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Abstract

Deep learning-based survival prediction
using DN A methylation-derived 3D

genomic information

Jeewon Yang
Interdisciplinary Program in Artificial Intelligence
College of Engineering

Seoul National University

The development of cancer is strongly linked to the three-dimensional (3D)
genome structure. However, the valuable information related to the 3D genome
states has not been effectively used in clinical applications, to the best of
my knowledge. The main reason for this is the expensive production of Hi-
C data, the manifest source of 3D genome information. Therefore, there is
a requirement for a new measurement that can be derived from 3D genome-
related data, making it more readily available for the 3D genome information
to be clinically used.

In this study, I present a novel approach for extracting 3D genome-aware

epigenetic features, the epigenetic features that are reflective of the three-



dimensional (3D) genome structure, from DNA methylation data. Addition-
ally, I conducted a deep learning-based survival analysis utilizing these fea-
tures. To generate the 3D genome-aware epigenetic features, the 3D genome
structures were reconstructed using the 450K DNA methylation data at an
individual level. The results demonstrate that utilizing these features signif-
icantly improves the accuracy of risk prediction for seven cancer types. This
suggests that the 3D genome information embedded in the 3D genome-aware
epigenetic features is highly valuable for predicting the survival, or cancer
prognosis.

Furthermore, an in-depth biological analysis revealed that altered DNA
methylation levels in risk-high group as defined by the deep learning model
are associated with the aberrant activation of genes involved in various cancer-
related pathways. Overall, the usage of 3D genome-aware epigenetic features as
survival predictors demonstrates their significant clinical importance in seven
types of cancer, in addition to their biological significance. All source codes
are available on the GitHub repository (https://github.com/jwyang21/3D-

genome-risk-prediction).

Keywords: Deep learning, Bioinformatics, DNA methylation, Cancer prog-
nosis prediction, 3D genome, Epigenetics, Survival analysis
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Chapter 1

Introduction

1.1 Background

The 3D genome structure plays a crucial role in determining cell fate and
establishing cell identity. It provides spatial constraints that regulate the ac-
tivity of transcription factors (Stadhouders et al., 2019). This implies that a
misconfiguration of the 3D genome structure can activate abnormal transcrip-
tional programs, potentially leading to the malignant transformation of cells
and the development of cancer (Groschel et al., 2014; Umlauf and Mourad,
2019). Moreover, the 3D genome organization is known to drive oncogenic
structural variations (Rheinbay et al., 2020), including driver fusion events in
which proto-oncogenes hijack enhancers of other genes to promote their expres-
sion (Dubois et al., 2022). Collectively, it can be inferred that the 3D genome
structure plays a significant role in multiple facets of cancer biology, and any
disturbance to its organization can have harmful effects to the cell fate deci-
sion. However, as far as I know, there has been no investigation that employs

quantified information about the 3D genome in predicting cancer prognosis.



This can be attributed to two primary factors: the limited availability of data
capturing the 3D genome conformation in cancer samples and the absence of
quantitative measures to assess perturbations in the 3D genome. The most
preferred data representation for capturing the 3D genome landscape is con-
tact matrices or contact maps, which are obtained from the high-throughput
chromosome conformation capture (Hi-C) experiments (Van Berkum et al.,
2010). These matrices/maps offer direct information about the interactions
between various genomic regions. In detail, contact maps provide information
about the frequency of contact between any two genomic loci, which can help
estimate the strength of their interaction. Nevertheless, there are significant
constraints when it comes to generating contact matrices, due to the high ex-
pense and intricate processes involved in Hi-C experiments (Yardimai et al.,
2019; Zhang et al., 2019a). These difficulties ultimately lead to a restricted
supply of 3D genome contact maps. As a result, an alternative dataset that is
more abundant and encompasses 3D genomic information is required for the

development of prognostic score.

1.2 Motivation

Surprisingly, it has been found that 3D genome configurations can also be
reconstructed using DNA methylation data alone (Fortin and Hansen, 2015).
This is because the interaction between distant genomic regions results in co-
varying DNA methylation levels of CpG sites within those regions. As a result,
the correlative patterns observed in DNA methylation profiles could reflect the
organization of the 3D genome. In particular, the distribution of A/B com-
partments, which are distinguished from each other in terms of chromatin
conformation on a large scale spanning multiple megabases (Liu et al., 2021;
Di Stefano and Cavalli, 2022; Magana-Acosta and Valadez-Graham, 2020), was
reconstructed from the DNA methylation data (Fortin and Hansen, 2015). For
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this purpose, data generated through the DNA methylation microarray tech-
niques, including Illumina Infinium HumanMethylation450 (450K) BeadChip
array, were utilized (Bibikova et al., 2011). Unlike Hi-C contact matrices, DNA
methylation profiles are available for each patient in numerous cancer types,
providing us with more extensive and detailed information.

From Fortin and Hansen (2015), it is observed that the 3D genome infor-
mation reconstructed from the DNA methylation data (i.e., the PC1 vector
representing the A/B compartment distribution) can reproduce that from the
Hi-C data to a reliable extent. The authors of (Fortin and Hansen, 2015) at-
tribute the successful replication of 3D genomic information to the long-range
correlations embedded in the 450K DNA methylation data. The authors ex-
plain that there is a high correlation between DNA methylation levels from
two loci belonging to the same compartment compared to the two loci from
different compartments, and leveraging these long-range correlations enabled
extracting the 3D genome structure from the DNA methylation data.

While the potential of DNA methylation data in inferring the 3D genome
has been recognized, the ability to accurately speculate the individual 3D
genome state has not yet been attainable. Although the Hi-C data are obtain-
able at an individual level, the low availability of the Hi-C data itself limits
clinical utilization of the Hi-C data. Inspired from this limitation, I have de-
vised a technique for extracting individual 3D genome information from DNA
methylation data, henceforth referred to as 3D genome-aware epigenetic fea-
tures, and used these features to predict the risk of failures for different survival
events. Specifically, the differential structure of DNA methylation that approx-
imates the correlative pattern was captured. Using the observation that open
sea CpG positions located far from the CpG islands demonstrated the high-
est predictive capability in 3D genome reconstruction (Fortin and Hansen,

2015), the same probes were employed for my analysis. I employed a deep



learning model for survival prediction, utilizing (Katzman et al., 2018). The
model used the 3D genome-aware epigenetic features as input to predict risks.
Subsequently, a comprehensive survival analysis across multiple cancer types
was performed, followed by the interpretation of biological implications. This
research introduces a novel method for predicting risks by utilizing the 3D
genome-aware epigenetic features. The pan-cancer analysis uncovered notable
differences in survival patterns between the risk-high and risk-low groups, in-
dicating the potential of predicted risks as a significant prognostic predictor.
The functional annotation of genes located in differentially methylated regions
(DMRs) revealed the engagement of DMR genes in numerous cancer-related
pathways. Notably, the retinoic acid (RA) signaling pathway, essential for the
developmental process (Ozgun et al., 2021), emerged as one of the distinctive
pathways. Analysis on the chromatin states of DMRs revealed that the ma-
jority of DMRs exhibited inactive or moderately activated states, suggesting a
relationship between the altered DNA methylation levels and abnormal gene
activation. In conclusion, the epigenetic features reflecting the 3D genome hold
significant predictive information for cancer prognosis and carry biological im-

portance.



Chapter 2

Task design and Approach

2.1 Underlying concepts

The entire methodology comprises two main parts: feature engineering and
survival prediction using a deep learning model. Initially, features encompass-
ing the 3D genome information are extracted from DNA methylation data,
which are subsequently utilized as input for the pan-cancer survival predic-
tion. This section provides a concise overview, and a detailed description of

each key concept is presented in the Methods section.

1. The ability to infer individual 3D genome enables quantification of the
3D genome state for each cancer patient, enhancing the clinical applica-

bility of inferred 3D genome structure.

2. The inferred 3D genome structures are expressed as vectors, specifically
the first principal components (PCls), enabling the assessment of dis-

similarities between two distinct individual 3D genome states.

3. To construct representations of normal or stem cells’ 3D genome struc-



tures, or stem/normal references, the 3D genome states of multiple sam-

ples are averaged.

4. The degree of dissimilarity between each individual’s 3D genome state
and the normal/stem reference is determined by calculating the dis-
tances. These distances, hereafter called stem/normal distances, enable

the quantification of stem closeness of each sample.

5. Three risk prediction scenarios were examined: utilizing 3D genome-
aware, 3D genome-unaware, or no epigenetic features in a deep learning-

based risk prediction model.

2.2 Task definition

My research suggests that the 3D genome organization can be represented
as PC1 vectors from the DNA methylation levels of open sea CpG positions.
These vectors play a crucial role in enhancing the accuracy of risk prediction
for cancer patients. In fact, the representation of differential DNA methyla-
tion states as PCls is widely utilized to illustrate chromatin conformation
(Lieberman-Aiden et al., 2009; Wang et al., 2016). These PC1 vectors stand
for the inferred 3D genome states, with each entry indicating the A/B com-
partment of the corresponding genomic bins. By utilizing these vectors, it
becomes possible to quantify dissimilarities between distinct individual 3D
genome structures and extract 3D genome-aware features.

Fig. 2.1 provides an overview of the entire pipeline. In contrast to the ap-
proach in (Fortin and Hansen, 2015), which infers a single 3D genome state spe-
cific to a particular tissue type using multiple samples (Fig. 2.2), my method
rebuilds the 3D genome structure for each individual separately. The dissimi-
larities between individual 3D genome states are quantified by measuring the

distance between PCls.
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Figure 2.1: Overview of the whole pipeline.

(A) Construction of the binned difference matrix (BDM) using the 450K DNA
methylation data. (B) Construction of stem and normal reference of 3D genome
states. (C) Computation of normal and stem distances of each sample. (D) Usage
of 3D genome-aware epigenetic features, age and gender for a deep learning-based

risk prediction.

By utilizing normal/stem references, stem closeness of each individual is
assessed. These 3D genome-aware epigenetic features are concatenated along
with age and gender, and employed as input for the risk prediction by a feed-
forward neural network. Prior to concatenation, each input feature was prop-
erly normalized to the range of [0, 1] to prevent the problems which might
arise from the inconsistent scales among different features. Subsequently, a

pan-cancer survival analysis is conducted, followed by functional analysis of
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DMRs to investigate the biological significance of the predicted risks. For a
more quantitative explanation of the extraction of 3D genome-aware epigenetic

features, please refer to Fig. 2.3.
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posed methods for inferring 3D genome structure from the DNA
methylation data.

(A) An existing method. DNA methylation data from multiple samples of the
same tissue type are utilized to infer a single consensus 3D genome structure. (B)
The method proposed in this study. This method focuses on single-sample-based

inference of the 3D genome structure using DNA methylation data.
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lation data.

(A) Inference of the 3D genome structure from each autosome of a single sample.
(B) Construction of normal/stem references. (C) Measurement of normal/stem

distances. (D) Measurement of stem closeness.



Collectively, the deep learning model takes as input the concatenation of
3D genome-aware epigenetic features and features related to survival (age and
gender), and outputs the predicted risk for each survival event per individual.
A deep learning model is necessitated for this task because of its ability to
learn the underlying pattern from the large-dimensional input feature. The
feature dimension of fully concatenated input feature exceeds 2700, which
makes learning meaningful pattern out of this data a very complicated task.
Although there are many other alternative methods for risk prediction which
is not deep learning-based, it is considered that the ability of deep learning
model to learn the underlying pattern accurately and rapidly is needed for this
task. The more detailed explanation on how the deep learning model was used
for training and evaluation, including the specifications and the loss function,

is provided in 3.8.
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Chapter 3

Materials and Methods

3.1 Deriving 3D genome-aware epigenetic features in

an individual-level

The 3D genome organization consists of two distinct classes of large genomic
compartments with contrasting characteristics: euchromatic A and heterochro-
matic B compartments, which form the top-level hierarchy of 3D genome struc-
ture (Rowley and Corces, 2018). The identification of these compartments can
be achieved by analyzing high-throughput measurements of genomic contacts,
as inter-compartment contacts are considerably rarer than intra-compartment
contacts. This correlative structure of the 3D genome is observed as a promi-
nent plaid pattern in the Hi-C contact frequency matrix or the PC1 values de-
rived from the normalized Hi-C matrix. The Hi-C PC1 values, which capture
the largest variability in the Hi-C matrix, indicate the compartmentalization
states of different genomic bins (Du et al., 2021; Golloshi et al., 2022; Schmitt
et al., 2016).

Inspired by the previous observations of co-varying DNA methylation lev-
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els across genomic regions (Fortin and Hansen, 2015), I hypothesized that a
matrix representing the absolute difference in DNA methylation levels between
two arbitrary genomic bins could also capture the correlative structure of the
3D genome. In other words, I anticipated that regions exhibiting spatial asso-
ciation would display smaller differences in methylation levels. To reflect this
concept, I designed a matrix, henceforth called the binned difference matrix
(BDM), which quantifies the absolute differences in methylation levels between
genomic regions. The detailed procedures for constructing BDM is provided

in section 3.2.

3.2 Construction of BDM

This section provides a detailed explanation of the process involved in con-
structing BDM. BDM aims to capture the differential structure of DNA methy-
lation s across different regions of the genome. To achieve this, it is important
to establish a representative value that stands for the overall DNA methylation
level for each region, enabling the measurement of differences between these
values. To begin, each autosome is divided into bins of size 1Mb. Within each
genomic bin, the median value is calculated by considering all the DNA methy-
lation levels of open sea CpG positions located in that bin (Fig. 2.3). This is
based on another fundamental principle of BDM, which focuses exclusively
on using distant or open sea CpG probes. These probes have demonstrated
superior predictive power compared to CpG probes of other positions (such as
islands, shelves, and shores) in terms of inferring the 3D genome from DNA
methylation levels (Fortin and Hansen, 2015). Subsequently, the absolute dif-
ference between these median values is computed for all possible pairs of bins.
These resulting values serve as entries for the BDM of the corresponding chro-
mosome. The row and column indices of the BDM are consistent with the

bin indices from which the difference value originated. This entire process is
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repeated for all autosomes. The specific steps involved are depicted in Fig. 2.3.
For convenience, the construction of BDM for an arbitrary chromosome, K,

is illustrated. Here, K can take any integer value between 1 and 22.

3.3 Investigating the characteristics of BDM

In order to incorporate BDMs into the development of a prognostic score, I
posited that certain criteria must be met by the BDMs: (1) containing an
ample amount of 3D genome information, (2) exhibiting clear distinctions
between tumor and normal groups, and (3) displaying tissue-type specificity.
Several experiments were conducted to validate whether the BDMs fulfilled
these criteria. To assess whether the 3D genome information is included in the
BDMs, I calculated the Pearson Correlation Coefficient (PCC) between the
BDM PC1s and the Hi-C PCls. Additionally, I visualized the BDMs of both
tumor and normal groups as heatmaps to examine the differences between
two groups. Furthermore, I evaluated all-pairwise PCC values between the
averaged BDM PCl1s to ensure that the PCC values within homogeneous pairs,
consisting of BDM PCl1s from the same TCGA cohort, were higher than those

from all the other cases.

3.4 Devising a prognostic score from the BDM PCls

The primary assumption is that the BDM PC1 values reflect the individual 3D
genome structure, enabling the measurement of differences between distinct
3D genome states as distances between vectors. Building upon this concept, I
evaluated the similarity of each cell to stem cells or normal cells (stem- and
normal-likeness, respectively) by comparing inferred 3D genome structure of
each cell to the stem/normal reference (Fig. 2.1 and Fig. 2.3). The resulting

distances between each BDM PC1 value and the stem/normal reference, re-
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ferred to as stem/normal distance, represent the dissimilarity of each sample
to the states of stem cells or normal cells (Fig. 2.1 and Fig. 2.3). I investi-
gated two distance metrics: the Euclidean distance and the inverse of cosine
similarity. For the cosine similarity metric, I added a pseudo count (10~1%) to
the similarity measure before taking the inverse to avoid division by zero. The
biological interpretation of each distance metric suggests that a more stem-like
cell would have a higher normal distance and a smaller stem distance. In line
with this concept, I formulated a prognostic score, which quantifies the stem
closeness of a cell, based on this idea (Eq. 3.1). In Eq. 3.1, d,, and ds denote
normal and stem distance, respectively.
dn
(dn)? + (ds)?

The more comprehensive explanation of the procedures for extracting the 3D

(3.1)

genome-aware epigenetic features from BDMs, along with the underlying ra-

tionale, are provided in the section 3.5-3.6.

3.5 Extracting 3D genome-aware epigenetic features
from BDM

Once the construction of BDM is complete, the next step involves constructing
normal and stem references based on the first principal component (PC1) of the
BDMs (Fig. 2.3). Assuming there are n samples from the same tissue type (e.g.,
kidney), the BDM of chromosome 1 (chrl) can be constructed for each sample.
The resulting n PC1 values are averaged to obtain a normal reference for chrl
in kidney. Similarly, a stem reference is computed by replacing the normal
samples with stem cells. Afterwards, the normal/stem distances, the distances
between normal/stem references and individual samples, are calculated by
measuring the distance between the PC1 vectors. Specifically, the distance

from a sample’s PC1 to the corresponding normal/stem reference is measured
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for each autosome. This results in a total of 44 values, with half of them
obtained using normal references and the other half using stem references.
The 22 values computed using the normal references are averaged to yield a
single scalar value, or the normal distance. The same process is followed for
the stem distance, which involves measuring distances between a sample’s PC1
and the stem reference. Finally, the stem closeness of each sample is evaluated
based on the stem/normal distances. The normal and stem references are
plotted in a two-dimensional Cartesian space, with a straight line connecting
the origin and a dot representing each sample. The angle (#) formed between
this line and the z axis is measured, and the cosine of 8 (cos#) is used as a
measure of stem closeness. The process of measuring stem closeness is based
on several observations and hypotheses. It has been observed that there is a
significant positive correlation between normal and stem distances across all
cohorts used in the experiment. The hypothesis is that if the stem and normal
distances consistently move in the same direction, then a smaller increase
in the stem distance followed by a unit increase (e.g., +0.1) in the normal
distance would indicate a higher similarity to stem cells (i.e., stem closeness)
for a given sample compared to other samples. The usage of cosf is based
on this reasoning, taking into account certain background concepts. Firstly,
in the Cartesian 2D space where the x and y axes represent the normal and
stem distances, respectively, all points representing the samples are located
in the first quadrant since the distances are non-negative. Secondly, the angle
(measured in degrees) between the z axis and any arbitrary point situated in
the first quadrant falls within the range of . Lastly, within this range of angles,
cos 6 consistently decreases as theta increases. Consequently, samples located
on a steeper line in the plot would have smaller cos @ values compared to those
on a line with a gentler slope. This concept was tested across various cancer

types, and the results were found to be consistent with the initial assumption.
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In detail, the normal samples exhibited smaller cosf values than the tumor
samples, indicating their proximity to the y axis. The most distinct example of
this pattern, illustrated in Fig. 2.3, is the case of TCGA-KIRP. In summary,
the measurement of stem closeness is based on the understanding that the
relationship between normal and stem distances follows a consistent pattern,
and the use of cos # helps quantify this closeness based on the angles formed in
the Cartesian 2D space representing the distances. The experimental results
across different cancer types align with the expectations derived from these

assumptions.

3.6 Figuring out the optimal stem closeness of each

cohort

To ascertain the ideal measure of stem closeness for each cancer type, a com-
prehensive exploration of various parameter combinations was conducted. The
analysis involved considering all possible combinations and carefully evaluating
their performance. Through this rigorous process, the most effective combina-
tion of parameters was identified for each cohort. The specific details of the
chosen parameter combinations for each cohort are provided in Table 3.1. Each
subsection provides an explanation of the parameters utilized in the experi-
ment, and the methodology employed to determine the optimal combination

of parameters for each cohort, respectively.

3.6.1 Parameters

e Distance metric: When calculating the distance between two PC1 vec-
tors, there are two possible options: Euclidean distance and cosine simi-
larity. If cosine similarity is selected, a pseudo count of 10~ is added to
enhance the similarity calculation. The resulting similarity value is then

inverted to obtain the distance value.

]
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e Matrix type: Interestingly, during preliminary experiments, a fascinating

observation was made: the PCls derived from the inverse exponential of
BDM (IEBDM) exhibited remarkably high correlation with the PCls
derived from BDM. Building on this finding, the IEBDM PCls were
also used as an available option in the analysis. In the case of using
IEBDM, the regular BDM was substituted with IEBDM in every step

of the pipeline depicted in Fig. 2.3.

Averaging method: To evaluate the stem/normal distances, the average
of 22 distances is computed between the BDM PCls of each individ-
ual sample and the corresponding reference PCls. Two methods were
employed for this averaging process: simple averaging and weighted av-
eraging. In the case of weighted averaging, the ratio of each autosome

length to the sum of all autosome lengths is utilized as the weights.

Min-max scaling: If the option of min-max scaling is selected, the nor-
mal/stem distances are transformed to fit within the range of [0, 1]. To
achieve this, the maximum and minimum values of normal/normal dis-
tances for each cohort are recorded. Then, each distance value is scaled
using Eq. 3.2. In Eq. 3.2, z; represents the normal/stem distance of the
i-th sample, min(x) is the minimum value of normal/stem distances
within the current cohort, and max(x) is the maximum value of nor-
mal/stem distances within the current cohort. This scaling procedure

takes place between the steps illustrated in Fig. 2.3.

x; — min(x)

max(x) — min(x) (32)

Normalization: When the option of scaling normal/stem distances into
the range of [0, 1] is chosen, it is accomplished by applying Eq. 3.3. In

Eq. 3.3, x; represents the normal/stem distance of the i-th sample, and
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max(x) signifies the maximum value among the normal/stem distances
within the current cohort.
T

max(x) (3:3)

Standardization: When the option of standardizing PC1 vectors is se-
lected, it is done by applying Eq. 3.4 prior to computing the distance.
In Eq. 3.4, y represents each PC1 vector, y; represents the j-th entry of
y, mean(y) denotes the average value of all entries in the PC1 vector y,

and std(y) represents the standard deviation of all entries in y.

y; —mean(y)

Y] (3.4)

Number of chromosomes (numcpom ): From the work of Fortin and Hansen
(2015), it was shown that utilizing smaller chromosomes resulted in a
decrease in the accuracy of reproducing the 3D genome structure. Addi-
tionally, it was observed that using the entire set of chromosomes did not
always yield better results compared to using only a portion of genomic
bins. Taking these findings into account, the number of autosomes used
in the analysis was established as a parameter. In detail, PC1 vectors
from chromosome 1 up to chromosome n was employed, where n is an
integer ranging from 1 to 22. Fig. 2.3 illustrates the scenario where n is

set to 22.

3.6.2 Selecting single optimal score per cohort

Following the log-rank tests using stem closeness scores with various parameter
combinations, the scores were initially grouped based on the number of survival
events in which each score acted as a significant predictor (m). Since the log-
rank test was performed for a total of four survival events (Overall survival; OS,

Disease-specific survival; DSS, Disease-free interval; DFI, and Progression-free

]
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interval; PFI), the value of m ranges from 0 to 4. The stem closeness scores
belonging to the group with m = 4 were examined first. If there were no
scores present in the current group of interest, m was reduced by 1. From the
current group of interest, the sum of p-values (sum,) was computed based on
the results of the log-rank test, where the stem closeness was identified as a
significant predictor. Once sum,, of all stem closeness scores, was calculated
for all stem closeness scores, any scores that predicted a better prognosis for
the high score group compared to the low score group (which contradicts the
desired outcome of the score) were excluded. Finally, the remaining scores for
each cohort were ranked in ascending order based on sum,, and the score
with the smallest sum,, as selected as the final score. All the reported results
of the log-rank tests in this manuscript were based on the stem closeness scores
selected through these procedures. The same scores were also employed for the

Cox regression analysis, following the log-rank test.

3.7 Hi-C data processing

The 4DN Hi-C processing pipeline (Reiff et al., 2022) was utilized to pro-
cess Hi-C data. Raw Hi-C sequencing data in the form of fastq files for cancer
(Heidari et al., 2014), normal (Schmitt et al., 2016), and stem cell lines (Freire-
Pritchett et al., 2017; Zhang et al., 2019b) were downloaded from the Sequence
Read Archive (SRA) using sra-tools (v2.10.1) and parallel-fastq-dump. Specif-
ically, the following cell lines were downloaded: hepatocellular carcinoma cell
line (SRS2627396), colon cancer cell line (SRS3816279), breast cancer cell
line (SRS3505364), esophageal adenocarcinoma cell line (SRS3505365), lung
(SRS1704412 and SRS1704413) pancreas (SRS1704415, SRS1704416, SRS1704417,
and SRS1704418) and human embryonic stem cells (SRS1688434 and SRS3533281).
The sequencing reads were then mapped to the hgl9 reference genome using

bwa (v0.7.17) (Li and Durbin, 2009). The resulting aligned files (bam) were
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converted and processed as files representing Hi-C pair information using pair-
tools (v0.3.0) (Song et al., 2022). Subsequently, Hi-C interaction frequency
matrices were generated using cooler (Abdennur and Mirny, 2020). Finally,

A /B compartment analyses were conducted using FAN-C (Kruse et al., 2020).

3.8 Risk prediction using a feedforward neural net-

work and 3D genome-aware epigenetic features

Given that the aforementioned 3D genome-aware epigenetic features contain
cancer-related 3D genomic information, it was hypothesized that incorporat-
ing these features would lead to superior performance in survival prediction
compared to baseline scenarios that do not utilize these features. In detail, two
baseline scenarios were examined: (1) using age and gender as survival pre-
dictors without any epigenetic features, and (2) using age and gender along
with the 3D genome-unaware epigenetic feature (the average DNA methyla-
tion level of open sea CpG positions). For risk prediction, a feedforward neural
network, as introduced by (Katzman et al., 2018), was employed (Fig. 2.1).
The neural network consisted of two hidden layers, each comprising 128 hid-
den nodes. During training, the average negative log partial likelihood was
utilized as the loss function (Eq. 3.5). In Eq. 3.5, Ng—; represents the number
of patients for whom the event was observed. The log-risk function, denoted as
f , is estimated by the neural network. The indices ¢ and j are patient indices.
R(T;) represents the set of patients who are at risk of failure at time T;. The

parameter A denotes the L2 regularization coefficient.

1(0) = — N;1 > @i 0) —log > (exp(f(zi,0))]+All6]3  (3.5)
g E=1 JER(T;)

The activation function used was the scaled exponential linear units (SELU),

and the gradient descent algorithm employed was stochastic gradient descent
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(SGD) with nesterov momentum (momentum factor: 0.9). To mitigate over-
fitting, several techniques were used, including early stopping with a patience
of 10, L2 regularization with a coefficient of 10, dropout with a probability of
0.4, and batch normalization. Additionally, a time-based learning rate decay
approach was employed reduce the learning rate every epoch. The model’s
performance was assessed using the Concordance Index (C-index) for the four
specific survival events: Overall Survival (OS), Disease-Specific Survival (DSS),
Disease-Free Interval (DFI), and Progression-Free Interval (PFI). The C-index
measures the level of agreement between the predicted and actual survival,
with a higher C-index indicating better model performance. A Python pack-
age lifelines, version 0.27.3 (Davidson-Pilon, 2019), was used to compute the
C-index.

For each cohort, a dataset was created individually for each survival event.
Samples not having available survival data (i.e., the survival time and the
binary indicator for the survival event) were excluded. The remaining samples
were then randomly divided into training, validation, and test datasets in a

ratio of 6:2:2.

3.9 Survival analyses based on predicted risk

After predicting the risks, the significance of the estimated risk as a prognostic
predictor was examined using both the log-rank test and Cox regression. For
the log-rank test, patients of each cancer type were divided into risk-high and
risk-low groups, thresholded by the median risk value. In the case of Cox re-
gression, four covariates were used: age, gender, the average DNA methylation

level of open sea CpG positions, and the predicted risk.
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3.10 Functional analyses

Considering that the risks are predicted using 3D genome-aware epigenetic fea-
tures, I surmised that the difference between the risk-high and risk-low groups
arises from variations in DNA methylation levels at open sea CpG positions.
Moreover, since these DNA methylation levels are embedded with the cancer-
related 3D genome information, examining the DMRs between the risk-high
and risk-low groups could interpret he black-box behavior of the deep learning
model by offering biological explanation of the inter-group differences. Based
on this rationale, functional annotation was performed on the DMRs defined
by the predicted risks, following the procedures described in the subsequent

subsections.

3.10.1 Functional annotation on DMR genes

DMRs were identified as genomic regions that exhibit significant hypomethy-
lation in the risk-high group compared to the risk-low group. To gain insights
into the biological implications of DMRs, functional annotation was conducted
on all genes located within the DMRs using the python package GSEApy
(Fang et al., 2022). The functional annotation was based on the gene set ‘GO
Biological Process 2015’ (Ashburner et al., 2000).

3.10.2 Analysis on the chromatin states in DMR

Chromatin states, which provide epigenetic annotations for noncoding genomic
regions, have been recognized to possess the 3D genome information (Ernst
and Kellis, 2017; Rowley and Corces, 2018). To determine the impact of altered
3D genome structure on the chromatin states, the relative proportion of each
chromatin state within the DMRs was analyzed, shedding light on the states

that are most affected.
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3.11 Data description

Table 3.2: Description and composition of TCGA dataset.

Cohort Description Ntumor  Mnormal  Ntotal
BLCA  Bladder urothelial carcinoma 413 21 434
BRCA  Breast invasive carcinoma 790 98 888
CHOL  Cholangiocarcinoma 36 9 45
COAD Colon adenocarcinoma 299 38 337
ESCA  Esophageal carcinoma 186 16 202
HNSC Head and Neck squamous cell carcinoma 530 50 580
KIRC  Kidney renal clear cell carcinoma 320 160 480
KIRP  Kidney renal papillary cell carcinoma 276 45 321
LIHC  Liver hepatocellular carcinoma 379 50 429
LUAD Lung adenocarcinoma 460 32 492
LUSC  Lung squamous cell carcinoma 372 43 415
PAAD Pancreatic adenocarcinoma 185 10 195
PRAD Prostate adenocarcinoma 499 50 549
THCA  Thyroid carcinoma 515 56 571
UCEC  Uterine corpus endometrial carcinoma 432 46 478
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Table 3.3: Composition of stem cell samples.

Cohort Description Ngamples
SC Stem cell 44
EB Embryoid body 22
DE Definitive endoderm 11
ECTO Ectoderm 11

MESO-5 Mesoderm, 5-days 11

Table 3.4: TCGA cohorts matched to the Hi-C data of normal cell
lines (Hutter and Zenklusen, 2018; Kim et al., 2021).

TCGA cohort Hi-C normal cell line GEO IDs of Hi-C data

PAAD Pancreas GSM2322547, GSM2322548,

GSM2322549, GSM2322550
LUSC Lung GSM2322544, GSM2322545
LUAD Lung GSM2322544, GSM2322545

Table 3.5: PCBC stem cells matched to the Hi-C data of stem cell
lines (Salomonis et al., 2016; Kim et al., 2021).

Cohort Hi-C stem cell line GEO ID of Hi-C data

PCBC H9 Human Embryonic Stem Cells GSM2309023
PCBC Embryonic stem cell GSM3263085

25 i i



CHTRGEEINSD ‘T6TRGEEINSD
VIELTSTINSD ‘€TELTRTINSD
GGGLTTINSD ‘FGELESTINSD
0LGGT8TINSD ‘695GT8TINSD
90TSGT8TINSD ‘GOTSGTITINSD
CGC8CTEINSD
GTLE6EEINSD
TGGRGTEINSD

RUIOUIDIRIOUIPY 99RISOIJ

Iooue)) JI}RAIDUR]

rwouroIe)) [[9)) snowrenbg sun-
RUWOUIOIRD IR[N[[0003edo] I9AT]
RUIOUIDIR)) [[9)) TBS[)) [euay AouUpry]
RUWIOUIDIRIOUDPY [eadeydosy
RUWIOUIDIRIOUIPY UO[O))

Iooue]) jsealyq

(oury (o0 190ued 9)e)sord) TAYTT
(eur] [[02 ®WOUIDIRD dIjeaIdURd) ToUR]

(ourp 90 190wed Funy) 09FH-TON

(oury [[eo ewounIed IeyEd0teder)) zHdoH

(aur] [0 I90uRD ASUPLY) TOF-9)

(eur[ [[00 ®wWoOUIDIRIOUSDE [RISeYdOsH) €€
(ouIp [[90 190UeDd WO[0)) 08FMS

(aur] (02 100uRD JseAIg) FCE6TIDOH

avdd
avvd
DSN'T
OHI'T
odIM
VOSsd
avoo
vodd

®IRp OH-TH JO sdl OdD

uo1)drIosep oul[ [[90 1ooued H)-TH

QUI[ [0 Io0ued D)-TH

110100 VDDL,

‘(1202 “1P 72

wry] ‘T0Z ‘USSNP[USZ PUR I93INF]) SOUI[ [[90 I00UED JO vyep D-IH OYJ 03 PIYDdIeU S3I0Y0d YOHDL 9°€ O[qRL

26



Chapter 4

Results and Discussion

4.1 Significant characteristics of BDM PC1

4.1.1 BDM PCl1s can approximate Hi-C PCls

First, the validation process was conducted which aimed to determine whether
the BDM PCls could effectively reproduce the Hi-C PCls. For this purpose,
the 450K DNA methylation data from various TCGA cohorts and stem cells
obtained from the Progenitor Cell Biology Consortium (PCBC) were utilized
(Goldman et al., 2020; Hutter and Zenklusen, 2018; Salomonis et al., 2016).
Additionally, the PC1s derived from the raw Hi-C matrices (Kim et al., 2021;
Schmitt et al., 2016) were included in the analysis. Table 3.2 and Table 3.3
provide information on the composition of the TCGA and PCBC datasets,
respectively. For detailed information on the processing of the raw Hi-C data,
please refer to section 3.7.

The PC1 values were averaged from 10 randomly selected samples within
each category (normal, tumor, and stem cells) due to the large number of

available samples. For a fair comparison, the BDM PC1ls and Hi-C PCls from
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the same category and tissue type were paired. (Table 3.4-3.6) The perfor-
mance of the BDM PCls in reproducing the Hi-C PCls was evaluated using
PCC. The results demonstrated that the BDM PC1s were able to reproduce
the Hi-C PCls to a satisfactory extent, with a PCC of over 0.5 observed in
most cases. Notably, the highest performance was observed when reproducing

the Hi-C PCls of cancer cells (Fig. 4.1).

A Tumor (PCC = 0.642)
—— Hi-C (lung) —— Single-sample estimations (TCGA-LUSC, 450K, averaged)

-2

PC1
(Standardized)

10Mb

Position (chr21)

B Normal (PCC = 0.533)
—— Hi-C (liver) —— Single-sample estimations (TCGA-LIHC, 450K, averaged)
2

T NED A e A INS

-2

PC1
(Standardized)

10Mb
Position (chr15)

C Stem (PCC = 0.418)
—— Hi-C (humanES) —— Single-sample esti (PCBC, 450K,

o

|
)

PC1
(Standardized)
o
‘

Position (chr22) 10Mb

Figure 4.1: Reproduction of Hi-C PC1s from BDM PCls.

Dark red graphs represent the averaged PCls from 10 samples, and gray graphs
display the Hi-C PCls. (A) BDM PC1 from tumor samples (TCGA-LUSC,
chr21) and Hi-C PC1 from lung squamous cell carcinoma. (B) BDM PC1 from
normal samples (TCGA-LIHC, chrl5) and Hi-C PC1 from normal lung cells.
(C) BDM PC1 from stem cells (PCBC, chr22) and Hi-C PCls from human em-

bryonic stem cells.

Considering the single-sample nature of my approach, I also conducted

a comparison between individual PC1 values. The results showed that the
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highest PCC among all categories increased to 0.750 (Fig. 4.2) compared to
the previous case. This suggests that the 3D genome information captured
by the Hi-C PC1 can be better reproduced by utilizing individual BDM PC1
rather than the averaged ones. It is hypothesized that using averaged BDM
PC1 values may lower the performance because the well-reproduced individual
BDM PC1 values can be diluted when averaged with PC1 values from other

samples.

[, -1] = —
29 .-';rx-l: -Il' ]_]l -\-_-I'!_ 1].



A BRCA (Tumor, PCC = 0.750)

PC1
(Standardized)

—— Hi-C (breasty ~—— Single-sample estimation (TCGA-BRCA, 450K)

-2

Position (chr15) 10Mb

B LiHC (Tumor, Pec = 0.739)

PC1
(Standardized)

—— Hi-C (liver) —— Single-sample estimation (TCGA-LIHC, 450K)
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Position (chr14) 10Mb

C  LusC (Normal, PCC = 0.554)
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—— Hi-C (lung) —— Single-sample estimation (TCGA-LUSC, 450K)
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Figure 4.2: A comparison between the individual BDM PC1s and Hi-
C PCl1s.

Dark red graphs represent the individual PCls, and gray graphs display the Hi-
C PCls. (A) BRCA tumor samples, breast cancer cells, chrl5. (B) LIHC tumor
samples, liver hepatocellular carcinoma cells, chr14. (C) LUSC normal samples,
normal lung tissue, chr2l. (D) PCBC stem cells, H9 human embryonic stem

cells, chr21.
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4.1.2 BDMs and BDM PCl1s capture innate differences be-

tween tumor and normal groups

To determine if BDM includes cancer-related 3D genomic data that distin-

guishes between tumor and normal groups, I compared the BDM heatmaps of

these two groups. My analysis revealed a distinct patchy pattern exclusively

present in tumor groups across multiple cohorts (Fig. 4.3). Hence, I suggest

that BDMs indeed contain information reflecting the inherent dissimilarities

between tumor and normal groups. This trend was also observed in the BDM

PCls, as evidenced by the noticeably distinct shapes of the PC1 plots in the

two groups across various cohorts (Fig. 4.4).

A BLCA (Tumor)

TCGA-E7-A7DU-01 TCGA-GD-A2C5-01

TCGA-ZF-ASRT-01 TCGA-4Z-AATO-01

O i

fo

HEEAREES

E Luab (tumor)

TCGA78-7147-01 To!

B 5LcA (Normal)
TCGA-CU-AOYN-11

TCGA-K4-ASWN-11

TCGA-BT-A2ON-11 TCGA-BT-A20J-11

F Luab (Normal)

[

0.0 0.5 1.0

TC 1
TC 1

BDM values reflective of the 3D genome differential structure

C  BRCA (Tumor)
TCGA-ES-A1RE-01

TCGA-3C-AALI-0T

]

G PRAD (Tumor)

TCGA-YL-ABSE-01

TCGA-EJ-AB5D-01

J

TCGA-FC-ALJI01

TCGA-£4-778201

D BRcA (Normal)
"TCGA-BH-A0DI-11

TCGA-E2-AIL7-11

TCGA-BH-ATEW-11 TCGA-BH-AOH7-11

H PrAD (Normal)

TCGA-CH-5771-11

TCGA-EST792-11

TCGA-CH-5765-11 TCGA-CH-5763-11

Figure 4.3: A heatmap representation of the binned difference matri-
ces (BDMs) obtained from different TCGA cohorts.
(A) BLCA, tumor samples. (B) BLCA, normal samples. (C) BRCA, tumor sam-
ples. (D) BRCA, normal samples. (E) LUAD, tumor samples. (F) LUAD, normal
samples. (G) PRAD, tumor samples. (H) PRAD, normal samples.
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Figure 4.4: The BDM PCl1s derived from tumor and normal samples

across various TCGA cohorts.

The four cohorts with the prominent disparity between BDm PCls of the tumor
and normal groups are illustrated. (A) COAD, (B) LIHC, (C) LUAD, (D) UCEC.
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4.1.3 BDM PCl1s are tissue type-specific

Furthermore, to facilitate the pan-cancer clinical application of BDM PCls, I
conceived that these PCls should exhibit tissue type-specific characteristics.
To explore this, I organized the BDM PCls into distinct pairs: homogeneous
pairs comprising PCls from the same cohort, and heterogeneous pairs con-
taining PCls from different cohorts. I then assessed the Pearson correlation
coefficient (PCC) values for each pair. The analysis revealed that the PCC val-
ues for homogeneous pairs were higher compared to those for heterogeneous
pairs (Fig. 4.5). Moreover, among the heterogeneous pairs, those consisting
of PCls from cohorts associated with the same tissue type (e.g., KIRP and
KIRC) exhibited larger PCC values compared to other pairs. These findings
suggest that BDM PCls contain tissue type-specific information, in addition

to capturing the differences between tumor and normal samples.
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Figure 4.5: The Pearson correlation coefficient (PCC) between aver-
aged BDM PCls.

(A) Heatmaps displaying the PCC values derived from averaged BDM PCls of
tumor samples. (B) Heatmaps displaying the PCC values derived from averaged

BDM PCl1s of normal samples.
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4.2 Utilizing 3D genome-aware epigenetic features helps

survival prediction

Once the characteristics of BDM were examined, a one-dimensional vector was
created, comprising the 3D genome-aware epigenetic features (normal/stem
distances and references, stem closeness, and BDM PCls) and the survival-
related features (age and gender). This vector was used as an input feature
for the deep learning model. To assess the significance of the 3D genome-
aware epigenetic features, two baseline scenarios were also explored. The first
scenario involved using no epigenetic feature, relying solely on age and gender.
The second scenario involved using age, gender, and the 3D genome-unaware
epigenetic feature (the average of open sea DNA methylation level) as input.
The C-index was used as an evaluation metric.

After the risk prediction, patients from each cancer type were classified
into either the risk-high or risk-low group, using the median risk value as the
threshold. To determine whether the predicted risk had a significant impact on
survival patterns, a log-rank test was performed. I considered the results to be
statistically significant if both the validation and test C-index values exceeded
0.65, and if the log-rank test p-value was less than 0.05. As a result, significant
findings were observed in seven cohorts, indicating that the predicted risk can
serve as an important prognostic indicator (Table 4.1). The outcomes of the
log-rank tests are illustrated in Fig. 4.6.

Following the log-rank test, Cox regression analysis was performed. The
findings indicated that the predicted risks had greater significance in predicting
survival compared to other covariates (Fig. 4.7). These results aligned with the
outcomes from the log-rank test, highlighting the detrimental effect of high risk

on survival.
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Table 4.1: Risk prediction results from the feedforward neural net-
work.
Results from the main scenario, baseline 1 (BS1), and baseline 2 (BS2) are dis-

played in the top, middle, and bottom section, respectively.

Cohort Test set C-index Log-rank p-value Event
CHOL 0.750 0.029 DSS
KIRC 0.742 0.049 DSS
KIRC 0.705 0.045 0OS
KIRP 0.959 0.024 DSS
KIRP 0.902 0.004 DFI
KIRP 0.841 0.001 0S
KIRP 0.839 0.040 PFI
PAAD 0.688 0.016 PFI
PRAD 0.739 0.026 DFI
THCA 0.742 0.028 0OS
PRAD 0.669 0.042 DFI
PRAD 0.654 0.038 DSS
KIRC (BS1) 0.708 0.001 0OS
KIRP (BS1) 0.741 0.028 DSS
PAAD (BS1) 0.810 0.026 DFI
PRAD (BS1) 0.676 0.011 DFI
THCA (BS1) 0.987 0.019 (O8]
KIRC (BS2) 0.697 0.004 0OS
THCA (BS2) 0.929 0.024 (O]
THCA (BS2) 0.884 0.019 0OS
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Figure 4.6: Results of log-rank tests based on the risks predicted by
the feedforward neural network.

The name of the survival event and the corresponding log-rank test p-value are
indicated within parentheses at the top center of each subplot. (A) CHOL (DSS),
(B) KIRC (DSS), (C) KIRC (0S), (D) KIRP (DSS), (E) KIRP (DFI), (F) KIRP
(0S), (G) KIRP (PFI), (H) PAAD (PFI), (I) PRAD (DFI), (J) THCA (OS),
(K) UCEC (DFI), (L) UCEC (DSS).
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Figure 4.7: The results of Cox regression analysis.

On the right side of each subplot, the logarithm of the hazard ratio for each input
covariate is provided, along with the corresponding 95% confidence interval in
parentheses, and the p-value. The subplots correspond to different cancer types
and survival events. (A) KIRC (DSS), (B) KIRP (PFI), (C) LUAD (OS), (D)
PAAD (0S), (E) THCA (DFI), (F) UCEC (DSS).
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The outcomes of two baseline cases revealed a decrease in the performance
of survival prediction when the 3D genome-aware epigenetic features were
excluded from the input feature (Table 4.1; BS1 and BS2). Furthermore, both
baseline scenarios exhibited poor performance in predicting events other than
OS. Since age is a highly influential predictor of OS, the absence of 3D genome-
reflective features may have resulted in the model placing greater emphasis on

age, leading to satisfactory performance solely in risk prediction of OS.

4.2.1 The model shows robust performance on external datasets

To validate the model’s robust performance on a dataset from different plat-
form, the model was evaluated using the GSE103659 dataset (Edgar et al.,
2002). Since GSE103659 comprised patients with glioblastoma (GBM), a com-
parison was made between the model’s performance on this dataset and its
performance on TCGA-GBM. The results indicated that the predicted risks
served as significant predictors of survival for both datasets (Table 4.2 and
Fig. 4.8). It should be noted that GSE103659 had certain limitations compared
to TCGA-GBM, such as the absence of gender information and a smaller num-
ber of survival events with available data. Considering these limitations, the
findings suggest that although using TCGA-GBM yielded more significant re-
sults compared to using GSE103659 (Table 4.2), the performance gap to that
extent is deemed acceptable. Consistently, the results of Cox regression anal-
ysis also confirmed that the predicted risk is a significant predictor of survival

in both TCGA-GBM and GSE103659 datasets (Fig. 4.9).
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Table 4.2: Risk prediction performance from TCGA-GBM and
GSE103659 datasets.

The best performance, indicated by bold text, is determined based on the high-

est c-index and the lowest p-value.

Cohort Test set C-index Log-rank p-value Event
GBM 0.743 0.008 DSS
GBM 0.733 0.001 0S
GSE103659 0.721 0.001 (ON)
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Figure 4.8: Significant log-rank test results obtained from TCGA-
GBM and GSE103659 datasets, utilizing the risk predicted from 3D

genome-aware epigenetic features.

The top center of each subplot displays the name of the cohort and survival

event, followed by the corresponding log-rank test p-value. (A) GBM (DSS), (B)
GBM (08), (C) GSE103659 (OS).
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Figure 4.9: Cox regression results from TCGA-GBM and GSE103659

datasets.

On the right side of each subplot, the logarithm of hazard ratio is presented for

each input covariate, along with the corresponding 95% confidence interval in
parentheses and the p-value. (A) GBM (0S), (B) GBM (PFI), (C) GBM (DSS),
(D) GSE103659 (OS).

41



4.3 Functional annotation on genes in DMR

The functional annotations on genes in DMR, defined by the predicted risks,
revealed a significant presence of genes related to the RA signaling pathway. It
is widely known that RA binds to its receptor and induces structural changes
into euchromatin, thereby promoting the transcription of target genes and
playing a crucial role during the developmental process (Ozgun et al., 2021;
Ablain and de Thé, 2014). Moreover, RA has cell-type specific effects on cell
fate decisions, such as differentiation, apoptosis, or stemness (Mezquita and
Mezquita, 2019). Hence, it is plausible that the open sea CpG positions have
epigenetic control over the key regulators of development and cell fate, in-
fluencing the stemness of cells, and this information is captured by the 3D
genome-aware features. Another interesting finding is the presence of genes
associated with gas transport in DMRs. This observation could be linked to
hypoxia, a condition characterized by low oxygen levels that often occurs in
cancer (Eales et al., 2016; Bhandari et al., 2019). Notably, all the DMR genes
associated with gas transport were found to encode subunits of hemoglobin,
which is responsible for oxygen transport. One of these genes, HBB, has been
reported to exhibit abnormal expression in various types of cancer (Zheng
et al., 2017; Kang et al., 2022). This suggests that genes frequently altered
in cancer, even if not directly involved in developmental processes, can be
regulated by CpG probes located in open sea positions. Furthermore, enrich-
ment analysis revealed terms related to cell adhesion, such as homophilic cell
adhesion via plasma membrane adhesion molecules and cell-cell adhesion via
plasma membrane adhesion molecules. Cell adhesion plays a crucial role in can-
cer progression, as abnormalities in cell adhesion molecules enable tumor cells
to better interact with other cells. Increased interactions between cancer cells

and endothelium, for example, promote faster metastasis and worsen prognosis
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(Laubli and Borsig, 2019; Bendas et al., 2012). Another enriched GO term was
related to the mitotic cell cycle, which is closely associated with the biologi-
cal characteristics of cancer cells. Cancer arises from defects in the cell cycle,
with aberrations occurring in cell cycle checkpoints or genes regulating the
cell cycle, such as p53 and BRCA1 genes. Consequently, cells undergo uncon-
trolled growth (Williams and Stoeber, 2012; Visconti et al., 2016; Zhang et al.,
2020; Oh et al., 2018), leading to cancer development. Lastly, a significantly
enriched GO term was related to the gamma-aminobutyric acid (GABA) sig-
naling pathway. GABA is involved in the development of various cell types and
acts as an important modulator across different cancer types. Elevated GABA
levels significantly enhance the invasive capacity of cancer cells, indicating its
contributory role in metastasis. GABA receptors, along with GABA itself,
also regulate cell proliferation. Additionally, the gene expression of GABA re-
ceptors has been linked to cancer prognosis and tumorigenesis (Zhang et al.,
2013; Li et al., 2012; Kanbara et al., 2018; Azuma et al., 2003). Overall, these
results demonstrate the enrichment of validated cancer-related pathways in
DMR genes. The significant differences in open sea DNA methylation levels
of DMR genes between high-risk and low-risk groups suggest the involvement
of altered DNA methylation levels of open sea CpG probes in multiple cancer
hallmarks. Fig. 4.10 and Table 4.3 provide a comprehensive presentation of

the results.

4.4 Inactive chromatin states dominate in DMRs

The chromatin state data (Ernst and Kellis, 2012; Kundaje et al., 2015)
was used to examine the distribution of different chromatin states within
the DMRs, to identify which states are most affected by the cancer-related
3D genome perturbations. Among all the cohorts listed in Table 4.1, TCGA-

PAAD, which had available chromatin state data, was utilized for this analysis.
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The results revealed that the Quiescent/Low state accounted for the largest
proportion of the DMRs, followed by Weak transcription and Heterochro-
matin states (Fig. 4.11). Both Quiescent/Low and Heterochromatin are inac-
tive states in normal cells, and Weak transcription is a mildly activated state.
Therefore, it is postulated that the abnormal hypomethylation of open sea
CpG positions, occurring alongside cancer progression, could exert aberrant

influences on the DMR, genes.
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Figure 4.11: The proportion of the chromatin states in DMR.

The = and y axis represent the TCGA cohort and the proportions of differ-
ent chromatin states, respectively. Excluding the three most dominant states
(Quiescent/Low, Heterochromatin, and Weak transcription), all other states are

labeled as ‘Others’.
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4.5 Limitation

The findings of this study have provided valuable insights into the usage of 3D
genome-informed epigenetic features for survival prediction. However, certain
limitations persist. Firstly, the performance of survival prediction diminishes
when narrowing down the scope of survival analysis from cancer as a whole to
specific cancer subtypes, as evidenced in section 4.2.2. Therefore, it is impera-
tive to develop more sophisticated approaches to effectively apply this method
at the level of cancer subtypes.

In addition to the informative nature of 3D genome-informed epigenetic
characteristics, the small number of patients could have contributed to the
significant results observed in the log-rank tests (Fig. 4.6). For example, upon
examining the dataset used for the log-rank test results in Fig. 4.6A, it was
found that there were only four patients in the risk-low group and three pa-
tients in the risk-high group. This was incurred by the experimental setup,
where patients from each cohort were randomly divided into five folds, and
only one fold was utilized as a test set for conducting the log-rank test. Con-
sequently, it is necessary to address this limitation by either increasing the
number of patients in the test set by reducing the number of folds or acquir-

ing additional data.
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Chapter 5

Conclusion

While the close relationship between the 3D genome structure and the develop-
ment of cancer has been observed (Rheinbay et al., 2020), a prognostic metric
that makes use of the 3D genome information has not yet been developed. This
is primarily due to the high cost of generating Hi-C data, which is a manifest
source of the 3D genome information, resulting in the limited availability of
Hi-C data (Yardimer et al., 2019). Inspired by the recent discoveries regarding
the potential of DNA methylation data to reconstruct the 3D genome infor-
mation (Fortin and Hansen, 2015), the 3D genome-aware epigenetic features
were extracted from 450K DNA methylation data. These features were then
used to predict the risk of failure for different survival events by a feedforward
neural network. The predicted risk was found to be a significant predictor of
survival across various cancer types. An important finding was that excluding
the 3D genome-aware features from the input data led to the decreased perfor-
mance of the model. This suggests that utilizing the 3D genome-aware features
facilitates a knowledge-guided risk prediction, resulting in more precise prog-

nostic predictions for cancer. Furthermore, the functional analyses revealed
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that genes in DMR, defined by the predicted risk values, are involved in a
variety of cancer-related pathways, including cell adhesion, the RA signaling
pathway, and the mitotic cell cycle. Additionally, a comprehensive analysis of
the chromatin states within the DMRs indicated a dominance of inactive or
mildly activated states in DMRs. Based on these findings, it is posited that
the alterations in DNA methylation levels in the risk-high group are associ-
ated with disrupted cancer-related pathways and the abnormal activation of
genes. After careful consideration, I suggest that the 3D genome landscape
derived from the 450K DNA methylation data, which potentially reflects the
aberrantly activated cancer-related genes and pathways, facilitates a more ac-

curate prediction of cancer prognosis.
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