, the median value is calculated by considering all the DNA methy-

lation levels of open sea CpG positions located in that bin (Fig. 2.3). This is

based on another fundamental principle of BDM, which focuses exclusively

on using distant or open sea CpG probes. These probes have demonstrated

superior predictive power compared to CpG probes of other positions (such as

islands, shelves, and shores) in terms of inferring the 3D genome from DNA

methylation levels (Fortin and Hansen, 2015). Subsequently, the absolute dif-

ference between these median values is computed for all possible pairs of bins.

These resulting values serve as entries for the BDM of the corresponding chro-

mosome. The row and column indices of the BDM are consistent with the

bin indices from which the difference value originated. This entire process is

12



repeated for all autosomes. The specific steps involved are depicted in Fig. 2.3.

For convenience, the construction of BDM for an arbitrary chromosome, K,

is illustrated. Here, K can take any integer value between 1 and 22.

3.3 Investigating the characteristics of BDM

In order to incorporate BDMs into the development of a prognostic score, I

posited that certain criteria must be met by the BDMs: (1) containing an

ample amount of 3D genome information, (2) exhibiting clear distinctions

between tumor and normal groups, and (3) displaying tissue-type specificity.

Several experiments were conducted to validate whether the BDMs fulfilled

these criteria. To assess whether the 3D genome information is included in the

BDMs, I calculated the Pearson Correlation Coefficient (PCC) between the

BDM PC1s and the Hi-C PC1s. Additionally, I visualized the BDMs of both

tumor and normal groups as heatmaps to examine the differences between

two groups. Furthermore, I evaluated all-pairwise PCC values between the

averaged BDM PC1s to ensure that the PCC values within homogeneous pairs,

consisting of BDM PC1s from the same TCGA cohort, were higher than those

from all the other cases.

3.4 Devising a prognostic score from the BDM PC1s

The primary assumption is that the BDM PC1 values reflect the individual 3D

genome structure, enabling the measurement of differences between distinct

3D genome states as distances between vectors. Building upon this concept, I

evaluated the similarity of each cell to stem cells or normal cells (stem- and

normal-likeness, respectively) by comparing inferred 3D genome structure of

each cell to the stem/normal reference (Fig. 2.1 and Fig. 2.3). The resulting

distances between each BDM PC1 value and the stem/normal reference, re-
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ferred to as stem/normal distance, represent the dissimilarity of each sample

to the states of stem cells or normal cells (Fig. 2.1 and Fig. 2.3). I investi-

gated two distance metrics: the Euclidean distance and the inverse of cosine

similarity. For the cosine similarity metric, I added a pseudo count (10−15) to

the similarity measure before taking the inverse to avoid division by zero. The

biological interpretation of each distance metric suggests that a more stem-like

cell would have a higher normal distance and a smaller stem distance. In line

with this concept, I formulated a prognostic score, which quantifies the stem

closeness of a cell, based on this idea (Eq. 3.1). In Eq. 3.1, dn and ds denote

normal and stem distance, respectively.

dn√
(dn)2 + (ds)2

(3.1)

The more comprehensive explanation of the procedures for extracting the 3D

genome-aware epigenetic features from BDMs, along with the underlying ra-

tionale, are provided in the section 3.5-3.6.

3.5 Extracting 3D genome-aware epigenetic features

from BDM

Once the construction of BDM is complete, the next step involves constructing

normal and stem references based on the first principal component (PC1) of the

BDMs (Fig. 2.3). Assuming there are n samples from the same tissue type (e.g.,

kidney), the BDM of chromosome 1 (chr1) can be constructed for each sample.

The resulting n PC1 values are averaged to obtain a normal reference for chr1

in kidney. Similarly, a stem reference is computed by replacing the normal

samples with stem cells. Afterwards, the normal/stem distances, the distances

between normal/stem references and individual samples, are calculated by

measuring the distance between the PC1 vectors. Specifically, the distance

from a sample’s PC1 to the corresponding normal/stem reference is measured
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for each autosome. This results in a total of 44 values, with half of them

obtained using normal references and the other half using stem references.

The 22 values computed using the normal references are averaged to yield a

single scalar value, or the normal distance. The same process is followed for

the stem distance, which involves measuring distances between a sample’s PC1

and the stem reference. Finally, the stem closeness of each sample is evaluated

based on the stem/normal distances. The normal and stem references are

plotted in a two-dimensional Cartesian space, with a straight line connecting

the origin and a dot representing each sample. The angle (θ) formed between

this line and the x axis is measured, and the cosine of θ (cos θ) is used as a

measure of stem closeness. The process of measuring stem closeness is based

on several observations and hypotheses. It has been observed that there is a

significant positive correlation between normal and stem distances across all

cohorts used in the experiment. The hypothesis is that if the stem and normal

distances consistently move in the same direction, then a smaller increase

in the stem distance followed by a unit increase (e.g., +0.1) in the normal

distance would indicate a higher similarity to stem cells (i.e., stem closeness)

for a given sample compared to other samples. The usage of cos θ is based

on this reasoning, taking into account certain background concepts. Firstly,

in the Cartesian 2D space where the x and y axes represent the normal and

stem distances, respectively, all points representing the samples are located

in the first quadrant since the distances are non-negative. Secondly, the angle

(measured in degrees) between the x axis and any arbitrary point situated in

the first quadrant falls within the range of . Lastly, within this range of angles,

cos θ consistently decreases as theta increases. Consequently, samples located

on a steeper line in the plot would have smaller cos θ values compared to those

on a line with a gentler slope. This concept was tested across various cancer

types, and the results were found to be consistent with the initial assumption.
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In detail, the normal samples exhibited smaller cos θ values than the tumor

samples, indicating their proximity to the y axis. The most distinct example of

this pattern, illustrated in Fig. 2.3, is the case of TCGA-KIRP. In summary,

the measurement of stem closeness is based on the understanding that the

relationship between normal and stem distances follows a consistent pattern,

and the use of cos θ helps quantify this closeness based on the angles formed in

the Cartesian 2D space representing the distances. The experimental results

across different cancer types align with the expectations derived from these

assumptions.

3.6 Figuring out the optimal stem closeness of each

cohort

To ascertain the ideal measure of stem closeness for each cancer type, a com-

prehensive exploration of various parameter combinations was conducted. The

analysis involved considering all possible combinations and carefully evaluating

their performance. Through this rigorous process, the most effective combina-

tion of parameters was identified for each cohort. The specific details of the

chosen parameter combinations for each cohort are provided in Table 3.1. Each

subsection provides an explanation of the parameters utilized in the experi-

ment, and the methodology employed to determine the optimal combination

of parameters for each cohort, respectively.

3.6.1 Parameters

• Distance metric: When calculating the distance between two PC1 vec-

tors, there are two possible options: Euclidean distance and cosine simi-

larity. If cosine similarity is selected, a pseudo count of 10−15 is added to

enhance the similarity calculation. The resulting similarity value is then

inverted to obtain the distance value.
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• Matrix type: Interestingly, during preliminary experiments, a fascinating

observation was made: the PC1s derived from the inverse exponential of

BDM (IEBDM) exhibited remarkably high correlation with the PC1s

derived from BDM. Building on this finding, the IEBDM PC1s were

also used as an available option in the analysis. In the case of using

IEBDM, the regular BDM was substituted with IEBDM in every step

of the pipeline depicted in Fig. 2.3.

• Averaging method: To evaluate the stem/normal distances, the average

of 22 distances is computed between the BDM PC1s of each individ-

ual sample and the corresponding reference PC1s. Two methods were

employed for this averaging process: simple averaging and weighted av-

eraging. In the case of weighted averaging, the ratio of each autosome

length to the sum of all autosome lengths is utilized as the weights.

• Min-max scaling: If the option of min-max scaling is selected, the nor-

mal/stem distances are transformed to fit within the range of [0, 1]. To

achieve this, the maximum and minimum values of normal/normal dis-

tances for each cohort are recorded. Then, each distance value is scaled

using Eq. 3.2. In Eq. 3.2, xi represents the normal/stem distance of the

i-th sample, min(x) is the minimum value of normal/stem distances

within the current cohort, and max(x) is the maximum value of nor-

mal/stem distances within the current cohort. This scaling procedure

takes place between the steps illustrated in Fig. 2.3.

xi −min(x)

max(x)−min(x)
(3.2)

• Normalization: When the option of scaling normal/stem distances into

the range of [0, 1] is chosen, it is accomplished by applying Eq. 3.3. In

Eq. 3.3, xi represents the normal/stem distance of the i-th sample, and
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max(x) signifies the maximum value among the normal/stem distances

within the current cohort.
xi

max(x)
(3.3)

• Standardization: When the option of standardizing PC1 vectors is se-

lected, it is done by applying Eq. 3.4 prior to computing the distance.

In Eq. 3.4, y represents each PC1 vector, yj represents the j-th entry of

y, mean(y) denotes the average value of all entries in the PC1 vector y,

and std(y) represents the standard deviation of all entries in y.

yj −mean(y)

std(y)
(3.4)

• Number of chromosomes (numchrom): From the work of Fortin and Hansen

(2015), it was shown that utilizing smaller chromosomes resulted in a

decrease in the accuracy of reproducing the 3D genome structure. Addi-

tionally, it was observed that using the entire set of chromosomes did not

always yield better results compared to using only a portion of genomic

bins. Taking these findings into account, the number of autosomes used

in the analysis was established as a parameter. In detail, PC1 vectors

from chromosome 1 up to chromosome n was employed, where n is an

integer ranging from 1 to 22. Fig. 2.3 illustrates the scenario where n is

set to 22.

3.6.2 Selecting single optimal score per cohort

Following the log-rank tests using stem closeness scores with various parameter

combinations, the scores were initially grouped based on the number of survival

events in which each score acted as a significant predictor (m). Since the log-

rank test was performed for a total of four survival events (Overall survival; OS,

Disease-specific survival; DSS, Disease-free interval; DFI, and Progression-free
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interval; PFI), the value of m ranges from 0 to 4. The stem closeness scores

belonging to the group with m = 4 were examined first. If there were no

scores present in the current group of interest, m was reduced by 1. From the

current group of interest, the sum of p-values (sump) was computed based on

the results of the log-rank test, where the stem closeness was identified as a

significant predictor. Once sump of all stem closeness scores, was calculated

for all stem closeness scores, any scores that predicted a better prognosis for

the high score group compared to the low score group (which contradicts the

desired outcome of the score) were excluded. Finally, the remaining scores for

each cohort were ranked in ascending order based on sump, and the score

with the smallest sump as selected as the final score. All the reported results

of the log-rank tests in this manuscript were based on the stem closeness scores

selected through these procedures. The same scores were also employed for the

Cox regression analysis, following the log-rank test.

3.7 Hi-C data processing

The 4DN Hi-C processing pipeline (Reiff et al., 2022) was utilized to pro-

cess Hi-C data. Raw Hi-C sequencing data in the form of fastq files for cancer

(Heidari et al., 2014), normal (Schmitt et al., 2016), and stem cell lines (Freire-

Pritchett et al., 2017; Zhang et al., 2019b) were downloaded from the Sequence

Read Archive (SRA) using sra-tools (v2.10.1) and parallel-fastq-dump. Specif-

ically, the following cell lines were downloaded: hepatocellular carcinoma cell

line (SRS2627396), colon cancer cell line (SRS3816279), breast cancer cell

line (SRS3505364), esophageal adenocarcinoma cell line (SRS3505365), lung

(SRS1704412 and SRS1704413) pancreas (SRS1704415, SRS1704416, SRS1704417,

and SRS1704418) and human embryonic stem cells (SRS1688434 and SRS3533281).

The sequencing reads were then mapped to the hg19 reference genome using

bwa (v0.7.17) (Li and Durbin, 2009). The resulting aligned files (bam) were
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converted and processed as files representing Hi-C pair information using pair-

tools (v0.3.0) (Song et al., 2022). Subsequently, Hi-C interaction frequency

matrices were generated using cooler (Abdennur and Mirny, 2020). Finally,

A/B compartment analyses were conducted using FAN-C (Kruse et al., 2020).

3.8 Risk prediction using a feedforward neural net-

work and 3D genome-aware epigenetic features

Given that the aforementioned 3D genome-aware epigenetic features contain

cancer-related 3D genomic information, it was hypothesized that incorporat-

ing these features would lead to superior performance in survival prediction

compared to baseline scenarios that do not utilize these features. In detail, two

baseline scenarios were examined: (1) using age and gender as survival pre-

dictors without any epigenetic features, and (2) using age and gender along

with the 3D genome-unaware epigenetic feature (the average DNA methyla-

tion level of open sea CpG positions). For risk prediction, a feedforward neural

network, as introduced by (Katzman et al., 2018), was employed (Fig. 2.1).

The neural network consisted of two hidden layers, each comprising 128 hid-

den nodes. During training, the average negative log partial likelihood was

utilized as the loss function (Eq. 3.5). In Eq. 3.5, NE=1 represents the number

of patients for whom the event was observed. The log-risk function, denoted as

f̂ , is estimated by the neural network. The indices i and j are patient indices.

R(Ti) represents the set of patients who are at risk of failure at time Ti. The

parameter λ denotes the L2 regularization coefficient.

l(θ) = − 1

NE=1

∑
i;Ei=1

[f̂(xi, θ)− log
∑

j∈R(Ti)

(exp(f̂(xi, θ)))] + λ||θ||22 (3.5)

The activation function used was the scaled exponential linear units (SELU),

and the gradient descent algorithm employed was stochastic gradient descent
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(SGD) with nesterov momentum (momentum factor: 0.9). To mitigate over-

fitting, several techniques were used, including early stopping with a patience

of 10, L2 regularization with a coefficient of 10, dropout with a probability of

0.4, and batch normalization. Additionally, a time-based learning rate decay

approach was employed reduce the learning rate every epoch. The model’s

performance was assessed using the Concordance Index (C-index) for the four

specific survival events: Overall Survival (OS), Disease-Specific Survival (DSS),

Disease-Free Interval (DFI), and Progression-Free Interval (PFI). The C-index

measures the level of agreement between the predicted and actual survival,

with a higher C-index indicating better model performance. A Python pack-

age lifelines, version 0.27.3 (Davidson-Pilon, 2019), was used to compute the

C-index.

For each cohort, a dataset was created individually for each survival event.

Samples not having available survival data (i.e., the survival time and the

binary indicator for the survival event) were excluded. The remaining samples

were then randomly divided into training, validation, and test datasets in a

ratio of 6:2:2.

3.9 Survival analyses based on predicted risk

After predicting the risks, the significance of the estimated risk as a prognostic

predictor was examined using both the log-rank test and Cox regression. For

the log-rank test, patients of each cancer type were divided into risk-high and

risk-low groups, thresholded by the median risk value. In the case of Cox re-

gression, four covariates were used: age, gender, the average DNA methylation

level of open sea CpG positions, and the predicted risk.
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3.10 Functional analyses

Considering that the risks are predicted using 3D genome-aware epigenetic fea-

tures, I surmised that the difference between the risk-high and risk-low groups

arises from variations in DNA methylation levels at open sea CpG positions.

Moreover, since these DNA methylation levels are embedded with the cancer-

related 3D genome information, examining the DMRs between the risk-high

and risk-low groups could interpret he black-box behavior of the deep learning

model by offering biological explanation of the inter-group differences. Based

on this rationale, functional annotation was performed on the DMRs defined

by the predicted risks, following the procedures described in the subsequent

subsections.

3.10.1 Functional annotation on DMR genes

DMRs were identified as genomic regions that exhibit significant hypomethy-

lation in the risk-high group compared to the risk-low group. To gain insights

into the biological implications of DMRs, functional annotation was conducted

on all genes located within the DMRs using the python package GSEApy

(Fang et al., 2022). The functional annotation was based on the gene set ‘GO

Biological Process 2015’ (Ashburner et al., 2000).

3.10.2 Analysis on the chromatin states in DMR

Chromatin states, which provide epigenetic annotations for noncoding genomic

regions, have been recognized to possess the 3D genome information (Ernst

and Kellis, 2017; Rowley and Corces, 2018). To determine the impact of altered

3D genome structure on the chromatin states, the relative proportion of each

chromatin state within the DMRs was analyzed, shedding light on the states

that are most affected.
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3.11 Data description

Table 3.2: Description and composition of TCGA dataset.

Cohort Description ntumor nnormal ntotal

BLCA Bladder urothelial carcinoma 413 21 434

BRCA Breast invasive carcinoma 790 98 888

CHOL Cholangiocarcinoma 36 9 45

COAD Colon adenocarcinoma 299 38 337

ESCA Esophageal carcinoma 186 16 202

HNSC Head and Neck squamous cell carcinoma 530 50 580

KIRC Kidney renal clear cell carcinoma 320 160 480

KIRP Kidney renal papillary cell carcinoma 276 45 321

LIHC Liver hepatocellular carcinoma 379 50 429

LUAD Lung adenocarcinoma 460 32 492

LUSC Lung squamous cell carcinoma 372 43 415

PAAD Pancreatic adenocarcinoma 185 10 195

PRAD Prostate adenocarcinoma 499 50 549

THCA Thyroid carcinoma 515 56 571

UCEC Uterine corpus endometrial carcinoma 432 46 478
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Table 3.3: Composition of stem cell samples.

Cohort Description nsamples

SC Stem cell 44

EB Embryoid body 22

DE Definitive endoderm 11

ECTO Ectoderm 11

MESO-5 Mesoderm, 5-days 11

Table 3.4: TCGA cohorts matched to the Hi-C data of normal cell

lines (Hutter and Zenklusen, 2018; Kim et al., 2021).

TCGA cohort Hi-C normal cell line GEO IDs of Hi-C data

PAAD Pancreas GSM2322547, GSM2322548,

GSM2322549, GSM2322550

LUSC Lung GSM2322544, GSM2322545

LUAD Lung GSM2322544, GSM2322545

Table 3.5: PCBC stem cells matched to the Hi-C data of stem cell

lines (Salomonis et al., 2016; Kim et al., 2021).

Cohort Hi-C stem cell line GEO ID of Hi-C data

PCBC H9 Human Embryonic Stem Cells GSM2309023

PCBC Embryonic stem cell GSM3263085
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Chapter 4

Results and Discussion

4.1 Significant characteristics of BDM PC1

4.1.1 BDM PC1s can approximate Hi-C PC1s

First, the validation process was conducted which aimed to determine whether

the BDM PC1s could effectively reproduce the Hi-C PC1s. For this purpose,

the 450K DNA methylation data from various TCGA cohorts and stem cells

obtained from the Progenitor Cell Biology Consortium (PCBC) were utilized

(Goldman et al., 2020; Hutter and Zenklusen, 2018; Salomonis et al., 2016).

Additionally, the PC1s derived from the raw Hi-C matrices (Kim et al., 2021;

Schmitt et al., 2016) were included in the analysis. Table 3.2 and Table 3.3

provide information on the composition of the TCGA and PCBC datasets,

respectively. For detailed information on the processing of the raw Hi-C data,

please refer to section 3.7.

The PC1 values were averaged from 10 randomly selected samples within

each category (normal, tumor, and stem cells) due to the large number of

available samples. For a fair comparison, the BDM PC1s and Hi-C PC1s from
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the same category and tissue type were paired. (Table 3.4-3.6) The perfor-

mance of the BDM PC1s in reproducing the Hi-C PC1s was evaluated using

PCC. The results demonstrated that the BDM PC1s were able to reproduce

the Hi-C PC1s to a satisfactory extent, with a PCC of over 0.5 observed in

most cases. Notably, the highest performance was observed when reproducing

the Hi-C PC1s of cancer cells (Fig. 4.1).

Figure 4.1: Reproduction of Hi-C PC1s from BDM PC1s.

Dark red graphs represent the averaged PC1s from 10 samples, and gray graphs

display the Hi-C PC1s. (A) BDM PC1 from tumor samples (TCGA-LUSC,

chr21) and Hi-C PC1 from lung squamous cell carcinoma. (B) BDM PC1 from

normal samples (TCGA-LIHC, chr15) and Hi-C PC1 from normal lung cells.

(C) BDM PC1 from stem cells (PCBC, chr22) and Hi-C PC1s from human em-

bryonic stem cells.

Considering the single-sample nature of my approach, I also conducted

a comparison between individual PC1 values. The results showed that the
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highest PCC among all categories increased to 0.750 (Fig. 4.2) compared to

the previous case. This suggests that the 3D genome information captured

by the Hi-C PC1 can be better reproduced by utilizing individual BDM PC1

rather than the averaged ones. It is hypothesized that using averaged BDM

PC1 values may lower the performance because the well-reproduced individual

BDM PC1 values can be diluted when averaged with PC1 values from other

samples.

29



Figure 4.2: A comparison between the individual BDM PC1s and Hi-

C PC1s.

Dark red graphs represent the individual PC1s, and gray graphs display the Hi-

C PC1s. (A) BRCA tumor samples, breast cancer cells, chr15. (B) LIHC tumor

samples, liver hepatocellular carcinoma cells, chr14. (C) LUSC normal samples,

normal lung tissue, chr21. (D) PCBC stem cells, H9 human embryonic stem

cells, chr21.
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4.1.2 BDMs and BDM PC1s capture innate differences be-

tween tumor and normal groups

To determine if BDM includes cancer-related 3D genomic data that distin-

guishes between tumor and normal groups, I compared the BDM heatmaps of

these two groups. My analysis revealed a distinct patchy pattern exclusively

present in tumor groups across multiple cohorts (Fig. 4.3). Hence, I suggest

that BDMs indeed contain information reflecting the inherent dissimilarities

between tumor and normal groups. This trend was also observed in the BDM

PC1s, as evidenced by the noticeably distinct shapes of the PC1 plots in the

two groups across various cohorts (Fig. 4.4).

Figure 4.3: A heatmap representation of the binned difference matri-

ces (BDMs) obtained from different TCGA cohorts.

(A) BLCA, tumor samples. (B) BLCA, normal samples. (C) BRCA, tumor sam-

ples. (D) BRCA, normal samples. (E) LUAD, tumor samples. (F) LUAD, normal

samples. (G) PRAD, tumor samples. (H) PRAD, normal samples.

31



Figure 4.4: The BDM PC1s derived from tumor and normal samples

across various TCGA cohorts.

The four cohorts with the prominent disparity between BDm PC1s of the tumor

and normal groups are illustrated. (A) COAD, (B) LIHC, (C) LUAD, (D) UCEC.
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4.1.3 BDM PC1s are tissue type-specific

Furthermore, to facilitate the pan-cancer clinical application of BDM PC1s, I

conceived that these PC1s should exhibit tissue type-specific characteristics.

To explore this, I organized the BDM PC1s into distinct pairs: homogeneous

pairs comprising PC1s from the same cohort, and heterogeneous pairs con-

taining PC1s from different cohorts. I then assessed the Pearson correlation

coefficient (PCC) values for each pair. The analysis revealed that the PCC val-

ues for homogeneous pairs were higher compared to those for heterogeneous

pairs (Fig. 4.5). Moreover, among the heterogeneous pairs, those consisting

of PC1s from cohorts associated with the same tissue type (e.g., KIRP and

KIRC) exhibited larger PCC values compared to other pairs. These findings

suggest that BDM PC1s contain tissue type-specific information, in addition

to capturing the differences between tumor and normal samples.
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Figure 4.5: The Pearson correlation coefficient (PCC) between aver-

aged BDM PC1s.

(A) Heatmaps displaying the PCC values derived from averaged BDM PC1s of

tumor samples. (B) Heatmaps displaying the PCC values derived from averaged

BDM PC1s of normal samples.
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4.2 Utilizing 3D genome-aware epigenetic features helps

survival prediction

Once the characteristics of BDM were examined, a one-dimensional vector was

created, comprising the 3D genome-aware epigenetic features (normal/stem

distances and references, stem closeness, and BDM PC1s) and the survival-

related features (age and gender). This vector was used as an input feature

for the deep learning model. To assess the significance of the 3D genome-

aware epigenetic features, two baseline scenarios were also explored. The first

scenario involved using no epigenetic feature, relying solely on age and gender.

The second scenario involved using age, gender, and the 3D genome-unaware

epigenetic feature (the average of open sea DNA methylation level) as input.

The C-index was used as an evaluation metric.

After the risk prediction, patients from each cancer type were classified

into either the risk-high or risk-low group, using the median risk value as the

threshold. To determine whether the predicted risk had a significant impact on

survival patterns, a log-rank test was performed. I considered the results to be

statistically significant if both the validation and test C-index values exceeded

0.65, and if the log-rank test p-value was less than 0.05. As a result, significant

findings were observed in seven cohorts, indicating that the predicted risk can

serve as an important prognostic indicator (Table 4.1). The outcomes of the

log-rank tests are illustrated in Fig. 4.6.

Following the log-rank test, Cox regression analysis was performed. The

findings indicated that the predicted risks had greater significance in predicting

survival compared to other covariates (Fig. 4.7). These results aligned with the

outcomes from the log-rank test, highlighting the detrimental effect of high risk

on survival.
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Table 4.1: Risk prediction results from the feedforward neural net-

work.

Results from the main scenario, baseline 1 (BS1), and baseline 2 (BS2) are dis-

played in the top, middle, and bottom section, respectively.

Cohort Test set C-index Log-rank p-value Event

CHOL 0.750 0.029 DSS

KIRC 0.742 0.049 DSS

KIRC 0.705 0.045 OS

KIRP 0.959 0.024 DSS

KIRP 0.902 0.004 DFI

KIRP 0.841 0.001 OS

KIRP 0.839 0.040 PFI

PAAD 0.688 0.016 PFI

PRAD 0.739 0.026 DFI

THCA 0.742 0.028 OS

PRAD 0.669 0.042 DFI

PRAD 0.654 0.038 DSS

KIRC (BS1) 0.708 0.001 OS

KIRP (BS1) 0.741 0.028 DSS

PAAD (BS1) 0.810 0.026 DFI

PRAD (BS1) 0.676 0.011 DFI

THCA (BS1) 0.987 0.019 OS

KIRC (BS2) 0.697 0.004 OS

THCA (BS2) 0.929 0.024 OS

THCA (BS2) 0.884 0.019 OS
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Figure 4.6: Results of log-rank tests based on the risks predicted by

the feedforward neural network.

The name of the survival event and the corresponding log-rank test p-value are

indicated within parentheses at the top center of each subplot. (A) CHOL (DSS),

(B) KIRC (DSS), (C) KIRC (OS), (D) KIRP (DSS), (E) KIRP (DFI), (F) KIRP

(OS), (G) KIRP (PFI), (H) PAAD (PFI), (I) PRAD (DFI), (J) THCA (OS),

(K) UCEC (DFI), (L) UCEC (DSS).
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Figure 4.7: The results of Cox regression analysis.

On the right side of each subplot, the logarithm of the hazard ratio for each input

covariate is provided, along with the corresponding 95% confidence interval in

parentheses, and the p-value. The subplots correspond to different cancer types

and survival events. (A) KIRC (DSS), (B) KIRP (PFI), (C) LUAD (OS), (D)

PAAD (OS), (E) THCA (DFI), (F) UCEC (DSS).
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The outcomes of two baseline cases revealed a decrease in the performance

of survival prediction when the 3D genome-aware epigenetic features were

excluded from the input feature (Table 4.1; BS1 and BS2). Furthermore, both

baseline scenarios exhibited poor performance in predicting events other than

OS. Since age is a highly influential predictor of OS, the absence of 3D genome-

reflective features may have resulted in the model placing greater emphasis on

age, leading to satisfactory performance solely in risk prediction of OS.

4.2.1 The model shows robust performance on external datasets

To validate the model’s robust performance on a dataset from different plat-

form, the model was evaluated using the GSE103659 dataset (Edgar et al.,

2002). Since GSE103659 comprised patients with glioblastoma (GBM), a com-

parison was made between the model’s performance on this dataset and its

performance on TCGA-GBM. The results indicated that the predicted risks

served as significant predictors of survival for both datasets (Table 4.2 and

Fig. 4.8). It should be noted that GSE103659 had certain limitations compared

to TCGA-GBM, such as the absence of gender information and a smaller num-

ber of survival events with available data. Considering these limitations, the

findings suggest that although using TCGA-GBM yielded more significant re-

sults compared to using GSE103659 (Table 4.2), the performance gap to that

extent is deemed acceptable. Consistently, the results of Cox regression anal-

ysis also confirmed that the predicted risk is a significant predictor of survival

in both TCGA-GBM and GSE103659 datasets (Fig. 4.9).
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Table 4.2: Risk prediction performance from TCGA-GBM and

GSE103659 datasets.

The best performance, indicated by bold text, is determined based on the high-

est c-index and the lowest p-value.

Cohort Test set C-index Log-rank p-value Event

GBM 0.743 0.008 DSS

GBM 0.733 0.001 OS

GSE103659 0.721 0.001 OS

Figure 4.8: Significant log-rank test results obtained from TCGA-

GBM and GSE103659 datasets, utilizing the risk predicted from 3D

genome-aware epigenetic features.

The top center of each subplot displays the name of the cohort and survival

event, followed by the corresponding log-rank test p-value. (A) GBM (DSS), (B)

GBM (OS), (C) GSE103659 (OS).
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Figure 4.9: Cox regression results from TCGA-GBM and GSE103659

datasets.

On the right side of each subplot, the logarithm of hazard ratio is presented for

each input covariate, along with the corresponding 95% confidence interval in

parentheses and the p-value. (A) GBM (OS), (B) GBM (PFI), (C) GBM (DSS),

(D) GSE103659 (OS).

41



4.3 Functional annotation on genes in DMR

The functional annotations on genes in DMR, defined by the predicted risks,

revealed a significant presence of genes related to the RA signaling pathway. It

is widely known that RA binds to its receptor and induces structural changes

into euchromatin, thereby promoting the transcription of target genes and

playing a crucial role during the developmental process (Ozgun et al., 2021;

Ablain and de Thé, 2014). Moreover, RA has cell-type specific effects on cell

fate decisions, such as differentiation, apoptosis, or stemness (Mezquita and

Mezquita, 2019). Hence, it is plausible that the open sea CpG positions have

epigenetic control over the key regulators of development and cell fate, in-

fluencing the stemness of cells, and this information is captured by the 3D

genome-aware features. Another interesting finding is the presence of genes

associated with gas transport in DMRs. This observation could be linked to

hypoxia, a condition characterized by low oxygen levels that often occurs in

cancer (Eales et al., 2016; Bhandari et al., 2019). Notably, all the DMR genes

associated with gas transport were found to encode subunits of hemoglobin,

which is responsible for oxygen transport. One of these genes, HBB, has been

reported to exhibit abnormal expression in various types of cancer (Zheng

et al., 2017; Kang et al., 2022). This suggests that genes frequently altered

in cancer, even if not directly involved in developmental processes, can be

regulated by CpG probes located in open sea positions. Furthermore, enrich-

ment analysis revealed terms related to cell adhesion, such as homophilic cell

adhesion via plasma membrane adhesion molecules and cell-cell adhesion via

plasma membrane adhesion molecules. Cell adhesion plays a crucial role in can-

cer progression, as abnormalities in cell adhesion molecules enable tumor cells

to better interact with other cells. Increased interactions between cancer cells

and endothelium, for example, promote faster metastasis and worsen prognosis
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(Läubli and Borsig, 2019; Bendas et al., 2012). Another enriched GO term was

related to the mitotic cell cycle, which is closely associated with the biologi-

cal characteristics of cancer cells. Cancer arises from defects in the cell cycle,

with aberrations occurring in cell cycle checkpoints or genes regulating the

cell cycle, such as p53 and BRCA1 genes. Consequently, cells undergo uncon-

trolled growth (Williams and Stoeber, 2012; Visconti et al., 2016; Zhang et al.,

2020; Oh et al., 2018), leading to cancer development. Lastly, a significantly

enriched GO term was related to the gamma-aminobutyric acid (GABA) sig-

naling pathway. GABA is involved in the development of various cell types and

acts as an important modulator across different cancer types. Elevated GABA

levels significantly enhance the invasive capacity of cancer cells, indicating its

contributory role in metastasis. GABA receptors, along with GABA itself,

also regulate cell proliferation. Additionally, the gene expression of GABA re-

ceptors has been linked to cancer prognosis and tumorigenesis (Zhang et al.,

2013; Li et al., 2012; Kanbara et al., 2018; Azuma et al., 2003). Overall, these

results demonstrate the enrichment of validated cancer-related pathways in

DMR genes. The significant differences in open sea DNA methylation levels

of DMR genes between high-risk and low-risk groups suggest the involvement

of altered DNA methylation levels of open sea CpG probes in multiple cancer

hallmarks. Fig. 4.10 and Table 4.3 provide a comprehensive presentation of

the results.

4.4 Inactive chromatin states dominate in DMRs

The chromatin state data (Ernst and Kellis, 2012; Kundaje et al., 2015)

was used to examine the distribution of different chromatin states within

the DMRs, to identify which states are most affected by the cancer-related

3D genome perturbations. Among all the cohorts listed in Table 4.1, TCGA-

PAAD, which had available chromatin state data, was utilized for this analysis.
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The results revealed that the Quiescent/Low state accounted for the largest

proportion of the DMRs, followed by Weak transcription and Heterochro-

matin states (Fig. 4.11). Both Quiescent/Low and Heterochromatin are inac-

tive states in normal cells, and Weak transcription is a mildly activated state.

Therefore, it is postulated that the abnormal hypomethylation of open sea

CpG positions, occurring alongside cancer progression, could exert aberrant

influences on the DMR genes.

46



Figure 4.11: The proportion of the chromatin states in DMR.

The x and y axis represent the TCGA cohort and the proportions of differ-

ent chromatin states, respectively. Excluding the three most dominant states

(Quiescent/Low, Heterochromatin, and Weak transcription), all other states are

labeled as ‘Others’.
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4.5 Limitation

The findings of this study have provided valuable insights into the usage of 3D

genome-informed epigenetic features for survival prediction. However, certain

limitations persist. Firstly, the performance of survival prediction diminishes

when narrowing down the scope of survival analysis from cancer as a whole to

specific cancer subtypes, as evidenced in section 4.2.2. Therefore, it is impera-

tive to develop more sophisticated approaches to effectively apply this method

at the level of cancer subtypes.

In addition to the informative nature of 3D genome-informed epigenetic

characteristics, the small number of patients could have contributed to the

significant results observed in the log-rank tests (Fig. 4.6). For example, upon

examining the dataset used for the log-rank test results in Fig. 4.6A, it was

found that there were only four patients in the risk-low group and three pa-

tients in the risk-high group. This was incurred by the experimental setup,

where patients from each cohort were randomly divided into five folds, and

only one fold was utilized as a test set for conducting the log-rank test. Con-

sequently, it is necessary to address this limitation by either increasing the

number of patients in the test set by reducing the number of folds or acquir-

ing additional data.
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Chapter 5

Conclusion

While the close relationship between the 3D genome structure and the develop-

ment of cancer has been observed (Rheinbay et al., 2020), a prognostic metric

that makes use of the 3D genome information has not yet been developed. This

is primarily due to the high cost of generating Hi-C data, which is a manifest

source of the 3D genome information, resulting in the limited availability of

Hi-C data (Yardımcı et al., 2019). Inspired by the recent discoveries regarding

the potential of DNA methylation data to reconstruct the 3D genome infor-

mation (Fortin and Hansen, 2015), the 3D genome-aware epigenetic features

were extracted from 450K DNA methylation data. These features were then

used to predict the risk of failure for different survival events by a feedforward

neural network. The predicted risk was found to be a significant predictor of

survival across various cancer types. An important finding was that excluding

the 3D genome-aware features from the input data led to the decreased perfor-

mance of the model. This suggests that utilizing the 3D genome-aware features

facilitates a knowledge-guided risk prediction, resulting in more precise prog-

nostic predictions for cancer. Furthermore, the functional analyses revealed
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that genes in DMR, defined by the predicted risk values, are involved in a

variety of cancer-related pathways, including cell adhesion, the RA signaling

pathway, and the mitotic cell cycle. Additionally, a comprehensive analysis of

the chromatin states within the DMRs indicated a dominance of inactive or

mildly activated states in DMRs. Based on these findings, it is posited that

the alterations in DNA methylation levels in the risk-high group are associ-

ated with disrupted cancer-related pathways and the abnormal activation of

genes. After careful consideration, I suggest that the 3D genome landscape

derived from the 450K DNA methylation data, which potentially reflects the

aberrantly activated cancer-related genes and pathways, facilitates a more ac-

curate prediction of cancer prognosis.
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국문초록

암의 발생은 3차원 유전체 구조와 밀접하게 관련 있다. 하지만, 3차원 유전체 구

조에 대한 정보는 지금까지 임상적으로 활용되고 있지 않다. 이에 대한 주요한

이유는 3차원 유전체 정보를 가장 직관적으로 제공하는 Hi-C (High-throughput

Chromosome Conformation Capture; 고 처리량 염색체 형태 캡처) 데이터의

생산 비용이 매우 높기 때문이다. 따라서, 3차원 유전체 정보를 사용한 새로운

임상적인 척도를 개발한다면, 해당 정보의 임상적 활용 가능성을 높일 수 있다.

본 연구에서는 DNA 메틸화 데이터로부터 3차원 유전체 정보가 내재되어 있

는 후성유전적 특징 벡터들을 추출하고, 이를 딥 러닝 기반 생존분석에 활용하는

새로운 방법을 제시한다. 3차원 유전체 정보가 내재되어 있는 후성유전적 특징

벡터들을 추출하기 위해, 개개인의 450K DNA 메틸화 데이터로부터 재구축한 3

차원유전체구조를활용한다.실험결과,해당특징벡터들을활용한경우들이그

렇지않은경우들에비해다양한암종에서생존예측의정확도가더높았다.이는

후성유전적 특징 벡터들에 내재되어 있는 3차원 구조에 대한 정보가 암 환자들의

생존및예후예측에있어서중요한예측인자로작용할수있음을시사한다.또한

생물학적 분석을 통해, 딥 러닝 모델에 의해 고위험군으로 분류된 환자들에게서

관찰된 DNA 메틸화 수준의 변화가 다양한 암 관련된 패스웨이들의 비정상적인

활성화와관련있음이밝혀졌다.이를통해 3차원정보가내재되어있는후성유전

적특징벡터들이임상적으로중요할뿐만아니라생물학적으로도의미가있음을

알 수 있다. 실험에 사용된 코드는 https://github.com/jwyang21/3D-genome-

risk-prediction 에서 확인 가능하다.

주요어: 딥 러닝, 생물정보학, DNA 메틸화, 암 예후 예측, 3차원 유전체, 후성유

전학, 생존 분석
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