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Abstract

Energy-based Contrastive Learning
and Ensembling Models for Sequential

Recommendation

Jung Hyun Ryu

Interdisciplinary Program in Artificial Intelligence

The Graduate School

Seoul National University

With the exponential growth of online platforms and services, recommendation

systems have become essential for identifying relevant items based on user prefer-

ences. In the domain of sequential recommendation, which aims to capture evolving

user preferences over time. To address this, contrastive learning methods have been

proposed to target data sparsity, a challenge in recommendation systems due to

the limited user-item interactions. However, they do have limitations such as the

occurrence of incorrectly labeling similar instances as dissimilar, leading to missed

opportunities for meaningful connections and embeddings.

In this thesis, we present two main contributions in the field of sequential learn-

ing. Firstly, we propose an advanced approach to contrastive learning specifically

designed for sequential recommendation systems. By adaptively constructing neg-

ative samples, we improve the quality of item embeddings, leading to enhanced

performance in recommendation tasks. Secondly, we introduce a novel ensemble
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vitechnique for sequential models by applying Fisher merging. This approach en-

sures robust fine-tuning by merging the parameters of multiple models, resulting

in improved overall performance. Through extensive experiments, we demonstrate

the effectiveness of our proposed methods, highlighting their potential to advance

the state-of-the-art in sequential learning and recommendation systems.

Key words: contrastive learning, ensemble, sequential recommendation

Student Number: 2021-26380
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Chapter 1

Introduction

In recent years, the rapid growth of online platforms and services has led to the ac-

cumulation of vast amounts of data daily. Among the various methods of harnessing

this data, recommendation systems play a prominent role. Recommendation sys-

tems are employed to identify relevant items based on user preferences and interests.

To capture the evolving user preferences over time, the field of sequential recom-

mendation has emerged. Prominent examples in this domain include SASRec and

BERT4Rec[28]. In this paper, we define the problem of sequential recommendation

as follows:

Let U be the set of users U = {u1, u2, · · · , u|U|}, and V be the set of items as

V = {v1, v2, · · · , v|V|}. The sequence of user-item interaction for ui is a list with

chronological order, Si = [vui
1 , vui

2 , · · · , vui
t , · · · , vui

nui
]. Here user ui ∈ U , vui

t ∈ V,

and user ui interact item vui
t in time step t. The length of sequence for user ui

is nui , and our object is to build a model predicting the item with which user is
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interact in the next time step, i.e,

p(vui
nui+1 = v|Si) (1.1)

However, the field of recommendation systems inherently faces the challenge of

data sparsity. This problem arises when the majority of elements in the user-item

matrix are empty since users have not interacted with most items. Consequently,

this poses limitations on embedding the items during the modeling process. To

address this issue, previous works such as CL4SRec[32], DuoRec[25], and ECL-SL

have proposed methods that incorporate contrastive learning. In this paper, we

introduce an advanced approach to contrastive learning in sequential recommen-

dation.

The aforementioned methodologies typically employ similar model structures

but utilize various learning frameworks. Recognizing this, we propose a method

to ensemble the parameters of models trained with different contrastive learning

techniques in a sequential recommendation. Prior research has shown that ensemble

methods yield significant benefits when multiple learning frameworks are employed.

Furthermore, by assuming the posterior distribution of parameters θi for each

model modeli, we achieved more effective ensemble results. This approach allowed

us to capture the uncertainty associated with each model’s parameter estimates

and leverage this information to enhance the ensemble process. By considering the

posterior distributions, we were able to account for the variability in parameter val-

ues across different models and obtain a more robust and comprehensive ensemble

outcome.
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Chapter 2

Related Works

2.1 Contrastive Learning

Contrastive learning is a type of self-supervised learning technique, where the

goal is to learn useful representations of data without any explicit labeling or

supervision[20]. In contrastive learning, the algorithm is trained to compare and

contrast different samples of data to learn the underlying patterns and relationships

between them. The basic idea is to take two different data points and generate two

different representations for each data point[24]. The algorithm aims to learn to

differentiate between representations of the same data point, referred to as a pos-

itive pair, and representations of different data points, known as a negative pair,

using a similarity metric. The training process involves optimizing the model to

maximize the similarity between the representations of positive pairs while mini-

mizing the similarity between the representations of negative pairs. This way, the

model learns to capture the meaningful differences and similarities between the

data points, which can then be used for downstream tasks such as classification,

3



clustering, or retrieval.

Contrastive learning can be mathematically formulated using the InfoNCE

(Normalized Mutual Information Neural Estimation)[31] loss function, which is

used to maximize the similarity between positive pairs and minimize the similarity

between negative pairs. The InfoNCE loss is defined as:

ℓNCE ≜ E
(x,x+)∼ppos

{x−
i }Mi=1

i.i.d.∼ pdata

[
− log

ef(x)
⊤f(x+)/τ

ef(x)⊤f(x+)/τ +
∑

i e
f(x−

i )⊤f(x)/τ

]
. (2.1)

2.1.1 Contrastive Learning in Sentence Embedding

The paper introduces SimCSE[10] a contrastive sentence embedding framework,

which utilizes pre-trained embeddings to enhance the quality of sentence represen-

tations. It employs contrastive learning principles to bring similar samples closer

and push dissimilar samples apart, resulting in improved uniformity and alignment

within the embeddings. The paper presents two variations: unsupervised SimCSE,

which introduces dropout-based noise[27] and batch-level negative sampling, and

supervised SimCSE[10], which utilizes NLI(Natural Language Inference) datasets

with entailment and contradiction pairs[5, 26]. Therefore, for each premise and its

entailment hypothesis, there is an accompanying contradiction hypothesis7

Both variations demonstrate the effectiveness of contrastive objectives in refin-

ing sentence embeddings. SimCSE[10] offers a promising approach to enhance the

quality of sentence representations, making it applicable to various natural lan-

guage processing tasks.

DiffCSE[3] is an extension of SimCSE[10] that addresses limitations in the
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unsupervised learning domain by considering additional augmentation methods

and promoting equivariant contrastive learning[6] for sentence embeddings. While

SimCSE[10] focuses on dropout insensitivity, DiffCSE[3] argues for sensitivity to

augmentation techniques like masked language models. Leveraging theoretical foun-

dations from computer vision, DiffCSE[3] emphasizes the superiority of equivari-

ant contrastive learning, surpassing the limited capabilities of invariance-based

approaches. It incorporates a difference prediction objective using a conditional

ELECTRA[4] architecture to capture distinctions between original and modified

sentences. By broadening augmentation methods and embracing equivariant con-

trastive learning, DiffCSE[3] enhances the robustness of sentence embeddings in

unsupervised learning, providing valuable insights for more sophisticated represen-

tation learning frameworks in natural language processing.

PromCSE[17] incorporates an Energy-based Hinge loss, leveraging hard nega-

tives for improved discrimination in supervised learning. The inclusion of this loss

enhances the model’s ability to distinguish between similar and dissimilar sentences,

surpassing softmax-based losses. PromCSE’s[17] integration of frozen PLMs, Soft

Prompts, and the Energy-based Hinge loss provides a compelling approach to ad-

dress overfitting and domain shift, advancing deep learning in natural language

processing tasks.

2.1.2 Contrastive Learning in Sequential Recommendation

Contrastive Learning for Sequential Recommendation[32] is proposed as a solution

to address the significant issue of data sparsity in recommendation systems by in-
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corporating contrastive learning techniques. CL4SRec[32] focuses on constructing

pairs with different viewpoints, where positive pairs carry semantic information.

The paper introduces three data augmentation techniques at the sequence level to

obtain more effective user representations. These augmentation methods include

item cropping, which involves cropping a certain interval within the sequence, item

masking, which masks several items within the sequence, and item reordering, which

rearranges the order of items within a specific interval in the sequence. By apply-

ing these data augmentation techniques, CL4SRec[32] performs contrastive learning

by creating positive pairs from the original sequence. These augmentation meth-

ods closely resemble the data augmentation approaches commonly used in the field

of computer vision.[2] This integration of contrastive learning and sequence-based

data augmentation in CL4SRec[32] contributes to advancements in addressing data

sparsity and enhancing sequential recommendation systems.

DuoRec[25] model combines two forms of contrastive loss. Firstly, it utilizes

unsupervised augmentation through dropout-based model-level augmentation to

create positive pairs. It emphasizes the importance of pairing samples under the

assumption that their meaning remains unchanged. The paper also highlights that

semantic preservation alone in CL4SRec[32] may not be sufficient. In this regard,

the proposed DuoRec[25] model heavily incorporates the feature-level augmentation

through dropout, as suggested by SimCSE[10]. Additionally, DuoRec[25] employs

supervised positive sampling, where pairs are created by considering sequences

with the same target item as positive samples. This approach enhances the model’s

ability to capture the relationships between sequences with shared target items.

By combining both unsupervised and supervised contrastive learning, DuoRec[25]

6



aims to improve the effectiveness of recommendation models in capturing semantic

information and considering item-level relationships.

2.1.3 Alignment and Uniformity

In order to point out how well features are represented, previous work has suggested

two key properties; alignment and uniformity[29]. Alignment measures how well

paired positive instances are closely represented, typically computed as the average

distance between them. On the other hand, uniformity assesses how well the feature

distribution is uniformly spread, often quantified using a Gaussian kernel on a

hypersphere. RGiven the data distribution pdata and a positive pair distribution

ppos, alignment and uniformity is defined as :

ℓalign ≜ E(x,x+)∼ppos∥f(x)− f(x+)∥2, (2.2)

ℓuniform ≜ E(x,y)∼pdatae
−2∥f(x)−f(y)∥2 . (2.3)

Minimizing both metrics indicates an improved performance. Minimizing ℓalign

in equation 2.2 encourages the learned representations of samples x and x+, sam-

pled from ppos, to be closer together. Minimizing ℓuniform in euation 2.3 encourages

the samples from pdata to be uniformly represented. By considering these two ob-

jectives, the goal is to enhance the proximity of positive pairs while promoting

uniform representation across the data distribution.
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2.2 Model Ensemble

Researchers have extensively explored various methods for model ensemble, which

involve combining the predictions or parameters of multiple models to attain en-

hanced performance compared to individual models[9]. One such example is boot-

strapping, wherein models trained on different subsets of data are ensembled[1].

Boosting, another prominent ensemble method, leverages the collective knowledge

of multiple weak models to create a stronger ensemble by iteratively adjusting the

weights of misclassified instances[23]. Another notable ensemble technique is pa-

rameter merging, which aims to reduce the model’s size by merging the parameters

of multiple models into a single, more compact model[15]. This consolidation of

parameters allows for improved efficiency in terms of storage and computational

resources. However, it is important to note that many model ensemble approaches

often necessitate additional training, which can be a drawback due to the increased

computational requirements and time constraints involved.

2.2.1 Diverse Learning Framework

Models trained using diverse training methodologies exhibit different generalization

capabilities, ultimately leading to uncorrelated errors. Research has demonstrated

the ensemble effect across various training methodologies at the initialization, hy-

perparameter, architecture, framework, and dataset levels. These findings suggest

that models tend to specialize in subdomains within the data, highlighting the

crucial role of ensemble techniques in enhancing overall performance.

8



2.2.2 Merging Methods

Averaging Parameter Model Soup[30] presents an effective approach for com-

bining parameters without additional training. It demonstrates research findings

that improve the performance of trained models by constructing a ”recipe” com-

posed of diverse models and averaging their parameters. The study introduces three

methods for creating the recipe: the uniform soup, which averages the parameter

values of all models; the greedy soup, which sequentially adds models based on their

performance ranking; and the learned soup, which identifies the optimal model in-

terpolation through training. These approaches contribute to enhancing the overall

performance of the model without the need for additional training.

Fisher Merging Within the scope of related works, parameter merging is in-

terpreted as a process that maximizes the joint likelihood of model parameters’

posteriors[22]. Previous studies consider averaging as a scenario where the posteri-

ors of these models are assumed to follow an isotropic Gaussian distribution, and

the joint likelihood is maximized accordingly. To refine this approach, efforts have

been made to approximate the posterior of the model using Laplace Approxima-

tion. In this case, the distribution of each model is modeled by assuming the mean

as the observed, which can be interpreted as trained parameter and the variance

as the Gaussian distribution’s Fisher matrix. By employing this formulation, the

joint likelihood is calculated.

9



Chapter 3

Methodology

3.1 EHRec

We introduce Energy-based Contrastive Learning for Sequentail Recommendation

Model, named EHRec.

3.1.1 Constructing Negative Samples

In previous works addressing item embedding in sequential recommendation prob-

lems through contrastive learning, the focus was mainly on augmenting positive

samples. However, defining dissimilar sequences posed challenges as the recommen-

dation domain exhibits high sparsity and significant variation in item popularity.

It is difficult to establish meaningful distinctions between sequences. To tackle this

issue, we approached the problem from the perspective of analyzing methods for

constructing negative samples, which is the main idea of EHRec (Energy-based

Contrastive Learning for Sequential Recommendation Model). Specifically, we de-

fined the relationship between item sequences based on similarity and incorporated

10



this relationship into the contrastive loss.

The contrastive learning and batch-based positive and negative pair selection

methods employed in SimCLR were both simple and intuitive. However, they do

have limitations, such as the occurrence of false negative problems. Therefore, con-

structing well-designed negative pairs holds great importance in contrastive learn-

ing. We assume that the model learns to some extent the ability to distinguish false

negative pairs from genuine negative pairs. If, during training, the model fails to

differentiate between genuine negative pairs and false negative pairs, it can intro-

duce bias into the overall learning process. Careful analysis and mitigation of such

biases are crucial to ensure fair and accurate training outcomes.

Negative samples were constructed based on the similarity with other samples

within the batch. In a scenario where the batch size is N , we first formed the

positive pairs as suggested in DuoRec[25]. The negative samples were then selected

from the remaining 2N − 2 samples, considering only those with similarity below

a certain threshold.

We refer to this threshold as SimThres, and it allows for the generation

of diverse negative samples based on the chosen SimThres value. To determine

SimThres, we proposed two methods. These approaches enable us to define nega-

tive samples by considering the similarity threshold, allowing for better exploration

of the dissimilarity between item sequences in the context of contrastive learning.

3.1.2 Determining the SimThres

For user ui ∈ U and item vj ∈ V, the sequence of user-item interaction for ui, is

denoted as si = [vui
1 , vui

2 , · · · , vui
t , · · · , vui

nui
]. Let S = {si, i = 1, · · · , |U|} represent

the set of user-item interaction. Also the model f be parameterized by θ and s+i is

11



the augmented positive pair of si by model f .

For each si, we consider an ordered set, {si,j}, where j is the order index, sorted

based on the similarity value with respect to si. For instance,

si,1 = argmin
(sj∈S)∧(sj ̸=si,s

+
i )

sim(f(si; θ), f(sj ; θ)). (3.1)

We aim to construct negative samples for ui using values from this set that do

not exceed a certain threshold. In other words, the negative samples are given by

{si,j | sim(f(si; θ), f(si,j ; θ)) < k}. (3.2)

We refer to the threshold denoted as k in Equation 3.2 as SimThres.

Statistical SimThres In a statistical manner, we set the SimThres based on

the similarity values with the entire set of users. It can be expressed as kstat =

sim(f(si; θ), f(sK ; θ)). Depending on K, we defined kstat as the median, quantile, or

the top 10% value of the similarity values. This approach bears resemblance to the

concept of the most offending sample introduced in PromCSE[17], specifically in the

context of computing the Energy-Hinge loss. However, while PromCSE[17] aimed

to extract negative samples that are difficult to differentiate from positive pairs,

our objective was to construct explicit negative samples. Therefore, we selected

samples with low similarity values. Through experimentation, we found that setting

the SimThres to the top 10% value, i.e., K = 0.9× |S|, proved to be effective. As

an implementation detail, we calculated expectation value of sim(f(si; θ), f(sK ; θ))

for each batch and input to successive threshold in next epoch.

12



Learnable SimThres where statistically regularized In order to obtain the

value of klearn = g({f(si; θ)}i) as a trainable parameter, we introduce an additional

submodel g that enables us to set the SimThres adaptively. Rather than relying

solely on prior information, we construct a parameterized submodel, denoted as g,

specifically designed to determine the 1-dimensional threshold value. We employ

a straightforward Multi-Layer Perceptron (MLP) architecture for submodel g. By

incorporating this trainable submodel, we empower our methodology to learn and

adapt the value of klearn during the training process, enhancing the flexibility and

effectiveness of our approach in capturing the desired negative sample characteris-

tics.

To control the value of SimThres and acknowledge that sim(f(si; θ), f(sj ; θ))

is also a learned quantity, we introduce a regularization term to our methodology.

The regularization term, denoted as Lreg, is implemented by adding a loss term of

the form ∥g({f(si; θ)}i)− kstat∥22, where kstat serves as the control parameter. This

additional term allows us to enforce a desired level of regularization on the value of

g({f(si; θ)}i). We refer to the resulting value g({f(si; θ)}i) as klearn, representing

the regulated and learned threshold. By incorporating this regularization mecha-

nism, we aim to strike a balance between adapting the threshold value through

training and maintaining consistency with the desired statistical properties repre-

sented by kstat.

3.2 Model Ensemble

In our methodology, we perform model ensemble based on different types of loss

functions. BERT4Rec[28], CL4SRec[32], DuoRec[25], and EHRec share the basic

13



structure of BERT4Rec[28]. However, with the introduction of contrastive learning

loss, there are differences in the refined process of pushing and pulling representa-

tions.

Figure 3.1 represents the overview of parameter merging process. Sharing struc-

ture of model, where parametrized with diverse learning framework, we were able

to take advantage of ensemble. In the upcoming chapter, we experimentally exam-

ine how these changes in the learning framework and loss computation affect the

form of representations. Furthermore, inspired by previous studies demonstrating

the effectiveness of ensemble models trained using various learning methods, we

apply parameter merging techniques, namely Parameter Averaging, described in

Section 3.2.1, and Fisher-weighted Parameter Merging, described in Section 3.2.1,

to combine these models.

3.2.1 Understanding Model Ensemble

Following work of [22], let us consider a scenario where we have models with the

same structure, denoted as model1,model2, · · · ,modelM , with corresponding pa-

rameters θ1, θ2, · · · , θM . Our objective is to find the parameter θ∗ that maximizes

the joint likelihood of the posteriors of these parameters. In this study, we aim to

apply this research effort to the field of sequential recommendation.

The posterior of θi can be represented as p(θi|D), where D = {xi, yi}i denotes

the data. Since obtaining this posterior directly is generally challenging, it can em-

ploy approximation methods such as Laplace Approximation to make assumptions

and seek the parameter θ∗[21][7]. Furthermore, the joint posterior can be expressed

14



using Bayesian Rule as follows.

p(θ1, θ2, · · · , θM | θ) = p(θ | θ1, θ2, · · · , θM )p(θ1)p(θ2) · · · p(θM )/p(θ) (3.3)

Let us interpret the process of finding θ∗ as maximizing the joint likelihood,

p(θ | θ1, θ2, · · · , θM ). Assuming that p(θi | D) follows a Gaussian distribution, we

set the mean of this Gaussian distribution as the observed θi and examine the

procedure for averaging parameters and Fisher Merging separately, depending on

the method used to assume the variance.

Averaging Parameters Let us assume that the posterior p(θi | D) follows a

Gaussian distribution N (θ̂i, I). Here, θ̂i represents the parameters of the trained

modeli, and I denotes the identity matrix. In this case, the desired solution θ∗ can

be obtained as the average of the parameters of the candidate models, as shown in

Equation 3.4.

θ∗ = argmax
θ

∑
i

log p(θ | θi, I) =
1

M

∑
i

θi (3.4)

Fisher Merging Let us consider the posterior p(θi|D) following a Gaussian dis-

tribution N (θ̂i, H
−1). Here, θ̂i represents the parameters of the trained modeli, and

H−1 corresponds to the Hessian matrix of θi obtained through the second-order

Taylor expansion at the mode of the posterior. It has been established that the

Hessian matrix in this distribution coincides with the Fisher information, but for

computational efficiency, we only utilize the diagonal elements of the Fisher matrix.

The desired solution θ∗ can be expressed as shown in Equation 3.5, capturing

the essence of the Fisher likelihood.
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θ∗ = argmax
θ

∑
i

λi log p(θ | θi, Fi), (3.5)

where Fi = Ex

[
Ey∼pθi(y|x)∇θ log pθ(y|x)∇θ log pθ(y | x)T

]
(3.6)

The closed-form solution for θ∗ can be obtained as shown in Equation 3.7,

which directly incorporates the Fisher matrix. In practice, we utilize an empirical

estimate of the Fisher matrix, denoted as F̂ , as shown in Equation 3.8[18].

θ∗(j) =

∑
i λiF

(j)
i θ

(j)
i∑

i λiF
(j)
i

, (3.7)

where Fi =
1

N
Ey∼pθ(y|x)(∇θ log pθ(y | x))2 (3.8)

3.2.2 Applying Model Ensemble

By expressing the Fisher matrix we intend to compute in eq.3.7 in terms of recom-

mendation factors, we can decompose it into the following components:

ExiEy∼pθ(y|xi) (∇θ log pθ (y | xi))2

=
1

N

∑
i

∑
j

pθ (yj | xi) (∇θ log pθ (yj | xi))2

=
1

|U|

|U|∑
i

|V|∑
j

pθ (vj | si) (∇θ log pθ (vj | si))2 .

(3.9)

There are two computational challenges associated with the above equation. First,

calculations need to be performed for each individual sample si. Second, calcu-

lations need to be performed for each item vj within a single sample. The reason
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why these points acts as a drawback in recommendation systems is due to the large

number of users and items in the data. For instance, in the case of MovieLens-1M

dataset[13], there are about 6000 users and 3500 items. However, performing Fisher

matrix calculations that require differentiation with respect to θ for each user and

item becomes a computational burden.

Sampling sequences

Batch-wise Computation To address the first challenge of performing com-

putations on individual samples, we reinterpret the equation and carry out the

calculations on a batch basis. It should be noted that pθ (vj |si) can vary for each

sample si. Therefore, we perform the sorting of pθ (vj |s) to address this variation,

where BS indicates batch size:

|U|∑
i

|V|∑
j

pθ (vj | si) (∇θ log pθ (vj | si))2

=
∑
BSk

|V|∑
j

(
BSk∑
i

pθ (vj |si)

)(
∇θ

BSk∑
i

log pθ (vj |si)

)2

.

(3.10)

Sampling items

To alleviate the computational burden associated with iterating over all j values,

which scales with |V|, we employ a sampling-based approach within the method-

ology. This sampling strategy aims to reduce the computational cost while main-

taining the representativeness of the calculations.

Random Sampling We compute the eq.3.2.2 by randomly sampling j from the

total number of items. This process was performed to calculate the Fisher matrix
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without any specific assumptions or prior knowledge.

Top-k Sampling The probability which is output by the model can be inter-

preted as the preference or likelihood of the recommended items for a given sample.

Based on this interpretation, we select a set of n items that are most likely to be

of interest to the corresponding user, i.e. pθ (vj | si). Subsequently, we compute the

Fisher matrix with these selected items as the focal points. By focusing on this

subset of items that are expected to be of highest interest, we aim to capture the

relevant information for optimizing the model’s performance effectively.

|V|∑
j

pθ (vj | s) (∇θ log pθ (vj | s))2

≈
top-k∑
j

pθ (vj | s) (∇θ log pθ (vj | s))2 .

(3.11)

Model-based Sampling To select a subset of items for further analysis, we

randomly sampled items based on their conditional probability pθ(vj |si) using a

weighted random selection process. The selection probability of each item was de-

termined by its associated probability stored in the model’s output. By selecting

items with higher probabilities, we focused on a specific number of items that were

more likely to align with the user’s preferences or interests. This allowed us to

analyze and evaluate the subset of items based on their associated probabilities ob-

tained from the model’s output. With N denotes the sample size, his approximation
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can be represented as:

Ey∼pθ(y|x) (∇θ log pθ (y | x))2

≈ 1

N

N∑
vj∼pθ(vj |s)

(∇θ log pθ (vj | s))2 .
(3.12)

Calculate with target item We compute the Fisher matrix based on the target

item, disregarding other items with limited direct relevance. By employing this

approach, we focus solely on the target item and its associated information to

calculate the Fisher matrix. Our rationale behind this decision is to prioritize the

target item’s impact on the model’s optimization process, as it is directly linked

to the specific objective or task at hand. Consequently, we exclude items with

minimal direct relevance to ensure a more targeted and meaningful computation

of the Fisher matrix.

pθ
(
v∗j | s

) (
∇θ log pθ

(
v∗j | s

))2
, (3.13)

where v∗j is the target item.

19



Figure 3.1: Parameter Merging
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Chapter 4

Experiment

4.1 EHRec Analysis

4.1.1 Comparison with Baseline Models

We conducted comparisons with existing studies in the field of Sequential Rec-

ommendation using contrastive learning. The comparisons were performed on the

MovieLens-1M dataset[13] denoted as ML-1M, and we measured the performance

metric NDCG@10 (Normalized Discounted Cumulative Gain at 10), the ranking

evaluation metric, under the Full[19], Random100, and Popular100[16] settings,

predicting next item recommendation task as previous work[14, 28, 32, 25]. The

last movie is considered as the test set, and the validation data is used to pre-

dict the preceding movies. During training, we adopt a masked language modeling

approach similar to BERT[8], where we mask certain movies in the sequentially

ordered list and task the model with predicting them. The evaluation method used

in this study is the Normalized Discounted Cumulative Gain at 10 (NDCG@10),

which is a ranking-based evaluation approach[14]. It ranks the top 10 items pre-
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Table 4.1: Comparison to Baseline Models. The bold represents the best perfor-
mance compared to other models in the specific metric setting.

FULL RANDOM POPULAR
CL4SRec 0.0955 0.5156 0.0479

sup.
DuoRec 0.1348 0.5613 0.0454

EHRec(Ours)
kstat 0.1338 0.558 0.0458
klearn 0.1357 0.5676 0.0449

-
DuoRec 0.1382 0.5581 0.0458

EHRec(Ours)
kstat 0.1365 0.5638 0.0454
klearn 0.1337 0.5601 0.046

dicted by the model based on their perceived preference and considers the actual

ranking of the preferred items. A higher NDCG value, closer to 1, indicates better

performance. Different NDCG values can be obtained depending on the selection

of items, such as from the full item pool, a random set of 100 items, or the top 100

most popular items.

Looking at Table 4.1, we can observe that EHRec achieved the best performance

in the Random setting. However, when comparing the performance of EHRec and

DuoRec[25] in the Random setting, we can see that while the negative sample

construction led to performance improvement when using the same positive pairs,

it fell short in the Full and Popular settings.

4.1.2 SimThres

Selecting kstat We initially examined the changes in similarity values. We observe

as the model’s training progresses, there is a distinct shift in the distribution of

high similarity values, as shown in Figure 4.1. We identified this range as the region

where the differentiation between negative and false negative pairs takes place. The

rapid change was observed near the top 10 percentile range. Therefore, we set the
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threshold, kstat, to 0.9, considering the bottom 90 percentile as negative pairs.

(a) Embedded Sequences of CL4SRec[32] (b) Embedded Sequences of DuoRec[25]

Figure 4.1: Similarity distrubution

Effect of Regularizer kstat in klearn While the statistical approach for deter-

mining a similarity threshold is effective, it has limitation that it assumes that the

same threshold value should be shared across all sequences. However, similarity is

computed for each batch in practical training scenarios, and the local similarity

distribution may differ from the overall distribution used to determine the global

threshold kstat. This lead to the necessity of each sequence requiring a different

threshold value based on the given sample. To address this, we utilize a small MLP

model to learn the optimal threshold value for each batch and sequence. As men-

tioned earlier, rapid threshold learning can help reduce bias in overall training.

Therefore, we incorporate a regularizer for klearn, utilizing kstat. The effect of a

regularizer is shown in Figure 4.2.

As kstat is calculated based on the similarity values of previous epoch, klearn

follows the value of kstat. Also, with kstat regularization, the final value differs and

leads to difference in distibution between sequences.
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(a) Similarity Threshold of kstat

(b) Similarity Threshold of klearn

Figure 4.2: Similarity Threshold
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4.1.3 Item Embedding Quality

To assess the quality of embeddings, we utilized the performance metric of unifor-

mity, commonly used in contrastive learning evaluations. Building upon previous

research efforts such as DuoRec[25], which focused on improving uniformity, we ex-

amined the uniformity metric in the context of EHRec. Given EHRec’s emphasis on

the composition of negative samples rather than positive pairs, we specifically inves-

tigated the impact on uniformity. The experimental setup consisted of measuring

the uniformity for baseline models employing different augmentation techniques in

contrastive learning, and subsequently evaluating the uniformity when incorporat-

ing EHRec with each augmentation method. The uniformity metric[29], denoting

the degree of dispersion, is represented as a value, where a lower value indicates a

more desirable outcome Figure 4.3 presents the obtained results. For convenience,

we plotted the negative of uniformity in the figure.

When comparing against the same positive sampling strategy, we observe that

employing our proposed adaptive method for constructing negative samples leads

to reduced uniformity, indicating a more widely dispersed formation of item em-

beddings.

4.2 Model Ensemble Analysis

4.2.1 Results of Model Merging

Examine the results through Table 4.2 and Table 4.3. Table 4.2 presents the results

obtained by training models, namely BET4Rec[28], CL4SRec[32], and DuoRec[25].

We merge these models using Fisher methods. While Table 4.2 demonstrates the

results of models trained solely from scratch. Table 4.3 represents the results of fine-
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Figure 4.3: Comparing Uniformity with Baseline Model

tune setting. We train the baseline model without contrastive loss for 20 epochs,

which is the convergence point of the baseline experiment without any additional

contrastive loss, similar to BERT4Rec. Following this, each model; BERT4Rec[28],

CL4SRec[32], DuoRec[25], underwent fine-tuning according to their respective meth-

ods, and the results were merged using Fisher methods. In both conditions, we

fine-tuned addtional epoch after merging process.

Fisher merge fails to improve the performance of individual models in baseline

setting. When Fisher merge is applied during the fine-tuning setting, it leads to

improved performance compared to individual models. This finding aligns with pre-

viously reported phenomena[9] where individual models tend to achieve higher per-

formance than merged model in the baseline setting. However, the results of Fisher

merge in the fine-tuning setting show comparable performance with the individual

models in baseline setting, while the individual recipe models of fine-tuning setting

do not exceed. Also, the results indicate that even for models that have not been

sufficiently trained such as CL4SRec in our setting, merging parameters resulted
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in comparable performance to other models, demonstrating robustness.

Table 4.2: Results of parameter merging; Fisher-merge on Baseline Settings. The
recipes used for merging were trained for the same number of epochs. ‘POS.’ refers
to the method of constructing positive pair, ‘sup’ to supervised augmentation and
‘-’ to supervised and unsupervised augmentation in subsection 2.1.2

model pos full random popular

baseline 0.1398 0.5651 0.0482
cl4srec 0.0955 0.043 0.0429
duorec sup 0.1348 0.5575 0.044

unsup 0.1301 0.5592 0.0438
- 0.1382 0.5588 0.0464

fisher 0.1289 0.5495 0.0472

Table 4.3: Results of parameter merging; Fisher-merge on fine-tune Settings. The
recipes used for merging were trained on baseline model (without contrastive loss)
and fine-tuned on each model.

model pos full random popular

baseline 0.135 0.5573 0.0426
cl4srec 0.0585 0.0513 0.0466
duorec sup 0.1346 0.5547 0.0454

unsup 0.1358 0.5594 0.0445
- 0.1351 0.554 0.0423

fisher 0.1386 0.5618 0.0428

27



Table 4.4: Effect of Sampling Method and Sampling Size. We merge models in settings of Table 4.3, the fine-tune
setting. We merged models with 4 sampling methods; random sampling, top-k sampling, model-based sampling,
and calculate on target item, on 3 different sampling size; n=10, n=30 and n=50. Bold represents the best variant
in each evaluation setting, and underlines indicates the second best variation.

sample size FULL RANDOM POPULAR

NDCG@10 NDCG@20 NDCG@10 NDCG@20 NDCG@10 NDCG@20

baseline 0.135 0.1601 0.5573 0.5786 0.0426 0.0706
CL4SRec 0.0585 0.0751 0.0513 0.043 0.0466 0.0701

DuoRec (sup.) 0.1346 0.1591 0.5547 0.58 0.0454 0.068
DuoRec (unsup.) 0.1358 0.1609 0.5594 0.5782 0.0445 0.0742

DuoRec (sup.&unsup.) 0.1351 0.1599 0.554 0.5732 0.0423 0.0724

random sampling 10 0.1379 0.1638 0.5606 0.5825 0.0457 0.0691
30 0.1366 0.1624 0.5584 0.58 0.0477 0.0726
50 0.1386 0.1636 0.5598 0.5813 0.0419 0.0419

top-k sampling
10 0.1364 0.1624 0.5602 0.5817 0.0446 0.0689
30 0.1373 0.1616 0.5637 0.5835 0.0457 0.0708
50 0.1387 0.1635 0.5592 0.5807 0.0424 0.0672

model-based sampling
10 0.1358 0.1619 0.5564 0.5782 0.044 0.0696
30 0.1385 0.1646 0.5579 0.5784 0.0446 0.0689
50 0.138 0.1632 0.5605 0.5814 0.0465 0.0719

calculate on target item 0.1386 0.1628 0.5618 0.5806 0.0428 0.0725
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4.2.2 The Validity of Batch-wise Computation

We performed batch-wise computations with the aim of implementing an efficient

Fisher matrix calculation. Compared to computing on individual samples, grouping

samples into batches allowed us to achieve computational efficiency.

The following Figure 4.6 illustrates the method for minimizing errors when per-

forming calculations on a batch basis. The figure demonstrates that within a batch

containing 10 samples, denoted as si, there is a phenomenon where the probabilities

of item vj decrease in a similar manner. By sorting the samples si based on the

probability of vj , even when grouping them into batches, it is possible to minimize

the error described by the eq.3.10. Furthermore, the figure illustrates the rationale

behind top-k sampling. For the top-k items, the probabilities hold meaningful in-

formation, whereas for the remaining items, the probabilities are nearly zero or

close to it.

4.2.3 Effect of Sampling Methods and Size

To investigate the effect of sampling methods, we conduct experiments by varying

the number of sampled samples and the sampling techniques employed. Specifi-

cally, we consider three sample sizes: n = 10, n = 30 and n = 50, and four different

sampling methods: random sampling, top-k sampling, model-based sampling, and

calculate with target item. The results of these experiments can be observed in Ta-

ble 4.4. The table provides insights into the performance of each sampling method

under different sample sizes, allowing us to analyze their respective effects on the

task at hand. Note that this result is calculated on batched data. To examine

the results of parameter merging, we conducted experiments in fine-tuning setting,

explained in 4.3.
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The experiments revealed effective ensemble results, particularly showcasing

the robust performance of CL4SRec[32]. Despite having significantly lower perfor-

mance compared to other models during the parameter merging process, the model

with poor performance exhibited robust performance in the Fisher merge results.

Regarding the sampling methods, top-k sampling demonstrated the best perfor-

mance. This can be attributed to the concentration of probabilities assigned to

specific items by the model, effectively approximating the Fisher criterion sought

in the evaluation. Also, the model-based sampling method exhibits a more pro-

nounced improvement in performance as the sampling size increases compared to

other models. We interpret these results as being rooted in the direct interpreta-

tion of the equation defined for Fisher merging. Interestingly, despite the fact that

calculating Fisher matrix on target item has a single sample, the method demon-

strated sampling effectiveness by achieving good performance even with a small

sample size. These findings shed light on the interpretation of experimental results

in the context of deep learning research.

4.2.4 Computational Cost

Figure 4.4 demonstrates computational cost in terms of time consumed during cal-

culating Fisher matrix for single model. The concept of parameter merging involves

additional computation on the existing parameters. Therefore, it is important to

ensure efficiency in this process. To achieve efficiency, considerations such as cal-

culating the Fisher matrix in batch units and performing sampling are necessary.

It is observed that, except for the calculation on the target item, the computa-

tional complexity increases linearly with the sampling size. As for the calculation

on the target item, the sampling size remains fixed at 1 since each sequence has a
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Figure 4.4: Measured Time Consumed for Each Sampling Method and Size. We
sample items from MovieLens-1M dataset. Time is measured in batch-wise setting,
where batch size is 256.

single target item. Thus, our research is significant as it approximates the Fisher

matrix calculation with a much smaller number of items (around 3000) compared

to calculating it on the entire item set.

4.2.5 Visualization of Merged Weights

We present a visual illustration to aid in the intuitive understanding of the merged

weights. Figure 4.5 represents the fine-tuning setting of 4.3, where the three cen-

troids correspond to the weights of individual models. The plane visualized in 4.5

encompasses these three weights. The scattered points, projected onto the plane, de-

pict 100 samples drawn from N (θm, Fm). It is observed that the baseline weight ex-

hibits the largest variance. This can be attributed to the experimental setup where
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Figure 4.5: Visualization for Weights of Merged Models. Based on the plane contain-
ing 64-dimension parameters of three model, we visualised its weight, 100 samples
from each posteriors and merged parameters

the baseline is pre-trained and then fine-tuned with CL4SRec[32] and DuoRec[25].

The weights obtained through uniform merging are represented as the average of

the three centroid points, while the weights obtained through Fisher merging take

into account the variances of these recipe weights. It can be seen that the weights

obtained through Fisher merging considered posterior and variance with Laplace

approximation and provides nice initial point for fine-tune.
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4.2.6 Motivation : Error Inconsistency

Table 4.5: Effect of Constructing Pair of Contrastive Loss (%). We observe that
models with divergent training methodologies exhibit distinct generalization be-
havior, resulting in highly uncorrelated errors.

similar disssimilar

CL4SRec 8.05 < 11.41
DuoRec 8.67 < 11.18

Previous research[12, 33] demonstrated the increased effectiveness of ensemble

methods as error inconsistency grows. Building upon the existing research dis-

course, we conducted the current experiment. In this study, we analyze the impact

of Fisher merging in the context of sequential recommendation systems, attributing

its effectiveness to the selection of recipe models trained using different frameworks.

In our experiments, we employ a model based on the BERT4Rec[28] architecture

as our baseline. To enhance the performance of the model, we apply various data

augmentation techniques to enable contrastive learning.

To analyze the effects of contrastive loss, we divide the training frameworks

into two categories: similar and dissimilar. The similar learning frameworks are

trained using the same loss function but with slight variations such as different seeds

and hyperparameters, indicating the relationship among models trained with small

changes. On the other hand, the dissimilar learning frameworks involve different

data augmentation techniques, resulting in variations in the construction of positive

and negative pairs for contrastive loss[29].

Error inconsistency[11] refers to the percentage of data where two models have

different classification results, with one model making correct predictions while the
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other model makes incorrect predictions. Since we are not dealing with classifi-

cation, we considered a model to have made a correct prediction if the value of

NDCG@10 is above 0.5.

By comparing the error inconsistency between similar framework and dissimilar

framework, we observe the effectiveness of contrastive loss. An observation that can

be inferred from Table 4.5 is that the constructing positive pair for contrastive loss

significantly affects the similarity of the samples that the models predict accurately.

As the method for constructing positive pair varies, the models demonstrate a

considerable difference in their ability to predict samples correctly. This finding

highlights the sensitivity of the models to the specific construction of the contrastive

loss, which in turn impacts their predictive performance.

4.2.7 Robustness of Fisher Merging; Recipe Selection

We compared two different recipe selection in Table 4.6; Fisher merged parameters

with least performance model and Fisher merged parameters without the model.

In our experimental setup, CL4SRec did not exhibit superior performance com-

pared to other models, considering the chosen hyperparameter settings and other

factors. Therefore, we aim to leverage the elements of the recipe to demonstrate

the robustness effect of Fisher merge. Our findings confirm that by removing un-

derperforming models as individual components and applying Fisher merge, the

resulting ensemble demonstrates robustness.

4.2.8 Visualization of Sorted Probability

The figure displays the sorted probabilities of the top 50 items for 10 sequences,

where single line represents single sequence. The cumulative probability values for
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Table 4.6: Ablation Study of Results of parameter merging; Fisher-merge on fine-
tune Settings. The recipes used for merging were trained on baseline model (with-
out contrastive loss) and fine-tuned on each model. Ablation Study illustrates the
situation of recipe without the model with least performance.

model pos full random popular

baseline 0.135 0.5573 0.0426
cl4srec 0.0585 0.0513 0.0466
duorec sup 0.1346 0.5547 0.0454

unsup 0.1358 0.5594 0.0445
- 0.1351 0.554 0.0423

fisher (with) 0.1386 0.5618 0.0428
fisher (w.o.) 0.1373 0.5603 0.0487

sample sizes of 10, 30, and 50 are 0.381, 0.569, and 0.658, respectively. With the

exception of a few largest ones, the majority of probabilities approximate 0.

Figure 4.6: Sorted Probability pθ (vj |si).
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Chapter 5

Conculsion

This thesis addresses the challenges in sequential recommendation systems by

proposing two significant contributions. Firstly, we introduce an advanced approach

to contrastive learning to overcome data sparsity limitations. By adaptively select-

ing threshold based on sequence similarity and construct negative samples, we

enhance the quality of item embeddings and mitigate false negative problems. Sec-

ondly, we present a novel ensemble technique, Fisher merging, for sequential models,

enabling robust fine-tuning through parameter merging. Our experimental results

demonstrate the effectiveness of these proposed methods in improving recommen-

dation performance. These contributions have the potential to advance the field

of sequential learning and recommendation systems, offering valuable insights for

future research and practical applications.
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국문초록

온라인 플랫폼과 서비스의 급격한 성장으로 인해, 추천 시스템은 사용자의 선호도에

기반하여관련아이템을식별하는데필수적인역할을한다.특히,순차적추천분야에

서는사용자의시간에따라변화하는선호도를포착하는것을목표이다.이를해결하기

위해, 추천 시스템에서 한정된 사용자-아이템 상호작용으로 인한 데이터 희소성 문제

에 대응하기 위해 대조적 학습 방법이 제안되었으나, 이러한 방법들은 유사한 샘플과

상이한 샘플을 구분하는 데에 대한 한계가 있다.

본 논문에서는 순차적 학습 분야에서의 두 가지 주요 기여를 제시하고자 한다.

첫째로, 순차적 추천 시스템을 위해 설계된 대조적 학습 방법을 고도화합니다. 상이한

샘플을 적응적으로 구성함으로써 아이템 임베딩의 품질을 향상시켜 추천 작업의 성

능을 향상시키고자 한다. 둘째로, Fisher 병합을 적용하여 순차적 모델의 협업 기법을

소개한다. 이 접근 방식은 다중 모델의 매개변수를 병합하여 파인튜닝을 실현하며,

견고한 성능을 강조한다. 실험을 통해 제안한 방법의 효과를 입증하고, 이러한 방법

이 순차적 학습 및 추천 시스템 분야의 최신 기술 발전에 기여할 수 있는 잠재력을

강조한다.

주요어휘: 대조학습, 앙상블, 순차 추천

학번: 2021-26380
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