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Abstract

A good quality-of-experience (QoE) percieved by the end user is the most im-

portant goal of network systems for video streaming. Client-side video players

adopt adaptive bitrate (ABR) to achieve this goal over varying network condi-

tions. In optimizing the performance of ABR, researchers and engineers have

proposed several rule-based algorithms and more recently, deep reinforcement

learning based ABR algorithm has been proposed, reporting a better over-

all QoE over real network traces. However as RL-based bitrate control gained

more attention, recent research also report corner cases of RL, such as occa-

sional bitrate overshoots or underperformance in network conditions far from

the trained dataset. In this paper we analyze when the RL-based ABR alo-

gorithm makes poor bitrate decisions compared to rule-based algorithms and

propose a desgin to replace these decisions with the better decisions of a rule-

based algorithm. We implemented Hybrid, the ABR algorithm that gets the

best of the two worlds and validated it over real network traces.

Keywords: Reinforcement Learning, Adaptive Bitrate, Video Streaming

Student Number: 2021-22299
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Chapter 1

Introduction

As quality-of-experience (QoE) is the most important goal of video streaming

systems, abundant algorithms have been proposed to better perform the adap-

tive bitrate (ABR) in the client-side video player. As traditional rule-based

algorithms [1, 2, 3] are still leveraged today, an approach to use deep reinforce-

ment learning [4] has shown great performance.

As the RL-based approach performs the best in average QoE. We find that

this does not mean the RL-based approach excels in all conditions. We find

similar number of traces in the entire trace data [5] where a rule-based state-

of-the-art, RobustMPC performs the best in terms of trace-level average QoE.

As most content providers aim to provide quality video streaming experience

for all end users, not on average, this can be a problem to address.

Since RL is a black-box, it is hard to fix the RL model to act in well in some

wanted scenarios. So in the paper, we propose decision-level multiplexing, using

RL model’s decision as default, but using the rule-based algorithms as fallback.

Yet, due to the black-box nature of RL, it is challenging to find scenar-
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ios where an RL model’s bitrate selection is worse than that of a rule-based

decision. We assumed that there will be patterns of conditions where the RL

underperforms and decided to use the patterns as a solution.

We divide the solution into two stages. In the first stage, which is offline, we

detect the fallback points and map patterns from the detected fallback points.

In the online stage, we leverage the pre-computed pattern information from the

offline stage and identify conditions that are adequate to fallback.

We implemented this design with the name of Hybrid. Hybrid uses Pen-

sieve [4] and RobustMPC [3] as the RL approach and the rule-based algorithm.

We show through evaluation that Hybrid performs better of average QoE com-

pared to Pensieve ro RobustMPC, with a QoE gain up to 17.9%. We also test

Hybrid in network traces that Hybrid’s offline stage did not see and showed

QoE improvement. Our contributions are as follows:

• We find that RL-based ABR algorithm and rule-based algorithms have

different strength.

• We analyze when the RL-based approach makes poor decisions compared

to the traditional rule-based algorithms.

• We design and implement Hybrid, an approach that uses RL as default,

but detects RL model’s weak points and enhances performance by replac-

ing them with rule-based decisions.
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Chapter 2

Background

2.1 Video Streaming over HTTP

Dynamic adaptive streaming over HTTP, which is standardized as DASH [6],

is the dominant model for delivering videos today. In a DASH system, the main

idea is that a video content is split into multiple segments typically correspond-

ing to a few seconds long. As shown in Figure 2.1, the bitrate controller collects

information from components such as throughput predictor or playback buffer.

Based on the network conditions perceived, the ABR algorithm in the bitrate

controller makes the next bitrate decision and the video player will request the

next video chunk over HTTP with the decided bitrate.

To deliver a good QoE, video players and their bitrate controllers consider

multiple aspects that can influence the QoE. These aspects include minimizing

the startup delay of a video, providing the highest level of bitrate as possible

as end users prefer high resolution, minimizing rebuffering, and keeping the

bitrates as smooth as possible since large bitrate jumps are disturbing to end
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Figure 2.1 Overview of HTTP-based adaptive video streaming.

users. Considering the multiple aspects are challenging for ABR algorithms

because these features are often conflicting. For example, providing a smooth

experience may result in the video player not being able to achieve the highest

bitrate since pursuing the highest bitrate will result in the end user experi-

encing all the fluctuations of network conditions. Existing algorithms propose

many methods to address this problem with slightly different focus on aspects

influencing QoE.

2.2 Adaptive Bitrate Algorithms for Video Streaming

We can categorize ABR algorithms used in bitrate controllers into traditional

rule-based algorithms and the relatively recent deep reinforcement learning

based algorithm.

2.2.1 Rule-based Algorithms

Rule-based algorithms take network conditions as input and calculate the next

request bitrate as the output of a fixed rule. We can sort the rule-based algo-
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rithms into two types, (1) algorithms that primarily decide bitrates on playback

buffer occupancy observations and (2) algorithms that look at both the play-

back buffer occupancy and the estimated network throughput.

The buffer-based approach proposed by Huang et al [1] is an example of the

first type. In this approach, the algorithm considers a playback buffer occupancy

of 5 seconds as an untouchable minimum. If the buffer occupancy gets low near 5

seconds, the algorithm always decides on the lowest bitrate. It also considers an

additional 10 seconds of buffer occupancy as a cushion. If the buffer occupancy

is over the total of 15 seconds, the algorithm decides on the highest bitrate

possible. BOLA [2] is also an algorithm primarily considering the playback

buffer occupancy. BOLA sees the bitrate decision as an optimization problem

with a minimum buffer occupancy as with [1] and a target buffer occupancy.

Model predictive control (MPC) [3] and its variant RobustMPC [3] are

examples of the second type where the algorithms take network throughput

estimation into account as well. In MPC, instead of trying to reach for the

features contributing to the final QoE, since QoE is established as an equation of

network inputs, it solves the optimization problem with the QoE as the objective

itself. It exploits the given throughput estimator of the video player, which takes

recent video chunk throughputs to predict future throughput. Also taking the

current buffer occupancy and the previous bitrate into account, MPC utilizes

an off-the-shelf solver to decide on the optimal bitrate. A variant of MPC, the

RobustMPC is a conservative version where it takes into account maximum

throughput error prediction in the last five video chunk estimations. It uses the

maximum error as a discount factor to the throughput predictions, resulting

in considering lower throughput estimates. Besides the RL-based approach,

RobustMPC is considered the state-of-the-art ABR algorithm.
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Figure 2.2 Overall design of Pensieve [4], an RL-based ABR algorithm.

2.2.2 RL-based Algorithm

With the rule-based algorithms using a fixed control rule, they require an ac-

curate model of system dynamics and do not generalize over different envi-

ronments. To address this, Pensieve [4], a deep reinforcement learning based

ABR algorithm is proposed, not relying on any assumptions about the network

environment. Pensieve trains a neural network to select a bitrate when the ob-

servations of the network is given as an input. As shown in Figure 2.2, Pensieve

takes raw observations such as previous throughputs, download times, playback

buffer occupancy, and last bitrate. As output, the neural network presents the

probabilities of each action and the bitrate with the highest probability is cho-

sen to be the next bitrate. Pensieve exploits the state-of-the-art actor-critic RL

algorithm A3C [7] and is trained on various real network traces. As shown in

section 3.1, Pensieve generally outperforms the rule-based ABR algorithms.
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Chapter 3

Observation

3.1 Performance of ABR Algorithms

We analyzed performance of different ABR algorithms in simulations using 142

Norway 3G/HSDPA mobile traces [5]. For the simulation environment we used

the chunk-level simulator available at [4]. When the ABR algorithms decide on

the next bitrate, the simulator faithfully returns metrics such as throughput,

QoE, and buffer occupancy according to the trace, bitrate decision, and the

current network state.

For the average QoE over the traces, we can see from Table 3.1 that Pensieve

shows the best result with 17.7% better average QoE than the rule-based state-

of-the-art, RobustMPC. However, this did not mean that Pensieve shows best

performance in all traces. As we examined trace-level average QoE, we could

find that Pensieve shows best average QoE on only 73 out of 142 traces, which

is only 51.4% of the entire set. RobustMPC showed best average QoE on 68 of

the 142 traces, which is 47.9%, not much different from that of Pensieve.
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Algorithm Average QoE

Rule-based

Buffer-based (BB) [1] 0.279

Model Predictive Control (MPC) [3] - 0.197

RobustMPC [3] 0.485

RL-based Pensieve [4] 0.571

Table 3.1 Average quality of experience. Evaluation on simulations over

142 Norway 3G/HSDPA mobile traces [5].

Buffer-based (BB) MPC RobustMPC Pensieve

Number of best QoE trace 0 1 68 73

Table 3.2 Number traces where each algorithm showed best average

QoE. Although Pensieve [4] shows best average QoE throughout the entire

trace set, Pensieve does not deliver best QoE in all scenarios.

To get a hint of the behaviors and strong suits of each ABR algorithms, we

analyzed the characteristic of top-10 traces where Pensieve and RobustMPC

outperformed the second best algorithm regarding average QoE. Figure 3.1

shows the network bandwidth distributions of the traces. As shown in Fig-

ure 3.1, the environments where each algorithm excel were fairly different. Av-

erage bandwidth of RobustMPC top traces were 2.64 Mbps, while the average

of Pensieve top traces were only 1.63 Mbps. Also, the average bandwidth fluc-

tuations were 0.28 Mbps for RobustMPC top traces and 0.21 Mbps for Pensieve

top traces, with fluctuations calculated as the gap between the current and the

last network bandwidth. As video content providers are interested in providing

quality video streaming experience to all the end users, not only on average,

the lack of an algorithm that suits all scenarios can be a problem.
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Figure 3.1 Network bandwidth distributions of top-10 traces where Pensieve

and RobustMPC outperforms the second best algorithm.
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Figure 3.2 Example trace where RobustMPC achieved the best average QoE.

3.2 Behaviors of ABR Algorithms

Figure 3.2 and Figure 3.3 show how each algorithm behaves along the same

traces. Looking at the bahviors of the buffer-based approach (BB) [1], we can

see much fluctuations in terms of bitrate. This is because as described in subsec-

tion 2.2.1, the buffer-based approach only takes the playback buffer occupancy.

We can also find the buffer-based approach keeping the buffer occupancy at a

stable level. MPC [3] shows smaller fluctuations compared to the buffer-based

approach, with the algorithm considering more features comprehensively, and

with RobustMPC being the conservative version of MPC, it exhibits a more

smoother bitrate. Figure 3.2 is a scenario where RobustMPC achieved the best

average QoE. With the bandwidth fluctuations high in the trace, the approach

14



Figure 3.3 Example trace where Pensieve achieved the best average QoE.

of RobustMPC which is designed to cope with situations where throughput

estimation has errors looks right to perform well.

Unlike the case of the three rule-based algorithms, it is hard to analyze

the behaviors of Pensieve [4] as it depends on a black-box model. Looking

at recent research for hints, some research on RL on network systems [8, 9]

mention bitrate overshoot of RL as a problem and this pattern could also be

found in our observations as in Figure 3.2. Also in works that analyze RL-

based ABR algorithm using interpretation tools [10, 11] point out that the

ABR algorithm considers the last bitrate as the most important decision factor.

As shown in Figure 3.3, Pensieve displayed many cases where it achieves the

best smoothness, aligning with the intuition that the black-box model considers

the last bitrate importantly. This trait of Pensieve usually led to better QoE,
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but in some cases, considering smoothness too much led to under-utilization of

network bandwidths and poor QoE compared to other algorithms.
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Chapter 4

Hybrid: Decision Level
Multiplexing

In chapter 3 we observed that rule-based algorithms and the RL-based algo-

rithm excels in different scenarios. From the observation, we propose Hybrid, a

ABR algorithm that aims to achieve the best of two worlds. Figure 4 shows the

overview of Hybrid. As default, Hybrid utilizes the generally good performing

RL-based ABR algorithm, but falls back to decisions of rule-based algorithms

when rule-based decisions are better. To achieve the goal of Hybrid, it uses a

two-stage design. The first stage is an offline stage, where the calculation of pat-

terns of adequate fallback points is done in advance. The second stage is online,

where Hybrid determines whether the current network condition is adequate

for fallback based on the pre-computed results of the offline stage.
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Figure 4.1 Overview of Hybrid.

4.1 Offline Mapping of Fallback Patterns

The challenge in achieving Hybrid’s goal is in deciding when to fallback to

the rule-based algorithm. This is complicated further by the black-box nature

of RL. As mentioned, it is hard to comprehend how the RL model makes its

decision and the agent is not targeted to achieve certain aspects contributing

to the QoE as some rule-based algorithms are. Because of this black-box nature

of RL, it is difficult even for domain experts to decide on when the RL model

underperforms and so the fallback is needed. We decided to use the past network

traces as a solution, by examining when it would have been better to replace

the RL agent’s decision with a rule-based bitrate selection, and mapping the

characteristics of the incidents into patterns for later use.

4.1.1 Fallback Point Detection

The first part of the offline mapping is to detect when an RL based deci-

sion should have been replaced by a rule-based decision. Hybrid leverages Pen-

18



sieve [4] and RobustMPC [3] as its RL and rule-based ABR algorithms. To

begin with, we list up the candidate points of RL algorithm underperformance.

The candidate points are selected as moments in trace where the QoE of Pen-

sieve was lower than that of RobustMPC along with 5 past moments from the

lower QoE observed moment. Past moments are considered as well because an

underperformance at one point can be a result from a bad decision in the past.

For all the candidate points, we replay the trace with (trace name, timestamp)

as input. The replay mechanism will run the trace with the decision at the given

timestamp replaced with the bitrate selection of RobustMPC. If the replaced

trace average QoE is higher than the original RL-only average QoE, we classify

the point as a fallback point. From 142 Norway 3G/HSDPA mobile traces [5],

we could detect 203 fallback points. A detailed analysis of the fallback points

will be illustrated in section 5.1.

4.1.2 Pattern Mapping of Fallback Points

From the detected fallback points, we need to find patterns the online fall-

back point identifier can look for. From our analysis(section 5.1), observa-

tions(section 3.2), and from the our domain knowledge that rebuffering is treated

critically we categorized the fallback points into five types. Detailed explanation

can be found in Table 4.1.

The fallback points are classified according to the decision tree in Figure

4.2. First, we check whether the rebuffering was observed at the fallback point.

All fallback points with rebuffering are classified as REBUFFERING because

in ABR, the behaviors of ABR algorithms are drastically different from non-

rebuffering cases. Then, we compare the RL-based bitrate decision with the

bitrate decision of RobustMPC. We know for a fact that the rule-based decisions

are better decisions for the fallback points. So if the rule-based decision is lower
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Type Description

UP Need to increase bitrate, but not enough shown.

UP-OVERSHOOT Need to increase bitrate, but too much shown.

DOWN Need to decrease bitrate, but not enough shown.

DOWN-OVERSHOOT Need to decrease bitrate, but too much shown.

REBUFFERING Poor rebuffering handling.

Table 4.1 Fallback types.

Figure 4.2 Decision tree to classify fallback points.
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Figure 4.3 Aggregation of fallback point observations converted to a pattern.

than the RL-based bitrate selection, we can classify the fallback points to one of

DOWN and UP-OVERSHOOT, meaning the bitrate should be lower than the

current decision. The rest can be classified into UP or DOWN-OVERSHOOT

in the same way. Lastly, we compare the last bitrate with the current bitrate

decision of RL. If a fallback point is one of DOWN and UP-OVERSHOOT and

the bitrate has increased, it can be classified as UP-OVERSHOOT. The same

can be applied to DOWN-OVERSHOOT.

With the fallback points classified into five types, now we can map these

points to fallback patterns for online use. Bitrate controller of a DASH [6] system

makes bitrate decisions on observations of the present and the past as these are

all the information we can get in the online stage. This is also the case for

fallback decision. So Hybrid needs to identify a fallback point by finding similar

patterns of the observed data of the five fallback types. For accurate pattern

detection, we take 8 types of observations into consideration. These include
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bitrate, bandwidth, buffer occupancy, extra bandwidth, delay time, rebuffering

time, smoothness, and the difference between RL and rule-based decision. As we

identified fallback points into five types, we aggregate the observations of each

patterns. By averaging the observations and applying min-max normalization,

we can retrieve five vectors of observation patterns as in Figure 4.3 for each

type.

4.2 Online Fallback Point Detection

In the online stage, Hybrid leverages the pre-computed pattern vectors to iden-

tify a fallback point. Listing 4.1 describes how the online identifier detects

fallback points. hybrid collects observations online, including the 8 features of

observations used in offline mapping and converts it into a vector like one of the

pattern vectors. Then the observed vector will be calculated cosine similarity

with the offline pattern vectors. In the case any of the pattern similarity is over

the threshold, the moment is identified as a fallback pattern like moment and

rule-based decision of bitrate will be used.
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# Fa l l b ack po in t i d e n t i f i e r

# pa t t e rn s from o f f l i n e mapping

PATTERNS = [ [ 0 . 3 3 , 0 . 57 , 0 . 29 , 0 . 75 , . . . ] , [ 0 . 7 8 ,

0 . 19 , 0 . 35 , 0 . 58 , . . . ] , . . . ]

# inpu t s are normal ized

def i d e n t i f i e r ( bandwidth , b i t r a t e , b u f f e r s i z e ,

b i t r a t e d rop , . . . ) :

ob s e rv ed s t a t e = [ bandwidth , b i t r a t e ,

b u f f e r s i z e , b i t r a t e d rop , . . . ]

pattern match = [ 0 , 0 , 0 , 0 , 0 ]

s i m i l a r i t i e s =

c o s i n e s im i l a r i t y (PATTERNS, [ ob s e rv ed s t a t e ] )

for i , sim in enum( s i m i l a r i t i e s ) :

i f sim > THRESHOLD:

pattern match [ i ] = 1

i f sum( pattern match ) > 0 :

return True

return False

Listing 4.1 Fallback point identifier.
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Chapter 5

Evaluation

In this section, we present the analysis over the result of fallback point detection

of subsection 4.1.1 and the performance measures of Hybrid, developed on top

of the detected fallback points.

5.1 Fallback Point Detection

Figure 5.1 and Figure 5.2 are examples of fallback points detected over real

network traces. As shown, when rebuffering occurs Pensieve tends to over-react

and assign a unnecessarily low bitrate. The rebuffering incidents could be found

mostly at trace start when the playback buffer is not ready with a low buffer

occupancy. As in Figure 5.2, UP type fallback points could be detected with

Pensieve not increasing bitrate in situations where extra-bandwidth are con-

stantly observed. Actually of 79 UP fallback points, 78 fallback points showed

the same bitrate as the previous bitrate. This aligns with the observation of sec-

tion 3.2 that the RL black-box tends to take the previous bitrate as the most
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Figure 5.1 Fallback points detected over a network trace 1.

Figure 5.2 Fallback points detected over a network trace 2.
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UP DOWN-OVERSHOOT DOWN UP-OVERSHOOT REBUFFERING

79 71 15 10 29

(38.7%) (34.8%) (7.35%) (4.9%) (14.22%)

Table 5.1 The number of each fallback point types.

important decision factor. The same applies to DOWN. Overshoots of RL lead-

ing to poor bitrate decisions took 39.7% of all the fallback points supporting

the claim in section 3.2 where recent research pointed at RL overshoot as one of

the problems. As shown in Table 5.1, out of 203 fallback points, more than 70%

even without counting REBUFFERING types in, account as fallback points

that required a higher bitrate decision. We assume this is because the reward

function of Pensieve has a rebuffering penalty, causing decisions to slightly be

conservative against increasing the bitrate compared to decreasing it.

5.2 Hybrid Performance

5.2.1 Evaluation Setup

Environment

We evaluated Hybrid in a chunk-level simulator available at [4]. For other en-

vironments, we utilized Ubuntu 18.04, 72 CPU, 252G memory with Python

version of 3.7 and Tensorflow 1.14. As for QoE metric, we utilized QoE-lin

from [3].

Workloads

As workloads, we used 142 network traces of Norway 3G/HSDPAmobile traces [5]

of 37.1k seconds and 85 FCC broadband traces [12] of 105.8k seconds.
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Figure 5.3 Average QoE over Norway 3G traces.

5.2.2 Quality of Experience

Figure 5.3 shows the average QoE over 142 Norway 3G traces. The average

QoE of Hybrid outperform that of Pensieve and RobustMPC with 2.3% gain

in average QoE compared to Pensieve. Out of 142 traces, 107 traces encoun-

tered online fallback point detection and in 60 of the traces, the average QoE

increased.

5.2.3 Generalization

Generalization is also an important factor we considered in designing Hybrid.

To evaluate generalization we evaluated Hybrid over unseen network traces in

during the offline pattern mapping process. We used FCC broadband traces for

this use and Figure 5.4 shows that Hybrid also provides the best average QoE

in unseen environment with a gain of 17.9% gain in average QoE compared to

Pensieve. Surprisingly the gain is even higher in FCC. We assume that since all

the ABR algorithms struggle in the FCC trace, it is easier for Hybrid to find
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Figure 5.4 Average QoE over unseen FCC broadband traces.

fallback points for improvement.
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Chapter 6

Related Work

6.1 RL for Networking Systems

RL has been used for several network systems and many have been showing

notable performance. Especially, RL is currently actively looked upon in the

domain of WebRTC [13]. Recent research such as Concerto [14], OnRL [8], and

Loki [9] are work that apply reinforcement learning to bitrate control in RTC.

In works like Loki, although WebRTC is a different domain to ABR, sees an

opportunity to leverage rule-based bitrate control to enhance RL performance.

Loki introduces a dual fusion attention that converts a rule-based model to a

neural network model and fuses it with the existing RL to reach the best of two

worlds. This kind of methodology may also be applied to ABR and further we

may be able to apply Hybrid to the fused model itself.

In the context of ABR, several works have presented methods to improve the

performance of RL. For example, Genet [15] that uses curriculum learning to

improve the training process of the RL-based ABR algorithm. Another work [16]
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focused on the learning of throughput prediction, which is then used by the

MPC [3]. The techniques of RL for network systems are not directly applicable

to Hybrid, but used together, some of the works seem to be able to gain even

better performance.

6.2 Interpretability of RL in Network Systems

Some research has been proposed regarding the interpretabiliy of RL in net-

work systems. Metis [10] and Trustee [11] are two works that are in this di-

rection. Through imitation learning, these works provide decisions trees that

corresponds to the input black-box model. Since the main challenge of Hybrid

was about figuring out when the RL model would underperform, these works

were helpful in designing Hybrid. Future works on the interpretability of RL

are expected to aid in designing systems and algorithms like Hybrid.
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Chapter 7

Discussion and Conclusion

7.1 Other Approaches

To solve the problem stated in chapter 3, there can be other solutions. We

have tried some of the solutions and have seen some potential. Although these

solution are not dealt in depth in this paper, we present the potential solutions

and our explorations on them.

Simple multiplexing according to bandwidth

Section 3.1 points out that RobustMPC [3] excelling network conditions are

high bandwidth. Using the observation, the first idea would be using rule-based

bitrate decisions in high bandwidth situations. Using the Norway traces [5], we

have prototyped this idea with the bandwidth threshold 2.5 Mbps. As shown in

Table 7.1, this bandwidth-based approach showed higher average QoE compared

to RobustMPC but still lower than Pensieve. This is because this simple design

does not consider the detailed behaviors of each algorithm resulting in many
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RobustMPC Pensieve Bandwidth-based

Average QoE 0.485 0.571 0.54

Table 7.1 Average quality-of-experience of the simple bandwidth-based multi-

plexing approach compared to RobustMPC and Pensieve.

false positives into where to fallback.

Reward engineering

As we analyzed the behaviors in section 3.2 and section 5.1, we can exploit

the information about the behavior patterns of the RL. From analysis we

can find that Pensieve has a tendency to overrate smoothness, resulting in

UP and DOWN patterns, not changing bitrates when necessary. Through re-

ward engineering, we attempted to address this. The following is the reward

function used for training Pensieve with the REBUF PENALTY 4.3 and the

SMOOTH PENALTY 1.

reward = bitrate−REBUF PENALTY × rebuffering time

− SMOOTH PENALTY × smoothness
(7.1)

We have tried different SMOOTH PENALTYs from 0.9 1.05 and the result

is shown in Figure 7.1. The model has been trained with the dataset provided

at [4] using simulations as done in the original Pensieve, but since not all the

dataset used for training the pretrained Pensieve is provided, the average QoE

is not the same even with the original coefficient. We found that 0.975 shows

the best performance and 0.95 also showing better performance compared to

the original 1.
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Figure 7.1 Average QoE according to different smoothness penalty.

Soothness penalty of 0.975 and 0.95 show better performance than the original

1.
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Pensieve Pensieve-plus

Average QoE 0.47 0.51

Table 7.2 Average quality-of-experience of the original Pensieve and Pensieve

with extra-bandwidth added to states over Norway 3G traces [5].

RL agent tuning

One of the reasons that enabled the RL-based algorithm to perform better

than the rule-based algorithm in the first place would be that the RL-based

model can take various types of network conditions into consideration, while

designing a rule that includes multiple conditions is difficult. Also, Hybrid could

detect the faulty network conditions exploiting the many network conditions in

the pattern detection process. From this observation, another possible approach

would be to improve the RL agent itself to use more network conditions as state.

Table 7.2 is the result of average QoE of original Pensieve and Pensieve with

extra-bandwidth added to states. Extra-bandwidth is the value of bandwidth

subtracted by the current bitrate. Both RL agents are trained using the dataset

provided at [4] under simulations as in the original Pensieve paper. We can see

that Pensieve-plus outperforms the original Pensieve leading to hopes that using

this technique along with Hybrid would result in even better results.

7.2 Conclusion

In this paper, we have observed that rule-based and reinforcement learning-

based ABR algorithms have different strengths and proposed an ABR design

that can exploit the best decisions of both worlds. In achieving this goal, we

also provide analysis on conditions where RL-based ABR made poor choices.

On top of our observations, we have implemented Hybrid a ABR algorithm
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that takes offline mapped fallback pattern characteristics and identifies when

to utilized the rule-based decision. We have evaluated Hybrid on real network

traces and also in unseen traces for generalization.

Although performance gain has been detected, a marginal gain is reported

in some scenarios. This is due to the false-negatives and false-positives of the

pattern identification. As future work, engineering about observation character-

istics to take into account may be a good direction. Also, learning the patterns

through deep learning would also be a good exploration route.
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초록

사용자에게 전달되는 영상의 체감 품질을 높이는 것은 비디오 스트리밍에 있어

중요한 목표이다. 사용자쪽의 동영상 플레이어들은 적응 비트레이트를 도입해 변

화하는네트워크환경에도좋은체감품질을전달하고자했고,관련해서많은규칙

기반 알고리즘들이 개발되어 왔다. 최근에는 강화학습 기반 적응 비트레이트가 제

안되어 좋은 성능을 보였는데, 간혹 발생하는 지나친 비트레이트 조정이나 학습된

것과거리가먼환경에서의좋지않은체감품질등이의단점또한부각되고있다.

본 논문에서는 강화 학습 기반 적응 비트레이트가 잘 동작하지 못하는 경우들을

분석하고, 이를 기반으로 이런 경우들에만 규칙 기반 비트레이트의 결정을 사용

하여 보완하는 적응 비트에이트를 제안한다. 또한, 이 디자인을 구현해 Hybrid를

만들고, 이를 실제 네트워크 기록을 활용해 검증한다.

주요어: 강화학습, 적응 비트레이트, 비디오 스트리밍

학번: 2021-22299
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