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Abstract 

 
Identification of Homogeneous Precipitation Regions with Time Series Gauge 

and Satellite Data Using Machine Learning Methods 

 
Munyensanga Shimwa Desire 

Department of International Agricultural Technology 

Graduate School of International Agricultural Technology 

Seoul National University 

 

Homogeneous regions are often needed for region frequency analysis and 

precipitation estimation, but the formation of those regions is often associated with 

a lot of uncertainties due to temporal and spatial variability of precipitation.  

This study tackles two challenges related to the formation of homogeneous 

precipitation regions from ground gauge data. The first challenge is the temporal 

variability of precipitation which is not often considered in the formation of 

homogeneous regions. It is well known that precipitation varies a lot in time and 

space. However, many past studies on the formation of homogeneous precipitation 

regions did not capture the important aspect of temporal variability of precipitation 

because they usually use other variables such as averages, and location features 

instead of time series data. To overcome the temporal variability challenge, this study 

used timeseries precipitation data to form homogeneous precipitation regions.  

The second challenge is the variation of precipitation in space. Rain gauge had 

been traditionally the main source of precipitation data as they were considered more 

accurate than other source of precipitation data; however, rain gauge measures 

precipitation at a point in space. It is challenging to accurately interpolate point data 

over an area, given that the density of gauges is often scarce in many regions of the 
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world and interpolation technics may introduce errors.  

To overcome the spatial variability challenge, this study used satellite data to form 

homogeneous precipitation regions. Satellite derived data is a relatively recent 

source of precipitation data where precipitation is indirectly estimated from infrared 

and passive microwaves information received from several satellite sensors. The 

estimates products were surface data because they are released in the form of surface 

grids.  

A machine learning approach was provided in this study to form homogeneous 

precipitation regions using gauge and satellite daily time series data. The ground 

precipitation data used in this study were provided by Korea Meteorological Agency 

(KMA). Data from the Automated Synoptic Observing System (ASOS) and 

Automatic Weather Station (AWS) were used respectively. Satellite data used in this 

study was the Integrated Multi-satellitE Retrievals for GPM (IMERG) from National 

Aeronautics and Space Administration (NASA).  

Precipitation regions were formed using two clustering methods, K-Means and 

Self Organizing Maps (SOM). Both clustering algorithms were able to define 

homogeneous precipitation regions from time series gauge and satellite data. Spatial 

maps of the regions were provided in the results and discussion section of the present 

study. Heterogeneity results were compared by using Hosking and Wallis 

homogeneity test. Based on the clusters formed by SOM and K-Means in ASOS 

dataset, it was observed that the performance of SOM in defining homogeneous 

regions is greatly affected by the size of the map. SOM was able to identify a bigger 

number of homogeneous regions when the number of nodes was increased. It was 

able to identify 6 homogeneous regions when the number of nodes was increased to 

16 while K-Means identified 5 homogeneous regions for the same number of clusters. 

K-Means was able to identify a greater number of homogeneous regions when 
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cluster number was small. For example, when the number of clusters was 10, K-

Means identified 3 homogeneous regions while SOM identified 2 homogenous 

regions.  

However, the number of homogeneous and possibly heterogeneous regions 

identified by SOM gradually increased as the number of nodes increased from 10 to 

16.  

Based on the number of homogeneous regions identified by SOM and K-Means 

in AWS datasets, both clustering methods identified similar number of regions in 

AWS dataset. The number of homogeneous regions identified by both clustering 

methods did not improve when the number of clusters were increased to 12, 14 or 16  

Based on the number of homogeneous regions identified by SOM and K-Means 

in satellite dataset, both were able to identify almost the same number of 

homogeneous regions, although there were differences between SOM and K-Means 

according to the number of clusters. K-Means identified 2 homogeneous regions 

among 9 clusters while SOM identified 4 homogeneous regions and 2 possibly 

homogeneous regions in the same number of clusters Both clustering methods were 

able to identify 10 homogeneous regions when the number of nodes was increased 

to 16 however K-Means also identified 2 possibly heterogeneous regions.  

Overall, it was observed that SOM was slightly more efficient in identifying a 

greater number of homogeneous regions in ASOS and satellite datasets. 

  

Keywords: Precipitation homogeneous regions, Satellite data, Machine learning, 

Gauge data, Time series data 

Student Number: 2021-22782
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Chapter 1. Introduction 

1.1. Background 

 

The ability to accurately estimate precipitation has increasingly become a 

necessity in different disciplines (Claps et al., 2022). The need for an accurate global 

estimation of rainfall has been amplified by recent awareness of climate change and 

its effects. Thus, being able to accurately estimate the amount of precipitation in a 

given region is a necessity in various engineering fields such as civil engineering, 

for the construction of water management structures, and agriculture for the 

scheduling of irrigation systems or hydrology to monitor climate change (Claps et 

al., 2022). Furthermore, precipitation estimates at the watershed level are very 

important input for hydrological modelling to estimate and forecast stream flow 

(Claps et al., 2022). It is therefore very important to focus on improving the input 

precipitation to expect a good performance of hydrological models.  

The distribution of precipitation in time and space can be more accurately 

estimated if information from other related site are used instead of using information 

from one sample or site. This principle of regional frequency analysis can be applied 

to whenever there are several samples of the same kind of data. The process of 

grouping the sites which exhibit similar behavior into clusters is called 

regionalization and has many advantages in environmental sciences where the same 

kind of data are observed at different sites (Hosking & Wallis, 1997). 

Regionalization of precipitation is frequently used in different domains such as 

planning of land use, floods mitigation, drought analysis, prediction of precipitation, 

and downscaling of precipitation (Hosking & Wallis, 1997). Regionalization is also 

used for frequency analysis to get design values of infrastructures related to water 

resources engineering such as dam and sewer systems when at site observation are 

not available. It is similarly used to improve the reliability of observations at site . 
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Regionalization is likely to give improved accuracy in estimates because more 

information is used in the case of regional frequency analysis as compared to single 

site analysis. This is very advantageous especially in remote or mountainous areas 

often characterized by complex precipitation patterns and scarcity of precipitation 

gauge (Hosking & Wallis, 1997).  

Defining homogeneous precipitation regions using statistics computed from point 

precipitation gauge is relatively more precise because the accuracy of gauge data 

proved to be superior to other data commonly used to estimate precipitation such as 

satellite derived data. Point rain gauge has traditionally been the main source of 

rainfall data but the networks of those gauges are limited in terms of spatial 

distribution. In addition, those time series are often incomplete in terms of time 

distribution. Hydrologists use regionalization to be able to estimate records of an 

ungauged or insufficiently gauged area or to fill missing data of incomplete sites, by 

using records of other sites which are believed to behave in a similar manner. When 

sites are grouped into cluster of similar behavior, the records of those sites can be 

used with confidence to predict variable of ungauged sites within the same group 

(Nathan & McMahon, 1990). The steps involved in identifying homogeneous 

regions can be grouped into following categories, I) To select variables, II) To select 

which grouping method to use, III) To define homogeneous regions, IV) Evaluation 

of homogeneous groups.  

Various methods have been used to group precipitation stations into clusters that 

exhibit required statistical homogeneity. Methods based on statistical analysis of rain 

gauge observations were traditionally used in defining homogeneous precipitation 

regions. The statistical methods can be classified into following categories, (i) 

correlation analysis, (Arthur & Vassilvitskii)principal component analysis, (iii) 

factor analysis. (iv) hierarchical approach, (v) region of influence and (v) cluster 

analysis (Srinivas, 2013).  
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Many researchers recently used cluster analysis because it can easily identify 

patterns in very complicated dataset.  

The choice of grouping methods significantly affects the results of homogeneous 

regions because different methods may produce different results (Kalkstein et al., 

1987). Earlier researches used several interpolation technics to estimate precipitation 

in ungauged sites, these technics includes Thiessen polygons, Lagrange approach, 

Inverse Distance Technics, multiquadric interpolation, optimal interpolation, kriging 

techniques, and others. Various studies have compared the results of different 

interpolation and grouping technics(Haddad et al., 2015; Jackson & Weinand, 1995; 

Kalkstein et al., 1987). Tabios and Salas (1985) compared different technics used in 

earlier interpolation research and concluded that geotechnical techniques (Kriging 

and optimal interpolation) produce better results than other technics including 

multiquadric, inverse distance interpolation, Thiessen polygon and polynomial 

interpolation. Alam and Paul (2020) concluded that Fuzzy C means performed better 

than Agglomerative hierarchical clustering and K-means clustering algorithm. 

However, those studies were conducted using other variables such as latitudes, 

longitudes, and annual averages of rainfall; but timeseries data have not been 

extensively used to form homogeneous precipitation regions. Regionalization of 

precipitation using time series data have not been extensively conducted mainly 

because clustering of time series data present unique challenge caused by the high 

dimensionality of timeseries dataset (Roushangar & Alizadeh, 2018).   



4 

 

1.2. Purpose 

 

The purpose of this study is to provide an approach to overcome challenges 

related to temporal and spatial variability of precipitation in the formation of 

precipitation regions. This study has three objectives. The first objective is to define 

homogeneous regions using time series data to consider temporal variability of 

precipitation in the formation of homogeneous regions. The second objective is to 

use satellite data to overcome the longstanding challenge of defining homogeneous 

regions in ungauged areas. The third objective is to compare two clustering 

algorithms and recommend best method for defining homogeneous regions using 

time series data. This study provides an approach to define homogeneous region 

using time series precipitation from gauge observation and satellite estimates. 

Satellite data are gridded dataset, meaning that they are surface data while gauge 

data are point data. There is therefore a great advantage in delineating homogeneous 

regions using satellite data because regions can be defined even in ungauged areas 

and boundary are clearly delimited by grid cell boundaries. The comparison of 

different technics will provide a better understanding of the advantage and 

disadvantage of different grouping methods and thus help engineers and scientists to 

make better choice of proper grouping methods to use in regionalization of 

precipitation.   
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Chapter 2. Review of literature 

 

2.1. Regionalization of precipitation 

 

The importance of regionalization of precipitation and related applications has 

been the subject of many researches in the past. Different approaches have been used 

in literature for regionalization of precipitation. Annual, monthly, daily data or other 

form of precipitation data have been used as input for regionalization of precipitation. 

Mallants and Feyen (1990) conducted a study to define homogenous rainfall regions 

in the Ijzer watershed in norther France and western Belgium. They used principal 

component analysis and daily precipitation data collected from 11 stations for 3 years, 

a dry year: 1973, a wet year: 1977, and an average year: 1978. Four regions were 

delineated by using principal components in the watershed of Ijzer.  

Rasheed et al. (2019) used event-based characteristics such rainfall intensity, 

antecedent dry days, total rainfall, and rainfall duration to define homogeneous 

regions. They used cluster analysis and data from 17 stations for a period from 2011 

and 2015 to group precipitation stations into homogeneous regions. The 

homogeneity of the regions was tested by using Hosking- Wallis heterogeneous tests. 

They found out that the entire region of Southeast Queensland was homogenous 

based on conventional delineation of homogenous regions, but it was also found that 

the region could be divided into 2 homogeneous regions when delineation of 

homogenous regions was based on event-based rainfall.  

A number of researches related to regionalization of precipitation have been 

conducted in Korea. Nam et al. (2015) delineated climatic rainfall regions in Korea 

using multivariate and regional frequency analysis. Factor analysis, and fuzzy C-

Means clustering were used to cluster annual maximum data from 67 stations across 

Korea. They compared the at site frequency analysis with regional frequency 
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analysis and concluded that the regional frequency analysis estimates were more 

accurate. Kim et al. (2012) identified 6 homogeneous regions by using Self 

Organizing Maps and considering 61 gauges stations with data from 1980-2010.  

Most of previous studies uses annual, seasonal or monthly precipitation in the 

formation of homogeneous regions even though It has been proved that 

regionalization of precipitation based on different time scales produces different 

results (Saikranthi et al., 2013); and it has been recommended to choose a temporal 

resolution based on the final utilization of the precipitation regions because all 

homogeneous regions may not be suitable for every purpose (Irwin et al., 2017). 

There was therefore a need to study the formation of homogeneous regions based on 

time series with small scale temporal resolution (Irwin et al., 2017). The present 

study used time series daily precipitation data to consider small scale temporal 

variability in the regionalization of precipitation.  
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2.2. Homogeneous regions using other source of data.  

 

Conventional methods of regionalization which use statistics to define 

homogenous regions has different limitations, as it cannot be used in regions with 

few or no precipitation gauges. The study by Satyanarayana and Srinivas (2011) used 

fuzzy clustering analysis to define homogenous precipitation regions in scarcely 

gauged areas using other source of data instead of precipitation data. Large scale 

atmospheric variable (LSAV) such as location parameters, latitude, longitude, 

altitude, and seasonality of precipitation were used as variables instead of 

precipitation to form homogeneous regions. To validate the regions, they used 

dataset from India Meteorological Department (IMD) which contains annual gridded 

rainfall data of 2140 stations with records between 1959 and 2004. The regions 

identified through this method can be validated using statistical analysis of data 

collected on site.  

The methods commonly used in past studies on the regionalization of 

precipitation was to form homogeneous regions by using data from rain gauge 

stations (Claps et al., 2022). But those methods are known to have a major limitation 

in ungauged or scarcely gauged areas because they cannot be used in areas with no 

gauges and cannot produce meaningful results in areas with few gauges 

(Satyanarayana & Srinivas, 2011). In order to overcome the challenge of forming 

homogeneous regions in sparsely gauged areas, Satyanarayana and Srinivas (2011) 

used large-scale atmospheric variable (LSAV) as input data for the formation of 

homogeneous regions. However, the variables used as input were not precipitation 

variables but other variables which influence precipitation. There are a lot of 

uncertainties associated with using variables which influence precipitation instead 

of using precipitation estimates in regionalization of precipitation.  
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To overcome the spatial variability challenge, this study used satellite data to form 

homogeneous precipitation regions. Satellite data present a huge potential in the 

formation of precipitation regions because they are surface data and are widely 

available so they can be used to form homogeneous regions in ungauged areas.  
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2.3. Satellite Precipitation data 

 

Many of the past studies on satellite precipitation data focused on improving the 

accuracy of released satellite precipitation products. Chen et al. (2020) estimated 

daily precipitation for the valley of Xijiang in the Southeast of China for a period of 

8 years starting from 2010. Data from rainfall gauging stations were merged with 

precipitation data from 4 satellites products, the TRMM multi-satellite precipitation 

analysis (TMPA), Climate Prediction Center (CPC) morphing technic (CMORPH), 

Precipitation Estimation from Remote Sensed Information using Artificial Neural 

Network (PERSIANN), and Global Satellite Mapping of Precipitation (GSMaP), 

using a combination of geographically weighted regression (GWR) and ridge 

regression. The study concluded that the estimation of precipitation was greatly 

improved in accuracy by merging rain gauge data with SPP data. Furthermore, the 

study suggests that the use of multiple SPP give better results that the use of a single 

SPP.  

Zhang et al. (2021) used a new method of double machine learning to combine 

precipitation estimate from different satellites data and gauged data from China. The 

research used semi daily data from 697 rain gauge station distributed in China. The 

satellite products used were IMERG, PERSIANN, GSMap and the satellite product 

derived from ASCAT soil moisture product. The resolution of all those products were 

uniformized to 0.1◦×0.1◦ The regression models of random forest (RF), artificial 

neural network (Rasheed et al.), support vector machine (SVM) and extreme learning 

machine (ELM) were used to develop SML algorithms. The classification model of 

RF in combination with the regression model of RF, ANN, SVM and ELM were used 

to developed the double machine learning (DML) algorithms. 70% of the gauges, 

were randomly sampled in each subregion and their data were us as training dataset 

while 30% of the gauges data were randomly sampled and used as test data group. 
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The continuous and categorical metrics including the Kling-Gupta efficiency (KGE), 

Probability of detection (POD), success ratio (SR), bias score (BS) and critical 

success index (CSI) were used to evaluate those products and the original SPPs. The 

study generated 12 products among them, 4 precipitation products were obtained 

using DML algorithms, 4 products were generated using SML algorithms, 3 products 

were obtained using linear merging methods and 1 product was obtained using gauge 

only interpolated product. A recent study by Wang and Yong (2020) evaluated two 

satellite-based products, IMERG and GSMaP with gauge observations on 6 

continents. The daily time resolution was used while spatial resolution of 0.5 degree 

were used for the period start by 2015 to the end of 2018. They concluded that 

IMERG perfomers better than GSMaP. 
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2.4 Self organizing maps 

 

Self-organizing map (SOM) is a neural network published by Kohonen (1990). 

As explained by Miljkovic (2017), SOM is one of the most common neural networks. 

SOM is commonly used to map high dimensional data to a two-dimensional grid for 

visualization purposes to overcome the limited ability of humans in visualizing such 

dimensional data (Miljkovic, 2017). SOM is used to identify and classify patterns in 

spatial-temporal space because of their ability to produce a map of features. SOM 

has been used in the classification and interpretation of satellite imagery(Giacco et 

al., 2010), including identification of land use classes from satellite imagery or 

identification of sources of dusts from satellite imagery(Lary et al., 2016). SOM has 

been used for environmental analysis to analyze spatial and temporal patterns of 

pollutants (Licen et al., 2023). SOM has been used in other fields including medical 

imaging to analyze diseases from medical images or in maritime applications for 

planning ship trajectories and in robotics for learning the motion map and solving 

traveling salesman problem (Miljkovic, 2017). SOM has been used in hydrology to 

analyze variation of ground water (Varouchakis et al., 2023).  

SOM has also been used to define homogeneous precipitation regions. Annual 

precipitation data from 31 rain gauges and spanning a period from 1960 to 2010 were 

used in a clustering approaches proposed by Roushangar and Alizadeh (2018) to 

define homogeneous precipitation regions in Iran. Discreet wavelet transforms were 

used to get the features of the time-frequency of the time series. Homogeneous 

regions were defined using k-means and Self Organizing Maps (SOM) clustering 

techniques. The annual precipitation time series was pre-processed to get time 

related coefficients and the input layer was determined using the same coefficients 

instead of the time series data. The efficiency of the model in clustering was verified 

using 3 indexes: the silhouette coefficient, the Dunn index and Davis Bouldin index. 
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Outcomes of the studies showed that K-means clustering performed better in 

comparison to SOM.  

SOM was anticipated to be an appropriate choice to work with high 

dimensionality of time series data because of the proved ability of SOM in 

identifying patterns in high dimensional data, and ability in identifying and 

classifying patterns in spatial-temporal space. Therefore, SOM was chosen in this 

study to form homogeneous regions by using time series data. 
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Chapter 3. Material and Methods 

 

3.1. Data 

 

3.1.1. Gauge data 

 

The data used in this study were from the dataset of Korea Meteorological 

Agency (https://data.kma.go.kr). Two sources of gauge data were considered in this 

study as shown in Figure 1 and Figure 2. 103 ASOS (Automated Synoptic Observing 

System) stations and 511 AWS (Automatic Weather Station). After a thoroughly 

checking of the dataset, 57 ASOS stations were retained for further analysis because 

they have continuous records of 30 years daily precipitation. Finally, 66 ASOS 

stations and 375 AWS were combined to get the total number of 441 stations with 

20 years continuous precipitation records. 

  

    Figure 1. ASOS stations  Figure 2. AWS stations 
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AWS and ASOS stations (441 stations) spread across Korea were analyzed to 

give a better insight into the formation of regions from time series data and permit 

to make conclusions about the abilities of grouping technics. The number of stations 

and corresponding records periods were stated in Table 1.  

 

Table 1. Number of gauge stations 

No Name No of stations 

(2001-2020) 

No of stations 

(1991-2020) 

1 ASOS 66 57 

2 AWS 375 - 

Total AWS+ ASOS 441 57 

                       

All the ASOS series have 10, 958 days (30 years daily records). The series which 

have missing values have been excluded from the analysis. The variables considered 

were the daily precipitation data from 1991-2020 in the first analysis. In the second 

analysis, a dataset of 20 years daily precipitation was used as input for the clustering 

algorithms. 375 AWS stations and 66 ASOS stations with 20 years daily precipitation 

continuous records were grouped into homogeneous regions. The precipitation time 

series have equal length of 7,305 days (20 years). The 441 stations were grouped 

into homogeneous regions using two different technics, K-Means clustering and 

SOM and the resulting regions were compared for a better understanding of the 

grouping technics advantage and disadvantage. The data were processed using 

Python and R packages. The pre-processing of the data started by checking the length 

of the time series, series with missing data were removed from the analysis, then all 

the time series were normalized to have a scale between 0 and 1. The normalization 

of the data was done using python skit learn preprocessing functions.  
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3.1.2. Satellite data 

 

The satellite data used in this research was the Integrated Multi-satellitE 

Retrievals for GPM (IMERG). A map accumulated dataset of daily precipitation of 

South Korea for 20 years from January 2001 to December 2020 were used in the 

present study. The data were downloaded from NASA’s satellite precipitation data 

repository (https://giovanni.gsfc.nasa.gov/giovanni/). The data were extracted from 

satellite files to csv file using Python code. IMERG dataset combines precipitation 

data from a constellation of satellites from Global Precipitation Measurement (GPM), 

a mission of National Aeronautics and Space Administration (NASA), to produce a 

gridded precipitation estimate on a global level with a spatial resolution of 0.1 o to 

0.1 o and time resolution of 30 minutes or monthly. The diagram of the GPM core 

observatory was shown in Figure 3.  

 

 

Figure 3. GPM core diagram (Source: 

https://gpm.nasa.gov/missions/GPM/core-observatory) 

 

 

https://giovanni.gsfc.nasa.gov/giovanni/
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The data used in this study were from IMERG version 6, more specifically the 

IMERG derived product of daily estimates formed by the Goddard, Earth Science 

(GES), Data and Information Services Center (DISC) at NASA’s Goddard 

Distributed Active Archive Center(DAAC) (Leptoukh et al., 2001).  

 

Figure 4. Example of IMERG world Precipitation on 2014.06.2 

 

IMERG was released in 3 batches by the Precipitation Processing Center (PPS) 

of NASA Goddard. The first batch Early IMERG was released few hours after the 

satellite observations and is intended to be used for disaster monitoring, the late 

IMERG, and the final IMERG which released months after the satellite observation. 

The final IMERG was used in the present study because it was the most accurate and 

was recommended for research purposes.  

Satellite derived precipitation was traditionally estimated from 2 main types of 

sensors: The passive microwaves sensors mounted on low earth-orbit (leo) satellite 

and Infrared (IR) sensors mounted on geosynchronous-Earth-orbit (Haddad et al., 

2015). Satellite precipitation were traditionally estimated from passive microwaves 
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sensor passive microwave (PMW) sensors which have limited sampling capabilities. 

The IMERG on the other hand used many leo satellite and combine the outcome with 

geosynchronous-Earth-orbit (Haddad et al., 2015).  

The raw data from IR on geo satellites were in form of brightness temperature 

(Tb). IR does not measure directly surface precipitation but rather measure the 

temperature or radiation reflection on the top of clouds (Figure 5). One way to 

improve the relationship estimated between the Tb measured from IR and surface 

precipitation was to use estimates from PMW sensors.  

 

 

Figure 5. Remote sensing diagram (Source: https://gpm.nasa.gov/image-

gallery/active-and-passive-remote-sensing-diagram Source NASA) 

 

The satellite products were obtained as level 2 precipitation estimates. The PPS 

collect estimates from different PMW provider in the form of brightness temperature, 

intercalibrate them and compute the next level of estimate of brightness temperature. 

After intercalibration, precipitation estimates were computed using internal 

algorithm. The estimates were gridded and were used by different institution to 

produce their own estimates. An example of study area IMERG precipitation 

imagery was shown on Figure 6. 
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Figure 6. Example of study area satellite precipitation imagery 
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3.2. Clustering methods 

 

Different methods have been used in past to group precipitation stations into 

clusters that display required statistical homogeneity. Methods based on statistical 

analysis of rain gauge observation have been extensively used in defining 

homogeneous precipitation regions in the past but new methods involving machine 

learning algorithms are increasingly used to define homogeneous precipitation 

regions(Carvalho et al., 2016). The present research used two clustering methods, K-

Means clustering and Self-Organizing Maps to form homogeneous precipitation 

regions in Korea. The study scheme was summarized in Figure 7.  

 

 

 

Figure 7. Research scheme 

 

Two sources of data, gauge and satellite data were used as input for the two 

clustering algorithms. The resulting clusters were tested by using Hosking and Wallis 

homogeneity test. Clusters from both clustering methods were mapped and results 

were compared in the results and discussion section of this study.  

 The clustering methods used and compared in this study vary in their 

implementation principles, but they represent the main conventional methods 

commonly used in clustering precipitation data. K-Means clustering represents the 

simple and classic clustering methods commonly used in defining homogeneous 
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precipitation regions while Self-Organizing Maps represent the machine learning 

model increasingly used to define homogeneous precipitation regions. Their 

comparison will provide an insight into the performance of simple algorithms in 

clustering timeseries precipitation data compared to more complex neural network 

machine learning algorithms.  

 

3.2.1. K-Means Clustering 

 

K-Means clustering algorithm (Ralambondrainy, 1995) was used to cluster 

precipitation stations into homogeneous regions. K-means clustering is a centroid 

based machine learning algorithm widely used in data mining community to partition 

a dataset into corresponding clusters.  

K-means clustering was implemented using python machine learning library 

called tslearn. The Euclidean distance was chosen as the methods to calculate 

distance between points. The tslearn package provides different tools for machine 

learning analysis of time series data. The TimeSeriesKMeans was used to partition 

the dataset into corresponding clusters. The metric used for cluster assignment is 

Euclidean distance. The initialization method which uses specific probabilities to 

choose random initial centers is utilized in this study for initialization of K-Means 

clustering. The method is commonly known as k-means++ and was proposed by 

Arthur and Vassilvitskii (2007). This initialization methods is more accurate and 

faster than default random initialization(Arthur & Vassilvitskii, 2007). The number 

of clusters for K-Means clustering algorithm was chosen to be the optimum number 

of clusters determined by Elbow method.  

The centroid based cluster is represented by center point called centroid which is 

often the mean or median of all the points in the clusters. K-means algorithm initially 

assigns each data points to a centroid and iteratively updates the centroids until each 
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data point is assigned to the nearest centroid. The objective of K-means cluster 

analysis is to minimize the sum of squares with in the cluster.  

If the target object is 𝒙 , and the average of cluster 𝑪𝒊  is 𝑥𝑖  , the criterion 

function is given by the following formula: 

 

𝑬 = ∑ ∑ |𝒙 − 𝒙𝒊|

𝒙∈𝑪𝒊

𝟐
𝒌

𝒊=𝟏

 

 

( 1) 

 

𝑬 is the sum of the squared of all the points in the database. Euclidean distance is 

used to calculate the distance between each data point and the center of the cluster.  

Euclidean distance d between point 𝑥1  and y1 from two vectors x = ( 𝑥1 , 

𝑥2,…. 𝑥𝑛) and vector y = (𝑦1,𝑦2,……… 𝑦1). The Euclidean distance between two 

points can be calculated as below: 

 

𝒅 (𝒙𝒊, 𝒚𝒊) = [∑(𝒙𝒊 − 𝒚𝒊)
𝟐

𝒏

𝒊=𝟏

]

𝟏
𝟐⁄

 

 

      (2) 

 

Assuming a data set of n statistical individuals for which we know the value of p 

variables. The strategy of classification consists of determining the distance between 

points and distance between a group of points. One of the algorithms, hierarchical 

ascending start by searching the closest elements and put them into a new object 

(group of objects) generated by the algorithm. The algorithm calculates distance 

between the object and remaining objects to be classified as in previous step, but 

with only n-1 object remaining. The algorithm searches again for the closest objects 

and groups them and calculates the new distances again, the process continues until 

one object remains. 
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3.2.2. Self-Organizing Maps (SOM) 

 

Self-Organizing Maps (SOM) is an unsupervised machine learning algorithms 

made known by Kohonen (1990). They are used to visualize data and identify 

patterns from high dimensional dataset. The patterns are visualized by reducing the 

high dimensional dataset to a lower dimension space, mostly into 2-dimension space. 

Self-organizing maps has been used by many researchers to identify patterns form 

larger dataset in many fields including clustering, data mining and others fields. 

 SOM was implemented using one of the popular SOM package called Minisom 

(Vettigli, 2018). The package is based on python programming language and NumPy 

library and has the capability of representing high dimensional dataset into a low 

dimension map. Gaussian function was chosen as neighborhood function and 

Euclidian distance was used as the distance measure. The hyperparameter called 

sigma controls the initial spread, while the hyperparameter knows as learning rate 

controls the model learning rate. The 2-dimensional rectangular map was chosen for 

this study. The size of the map depends on the targeted number of clusters. Details 

on optimization of SOM hyperparameter were given in section 3.4. Basic principles 

of SOM algorithm were presented in the section below.  

 To represent input data spatially, a cell is found for the best match of the input 

and a neighborhood of grids is formed around that same cell. SOM starts by 

initializing every weight of each node, then it chose randomly a vector from the 

training data set. The weight of vector that resembles the input vector is calculated; 

the neighborhood of the winning node is calculated. The weight that resembles the 

input vector is rewarded and its neighbor are also awarded accordingly. The steps are 

iterated for several times. 

The self-organizing maps is different from other neural networks because it uses 

competitive learning instead of error correction commonly used by backpropagation 
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gradient. The input node directly linked to output node. Principles of SOM have been 

extensively explained in a series of paper by Kohonen (1990, 1998, 2001). 
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3.3. Optimization of clustering methods for K-Means 

 

One of the major challenges in K-Means clustering is to determine the optimal 

cluster number in cluster analysis. The potential optimal cluster number is an 

important input parameter and needs to be determined in advance for K-Means 

clustering algorithms. Elbow method, one of the oldest and commonly methods to 

determine the potential optimal number of clusters was used to determine the optimal 

number of clusters for the present study. 

Elbow analysis was implemented using python package called Yellowbricks 

(Bilbro, 2019). Yellowbricks is the python library that depends on scikit-learn and 

matplotlib libraries to provide interesting tools for machine learning visualization, 

model selection and hyperparameter tuning.  

Elbow method is a visual method where the potential number of clusters 

correspond to the elbow in line chart. A cost function 𝐽 is set up 

 

𝐽 =  ∑ ∑ |𝑥 − 𝐶𝑖|2

𝑥∈𝐶𝐼

𝑘

𝑖=1

 

 

(3) 

 

where 𝐽 is the cost function; 𝐶𝑖 is the cluster; 𝑥 is the element of cluster; 𝑘 is the 

number of clusters. 

The sample partition will be refined with the increase of clustering number. J will 

decrease when the degree of each cluster gradually increases. When the number of 

clusters k is less than the optimal clustering number, the increase of k will largely 

increase the degree of each cluster and thus 𝐽 will be greatly increased. However, 

when k reaches the optimal number of clusters any further increase of 𝑘 will not 

increase 𝐽  substantially. The k value of this elbow is considered as the optimal 

number of clusters.   
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3.4. Optimization of clustering methods for SOM 

 

A trial and error method were used to determine the optimum number of clusters. 

Different combination of hyperparameters including learning rate, sigma, and map 

size (X, and Y) were tried for every number of clusters. Two measure of internal 

errors, Quantization Error (TE), and Topographical Error (QE) were calculated for 

every trial and the combination of hypermeters that minimize TE were chosen as 

optimal hyperparameters for each trial.  

 

3.4.1. Quantization error 

 

SOM does not have a direct method to determine optimum number of nodes. The 

number of nodes is often determined by a trial and error methods(Kohonen, 1991). 

Increasing the number of nodes means increasing the capacity of the model to 

represent the underlying structure of the data. However, a very large number of nodes 

would lead to overfitting. It is therefore very important to find the optimal number 

of nodes. One of the practices to determine the optimal number of nodes is to 

minimize the quantization error. The quantification error measure the distance 

between the best-matching units on the SOM and the average of the corresponding 

input vectors. The quantification error decreases when the number of nodes increases. 

When the number of nodes is increased, the quantification error decreases. The 

relationship between the number of nodes and quantification error is used to 

determine the optimal number of clusters. In the beginning the quantification error 

decreases sharply as the number of nodes increases. However, the rate of 

improvement slows down and reach a point where there is no more substantial 

improvement. That point is known as elbow point and is considered as the optimal 

number of nodes. A plot of quantification error against the number of nodes is one 
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approach that give an indication of how quantification error changes when the 

number of nodes increases.  

The quantization error is expressed in the formula below:  

 

𝑸𝑬 = 𝟏/𝑵 ∑‖𝒙𝒊 − 𝒎𝒄𝒊‖

𝒏

𝒊=𝟎

 
 

   (4) 

 

where 𝑁 is the number of input vector 𝑥; 𝑥𝑖 is the original input vector; 𝑚𝑐 is 

the best matching unit; ‖𝑥𝑖 − 𝑚𝑐‖ is a measure of how close is the original input 

vector to the SOM matching unit.  

 

3.1.2. Topographical error 

 

Topographical error is a measure of how SOM preserves the spatial relationship 

between input data points. In calculating topographical error (TE), the number of 

inputs points whose closest units in the SOM are not neighbors are divided by the 

total number of inputs points. A high TE value means that there were a lot of cases 

where SOM has not succeeded in preserving the topographical relationship of input 

points. The optimal number of nodes were decided based on the minimum TE.   



27 

 

3.5. Homogeneity test 

 

It is very important to test homogeneity of formed regions to test if they are truly 

homogeneous. Homogeneity of clusters in regional frequency analysis was tested 

using a widely known method developed by Hosking and Wallis in 1991.  

Implementation of Hosking and Wallis heterogeneity test was implemented using 

lmomRFA package, version 3.5. The package depend on R programming language 

and was developed by the author of the same test (Hosking & Wallis, 1997). 

Heterogeneity measure H1 is calculated using function regsimh from lmomRFA. The 

function uses Monte Carlo simulations to estimate the sampling variability of L-

moments ratios of a homogeneous region which has same average L-moment rations 

and record length as the data. The present study uses 1000 number of simulations in 

the calculation of heterogeneity measure for every cluster. Note that 500 number of 

simulation were considered as sufficient to get accurate results(Hosking & Wallis, 

1997).The algorithm calculate heterogeneity measure based on a measure of 

dispersion of L-moment ratios between sites. Heterogeneity measure H1 and can be 

expressed as: 

 

𝑯𝟏 =
𝑽 −  µ𝑽𝟏

𝝈𝑽𝟏
 

(5) 

 

where µ𝑉1  is the average computed from simulated data; 𝜎𝑉1  is the standard 

deviation computed from the same simulated data.  

 The sample variance (V) is computed as: 

 

𝑽 =

∑ 𝒏𝒊 (𝑳 𝒊
𝑪𝑽

− 𝑳 𝒊
𝑪𝑽

)
𝟐𝒑

𝒊 

∑ 𝒏𝒊
𝒑
𝒊=𝟏 

 

 

(6) 
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where 𝑛𝑖  is the number of points in rain gauge station I; 𝐿 𝑖
𝐶𝑉

 is the L-coefficient 

of variation (Lcv) calculated for rain gauge station I; 𝐿 𝑖
𝐶𝑉

 is the average of 𝐿 𝑖
𝐶𝑉

 

considering all p rain gauge stations.  

The cluster is considered, homogeneous if the calculated 𝐻1 is inferior to 1, 

possibly homogeneous if 𝐻1 is between 1 and 2, and heterogeneous if 𝐻1  is 

superior to 2. Alternatives measures called H2 or H3 can be used in place of H1; H2 is 

calculate from L skewness instead of LCV and H3 is calculate using L kurtosis instead 

of LCV. However, H1 is usually enough.  
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Chapter 4. Results and Discussion 

 

4.1. ASOS stations 

 

SOM and K-Means clustering methods were used to group 57 ASOS stations into 

homogeneous precipitation clusters using daily precipitation data. Clusters formed 

by each method were tested by Hosking and Wallis heterogeneity measure H1. The 

measure was used to confirm if the clusters were indeed homogeneous 

hydrologically. Homogeneity test results were used to assess and compare the ability 

of each clustering method in defining homogeneous precipitation clusters using time 

series data.  

 

4.1.1. K-Means Clustering  

 

Twelve clusters were initially determined by Elbow method as the optimal 

number of clusters for K-Means clusters and ASOS dataset as shown on the Figure 

8.  

  

Figure 8. Elbow for K-Means- ASOS stations 
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It is well known that traditional methods commonly used to find optimal number 

of clusters in other datasets may not produce good results for time series datasets. 

The fact was confirmed by the results of homogeneity test for initial K-Means 

clustering as listed in Table 2. The number of clusters was subjectively changed to 

10, 14, and then to 16 based on the results of homogeneity test.  

Cluster analysis was conducted on ASOS stations using K-Means clustering with 

initial cluster number of 10. The results of homogeneity test showed that one cluster 

was identified as homogeneous out of 10 clusters. This may indicate that 10 clusters 

may not be the optimal number of clusters for ASOS dataset. 

 

Table 2. Homogeneity test for K-Means- ASOS stations (N=10) 

Clusters No of sites H1 Homogeneity 

Cluster 1 3 0.8 Homogeneous 

Cluster 2 10 3.7 Heterogeneous 

Cluster 3 9 5.1 Heterogeneous 

Cluster 4 5 3.2 Heterogeneous 

Cluster 5 6 15.5 Heterogeneous 

Cluster 6 6 0.3 Homogeneous 

Cluster 7 6 2.7 Heterogeneous 

Cluster 8 8 4.6 Heterogeneous 

Cluster 9 1 0.0 - 

Cluster 10 3 0.4 Homogeneous 

 

The number of clusters was increased to 12 clusters for K-Means clustering. The 

results of homogeneity test in Table 3 showed that 4 clusters out of 12 clusters were 

homogeneous and one cluster was possibly heterogeneous. The number of 

homogeneous clusters was improved compared to previous clustering when the 

number of clusters was 10.  
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But the fact that a greater number of clusters were heterogeneous may indicate a 

reduced ability of the clustering method to deal with time series data, or it may be an 

indication that the chosen cluster number was still too small for the dataset. 

 

Table 3. Homogeneity test for K-Means- ASOS stations (N=12) 

Clusters No of sites H1 Homogeneity 

Cluster 1 3 -0.8 Homogeneous 

Cluster 2 6 2.8 Heterogeneous 

Cluster 3 6 4 Heterogeneous 

Cluster 4 10 5.7 Heterogeneous 

Cluster 5 1 0 - 

Cluster 6 6 0.3 Homogeneous 

Cluster 7 5 23.8 Heterogeneous 

Cluster 8 3 0.3 Homogeneous 

Cluster 9 6 4.2 Heterogeneous 

Cluster 10 3 0.8 Homogeneous 

Cluster 11 4 1.3 Possibly Heterogeneous 

Cluster 12 4 2.8 Heterogeneous 

 

The number of clusters was increased to 14 and the clustering process was 

repeated. The number of homogeneous clusters identified by K-Means was increased 

to 5 as shown in Table 4.   
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Table 4. Homogeneity test for K-Means -ASOS stations (N=14)  

Clusters 

(ASOS-

SOM) 

No of sites H1 Homogeneity 

Cluster 1 4 2.8 Heterogeneous 

Cluster 2 6 4.6 Heterogeneous 

Cluster 3 7 2.7 Heterogeneous 

Cluster 4 3 0.8 Homogeneous 

Cluster 5 6 0.3 Homogeneous 

Cluster 6 6 2.7 Heterogeneous 

Cluster 7 3 -0.5 Homogeneous 

Cluster 8 2 0.8 Homogeneous 

Cluster 9 6 15.7 Heterogeneous 

Cluster 10 1 0.0 - 

Cluster 11 7 4.5 Heterogeneous 

Cluster 12 1 0.0 - 

Cluster 13 2 1.3 Possibly Heterogeneous 

Cluster 14 3 0.4 Homogeneous 

 

The number of clusters was further increased to 16 K-Means clustering and the 

algorithm was rerun to assess if homogeneity results will be improved. The number 

of homogeneous clusters remained the same even after the number of clusters was 

increased to 16 as shown in Table 5. 
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Table 5. Homogeneity test for K-Means-ASOS stations (N=16) 

Clusters 

(ASOS-

SOM) 

No of sites H1 Homogeneity 

Cluster 1 2 5.8 Heterogeneous 

Cluster 2 7 3.9 Heterogeneous 

Cluster 3 4 -0.1 Homogeneous 

Cluster 4 5 1.2 Possibly Heterogeneous 

Cluster 5 6 2.6 Heterogeneous 

Cluster 6 3 4.6 Heterogeneous 

Cluster 7 3 2.4 Heterogeneous 

Cluster 8 3 0.9 Homogeneous 

Cluster 9 1 0.0 - 

Cluster 10 6 1.2 Possibly Heterogeneous 

Cluster 11 5 0.6 Homogeneous 

Cluster 12 5 11.2 Heterogeneous 

Cluster 13 1 0.0 - 

Cluster 14 1 0.0 - 

Cluster 15 3 1.6 Possibly Heterogeneous 

Cluster 16 2 -1.1 Homogeneous 

 

4.1.2. SOM 

 

The optimal parameters for SOM were investigated using two internal Minisom 

package metrics: the quantization error (QE), and topographical error (TE). The 

topographical error was used as a metrics to determine the optimal combination of 

hyperparameters such as sigma and learning rate (Lr). Different combinations of 

hyperparameters, learning rate, sigma, and the map size (x, y) were analyzed and TE 

and QE were calculated for each combination. The combination of parameters that 

minimize TE was determined for the three trials as shown in Table 6. The number of 

nodes was decided to be the same as K-Means clustering for comparison purposes. 
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Figure 9. Quantization error SOM-ASOS 

 

The quantization error always decreased when the number of nodes increased, 

therefore QE alone was not suitable to compare maps of different size as can be 

observed on the Figure 9. 

 

Figure 10. Topographical error SOM-ASOS 

 

It was observed that different hyperparameters produce different homogeneity 

test results for SOM, even when the number of nodes was the same. The 

hyperparameters which minimize TE as shown in Table 6, were chosen as suitable 

for every test  
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because they tended to produce well distribute clusters while hyperparameters that 

minimize QE tended to produce many sole station clusters.  

 

Table 6. Optimal hyperparameters for SOM-ASOS stations 

No of clusters QE TE Lr Sigma X Y 

10 2.599 0.018 0.5 1.5 2 5 

12 2.524 0.018 0.5 1.5 2 6 

16 2.562 0.018 0.3 2 6 4 

14 2.597 0.035 0.5 2 2 8 

 

The number of nodes for SOM was initially determined to be 10, then it was 

increase to 12,14 and 16. The results of homogeneity test for initial number of 

clusters showed that SOM identified 1 homogeneous cluster out of 10 clusters as 

listed in Table 7. 

 

Table 7. Homogeneity test for SOM – ASOS stations (N=10) 

Clusters No of sites H1 Homogeneity 

Cluster 1 6 6.0 Heterogeneous 

Cluster 2 3 0.8 Homogeneous 

Cluster 3 5 22.8 Heterogeneous 

Cluster 4 5 2.4 Heterogeneous 

Cluster 5 9 5.9 Heterogeneous 

Cluster 6 5 -0.5 Homogeneous 

Cluster 7 6 6.7 Heterogeneous 

Cluster 8 8 6.9 Heterogeneous 

Cluster 9 6 2.5 Heterogeneous 

Cluster 10 4 3.4 Heterogeneous 
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When the number of nodes was increased to 12, SOM identified 2 homogeneous 

and 3 possibly heterogeneous clusters out of 12 clusters as shown in Table 8.  

 

Table 8. Homogeneity test for SOM-ASOS stations (N=12)  

Clusters 

(ASOS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 8 1.2 Possibly Heterogeneous 

Cluster 2 5 0.6 Homogeneous 

Cluster 3 3 8.4 Heterogeneous 

Cluster 4 4 1.3 Possibly Heterogeneous 

Cluster 5 6 3.4 Heterogeneous 

Cluster 6 3 4.1 Heterogeneous 

Cluster 7 3 0.8 Homogeneous 

Cluster 8 3 1.0 Possibly Heterogeneous 

Cluster 9 6 5.2 Heterogeneous 

Cluster 10 5 24.8 Heterogeneous 

Cluster 11 3 7.9 Heterogeneous 

Cluster 12 8 4.3 Heterogeneous 

  

When the number of nodes was increased to 14, the number of homogeneous 

clusters increased to 4 as shown in Table 9. The increase in number of homogeneous 

clusters may indicate that the capacity of SOM to capture patterns in timeseries data 

was gradually improving as SOM map size was increased.   
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Table 9. Homogeneity test for SOM-ASOS stations (N=14)  

Clusters 

(ASOS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 3 0.84 Homogeneous 

Cluster 2 7 1.02 Possibly Heterogeneous 

Cluster 3 2 1.83 Possibly Heterogeneous 

Cluster 4 4 -0.41 Homogeneous 

Cluster 5 4 3.20 Heterogeneous 

Cluster 6 5 10.20 Heterogeneous 

Cluster 7 3 0.61 Homogeneous 

Cluster 8 3 4.51 Heterogeneous 

Cluster 9 3 3.53 Heterogeneous 

Cluster 10 4 21.07 Heterogeneous 

Cluster 11 5 3.35 Heterogeneous 

Cluster 12 4 11.16 Heterogeneous 

Cluster 13 5 -0.05 Homogeneous 

Cluster 14 5 6.74 Heterogeneous 

 

The number of homogeneous clusters identified by SOM was increased to 6 when 

the number of nodes was increased to 16 as listed in Table 10. The increase in the 

number of homogeneous clusters may indicate the capacity of SOM to better 

represent high dimensional data when the number of nodes was increased.   
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Table 10. Homogeneity test for SOM -ASOS stations (N=16) 

Clusters 

(ASOS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 5 1.1 Possibly Heterogeneous 

Cluster 2 3 0.1 Homogeneous 

Cluster 3 5 0.6 Homogeneous 

Cluster 4 3 2 Heterogeneous 

Cluster 5 3 0.1 Homogeneous 

Cluster 6 3 21.3 Heterogeneous 

Cluster 7 2 7.1 Heterogeneous 

Cluster 8 4 7.3 Heterogeneous 

Cluster 9 3 0.9 Homogeneous 

Cluster 10 2 -0.6 Homogeneous 

Cluster 11 3 1.2 Possibly Heterogeneous 

Cluster 12 5 4.5 Heterogeneous 

Cluster 13 4 3.4 Heterogeneous 

Cluster 14 4 1.2 Possibly Heterogeneous 

Cluster 15 3 4 Heterogeneous 

Cluster 16 5 0.4 Homogeneous 

 

4.1.3. Comparison 

 

Based on the clusters formed by SOM and K-Means, SOM was able to identify a 

bigger number of homogeneous clusters when the number of nodes is increased. It 

was able to identify 6 homogeneous clusters when the number of nodes was 

increased to 16 while K-Means identified 5 homogeneous regions for the same 

number of clusters as shown in Figure 11. K-Means was able to identify a greater 

number of homogeneous regions when cluster number was small. For example, when 

the number of clusters was 10, K-Means identified 3 homogeneous clusters while 

SOM identified 2 homogenous clusters as it can be observed on Figure 11 (a) and (b) 

however the number of homogeneous and possibly heterogeneous clusters identified 
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by SOM gradually increased as the number on nodes increased from 10 to 16 as 

show in Figure 11 (c) and (d). The performance of SOM in defining homogeneous 

regions was greatly affected by the size of the map.  

 

  

(a) 

 

 

(b) 

Figure 11. Homogeneity test for ASOS dataset for different number of 

clusters(N); (a) N equal 10, (b)  
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(c) 

 

 

(d) 

Figure 12. Homogeneity test for ASOS dataset for different number of 

clusters(N); (c) N equal 14 and (d) N equal 16.  



41 

 

4.2. AWS stations 

 

SOM and K-Means clustering were used to group 441 stations into homogeneous 

clusters. The homogeneity of each cluster was tested using Hosking and Wallis 

homogeneity test to confirm if they were hydrologically homogeneous. The results 

of the homogeneity test were used to assess the ability of each clustering method in 

defining homogeneous precipitation clusters.  

 

4.2.1. K-Means Clustering  

 

Twelve clusters were initially determined by Elbow method as the optimal 

number of clusters for AWS dataset as shown on the Figure 13. However, the number 

of clusters was subjectively changed to improve homogeneity of clusters.  

 

 

Figure 13. Elbow for K-Means clustering AWS stations 
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The number of clusters was therefore changed from 10 to 14, then to 16 to 

improve homogeneity based on initial results of homogeneity test. The results of 

homogeneity test in Table 11 showed that one clusters was homogeneous out of ten 

clusters when cluster number was set to 10 for K-Means clustering. 

 

Table 11. Homogeneity test for K-Means- AWS stations (N=10) 

Clusters No of sites H1 Homogeneity 

Cluster 1 41 34.4 Heterogeneous 

Cluster 2 57 8.0 Heterogeneous 

Cluster 3 45 8.2 Heterogeneous 

Cluster 4 40 15.5 Heterogeneous 

Cluster 5 33 -0.7 Homogeneous 

Cluster 6 63 17.7 Heterogeneous 

Cluster 7 31 19.1 Heterogeneous 

Cluster 8 33 25.6 Heterogeneous 

Cluster 9 61 19.5 Heterogeneous 

Cluster 10 37 8.7 Heterogeneous 

 

The low number of homogeneous clusters showed that 10 clusters were probably 

not a suitable number of clusters for AWS dataset. The number of clusters was 

increased to 12 clusters and the results of homogeneity test were presented in Table 

12. 
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Table 12. Homogeneity test for K-Means- AWS stations (N=12) 

Clusters No of sites H1 Homogeneity 

Cluster 1 29 1.2 Possibly Heterogeneous 

Cluster 2 40 0.6 Homogeneous 

Cluster 3 55 8.7 Heterogeneous 

Cluster 4 28 1.3 Possibly Heterogeneous 

Cluster 5 26 3.4 Heterogeneous 

Cluster 6 45 4.1 Heterogeneous 

Cluster 7 45 0.8 Homogeneous 

Cluster 8 34 1.1 Possibly Heterogeneous 

Cluster 9 28 5.6 Heterogeneous 

Cluster 10 42 24.2 Heterogeneous 

Cluster 11 20 7.9 Heterogeneous 

Cluster 12 49 4.5 Heterogeneous 

 

The results of homogeneity test for K-Means clustering showed that 2 out 

of 12 clusters were homogeneous and 2 clusters were possibly heterogeneous. 

The fact that a greater number of clusters were not homogeneous may indicate 

that the cluster number was still too small for the dataset. The number of 

clusters was increased to 14 and the clustering process was repeated. The 

number of homogeneous clusters identified by K-Means was 2 as shown in 

Table 13.  
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Table 13. Homogeneity test for K-Means -AWS stations (N=14)  

Clusters 

(AWS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 39 12.2 Heterogeneous 

Cluster 2 52 15.6 Heterogeneous 

Cluster 3 29 11.2 Heterogeneous 

Cluster 4 17 6.9 Heterogeneous 

Cluster 5 33 5.3 Heterogeneous 

Cluster 6 20 19.9 Heterogeneous 

Cluster 7 27 5.0 Heterogeneous 

Cluster 8 29 -0.4 Homogeneous 

Cluster 9 37 22.3 Heterogeneous 

Cluster 10 28 28.6 Heterogeneous 

Cluster 11 43 -0.4 Homogeneous 

Cluster 12 45 10.8 Heterogeneous 

Cluster 13 31 7.8 Heterogeneous 

Cluster 14 11 4.8 Heterogeneous 

 

K-Means identified one homogeneous cluster for AWS station even after 

the number of clusters was increased to 16 as shown in Table 14.   
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Table 14. Homogeneity test for K-Means-AWS stations (N=16) 

Clusters 

(AWS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 17 6.3 Heterogeneous 

Cluster 2 28 -0.3 Homogeneous 

Cluster 3 49 3.6 Heterogeneous 

Cluster 4 20 20.2 Heterogeneous 

Cluster 5 16 6.8 Heterogeneous 

Cluster 6 27 6.2 Heterogeneous 

Cluster 7 23 10.7 Heterogeneous 

Cluster 8 29 7.2 Heterogeneous 

Cluster 9 18 6.7 Heterogeneous 

Cluster 10 26 28.4 Heterogeneous 

Cluster 11 30 2.4 Heterogeneous 

Cluster 12 27 12.6 Heterogeneous 

Cluster 13 33 6.2 Heterogeneous 

Cluster 14 33 13.5 Heterogeneous 

Cluster 15 20 11.8 Heterogeneous 

Cluster 16 45 10.8 Heterogeneous 

 

Homogeneity of clusters did not improve even when the number of nodes was 

increased to 16. One homogeneous cluster was identified by K-Means as indicated 

by the results of homogeneity test in Table 14. 
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4.2.2. SOM 

 

The optimal parameters for SOM in AWS dataset were investigated using two 

internal Minisom package metrics: the quantization error (QE), and topographical 

error (TE) as shown in Figure 14 and Figure 15. The topographical error was used 

as a metrics to determine the optimal combination of hyperparameters such as sigma 

and learning rate. A combination of different hyperparameters, including number of 

clusters, sigma, and learning rate was analyzed and QE and TE were calculated for 

every trial. The combination of parameters that minimize TE was determined for 

every clustering as shown in Table 15. The number of nodes was decided to be the 

same as K-Means clustering for comparison purposes.  

 

Table 15. Optimal hyperparameters for SOM-AWS stations 

No of clusters QE TE Lr Sigma X Y 

14 2.688 0.003 0.4 2 2 7 

16 2.727 0.003 0.3 2 4 4 

12 2.589 0.005 0.5 1.5 3 4 

10 2.636 0.003 0.4 1.5 5 2 
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Figure 14. Quantization error SOM-AWS stations 

The quantization error always decreases when the number of nodes increases, 

therefore QE alone was not suitable to compare maps of different size as can be 

observed in Figure 15.  

 

Figure 15. Topographical error SOM-AWS stations



48 

 

The number of nodes for SOM was initially determined to be 10, then it was 

increase to 12, 14 finally to 16. The results of homogeneity test in Table 16 shows 

that SOM initially identified 1 homogeneous cluster out of 10 clusters. The small 

size of the map for a big dataset may be the cause for low number of homogeneous 

clusters.  

 

Table 16. Homogeneity test for SOM - AWS stations (N=10)  

Clusters 

(AWS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 46 7.9 Heterogeneous 

Cluster 2 21 22.1 Heterogeneous 

Cluster 3 63 30.2 Heterogeneous 

Cluster 4 35 -0.8 Homogeneous 

Cluster 5 52 13.3 Heterogeneous 

Cluster 6 34 29.5 Heterogeneous 

Cluster 7 41 3.2 Heterogeneous 

Cluster 8 19 6.4 Heterogeneous 

Cluster 9 28 9.4 Heterogeneous 

Cluster 10 102 22.9 Heterogeneous 

 

When the number of nodes was increased to 12. SOM identified 2 homogeneous 

clusters out of 12. (Table 17). The slight increase in number of homogeneous clusters 

may indicate that the capacity of SOM to capture patterns in timeseries data was 

enhanced when SOM map size was increased.  
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Table 17. Homogeneity test for SOM-AWS stations (N=12)  

Clusters 

(AWS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 51 13.7 Heterogeneous 

Cluster 2 40 4.9 Heterogeneous 

Cluster 3 28 24.0 Heterogeneous 

Cluster 4 36 3.6 Heterogeneous 

Cluster 5 39 21.2 Heterogeneous 

Cluster 6 50 11.3 Heterogeneous 

Cluster 7 31 12.4 Heterogeneous 

Cluster 8 66 15.0 Heterogeneous 

Cluster 9 42 16.8 Heterogeneous 

Cluster 10 25 -1.8 Homogeneous 

Cluster 11 14 0.3 Homogeneous 

Cluster 12 19 17.3 Heterogeneous 

 

The number of homogeneous clusters was not improved when the number of 

nodes was increased to 14. SOM still identified one homogeneous cluster as shown 

in Table 18.   
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Table 18. Homogeneity test for SOM-AWS stations (N=14)  

Clusters 

(AWS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 35 3.8 Heterogeneous 

Cluster 2 18 8.4 Heterogeneous 

Cluster 3 20 7.2 Heterogeneous 

Cluster 4 25 24.8 Heterogeneous 

Cluster 5 42 12.7 Heterogeneous 

Cluster 6 28 19.0 Heterogeneous 

Cluster 7 45 11.9 Heterogeneous 

Cluster 8 20 3.4 Heterogeneous 

Cluster 9 20 9.0 Heterogeneous 

Cluster 10 72 13.2 Heterogeneous 

Cluster 11 5 2.8 Heterogeneous 

Cluster 12 58 -0.1 Homogeneous 

Cluster 13 27 7.7 Heterogeneous 

Cluster 14 26 27.9 Heterogeneous 

 

The number of nodes was increased to 16 for SOM, the number of homogeneous 

clusters identified by SOM did not change any further as shown in Table 19. The 

increase in map size does not produce any further change in identifying 

homogeneous clusters.   
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Table 19. Homogeneity test for SOM -AWS stations (N=16) 

Clusters 

(AWS-SOM) 

No of sites H1 Homogeneity 

Cluster 1 17 6.3 Heterogeneous 

Cluster 2 28 -0.3 Homogeneous 

Cluster 3 49 3.6 Heterogeneous 

Cluster 4 20 20.2 Heterogeneous 

Cluster 5 16 6.8 Heterogeneous 

Cluster 6 27 6.2 Heterogeneous 

Cluster 7 23 10.7 Heterogeneous 

Cluster 8 29 7.2 Heterogeneous 

Cluster 9 18 6.7 Heterogeneous 

Cluster 10 26 28.4 Heterogeneous 

Cluster 11 30 2.4 Heterogeneous 

Cluster 12 27 12.6 Heterogeneous 

Cluster 13 33 6.2 Heterogeneous 

Cluster 14 33 13.5 Heterogeneous 

Cluster 15 20 11.8 Heterogeneous 

Cluster 16 45 10.8 Heterogeneous 

 

4.2.3. Comparison  

 

Based on the identification of homogeneous clusters by SOM and K-Means for 

AWS datasets, both clustering methods identified similar number of clusters in AWS 

dataset. The number of homogeneous clusters identified by both clustering methods 

did not improve when the number of clusters were increased to 12, 14 or 16 as it can 

be observed on Figure 16. This shows that the number of clusters or map size was 

probably not the cause of low yield in homogeneous clusters for AWS dataset.  
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(a) 

 

 

(b) 

Figure 16. Homogeneity results of AWS dataset for different number of 

clusters (N); (a) N equal 10, (b) N equal 12. 

 

 

 

 

 

 



53 

 

 

  

(c) 

 

 

(d) 

Figure 17. Homogeneity results of AWS dataset for different number of 

clusters (N); (c) N equal 14 and (d) N equal 16.  
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4.3. Satellite precipitation dataset 

 

SOM and K-Means clustering were used to group satellite dataset into 

homogeneous clusters. The clusters from each method were tested by means of 

Hosking and Wallis homogeneity test to confirm if they were hydrologically 

homogeneous. The results of the homogeneity test were used to assess the ability of 

each clustering method in defining homogeneous precipitation clusters using only 

timeseries data as input.  

 

4.3.1. K-Means Clustering  

 

Nine clusters were initially determined by Elbow method as the optimal number 

of clusters as shown on the Figure 18. However, the number of clusters was 

subjectively increased to 18 to improve homogeneity of clusters based on the results 

of initial homogeneity test.  

 

Figure 18. Elbow for K-Means- Satellite data 
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It is well known that traditional methods commonly used to find optimal number 

of clusters in other datasets may not produce good results for time series datasets. 

The fact was confirmed by the poor results of homogeneity test for initial K-Means 

clustering as listed in Table 20. Therefore, the number of clusters was increased to 

16. 

Table 20. Homogeneity test for SOM- Satellite data (N=9) 

Clusters No of grids H1 Homogeneity 

Cluster 1 153 15.3 Heterogeneous 

Cluster 2 157 -2.2 Homogeneous 

Cluster 3 199 24.8 Heterogeneous 

Cluster 4 152 0.2 Homogeneous 

Cluster 5 89 10.5 Heterogeneous 

Cluster 6 178 2.2 Heterogeneous 

Cluster 7 133 2.5 Heterogeneous 

Cluster 8 88 6.0 Heterogeneous 

Cluster 9 31 7.7 Heterogeneous 

 

The results of homogeneity test for K-Means and satellite dataset clustering 

showed that 10 out of 16 clusters were homogeneous and 2 clusters were possibly 

heterogeneous. This may indicate that for K-Means clustering, 16 clusters were more 

suitable for the dataset than 10 clusters.   
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Table 21. Homogeneity test for K-Means-Satellite data (N=16) 

Clusters No of sites H1 Homogeneity 

Cluster 1 68 1.754574 Possibly Heterogeneous 

Cluster 2 81 -5.68341 Homogeneous 

Cluster 3 98 -13.8025 Homogeneous 

Cluster 4 81 10.66735 Heterogeneous 

Cluster 5 71 6.598001 Heterogeneous 

Cluster 6 70 1.21077 Possibly Heterogeneous 

Cluster 7 69 -6.85871 Homogeneous 

Cluster 8 31 7.663366 Heterogeneous 

Cluster 9 78 -2.99995 Homogeneous 

Cluster 10 64 -0.4881 Homogeneous 

Cluster 11 57 -3.84908 Homogeneous 

Cluster 12 60 0.466897 Homogeneous 

Cluster 13 93 0.466897 Homogeneous 

Cluster 14 82 4.747098 Heterogeneous 

Cluster 15 97 -7.08237 Homogeneous 

Cluster 16 80 -7.20629 Homogeneous 
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4.3.2. SOM 

 

The optimal parameters for SOM were investigated using two internal Minisom 

package metrics: the quantization error (QE), and topographical error (TE). The 

topographical error was used as a metrics to determine the optimal combination of 

hyperparameters such as sigma and learning rate.  

 

Table 22. Optimal hyperparameters for SOM-Satellite data 

No of clusters QE TE Lr Sigma X Y 

9 3.8565000 0.0033898 0.5 1.5 3 3 

16 3.774506963 0.054237288 0.5 1.5 4 4 

 

The combination of parameters that minimize the TE was determined for every 

clustering analysis as show in Table 22. The number of nodes was decided to be the 

one which yield the same number of clusters as K-Means clustering for comparison 

purposes. The quantization error always decreases when the number of nodes 

increased, so QE alone was not suitable to compare maps of different size. TE was 

used to identify optimal parameters for different cluster numbers. The number of 

nodes for SOM was initially determined to be 9, then it was increase to 16.  
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Table 23. Homogeneity test for SOM-Satellite data (N=9) 

Clusters No of grids H1 Homogeneity 

Cluster 1 92 -2.6 Homogeneous 

Cluster 2 47 -0.3 Homogeneous 

Cluster 3 75 -2.4 Homogeneous 

Cluster 4 239 1.3 Possibly Heterogeneous 

Cluster 5 5 -1.5 Homogeneous 

Cluster 6 84 1.3 Possibly Heterogeneous 

Cluster 7 297 29.6 Heterogeneous 

Cluster 8 115 24.2 Heterogeneous 

Cluster 9 226 49.1 Heterogeneous 

 

When the number of nodes was set to 9, SOM identified 4 homogeneous clusters 

among the 9 clusters. The low number of homogeneous clusters may be attributed 

the size of the map being too small for the dataset. The number of nodes was 

increased to 16 for further analysis. When the number of nodes were increased to 16, 

SOM identified 10 homogeneous clusters among the 16 clusters as shown in Table 

24.  
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Table 24. Homogeneity test for SOM-Satellite data (N=16) 

Clusters No of grids H1 Homogeneity 

Cluster 1 22 -2.5 Homogeneous 

Cluster 2 34 0.0 Homogeneous 

Cluster 3 47 -3.8 Homogeneous 

Cluster 4 41 -3.9 Homogeneous 

Cluster 5 21 0.1 Homogeneous 

Cluster 6 70 -5.8 Homogeneous 

Cluster 7 56 -1.8 Homogeneous 

Cluster 8 45 -3.8 Homogeneous 

Cluster 9 129 0.1 Homogeneous 

Cluster 10 35 19.3 Heterogeneous 

Cluster 11 261 6.1 Heterogeneous 

Cluster 12 96 13.6 Heterogeneous 

Cluster 13 59 1.0 Homogeneous 

Cluster 14 201 28.3 Heterogeneous 

Cluster 15 50 26.5 Heterogeneous 

Cluster 16 13 9.3 Heterogeneous 

 

4.3.3. Comparison  

 

Based on the number of homogeneous clusters identified by SOM and K-Means 

in satellite dataset, there were differences between SOM and K-Means according to 

the number of clusters. However, both were able to identify almost the same number 

of homogeneous clusters. K-Means identified 2 homogeneous clusters among 9 

clusters while SOM identified 4 homogeneous clusters and 2 possibly homogeneous 

clusters in the same number of clusters as shown in Figure 19 (a). Both clustering 

methods were able to identify 10 homogeneous clusters when the number of nodes 

was increased to 16 however K-Means also identified 2 possibly heterogeneous 
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clusters.  

 

  

(a) 

 

 

(b) 

Figure 19. Homogeneity results of satellite dataset for different number of 

clusters (N); (a) N equal 9, (b) N equal 16  
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4.4. Spatial mapping of clusters  

 

K-Means and SOM defined homogeneous clusters with distinct geographical 

location. The stations located in the North were separated from the stations located 

in the East, West and South of the country as shown in Figure 20 and Figure 21 

respectfully. It was observed that both clustering algorithms were able to cluster the 

stations in Jeju Island as a separate cluster. Previous studies have indeed classified 

the Island as a separate precipitation region (Nam et al., 2015).  

 

4.4.1. Spatial mapping of ASOS clusters 

 

Clusters identified by K-Means clustering and SOM have been grouped in 5 parts 

based on their geographical location : The North, East, South and inland clusters as 

it was shown in the spatial mapping of K-Means clusters (Figure 20) and the spatial 

mapping of SOM clusters (Figure 21). 

In the North, K-Means identified 2 clusters, cluster 1 and 10. The clusters in the 

North contains stations located in the North of Gangwon-do and Gyeonggi-do. 

Cluster 1 was heterogeneous while cluster 10 was possibly heterogeneous. However, 

SOM identified 2 clusters in the same region, cluster 8 and cluster 16. The clusters 

identified by SOM had different patterns and both clusters were homogeneous. The 

patterns of clusters in the North were almost similar with the patterns identified by 

Nam et al. (2015).  

In the East K-Means identified 1 cluster. The clusters covered east of Gangwon-

do, Northeast and Southeast of Gyeongsangbuk-do. Although the same region was 

identified by (Nam et al., 2015), the clusters were found to be heterogeneous by the 

present study probably due to the large distance between stations in that cluster.  

SOM identified 3 clusters in the East including cluster 6,7, and 10. The clusters 
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identified by SOM in the East were heterogeneous except cluster 10 which was 

possibly heterogeneous. 

In the inland part, K-Means identified 6 clusters. Cluster 4,6,9,11,14, and cluster 

15. Cluster 11 was homogeneous while cluster 4 and 15 were possibly heterogeneous, 

cluster 6 was heterogeneous and cluster 9 and 14 were single stations. SOM formed 

4 clusters inland, cluster 3,4,5, and 14. Cluster 3 and 5 were homogeneous, cluster 4 

was heterogeneous and cluster 14 was possibly heterogeneous.  

In the South K-Means identified 2 clusters: cluster 3 and 5. The 4 stations in 

cluster 3 were homogeneous while 6 stations in cluster 5 were heterogeneous. It has 

been observed that the size of clusters greatly influences homogeneity results.  

SOM formed 2 clusters in the South. Cluster contained 5 stations and was 

heterogeneous while cluster 2 which contained 3 stations was homogeneous. It has 

been observed that small clusters have more probabilities of being homogeneous.  

In the West, K-Means formed 3 clusters, cluster 2, 7, and 16. Cluster 2 was 

heterogeneous probably because 2 stations were located inland while the other 4 

stations were located on the West coast. Cluster 7 was also heterogeneous while 

cluster 16 was homogeneous. SOM formed 4 clusters in West: cluster 11, 12, 13, and 

15. Cluster 11 was possibly heterogeneous while other clusters were heterogeneous. 

The clusters formed by SOM in the West tend to have stations located towards inland 

within a different climatic zone. The facts that some stations in the same cluster may 

be in a different climatic zone explains why the cluster was heterogeneous.  

K-Means and SOM clustered Jeju island as a separate precipitation cluster. The 

clusters have indeed been considered as a separate climatic clusters based on weather 

characteristics of the island and finding and previous studies (Nam et al., 2015).  
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Figure 20. Map of ASOS clusters (K-Means) 
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Figure 21. Map of ASOS clusters (SOM) 
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4.4.2. Spatial mapping of AWS clusters 

 

Clusters identified by K-Means and SOM in AWS dataset have been grouped 

according to geographical location in 5 parts: The North, East, South and inland 

clusters as it was shown in the spatial mapping of K-Means clusters (Figure 22) and 

the spatial mapping of SOM clusters (Figure 23). 

In the North, K-Means identified 2 clusters, cluster 10 cover the North-West and 

cluster 5 in the North-Est. The clusters in the North contained stations located in the 

North of Gangwon-do and Gyeonggi-do. Both clusters were heterogeneous. SOM 

identified 2 clusters in the same North, cluster 8 was heterogeneous and cluster 11 

was homogeneous. As it can be observed in Figure 21, cluster 11 contained less 

stations and was homogeneous while the cluster 5 formed by K-Means in the same 

region, which contained more stations including stations in the Uleung-do was 

heterogeneous (Figure 20). The size of the clusters and geographical locations of the 

stations significantly affect homogeneity of the cluster. 

In the East K-Means identified 3 clusters. The clusters cover East of Gangwon-

do, North-East and South-East of Gyeongsangbuk-do and Gyeongsangnam-do. 

Clusters 5 was heterogeneous, while cluster 2 was homogeneous and cluster 4 was 

possibly heterogeneous. SOM formed 3 clusters in the East. Cluster 11 and 10 were 

homogeneous, while cluster 9 located in the South-Est of Gyeongsangnam-do was 

heterogeneous. SOM clustering showed that Uleung-do Island belonged to the 

cluster in the East coast of Gyeongsangbuk-do instead of belonging to Northeast 

coast of Gangwon-do as it was suggested by K-Means clustering in present study.  

K-Means formed 3 clusters inland. Cluster 6,8, and cluster 2. Cluster 2 was in the 

East part of Gangwon-do and was found to be homogeneous while other inland 

clusters were heterogeneous. SOM identified 4 clusters. Cluster 2,3,6 and 7. The 

clusters were found to be heterogeneous.  
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In the South K-Means identified 2 clusters, cluster 12 and 7. Cluster 12 in South-

East of Gyeongsangnam-do including Busan area was found to be heterogeneous 

while Cluster 7 in South East Jellanam-do, including Gwangju area, was 

homogeneous. SOM identified 2 heterogeneous clusters in the South, cluster 9 in 

East of Gyeongsangnam and cluster 5 in the West of Jellanam-do.  

In the West, K-Means formed 3 clusters, cluster 1, 3, and 9. Cluster 1, in East of 

Chungcheongnam was possibly heterogeneous while other clusters in the East were 

found to be heterogeneous. SOM identified 3 clusters in the West. Cluster 2 was also 

extending inland from Jeollabuk-do to Gyeongsangbuk-do, cluster 4 was in the East 

of Chungcheongnam-do while cluster 12 was mainly located in West of Gyeonggi-

do. The clusters in the West were found to be heterogeneous.  

K-Means and SOM clustered Jeju island as a separate precipitation cluster but it 

was found to be heterogeneous probably because both clustering algorithms also 

includes some stations from the south of Jellanam-do in Jeju cluster.  
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Figure 22. Map of AWS clusters (K-Means) 
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Figure 23. Map of AWS clusters (SOM) 
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4.4.3. Spatial mapping of Satellite dataset clusters 

 

Clusters identified by K-Means clustering and SOM in satellite dataset have been 

grouped according to geographical location in 5 parts: The North, East, South and 

inland clusters as it was shown in the spatial mapping of K-Means clusters (Figure 

24) and the spatial mapping of SOM clusters (Figure 25). Both clustering algorithms 

were able to form clusters that were geographically separated even though the 

clusters were formed based only on the long-term time series precipitation data from 

satellite dataset.  

K-Means divided the North into 2 homogeneous clusters (cluster 3 and 15). Grids 

in those clusters were in the North of Gangwon-do and Gyeonggi-do. SOM grouped 

the same grids in the North in a larger cluster identified as cluster 14. The cluster 

was heterogeneous probably due to its large size.  

K-Means identified 3 clusters in the East. The cluster covers the East of 

Gangwon-do, North-East and South-East of Gyeongsangbuk-do. Cluster 10 and 16 

clusters in the East were homogeneous while cluster 6 was possibly heterogeneous. 

SOM identified 5 clusters in the East including cluster 15, 13, 5, and 1. Clusters 

identified by SOM in the East were homogeneous except cluster 15.  

K-Means identified 3 inland homogeneous clusters, including cluster 2, 9 and 

cluster 12). SOM identified 4 inland clusters including cluster 8,4,3, and 6. All the 

inland clusters identified by K-Means and SOM were homogeneous.  

K-Means identified 3 clusters in the South including cluster 1,7, and 15. Cluster 

1, 7 and 15 were homogeneous. The clusters cover the south of Jellanam-do. SOM 

identified 2 clusters in the South, cluster 9 was homogeneous while cluster 14 was 

heterogeneous.  

In the West part of Korea, K-means identified 5 clusters, cluster 4,5,13,11 and 14. 

Clusters 11 and 13 were homogeneous while others were heterogeneous. SOM 
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identified 2 clusters in South-West including cluster 7 and cluster 11. Cluster 7 was 

homogeneous and cluster 11 was heterogeneous. The North-West part of the country 

was covered by 2 big clusters identified by SOM, cluster 14 and 12 which were found 

to be heterogeneous.  

 K-Means and SOM clustered Jeju island as a separate cluster. The Island is 

indeed considered a separate regions based on the location of the Island and findings 

of previous study (Nam et al., 2015).  
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Figure 24. Map of clusters satellite data (K-Means) 

 

 

 

 

 



 

72 

 

 

 

 

 

Figure 25. Map of clusters satellite data (SOM) 
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Chapter 4. Conclusion 

 

An approach was developed in this study to define homogeneous precipitation 

regions using timeseries of gauge and satellite data. The clusters from each method 

were tested by means of Hosking and Wallis heterogeneity measure to confirm if 

they were hydrologically homogeneous. The regions formed by both clustering 

algorithms were spatially mapped and results of homogeneity test for each region 

were provided. The results of the homogeneity test have been used to evaluate and 

compare the ability of each clustering method in defining homogeneous precipitation 

regions using time series data.  

K-means clustering and SOM yielded almost similar number of homogeneous 

regions. But SOM was able to identify greater number of homogeneous regions when 

map size was increased. Furthermore, SOM identified fewer sole stations compared 

to K-Means. Both clustering methods identified 10 homogeneous regions out of 16 

regions in satellite precipitation dataset.  

Homogeneous regions formed by both clustering methods can be used for 

precipitation estimation, hydrological modelling, and regional frequency analysis. It 

was observed that the number of clusters greatly affect the capacity of the clustering 

algorithm in defining homogeneous precipitation regions. Mainly because smaller 

clusters have more probability of being homogeneous. Since the number of clusters 

for K-Means or the number nodes for SOM is predefined by researcher before 

clustering, it was recommended to try and evaluate different clusters numbers before 

clustering timeseries data for precipitation regionalization purpose.  
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Abstract(Korean) 

기계 학습을 이용한 관측 및 위성 강수 시계열  

데이터 기반 동질 강수 지역 분석 연구 
 

문옌산가 

국제농업기술학과 

국제농업기술대학원 

서울대학교 

 

동질 강수 지역의 구분은 지역 빈도 분석과 강수량 추정에 필요하지

만 이러한 지역의 구분은 강수량의 시간적, 공간적 가변성으로 인해 많

은 불확실성을 내포하고 있다.  

본 연구는 지상 관측 강수 데이터를 이용한 동질 강수 지역 분석과 

관련된 문제점을 해결하고자 하였다. 첫 번째 문제는 동질 강수 지역 분

석에서 자주 고려되지 않는 강수량의 시간적 변동성이다. 강수량은 시간

과 공간에 따라 많은 차이가 나는 것으로 알려져 있다. 그러나 동질 강

수 지역의 분석 및 구분을 위한 많은 선행 연구들은 일반적으로 시계열 

자료 대신 강수량 평균, 관측소의 위치 특성과 같은 변수를 사용하기 때

문에 강수의 시간적 변동성을 고려하지 못했다. 시간 변동성 문제를 극

복하기 위해 본 연구에서는 시계열 강수 데이터를 사용하여 동질 강수 

지역 구분 및 분석하였다.  

두 번째 문제점은 공간적 강수량의 변화다. 강수량계를 이용한 강수

량 측정은 다른 강수량 측정을 위한 여러가지 방법 중에 가장 정확한 것

으로 알려져 있기 때문에 전통적으로 강수량 자료의 확보를 위해 가장 
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많이 활용되고 있다. 그러나 세계의 많은 지역에서 강수량 관측 밀도가 

낮고 강수량 추정을 위한 보간 기술로 인해 오류가 발생할 수 있다는 점

을 감안하면 한 지점에서 수집된 강수 자료를 정확하게 보간하여 강수량 

자료를 추정하고 확보하는 것은 한계가 있다.  

이러한 공간적 변동성 문제를 해결하기 위해 본 연구에서는 위성 강

수 데이터를 사용하여 동질 강수 지역을 구분하고자 하였다. 위성 강수 

데이터는 여러 위성 센서에서 수신한 적외선 및 수동 마이크로웨이브 정

보를 통해 간접적으로 강수량을 추정하는 것으로 최근의 강수량 측정을 

위한 방법으로 이용되고 있다. 위성 강수 데이터는 표면 그리드 형태로 

제공된다. 

본 연구에서는 지상 관측 및 위성 강수 시계열 일 자료를 이용하여 

동질 강수 지역 분석을 위한 기계 학습 방법론을 제공하고자 하였다. 본 

연구에 사용된 지상 관측 강수량 자료는 기상청에서 제공하고 있는 종관

기상관측 (ASOS, Automated Synoptic Observing System) 및 방재기상

관측 (AWS, Automated Weather Station) 자료가 각각 사용되었다. 본 

연구에서 사용된 위성 데이터는 미국항공우주국 (NASA)의 

IMERG(Integrated Multi-satellitE Retrievals for GPM)이다. 

동질 강수 지역은 K-Means와 SOM (Self Organizing Maps)의 두 가

지 클러스터링 방법을 이용하여 분석하였다. 동질 지역 구분에 따른 각 

동질 지역의 이질성 분석은 Hosking과 Wallis homogeneity test를 이용

하였다. 종관기상 (ASOS) 관측 자료를 이용하여 동질 강수 지역으로 구

분된 지역의 이질성을 분석한 결과에 따르면 SOM의 동질 강수 지역 구

분 성능이 맵의 크기에 따라 크게 영향을 받는 것으로 나타났다. SOM은 

노드 수가 증가할수록 더 많은 수의 동질 강수 지역을 분류할 수 있었다. 
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노드 수가 16개로 증가했을 때 6개의 지역이 동질성을 가지는 것으로 

나타났으나, 반면 K-Means는 5개의 지역이 동질 강수 지역인 것으로 

나타났다. K-Means는 군집 수가 적을 때 더 많은 수의 동질 지역을 구

분할 수 있었다. 예를 들어 클러스터 수가 10개일 때 K-Means는 3개

의 지역이 동질한 것으로 나타났으나, 반면 SOM은 2개의 지역이 동질

성이 있는 것으로 나타났다. 그러나 노드 수가 10개에서 16개로 증가함

에 따라 SOM에 의해 분류된 동질 지역의 수는 점차 증가했다. 

방재기상관측 (AWS) 자료를 이용한 결과에서는 SOM 및 K-Means 

방법을 적용하여 구분된 지역의 동질성을 분석 결과가 유사한 것으로 나

타났다. 두 방법으로 구분된 강수 지역의 동질성은 클러스터 수가 12, 

14 또는 16으로 증가해도 개선되지 않았다. 

위성 강수 자료를 이용한 동질 강수 지역 구분 및 동질성 분석 결과

에서는 SOM과 K-Means는 군집의 수에 따라 동질 지역의 수가 차이가 

있었지만 거의 동일한 수준이었다. K-Means는 9개의 동질 강수 지역 

중에서 2개의 지역에서 동질성이 있는 것으로 나타났으며, SOM에 의한 

동질 지역의 수는 4개의 지역에서 동질성이 있는 것으로 나타났다. 

본 연구에서는 전반적으로 지상 관측 및 위성 강수 데이터를 이용하

여 동질 강수 지역을 구분할 경우 SOM 방법이 K-Means 방법에 비해 

더 많은 동질 강수 지역을 구분할 수 있는 것으로 나타났다. 

 

주요어: 동질 강수 지역, 위성 강수 자료, 기계 학습, 지상 관측 자료, 

시계열 자료 

학 번: 2021-22782  
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