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Abstract

Mass spectrometry is widely used in various fields such as drug discovery, chemi-

cal synthesis, and environmental chemistry for identifying molecular structures. Mass

spectra are collections of ionized fragments from a target molecule, and the fragmen-

tation patterns within the spectra contain crucial information about the molecule. In

the analysis of mass spectra to identify molecule structures, a common approach is to

perform a spectral library search. This method involves matching the unknown spectra

with a database of mass spectra from known materials. However, the effectiveness of

search-based methods is limited by the availability of the mass spectra database.

In this work, we propose the Motif-based Mass Spectrum Prediction Networks

(MoMS-Net) that incorporates structural motifs to predict mass spectra based on molec-

ular structure. A motif refers to a frequently occurring subgraph or a related functional

group in molecules. We leverage the information from structural motifs for apply-

ing GNNs because motifs are associated with fragmentation patterns and aid in mass

spectra prediction. We evaluate our model on various types of mass spectra and demon-

strate its superior performance compared to other deep learning models. MoMS-Net

can consider substructure at the graph level, allowing it to incorporate long-range de-

pendencies while requiring less memory than the graph transformer model.

keywords: mass spectra, GNNs, Motif, deep learning
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Chapter 1

INTRODUCTION

Mass spectrometry (MS) [1, 2] is an essential analytical technique for identifying

molecular structures in unknown samples [3, 4, 5]. In this technique, a molecule is

ionized, and its fragment ions are detected by a mass analyzer, which records infor-

mation about the mass-to-charge ratio (m/z). By analyzing the mass spectrum, which

provides the m/z values and their relative abundances, it is possible to infer the molec-

ular structure of the original chemical.

Modeling the fragmentation patterns for ionized molecules in order to analyze

the mass spectrum is challenging. While some domain knowledge-based rules can be

useful for certain types of molecules, it becomes difficult to apply them to smaller

fragments with diverse functional groups.

The interpretation of mass spectra typically relies on library search, which compare

the spectra with a large database of known molecules [6, 7]. While there are various

extensive mass spectra libraries available, such as the National Institute of Standards

and Technology (NIST) [8], Wiley [9], and Mass Bank of North America (MoNA), the

search-based method is limited by its ability to access known materials and does not

provide information on the mass spectra of new molecules. An alternative approach is

to use de novo methods, which aim to directly predict the molecular structure from the

input spectrum. However, these methods often have low accuracy and are challenging

1



to use effectively.

An approach to address the coverage issue in library search is to enhance existing

libraries by incorporating predicted mass spectra generated by a model. Mass spec-

trum prediction models utilize either quantum mechanical calculations [10, 11, 12],

or machine learning techniques [13]. These methods aim to predict the fragmentation

patterns that occur after ionization. Quantum mechanical calculations require precise

computation of orbital energies, but they are computationally inefficient. On the other

hand, machine learning approaches can provide faster predictions, but they may lack

the ability to simulate diverse and detailed fragmentation processes.

Recently, deep learning has been significantly developed in the fields of computer

vision and natural language processing. Moreover, there has been a growing interest in

applying deep learning to material science and drug discovery. Graph Neural Networks

(GNNs) are widely used in material science and bioinformatics to predict chemical

properties and generate new molecules, because molecules, which consist of atoms

and bonds, can be represented as graphs with nodes and edges. Several studies have

focused on predicting mass spectra using MLPs, GNNs, and graph transformer models

[14, 15, 16, 17].

The properties of a molecule are highly dependent on its molecular structure, es-

pecially the functional groups. Even if two molecules have the same chemical com-

position, they can exhibit different properties if their functional groups differ. Motifs,

which are important and frequently occurring subgraphs, can be used to model molec-

ular functional groups.

In this work, we propose the Heterogeneous Motif Graph Neural Network (MoMS-

Net) for predicting mass spectra, as shown in Fig. 1.1. We utilize motifs [18] because

they are related to the stability of fragment ions and the fragmentation pattern in mass

spectra. The MoMS-Net model consists of two GNNs: one for the molecule graph and

the other for the heterogeneous motif graph. The molecule graph is generated based on

the molecule itself, where the nodes and edges correspond to the atoms and bonds in

2



the molecule, respectively. The heterogeneous motif graph consists of all molecules in

the dataset and the motifs in the motif vocabulary, with nodes representing the motifs

and edges representing the relationship between the molecule and motif. In general,

GNNs struggle to consider long-range dependencies as node information is updated

by pooling neighboring nodes. While deep layers are typically required to incorporate

long-range dependencies in GNNs, this can lead to oversmoothing problems where all

nodes become similar, resulting in decreased performance. However, our model can

consider the relationship with subgraphs at the graph level, allowing it to effectively

incorporate long-range dependency effects. The graph transformer model has demon-

strated good performance in predicting mass spectra but requires a significant amount

of memory during training [17]. In contrast, our model requires less memory than the

graph transformer. Ultimately, our model achieves the state-of-the-art performance in

predicting mass spectra.
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Chapter 2

Backgroud

2.1 Mass Spectrometry

Mass spectrometry [1] is an essential tool in analytical chemistry and drug discovery

because it can give the information of molecular structure. Mass spectrometry analyzes

the mass-to-charge (m/z) ratio after ionization and fragmentation of molecules. A mass

spectrum is expressed as a plot of ion abundance versus m/z. Mass spectrometry ana-

lyzes gas-phase ions and is composed of three main components such as an ionization

source, a mass analyser and a detector. Mass Spectrum is also categorized according

to the resolution. Low resolution MS usually detect ion in the unit of integer m/z but

high resolution MS detect ions as unit of 0.0001 Dalton. A peak in high resolution MS

can be determined as its chemical composition because all atoms have different atomic

weight and composition can be separated in 0.0001 Dalton unit. But high resolution

mass spectrometry needs more expensive and complex equipment. De novo method to

predict the molecular structure from mass spectrum is very challenging [19]. It refers

to the process of determining the chemical structure of a molecule solely from exper-

imental data, without relying on any prior knowledge or reference databases. While

de novo sequencing methods have been developed for proteins and peptides [20, 21],

de novo structure prediction for small organic molecules based solely on mass spec-
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tra is still an active area of research with limited success [22]. Alternative method for

mass spectrum analysis is done by comparing cosine similarity with database. There

are many mass spectra libraries from NIST, MoNA and Wiley. But these library are

constructed by getting mass spectrum using known material so it has coverage issue

due to lack of spectra for unknown and new chemicals. It needs to augment database

with generation of mass spectra with a model.

2.2 Motif Generation

We denote graph as G = (N , E) where N is a set of nodes and E is a set of edges.

Subgraph has some nodes and corresponding edges, GS = (N S , ES) where N S ⊆ N

and ES ⊆ E . Motif is common subgraph in molecule graph and has important role

such as functional group. Edges and cycles in molecular graphs can be seen as bonds

and rings, respectively. Many GNNs models utilize motif to improve the capability

for property prediction, drug-gene interaction prediction and molecular generation

[23, 24, 25, 26, 27, 28]. In the prediction task, motif is helpful to improve expres-

sivity of the model and reflect chemical properties. In the generation task, motif can

regularize atomic combinations and makes training and inference efficient because of

larger building block than atoms. Motif generation can be done by rule-based method

and data-based method.

2.2.1 Rule-based Method

The vocabulary of motifs is made by simple hand-crafted rules or utilize external

chemical fragment libraries, which could be different from fragmentation pattern in

the dataset [29, 30, 31]. This method defines several rules to preserve rings and con-

jugated bonds, and to break down bonds between specific groups. The goal is to de-

compose molecules into non-overlapping fragments that are meaningful within the

domain area. But rule-based method is insufficient and defective because hand-crafted
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rules cannot cover all fragmentation patterns and some molecules with new functional

groups cannot follow pre-defined rules.

2.2.2 Data-based Method

Data-based method construct motif vocabulary by learning from the dataset. The mo-

tif mining algorithm is motivated by byte-pair encoding (BPE) [32], which is widely

used in natural language processing (NLP) for subword tokenization. Compared with

NLP, molecules have more complex structures due to different bond type and ring. Vo-

cabulary starts from all distinct atoms of molecules in the dataset and then merges as

a new one to update vocabulary. Motif constructed such a merge-and-update method

can represent the largest and frequent patterns of molecules. The distribution of motif

size also is wider than previous rule-based method and vocabulary can cover more di-

verse patterns. Data-based method is universal to apply any dataset such as molecules

and proteins without domain knowledge for fragmentation rules. Z. Geng et al. [33]

proposed a data-driven method to generate motif automatically by merging subgraphs

based on their frequency. X. Kong et al. [34] define principal subgraph as the largest

frequency in the data and proposed similar vocabulary generation process by merging

two subgraphs.

2.3 Motif-based GNNs

Motif is used to increase expressivity of GNNs. It is widely used in the tasks node and

graph prediction task, drug-gene interaction, molecule generation and self-supervised

learning. Many research uses subgraph to increase the representation ability of GNNs.

Nested Graph Neural Network (NGNN) [24] uses another GNN to embed node and

show that subgraphs have higher expressivity than subtree. Graph Substructure Net-

work (GSN) [25] uses message passing scheme with substructure-encoding and demon-

strate higher expressivity and generalization. Heterogeneous Motif Graph Neural Net-
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work (MoMS-Net) [23] uses both atomic-level and motif-level embeddings. They first

build a motif vocabulary by searching all molecule graphs and extracting important

subgraphs. Vocabulary is initialized by all bonds and rings. They remove duplicate and

sort vocabulary by TF-IDF value to keep the most important motifs. They construct

heterogeneous motif graph by connecting molecules through motifs. These models

show that incorporating motifs increase graph classification performances. Motifs can

be used as building blocks to generate molecules faster and more realistic [26]. Motif-

based Graph Self-Supervised Learning (MGSSL) [35] generate motifs by BRICS frag-

mentation rules and then perform multi-level SSL in atom and motif levels. It shows

better performance on molecular property prediction tasks than different pre-training

strategies. Subgraph-level contrastive learning uses subgraph from itself and others as

positive and negative sample respectively [36]. There are also researches regarding

drug-gene interaction prediction through subgraph patterns to predict unseen data and

multi-relational interactions [28].

2.4 Neural Networks for Mass Spectra Prediction

2.4.1 Multi-Layer Perceptron

Multi-layer perceptron (MLP) is a sequence of many perceptron and called as feedfor-

ward deep neural network. J. Wei et al. [14] applied MLP to predict mass spectra for

molecules. Molecules are mapped to Extended Circular Fingerprints (ECPFs) [37].

Input vector uses a fingerprint length of 4096 with a radius of 2. They designed a

bidirectional prediction combined with forward and reverse prediction. Forward pre-

diction is an affine transformation of input features. In reverse prediction, they defined

ion peaks as a function of the fragment groups which were detached from the original

molecule. Forward and reverse predictions are combined to final prediction by gate

function.

pfi (x) = wfT
i f(x) + bfi (2.1)
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prM(x)+τ−i(x) = wrT
i f(x) + bri (2.2)

pi(x) = σ(gatei)p
f
i (x) + (1− σ(gatei))p

r
i (x) (2.3)

w and b are the model’s weights and biases. gatei is an affine transformation of f(x)

and σ is a sigmoid fuction.

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are widely used to process and analyze grid-

like data, such as image and video. CNNs apply local receptive fields (kernels or filters)

to input image and can extract features and local patterns, such as shapes, edges and

textures. After feature extraction with convolution operation, fully-connected layers

are applied for downstream tasks, such as image classification. K. Liu et al. [15] apply

CNN to predict mass spectra from peptide. They use encoded peptide with size of 27×

23. Other CNN uses SELFIES (self-referencing embedded strings) from molecular

structures as input to predict mass spectra [17].

2.4.3 Graph Neural Networks

Graph Neural Networks (GNNs) are operated on graph-structure data which consists

of nodes and egdes. GNNs propagete information through graph structure to learn rep-

resentation nodes and graph. Each node aggregates information from its neighboring

nodes and update its representation.

H
(l+1)
i = σ(

∑
j∈N(i)

H
(l)
j W (l) + b(l)) (2.4)

G = Pool(H) (2.5)

H , G is hidden representation of node and graph and σ is activation function. W

and b are weight and bias which are learnable parameters. GNNs are widely used in
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chemical property prediction tasks because a molecule can be represented to graph

whose nodes and edges are correspond to atoms and bonds in the molecule. B. Zhang

[16] apply graph convolutional network (GCN) to predict mass spectra. They initialize

nodes’ features as concatenated one-hot vectors of several atoms’ properties such as

atom symbol, degree, valence, formal charge, radical charge and so on. Initial features

of edges are also represented by one-hot vectors using type of bond, ring, conjugation

and chirality. They apply several GCN layers and pool nodes’ representations to graph

representation and apply MLP layer to predict mass spectra.

ai = concatenate(vi,
d∑

j=1

nj ,
d∑

j=1

eij)

hconv(vi) = σ(wdeg(vi)ai + bdeg(vi))

hconv(G) = [hconv(v1), hconv(v2), hconv(v3), . . .]

(2.6)

where d is degree of node. nj is and neighbor node and eij is corresponding edge. w

and b are weight and bias term. Zhu et al. [38] used GCN to predict mass spectra of

liquid chromatography-mass spectrometry (LC-MS).

2.4.4 Graph Transformer

Transformers are neural networks with use of attention. It is originally developed for

natural language processing, but is used for many area including computer vision and

time-series data. Transformers are specifically designed to capture long-range depen-

dencies in sequences. Unlike CNNs, which rely on local receptive fields and hierar-

chical feature extraction, Transformers use self-attention mechanisms to consider all

positions or tokens in a sequence simultaneously. This makes Transformers more suit-

able for tasks that require understanding global context and dependencies, such as ma-

chine translation, text generation, and image processing. graph transformer is a kind

of transformer which make graph information to input sequences. Graph transformer

can model global interactions between all nodes in the graph, but GNNs can consider

local interaction updating neighborhood information. A. Young et al. [17] proposed

10



Massformer model to predict tandem mass spectrum prediction with graph transform-

ers. The attention mechanism aij consider pairwise attention between nodes, shortest

path distance between nodes and edge embeddings as Eq. 2.7.

aij = softmax

(
(WQhi)

T (Wkhj)√
d

+ bij + cij

)
(2.7)

cij =
1

N

∑
wp

T ep (2.8)

aij is attention value between node i, j and bij is a learnable value indexed by the short-

est path distance between node i, j. cij is the edge embedding, averaged by embedding

ep in the shortest path between i and j, and wp is a learnable weight parameter. Mass-

former reported better performance in mass spectra prediction compared to CNNs and

GNNs.
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Chapter 3

Method

Our model, MoMS-Net, consists of two GNNs: one for the molecule graph and another

for the heterogeneous motif graph. The molecule GNN utilizes fingerprint models,

specifically Morgan, MACCS, and RDKit fingerprints, as inputs. On the other hand,

the heterogeneous motif GNN takes into account the molecule-motif relations and

molecular weights as inputs. We concatenated the hidden representations from both

GNNs with a specific relative ratio. To further fine-tune the hidden representation, we

utilize the molecular weight distribution of the molecular ion and a few fragments

obtained from RDKit fragmentation.

3.1 Dataset

We used the NIST 2020 MS/MS dataset for both training and evaluation purposes. The

NIST dataset is widely employed due to its extensive coverage and convenience in the

mass analysis process. It is important to note that mass spectra can vary depending on

the acquisition conditions. In our study, we specifically focused on spectra obtained

from Fourier Transform (FT) instruments, considering the large amount of available

data. Additionally, we took into account the collision cell type, which are collision-

induced dissociation (CID) and High-energy C-trap dissociation (HCD). A summary
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of the dataset can be found in Table 3.1.

Table 3.1: NIST 2020 MS dataset

Collision Type # Spectra # Compounds

FT-CID 27,026 18,257

FT-HCD 322,372 19,620

3.2 Generation of Motif Vocabulary

A motif refers to the most frequent substructure, and some motifs are correspond to

functional groups of molecules. To construct a motif vocabulary, we apply the byte-

pair encoding (BPE) method introduced by A. Young et al. [33] to identify common

patterns from a given dataset D. The goal is to learn the top K most frequent subgraphs

from dataset D, where K is a hyperparameter. Each molecule in D is represented as

a graph, G = (V, E), where atoms and bonds correspond to nodes (V) and edges(E).

Initially, we consider each atom from the molecules as a single fragment.

We merge two fragments, Fi and Fj , to create a new fragment, Fij = Fi ⊕ Fi,

using a defined operation ”⊕”. The merging process involves iteratively updating the

merging graphs, G(k)
M (V(k)

M , E(k)
M ), where the edges come from fragments Fi, Fj and

the connections between the two fragments. The most frequent merged fragment, Fij ,

is added to the motif vocabulary {M}. This process is repeated for K iterations to

obtain the motif vocabulary.

To represent molecules, we utilize the Simplified Molecular Input Line Entry Sys-

tem (SMILES). However, it’s important to note that invalid fragments may be created,

such as “cc” as two carbons cannot form a ring. To ensure the validity of the frag-

ments, we use the RDKit package to check if the valence of the molecule is incorrect,

and abnormal fragments are removed from consideration.
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By applying this approach, we can generate a motif vocabulary that captures the

frequent substructures in the dataset, enabling further analysis and interpretation of the

molecular structures.

3.3 Construction of Heterogeneous Motif Graph

The heterogeneous motif graph is constructed by combining molecule nodes from the

molecular dataset and motif nodes from the motif vocabulary. This graph consists of

two types of edges connecting the nodes. The first type is the molecule-motif edge,

which is created when a molecule contains that motif. The second type is the motif-

motif edge, which is established when two motifs share at least one atom. To differ-

entiate the importance of these edges, different weights are assigned based on their

types according to Z. Yu et al. [23]. For the molecule-motif edge, the weight is cal-

culated using the TF-IDF (Term Frequency-Inverse Document Frequency) value. For

the motif-motif edges, the weight is calculated as the co-occurrence information point-

wise mutual information (PMI). So the edge weight Aij between two nodes (i, j) is

represented as

Aij =


PMIij , if i, j are motifs

TF-IDFij , if i or j is a motif

0, Otherwise

(3.1)

The PMI value is calculated as

PMIij = log
p(i, j)

p(i)p(j)

p(i, j) =
N(i, j)

M
,p(i) =

N(i)

M
,p(j) =

N(j)

M
,

(3.2)

where N(i, j) is the number of molecules that have motif i and motif j. M is the

number of molecules, and N(i) is the number of molecules with motif i.
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TF-IDFij = C(i)j

(
log

1 +M

1 +N(i)
+ 1

)
, (3.3)

where C(i)j is the number of frequency that the motif occurs in the molecule j.

Phenol

4-Aminophenol

Motif Vocabulary

Figure 3.1: Example of heterogeneous motif graph. It consists of molecular nodes and

motif nodes. There is two types of edges. Molecule-motif edges exist if the molecule

contains that motif. Motif-motif edges exist if two motif share at least one atom.
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3.4 Heterogeneous Motif Graph Neural Networks

We apply two different GNNs for molecule graphs and heterogeneous motif graph.

3.4.1 Molecule Graph

The molecule graph represents each atom and bond as nodes and edges, respectively.

We utilize a 3-layer Graph Convolutional Network (GCN) to update the atom-level

representations. To encode the atom and bond features, we employ the Deep Graph

Library (DGL) package, which supports embedding them as either one-hot encoding

or numerical values.

Table 3.2: Atom and Bond Features

Types Features

Atom mass, type, bond type, degree, total degree, explicit valence, im-

plicit valence, hybridization, total number of H, formal charge,

number of radical electrons, is aromatic, is in ring, is chiral

Bond bond type, is conjugated, is in a ring of any size, stereo configu-

ration

3.4.2 Heterogeneous Motif Graph

For the heterogeneous motif graph, we employ the other 3-layer Graph Isomorphism

Network (GIN). The total number of nodes in the heterogeneous graph is the sum of

the number of molecules (|N |) and the size of the motif vocabulary (|V |). The node

feature in the heterogeneous motif graph is represented by the occurrence of motifs and

their molecule weights. To represent the occurrence of motifs in molecules and other

motifs, we create a vector of size |V |, where the values indicate motif occurrences. We

then reduce the dimension of this vector by applying a linear layer, as the embedding
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is sparse, and concatenate it with the molecule weight.

A heterogeneous motif consists of all molecule nodes and motif nodes, as shown

in Fig. 3.1. Since the number of molecules can be large (e.g., 27K for CID and 232K

for HCD), computational resource limitations may arise. To address this issue, we use

an edge sampler to reduce the size of the heterogeneous motif graph. We employ a

breadth-first algorithm for hop-by-hop sampling from a starting node. The first-hop

neighbors of molecule nodes are motif nodes only. We use a 3-hop sampler, denoted

as [s1, s2, s3], where si represents the number of nodes to be sampled. Before applying

GINs, we first utilize a 2-layer MLP for input embedding.

3.5 Mass Spectra of Motif

After obtaining the graph embeddings for the heterogeneous motif graphs, we incor-

porate additional information from the mass spectra of motif. This is because the frag-

mentation patterns in mass spectra are associated with the motif structure. We construct

the mass spectra of motifs, taking into account the isotope effect of the molecular ion.

Additionally, we incorporate a few fragments generated from RDKit software into the

motif mass spectra.

3.6 Objective Function

It is common to use cosine similarity to compare mass spectra after normalizing spec-

trum to make those invariant to scaling. So we choose cosine distance as loss function

as Eq. 3.4, where ŷ is the predicted spectrum and y is the target spectrum.

CD(y, ŷ) = 1− yT ŷ

∥y∥2∥ŷ∥2
(3.4)
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Chapter 4

Experiments and Discussion

4.1 Performance

4.1.1 Evaluation metrics

Spectrum similarity is calculated as cosine similarity score between target and pre-

dicted spectrum after normalization.

Similarity(I, Î) =

∑Mmax
k=1 Ik · Îk

∥
∑Mmax

k=1 Ik
2∥ · ∥

∑Mmax
k=1 Î2k∥

(4.1)

Here, I and Î are vectors of intensities versus m/z for reference and predicted spectrum.

4.1.2 Results

Each result has been obtained by conducting the experiments five times, with differ-

ent random seeds for each run. The results for the NIST dataset are presented in table

4.1. Our proposed model, MoMS-Net, demonstrates the best performance compared

to other models. Specifically, Massformer outperforms CNN, WLN, and GCN mod-

els. Furthermore, we observe that the performance on the FT-HCD dataset is higher

compared to the FT-CID dataset. This can be attributed to the larger amount of data

available in the FT-HCD dataset. It is commonly known that transformer-based models
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can achieve better performance when trained on larger datasets. However, it is note-

worthy that MoMS-Net surpasses the performance of Massformer even in the larger

FT-HCD dataset.

Table 4.1: Cosine Similarity

FT-CID FT-HCD

CNN 0.356± 0.002 0.535± 0.002

Massformer 0.385± 0.005 0.573± 0.003

WLN 0.357± 0.001 0.569± 0.001

GCN 0.356± 0.001 0.565± 0.001

MoMS-Net 0.389± 0.001 0.578± 0.001

4.1.3 Molecule Identification

To address the coverage issue in spectral library searches, predicting mass spectra

is a essential step to augment the existing database. By predicting mass spectra, we

can expand the range of compounds and their corresponding spectra available in the

spectral library. However, assessing the accuracy of a model in matching predicted

spectra with unknown queries is challenging because confirming the identification of

the compound requires experimental analysis. To simplify the evaluation process, we

can employ a candidate ranking experiment inspired by [14, 17]. In this experiment, the

objective is to accurately associate a query spectrum with the corresponding molecule

from a set of candidate spectra. The query set comprises authentic spectra from the test

set, which are heldout partitions. The reference set consists of spectra collected from

distinct origins: predicted spectra in the heldout partition, and real spectra from the

training and validation partitions. By evaluating the similarity between spectra in the

query and reference sets, we calculate a ranking of spectra in the reference set for each

query. This ranking, based on the degree of similarity, effectively induces a ranking of
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candidate structures since each spectrum corresponds to a specific molecule.

Table 4.2 provides a summary of the results obtained from this experiment on the

metric, Top-5%. This metric evaluates whether the true matched candidate is ranked

within the top 5% of all candidates. As the number of candidates per query may vary,

the Top-5% metric is normalized to ensure fair comparison. This metric provides in-

sight into the model’s ability to accurately identify the correct candidate among a larger

set of options. The results indicate that our model demonstrates comparable perfor-

mance with MassFormer and higher than other models. This consistent strong perfor-

mance of our model suggests that it is one of the best performing models in terms

of accurately matching query spectra with the correct molecule. Our model can be

utilized for augmenting spectral libraries holds promise to address the coverage issue.

Table 4.2: Top-5% scores on the ranking task

FT-CID FT-HCD

CNN 0.802± 0.008 0.778± 0.004

MassFormer 0.850± 0.016 0.830± 0.007

WLN 0.736± 0.011 0.812± 0.008

GCN 0.728± 0.0.016 0.802± 0.008

MoMS-Net 0.824± 0.002 0.840± 0.010

4.1.4 Analysis of Predicted Mass Spectra

Our model demonstrates the capability to accurately predict mass spectra for complex

molecules, as shown in Fig. 4.1. Molecules containing conjugated aromatic rings are

known to be highly stable, resulting in a smaller number of peaks in their mass spectra.

On the other hand, molecules without aromatic rings tend to exhibit a greater number

of peaks. Our model is effective in predicting both aromatic compounds and other

cyclic compounds accurately. However, it should be noted that there is a restriction in
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terms of the intensities of the main peaks in the predicted mass spectra. Our model

tends to generate more smaller peaks, which can result in a reduction in the intensity

of the main peak after normalization.
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cos_loss = 0.0981, cos_sim = 0.9019 cos_loss = 0.0615, cos_sim = 0.9385

cos_loss = 0.0744, cos_sim = 0.9256 cos_loss = 0.0758, cos_sim = 0.9242

Figure 4.1: Real and predicted spectra for four molecules. Predicted spectra have sim-

ilar patterns for aromatic and cyclic molecules but have lower intensity because of

many smaller false peaks.
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4.1.5 Generation of Motif

We employed the byte-pair encoding method to generate subgraphs from the dataset.

The K most frequent subgraphs were selected as motifs, with some motifs occurring

more than 10,000 times. The most frequent motif in our dataset was “CC” with a

frequency of 109,000. The frequency count decreases exponentially as the number

of motifs increases, as shown in Fig. 4.3. Unlike rule-based generation methods, our

approach allows for the generation of various types and sizes of motifs. In Fig. 4.4, we

provide examples of molecules that are large and contain various functional groups.

We conducted tests with different sizes of motif vocabularies, as shown in Fig. 4.2. As

the motif size exceeds 1,000, the cosine similarity begins to decrease. This decrease is

attributed to the consideration of trivial motifs in the heterogeneous motif graph as the

motif size increases. Therefore, in this study, we set the size of the motif vocabulary to

300.
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Figure 4.2: Cosine Similarity according to Motif Size. The model achieves its best

performance when the motif size is set to 300. However, as the motif size surpasses

1000, the performance starts to decline.
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Figure 4.3: Frequency of generated motifs (a) Motif number - count (b) Motif size -

count. The frequency of motif is decreased exponentially as motif number and most

motif has size of 5 to 20 atoms.
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Figure 4.4: Example of large motifs. Data-driven motif generation method can gen-

erate large motifs which have various functional group such as aromatic ring, cycle,

hydroxy group and ketone.
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4.2 Ablation studies

4.2.1 Concatenation of Hidden Representations

The embedding vector of MoMS-Net is obtained by concatenating the hidden em-

beddings of the molecule GNN and the heterogeneous motif graph (HM-Graph). The

concatenation is performed with a specific ratio, denoted as α.

eMoMS−Net = [ (1− α) ∗ emolecule||α ∗ eHM−Graph ] (4.2)

Through experimentation, we observed that ratios ranging from 0.1 to 0.8 exhibit

similar performance in terms of cosine similarity. However, when α reaches 0.9, the

performance decreases. This suggests that the structural information of molecules cap-

tured by the molecule GNN is more crucial for predicting mass spectra. Nevertheless,

considering the relationships among molecules in the heterogeneous motif graph is

still beneficial for accurate mass spectrum prediction.
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Figure 4.5: The ratio of heterogeneous motif graph to molecule graph. We tested five

times for each condition. When α is less than 0.8, the similarity is similar, but de-

creased as α becomes 0.9.
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4.2.2 Addition Method for Mass Spectrum of Motif

We incorporate the information of motif spectrum into the molecular representation

using different methods. The motif spectrum embedding is created by applying a fully-

connected layer to the generated motif spectrum. We explore different approaches for

combining the motif spectrum embedding with the molecular representation. First, we

consider adding the motif spectrum embedding to the molecular representation through

summation or concatenation. Then, we apply a fully-connected layer with or without

a residual connection to refine the combined representation. Among these variations,

we find that the summation with a residual connection achieves the best performance.

default sum sum_res concat concat_res
Addition method
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Figure 4.6: Various addition method for mass spectrum of motif. It shows the best

performance when it uses summation with residual connection.
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4.2.3 Mass Spectrum Generation for Motif

The Mass Spectrum for motif is generated by weight distribution of molecular ion con-

sidering isotope effect, and we utilize the RDKit package to add a few fragment. But

some motifs are existing chemicals and have their own mass spectra, which are avail-

able in the MoNA dataset. Specifically, we use EI (electron impact) Mass Spectrum, as

it does not contain adduct ions and provides a reasonable understanding of fragmen-

tation mechanism from the molecular ion. Out of the 300 motifs in our vocabulary,

there are 148 mass spectra. Comparing this method to the previous approach, incor-

porating the real mass spectra of motifs leads to improved performance, as shown in

Table 4.3. We are unable to utilize this method for all motifs due to the unavailability

of mass spectra. However, the results demonstrate that having precise information on

mass spectra is beneficial for predicting mass spectra for molecules.

Table 4.3: Cosine Similarity according to Motif Spectrum

Motif MS FT-CID

M.W. 0.388± 0.002

MoNA 0.392± 0.001

4.2.4 Model Parameters and Memory Allocation

Table 4.4 shows the information of the number of model parameters and memory

allocation. We can see that all models have similar numbers of model parameters.

However, we were unable to test batch size of 1024 for Massformer due to memory

limitation. It should be noted that Massformer takes a large amount of memory. As a

result, despite having a smaller batch size, Massformer requires a similar amount of

memory allocation compared to MoMS-Net. We can see that MoMS-Net show better

performance with less memory compared to Massformer.
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Table 4.4: Number of Parameters and Memory Allocation

# of Parameters Memory Allocation(MB) Batch Size

CNN 1.46E+07 717 512

Massformer 1.36E+07 1340 50

WLN 1.23E+07 1519 1024

GCN 1.31E+0.7 973 1024

MoMS-Net 1.82E+07 1519 1024

4.2.5 GNNs Architecture

Our model consists of GCN for molecule graphs and GIN for heterogeneous motif

graphs. As shown in Table 4.5, we can see that GCN performs better than GIN. How-

ever, when the MoMS-Net model uses GIN instead of GCN, it shows similar perfor-

mance.

Table 4.5: Cosine Similarity according to GNN Architecture

FT-CID FT-HCD

GIN 0.352± 0.004 0.558± 0.001

GCN 0.356± 0.002 0.565± 0.001

MoMS-Net(GIN) 0.389± 0.002 0.575± 0.001

MoMS-Net(GCN) 0.388± 0.002 0.578± 0.001

4.2.6 Hidden Dimension Size

Heterogeneous motif graph has |N + V | nodes and node input is represented as con-

catenation of connectivity with motifs in vocabulary as Eq. 3.1 and molecular weight.

Before concatenation, 2-layer fully-connected layer is applied for input features of
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connectivity as it is very sparse. We compared different size of hidden dimensions as

Fig. 4.7. The dimension size of the hidden representations does not seem to have a

crucial role in determining the results, as the performance is similar regardless of the

hidden dimension size.
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Figure 4.7: The dimension size of the hidden representation. A 2-layer fully connected

layer is applied to the input features of connectivity in order to transform it into various

dimension sizes. The similarity remains similar regardless of the hidden dimension

size.

4.2.7 Loss Function

We tested various loss functions for training. Weighted cosine similarity (w cos) loss

is a similarity measure that takes into account the relative intensities for each peaks as

weight. Mean squared error (MSE) loss quantifies the average of the squared differ-

ences between the predicted values and its corresponding real values. The Kullback-

Leibler (KL) divergence loss a measure of dissimilarity between two probability dis-

tributions. The Jensen-Shannon (JS) loss is calculated by taking the average of the

Kullback-Leibler (KL) divergences between two probability distributions (P, Q), and

the KL divergence between Q and P. Wasserstein (WS) loss, also known as Earth
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Mover’s Distance (EMD) loss, is a loss function, which measures the dissimilarity

between two probability distributions. As shown in Table 4.6, cosine similarity loss

shows the best performance.

Table 4.6: Cosine Similarity according to Loss Function

FT-CID

cos 0.388± 0.001

w cos 0.378± 0.002

MSE 0.343± 0.001

KL 0.374± 0.013

JS 0.348± 0.003

wass 0.213± 0.004

4.2.8 Generalization

We tested prediction tasks using different ratio of training set. CNN did not perform

well with the usual setting of the split ratio of 7/2/1 for train/valid/test sets. However, its

performance did not decrease significantly as the ratio of the training size decreased.

CNN demonstrates good generalizability due to its ability to capture patterns with

receptive filters. It performs better by effectively capturing patterns even with a smaller

training size. On the other hand, Massformer showed better performance compared to

GNN models like MoMS-Net, WLN, and GCN, particularly with smaller ratios of the

training set.
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Figure 4.8: Generalizability. We tested various models with different split ratio. CNN

showed poor performance at a training size of 0.7 but the decrease in similarity was

small as the ratio decrease.
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Chapter 5

Conclusion

The analysis of mass spectra plays a crucial role in identifying molecular structures

in material chemistry and drug discovery. Search-based methods are widely employed

for mass spectra analysis. However, They often suffer from a coverage issue. To ad-

dress this problem, it is necessary to generate mass spectra using a model to augment

the database. Numerous deep learning models have been employed for mass spec-

tra prediction. Graph Neural Networks (GNNs) are particularly useful for predicting

molecular properties since molecules can be represented as graphs. However, GNNs

have limitations in considering long-range dependencies, thereby affecting their per-

formance. The graph transformer has been reported to exhibit excellent performance

in predicting mass spectra. However, it consumes excessive memory during training.

In this study, we proposed the MoMS-Net model, which incorporates motifs to pre-

dict mass spectra from molecular structures. Motifs play a crucial role in the molecular

property prediction task as they are related to functional groups in the molecule and

provide valuable information on the relationships between molecules. We applied the

byte-pair encoding method to generate a motif vocabulary from the dataset. We con-

structed a heterogeneous motif graph consisting of molecules and motifs as nodes, with

edges being formed if a molecule has a motif or if two motifs share any atoms. The

MoMS-Net model consists of two GNNs, one for the molecule graph and the other
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for the heterogeneous motif graph. We conducted tests with different sizes of motif

vocabularies and varying model architectures.

MoMS-Net outperforms other deep learning models in predicting mass spectra

from molecular structures. It effectively considers long-range dependencies by incor-

porating motifs at the graph level. Additionally, our model requires less memory com-

pared to the graph transformer. We found that real mass spectra of motifs are useful

in predicting the mass spectra of molecules, although the predicted mass spectra may

contain more small and false peaks. In future work, we aim to improve the initial-

ization method of mass spectra for motifs and incorporate regularization techniques to

prevent false peaks. Furthermore, we plan to apply MoMS-Net to larger molecules and

proteins.
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초록

질량분석학은재료화학과약물합성분야에서분자구조를식별하는데중요한

역할을한다.검색기반방법은일반적으로질량스펙트럼분석에널리사용되지만,

가용 데이터의 부족으로 인한 한계가 있다. 이 문제를 해결하기 위해서는 모델을

사용하여 질량 스펙트럼을 생성하여 데이터베이스를 보강해야 할 필요가 있다. 다

양한 딥러닝 모델이 질량 스펙트럼 예측에 사용되고 있다. 그래프 신경망(GNN)은

분자를 그래프로 표현할 수 있어 분자 속성 예측에 유용하다. 그러나 GNN은 장거

리의존성을고려하는데한계가있어성능이저하되게된다.그래프트랜스포머는

질량 스펙트럼 예측에서 우수한 성능을 나타내지만 훈련 중에 과도한 메모리를 소

비하게된다.

본연구에서는분자구조로부터질량스펙트럼을예측하기위해구조모티프를

포함하는MoMS-Net모델을제안하였다.모티프는분자내의기능성그룹과관련이

있으며분자간의관계에대한의미있는정보를제공하여분자속성예측과제에서

중요한 역할을 한다. 우리는 데이터셋으로부터 모티프 집합을 생성하기 위해 병합

방법을적용하였다.분자가모티프를가지고있거나두모티프가어떤원자를공유

하는경우에는연결성을갖게되도록분자와모티프로구성된이종모티프그래프를

구성하였다. MoMS-Net모델은분자그래프와이종모티프그래프각각에대한두

개의 GNN으로구성된다.우리는다양한크기의모티프집합과다양한모델구조로

실험을 진행하였다. MoMS-Net은 분자 구조로부터 질량 스펙트럼을 예측하는 데

있어 다른 딥러닝 모델보다 우수한 성능을 발휘하였다. 그래프 수준에서 모티프를

정보를 활용함으로써 장거리 의존성을 효과적으로 고려하였다. 게다가, 우리의 모

델은 graph transformer에비해더적은메모리를요구하였다.우리는모티프의실
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제질량스펙트럼이분자의질량스펙트럼예측에효과가있다는것을발견하였다.

그러나, 예측된 질량 스펙트럼에는 더 작고 잘못된 피크가 많이 포함되어 있었다.

향후 연구에서는 모티프에 대한 질량 스펙트럼의 초기화 방법을 개선하고 잘못된

피크를 방지하기 위해 정규화 기법을 도입할 계획이다. 또한, MoMS-Net을 더 큰

분자와단백질에적용할예정이다.

주요어:질량스펙트럼,그래프신경망,모티프

학번: 2021-25101
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