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Abstract 

Bioinformatic approach for identifying 

and correcting artifacts in diploid 

genome assemblies 

 

Byung June Ko 

Department of Agricultural Biotechnology 

The Graduate School 

Seoul National University 

 

Errors in genome assembly present in reference genomes can lead 

to errors in biological interpretation. With recent advancements in 

DNA sequencing technologies, large-scale genome projects are 

underway. The Vertebrate Genome Project (VGP), for example, aims 

to decode the genomes of over 66,000 vertebrate species. This 

project strives for high-quality reference genome construction by 

minimizing errors in both base and structure level in the genome 

assemblies. Other recent international genome projects such as the 
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Telomere to Telomere (T2T) Consortium and the Earth Biogenome 

Project (EBP) also emphasize the importance of high-quality 

reference genome construction, highlighting the ongoing efforts 

among researchers to improve genome quality.  

In Chapter 2, through collaboration with VGP, false 

duplications resulting from assembly errors were identified in the 

reference genome, which was previously based on short read 

sequencing data, as well as in the more recent long-read and 

combination sequencing technologies. Hundreds to thousands of 

falsely duplicated genes were detected with 4 to 16% of false 

duplications in the reference genomes made by short read sequencing, 

but ~2% of false duplications were detected in long read-based 

reference genome assemblies. Heterozygosity and sequencing error 

were identified as significant factors contributing to false duplication. 

The result also showed that several downstream analyses can be 

significantly disturbed by false duplication. The findings emphasize 

the importance of developing more advanced assembly methods that 

effectively separates haplotypes and removes sequencing errors, as 

well as the need for careful analysis of gene gains. 

In Chapter 3, a collaboration with VGP and Galaxy Project 

allowed for a comparison between the increasingly recognized PacBio 
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High-Fidelity (HiFi) sequencing method and the PacBio Continuous 

Long Read (CLR) method in terms of false duplications and losses in 

same individual of zebra finch. K-mer based false duplication, 

expansion and collapse results indicated that the CLR based assembly 

exhibited a higher susceptibility to both false duplication and loss. 

Another approach by genome-wide alignment with read coverage 

analysis showed that CLR based assembly had more false duplication 

and loss errors (1.3 and 4%, respectively) than HiFi based 

assemblies (~0.6 and <1%, respectively). 

Chapter 4 introduces a newly developed false duplication 

correction software, Purge mers, which was compared to existing 

programs through the generation of virtual genome assemblies. The 

purge mers, utilizes both read depth coverage and K* to detect false 

duplications at base-pair level. The performance of purge mers was 

found to be superior to existing programs when using short read or 

long read in some cases. 

In Chapter 5, a methodology for correcting the bias caused by 

high GC content in the genome, resulting in underrepresentation of 

k-mer multiplicities in the read data, was proposed. Uncorrected k-

mer measurements revealed the highest frequency of K* at -1 in 

genomic regions with GC content over 80%. On the other hand, the 
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bias-corrected k-mer measurements presented in this study 

showed the highest frequency of K* at 0 in genomic regions with GC 

content over 80%. These results provide confirmation that high GC 

content inhibits sequencing, and the underestimation of k-mer 

multiplicities can be recovered by the method suggested in this study.  

In summary, the studies emphasize the importance of false 

duplication error correction. It proposes optimized DNA sequencing 

techniques, genome assembly methods to mitigate false duplication. 

Also, I developed a novel program to correct false duplication, and a 

methodology to recover k-mer multiplicities from GC bias. 

Keywords: False duplication, phasing error, k-mer, assembly error, 

assembly curation, VGP, vertebrate Genome Project 

Student number: 2018-34934 
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1.1  Advancing error-free genome assembly 

Genome assemblies play a crucial role in understanding the 

species, but errors in the assembly process can lead to biological 

misinterpretations (Cheung et al., 2003; Kelley and Salzberg, 2010; 

Ko et al., 2022; Korlach et al., 2017). Recently, error-free genome 

assembly has become a critical task in large-scale genomics projects. 

One groundbreaking research publication by the Vertebrate Genome 

Project (VGP) (Rhie et al., 2021) has aimed to assemble the genomes 

of numerous vertebrate species (~66,000). This project has set out 

to benchmark various sequencing platforms and assembly algorithms 

in order to eliminate structural assembly errors, and it has gained 

significant recognition as a standard for diploid genome assembly. In 

addition, Earth Biogenome Project has made an effort to find suitable 

strategies for genome assembly of ~1.8 million known eukaryotic 

species with high quality at scale (Lewin et al., 2022). The recent 

assembly of the human Telomere-to-Telomere (T2T) genome 

represents another monumental achievement in the pursuit of 

generating error-free and complete sequences of a species (Nurk et 

al., 2022). The consensus among researchers is that producing high-

quality genomes is of utmost importance; however, there is currently 

no universally optimized method applicable to all species even in 

https://www.zotero.org/google-docs/?0yGthQ
https://www.zotero.org/google-docs/?0yGthQ
https://www.zotero.org/google-docs/?ZAaFj4
https://www.zotero.org/google-docs/?xdTRtC
https://www.zotero.org/google-docs/?4Qih0I
https://www.zotero.org/google-docs/?4Qih0I
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vertebrates. Consequently, specific methods and pipelines are 

currently being discussed and developed. 

 

1.2  Structural error made by assembly artifacts 

Due to technology and cost constraints, the genome should be 

sequenced in fragmented form, consisting of hundreds or thousands 

of base pairs. These assembled genome sequences frequently 

contain structural errors, such as redundantly duplicated nucleotide 

sequences from allelic divergence and sequencing errors, called as 

false duplication (Kelley and Salzberg, 2010; Ko et al., 2022; Rhie et 

al., 2021). The false duplication can lead to significant 

misinterpretation in genomic comparisons, particularly in the context 

of gene duplications and expansion (Cheung et al., 2003; Ko et al., 

2022; Korlach et al., 2017). Moreover, errors in genome assembly 

can significantly impact various downstream analyses, including 

evolutionary biology, such as comparative genomics, phylogenetics, 

population genomics, structural variation, and copy number variation 

studies. For instance, false duplications can result in the removal of 

one-to-one orthologs between species, the formation of artificial 

chimeric genes, and partial gene losses within the genic region (Ko 

et al., 2022). In the case of a reference genome containing false 

https://www.zotero.org/google-docs/?cqHvKs
https://www.zotero.org/google-docs/?cqHvKs
https://www.zotero.org/google-docs/?D61w1B
https://www.zotero.org/google-docs/?D61w1B
https://www.zotero.org/google-docs/?YrTOdl
https://www.zotero.org/google-docs/?YrTOdl
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duplications, the accuracy of structural variation and copy number 

variation analyses can also be compromised due to the presence of 

redundantly inserted sequences. Previous assemblies based on short 

reads have revealed these types of errors, leading to practical 

instances of misinterpretations in published studies (Ko et al., 2022; 

Rhie et al., 2021).  

 

1.3  Challenges of false duplication 

False duplications commonly occur in highly heterozygous 

genomes, and traditional approaches to address this issue involve 

generating individuals with high inbreeding, which is often impractical 

(Koren et al., 2018; Rhie et al., 2021). To overcome these challenges, 

several post-processing software tools have been developed, which 

identify false duplications based on sequence similarity and coverage 

profiles of the nucleotide sequences. Purge haplotigs (Roach et al., 

2018) is one of the tool collapse false duplication in contig level. The 

authors used the read depth coverage as an information to find false 

duplication because the region under false duplication should exhibit 

haploid-level depth coverage. Another tool Purge_dups (Guan et al., 

2020) is also working for identifying false duplication based on depth 

coverage. The tool expands the unit of analysis for detecting false 

https://www.zotero.org/google-docs/?O2wZt4
https://www.zotero.org/google-docs/?O2wZt4
https://www.zotero.org/google-docs/?viZkjN
https://www.zotero.org/google-docs/?IxfCwC
https://www.zotero.org/google-docs/?IxfCwC
https://www.zotero.org/google-docs/?QGDdVG
https://www.zotero.org/google-docs/?QGDdVG
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duplications from within the contig to include the edges of the contig. 

This extension allows the tool to identify false duplications that 

overlap with the contig edges. 

In addition to depth coverage, k-mers can also be utilized to 

identify structural assembly errors. K-mer multiplicity represents 

the number of identical K-length subsequences in assemblies or 

sequencing reads. K-mers have been widely used to assess genome 

characteristics and evaluate the quality of genome assembly  

(Formenti et al., 2022; Phillippy et al., 2008; Rhie et al., 2020). Based 

on the k-mer multiplicities of both read and assembly, K* has been 

introduced as a metric to assess whole or part of genome regions 

(Formenti et al., 2022; Phillippy et al., 2008). This metric has an 

advantage over read depth coverage in terms of not being affected 

by the read mapping algorithm for regional genome evaluation. 

Although K* is known to be capable of quantifying false duplication, 

there has been no systematic effort to utilize this metric for 

identifying false duplication. But the K* is not a cure-all for 

identifying structural errors. It assumes consistent sequencing 

coverage across the genome, but it is known that GC rich regions 

inhibit short read sequencing (Benjamini and Speed, 2012), and there 

is GA drop-out in PacBio long read sequencing technology (Formenti 

https://www.zotero.org/google-docs/?yQVVSD
https://www.zotero.org/google-docs/?oFgovC
https://www.zotero.org/google-docs/?vwUFRj
https://www.zotero.org/google-docs/?nlNqNP
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et al., 2022). These sequencing biases may lead to false positives in 

false duplication identification using K*.  

In this study, I discovered that numerous false gene gains 

occurred due to false duplication in various vertebrate assemblies 

made by both short read and long read sequencing technologies 

(Chapter 2). Furthermore, I conducted a comparative analysis of the 

extent of structural assembly errors resulting from false duplications 

and losses in PacBio CLR and HiFi-based assemblies of a zebra finch, 

in collaboration with Galaxy and VGP (Chapter 3). Based on these 

findings, I proposed future directions to mitigate false duplication in 

diploid genome assembly. Additionally, I developed a novel tool for 

curating false duplication by employing both read depth coverage and 

K* through simulation (Chapter 4). Lastly, I suggested a method for 

mitigating GC-bias in k-mer counting for short read sequencing data 

(Chapter 5).   

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?nlNqNP
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2.1 Abstract 

False duplications in genome assemblies lead to false 

biological conclusions. We quantified false duplications in popularly 

used previous genome assemblies and their new counterparts of the 

same species (platypus, zebra finch, Anna’s hummingbird) 

generated by the Vertebrate Genomes Project (VGP), of which the 

VGP pipeline attempted to eliminate false duplications through 

haplotype phasing and purging. These assemblies are among the first 

generated by the VGP where there was a prior chromosomal level 

reference assembly to compare with. Whole genome alignments 

revealed that 4 to 16% of the sequences were falsely duplicated in 

the previous assemblies, impacting hundreds to thousands of genes. 

These led to overestimated gene family expansions. The main source 

of the false duplications was heterotype duplications, where the 

haplotype sequences were relatively more divergent than other parts 

of the genome leading the assembly algorithms to classify them as 

separate genes or genomic regions. A minor source was sequencing 

errors. Ancient ATP nucleotide binding gene families had a higher 

prevalence of false duplications compared to other gene families. 

Although present in a smaller proportion, we observed false 

duplications remaining in the VGP assemblies that can be identified 
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and purged. This study highlights the need for more advanced 

assembly methods that better separates haplotypes and sequence 

errors, and the need for cautious analyses on gene gains. 

 

2.2 Introduction 

Biological misinterpretations can occur when genomic regions 

unknowingly have errors. But it is unclear as to the magnitude of 

mis-assembly errors in existing genome assemblies, generated in 

the transition from the fragmented DNA sequences to the assembled 

blueprint of a species (Cheung et al., 2003; Ekblom and Wolf, 2014; 

Jones et al., 2004; Kelley and Salzberg, 2010; Korlach et al., 2017; 

Phillippy et al., 2008; Rhie et al., 2021; Salzberg and Yorke, 2005). 

Followed by the first assembly of fruit fly in 2000 (Adams et al., 

2000) and a human reference genome in 2003 (Venter et al., 2001), 

~100 reference genomes of vertebrates were deposited in public 

databases by 2010 using mostly intermediate read length (~700 bp) 

Sanger reads. The number of genomes gradually increased to ~700 

by 2018, mostly using short read-based (~35-250 bp) next 

generation sequencing (NGS) (Rice and Green, 2019). These 

genomes helped bring about discoveries in a variety of fields, 

including evolution, ecology, agriculture, and medicine (Church et al., 

https://www.zotero.org/google-docs/?FmVHa1
https://www.zotero.org/google-docs/?FmVHa1
https://www.zotero.org/google-docs/?FmVHa1
https://www.zotero.org/google-docs/?q35l0L
https://www.zotero.org/google-docs/?q35l0L
https://www.zotero.org/google-docs/?n703a6
https://www.zotero.org/google-docs/?X9mVN7
https://www.zotero.org/google-docs/?m0biWs
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2011; Ellegren, 2014; Huang and Han, 2014; Jarvis et al., 2014; 

Nakagawa and Fujita, 2018; Seehausen et al., 2014). However, with 

short read-based assemblies, it was difficult to resolve repeat 

regions longer than the read lengths (Bresler et al., 2013; Korlach et 

al., 2017; Luo et al., 2012; Simpson and Pop, 2015).  

Preliminary studies have indicated that the longer the 

sequence read length, the less likely an assembly structural error 

(Korlach et al., 2017), which has been quantitatively validated in our 

companion Vertebrate Genomes Project (VGP) flagship study in 

2021 (Rhie et al., 2021). An underappreciated source of mis-

assembly was heterozygosity (Pryszcz and Gabaldón, 2016; Rhie et 

al., 2021). Mis-assignment of heterozygous genomic regions led to 

both copies of the partnering alleles being assembled as paralogs in 

the same haploid assembly (Cheung et al., 2003; Kelley and Salzberg, 

2010; Rhie et al., 2021), which are called false heterotype 

duplications by the VGP (Rhie et al., 2021). Likewise, accumulated 

sequence errors in reads, particularly long reads, led to under-

collapsed sequences, which were called homotype false duplications 

(Rhie et al., 2021). Both heterotype and homotype false duplications 

in genic regions can be misinterpreted as gene gains (Korlach et al., 

2017; Pryszcz and Gabaldón, 2016; Schneider et al., 2017). The VGP 

https://www.zotero.org/google-docs/?m0biWs
https://www.zotero.org/google-docs/?m0biWs
https://www.zotero.org/google-docs/?aZA6fn
https://www.zotero.org/google-docs/?aZA6fn
https://www.zotero.org/google-docs/?YMDphm
https://www.zotero.org/google-docs/?5eKN9H
https://www.zotero.org/google-docs/?Vtsd8q
https://www.zotero.org/google-docs/?Vtsd8q
https://www.zotero.org/google-docs/?mTiRUz
https://www.zotero.org/google-docs/?mTiRUz
https://www.zotero.org/google-docs/?5baj5S
https://www.zotero.org/google-docs/?lkJCU1
https://www.zotero.org/google-docs/?LrNa87
https://www.zotero.org/google-docs/?LrNa87
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proposed that these false gains happen in more highly divergent 

regions of the genome, where assembly algorithms have difficulty 

distinguishing haplotype homologs from haplotype paralogs (Rhie et 

al., 2021), but this was not quantitatively tested in regards to the 

type of duplication. 

Although long-read sequencing is better at resolving 

repetitive regions (Ameur et al., 2019; Korlach et al., 2017; Rice and 

Green, 2019), they alone are unable to fully resolve false duplications 

(Koren et al., 2018; Korlach et al., 2017; Rhie et al., 2020). One way 

to prevent false duplications is to make homozygous lineages through 

inbreeding. But this can be either impossible or very difficult under 

most circumstances (Koren et al., 2018; Vinson et al., 2005), 

especially if one were to sequence all species of a lineage, such as 

the goal of the VGP that aims to produce complete and error-free 

reference genomes for all ~70,000 vertebrate species (“A 

reference standard for genome biology,” 2018; Genome 10K 

Community of Scientists, 2009; Koepfli et al., 2015). Another way to 

solve false duplications is to use assembly strategies for efficient 

haplotype phasing, some developed and applied in the VGP (Chin et 

al., 2016; Guan et al., 2020; Koren et al., 2018; Rhie et al., 2021). 

But most of the non-VGP vertebrate genomes in the public databases 

https://www.zotero.org/google-docs/?0Ycnhe
https://www.zotero.org/google-docs/?0Ycnhe
https://www.zotero.org/google-docs/?a1FShv
https://www.zotero.org/google-docs/?a1FShv
https://www.zotero.org/google-docs/?qx2rhu
https://www.zotero.org/google-docs/?EOGKim
https://www.zotero.org/google-docs/?cO6Sps
https://www.zotero.org/google-docs/?cO6Sps
https://www.zotero.org/google-docs/?cO6Sps
https://www.zotero.org/google-docs/?8mici0
https://www.zotero.org/google-docs/?8mici0
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as of to date have been reconstructed without haplotype phasing. A 

full quantitative and qualitative assessment has not been conducted 

on the prior versus VGP genomes to determine the extent and types 

of false duplications, and improvements in the VGP assemblies. 

Here we performed a detailed analysis to measure the 

presence, magnitude and cause for false duplications in previous 

common reference assemblies and their VGP counterparts. We 

focused on three species, the platypus and zebra finch that were 

originally assembled using Sanger reads published in 2008 (Warren 

et al., 2008) and 2010 (Warren et al., 2010), respectively, and the 

Anna’s hummingbird that used short Illumina reads published in 

2014 (Jarvis et al., 2014; Zhang et al., 2014). These are popular 

references, with the associated studies collectively cited over 3,600 

times as of April 2021 (Google Scholar). The VGP version of the 

assemblies were long-read based, and used algorithms to phase 

haplotypes and purge false duplications at multiple steps in the 

assembly pipeline. We found widespread false duplications in 

previous assemblies that were corrected in the VGP assemblies, and 

also identified areas for improvement in current and future 

assemblies.  

 

https://www.zotero.org/google-docs/?9p1D7R
https://www.zotero.org/google-docs/?9p1D7R
https://www.zotero.org/google-docs/?QgijUr
https://www.zotero.org/google-docs/?dGKqRH
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2.3 Materials and Methods 

2.3.1 Assemblies and read data 

The primary assembly of the previous and VGP version of the male 

zebra finch, female Anna's hummingbird, and female and male 

platypus were downloaded from NCBI by ftp along with their 

assembly statistics, gaps, repeats and annotation data (Table 2. 1). 

For the VGP assemblies, we included both the primary and alternate 

pseudo-haplotype sequences. The raw reads used for the previous 

assemblies of the zebra finch and platypus generated by Sanger 

sequencing were not available to download from the Sequencing Read 

Archive (SRA) on NCBI. However, the raw Sanger reads of the 

previous version of the platypus assembly was in the Trace Archive 

in NCBI 

(https://ftp.ncbi.nlm.nih.gov/pub/TraceDB/ornithorhynchus_anatinus

/). We downloaded all ‘.anc’ and ‘.fasta’ files, and extracted the 

reads that were submitted by ‘WUGSC’ for platypus the assembly. 

These Sanger reads from the older assembly and the 10X linked 

reads of the new assembly were used to quantify whether the 

duplications were due to individual differences between previous and 

VGP assemblies or real false duplications. The PacBio CLR and 10X 

https://ftp.ncbi.nlm.nih.gov/pub/TraceDB/ornithorhynchus_anatinus/
https://ftp.ncbi.nlm.nih.gov/pub/TraceDB/ornithorhynchus_anatinus/
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raw reads used to generate the VGP assemblies were downloaded 

from the VGP Genome Ark (https://vgp.github.io/genomeark/).  
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Table 2. 1 Statistics of previous and VGP assemblies. Contig NG50 and Scaffold NG50 for each assembly were calculated 

using a source code in the VGP repository. 

a These assemblies were made from same biosample (SAMN02981239) 

b These assemblies were made from same biosample (SAMN02265252) 

c Rhie et al. (2021)

No. Species Assembly type Date Sequencing Technology Assembl
er 

Coverage NCBI Accession Total Length 
(bp) 

# Sca. # 
Chr. 

# Gaps Contig 
NG50 

Scaffold 
NG50 

Annotation Reference 

1 zebra finch previous primary 
assembly 

2013 Sanger + BAC cloning PCAP 5.5x GCF_000151805.1a 1,232,118,738 37,421 35 87,710 47,913 72,861,351 103 Warren et 
al. (2010) 

2 zebra finch VGP primary 
assembly 

2019 PacBio RSII; 10X 
Genomics linked reads; 
Bionano Genomics 
DLS; Arima 

VGP 
assembly 
standard 
pipelinec 

88.2x GCF_003957565.1a 1,058,012,133 135 33 312 11,998,827 70,430,603 104 Rhie et al. 
(2021) 

3 zebra finch VGP alternate 
pseudohaplotype 

2018 PacBio RSII; 10X 
Genomics linked reads 

VGP 
assembly 
standard 
pipelinec 

88.2x GCA_003957525.1a 965,644,423 5,336 0 45 2,280,982 2,280,982 - Rhie et al. 
(2021) 

4 Anna's 
hummingbird 

previous primary 
assembly 

2014 Illumina HiSeq SOAPde
novo 

110.0x GCF_000699085.1b 1,105,676,412 54,736 0 70,084 26,950 4,286,189 100 Zhang et 
al. (2014) 

5 Anna's 
hummingbird 

VGP primary 
assembly 

2019 PacBio RSII; 10X 
Genomics linked reads; 
Bionano Genomics 
DLS; Arima 

VGP 
assembly 
standard 
pipelinec 

54.0x GCF_003957555.1b 1,059,687,259 159 33 429 13,410,196 74,081,004 101 Rhie et al. 
(2021) 

6 Anna's 
hummingbird 

VGP alternate 
pseudohaplotype 

2018 PacBio RSII; 10X 
Genomics linked reads 

VGP 
assembly 
standard 
pipelinec 

54.0x GCA_003957575.1b 952,083,371 3,803 0 6 1,237,155 1,237,155 - Rhie et al. 
(2021) 

7 platypus previous primary 
assembly 

2011 Sanger + BAC cloning PCAP 6.0x GCF_000002275.2 1,995,607,322 958,970 19 243,835 11,375 1,564,930 103 Warren et 
al. (2008) 

8 platypus VGP primary 
assembly 

2019 PacBio RSII; 10X 
Genomics linked reads; 
Bionano Genomics 
DLS; Dovetail 

VGP 
assembly 
standard 
pipelinec 

58.8x GCF_004115215.1c 1,858,552,590 305 31 522 15,022,425 83,338,043 104 Rhie et al. 
(2021) 

9 platypus VGP alternate 
pseudohaplotype 

2019 PacBio RSII VGP 
assembly 
standard 
pipelinec 

58.8x GCA_004115175.1c 1,575,984,168 5,850 0 28 713,443 713,443 - Rhie et al. 
(2021) 
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2.3.2 Identifying false duplications 

2.3.2.1 Candidate duplications from sequence similarity 

We identified false duplication candidates by sequence similarity in 

whole genome alignments between the previous and VGP assemblies 

and self-alignment of an assembly to itself. We used Cactus 

(Armstrong et al., 2019; Paten et al., 2011) to generate whole 

genome alignment across assemblies with the default options and 

HAL (Hickey et al., 2013) to transform the Cactus results into a 

readable multiple alignment format with ‘--maxBlockLen 

1,000,000 --noAncestors --refGenome’ (VGP assembly as 

reference) parameters. One to many homologs between two 

assemblies of the same species were then considered as potential 

false duplication candidates. Since the Cactus alignment contained 

very short sequences (<20 bp) in alignment blocks, we filtered out 

blocks shorter than 20 bp or query sequence coverage of less than 

80% to avoid spurious alignments. Self-alignment was performed 

with Minimap2 (Li, 2018) with the ‘-xasm5 -DP’ option on for 

assembly alignment mode, after segmenting contigs by ‘N’-base 

gaps. Purge_dups was then used to find false duplications (Guan et 

al., 2020) with ‘-2’ option following the guideline of purge_dups 

https://www.zotero.org/google-docs/?KtP2wz
https://www.zotero.org/google-docs/?4pBCqy
https://www.zotero.org/google-docs/?h3A5YM
https://www.zotero.org/google-docs/?7IjPxc
https://www.zotero.org/google-docs/?7IjPxc
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(https://github.com/dfguan/purge_dups). We used a purge_dups 

version that we asked the developers to modify ('add_loc’ branch in 

github of purge_dups; 

https://github.com/dfguan/purge_dups/tree/add_loc) to output the 

pair-wise homologous loci for each false duplication found. 

2.3.2.2 Filtering true duplications 

False duplication candidates were distinguished from true 

haplotype specific duplications using 10X linked read alignments; it 

was difficult to map PacBio CLR reads to the previous assemblies, as 

the length of the majority of the contigs of the prior assemblies (e.g. 

1~3 kbp) were shorter than the PacBio read lengths of the VGP 

assemblies (e.g. ~10-17 kbp). The paired-end reads from the 

linked reads were aligned with EMA v0.6.2 (Shajii et al., 2018) using 

the barcodes default option, and BWA v0.7.17 (Li and Durbin, 2009) 

without the barcodes with parameters ‘-p -M -R 

"@RG\tID:rg1\tSM:sample1"’ options following guide line of EMA. 

Duplicate reads were marked by Sambamba v0.7.1. Coverage 

distribution across the entire assembly was extracted using samtools 

(Li et al., 2009). False duplication candidates from purge_dups self-

alignments were further processed using the remainder of the 

purge_dups pipeline, which included generating coverage 

https://github.com/dfguan/purge_dupsR
https://www.zotero.org/google-docs/?PrlykI
https://www.zotero.org/google-docs/?nJ2FcE
https://www.zotero.org/google-docs/?OPI9PH
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distributions.  

Candidates from the Cactus alignments were similarly filtered 

using the same read depth threshold as in purge_dups. Any 

duplications with lower than half the diploid read depth of coverage 

were further considered. We then applied two additional criteria: 1) 

presence of a scaffolded gap or read depth-gap between a duplicated 

pair; and 2) discordant read pair alignments. A depth-gap is defined 

as a region with no read alignments between duplicated pairs, which 

occurs from incorrect gap-filling or incorporation of reads with 

sequencing errors during assembly (Figure 2. 1) . A discordant read 

pair was defined when the insert size between the pairs is 

unexpectedly large (>550 bp; mean insert size of 10X read in this 

study) or mapped to another scaffold as in Kelley and Salzberg 

(Kelley and Salzberg, 2010). We required both presence of 

discordant reads and concordant reads to align, where one end from 

a discordant read pair and concordant read pair aligns to the identical 

flanking region (~550 bp) of a duplication, while the other end aligns 

to each of the homologous duplications. 

https://www.zotero.org/google-docs/?g3ox8F
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Figure 2. 1 Unsupported sequences with or without assembly gaps. 

10X linked reads are shown as paired read alignments, and the PacBio 

CLR read alignments below them, along with the depth coverage of 

the respective read data. a, Unsupported sequence with a depth-gap 

but no assembly gap, between a false duplication. b, Unsupported 

sequence observed with an assembly gap, between a false duplication. 

c, Unsupported sequences with 0 bp between a false duplication. 

Unsupported sequences in the assembly were identified with 10X 

linked reads with no depth of coverage. 
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2.3.2.3 Classifying heterotype and homotype duplications 

The filtered false duplications were further classified based on 

k-mer analysis (considering genome size, k = 20 for all three 

species). We extracted 20-mers from the assemblies and 10X linked 

reads using Meryl (Rhie et al., 2020) and performed Merqury (Rhie 

et al., 2020) analysis to obtain the k-mer spectrums, using the non-

trio mode for pseudo-haplotype assembly. Using the k-mer 

spectrum, we defined erroneous k-mers as those found in the 

assembly with read multiplicity lower than 6x, 3x, and 18x in the 

previous assemblies of zebra finch, hummingbird, and the platypus, 

and 3x, 3x and 10x for the VGP assemblies, respectively. These are 

low-multiplicity k-mers in the k-mer spectrum, made by 

sequencing errors (Koren et al., 2018; Rhie et al., 2020). Likewise, 

any non-erroneous k-mer found once in the assembly was defined 

as a single-copy k-mer. We classified false duplications as 

heterotype when both of the duplicated pairs had single-copy k-

mers with average read depth higher than sequencing error read 

depths, which was 5x, 8x and 22x for the previous assemblies and 

2x, 2x, 9x for the VGP assemblies of the zebra finch, hummingbird, 

and the platypus, respectively (same principle with erroneous k-

mers identification); otherwise as homotype duplication, which had 

https://www.zotero.org/google-docs/?E5nu6h
https://www.zotero.org/google-docs/?b2V14X
https://www.zotero.org/google-docs/?b2V14X
https://www.zotero.org/google-docs/?Pndm07
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no single-copy k-mer found on either side of the duplication or one 

duplication of the pair had read depth below heterotype duplication 

levels. 

 

2.3.3 Evaluating false duplications 

PacBio CLR reads were mapped to both the previous and VGP 

assemblies using Minimap2 (Li, 2018) with the preset ‘-ax map-

pb’. Sanger reads of platypus were also mapped to the previous 

assembly using Minimap2 with ‘-ax map-pb’ and used for further 

read coverage evaluation. Since the coverage distribution of Sanger 

reads showed a unimodal distribution at 1x coverage, we defined the 

threshold of haploid-level coverage for Sanger reads as the mean 

depth-coverage of the total assembly*0.75. The mapped reads on 

each assembly were visualized with IGV (Thorvaldsdóttir et al., 

2013). Duplications found in the VGP assemblies were aligned to 

their counterpart assembly and visualized with D-Genies 

(Cabanettes and Klopp, 2018). The location of false duplications in 

the VGP assemblies was visualized by karyoploteR (Gel and Serra, 

2017). 

The heterozygosity of assemblies, including of each corrected 

https://www.zotero.org/google-docs/?2fXVxN
https://www.zotero.org/google-docs/?8O2tFG
https://www.zotero.org/google-docs/?8O2tFG
https://www.zotero.org/google-docs/?p5KLz0
https://www.zotero.org/google-docs/?LMWAxD
https://www.zotero.org/google-docs/?LMWAxD
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FD and correctly assembled region, were calculated as the number 

of variants divided by the length of the region, with 1,000 

bootstrapping replicates to generate a distribution for a Student’s 

t-test between those regions. To calculate heterozygosity in the 

region of the introduced FD in the VGP assemblies, we masked false 

duplications as ‘N’s, then the variant was estimated from newly 

mapped 10X linked reads onto the masked assembly, followed by the 

same bootstrapping and statistical approach as used above. Samtools 

and bcftools were used for variant calling with the multiallelic model. 

We filtered-out variants with biased alleles, i.e. we only considered 

the locus if the proportion of major and minor alleles were in >25% 

and <75%. The sequence error rate of each duplicated and correct 

region was calculated by dividing the number of erroneous k-mers 

by the total number of k-mers found. The distributions of sequencing 

error rate for duplicated and correct regions were also generated by 

1,000 bootstrapping replicates, and a Student’s t-test was 

performed on those distributions.  

2.3.4 Identification of false gene gain annotation errors 

We calculated the number of protein coding genes affected by 

false duplications, defined as regions with duplicated sequences that 
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overlapped with the CDS regions of an assembly. The Refseq 

annotation of NCBI was used and only the longest CDS of all isoforms 

generated from each gene was used. The genes influenced by false 

duplications were classified into three types: 1) false gene gain (FGG) 

in which a gene was falsely duplicated almost entirely or partially 

over 50% of the CDS length; 2) false exon gain (FEG) of one or more 

exons within the same gene; and 3) false chimeric gain (FCG) in 

which duplicated exons from one gene were inserted into another 

gene. FGG, FEG, and FCG were included only when at least one 

coding exon of a gene completely overlapped the false duplication. 

To visualize the example cases of mis-annotation, GSDS 2.0 (Hu et 

al., 2015) was used. Intergenic regions were defined as the remaining 

regions excluding CDS and intron. 

To search for possible false duplications in non-coding 

repetitive elements, we counted the number of LTRs, SINEs, and 

LINEs affected by false duplications using NCBI repeat information 

generated by repeatMasker (Tarailo‐Graovac and Chen, 2009). Then, 

the relative proportion of false duplication on each genomic partition 

was calculated by the difference between observed and expected 

proportion. The observed is the proportion of each genomic partition 

containing false duplications (Σ feature length overlapped with false 

https://www.zotero.org/google-docs/?NN7Ffo
https://www.zotero.org/google-docs/?NN7Ffo
https://www.zotero.org/google-docs/?W9EaQC
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duplication / total false duplication length) of each assembly. The 

expected is the normal proportion of each genome partition (Σ 

feature length / total assembly length). The differences between 

observed and expected genomic partitions were tested by one-way 

analysis of variance (ANOVA).  

In the platypus, we also searched false gene gains of the V1R 

family in the same manner as above. We checked for 267 V1R genes 

for potential false gene gains in the previous assembly of the platypus, 

which included “ORNANAV1R” in the gene symbol. 

 

2.3.5 False duplication correction using the VGP pipeline v1.7 

We reassembled the zebra finch assembly using a variation of 

the VGP v1.0-1.6 pipelines, which we called the VGP v1.7 pipeline. 

Aside from software updates, the two main differences with respect 

to the VGP v1.0 pipeline (Rhie et al., 2021) are: 1) purge_haplotigs 

was replaced by purge_dups, for more effective purging of false 

haplotype and homotype duplications; 2) purging was done after 

contiging, as opposed to after scaffolding and polishing; and 3) during 

the final Arrow polishing step, variant calls were filtered with Merfin 

(https://github.com/arangrhie/merfin), to avoid introducing 

https://www.zotero.org/google-docs/?AIcIOC
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erroneous k-mers in the assembly. This resulted in the following 

assembly steps: 1) FALCON-Unzip contig assembly; 2) purge_dups 

to purge false duplications in the primary assembly, and place them 

in the alternate assembly; 3) scaffolding the primary assembly with 

10X linked reads and scaff10X software; 4) scaffolding with Bionano 

optical maps and Bionano solve software; 5) scaffolding with Arima 

Genomics Hi-C and Salsa v2.2 software; 6) polishing with long reads 

using Arrow and filtering the variant calls with Merfin; and 7) a final 

polishing with longranger aligner and freebayes. We added the 

assembled mitochondrial genome prior to the polishing steps to 

prevent overpolishing of NUMTS in the nuclear genome. We 

compared this VGP 1.7 assembly (bTaeGut1.4) with the zebra finch 

VGP v1.0 pipeline (bTaeGut1.0; GCF_003957565.1) by alignment 

using Cactus (Paten et al., 2011). Based on the regions of false 

duplication we found in bTaeGut1.0, the homologous regions of false 

duplication were extracted by Hal (Hickey et al., 2013). We 

calculated the uncorrected amount of false duplications in 

bTaeGut1.4 from each false duplication in bTaeGut1.0 as follows: 

Given a length of homologous sequence H of a false duplication (FD) 

from new (v1.7) and prior (v1.0) VGP zebra finch in an alignment 

block, an uncorrected false duplication was calculated as uncorrected 

https://www.zotero.org/google-docs/?rhIdj4
https://www.zotero.org/google-docs/?mjy51O
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FD = ΣHv1.7 - (ΣHv1.0 - FD). If the uncorrected false duplications 

were ≤ 0 bp, we regarded that false duplication was corrected in the 

bTaeGut1.4 assembly.  

 

2.3.6 Duplicated k-mers in different hummingbird assembly 

approaches  

We calculated k-mer duplications for each experimental 

hummingbird assembly generated by Rhie et al. (2021) for assessing 

the relative magnitude of introducing or removing false duplications 

by various assembly algorithms and steps. The assemblies are 

available in GenomeArk prefix on 

‘s3://genomeark/working/release1/scaffolding/’ named as 

‘bCalAnn1_c1.fasta.gz’, ‘pac_fcn_p.fasta.gz’, 

‘pac_nano_canu.fasta.gz’, ‘pac_canu.fasta.gz’, 

‘10x_spnv2_hap1.fasta.gz’, ‘ill_soap.fasta.gz’, and the primary 

VGP assembly of bCalAnn1.0. 10X linked reads of the hummingbird 

were used for calculating k-mer multiplicity. Meryl (Rhie et al., 2020) 

and Merqury (Rhie et al., 2020) were performed to obtain 

intermediate data points for analyzing k-mer duplications, with 

default options. K-mer duplications were counted by 

https://www.zotero.org/google-docs/?5Ygqdw
https://www.zotero.org/google-docs/?n3dTpp
https://www.zotero.org/google-docs/?T0z7Vr
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'false_duplications.sh' in the Merqury package.  

 

2.3.7 Gene ontology enrichment test for falsely duplicated 

genes 

We tested gene ontology enrichment for the false gene gains, 

false exon gains, and false chimeric gene gains of each prior 

assembly. We used g:Profiler (Reimand et al., 2007) on the web 

(https://biit.cs.ut.ee/gprofiler/gost) for functional profiling of these 

genes. Because the many false gene gains were fragmentary artifacts 

such as ‘-like’ gene, we converted the gene symbol of these false 

gene gains using the original gene product name. g:Profiler supported 

the zebra finch and platypus in organism parameter selection, but the 

hummingbird was not supported. We thus selected the organism 

parameter ‘zebra finch’ for the hummingbird by considering the 

closest phylogenetic distance of species listed in the database. 

Significance was calculated by g:SCS with a threshold of P < 0.05. 

The list of ATP-binding genes were made up by referring to 

vertebrate ATP-binding genes in AmiGO 2 

(http://amigo.geneontology.org/amigo/). The control gene set was 

constructed by randomly choosing genes as the same number of 

https://www.zotero.org/google-docs/?yUyY6v
https://biit.cs.ut.ee/gprofiler/gost
http://amigo.geneontology.org/amigo/


28 

 

ATP-binding genes for each species. Heterozygosity of the genes 

were calculated in each VGP assembly using the same method above. 

A significant difference of heterozygosity was tested by one-sided 

Wilcoxon rank-sum test.  

 

2.3.8 False duplications in emu assemblies 

The assembly and raw sequenced data of emu were collected from 

NCBI Assembly for both previous (GCA_013396795.1) and recent 

(GCA_016128335.1) assemblies. The short reads generated from 

both individuals of the assemblies were available in NCBI SRA. We 

mapped the Illumina reads constructed by the 800bp paired end 

library (run number: SRR9946765, SRR9946766, SRR9946768, 

SRR9947049, SRR9994342, SRR9994343, SRR9994348, 

SRR9994349, SRR9994351) to the previous assembly using 

Minimap2 with preset ‘-ax sr’. We mapped the 10X linked reads 

of the other assembly (run number: SRR11971566) to the recent 

assembly with the same step for 10X linked read mapping above. We 

ran the same pipeline for identifying false duplications in both 

assemblies, with filtering true duplication as above.  
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2.4 Results 

2.4.1 Genome assemblies and identifying false duplications 

The previous Sanger-based platypus (Warren et al., 2008) 

and zebra finch (Warren et al., 2010) reference genomes used 

standard pipelines for the best reference chromosomal level genomes 

at the time, generated with 500-1000 bp Sanger sequence reads, 

BAC-based scaffolding and FISH or cytogenetic chromosome 

mapping and assignments. No systematic effort was made for 

haplotype phasing, but both the previous zebra finch and platypus 

assemblies were rigorously manually curated. The prior Illumina-

based Anna’s hummingbird reference (Jarvis et al., 2014; Zhang et 

al., 2014) was generated with short reads (~150 bp), and contigging 

and scaffolding with multiple paired-end and mate-pair libraries 

ranging from 200 bp to 20 kbp in size. An effort was made to remove 

alternate haplotypes during assembly.  

The VGP assemblies of the same species was generated with 

PacBio-based continuous long-read (CLR) contigs (N50 read length 

~17 kbp), which were scaffolded with 10X Genomics linked reads, 

Bionano Genomics optical maps, and Arima Genomics Hi-C 

chromatin interaction read pairs (Rhie et al., 2021). Systematic 

https://www.zotero.org/google-docs/?nQt63G
https://www.zotero.org/google-docs/?RiNTRb
https://www.zotero.org/google-docs/?qFLeRL
https://www.zotero.org/google-docs/?qFLeRL
https://www.zotero.org/google-docs/?vV3Jpo
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attempts to prevent false duplications were made, using FALCON-

Unzip to separate haplotypes after generation of contigs and 

purge_haplotigs (Roach et al., 2018) that search for and purged false 

heterotype duplications from the primary pseudo-haplotype 

assembly (Rhie et al., 2021). All VGP assemblies were subjected to 

rigorous manual curation to minimize assembly errors generated by 

algorithmic shortcomings. The previous and VGP assemblies of the 

zebra finch and Anna’s hummingbird were conducted on genomic 

DNA from the same individuals, and thus differences would only be 

due to sequencing platform and assembly methods. As the platypus 

was from a different individual, we performed some additional steps 

later in the study to validate whether the issues found were due to 

sequence and assembly errors, and not individual biological 

differences. 

The size of the previous assemblies of the zebra finch, 

hummingbird and platypus are 1.23 Gbp, 1.11 Gbp and 2.00 Gbp, 

respectively (Table 2. 1). They consisted of a total of 37,421, 54,736, 

and 958,970 scaffolds. Among the scaffolds, 35 and 19 super 

scaffolds were assigned to chromosomes for the zebra finch and 

platypus assemblies, respectively. The assemblies had 87,710, 

70,084, and 243,835 gaps, and their average contig NG50s were 47.9, 

https://www.zotero.org/google-docs/?DS8uKT
https://www.zotero.org/google-docs/?H9tEwg
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27.0, and 11.4 kbp, respectively. The size of the VGP assemblies 

were all 0.05-0.17 Gbp smaller (Table 2. 1). They consisted of ~280 

to 3,140-fold fewer scaffolds (i.e. 135, 159, and 305 total), of which 

33 (now 39 in our updated version), 33, and 31, respectively, were 

assigned to chromosomes, including the sex chromosomes. The 

number of gaps likewise were ~160 to 470-fold lower, and contig 

NG50s were ~250 to 1,320-fold higher: 12.0, 13.4 and 15.0 Mbp for 

the zebra finch, hummingbird and platypus, respectively. Alternate 

haplotype scaffolds of 0.95-1.58 Gbp in total size were separated 

from the primary assembly. 

We performed self-alignment of each assembly using 

Minimap2 (Li, 2018) as a part of the purge_dups (Guan et al., 2020) 

process to detect duplications independently from another assembly; 

purge_dups was created by members of the VGP in order to identify 

and purge false duplications in different contigs. Also, we aligned the 

previous assemblies to the new VGP assemblies of each species 

using the reference-free Cactus aligner (Paten et al., 2011), which 

allows pair-wise detection of duplicates between the previous and 

new assemblies at the sequence and contig levels (Figure 2. 2a, b). 

We distinguished false duplications from true duplications, as we 

found that the former had read coverage at the haploid-level, gaps 

https://www.zotero.org/google-docs/?6Ya8Kg
https://www.zotero.org/google-docs/?REHBTz
https://www.zotero.org/google-docs/?8ESY1d
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between duplications due to mis-assembly, and discordance in 10X 

linked read pairs mapped back to the assembly. We classified each 

false duplication as heterotype duplications when heterozygous k-

mers were found, and homotype duplications when read depth 

coverage was lower than the haploid-level, which occurs with 

sequence read errors, or when heterozygous k-mers were not found 

(Figure 2. 2c). 
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Figure 2. 2 Overview to identify false duplication. a, Mechanisms of 

how false assembly duplications are created. If haplotype phasing is 

included and correctly performed in the assembly process, there will 

be only one allele in the primary assembly, with the other placed in 

the alternate assembly (right panel, Column 1). However, without 

proper phasing, both alleles of heterozygous loci may be assembled 

in one scaffold (Column 2) or two different scaffolds (Column 3) of 

the primary assembly. Alternatively, randomly or systematically 
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piled up erroneous sequencing reads can generate false duplications 

(Column 4). This leads to three types of false duplications. b, Scheme 

to identify false duplications. Whole-genome alignment between the 

two assemblies using Cactus and self-alignment using purge_dups 

reveal candidate false duplicated regions or whole contigs. The 

union-set from these two independent methods is then used to find 

false duplications, which contain some combination of near haploid 

read-depth of the 10X Genomics linked reads, the presence of gaps 

between duplications, and discordance in read pairs between 

duplications. c, Scheme to classify false duplication types. Copy 

number and multiplicity of k-mers are calculated from the assembly 

and the 10X Genomics linked reads respectively, and used to classify 

false duplications as heterotype or homotype. Heterotype duplication 

includes haploid specific k-mers (i.e. 1-copy). Homotype 

duplication does not include haploid specific k-mers, but does include 

sequencing errors that can be detected by read-depth below the 

haploid-level.  
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2.4.2 False duplications in previous and VGP assemblies  

The distributions of 10X Genomic linked read depth coverage (Figure 

2. 3) and k-mer multiplicity (Figure 2. 4) showed that previous 

assemblies included significant amounts of false duplications: 16% 

(196 Mbp), 4% (41 Mbp), and 6% (126 Mbp) of the total length of 

the prior zebra finch, Anna’s hummingbird, and platypus assemblies, 

respectively (Figure 2. 5a, Table 2. 2). As the 10X Genomics linked 

reads were generated on the new platypus individual used, we also 

found the Sanger raw reads of generated from the prior individual in 

the NCBI Trace Archive and found 104 Mbp of haploid coverage 

lower than the genome-wide average indicating that the vast 

majority of the 126 Mbp found with the 10X linked reads are not due 

to individual differences, but false duplications. This is a whole 

chromosome’s worth of false duplication (6% of the genome), and 

thus also unlikely due to individual differences. The higher levels of 

false duplication found with the 10X linked reads could be due its 10-

fold higher sequence coverage (60X) relative to the Sanger read 

coverage (6X). For all three previous assemblies, heterotype was the 

major source of false duplication, an order of magnitude higher than 

the homotype except for the previous Anna’s hummingbird 

assembly (Figure 2. 5a, Table 2. 2). Of the total false duplications, 7 
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to 24% were on the same scaffold (Table 2. 2).  
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Figure 2. 3 Depth-coverage profiling of all assemblies. a, Prior 

assemblies. b, VGP assemblies. The 10X linked read depth-

coverages of every site is summarized as a distribution. The red line 

shows the threshold of depth-coverage that we used to determine 

false duplications (to the left of the red line). The bimodal distribution 

in the zebra finch and the platypus assemblies are caused by highly 

heterozygous regions. 
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Figure 2. 4 K-mer profiling for all assemblies. a, Prior assemblies. b, 

VGP assemblies. From the sequences of 10X linked reads and 

assemblies, k-mer multiplicity was calculated. The x-axis is the k-

mer multiplicity calculated from the raw reads, the y-axis are the 

counts, and the numbers in the boxes represent the k-mer 

multiplicity found in the primary pseudo-haplotype assembly. K-

mer multiplicity of 2 copies or higher under the area of single copies 

(red) are overly represented as false duplications. 
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False duplications in the VGP assemblies were still present, 

but 7 to 22-fold less: 2.3% (24 Mbp), 0.5% (5.8 Mbp), and 0.3% (5.6 

Mbp) of the total primary assembly in the zebra finch, hummingbird 

and platypus, respectively (Figure 2. 5a, Table 2. 2). Heterotype was 

also the major type of false duplication. In contrast to the prior 

assemblies, there was a much higher proportion of the false 

duplications, 61-92%, found on the same scaffold in the VGP 

assemblies, due to improved scaffolding using multiple long-range 

sequencing platforms.  
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Table 2. 2 False duplication statistics in previous and VGP assemblies.  

 

 

 

 

 

 

Heterozygosity (top row) was calculated as the mean number of variants in each assembly based on the 10X linked 

reads produced for each VGP assembly. Second row are the total Mbp (and % of genome size in brackets) that are 

falsely duplicated. Rows below that are the type and location of false duplications.

    Zebra finch          

Pre. (Sanger) 

Zebra finch           

VGP (bTaeGut1) 

Hummingbird       

Pre. (Illumina) 

Hummingbird        

VGP (bCalAnn1) 

Platypus                 

Pre. (Sanger) 

Platypus               

VGP (mOrnAna1) 

 Heterozygosity                               (%)  -  0.95  -  0.34  -  0.22 

 Total false duplication length  (Mbp) 195.6 (15.9 %) 24.1  (2.3 %) 40.9  (3.7 %) 5.8  (0.5 %) 126.0  (6.3 %) 5.6  (0.3 %) 

 Type 

 Heterotype               (Mbp) 190.5 (15.5 %) 23.1  (2.2 %) 13.7  (1.2 %) 5.4  (0.5 %) 72.0  (3.6 %) 5.0  (0.3 %) 

 Homotype                (Mbp) 5.1  (0.4 %) 0.9  (0.1 %) 27.2  (2.5 %) 0.4 (<0.1 %) 54.0  (2.7 %) 0.6 (<0.1 %) 

 Location 

 Same scaffold         (Mbp) 46.4 (3.8 %) 22.2 (2.1 %) 2.9 (0.3 %) 4.8 (0.5 %) 22.7 (1.1 %) 3.4 (0.2 %) 

 Different scaffold    (Mbp) 149.3 (12.1 %) 1.9 (0.2 %) 38.0 (3.4 %) 1.0 (<0.1 %) 103.3 (5.2 %) 2.2 (0.1 %) 

 Total assembly Length             (Mbp) 1232.1 (100 %) 1058.0  (100 %) 1105.7  (100 %) 1059.7  (100 %) 1995.6  (100 %) 1858.5  (100 %) 
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2.4.3 High heterozygosity and sequencing errors associated 

with false duplications 

The heterozygosity of false duplications found in the previous 

assemblies that were corrected in the VGP assemblies (Corrected 

FD regions; Figure 2. 5b) were all ~1.5 to 1.8-fold higher than 

correctly assembled regions without false duplications in both the 

previous and VGP assemblies (P < 0.001; Figure 2. 5c). The 

heterozygosity of false duplications specific to the VGP assembly 

(Introduced FD regions; Figure 2. 5b) were all also higher (P < 0.001) 

with no specific absolute level that differed with the previous 

assemblies (Figure 2. 5c). We also found more erroneous k-mers in 

false duplications than in the correctly assembled regions in both the 

previous and VGP assemblies (Figure 2. 5d). Further, regions 

between the false duplications were most often separated by an 

assembly gap and sometimes connected by unsupported sequence 

read depth gaps, due to incorrect gap filling or other assembly errors 

(Figure 2. 6; Figure 2. 1). These properties were not found for true 

duplications, including of the acrosin (ACR) gene and an allele 

specific tandem duplication we found in the same contig with haploid 

level read depth coverage (Figure 2. 7). These findings show that 
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increased relative heterozygosity, especially those at the boundaries 

of homozygous and heterozygous sites, and sequencing errors are 

prone to be falsely duplicated. 
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Figure 2. 5 The amount of false duplication and factors that correlate 

with false duplication. a, The total assembly size and the proportion 

that are false duplications in the previous and VGP assemblies. False 

duplications were classified as heterotype and homotype. b, Scheme 

of false duplications (FD) in the previous and VGP assemblies due to 

heterozygous alleles. Corrected FD are regions in the VGP assembly 

that are false duplications in the previous assembly. Correctly 

assembled are regions without any false duplication in the previous 

and VGP assemblies. Introduced FD are false duplications introduced 

in the VGP assembly that were not present in the previous assembly. 

c, Heterozygosity of corrected FD, correctly assembled, and 
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introduced FD, according to the VGP assembly haplotype data (***P 

< 0.001; two-sided T-test). Red dotted line, overall heterozygosity 

of the genome. d, The portion of erroneous k-mers in false 

duplications and correct regions of each assembly (***P < 0.001; 

two-sided T-test). 
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Figure 2. 6 The presence of a gap and discordant reads between false 

duplications. Shown is a locus in the previous zebra finch assembly 

with a false duplication. 10X linked read alignments are shown above 

the PacBio CLR read alignments, along with the depth coverage of 

the respective read data. Characteristics of false duplications are 

marked with red triangles: 1) Nearly half depth-coverage and lack 

of heterozygous variants - colors indicating nucleotide 

heterozygosity; 2) Gaps between false duplications; and 3) 

Discordant 10X linked reads (black dotted box). Red box, discordant 

reads found near the end of scaffolds that should be connected to 

each other. AG, assembly gap. DG, depth-gap (unsupported 

sequences by reads; see methods). 
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Figure 2. 7 True duplication in a VGP assembly. 10X linked reads are 

shown as paired read alignments above the PacBio CLR read 

alignments, along with the depth coverage of the respective read data. 

a, True gene duplication of the acrosin (ACR) gene in the zebra finch. 

The 10X linked read alignment shows discordant read alignments but 

has no signature of a depth-gap or decreased read-depth coverage. 
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PacBio CLR reads alignments connect these duplicated genes with no 

gaps, as single molecule reads, and no unsupported sequence. b, True 

haplotype specific sequence duplication with lower read depth in the 

zebra finch. A candidate duplication was identified as a true genomic 

duplication, but in one haplotype. The 10X linked read alignment 

shows discordant read alignments but has no signature of a depth-

gap. Half of the PacBio CLR read alignments show the allele specific 

duplication, while the other half show a deletion on one of the two 

alleles. 
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2.4.4 False duplications cause false annotation errors  

Among the false duplications, we found 4 to 24% of the coding 

genes were impacted in the previous assemblies, depending on 

species (Figure 2. 8a). Of these, we found three main types: 1) the 

majority being false gene gains [FGG] of nearly the entire coding 

sequence; 2) followed by false exon gains [FEG] within a gene; and 

3) a minority being false chimeric gains [FCG] from a chimeric join 

among exons from different genes (Figure 2. 8a, b; Table 2. 3).  

An example of a FGG included ZBTB11 in the previous zebra 

finch assembly, which had 9 of the 11 coding exons falsely duplicated 

and annotated as ZBTB11-like (LOC100218125; Figure 2. 8c). The 

non-duplicated ZBTB11 exon 1 was included in ZBTB11-like and 

exon 2 (red mark; 10th exon) included in ZBTB11, while these exons 

were assembled into one gene in the VGP assembly. The sequence 

alignment landscape of ZBTB11 in the previous assembly showed 

typical characteristics of a false gene gain (Figure 2. 9a), whereas 

there was no sign of false duplications in the VGP assembly (Figure 

2. 9b). The gamma-aminobutyric acid receptor subunit gamma 2 

(GABRG2) was a complex example, where several false exon 

duplications were assembled in the same scaffold and annotated as a 

GABRG2-like (LOC101232861) or as another GABRG2-like 
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(LOC100229343) on another scaffold, both with presumed false exon 

losses after the duplication from the original gene (Figure 2. 8d). 

Because true duplications can also be annotated as gene name-like, 

for example ACR and ACR-like (Figure 2. 7a), the “like” term in 

the NCBI annotation can not be taken alone as evidence of a false 

duplication.  

ALDH2, a gene with specialized upregulation in the zebra finch 

vocal learning nucleus HVC (Denisenko-Nehrbass et al., 2000), had 

three false duplicated exons that were incorporated into the adjacent 

ACAD10 gene, causing a FCG for ALDH2-ACAD10, all with gaps 

around each of the false duplications (Figure 2. 8e; Figure 2. 9c), 

none present in the VGP assembly (Figure 2. 9d). The calcium 

voltage-gated channel subunit alpha1 H (CACNA1H), also a gene 

with specialized expression in vocal learning circuits of the zebra 

finch (Friedrich et al., 2019; Kurz et al., 2010, p. 1), had a FEG in the 

second exon (Figure 2. 8f). Similar examples of FGG, FCG and FEG 

in the previous Anna’s hummingbird and platypus assemblies are 

shown in Figure 2. 10. This includes false duplications that overlap in 

the CDSs of ATF3, PCBD1 and VAMP4 in the previous hummingbird 

assembly; and of ZP2, UPF2 and HSF2 in the previous platypus 

assembly with haploid-level Sanger read coverage (Figure 2. 11). 

https://www.zotero.org/google-docs/?EcIiOc
https://www.zotero.org/google-docs/?ueAuCU
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We next scanned the literature for reported cases of gene 

duplications in one or more of the three species studied here, and 

assessed whether they were real or false duplications. There were 

many cases where the gene duplications were real, but also multiple 

cases where they were false. An example of the later included 

ADAMTS13, related to thrombotic thrombocytopenic purpura in 

humans (Levy et al., 2001; Quesada et al., 2010), which was reported 

as duplicated in the zebra finch (Quesada et al., 2010). But we found 

that two of the three ADAMTS13 genes (one ADAMTS13 and two 

ADAMTS13-like) were falsely duplicated in the same 

(LOC105760960; Figure 2. 9e) and a different scaffold 

(LOC101232819; Figure 2. 12), respectively. These two false 

duplications were produced from the 5’ and 3’ ends of the original 

ADAMTS13 gene (Figure 2. 9f). We confirmed that there were no 

additional copies of ADAMTS13 in both the VGP zebra finch 

assembly and a recent VGP chicken assembly (GRCg7w; Accession# 

GCA_016700215.2). Another example was neurotrypsin, a gene 

known to be linked to neural development, which was represented as 

having more copies in the zebra finch than chicken (Warren et al., 

2010). But we found that this extra copy of the gene (LOC100217566 

in a short unplaced scaffold ~3 kbp long) was made by a false 

https://www.zotero.org/google-docs/?sOK5zE
https://www.zotero.org/google-docs/?ZAGC9m
https://www.zotero.org/google-docs/?mV9DGP
https://www.zotero.org/google-docs/?mV9DGP
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duplication the original neurotrypsin gene in chromosome 6 

(LOC100229828; Figure 2. 9g, h), which is annotated as NTL in 

GRCg7w. This extra copy of the gene was not found in both the VGP 

zebra finch and GRCg7w assemblies. A third example was a platypus 

vomeronasal receptors (V1R) gene family expansion reported as a 

sensory adaptation for underwater life history (Warren et al., 2008); 

we found that 43 of the 267 annotated V1R genes (16%) are actually 

false duplications in the previous assembly (Table 2. 4). In examples 

we examined, in the VGP assemblies we found single molecule PacBio 

reads that crossed the assembly or read depth gaps, or contig ends, 

found in the prior assemblies, without the presence of a real 

duplication of the gene(s) (Figure 2. 9), experimentally validating 

them as false duplications in the prior assemblies, and not 

computational errors. 

 

https://www.zotero.org/google-docs/?DKfgNM
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Figure 2. 8 Mis-annotations due to false duplications. a, Amount and 

percentage of all genes with mis-annotations caused by false 

duplications in the previous assemblies. The amount of genes of each 

type is shown on the top of each bar graph. b, Types of mis-

annotations caused by false duplications. When >50% of the CDS 

length of a gene was falsely duplicated and annotated as another gene, 

and resulted in two genes with similar function (e.g. -like), we 

classified it to false gene gain (FGG, Type 1). When an exon within 

a gene was falsely duplicated, we classified it to false exon gain (FEG, 

Type 2). If the duplicated exon was falsely inserted to another 

existing gene of different function, we classified it as a false chimeric 

gain (FCG, Type 3). c, FGG of ZBTB11. d, FGG of GABRG2. e, FCG 

involving ACAD10 and ALDH2. f, FEG within CACNA1H. The red 
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lines represent the connection between false duplications and the 

homologs in the VGP assembly. The blue boxes represent the 

homologous region between the VGP and previous assemblies. The 

white spaces in the black bars represent scaffold assembly gaps. g, 

Amount of false gene annotation in VGP assemblies. The zebra finch 

VGP v1.0 assembly had false duplications purged with 

purge_haplotigs after scaffolding; the zebra finch VGP v1.7 had false 

duplications purged with purge_dups before scaffolding.  
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Table 2. 3 Mis-annotations caused by false duplications in both previous and VGP assemblies. The mis-annotation cases 

include false gene gain (FGG), false chimeric gain (FCG), and false exon gain (FEG). If the CDS overlapped caused by 

the false duplication was found in both -like gene and the original genes, they were named to FGG (mixed). This occurs 

by false duplication without haplotype phasing. Gene IDs and gene symbols are represented based on NCBI. Data only 

appears up to No. 15 from Ko. et al. (2022). 

 

Data 
No. 

Species Assembly Gene ID Gene symbol Total 
No. 
CDSs 

Total CDS 
length 
(bp) 

FD 
overlap 
length % 

Error type Product name 

1 Zebra finch Previous 105758872 LOC105758872 13 1581 78.5 FGG eukaryotic translation initiation factor 2D-like 

2 Zebra finch Previous 100217725 HERC3 25 3153 4.2 FGG (mixed) LOW QUALITY PROTEIN: probable E3 ubiquitin-protein ligase HERC3 

3 Zebra finch Previous 100227877 LOC100227877 7 665 100 FGG (mixed) probable E3 ubiquitin-protein ligase HERC3 

4 Zebra finch Previous 105760054 LOC105760054 16 2334 100 FGG LOW QUALITY PROTEIN: obscurin-like 

5 Zebra finch Previous 105760339 LOC105760339 3 324 100 FGG krev interaction trapped protein 1-like 

6 Zebra finch Previous 101233548 LOC101233548 3 619 100 FGG LOW QUALITY PROTEIN: ATP-sensitive inward rectifier potassium 
channel 8-like 

7 Zebra finch Previous 100223188 LOC100223188 4 1520 100 FGG TRPM8 channel-associated factor 2-like 

8 Zebra finch Previous 100230937 LOC100230937 6 701 100 FGG LOW QUALITY PROTEIN: protein-lysine methyltransferase METTL21E-
like 

9 Zebra finch Previous 105758939 LOC105758939 7 1155 74.9 FGG,FCG basigin-like 

10 Zebra finch Previous 105760144 LOC105760144 2 349 100 FGG CUB and sushi domain-containing protein 2-like 

11 Zebra finch Previous 100225740 STK4 13 1572 5.7 FEG serine/threonine-protein kinase 4 

12 Zebra finch Previous 101234012 LOC101234012 2 249 100 FGG NTF2-related export protein 2-like 

13 Zebra finch Previous 100224419 LOC100224419 5 438 100 FGG pantothenate kinase 3-like 

14 Zebra finch Previous 100220232 TEX2 15 3192 1.7 FEG LOW QUALITY PROTEIN: testis-expressed sequence 2 protein 

15 Zebra finch Previous 100225264 LOC100225264 4 676 100 FGG dipeptidyl peptidase 1-like 



55 

 

 

Figure 2. 9 The genome landscape of false gene gains. 10X linked read 

pairs are shown above the PacBio CLR reads along with the depth 

coverage of the respective read data. a, The genome landscape of 

ZBTB11 and false ZBTB11-like (LOC100218125) genes in the 

previous zebra finch assembly. Most of the region of ZBTB11 was 

duplicated adjacent to itself in the previous assembly (highlighted as 
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orange and blue) and showed typical characteristics of false 

heterotype duplications. Black and red arrows represent assembly 

gap and read depth-gap, respectively. b, Corrected gene structure in 

the VGP assembly (grey). c, The genome landscape of ACAD10 and 

ALDH2 genes in the previous zebra finch assembly. Three exons of 

ALDH2 were inserted in ACAD10 by a false duplication (highlighted 

as orange and blue). Black arrows represent assembly gaps. d, 

Corrected gene structure in the VGP assembly. The extrinsic three 

exons from ALDH2 (grey) were not found in ACAD10 of the VGP 

assembly. e, The genome landscape of ADAMTS13 and ADAMTS-

like (LOC105760960) genes in the previous zebra finch assembly. 

The 5’ and 3’ exons of ADAMTS13 (highlighted as blue) were 

falsely duplicated to two ADAMTS13-like genes, which are 

assembled in the same scaffold (highlighted as orange) as 

ADAMTS13-like (LOC105760960) and a different scaffold 

(LOC101232819; Figure 2. 12). The homologous region of the 

LOC101232819 gene is marked by a red star. f, Corrected gene 

structure in the VGP assembly (grey). The homologous region of the 

LOC101232819 gene in the previous assembly is marked by a red 

star. g, The genome landscape of neurotrypsin (LOC100229828) and 

neurotrypsin-like genes (LOC100217566) in the previous zebra 



57 

 

finch assembly. The 3’ region of LOC100229828 (highlighted as 

blue) was falsely duplicated to a different small scaffold (~3 kbp; 

highlighted as orange), NW_002201465. h, Corrected region in the 

VGP assembly (highlighted as grey). The different colors and their 

heights in the read depth rows are the proportion of sites in reads 

with haplotype variants. 
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Figure 2. 10 Cases of false gene gain annotations in the prior 

hummingbird and platypus assemblies. Top row of each alignment 

shows the VGP 1.0 assembly structure and annotation. Bottom row 

shows the previous assembly structure and annotation. The red lines 

represent boundaries of the false duplicated exons in the prior 

assemblies that are correctly assembled in the VGP assembly. The 

blue boxes represent the correctly assembled exons in both the 

previous and VGP assemblies. The black bars represent the assembly 

gaps in the scaffolds. 
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Figure 2. 11 Genome landscape of platypus assembly false duplications 

using Sanger reads. a, HSF2 false duplication, b, ZP2-like false 

duplication. c, UPF2 false duplication. 10X linked reads are shown as 

paired read alignments above the Sanger read alignments, along with 

the depth coverage of the respective read data. ‘FD’ is the false 

duplication identified without Sanger reads. The region of false 

duplication that was supported by Sanger reads with under haploid 

level low read coverage is represented below ‘FD’. 
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Figure 2. 12 Additional findings for the genome false duplication 

landscape of the ADAMTS13-like gene. This segment of the 

ADAMTS13 gene is located in an unplaced scaffold of the previous 

zebra finch assembly. 10X linked reads are shown as paired read 

alignments above the PacBio CLR read alignments, along with the 

depth coverage of the respective read data. Black and red arrows 

represent an assembly gap and depth-gap, respectively. 
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Table 2. 4 False duplication of V1R family genes in the previous 

platypus assembly. Only V1R false duplications are listed. There 

were a total of 43 of 44 V1R genes with 100% of the gene sequence 

was a false duplication. 

Data 
No. 

Gene ID Gene symbol Total CDS 
length (bp) 

FD overlap 
length % 

1 100087537 ORNANAV1R3036 930 100% 

2 100086877 ORNANAV1R3135 957 100% 

3 100089239 ORNANAV1R3193 999 100% 

4 100087756 ORNANAV1R3218 960 100% 

5 100090986 ORNANAV1R3182 927 100% 

6 100083273 ORNANAV1R3250 972 100% 

7 100091981 ORNANAV1R3156 957 100% 

8 100092984 ORNANAV1R3205 930 100% 

9 100077569 ORNANAV1R3071 957 100% 

10 100084348 ORNANAV1R3274 930 100% 

11 100086320 ORNANAV1R3153 942 100% 

12 100089667 ORNANAV1R3162 933 100% 

13 100090040 ORNANAV1R3126 939 100% 

14 100090909 ORNANAV1R3201 975 100% 

15 100081224 ORNANAV1R3089 930 100% 

16 100091544 ORNANAV1R3075 900 100% 

17 100081065 ORNANAV1R3206 930 100% 

18 100087668 ORNANAV1R3178 930 100% 

19 100076831 ORNANAV1R3100 927 100% 

20 100090833 ORNANAV1R3121 927 100% 

21 100086008 ORNANAV1R3190 957 100% 

22 100084287 ORNANAV1R3273 918 100% 

23 100086540 ORNANAV1R3003 930 100% 

24 100310944 ORNANAV1R3040 930 100% 

25 100073803 ORNANAV1R3280 930 100% 

26 100079875 ORNANAV1R3044 957 6% 

27 100092791 ORNANAV1R3217 942 100% 

28 100090351 ORNANAV1R3221 940 100% 

29 100083451 ORNANAV1R3204 930 100% 

30 100083489 ORNANAV1R3224 918 100% 

31 100083601 ORNANAV1R3138 942 100% 

32 100074320 ORNANAV1R3117 927 100% 

33 100091869 ORNANAV1R3122 918 100% 

34 100310963 ORNANAV1R3087 930 100% 

35 100083242 ORNANAV1R3114 999 100% 

36 100090674 ORNANAV1R3226 927 100% 

37 100078712 ORNANAV1R3175 930 100% 

38 100085790 ORNANAV1R3108 948 100% 

39 100078109 ORNANAV1R3072 1065 100% 
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40 100088762 ORNANAV1R3199 927 100% 

41 100082524 ORNANAV1R3165 930 100% 

42 100091992 ORNANAV1R3061 933 100% 

43 100086733 ORNANAV1R3223 930 100% 

44 100089591 ORNANAV1R3185 996 100% 
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Among non-coding sequences, long terminal repeats (LTRs) 

sequences of the zebra finch were reported to have expanded 2.5 

times more than chicken (Consortium, 2004; Warren et al., 2010) and 

short interspersed nuclear elements (SINEs) were reported to be 

highly expanded in the platypus relative to other mammals (Warren 

et al., 2008). However, we found 18,757 copies of LTRs (21% of the 

total) were false duplications in the previous zebra finch assembly 

and 140,279 copies of SINEs (6.1% of the total) were false 

duplications in the previous platypus assembly (Table 2. 5). In the 

previous Anna’s hummingbird assembly, 3 to 5% of LTRs, SINEs, 

and long interspersed nuclear elements (LINEs) were false 

duplications (Table 2. 5).  

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?ystgIj
https://www.zotero.org/google-docs/?VbzRja
https://www.zotero.org/google-docs/?VbzRja
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Table 2. 5 False duplications on transposable elements in previous 

assemblies. Long terminal repeats (LTRs), short interspersed 

nuclear elements (SINEs), and long interspersed nuclear.  

Data 
No. 

Species Repeat 
family 

Repeat name Location Repeat 
length 
(bp) 

FD 
overlap 
length % 

1 Zebra 
finch 

LINE/CR1 CR1-J2_Pass NC_011474:2949508-2950059 552 100.0% 

2 Zebra 
finch 

LINE/CR1 CR1-J2_Pass NC_011467:69043373-
69043821 

449 21.4% 

3 Zebra 
finch 

LTR/ERVK TguLTRK1a NC_011469:58492613-
58492917 

305 92.8% 

4 Zebra 
finch 

LINE/CR1 CR1-Z2_Pass NW_002207001:1839-2060 222 100.0% 

5 Zebra 
finch 

LINE/CR1 CR1AVI NW_002217199:1-177 177 100.0% 

6 Zebra 
finch 

LTR/ERVK TguLTRK1a NW_002197418:2500-3038 539 100.0% 

7 Zebra 
finch 

LTR/ERVL TguERVL2a3_LTR NC_011483:3463508-3463810 303 22.8% 

8 Zebra 
finch 

LINE/CR1 CR1-L3A_Croc NW_002233786:2161-2332 172 100.0% 

9 Zebra 
finch 

LTR/ERVK TguLTRK1c NW_002233786:3136-3579 444 100.0% 

10 Zebra 
finch 

LTR/ERVK TguLTRK1c NW_002233786:3593-3698 106 100.0% 

11 Zebra 
finch 

LTR/ERV1 TguERV2_LTR1b NC_011467:31683607-
31684046 

440 100.0% 

12 Zebra 
finch 

LINE/L2 L2-1_CPB NC_011462:46730872-
46731461 

590 100.0% 

13 Zebra 
finch 

LINE/CR1 CR1-L1_Tgu NW_002229384:5029-5428 400 100.0% 

14 Zebra 
finch 

LTR/ERVL TguLTRL2a4 NC_011462:61492926-
61493759 

834 15.2% 

15 Zebra 
finch 

LTR/ERVK TguLTRK7a NW_002213436:1803-2192 390 100.0% 

16 Zebra 
finch 

LTR/ERVL TguERVL1b_LTR NC_011493:34601035-
34601442 

408 5.9% 

17 Zebra 
finch 

LINE/CR1 CR1-J1_Pass NW_002200403:3686-3788 103 100.0% 

18 Zebra 
finch 

LINE/CR1 CR1-Y2_Aves NW_002197746:2277-2464 188 100.0% 

19 Zebra 
finch 

LINE/CR1 CR1-Y2_Aves NW_002197746:2463-2619 157 100.0% 

20 Zebra 
finch 

LINE/CR1 CR1-Y2_Aves NW_002197746:2641-2769 129 100.0% 

Data only appears up to No. 20 from Ko. et al. (2022). 
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2.4.5 Specific categories of genes have higher levels of false 

duplications 

To determine if genes with false duplications belong to specific 

functional categories or are random in function, we performed GO 

enrichment analyses for the false gene lists of each species of the 

previous assemblies. We found 42 GO molecular function terms and 

3 KEGG pathways were significantly enriched in the platypus and 

zebra finch falsely duplicated genes (Figure 2. 13). Out of these, 

there were 8 GO terms enriched in both species, and all 8 were 

nucleotide binding functions. Even though the Anna’s hummingbird 

results did not yield GO categories at our statistical cut off (P < 0.05), 

the highest ranking categories also included nucleotide binding 

functions (Figure 2. 13). The differences in significance values 

between species were correlated with the number of false 

duplications found, where more genes lead to greater significance. 

This included ‘ATP-binding’ genes in both zebra finch and 

platypus, and 5 ‘ABC transporters’ (ATP-binding cassette 

transporters) in platypus and 8 in zebra finch as false duplications 

(Table 2. 6). We observed the ‘ATP-binding’ genes tend to show 

higher heterozygosity than the other genes (Figure 2. 14). The 

‘ABC transporters’ are known as the one of the largest and oldest 
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superfamilies, in diverse living organisms from prokaryotes to 

vertebrates, and play key roles in encoding membrane proteins that 

transport diverse metabolites (Dean and Annilo, 2005; Yan et al., 

2021). The extensive variation in this superfamily implies a high 

evolutionary divergence rate (Chen et al., 2010), leading to a higher 

prevalence in haplotype divergence (Skibinski and Ward, 1982).  

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?fd6llM
https://www.zotero.org/google-docs/?fd6llM
https://www.zotero.org/google-docs/?NyBna3
https://www.zotero.org/google-docs/?ZkjQr8
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Figure 2. 13 Gene ontology enrichment analysis of falsely duplicated 

genes. The gene ontology terms are shown in the first column. The 

number of falsely duplicated genes in the analysis is listed below the 

name of each species (n). The number of genes for each term (# 

genes) are represented in each species. The significant adjusted p-

values (P < 0.05) are highlighted. The KEGG pathway terms are 

shown in the bottom. 
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Table 2. 6 Gene ontology enrichment analysis for the false gene gains, 

false chimeric gains and false exon gains in previous assemblies. 

Adjusted p value was calculated by g:SCS 

Data 
No. 

Species Source Term name Term ID Adjusted 
p value 

Term 
size 

Query 
size 

Intersection 
size 

1 Zebra 
finch 

GO:BP cellular component 
organization or 
biogenesis 

GO:0071840 1.51E-11 6880 1125 551 

2 Zebra 
finch 

GO:BP cellular component 
organization 

GO:0016043 3.65E-11 6661 1125 535 

3 Zebra 
finch 

GO:MF ATP binding GO:0005524 1.89E-10 1500 1144 162 

4 Zebra 
finch 

GO:MF adenyl ribonucleotide 
binding 

GO:0032559 1.56E-09 1564 1144 164 

5 Zebra 
finch 

GO:MF adenyl nucleotide binding GO:0030554 3.07E-09 1577 1144 164 

6 Zebra 
finch 

GO:MF anion binding GO:0043168 3.96E-09 2413 1144 227 

7 Zebra 
finch 

GO:MF protein binding GO:0005515 9.89E-08 14767 1144 985 

8 Zebra 
finch 

GO:BP localization GO:0051179 1.09E-07 6938 1125 535 

9 Zebra 
finch 

GO:MF nucleotide binding GO:0000166 1.45E-07 2176 1144 203 

10 Zebra 
finch 

GO:MF nucleoside phosphate 
binding 

GO:1901265 1.51E-07 2177 1144 203 

11 Zebra 
finch 

GO:MF small molecule binding GO:0036094 1.0023E-
06 

2516 1144 224 

12 Zebra 
finch 

GO:MF purine ribonucleoside 
triphosphate binding 

GO:0035639 2.9305E-
06 

1846 1144 173 

13 Zebra 
finch 

GO:BP cell projection 
organization 

GO:0030030 4.2519E-
06 

1636 1125 161 

14 Zebra 
finch 

GO:MF catalytic activity GO:0003824 5.0178E-
06 

5682 1144 435 

15 Zebra 
finch 

GO:BP cell morphogenesis GO:0000902 5.1474E-
06 

1045 1125 114 

16 Zebra 
finch 

GO:BP cellular localization GO:0051641 6.3623E-
06 

3519 1125 297 

17 Zebra 
finch 

GO:BP establishment of 
localization 

GO:0051234 6.779E-
06 

5364 1125 422 

18 Zebra 
finch 

GO:BP plasma membrane 
bounded cell projection 
organization 

GO:0120036 7.2484E-
06 

1596 1125 157 

19 Zebra 
finch 

GO:MF purine ribonucleotide 
binding 

GO:0032555 9.5292E-
06 

1917 1144 176 

20 Zebra 
finch 

GO:MF purine nucleotide binding GO:0017076 1.004E-
05 

1932 1144 177 

Data only appears up to No. 20 from Ko. et al. (2022). Intersected 

genes were omitted in this table. 
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Figure 2. 14 Heterozygosity of ATP-binding genes with or without 

false duplications. ‘Control’ genes were randomly chosen for each 

species without ATP-binding genes. Box plots show median, first 

and third quartiles, range, and outliers as dots. One-sided Wilcoxon 

rank sum test was used to calculate significance between 

heterozygosity levels (***P < 0.001, **P < 0.01, *P < 0.05; one-

sided).  
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2.4.6 False duplication and annotation errors remaining in 

VGP assemblies 

Although the amount of false duplications in the VGP 

assemblies was drastically lower than previous assemblies, here we 

found 74 to 119 scaffolds included false duplications, of which 5 to 

34 (3-11% of the total number of scaffolds) were complete scaffold 

duplications (Figure 2. 15). From this error, we observed 1,175, 119, 

and 94 genes of the zebra finch, hummingbird and platypus were total 

or partial false duplications in the VGP v1.0 assemblies (Figure 2. 8). 

False duplications were observed within both named chromosomes 

and unplaced scaffolds, with no discernable patterns in terms of 

chromosome (Figure 2. 16a, c, e). However, for some small unplaced 

scaffolds (< 50 kbp) the proportion of their scaffolds as false 

duplications were large, with some cases where the entire scaffold 

was a false duplication (Figure 2. 16b, d, f). This indicates that for 

the VGP assemblies, some unplaced scaffolds are simply the other 

haplotype or a homotype duplication the length of a raw read (1 to 

50 kbp) with sequence errors. 

We manually verified examples, and found some of the same 

type of errors seen in the previous assemblies, except the 

duplications were larger, presumably due to the longer read lengths 
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and long optical maps of the VGP assemblies. An example was a false 

gene gain of NPNT, called NPNT-like (LOC100218132), on 

chromosome 4, named as such by the NCBI annotation pipeline 

applied to the VGP zebra finch 1.0 assembly (Figure 2. 17). However, 

the false duplication structure caused 4 missing exons in the 5’ 

region of NPNT and 3 missing exons in the 3’ region of NPNT-like. 

Characteristic of the previous assembly, the false duplications were 

separated by an assembly gap, with discordant 10X linked reads and 

at haploid depth coverage. Other examples included those that 

contained non-coding sequence (Figure 2. 18a), and those that 

contained false chimeric PacBio palindromic sequence the length or 

raw reads (7-17 kbp), both with 10X linked read depth gaps (Figure 

2. 18b, c). A case of a large duplication was on zebra finch 

chromosome 29, where 4 segments adding up to ~1.9 Mbp total were 

classified as false duplications using our criterion, making up ~45% 

of the assembled 4.2 Mbp microchromosome (Figure 2. 17b). 

To verify whether many of these false duplications are due to 

false haplotype separation, we examined a VGP trio based assembly 

of another zebra finch individual (Rhie et al., 2021). This trio based 

approach was recently developed with the goal of using parental short 

reads to separate out haplotype sequences of the child long reads, 

https://www.zotero.org/google-docs/?49JAtp
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before contig assembly and scaffolding (Koren et al., 2018; Rhie et 

al., 2021). We found that both the local NPNT (Figure 2. 17a) and the 

large ~1.9 Mbp of duplications of chromosome 29 were prevented in 

the trio-based assembly (Figure 2. 17c).  

 

 

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?japWFz
https://www.zotero.org/google-docs/?japWFz
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Figure 2. 15 False duplications left in VGP assemblies. The left side 

of each graph shows the scaffold length of named chromosomes (pink) 

and unplaced scaffolds (turquoise). The right side shows the 

proportion of each scaffold that is falsely duplicated either within the 

same or different scaffolds, with color intensity indicating 0% (in red) 

to 100% (in black) falsely duplicated. Arrow: for the platypus, 

scaffolds < 40 kbp were concatenated into the one scaffold, where 
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we found 20 scaffolds were completely duplicated among them.  
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Figure 2. 16 Chromosomal location of false duplications in the VGP 

assemblies. False duplications are marked as small (black, <1kbp) or 

large (≥ 1kbp, red) bars, in each named chromosome (a, c, e) or 
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unplaced scaffold (b, c, d) for the zebra finch (a, b), hummingbird (c, 

d) and platypus (e, f). 
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Figure 2. 17 False duplications and their correction in the VGP zebra 

finch assembly. a, The NPNT gene in the VGP zebra finch v1.0 

assembly bTaeGut1.0 (first release) has the NPNT-like gene 

adjacent to it with an assembly gap (AG) and discordant 10X linked 

reads in this region. In contrast, the trio-based assembly 

(bTaeGut2.pat.W) had no NPNT-like gene, suggesting a false gene 

gain in bTaeGut1.0. The false duplication we found in this region was 

collapsed by purge_dups, and the falsely segmented gene structure 

was recovered. The VGP assembly v1.7 pipeline with purge_dups 

conducted before scaffolding prevented this false duplication (Figure 
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2. 19). b, Dot plot of alignment showing large ~1.9 Mbp false 

duplication of chromosome 29 (apricot) in the zebra finch VGP v1.0 

pipeline assembly, bTaeGut1.0. c, The large ~1.9 Mbp of duplications 

of chromosome 29 in bTaeGut1.0 were prevented in the trio-based 

assembly. d, The 1.8 Mbp duplication was prevented with purging 

pre-scaffolding in bTaeGut1.4 using the VGP v1.7 pipeline. The 

boundaries of the scaffolds are represented as grey dashed lines. 
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Figure 2. 18 Example cases of false duplications in the VGP assemblies. 
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a, A false duplicated region on zebra finch chromosome 6, ~7 kbp 

long, with an assembly gap and discordant 10X linked reads around 

the duplication (red box). 10X linked reads are shown as paired read 

alignments above the PacBio CLR read alignments, along with the 

depth coverage of the respective read data. b, False duplication in 

zebra finch scaffold NW_022045321 caused by a PacBio sequence 

read chimera. The ~10 kbp of palindromic sequence was duplicated 

without an assembly gap. But this region includes a sequence depth-

gap with 10X linked reads (black arrow), signifying sequencing 

artifacts connecting the two regions. The symmetric reduction of 

insert sizes of 10X linked reads signifies the duplication of 

palindromic sequence. Near the center of the duplication, the six 

PacBio reads containing the chimeric sequences overlapped 10X 

depth-gap connecting the two duplicated sequences (red box). c, A 

duplicated region on chromosome 17 of the platypus, similar to the 

chimeric type in (b) except the PacBio read depth has a more pyramid 

structure in the palindromic duplicated regions. 
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We sought a means to further prevent false duplications in 

non-trio based assemblies, as the individuals used in this study do 

not have available parental data. The VGP assemblies used in this 

study were produced with the VGP v1.0 pipeline (Rhie et al., 2021), 

where heterotype duplications were removed by the purge_haplotigs 

algorithm (Roach et al., 2018) after scaffolding. In addition, many 

false duplications were detected and removed during manual curation 

(Rhie et al., 2021). As done for some later VGP assemblies of other 

species (Rhie et al., 2021), but not directly tested on the same 

individual, we reassembled the zebra finch individual used for the 

v1.0 assembly here, but performed purge_dups before scaffolding 

contigs in the VGP v1.6 pipeline rather than afterwards in the VGP 

v1.0 pipeline. We also added a new tool called Merfin, to polish the 

assembly with long reads (https://github.com/arangrhie/merfin), a 

step that does not influence false duplications but improves base level 

accuracy. We called the update the VGP v1.7 pipeline. After 

reassembly, the NPNT and other false duplications were prevented 

(Figure 2. 19; Table 2. 7). The 1.8 Mbp of false duplications on 

chromosome 29 were prevented, resulting in a smaller chromosome 

29 consistent with removing false duplications manually (Figure 2. 

17d). Overall, we observed a reduction from 1,175 genes to 176 

https://www.zotero.org/google-docs/?7OVpWk
https://www.zotero.org/google-docs/?2RjKZq
https://www.zotero.org/google-docs/?nWzgd6
https://www.zotero.org/google-docs/?osEO0x
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genes with false duplications (Figure 2. 8g), and reduction of 16 

entire false duplicated scaffolds to 5 (Table 2. 7). These findings 

show that false duplications are still prevalent in some of the best 

assemblies, but have potential to be removed with improved 

haplotype phasing. 
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Figure 2. 19 Correction of the NPNT gene in VGP v1.7 pipeline 

assembly. Alignment dot-plot shows that the region with six 

duplicated exons of the NPNT gene in VGP v1.0 pipeline assembly 

(bTaeGut1.0) was prevented in the VGP v1.7 pipeline assembly 

(bTaeGut1.4). The blue bars represent exons of NPNT and NPNT-

like genes in bTaeGut1.0.  
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Table 2. 7 Reduction of false duplications in the reassembled 

bTaeGut1.4 zebra finch genome with the VGP v1.7 pipeline. Amount 

of uncorrected false duplication in bTaeGut1.4 was calculated by 

ΣHv1.7 - (ΣHv1.0 - FD), where the H is the length of homologous 

sequence of the false duplication in each assembly (v1.7 and v1.0 

pipelines). A negative value in column G represents the lack of 

homologous sequences than expected, after false duplication 

correction (ΣHv1.0 - FD). 

Chromosome 
Name 

Scaffold 
Name 

Total length 
of Zebra 
finch VGP 
v1.0 

FD lenth 
in Zebra 
finch 
VGP v1.0 

FD 
length % 
of total 
length 

uncorrected 
FDa 

Uncorrected FD % 
in Zebra finch 
VGP v1.7 

1 NC_044211.1 1.15E+08 728796 0.6% 125362 0.1% 

1A NC_044212.1 70430603 141131 0.2% 141537 0.2% 

2 NC_044213.1 1.51E+08 763794 0.5% 164203 0.1% 

3 NC_044214.1 1.13E+08 559728 0.5% 43356 0.0% 

4 NC_044215.1 71552918 650200 0.9% 466 0.0% 

4A NC_044216.1 19824313 438158 2.2% 2371 0.0% 

5 NC_044217.1 62005366 597833 1.0% 103403 0.2% 

6 NC_044218.1 35665034 797224 2.2% 32206 0.1% 

7 NC_044219.1 38060014 54270 0.1% 53335 0.1% 

8 NC_044220.1 32610028 1742655 5.3% 71663 0.2% 

9 NC_044221.1 25575665 111298 0.4% -13846 -0.1% 

10 NC_044222.1 22017011 1790758 8.1% 23743 0.1% 

11 NC_044223.1 21012354 264285 1.3% 26823 0.1% 

12 NC_044224.1 20435652 63029 0.3% 864 0.0% 

13 NC_044225.1 18281482 304821 1.7% 5098 0.0% 

14 NC_044226.1 16673467 420675 2.5% 1021 0.0% 

15 NC_044227.1 14326562 581515 4.1% 1382 0.0% 

16 NC_044228.1 1219933 49980 4.1% 8 0.0% 

17 NC_044229.1 11687202 585838 5.0% 8200 0.1% 

18 NC_044230.1 11044519 26319 0.2% 25595 0.2% 

a ΣHv1.7 - (ΣHv1.0 - FD) 

Data only appears up to 20 rows from Ko. et al. (2022). 
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2.4.7 Specific partitions of the genome with greater false 

duplications 

Our above analyses focused on protein coding genes. Here we 

calculated the proportion of each genomic partition that was falsely 

duplicated. We found that in the previous and VGP assemblies, the 

intergenic regions had higher than expected false duplications based 

on the intergenic proportion of the genome, the introns lower than 

expected, and the exons no different than expected (Figure 2. 20a 

and Figure 2. 21a,c). An exception was the VGP zebra finch assembly, 

where the introns and exons were higher than expected (Figure 2. 

20a). Among repetitive elements (LINEs, SINEs, LTRs, DNA, RNA, 

satellites,...), there were smaller differences relative to the expected 

proportions, with satellite repeats showing the highest above 

expected in some cases (Figure 2. 20 and Figure 2. 21). These 

findings are consistent with the common knowledge that intergenic 

regions diverge at a greater rate than genic regions, thus having 

higher heterozygosity. We were surprised to find that introns have a 

lower proportion relative to exons, given their higher divergence as 

well. 
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Figure 2. 20 Proportions of genomic partitions represented among the 

falsely duplicated regions. a, Proportion of false duplications among 

exon (Ex), intron (Int), intergenic (Inter) regions. b, Proportion of 

false duplications among different types of repetitive elements. Left 

panels show proportions among the false duplicated sequences; Right 

panels show proportions of all sequence types relative to the whole 

genome size. 
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Figure 2. 21 Difference of proportion of each genomic partition 

containing false duplications relative to expected frequency. a and b, 

Relative proportions of false duplications in exon, intron, intergenic, 

and repeat regions in the previous assemblies. c and d, Relative 

values in the VGP assemblies. Error bars are standard error (n = 3 

species each). The difference of relative proportion between 
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genomic partitions was tested by one-way analysis of variance 

(ANOVA).  
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2.4.8 Assembly methods to minimize false duplication 

We further investigated the false duplication rates generated 

by different assembly algorithms and steps that went into testing and 

developing the VGP assemblies, using the hummingbird data (Rhie et 

al., 2021). We calculated the proportion of k-mer duplications as a 

proxy for false duplications. As expected, the fully scaffolded, 

haplotype purged assembly had the least k-mer duplications (0.6% 

of the genome; Table 2. 8). For the specific steps, PacBio CLR 

assembly with FALCON-Unzip showed < 0.7% k-mer duplication 

(Table 2. 8). FALCON alone on PacBio CLR reads resulted in more 

k-mer duplications (1.4%). The Canu contig assembler on CLR 

generated the most k-mer duplications (5.4%). A hybrid Canu 

assembly of PacBio and Oxford Nanopore reads showed better 

performance (2.1%) than Canu alone. This suggests that although 

both FALCON and Canu are diploid-aware assemblers, the haplotype 

resolving algorithm in FALCON-Unzip has a greater advantage in 

preventing false duplications. The Illumina short read assemblies 

generated with the 10X Genomics linked reads Supernova2.2 

assembler and paired end reads with SOAPdenovo produced high k-

mer duplications of 10.1% and 5.2%, respectively, even though both 

algorithms attempt to phase haplotypes (Luo et al., 2012; Weisenfeld 

https://www.zotero.org/google-docs/?OUbtpW
https://www.zotero.org/google-docs/?OUbtpW
https://www.zotero.org/google-docs/?S56a8z
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et al., 2017). In general, the scaffolding steps in the VGP pipeline 

with 10X linked reads, optical mapping, and Hi-C reads did not 

suppress false duplications, whereas purge_haplotigs and purge_dups 

were more effective to eliminate false duplications before scaffolding. 

False duplications of Bionano maps could also be introduced. But, 

most false duplications occur in the contigging step, which are then 

they are propagated in the scaffolding steps. Therefore, supporting 

our prior conclusions (Rhie et al., 2021), there is a need for the 

haplotype resolving early in the assembly process, in contigging step. 

 We also further investigated the presence of false duplications 

to the other recent assemblies produced originally outside of the VGP 

group (Figure 2. 22). We analyzed the emu, which included one 

assembly generated with Illumina short reads (ASM1339679v1) 

(Feng et al., 2020) and another generated with PacBio CLR reads, 

and scaffolded with 10X and Hi-C reads (ZJU1.0) (Liu et al., 2021). 

Surprisingly, we found more false duplications in recent long-read 

assembly made by FALCON-Unzip and purge_haplotigs (14Mbp; 1.1% 

of the assembly) than the short-read one (1Mbp; 0.1% of the 

assembly) made by AllPaths-LG (Gnerre et al., 2011). K-mer 

profiles of these assemblies show that the heterozygosity is not 

significantly different between the individuals (Figure 2. 23), and thus 

https://www.zotero.org/google-docs/?S56a8z
https://www.zotero.org/google-docs/?vRQ1PB
https://www.zotero.org/google-docs/?eBx9zo
https://www.zotero.org/google-docs/?87HgCa
https://www.zotero.org/google-docs/?3eeFkg
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this can not be the explanation for the differences in the assemblies. 

We know that purge_haplotigs only removes false duplications that 

are on different contigs, whereas purge_dups also removes false 

duplications within contigs/scaffolds. We are working with the 

developers of the emu assembly to clean up these false duplications 

potentially with purge_dups. Overall these findings show that a 

combination of assembly methods and level of heterozygosity are key 

factors contributing to and preventing false duplications. 
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Table 2. 8 Proportion of k-mer duplication measured for each 

assembly strategy. The assemblies of Anna's hummingbird produced 

for benchmarking in Rhie et al. (2021) were analyzed. Assembly 

method represents the type of sequencing platform used including 

single or mixed data. PacBio continuous long reads (CLR), 10X 

Genomics linked read (10X), Bionano optical mapping (Opt3), 

Arima-Hi-C (Hi-C) and Oxford Nanopore technology (ONT) were 

used for benchmarking the assemblies. Purge_haplotigs was run on 

the primary contigs for reducing false duplication. The k-mers 

duplication was calculated by 'false_duplications.sh' in Merqury (Rhie 

et al. 2020. 

assembly method assembler coverage 
(x)* 

# 
contigs 

k-mer 
duplication 
(%) 

CLR + 10X+ Opt3 + Hi-C 
(v1.0) + purge_haplotigs 

FALCON-Unzip + Scaff10x2.0 + 
Solve3.2.1 + Salsa2.2 

CLR (69x) 585 0.6 

CLR FALCON-Unzip CLR (69x) 680 0.7 

CLR FALCON CLR (69x) 2,091 1.4 

CLR + ONT Canu CLR (69x); 
ONT (26x) 

1,461 2.1 

CLR Canu CLR (69x) 2,600 5.4 

10X Supernova2.2 10X (50x) 36,557 10.1 

SR Soap de novo SR (155x)* 124,820 5.2 

*SRR943143 ~ SRR943153 (Zhang et al. 2014) 
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Figure 2. 22 The genome landscape of false duplications in emu 

assemblies. a and b, Duplicated region in the previous short-read 

based assembly. c and d, Duplicated region in the recent long-read 
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based assembly. 10X linked reads and Illumina reads are shown as 

paired read alignments above the duplication region, along with the 

depth coverage of the respective read data. AG, assembly gap. DG, 

depth-gap.  
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Figure 2. 23 K-mer profiling for emu assemblies. a, Previous short-

read based assembly. b, Recent long-read based assembly. From the 

sequences of reads (Illumina shotgun for previous, 10X linked read 

for recent) and assemblies, k-mer multiplicity was calculated. The 

x-axis is the k-mer multiplicity calculated from the reads, and the 

numbers in the box represent the k-mer multiplicity found in the 

primary pseudo-haplotype assembly. K-mer multiplicity of 2 copies 

or higher under the area of single copies (red) are overly 

represented as false duplications. 
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2.5 Discussion 

In this study, we found that the primary characteristics of false 

duplications include: 1) half depth of read coverage for heterotype 

duplications, or very low depth for homotype duplications; 2) 

presence of gaps between duplicated pairs on the same scaffold; 3) 

discordant or spanned linked read pairs used for scaffolding, 

whenever 10X or other types of paired reads of a DNA fragment were 

used; and 4) 1 copy k-mers for heterotype duplications. Some of 

these characteristics have been reported in other studies prior to the 

VGP effort (Kelley and Salzberg, 2010; Rhie et al., 2021; Roach et 

al., 2018; Schneider et al., 2017), but not in a systematic manner of 

comparing previous and new assemblies that attempted to remove 

false duplications as reported here. The false duplications were 

highest in the previous Sanger-based assemblies and lowest in the 

VGP PacBio-based long-read assemblies that purged them before 

scaffolding or in a VGP trio PacBio-based long-read assembly that 

sorted haplotype reads before contig and scaffold generation. One 

major source of the false duplications was a near doubling in the level 

of heterozygosity in the false duplicated regions compared to the rest 

of the genome. Further, the species with the highest heterozygosity, 

the zebra finch, had the highest proportion of false duplications in the 

https://www.zotero.org/google-docs/?CXAGfj
https://www.zotero.org/google-docs/?CXAGfj
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previous and VGP assemblies. Another major source was sequencing 

error, in both previous and VGP assemblies. 

These false duplications led to mis-annotations as false gene, 

exon, and chimeric gene gains. When the duplication is created, the 

inserted allelic sequence results in annotation of two similar genes or 

one original and several fragmented genes. These types of false gains 

were made in genes involved in important phenotypes, leading to 

misinterpretations in downstream analysis (Pryszcz and Gabaldón, 

2016). For example, false gene gains reduce one-to-one orthologs, 

which are used in comparative genomics and phylogeny. When false 

gains occur in an expanded gene family of closely related genes, this 

leads to false positive cases of gene family expansions and gene 

duplications as we report here, others previously (Han et al., 2013), 

and in a companion study on the oxytocin family of receptors 

(Theofanopoulou et al., n.d., p.). For phylogeny, these duplications 

create false orthologs or indels in genes that weaken gene- and 

species-inferred relationships. This can be made worse with 

multiple false duplications of genes with closely related paralogs, 

such as the overestimated LTR expansion in the zebra finch 

(Consortium, 2004; Warren et al., 2010), and ATP-binding gene 

family across species. Our findings indicate that caution should be 

https://www.zotero.org/google-docs/?2QQQq6
https://www.zotero.org/google-docs/?2QQQq6
https://www.zotero.org/google-docs/?gMnZvo
https://www.zotero.org/google-docs/?pOKJ6m
https://www.zotero.org/google-docs/?ztXx9t
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taken when interpreting gene family expansion in assemblies 

generated without haplotype phasing and checking for false 

duplications.  

Our findings that heterotype false duplications are much higher 

than homotype, indicates that proper haplotype separation is still a 

current problem in genome assembly, even when they have been 

greatly reduced in the VGP assemblies. The VGP 1.6 trio pipeline 

removes more heterotype false duplications (Rhie et al., 2021), but 

it requires parental sequence data to sort haplotypes, and parents will 

not be available for all individuals. Scanning regions around gaps with 

reads and k-mer profiling, and discordantly mapped Illumina linked 

short reads or disconnected PacBio long reads should be helpful in 

identifying false duplications in any assembly. However, the best way 

to prevent these we propose would be to improve haplotype phasing 

of raw reads without parental data, remove reads with sequence 

errors before assembly, and generate complete diploid genome 

assemblies. 

The VGP group is constantly updating its sequencing and 

assembly pipeline to create a genuine blueprint for assembly of 

complex and large genomes as found among vertebrates. Doing so 

requires in depth evaluation of assemblies, as done in this study. In 

https://www.zotero.org/google-docs/?8FZ8Ef
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the VGP assembly pipeline, the CLR data type of PacBio sequencing 

was recently replaced in 2021-2022 with the closed circular 

sequence (CCS) high fidelity (HiFi) read data type (Rhie et al., 2021; 

Wenger et al., 2019), which reduces the base-pair error rate without 

the need for short-read Illumina polishing. We expect these new HiFi 

reads to also reduce the false duplications due to sequence errors, 

and it may allow better separation of haplotypes; promising 

alternatives include recent assemblers that use Hi-C data to phase 

haplotypes before or during contig assembly, FALCON Phase 

(Kronenberg et al., 2021) and hifiasm (Hi-C) (Cheng et al., 2021). 

The HiFi sequence read lengths, however, are currently ~20% 

shorter (15-20 kbp) than CLR, and thus may lead to less contiguity 

across real duplications longer than the read lengths. Our findings 

emphasize that creating haplotype-phased reference genome 

assemblies free of false duplications should be a fundamental 

requirement of future genomics and biology. 

 

 

 

 

 

https://www.zotero.org/google-docs/?kXVsI2
https://www.zotero.org/google-docs/?kXVsI2
https://www.zotero.org/google-docs/?IggKc7
https://www.zotero.org/google-docs/?EfIiLZ
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This chapter will be submitted to Nature Methods 

as a partial fulfillment of Byung June Ko’s Ph.D program. 

 

 

 

 

 

 

 

Chapter 3. Automated HiFi-Based Genome 

Assemblies Reveal Lower Assembly Errors 

than Current Long-Read-Based Assembly. 
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3.1 Abstract 

Accessible, fully automated, and validated assembly pipelines can 

provide availability and efficiency for individual researchers or 

small laboratories in genome assembly. The Galaxy Project has 

implemented a web-based, open assembly pipeline based on PacBio 

High-Fidelity (HiFi) reads through collaboration with the 

Vertebrate Genome Project. However, the assembly methods in the 

pipeline have not been validated in terms of the extent to which HiFi 

reads can correct errors compared to PacBio CLR reads.  As a part 

of collaboration with the projects, I quantified potential assembly 

errors using k-mer profiling and whole-genome alignment for 

assemblies generated from an individual zebra finch using CLR and 

HiFi reads. The K* metric revealed that HiFi-based assemblies had 

fewer errors compared to CLR assemblies. Furthermore, HiFi-

based assemblies exhibited fewer structural errors such as false 

duplications and losses compared to CLR assembly. Among the 

different assembly modes, the HiFi-Trio mode produced the most 

stable assembly with respect to false duplication errors, while the 

HiFi-HiC mode resulted in the lowest amount of false losses. I 

propose that the optimal method is the HiFi-Trio mode, and the 
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HiFi-HiC mode is also effective when trio data is unavailable in the 

VGP assembly pipeline of the Galaxy Project. 
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3.2 Introduction 

To establish high-quality reference genome assemblies, a 

well-constructed automatic computational pipeline has been 

recognized as one of the most important foundations for recent 

mega-scale genome projects (Giani et al., 2020; Lewin et al., 2022; 

Nurk et al., 2022; Rhie et al., 2021). For optimization, a variety of 

sequencing technologies and assembly algorithms have been tested 

(Bradnam et al., 2013; Giani et al., 2020; Mc Cartney et al., 2022). 

Recently, a groundbreaking study guiding the future direction of 

genome assembly was published. (Giani et al., 2020; Lewin et al., 

2022; Nurk et al., 2022; Rhie et al., 2021) developed an efficient 

and stable assembly pipeline for vertebrate species by 

benchmarking various short-read and long-read platforms and 

assembly algorithms together. The authors suggested that using 

PacBio continuous long reads (CLR) in diploid genome assembly 

offers numerous advantages over short reads, as it helps avoid both 

structural assembly errors and missing sequences. However, the 

base accuracy of this technology is much lower (<99%) compared 

to short reads (Carneiro et al., 2012; Giani et al., 2020). It incurs 

additional costs for producing short reads separately and requires 

time for polishing long-read sequences. 

https://www.zotero.org/google-docs/?lYnKTE
https://www.zotero.org/google-docs/?lYnKTE
https://www.zotero.org/google-docs/?QvJBqo
https://www.zotero.org/google-docs/?yqpGO4
https://www.zotero.org/google-docs/?yqpGO4
https://www.zotero.org/google-docs/?uwfgKq
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To overcome the drawbacks of CLR reads, PacBio High-

Fidelity sequencing technology (HiFi) utilizing circular consensus 

sequencing (CCS) has been developed (Wenger et al., 2019). The 

base accuracy of HiFi reads is significantly higher (99.9%) than 

that of CLR reads, eliminating the need for additional short-read 

production. Consequently, recent genome projects have been 

transitioning from CLR to HiFi for assembly construction (Cheng et 

al., 2021; Nurk et al., 2022). The Galaxy Project (The Galaxy 

Community, 2022), a web-based platform for bioinformatic 

analysis, in collaboration with the Vertebrate Genome Project 

(VGP), aims to create a fully automatic and scalable genome 

assembly platform with an intuitive web-based interface for 

widespread use (https://galaxyproject.org/). Although a recent 

HiFi-based VGP assembly pipeline has been integrated into the 

Galaxy Project recently, there has been no systematic examination 

to determine whether this automated HiFi-based assembly has 

advantages over previous CLR assembly.  

As part of the collaboration between the Galaxy Project and 

VGP, I investigated the extent of false duplications (Ko et al., 2022) 

and loss (Kim et al., 2022) errors between CLR assembly 

generated by the previous VGP pipeline and automated HiFi 

https://www.zotero.org/google-docs/?AIo7TR
https://www.zotero.org/google-docs/?5urYhR
https://www.zotero.org/google-docs/?5urYhR
https://www.zotero.org/google-docs/?NMNDcx
https://www.zotero.org/google-docs/?NMNDcx
https://www.zotero.org/google-docs/?517rDP
https://www.zotero.org/google-docs/?baQFGL
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assemblies generated by the recent VGP pipeline in the Galaxy 

Project. All HiFi assemblies were produced using Hifiasm (Cheng et 

al., 2021), but with different data and methods, as described below: 

1) standard method of Hifiasm using HiFi reads exclusively, 2) Hi-

C integration of Hifiasm using both HiFi reads and Hi-C reads 

(Jarvis et al., 2022), and 3) Trio binning (Koren et al., 2018) of 

Hifiasm using fully phased HiFi reads based on maternal and 

paternal k-mers. In this study, I propose the best strategy to 

mitigate structural assembly errors and provide alternatives when 

the optimal strategy is not feasible, based on the quantification of 

assembly errors using genome-wide k-mer profiling and whole-

genome alignment.  

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?BA0uGn
https://www.zotero.org/google-docs/?BA0uGn
https://www.zotero.org/google-docs/?IPeokP
https://www.zotero.org/google-docs/?FSQLXb
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3.3 Materials and Methods 

3.3.1 Used data 

For the comparison, I used the three primary assemblies (CLR, 

HiFi-only, and HiFi-HiC mode) and one rebinned paternal assembly 

(HiFi-Trio mode) of zebra finch made immediately after contigging 

and purging 

(https://genomeark.s3.amazonaws.com/index.html?prefix=species/

Taeniopygia_guttata/bTaeGut2/). All assemblies were masked by 

repeatmasker (https://www.repeatmasker.org/; with default engine 

and commands “-species 'Taeniopygia guttata' -xsmall -s -no_is 

-cutoff 255 -frag 20000" before genome alignment.  

 

3.3.2 Read mapping and coverage calculation 

The reads generated for the assemblies by Pacbio CLR, HiFi 

and 10X platforms were mapped to the all genome assemblies using 

Minimap2 (Li, 2018) and EMA mapper (Shajii et al., 2018). For 

PacBio CLR and HiFi read mapping with Minimap2, the parameters 

"-ax map-pb" and "-ax map-hifi" were used, respectively. The 

paired-end 10X reads with barcodes were mapped using default 

https://www.zotero.org/google-docs/?eJG5Q5
https://www.zotero.org/google-docs/?kvxE9X
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options of EMA (Shajii et al., 2018), while the reads without barcodes 

were mapped using BWA (Li and Durbin, 2009) with parameters "-

p -M -R ‘@RG\tID:rg1\tSM:sample1’", following the guidelines in 

EMA. Sambamba was used to merge the intermediate BAM files 

produced during the read mapping step, and Samtools (Li et al., 2009) 

was used for sorting the BAM files and calculating read coverages 

for each genomic position. 

 

3.3.3 K-mer counting and K* calculation 

To calculate k-mer duplications for each assembly, I 

employed a script "false_duplication.sh" in Merqury (Rhie et al., 

2020), using the optimal k-mer size of 20 for the zebra finch genome. 

K-mer collapse and expansion were calculated by Merfin (Formenti 

et al., 2022) with the same k-mer size. For the k-mer collapse and 

expansion calculations of diploid assembly, I included the alternate 

haploid and maternal zebra finch sequences generated with each 

primary and paternal assembly used in the comparison. For the 

optimal K* calculation, I incorporated the "lookup_table" produced by 

GenomeScope2 (Ranallo-Benavidez et al., 2020) with the 10X reads. 

In this analysis, I also included the current reference genome of zebra 

https://www.zotero.org/google-docs/?vlgNkZ
https://www.zotero.org/google-docs/?YVrG89
https://www.zotero.org/google-docs/?KZRSbV
https://www.zotero.org/google-docs/?vQoDTu
https://www.zotero.org/google-docs/?vQoDTu
https://www.zotero.org/google-docs/?XgHRHu
https://www.zotero.org/google-docs/?XgHRHu
https://www.zotero.org/google-docs/?2f5DYn
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finch assembled from CLR reads (bTaeGut1.4; GCF_003957565.2). 

K-mer duplications and the completeness of default-mode and 

rebinned trio assemblies were estimated from both paternal and 

maternal assemblies without purging, using Merqury (Rhie et al., 

2020) along with the 10X reads. 

 

3.3.4 False duplication and loss identification 

I identified false duplications and losses by performing whole-

genome alignment with an estimation of the number of paralogs in 

alignment blocks. Firstly, I aligned the three primary assemblies 

(CLR, HiFi, and HiFi-HiC mode) and the paternal assembly (HiFi-

Trio mode) of the zebra finch using the Cactus alignment tool (Paten 

et al., 2011). Then, I extracted homologous regions to a readable 

multiple alignment format using Hal (Hickey et al., 2013). Since all 

assemblies were derived from the same sample, the number of 

paralogs in each assembly within each alignment block should be the 

same, except in cases where false duplications or losses occurred on 

the homologs.  

For each alignment block that displayed a discrepancy in the 

number of paralogs between the assemblies, I calculated the 

https://www.zotero.org/google-docs/?Xbsohx
https://www.zotero.org/google-docs/?Xbsohx
https://www.zotero.org/google-docs/?vH7Pep
https://www.zotero.org/google-docs/?vH7Pep
https://www.zotero.org/google-docs/?XtaK1J
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likelihood of each paralog model (i.e., the number of paralogous 

sequences present in the alignment block) based on the summed read 

coverage of the PacBio CLR, HiFi, and 10X reads. The likelihood of 

each model was calculated as L(θ | x) =  𝛴𝑙𝑛 
1

𝜎√2𝜋
𝑒𝑥𝑝(−

(𝑥−𝜇)2

2𝜎2 ), where 

x is the sum of mean depth of each homologous sequences in an 

alignment block from an assembly, and 𝜇 and 𝜎 are the parameters of 

depth distribution estimated from each number of paralogs models. 

where x represents the sum of the mean depth of each homologous 

sequence in an alignment block from an assembly, and and are the 

parameters of the depth distribution estimated from each paralog 

model. To estimate the model parameters 𝜇 and 𝜎, I calculated the 

mean and variance of the normal distribution from the depth 

coverages of genomic regions where there are no multi-copy k-

mers for the model with zero paralogs. I then multiplied the mean by 

an integer for each model (e.g., multiplying the mean by 2 for the 1-

paralog model). I assumed that the variance is the same for all models. 

False duplications and losses of each assembly were identified 

when an assembly had more or fewer paralogs than the best model 

determined from the likelihood estimation in each alignment block. To 

reduce noise in the identified false duplications, I filtered out cases 

where false duplications occupied less than 50% of the contig length 
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and were far from the terminals of the contig (>20 kbp). Additionally, 

I filtered out false losses that were less than 1 kbp in length. To avoid 

including haplotype differences as false losses, I calculated K* values 

(Formenti et al., 2022) for k-mers in the regions of candidate false 

losses after the mentioned noise filtering. I only considered 

candidates for false losses when they had collapsed k-mers (K* > 0) 

covering over 90% of the genomic sequences.  

Furthermore, I estimated potential false gene gains and losses 

(Kim et al., 2022; Ko et al., 2022) based on the annotation data of 

bTaeGut2.trio (GCF_008822105.2) and the erroneous regions 

identified in each assembly. I aligned the bTaeGut2.trio assembly and 

other assemblies together using Cactus (Paten et al., 2011). Potential 

false gene gains or losses were identified when the false duplications 

and losses had homologous regions with any coding sequences (CDSs) 

of the bTaeGut2.trio annotation. 

 

 

 

 

https://www.zotero.org/google-docs/?yV3qi2
https://www.zotero.org/google-docs/?4CHVyI
https://www.zotero.org/google-docs/?DBeA6q
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3.4 Results and Discussion 

3.4.1 K-mer profiles of CLR and HiFi-based assemblies 

I calculated the amount of expansion and collapse errors in the 

assemblies based on the K* metric (Formenti et al., 2022) using k-

mers from the reads and diploid assembly data. I found the CLR 

assembly had the highest amount of both expansion and collapse 

errors (11% and 10%, Figure 3. 1b), whereas HiFi-only mode and 

HiFi-HiC mode had the lowest amount of expansion (9%) and 

collapse (6%). Because the K* metric does not consider false 

duplication caused by phasing error, I also estimated the amount of 

false duplication based on duplicated k-mers from the reads and 

haploid assembly data (Figure 3. 1a). This showed the highest 

amount of k-mer duplication was in the CLR assembly (1.87%), 

followed by the HiFi-only (1.60%) and HiFi-HiC (0.89%) 

assemblies, and the lowest amount in the HiFi-Trio assembly 

(0.73%). This result is consistent with the fact that the Trio method 

is the most reliable approach for preventing false duplications caused 

by phasing errors. 

The VGP group found that there were phasing errors between 

the haplotype of paternal and maternal assembly made by HiFi-Trio 

https://www.zotero.org/google-docs/?6ZBCvD
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mode. I checked the manual rebinning they did for the trio assembly 

was effective. I calculated the k-mer duplications and genome 

completeness of the both haplotypes (Figure 3. 1c), and found that 

the k-mer duplications were higher before rebinning (0.9 and 4.4% 

from both paternal and maternal, respectively) than both paternal 

(0.8%) and maternal (3.7%) rebinned assemblies. Moreover, the 

rebinned paternal assembly showed 1.2% higher k-mer 

completeness than the assembly before rebinning, although a slight 

decrease of k-mer completeness (0.2%) was shown in the rebinned 

maternal assembly. Therefore, manual rebinning by assembly 

experts would be effective when there is a clear indication of phasing 

errors observed from automated triobinning. 
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Figure 3. 1 K-mer evaluation of zebra finch assemblies made by 

PacBio CLR and HiFi reads. a, Proportion of k-mer duplication in the 

bTaeGut2 assemblies. K-mer duplications were calculated from the 

primary assemblies (CLR, HiFi-only, HiFi-HiC) and paternal 

assembly (Trio) from phased diploid assemblies. b. Proportion of k-

mer expansion and collapse in each diploid bTaeGut2 assembly. c, 

Comparisons of k-mer duplication (red) and completeness (blue) 

between default and rebinned trio assemblies in males (left) and 

females (right).  
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3.4.2 The amount of structural assembly errors in CLR and 

HiFi-based assemblies  

To further investigate structural assembly errors, I identified 

false duplication and loss in the assemblies based on the whole 

genome alignment of the bTaeGut2 assemblies followed by a 

likelihood calculation from read-depth coverages to determine 

whether the duplication and losses are true errors or statistical noise. 

From this approach, 1.3 to 13.8 Mbp of false duplication (Figure 3. 

2a) and 0.2 to 42.3 Mbp of mean losses were found in the four 

assemblies (Figure 3. 2b). Notably, I observed that the assembly 

made by PacBio CLR reads is most prone to have both duplication 

(13.8 Mbp) and loss (42.3 Mbp) errors. The assembly with the 

lowest amount of false duplication was the Trio assembly, but the 

HiFi-Hic assembly had the lowest amount of false losses. These 

results showed concordances with the result of k-mer collapses and 

duplication (Figure 3. 1a, b). It has been known that one of the main 

sources of false duplication is sequencing errors, therefore, the lower 

accuracy of PacBio CLR reads compared to HiFi reads would be a 

cause of false duplication. 
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Figure 3. 2 Amount of false duplication and losses in zebra finch 

assemblies made by PacBio CLR and HiFi reads. a, Proportion and 

cumulated size (in Mb) of false duplications of each assembly. b, 

Proportion and cumulated size (in Mb) of false losses of each 

assembly (upper), and heat map of the size (in Mb) of false losses 

identified between the assemblies (below) in log scale. c, A case of 

potential false gene gain in CLR assembly. Duplications of 

homologous sequences of partial ITSN1 gene was found in CLR 

assembly. Read depth coverage of contigs including the homologous 

sequences of ITSN1 gene in each bTaeGut2 assembly (highlighted in 

grey) is shown with a range from 0 to 200. The number in the gray 

highlighted region represents a mean depth coverage of ITSN1 

homologous regions in each assembly.  
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Importantly, among the false duplications, I found whole exon 

regions of 3 to 185 genes were affected (Figure 3. 3a). The CLR-

based assembly was also more prone to false gene gains (185  genes), 

compared to the HiFi assemblies with 50, 3 and 9 genes for HiFi-

only, HiFi-HiC and Trio assembly, respectively. For example, the 

ITSN1 gene, which is strongly associated with autism-spectrum 

disorders (Feliciano et al., 2019), was found with high likelihood to 

be a false gene gain in the CLR assembly (Figure 3. 2c). Homologous 

sequences of 35 CDSs of total 38 CDSs of the ITSN1 were found in 

two different contigs (000339F and 000509F) in the CLR assembly. 

Read coverage profiles of these duplicated regions showed the 

signature pattern for false duplications: haploid-level read-

coverages were extensively observed in the duplicated regions. 

Similarly, I estimated 36 to 184 genes can be under false gene losses, 

and CLR-based assembly was more error-prone than HiFi based 

assemblies (Figure 3. 3b). Therefore, structural assembly errors 

from low accuracy long reads can propagate to the annotation level, 

resulting in significant misinterpretation. 

https://www.zotero.org/google-docs/?BI9HEe
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Figure 3. 3 Number of genes affected by false duplication (a) and 

losses (b).  
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3.4.3 Assembly errors in the current reference genome and the 

optimal strategy for assembly 

Finally, I compared these zebra finch assemblies to the current 

reference for the zebra finch, which is based on a different individual 

(bTaeGut1.4; GCF_003957565.2), and found that more k-mer 

collapses (15%), but slightly less or more k-mer duplications (0.8%) 

in the bTaeGut1.4 compared to all four bTaeGut2 assemblies (Figure 

3. 4). This may be, in part, because bTaeGut2 has 1.5-fold higher 

heterozygosity than bTaeGut1.4 (Figure 3. 5). Nevertheless, the 

comparison highlights that assemblies made by HiFi reads have the 

advantages to fewer false duplications and loss errors compared to 

the assembly made by CLR reads. Moreover, I found Trio data to be 

the best strategy to avoid false duplication when possible, although 

HiFi-HiC is also effective when trio data are not available (Figure 3. 

1). 

 



119 

 

 

Figure 3. 4 K-mer evaluation between bTaeGut2 and bTaeGut1.4. a, 

Proportion of k-mer duplication in the bTaeGut2 assemblies and 

bTaeGut1.4 assembly. K-mer duplications were calculated from the 

primary assemblies (bTaeGut2 CLR, bTaeGut2 HiFi-only, bTaeGut2 

HiFi-HiC and bTaeGut1.4 CLR) and paternal assembly (Trio) from 

phased diploid assemblies. b. Proportion of k-mer expansion and 

collapse in each diploid bTaeGut2 and bTaeGut1.4 assembly. 
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Figure 3. 5 Genome characteristics profile of zebra finch assemblies, 

bTaeGut2 (a) and bTaeGut1.4 (b) assemblies estimated from 

GenomeScope.  
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This chapter will be published elsewhere 

as a partial fulfillment of Byung June Ko’s Ph.D program. 
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4.1 Abstract 

To achieve error-free genome assembly, it is essential to have a 

post-processing step for eliminating false duplications in diploid 

genome sequences. Existing tools for false duplication curation 

primarily rely on read coverage of genomic regions where 

sequencing reads are mapped to the assembly. In this study, I 

developed a new false duplication identification tool, Purge mers, 

which incorporates both read coverage and K* metrics from k-mer 

multiplicity. Purge mers estimates model parameters for false 

duplication using both read coverage and K* and employs maximum 

likelihood estimation to identify false duplications from whole or 

regional parts of a contig. I conducted simulations of two vertebrate 

species, zebra finch and human, using PacBio HiFi reads to evaluate 

the performance of Purge mers. The results showed that using 

short reads is more effective than using long reads for identifying 

false duplications. Purge mers exhibited better performance 

compared to Purge_dups in short read-based false duplication 

identification. Additionally, I propose a new K* metric that offers 

advantages for model-based statistical inference. 
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4.2 Introduction 

Error-free genome assembly is a most important task in 

recent large-scale genome projects (Lewin et al., 2022; Nurk et al., 

2022; Rhie et al., 2021). Due to cost considerations, the genetic 

information of a species is fragmented into hundreds or thousands 

of base pairs during sequencing. However, the assembled genome 

sequence often contains significant structural errors, including 

redundant sequence duplications arising from allelic divergence or 

sequencing errors, known as false duplications (Guan et al., 2020; 

Kelley and Salzberg, 2010; Ko et al., 2022; Rhie et al., 2021).  

False duplications resemble paralogs located in different loci 

from the original sequence but are actually alleles or artifacts by 

sequencing. These errors can lead to severe misinterpretation in 

comparative genomics, particularly regarding gene gain and gene 

family expansion (Ko et al., 2022; Korlach et al., 2017). False 

duplications frequently occur in genomes with high heterozygosity 

(Ko et al., 2022; Rhie et al., 2021). While one traditional approach 

to addressing this problem is to create highly inbred lineages 

(Koren et al., 2018), this is often not feasible. To overcome this 

issue computationally, post-processing software has been 

developed (Guan et al., 2020; Roach et al., 2018). These tools 

https://www.zotero.org/google-docs/?wDhxTq
https://www.zotero.org/google-docs/?wDhxTq
https://www.zotero.org/google-docs/?Zp2i4B
https://www.zotero.org/google-docs/?Zp2i4B
https://www.zotero.org/google-docs/?qUfeil
https://www.zotero.org/google-docs/?pDY6f0
https://www.zotero.org/google-docs/?u1tbKY
https://www.zotero.org/google-docs/?C4eQy4
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identify false duplications based on sequence similarity and read 

coverage profiles of genomic regions.  

Additionally, k-mer, which refers to a substring of a 

sequence with a specific length K, is commonly used to evaluate 

and quantify assembly quality (Rhie et al., 2020). It has been 

observed that the difference in k-mer copy numbers (or 

multiplicities) between sequencing reads and the genome assembly 

can be indicative of false duplications (Formenti et al., 2022). For 

instance, the multiplicity of a unique k-mer in a genome counted 

from sequencing reads should approximately match the mean read 

coverage of the genome. If the copy number of a k-mer in the 

genome sequences is unexpectedly higher than the multiplicity from 

sequencing reads, it suggests the presence of false duplication 

(Formenti et al., 2022; Phillippy et al., 2008).  

While false duplication identification based on read coverage 

is widely used in current genome assembly (Cheng et al., 2021; 

Rhie et al., 2021), this method can be sensitive to the choice of 

mapping algorithm and repetitive regions. Long reads are preferable 

for avoiding disruptions in repetitive elements (Giani et al., 2020), 

but read coverage of small contigs shorter than the reads may not 

be accurately calculated due to the penalty of clipping. Merfin was 

https://www.zotero.org/google-docs/?eKpwWE
https://www.zotero.org/google-docs/?0bVR3M
https://www.zotero.org/google-docs/?Edfj5X
https://www.zotero.org/google-docs/?rIobSA
https://www.zotero.org/google-docs/?rIobSA
https://www.zotero.org/google-docs/?RqhlJx
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developed to quantify genome quality using the K* metric at the 

base pair level (Formenti et al., 2022). However, there is currently 

no systematic software available for utilizing K* to detect false 

duplications. 

In this study, I developed a false duplication identification 

tool, purge mers, operating on both read coverage and K* profile in 

genome-wide scale with base-pair level resolution. The tool 

estimates model parameters for false duplications and non-error 

regions using a bivariate Gaussian Mixture Model (GMM) based on 

both read coverage and K*. Subsequently, purge mers identifies 

false duplication from self-aligned homologs through maximum 

likelihood estimation with the models. To evaluate the performance 

of purge mers, I conducted simulations using two PacBio HiFi reads 

generated from vertebrate genome assemblies of a zebra finch and 

a human. I compared the results of purge mers with those of other 

existing false duplication identification tools. In the final part of the 

paper, I provide suggestions for the best strategy to identify false 

duplications based on the findings and results obtained from the 

study. 

 

 

https://www.zotero.org/google-docs/?sUGGUE
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4.3 Materials and Methods 

4.3.1 Generating simulation data 

To generate simulated assembly and sequencing reads, the 

fully phased haplotype sequences of zebra finch (bTaeGut2) and 

human (mHomSap) made by Vertebrate Genome Project (Rhie et 

al., 2021) were collected from GenomeArk 

(https://genomeark.github.io/) and NCBI assembly 

(https://www.ncbi.nlm.nih.gov/assembly) for both paternal 

(bTaeGut2_trio.rebinned.hap1.s2.fasta and mHomSap3.pat) and 

maternal (bTaeGut2_trio.rebinned.hap2.s2.fasta and 

mHomSap3.mat), respectively (Table 4. 1). ReSeq (Schmeing and 

Robinson, 2021) was used to generate simulations of 60X coverage 

of diploid Illumina paired-end reads. To model the short read 

accurately, ReSeq required read mapping to reference first. 10X-

Linked reads of each species were collected from GenomeArk and 

mapped to paternal assembly of zebra finch, and maternal assembly 

of human by EMA (Shajii et al., 2018) mapper and BWA (Li and 

Durbin, 2009) with standard EMA pipeline. Each mapping for a 

species was multi-processed by Parallel (Tange, 2011). A final 

merged and sorted read mapping file (.bam) was produced by 

https://www.zotero.org/google-docs/?tnWkGb
https://www.zotero.org/google-docs/?tnWkGb
https://www.zotero.org/google-docs/?NPFlfv
https://www.zotero.org/google-docs/?NPFlfv
https://www.zotero.org/google-docs/?Cy8WWZ
https://www.zotero.org/google-docs/?T4ONTR
https://www.zotero.org/google-docs/?T4ONTR
https://www.zotero.org/google-docs/?seOXYx
https://www.zotero.org/google-docs/?seOXYx
https://www.zotero.org/google-docs/?seOXYx
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Sambamba and Samtools (Li et al., 2009). A variants file (.vcf) 

containing haplotype differences called by BCFTools with 

parameter “-mv -Ov -V indels” was used  together for modeling 

diploid reads in ReSeq (Schmeing and Robinson, 2021). For 

simulating 40X coverage PacBio HiFi reads of diploid genome, 

Pbsim3 (Ono et al., 2022) was used for generating PacBio CLR 

(continuous long read) reads by multi-pass sequencing with 

command “-strategy wgs --method qshmm --qshmm QSHMM-

RSII.model –pass-num 10”. Then, CCS software was used to 

merge CLR reads to HiFi (Ono et al., 2022) for both paternal and 

maternal haplotype of the genomes, with a filtering threshold of “-

-min-rq 0.995”. The intermediate output from Pbsim3 was 

converted and merged using Samtools. 

https://www.zotero.org/google-docs/?GQDHra
https://www.zotero.org/google-docs/?jSeMMm
https://www.zotero.org/google-docs/?cigf3S
https://www.zotero.org/google-docs/?LCsBBh
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Table 4. 1 Statistics of original zebra finch and human assemblies in this study. 
 

Species Haplotype Length (bp) No. 
Scaffold 

Scaffold N50 Path to Access 

Zebra finch Maternal 1,031,735,314 279 71,356,113 https://genomeark.s3.amazonaws.com/index.html?prefix=species/Taeniopygia_guttata/bTaeG

ut2/assembly_vgp_trio_2.0/bTaeGut2_trio.rebinned.hap2.s2.fasta.gz 

Zebra finch Paternal 1,101,737,721 360 71,086,444 https://genomeark.s3.amazonaws.com/index.html?prefix=species/Taeniopygia_guttata/bTaeG

ut2/assembly_vgp_trio_2.0/bTaeGut2_trio.rebinned.hap1.s2.fasta.gz 

Human Maternal 2,902,214,236 950 150,534,096 https://www.ncbi.nlm.nih.gov/assembly/GCA_016695395.2 

Human Paternal 2,744,463,177 994 142,230,338 https://www.ncbi.nlm.nih.gov/assembly/GCA_016700455.2 



129 

 

The simulated Pacbio HiFi reads were used for generating 

assemblies of each zebra finch and human genomes using Hifiasm 

(Cheng et al., 2021). The “--primary -l2” parameters were 

used to obtain primary assembly. The Illumina paired-end read and 

PacBio HiFi read generated by simulation were mapped to the 

primary assembly from the simulation. BWA (Li and Durbin, 2009) 

was used for short read mapping with command “-M -R 

\"@RG\\tID:rg1\\tSM:sample1\" ”, and Minimap2 (Li, 2018) was 

used for HiFi read mapping with a preset “map-hifi” with CIGAR 

string printing option “-c” for PAF format, and “-a” for 

generating .sam format.  

Meryl software (Rhie et al., 2020) was used to count the k-

mers from the short reads and long reads generated during the 

simulation process. The k-mers were also counted in the 

assemblies, and organized along the genomic positions for each 

zebra finch and human. The revised K* in this study was calculated 

for each genomic position as: 

K*new = (KR – Kc.) / min(Kr, KC) * diploid peak 

KR = k-mer count from the reads  

Kc = expected k-mer count of the reads estimated from the 

k-mer copy number in assembly (KC in below).  

https://www.zotero.org/google-docs/?OQmt42
https://www.zotero.org/google-docs/?Grd7Hn
https://www.zotero.org/google-docs/?HkrFQg
https://www.zotero.org/google-docs/?DAq7QD
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Kr = expected copy number of the k-mer estimated from the 

read 

KC = observed k-mer copy number in the assembly.  

diploid peak = mode of diploid k-mer model estimated by 

Genomescope2.0 

Kr (Formenti et al., 2022) was probabilistically binned KR by 

Genomescope2.0 (Ranallo-Benavidez et al., 2020) with “--

fitted_hist” option for Kr <5. The others of Kr>=5 were binned by 

rounding the KR/diploid peak as same as Merfin (Formenti et al., 

2022). The histogram of KR was calculated by Merqury (Rhie et al., 

2020), and set as input of Genomscope2.0.  

 

4.3.2 Parameter estimation 

In order to estimate the parameters of the models for false 

duplication and non-error, the following steps were performed for 

each dataset (zebra finch and human) and sequencing type (short-

read and long-read). First, mean depth coverage and mean revised 

K* of 250bp non-overlapping windows were calculated from 

contigs. For the short-read based analysis, contigs ranging to 2-

300 kbp in length were considered, and for the long-read based 

https://www.zotero.org/google-docs/?yv2N4X
https://www.zotero.org/google-docs/?c30lE7
https://www.zotero.org/google-docs/?ZICG0n
https://www.zotero.org/google-docs/?ZICG0n
https://www.zotero.org/google-docs/?dQNLIk
https://www.zotero.org/google-docs/?dQNLIk
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analysis, contigs ranging from 20 kbp to 500 kbp in length were 

included. Second, By the observation of the windows, the mean and 

covariance of read coverage and K* were estimated using a 

bivariate GMM fitting with the expectation-maximization (EM) 

algorithm. The Mclust (Scrucca et al., 2016) package was used for 

GMM fitting with G=3 (false duplication, non-error and the other 

including noise and repeats). Mclust is also used to fit univariate 

GMM models for K* alone with G=4. This univariate model was 

used for the candidate of false duplication composed by haploid 

specific sequences. In this case, an additional model for false 

duplication distributed on K*=-2 is considered. 

 

4.3.3 False duplication identification 

To identify false duplication, candidates were searched for 

using self-alignment of assembly with Minimap2 (Li, 2018) and 

"DP -cx asm5" for PAF formatting, which includes CIGAR string 

information of alignment. Many targets in alignments for each query 

were resolved as one-to-one best hit based on maximizing DP 

score (MS), chaining score (S1), alignment score (AS), and 

minimizing the total number of mismatches (NM) sequentially. In 

https://www.zotero.org/google-docs/?a7KTF2
https://www.zotero.org/google-docs/?Yb5JER
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case there was an overlap between the queries, the region of 

overlap was eliminated from the query that had lower scores 

compared to the other query. If the alignments obtained through 

self-alignment and the subsequent one-to-one resolution process 

covered more than 80% of the genomic region within a contig, the 

corresponding candidate for false duplication was categorized as a 

"haplotig" (indicating a potential haplotype duplication). 

Alternatively, if there were any queries located within a distance of 

10 kbp from the contig terminals, alignments were chained using 

whole alignment information to find representative chains in a 

contig. Purge mers builds a direct-acyclic-graph (DAG) and finds 

a local optimal path to search the chains, similar to how purge_dups 

operates with 10kbp gap size threshold and filtration cutoff of 5,000 

match score in DAG building (Guan et al., 2020). The alignment 

chains discovered through this process within a contig were 

categorized as "OVLP".  

To identify false duplications from the candidates classified 

as both Haplotig and OVLP, Purge mers calculated the depth 

coverage and K* of each non-overlapping window of 250 bp within 

the regions. Then, log-likelihoods of two models were calculated 

from the smallest to the largest contig. If the likelihood of the false 

https://www.zotero.org/google-docs/?wQaz5i
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duplication model was higher than that of the non-error model, the 

candidate region was identified as a false duplication. For regions 

where more than 50% were comprised of haploid k-mers, 

univariate K* models were used for maximum likelihood estimation. 

Regions where more than 50% of k-mers were composed of Kr >4 

were considered as repetitive elements. If the number of negative 

K* values was larger than the number of positive K* values, the 

candidate was identified as a false duplication. One notable 

algorithm included in Purge mers to reduce false positives is the 

recursive adjustment of depth coverage and K* values for every 

identified false duplication candidate. When a false duplication is 

identified, it indicates that the region should be removed from the 

original assembly, and the depth coverage and k-mer count of the 

remaining homologs should be updated accordingly. Purge mers 

recursively recalculates the read coverages and K* values of the 

homologs affected by the identified false duplication using the 

modified KC values in each maximum likelihood calculation. 

Purge mers also identified artifactual contigs in cases where 

a contig exhibited erroneous k-mers exceeding 10% or a mean 

depth coverage below 0.25 times the haploid depth. To identify 

regional sequencing errors within contigs exhibiting erroneous k-
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mers (5-10% of erroneous k-mers in a contig) meet these 

threshold the following steps were performed: 1) Merging regions 

with erroneous k-mers within a 50 bp distance. 2) Filtering the 

merged regions based on a size threshold of 200 bp, discarding 

regions smaller than 200 bp. 3) Further merging the remaining 

regions in 5 kbp distance.  4) Filtering the merged regions based on 

a size threshold of 10 kbp. Bedtools (Quinlan and Hall, 2010) was 

extensively used for handling genomic regions. 

 

4.3.4 Performance assessment 

To evaluate the performance by the tools and sequencing 

platform, I generated simulation data and compared the original 

assembly with the simulated one. Determining true false 

duplications in a simulation assembly is theoretically possible. 

However, it is challenging due to the complexity of identifying 

continuous one-to-one homologs through whole-genome 

alignment. If there is false duplication in repetitive regions, it is also 

hard to find true false duplication at the whole genome level by 

alignment.  

https://www.zotero.org/google-docs/?i3OYT0
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Instead of using alignment-based methods to determine the 

true set, I employed a different approach that analyzes the k-mer 

copy numbers (KC) in both the original and simulated assemblies. I 

quantified the difference in KC (delta KC; KC in simulation – max[KC
 

in haploid1, KC
 in haploid2] in original assembly) for each k-mer 

observed in the simulated assembly. If the delta KC is greater than 

0, it indicates the presence of false duplication for that k-mer. It's 

important to note that a k-mer copy number is calculated based on 

every genomic position that contains the k-mer. Consequently, it is 

not possible to pinpoint the exact region where the false duplication 

occurred in simulation (i.e. true false duplication). However, this 

limitation does not hinder the evaluation of performance at the 

genome-wide level because every k-mers are counted from the 

whole genome. 

In this study, classification performance of the methods was 

evaluated by examining true positives, true negatives, false 

positives, and false negatives for each k-mer observed in the 

simulation assembly. The evaluation process is defined as follows: 

1) True positive: min(FCN, delta KC) 

2) True negative: KC - (True positive + False positive + 

False negative) 
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3) False positive: when delta KC < FCN, FCN - delta KC 

4) False negative: when delta KC > FCN, delta KC - FCN 

where KC is the copy number of a k-mer in simulation assembly, 

FCN is the copy number of a k-mer identified as false duplication. 

In this evaluation process, the study does not take into account the 

effect of false loss, and a minimum delta KC value of 0 is fixed.  
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4.4 Results 

4.4.1 Model parameter estimation 

Purge mers employs a model-based approach to identify 

false duplications by calculating base pair-level read coverage and 

K* (Formenti et al., 2022). This structural error will exhibit specific 

erroneous signatures such as a haploid state of depth coverage 

(1X) and -1 of K* on the primary assembly (Figure 4. 1). On the 

other hand, paralogous regions, which do not involve allelic 

differences, display a diploid state of depth coverage (2X) and no 

evidence of duplication or expansion in K* (K* = 0). Although the 

original K* metric effectively represents false duplication (or 

expansion with diploid sequences) and losses at the base-pair 

level, the current K* collapses the variance of k-mer copy number 

from sequencing reads. Consequently, it is not suitable for the 

Gaussian Mixture Model (GMM). Therefore, I propose a modified 

version of the original K* equation, which preserves the variance of 

k-mer copy numbers while still allowing estimation of false 

duplications (K* = -1) and non-errors (K* = 0; SEE METHODS). 

https://www.zotero.org/google-docs/?IsRgyQ
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Figure 4. 1 Overview of identifying false duplication on both read 

coverage and K*. a, False duplication occurred on heterozygous 

position. Two allelic sequences in diploid species can be located in a 

pseudo-haplotype assembly (false duplication). Proper phasing 

algorithm inhibit this, allocate them to each primary and alternate 

assembly (non-error). b, read coverage characteristics on false 

duplication and non-error regions. Homologs with false duplication 

typically indicates haploid-level depth coverage by heterozygous 



139 

 

read mapping. c, Various k-mer statistics on false duplication and 

non-error. KR is k-mer multiplicities counted from sequencing reads. 

Kr is expected copy number of the k-mer in genome assembly 

estimated from the reads. KC is observed k-mer copy number in the 

assembly. K* is (Kr − KC) / min(Kr, KC). K*New is (KR - Kc) / min(Kr, 

KC) * diploid peak, where Kc is expected multiplicity of the k-mer in 

reads estimated from the assembly, and diploid peak is a mode of 

diploid k-mer distribution. 
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The first step in the operation of purge mers is to estimate 

the parameters for both the false duplication and non-error models 

using read depth and K*. Purge mers employs a bivariate Gaussian 

mixture model to estimate the mean and covariance of both models. 

For parameter estimation, purge mers samples genomic regions by 

non-overlapping 250bp windows within a certain size of contigs 

(SEE METHODS). The mean depth coverage and K* values are 

calculated for each window. By constructing a bivariate distribution 

using the collected samples, the parameters for both the false 

duplication and non-error models can be estimated using the 

Gaussian mixture model. Purge mers fits the Gaussian mixture 

models using the Expectation-Maximization (EM) algorithm based 

on the distributions obtained from window sampling. Given the 

estimated parameters for each bivariate Gaussian distribution of 

both models, purge mers identifies false duplications through 

maximum likelihood estimation from candidate duplications by self-

alignment.  
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4.4.2 False duplication candidate identification algorithm 

After parameter estimation, purge mers proposes candidates 

of false duplication by sequence similarity between contigs by self-

alignment, similar to purge_dups (Guan et al., 2020). Based on the 

composition pattern of the candidates of false duplication within a 

contig, purge mers classifies them into two distinct categories: 1) 

haplotigs and 2) overlaps (SEE METHOD). Each non-overlapping 

window-binned genomic region (250bp) within the haplotigs or 

overlaps serves as an observation unit for Maximum Likelihood 

Estimation (MLE) of the bivariate Gaussian model parameters for 

mean read coverage and K* when the region is primarily composed 

of diploid and non-repeat k-mers (i.e., Kr < 5). However, purge 

mers employs different strategies for identifying false duplications 

when the region is predominantly composed of haploid-specific 

sequences or repeats (i.e., Kr >= 5). In addition, purge mers 

considers unaligned artifactual contigs as candidates for false 

duplications. During the assembly process, sequencing reads may 

accumulate base calling errors, leading to artifacts at the contig 

level (Ko et al., 2022). If a whole contig or a specific region 

contains a high number of erroneous k-mers beyond a certain 

threshold, or if they exhibit lower read coverage than a specified 

https://www.zotero.org/google-docs/?FwHaDs
https://www.zotero.org/google-docs/?i53UNZ
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threshold, the contig is identified as a false duplication caused by 

sequencing errors. In cases where the erroneous regions are 

clustered together by certain distance, the regions are merged. 

 

4.4.3 Simulation statistics 

To evaluate the performance of the proposed method, 

simulations were conducted using the original long-read-based 

assemblies bTaeGut2 and mHomSap3.mat, which were generated 

by the Vertebrate Genomes Project (VGP) group (Table 4. 1). The 

zebra finch assembly exhibited high heterozygosity (1.78%), while 

the human assembly had relatively low heterozygosity (0.32%) 

(Figure 4. 2). This allowed us to assess the performance of the 

method under both high and low heterozygosity conditions. 

Furthermore, the original assemblies bTaeGut2 and mHomSap3 

were created using the VGP trio pipeline, which enabled the 

generation of simulated reads representing both long reads and 

short reads, considering the diploid of the genome.  
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Figure 4. 2 Genome characteristics of zebra finch (a) and human (b) 

assemblies estimated by GenomeScope2. 10X-Linked reads 

produced in each species were used for estimation of genome 

characteristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



144 

 

During the simulation, 40X Pacbio HiFi reads were generated 

for both zebra finch and human diploid genomes. Initially, CLR reads 

generated by multi-pass sequencing (Ono et al., 2022) were 

merged to total 38.8 and 103.3 Gbp HiFi reads (4,305,410 and 

11,475,896 sequences; Table 4. 1 and Table 4. 2) for each zebra 

finch and human. Additionally, 60X paired-end Illumina short reads 

were produced based on the assembly sequences. Total 66.3 and 

174.6 Gbp reads (478,842,214 and 1,260,772,024 sequences) were 

generated for zebra finch and human, respectively. The 40X Pacbio 

HiFi reads for each species were used for diploid genome assembly. 

As a result, primary assemblies were obtained for zebra finch and 

human, consisting of 1.17 and 2.92 Gbp, 1,210 and 1,358 contigs, 

and possessing an N50 value of 15.8 and 38.4 Mbp, respectively 

(Table 4. 2). Heterozygous sequences separated from primary 

assembly were assigned to alternate contigs, resulting in 0.95 and 

2.67 Gbp, 3,333 and 44,083 contigs, and an N50 value of 2.60 and 

0.17 Mbp for zebra finch and human, respectively (Table 4. 2). The 

zebra finch assembly made by simulation showed high 

heterozygosity, but the simulation of human assembly represented 

relatively lower heterozygosity (Figure 4. 3). 

 

https://www.zotero.org/google-docs/?DGewtS
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Table 4. 2 Statistics of simulation data. 

 
Species Data Total length (bp) No. of sequences 

(reads or contigs) 
Mean length of 
reads (bp) 

Generated read 
coverage 

N50 

Zebra 
finch 

PacBio HiFi 38,767,427,306 4,305,410 9004.4 40X - 

Illumina 66,319,646,639 478,842,214 138.5 60X - 

Primary assembly 1,165,444,248 1,210 - - 15,771,177 

Alternate assembly 953,141,209 3,333 - - 2,599,748 

Human PacBio HiFi 103,290,644,408 11,475,896 9000.7 40X - 

Illumina 174,616,925,324 1,260,772,024 138.5 60X - 

Primary assembly 2,917,922,356 1,358 - - 38,390,416 

Alternate assembly 2,655,548,067 44,083 - - 173,454 
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Figure 4. 3 K-mer profiles of simulated assemblies. Illumina reads 

(short; a and c) and PacBio HiFi (long; b and d) reads were used for 

drawing multiplicity distribution for zebra finch (a and b) and human 

(c and d) assemblies.  
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Both the long and short reads generated from the simulations 

were mapped to the primary assemblies of each species, and the 

base-level genome-wide read coverage and K* were calculated. 

For zebra finch, the mean read coverage and K* values of the false 

duplication model in the short-read simulations were 30.9 and -

0.96 while the parameters of the non-error model were 60.3 and -

0.04. In the long-read simulations, the estimated parameters for K* 

exhibited little difference (-0.84 and 0.01 for false duplication and 

non-error model, respectively) compared to the short-read 

simulations. However, the parameters for read coverage were 22.3 

and 40.9 by different data sizes of generated reads. Similarly, for 

human, the mean read coverage and K* values of the false 

duplication model in the short-read simulations were estimated as 

27.6 and -1.10, respectively, while the parameters of the non-

error model were 59.6 and -0.02. In the long-read simulations, the 

parameters for read coverage and K* were 19.0 and -0.71 for the 

false duplication model, and 37.0 and 0 for the non-error model, 

respectively.  
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Figure 4. 4 Bivariate distributions of read coverage and K* of each 

zebra finch and human assembly. Illumina reads (a and c) and PacBio 

HiFi reads (b and d) were mapped to zebra finch (a and b) and human 

(c and d) assemblies, respectively. Mean values of read coverage and 

K* were calculated from non-overlapping 250bp window.  
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4.4.4 Performance assessment 

To assess the performance of purge mers in identifying false 

duplications, I measured the precision, recall, accuracy and F1 

score (harmonic mean of precision and recall combination) based on 

k-mer profiles between the template and simulation assembly. This 

evaluation was conducted separately using short read and long read 

data, and the results were compared with those obtained from 

purge_dups (Guan et al., 2020) for benchmarking purposes. Using 

short read data, total 79.7 and 36.7 Mbp of genomic regions (6.8% 

and 1.3% size of primary assembly) were identified as false 

duplication in zebra finch and human by purge mers (Table 4. 3; 

Figure 4. 5a). In comparison, purge_dups identified 93.2 and 81.8 

Mbp of false duplication (8.0% and 2.8% of primary assembly size) 

in these species using short read. The benchmark results using 

short read data indicated that purge_dups outperformed purge mers 

for zebra finch. The precision, recall, accuracy and F1 scores for 

purge mers were 45%, 60%, 95% and 52%, respectively, based on 

the short read false duplication identification, whereas purge_dups 

achieved 47%, 84%, 95% and 60% for those metrics (Figure 4. 5b). 

In the human assembly, purge mers showed better performance 

than purge_dups except recall, different from zebra finch (Figure 4. 

https://www.zotero.org/google-docs/?iBwPD4


150 

 

5c). In Particular, purge mers showed greater difference in 

Precision and F1 up to 17% and 16% than purge_dups. 
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Table 4. 3 The amount of false duplication in each assembly calculated 

by each sequencing technology. 

 
Species Read Tool Length         

(assembly) 
Length             
(false 
duplication) 

Proportion          
(false 
duplication) 

Zebra finch Short read Purge_dups 1,165,444,248 93,176,878 8.0% 

Zebra finch Long read Purge_dups 1,165,444,248 66,306,741 5.7% 

Human Short read Purge_dups 2,917,922,356 81,845,196 2.8% 

Human Long read Purge_dups 2,917,922,356 67,238,041 2.3% 

Zebra finch Short read Purge mers 1,165,444,248 79,689,225 6.8% 

Zebra finch Long read Purge mers 1,165,444,248 32,859,334 2.8% 

Human Short read Purge mers 2,917,922,356 36,690,568 1.3% 

Human Long read Purge mers 2,917,922,356 38,694,030 1.3% 

 

 

 



152 

 

 

Figure 4. 5 The proportion of false duplications and performance 

assessment.  a, proportion of false duplication in each species and 

sequencing technology estimated by purge_dups and purge mers. K-

mer based performance of each method and sequencing technology 

in zebra finch (b) and human (c).  
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When using long read data from PacBio HiFi reads, purge 

mers identified 32.9 and 38.7 Mbp (2.8% and 1.3% of the primary 

assembly size) as false duplications in zebra finch and human 

genomes. In comparison, purge_dups detected 66.3 and 67.2 Mbp of 

false duplications (5.7% and 2.3% of the primary assembly size) in 

these species. In contrast to the results obtained with short reads, 

purge mers demonstrate better performance in terms of precision 

(77%), accuracy (97%) compared to purge_dups (56%, 96%) in the 

zebra finch assembly. In the human assembly, purge mers did not 

showed better performance except recall (79%) than purge dups 

(77%). Both purge mers and purge_dups showed higher 

performance with long read data compared to short read data in the 

benchmark evaluation on zebra finch, but purge_dups only showed 

this pattern in the human data.  
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4.5 Discussion 

Previous methods for removing false duplications relied 

solely on identifying regions with low read depth coverage in the 

genome assembly (Guan et al., 2020; Roach et al., 2018). This 

approach is generally reliable since most false duplications exhibit 

haploid-level depth coverage or lower. However, it can be 

influenced by the mapping algorithm used, and a simple threshold-

based method is susceptible to both false positives and negatives 

due to local deviations in read mapping and the sequencing process. 

Although long reads can be used as an alternative to mitigate 

fluctuations in read coverage, they may not accurately evaluate 

small contigs shorter than the reads themselves (e.g., <20kbp) 

since the reads may not be mapped to those contigs. In contrast, 

purge mers supplements these limitations by incorporating not only 

read coverage but also the K* metric, which is commonly used for 

regional assembly evaluation (Formenti et al., 2022). Furthermore, 

purge mers operates on a model-based approach using maximum 

likelihood estimation (MLE) with automatic parameter estimation 

from the data itself. It partially exhibits better performance 

compared to previous tools when long read data from the assembly 

is available. This study also proposes a new revised K* metric, 

https://www.zotero.org/google-docs/?FGo6iS
https://www.zotero.org/google-docs/?onG1l7
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which incorporates the variance of k-mer copy numbers from 

sequencing reads. This metric determines whether a k-mer is 

falsely duplicated in the assembly or not, as same as the previous 

K* metric, but it is more suitable for statistical inference for 

probabilistic analysis.  

The benchmark results indicated that long reads 

outperformed short reads in identifying false duplications for a high 

heterozygous species, but this was deviated by tools in a low 

heterozygous species. There could be several reasons that using 

short read data partially outperformed long read. Firstly, the 

simulated short reads in this study had a higher coverage (60X) 

compared to the long reads (40X). Having higher read coverage 

provides an advantage in accurate parameter estimation with lower 

variance. Another factor that contributed to the better performance 

of short reads is the deficiency in read mapping to small contigs by 

long reads. The simulated assembly included a significant number of 

small contigs (<2kbp) in both zebra finch and human assemblies. 

However, the long reads were not properly mapped to these small 

contigs, leaving no room to determine if the small contigs were not 

false duplications.  
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While purge mers offers a more informative and 

sophisticated approach for identifying false duplications, 

performance of purge mers is heavily sensitive to the accuracy of 

parameter estimation and model fitting. Sampling bias is an 

important issue in Gaussian Mixture Models (GMM). Purge mers 

samples non-overlapping windows in contigs smaller than a specific 

threshold, but this threshold may vary across different datasets. 

Moreover, if falsely duplicated regions in the assembly are too 

small, the GMM may fail to identify the model for false duplication. 

Finding the optimal number of model components (K) in GMM can 

be challenging in the presence of complex assembly features. For 

example, a significant amount of repeats in the genome can disrupt 

the mixtures, making it hard to decide the K. Sequencing biases, 

such as GC-rich regions (Ross et al., 2013) or GA dropout 

(Formenti et al., 2022), can also lead to inaccurate false duplication 

identification. These regions can affect the estimation of k-mer 

counts from sequencing reads, leading to underestimation. As a 

result, the K* metric may shift to negative values, causing false 

positives in false duplication identification.  

In this study, purge mers showed better performance in 

partial data set and criteria. The cause of these discordance 

https://www.zotero.org/google-docs/?XPfAn2
https://www.zotero.org/google-docs/?Ncv4Jx
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between tools and data sets was not fully explained, it should be 

investigated in further research. 
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This chapter will be published elsewhere 

as a partial fulfillment of Byung June Ko’s Ph.D program. 

 

 

 

 

 

 

 

Chapter 5. A K-mer Counting Method 

Minimizing GC bias in Sequencing Reads 
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5.1 Abstract 

K-mers, substrings of length k derived from the genomic 

sequences, have been used to assess the quality of genome 

assemblies and quantify assembly errors. The multiplicity of k-

mers obtained from sequencing reads provides information about 

the expected number of occurrences of a particular k-mer in an 

assembly. However, the underestimation of multiplicity due to 

sequencing suppression in GC-rich regions can lead to a significant 

disparity between the true multiplicity of k-mers in a genome and 

the measured multiplicity based on short-read k-mer analysis. I 

propose a method that reduces the bias in k-mer multiplicities 

derived from sequencing reads by applying a weighting approach 

using a bias function. The bias function is constructed using read 

coverages of non-erroneous, single-copy genomic regions from 

zebra finch and human assemblies, then used to weight the k-mer 

multiplicities in the K* calculation for each species. As a result, the 

GC-rich regions in both assemblies exhibited a biased distribution 

of K* values prior to bias removal. However, after applying the 

proposed method to remove the bias, the K* distribution in these 

regions was corrected. 
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5.2 Introduction 

K-mers, which are substrings of genome sequences, have 

been widely used to quantify genome characteristics and evaluate 

genome assemblies (Nurk et al., 2022; Rhie et al., 2021, 2020). 

These applications rely on information about the count or 

multiplicity of k-mers, which indicates the number of occurrences 

of identical k-mers in both the assembly and sequencing reads. K* 

was introduced as a metric to assess whole or local regions of a 

genome assembly by quantifying erroneous regions, using the k-

mer multiplicities from both the assembly and reads (Formenti et 

al., 2022; Phillippy et al., 2008). 

In Chapter 4, I employed the K* metric of genomic regions as 

a correlated variable to identify false duplications (Ko et al., 2022). 

However, the evaluation using K* assumes uniform sequencing 

coverage along the genome, which is often not the case due to 

known k-mer biases (Formenti et al., 2022). Several sequencing 

biases have been reported from both short read and long read 

sequencing platforms. For instance, Ross et al. (2013) observed 

significant deviations from a uniform read coverage distribution 

along the GC proportion of the human genome for Illumina HiSeq 

and Ion Torrent PGM platforms. They showed significant drops in 

https://www.zotero.org/google-docs/?f5bp4u
https://www.zotero.org/google-docs/?w4mD9A
https://www.zotero.org/google-docs/?w4mD9A
https://www.zotero.org/google-docs/?E7zqKL
https://www.zotero.org/google-docs/?SaAk6l
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read coverage for genomic regions with extremely low and high GC 

proportions. This GC bias was also observed in several vertebrate 

species, and to be a cause of false sequence losses of promoter 

regions in the assemblies (Kim et al., 2022). PacBio platform was 

also reported about read coverage dropouts in GA-rich sequences 

in HiFi reads of human T2T assembly (Formenti et al., 2022; Nurk 

et al., 2022).  

Several suggestions have been proposed to address this 

issue.  For example, Formenti et al. (2022) demonstrated that long 

reads can help to mitigate bias from short reads as their 

complementary. Benjamini and Speed (2012) suggested a direct 

method to correct Illumina sequencing read coverage using GC-bias 

models estimated from human tissues. However, combining both 

short and long reads is limited to researchers who have access to 

both types of reads. Furthermore, the models need to be updated to 

accommodate advancements in library preparation or sequencing 

platforms. 

In this study, I estimated the sequencing bias of Illumina 

reads using the 10X-Linked platform in two vertebrate species, 

zebra finch and human. I then corrected k-mer multiplicities using a 

bias function derived from these estimates. I calculated the K* 

https://www.zotero.org/google-docs/?Uf1u6c
https://www.zotero.org/google-docs/?LA4iTu
https://www.zotero.org/google-docs/?LA4iTu
https://www.zotero.org/google-docs/?uhgm1W
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metric using both the normal k-mer count and the GC-bias 

corrected k-mer count at the whole-genome level, demonstrating 

the impact of the GC-bias removal method on K* calculations. 
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5.3 Materials and Methods 

5.3.1 Bias function estimation 

If we have information about the degree of suppression 

caused by GC contents in sequencing data, we can use this 

information as weights for removing GC bias removal in k-mer 

counting. For calculating GC bias-removed k-mer counts, we can 

begin with a simple read coverage model of a locus i. 

 

𝑅𝑒𝑎𝑑 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑙𝑜𝑐𝑢𝑠 𝑖 =  𝐶 × 𝑓(𝐺𝐶𝑖) + ℇi 

 

Where C is a constant of mean genome coverage of sequencing 

reads, and f(GC) is a function that describes the inhibitor effect 

caused by GC bias. "ℇ" is a random variation of read producing in 

sequencing process which is not related with GC bias. Based on the 

read coverage model, we can propose a simple approximate model 

for the copy number (or multiplicity) of a k-mer counted from 

sequencing reads in n loci as follows: 

𝐾𝑚𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 ≈ ∑ 𝐶 × 𝑓(𝐺𝐶𝑖) + ℇi

𝑛

𝑖=1

 

            ≈ ∑ 𝐶 × 𝑓(𝐺𝐶𝑖) + ℇi
𝑛
𝑖=1  
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As the sum of random variations "ℇ" is converged to zero when the 

count is enoughly large, the effects of GC inhibitions can be 

canceled-out by multiplying the reciprocal of the bias function 

value for each GC value of the reads that include the k-mer. To 

estimate GC biases, we can consider a model of read depth 

coverage obtained by mapping reads to the genome assembly in a 

locus with a GC proportion of x first. 

𝐷𝑒𝑝𝑡ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑥 = 𝐶 × 𝑓(𝐺𝐶𝑥) +  ℇ𝑥  +  𝑟𝑓𝑝  +  𝑟𝑓𝑛   

 

Where rfp is false positive in read mapping, and rfn is false negative. 

A difference between the read coverage model described above and 

the depth coverage here is that the depth coverage model should be 

considered to include the false positive and negative from the read 

mapping process. If we can calculate depth coverages from regions 

that rfp=0 and rfn=0, we can estimate the function value of f(GCx) 

by summing of the depth coverages from all n loci that share the 

same GC content (GCx) as follows: 

 

∑ 𝐷𝑒𝑝𝑡ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑥𝑖

𝑛

𝑖=1

= ∑ 𝐶 × 𝑓(𝐺𝐶𝑥𝑖) + ∑ ℇi

𝑛

𝑖=1

𝑛

𝑖=1

 

∴ 𝑓(𝐺𝐶𝑥) =
∑ 𝐷𝑒𝑝𝑡ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑥𝑖

𝑛
𝑖=1

𝐶 𝑛
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In this study, we selected regions that consisted of 1-copy k-mers 

and had K* = 0 in the assembly to obtain regions with rfp = 0 and rfn 

= 0. Using the equation mentioned above, we can estimate the 

function values for specific GC proportions, representing the degree 

of inhibition caused by GC contents during producing sequencing 

reads. The genome coverage constant C was approximated from the 

data by maximizing C*f(GCx) across various GC proportions, 

considering that GC content always contributes to suppression. 

Finally, a new k-mer count for a specific k-mer from reads m, 

incorporating the bias function f(GC), is calculated as follows: 

𝐺𝐶 𝐵𝑖𝑎𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝐾𝑚𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 = ∑
1

𝑓(𝐺𝐶𝑗)

𝑚

𝑗=1

 

 

5.3.2 Used data 

Two assemblies of vertebrate species, primary assembly of 

zebra finch (bTaeGut2) and human (maternal of mHomSap), were 

used for bias function estimation. The zebra finch assembly was 

assembled by VGP 2.0 pipeline with PacBio HiFi reads. The Human 

assembly was fully phased by VGP trio pipeline, and assembled 

using PacBio CLR reads. The bias functions were calculated from 
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depth-coverage profiles of primary assemblies by 10X Linked 

reads of the species mapping to each assembly. EMA (Shajii et al., 

2018) was used to map 10X Linked reads with barcode sequence. 

BWA (Li and Durbin, 2009) was used for read mapping without 

barcode following EMA standard pipeline. The mapping was multi-

processed by Parallel (Tange, 2011). Merging and sorting the read 

mapping file (.bam) was done by Sambamba and Samtools (Li et al., 

2009).  

 

5.3.3 K* calculation 

Meryl (Rhie et al., 2020) was used for genome-wide k-mer 

counting from assembly and 10X Linked reads. For calculating 

weighted k-mer counts with bias function, a new source code was 

developed with saving information of GC proportion of each read 

and each k-mer. K* was calculated from both normal k-mer 

counting (Formenti et al., 2022) and GC-bias removed k-mer 

counting methods. Diploid genome sequences by combining both 

paternal and maternal sequences were used for K* calculation. To 

calculate expected copy number of k-mer, Genomescope2.0 

(Ranallo-Benavidez et al., 2020) was used for generating a 

https://www.zotero.org/google-docs/?HX18vy
https://www.zotero.org/google-docs/?HX18vy
https://www.zotero.org/google-docs/?nVSrtG
https://www.zotero.org/google-docs/?cFNqLw
https://www.zotero.org/google-docs/?WwyPtn
https://www.zotero.org/google-docs/?WwyPtn
https://www.zotero.org/google-docs/?hgGvkd
https://www.zotero.org/google-docs/?A0E26g
https://www.zotero.org/google-docs/?HVQ9sR
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probability model distribution of k-mer multiplicities. Merqury 

(Rhie et al., 2020) was used for generating histogram of k-mer 

multiplicity from reads for Genomescope2.0. Bedtools (Quinlan and 

Hall, 2010) was used for single copy region merging and sequence 

extraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?tGmIm8
https://www.zotero.org/google-docs/?hcNt94
https://www.zotero.org/google-docs/?hcNt94
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5.4 Results and Discussion 

5.4.1 Bias function estimation 

For both the zebra finch and human assemblies, genomic regions 

spanning 100 and 764 Mbp, respectively, consisting of single-copy 

k-mers and exhibiting no signs of duplication or loss errors, were 

extracted. The read coverage profiles of 10X Linked reads mapped 

to these regions were utilized to estimate the function values of GC 

bias. In the case of the zebra finch assembly, the function values of 

the bias function ranged from 1.0 to 5.1, with the highest value 

observed at >88% GC proportion (Figure 5. 1a). On the other hand, 

in the human assembly, the function values ranged from 1.0 to 7.6, 

with >90% GC proportion showing the highest value (Figure 5. 1b). 

These findings align with previous knowledge of GC bias in short-

read sequencing (Ross et al., 2013). It is known that there is a 

moderate inhibition of sequencing in regions with GC proportions 

higher than 40, and the inhibitory effect gradually increases as the 

GC proportion reaches extremely high levels. 
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Figure 5. 1 Mean depth coverage and bias function with along GC 

proportions for a, zebra finch, and b, human assemblies. 
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5.4.2 K* distributions along GC proportions 

K* is a metric that can be used for evaluating assembly in 

both genome-wide and regional level. A positive value of K* 

indicates the presence of false collapses in the assembly, while a 

negative value suggests false expansions (Formenti et al., 2022). 

The effectiveness of K* relies on the assumption that sequencing 

reads are uniformly produced throughout the genome. However, a 

negative K* value can also indicate unexpectedly low expected copy 

numbers of k-mers in the assembly, implying the possibility of 

sequencing suppression affecting a particular k-mer.  

In this study, I calculated K* distributions based on the mean 

GC proportion of k-mers, categorized into three levels: moderate, 

high, and extremely high GC proportions. The distribution of k-mer 

counts without GC bias removal revealed that the highest frequency 

of K* values peaked at 0 for both moderate and high GC level k-

mers (Figure 5. 2a, c). However, in the distribution of extremely 

high GC k-mers, the peak value was -1. This indicates that k-

mers derived from sequencing reads in high GC regions were 

affected by either false duplication or sequencing suppression. 

While false losses are commonly associated with GC-rich regions 

(Kim et al., 2022), it is less known that false duplications correlate 

https://www.zotero.org/google-docs/?IzeknE
https://www.zotero.org/google-docs/?Z4dXRn
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with such regions. Therefore, the k-mers in the extremely high GC 

category seem to be affected by suppression in the sequencing step 

rather than false duplication. These patterns were also represented 

in K* distribution of human genome assembly. 

On the contrary, when using GC-bias removed k-mers, K* 

distributions of all GC categories in both zebra finch and human 

assemblies exhibited a peak at 0 for the highest frequency (Figure 

5. 2b, d). This indicates that the K* metrics for extremely high GC 

regions were corrected, eliminating the unexpected -1 values in 

the assemblies. Although I did not calculate K* using long-read 

sequencing data such as PacBio HiFi, it has been reported that 

unexpected dropouts in read coverage profiles occur in GA-rich 

regions of the human T2T assembly (Formenti et al., 2022; Nurk et 

al., 2022). Therefore, for more extensive application and testing, it 

would be valuable to include various sequencing data from other 

platforms such as PacBio and Oxford Nanopore Technology in 

future research. In recent mega-scale genome projects, k-mer 

counting has become a common method for assessing assembly 

quality and conducting regional evaluations (Nurk et al., 2022; Rhie 

et al., 2021). In Chapter 4, I used the K* metric to identify false 

duplications. However, these evaluations assume that there is no 

https://www.zotero.org/google-docs/?IGWb0o
https://www.zotero.org/google-docs/?IGWb0o
https://www.zotero.org/google-docs/?TAI5wU
https://www.zotero.org/google-docs/?TAI5wU
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sequencing bias across the entire genome. Similarly, other popular 

assembly evaluation tools also depend on this assumption (Formenti 

et al., 2022; Rhie et al., 2020). The GC-bias removed k-mer 

counting method proposed in this study can serve as a solution to 

prevent biological misinterpretation that may occur in high GC 

regions of genome assemblies. 

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?eJIbYF
https://www.zotero.org/google-docs/?eJIbYF
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Figure 5. 2 K* distribution across GC proportion categories. (a) K* 

distributions without GC-bias removal in the zebra finch assembly. 

(b) K* distributions with GC-bias removal in the zebra finch 

assembly. (c) K* distribution with GC-bias in the human assembly. 

(d) K* distributions with GC-bias removal in the human assembly. 

GC proportion categories: moderate (20%-40%), high GC (50%-

80%), extremely high GC (>80%). 
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General discussion 

In this study, I investigated the primary characteristics of false 

duplications in genome assemblies and their impact on gene 

annotations and downstream analyses. I found that false duplications 

exhibit specific patterns such as lower read coverage, presence of 

gaps between duplicated pairs, and discordant linked read pairs. 

These false duplications were more prevalent in previous Sanger-

based assemblies compared to the VGP PacBio-based long-read 

assemblies. Heterozygosity levels and sequencing errors were 

identified as major sources of false duplications. These false 

duplications resulted in mis-annotations of genes, exons, and 

chimeric gene gains, leading to misinterpretations in comparative 

genomics and genome assembly-based research. Haplotype phasing 

and careful evaluation of assemblies were recommended to mitigate 

false duplications. The VGP assembly pipeline has been updated to 

incorporate new sequencing technologies, such as HiFi reads, which 

are better to reduce false duplications caused by sequencing errors. 

Future genomic studies should prioritize haplotype-phased 

assemblies free of false duplications. 

The findings also revealed that heterotype false duplications are 

more prevalent than homotype duplications, highlighting the need for 
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improved haplotype separation in genome assemblies. Scanning 

regions around gaps and utilizing various profiling techniques can 

help identify false duplications. Trio data were found to be effective 

in reducing false duplications, but the availability of parental data is a 

limiting factor. HiFi-HiC assembly can be one of the alternatives for 

the limitation.   

Previous false duplication identification methods relied on read 

coverage alone, but incorporating additional metrics such as k-mer 

analysis can improved the accuracy of false duplication identification. 

Long read platform is more prevalently used in genome assembly 

projects recently, but short reads performed better than long reads 

in identifying false duplications in human data with purge mers. 

Furthermore, this study highlighted the impact of GC bias in k-mer 

counting. The proposed GC-bias removed k-mer counting method 

provides a solution to mitigate underestimation of counting in high GC 

regions of genome assemblies. Continuous improvement of 

sequencing and assembly pipelines, including the integration of new 

technologies and refined evaluation methods, is crucial for generating 

accurate reference genome assemblies with objective evaluation. 

In summary, this study emphasized the significance of addressing 

false duplications in genome assemblies to ensure reliable gene 
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annotations and accurate downstream analyses. It highlighted the 

characteristics of false duplications, identified their sources, and 

proposed strategies for their detection and prevention. These 

findings contribute to the ongoing efforts in creating high-quality 

reference genomes and emphasize the importance of haplotype-

phased assemblies free of false duplications in genomics research. 
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국문 초록 

 

이배체 유전체 조립 과정에서의 인위적 오류 식별과 

교정을 위한 생물정보학적 접근 

 

고 병 준 

농생명공학부 바이오모듈레이션 전공 

서울대학교 대학원 

 

참조 유전체에 존재하는 조립 오류는 생물학적 해석의 오류로 이어진다. 

최근 염기서열 해독 기술의 발전과 더불어 대규모 유전체 프로젝트가 

진행중이다. 척추동물 유전체 프로젝트(VGP)의 경우 척추동물 

6 만 6 천여종의 염기서열을 해독하는 것을 목표로 한다. 또한, 유전체 해독 

시 염기서열 분석 오류와 유전체 조립을 최소화하는 고품질 표준유전체 

구축을 추구한다. 최근의 Telomere to Telomere 컨소시엄, Earth 

Biogenome Project 등 국제 규모 유전체 프로젝트 역시 VGP 가 추구하는 

고품질 표준유전체 구축의 중요성을 강조하는 등 유전체의 오류를 개선하기 

위한 노력이 연구자들 사이에서 활발하다. 제 2 장에선 VGP 와의 협업을 

통해 유전체 조립오류에서 발생하는 허위 복제 오류를 과거 짧은 염기서열 
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길이를 기반으로 구축된 유전체와 최근의 긴 길이 염기서열 분석기법을 통해 

구축된 참조 유전체 내에서 발견하였다. 그 결과, 짧은 길이 기반의 염기서열 

분석법에서 수천개에 달하는 허위 복제 유전자를 발견하였다. 또한 

이형접합성 및 염기서열 분석 오류가 허위 복제 오류를 발생시키는 중요한 

요인으로 작용 한다는 것을 확인하였으며, 이를 통해 향후 참조유전체 구축 

시 허위 복제 오류를 감소시키기 위한 방향을 제시하였다. 뿐만 아니라 허위 

복제가 포함된 표준유전체를 바탕으로 이루어진 연구사례를 제시하여, 허위 

복제 교정의 중요성을 강조하였다. 제 3장에선 VGP 및 Galaxy Project와의 

협업을 통해 최근 각광받는 PacBio HiFi 염기서열 분석법의 이점을 허위 

복제 및 손실 두가지 측면에서 PacBio CLR 염기서열 분석방법과 

비교하였다. 제 4 장에선 허위 복제 교정 프로그램을 새롭게 개발하였으며, 

가상의 유전체를 생산을 통해 기존 허위 복제 교정 프로그램과의 성능을 

비교하였다. 새롭게 개발된 프로그램 Purge mers 는 기존의 염기서열 리드 

깊이(depth)기반 분석법과 더불어 유전체상의 허위복제 및 손실 여부를 k-

mer 단위에서 알 수 있는 K*를 허위 복제 탐색에 이용한다. 그 결과, Purge 

mers 의 성능이 기존의 프로그램보다 뛰어난 몇몇 경우를 발견하였다. 제 

5 장에선 유전체상의 높은 GC 비율에 의해 염기서열 리드에서 계산된 k-

mer 의 빈도가 적게 측정되는 편향을 보정하는 방법론을 제시하였다. 편향이 

제거되지 않은 k-mer 측정결과는 GC 비율이 80%이상인 유전체 지역에서 

K*가 -1 일때의 빈도가 가장 높은 결과를 나타냈다. 반면, 이 연구에서 

제시한 편향이 제거된 k-mer 측정결과는 GC 비율이 80%이상인 유전체 
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지역에서 K*가 0 일때의 빈도가 가장 높은 결과를 나타냈다. 앞선 

연구결과들을 종합하여 정리하자면 이 연구에서는 허위 복제 오류 교정의 

중요성을 강조하였으며, 최적화된 염기서열 해독 기법 및 유전체 구축 방법 

제시, 프로그램 및 방법론 개발 등을 통해 표준유전체 내 허위 복제 오류 

해결방법을 제안하였다. 

 

주요어 : 허위 복제, 페이징 오류, 케이머, 유전체 조립 오류, 조립 유전체 

정제, 척추동물유전체프로젝트 

학번 : 2018-34934 
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