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ABSTRACT

Dysbiosis in the gut microbiota of

patients with rheumatoid arthritis

Eun Ha Lee
Interdisciplinary Program in Agricultural Genomics
The Graduate School

Seoul National University

The gut microbiota is a complex community of diverse microorganisms
comprising bacteria, viruses, fungi, and other microbes in the human gastrointestinal
tract. The gut microbiota plays a pivotal role in human health and disease through its
close relationship with the gut environment. Dysbiosis, an imbalance in the gut
microbiota, has been linked to various diseases. This thesis discusses the role of gut
bacteria and fungi in metabolic disorders, neurological disorders, immune regulation,
and drug metabolism. The gut microbiota is essential for nutrient absorption and
energy metabolism; indeed, dysbiosis is a significant driver of the development of
cardiovascular and metabolic disorders. In addition, it can induce inflammatory
responses that may result in neuronal damage via the gut-brain axis and is associated

with immune dysregulation.



The gut microbiota has a critical role in immune regulation, and there is a
significant body of research on the interaction between gut microbiota and
autoimmune diseases. Rheumatoid arthritis (RA) is a representative autoimmune
disease closely associated with gut microbiota. Although the detailed mechanisms
have not been fully established, studies indicate that fungal cell wall components
may be critical to the pathogenesis of RA. Thus, the composition of the fecal
microbiota in patients with RA and healthy subjects was examined to determine
potential correlations between RA and changes in the gut microbiota. It was found
that changes in the fungal community were more pronounced than those in the
bacterial community in patients with RA. Specifically, in patients with RA, the
proportion of Aspergillus was lower, and that of Candida was significantly higher
than in healthy subjects. Moreover, the analysis of microbial community structure
indicated that the fungal community had a more critical role than the bacterial
community in patients with RA. These findings suggest that fungi play a crucial role

in the gut microbiota and in the pathogenesis of RA.

The gut microbiota can influence drug efficacy or lead to adverse drug effects. Gut
bacteria are reported to impact drug metabolism, and research into personalized
therapies to make use of this knowledge is ongoing. In recent studies, efforts have
been made to resolve imbalances in the gut microbiota as a means of disease
prevention and treatment. For example, in patients treated with prebiotics or
probiotics, partial restoration of the gut microbiota was observed and resulted in

improved immune regulation and symptom relief.

il



In this study, the impact of imbalances in the gut microbiota on the disease was
explored, providing a basis for research into future treatments. The significant role
of gut fungi in RA was confirmed. Therefore, the importance of research into the gut
fungal community is proposed to support the development of new therapies for this
disease. Multidisciplinary studies of the gut microbiota should afford novel insights

into preventing and treating this disease.

Keywords: Gut microbiota, Candida, Aspergillus, Dysbiosis, Rheumatoid arth

ritis

Student number: 2017-37642
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CHAPTER

Gut Dysbiosis and Its Impact on Human Disease



ABSTRACT

The human microbiome is closely related to one’s health, and the gut microbiota plays
the most crucial role. This relationship significantly influences various aspects of human
physiology, such as the immune system, nutritional status, and metabolic activities. While
the ideal composition and function of gut microbiota contribute to a healthy life, dysbiosis
(an imbalance in the microbial community) increases the risk of developing various
diseases. This review discusses the roles of gut microbiota, both the bacterial and fungal
communities, within the human body. The impact of gut dysbiosis on metabolic disorders,
neurological diseases, and immune regulation is explored. Furthermore, the influence of
gut bacterial communities on drug metabolism is investigated, with evidence indicating
that the observed variability in drug responses among individuals is attributed to the gut
microbiota. A multifaceted examination of gut microbiota may offer new insights for

developing disease treatments.



INTRODUCTION

Humans are exposed to numerous microorganisms that are both beneficial and harmful
to our health. The human microbiota refers to both the microorganisms we come into
contact with in the external environment and those that reside within our bodies. It
comprises bacteria, viruses, and fungi, and their numbers were once believed to exceed 100
trillion, far more than human cells (Bickhed et al., 2005). However, this figure is now
estimated at approximately 39 trillion microorganisms, slightly more than the 30 trillion
human cells in our body (Sender et al., 2016). The microbiota exist in different
microbiomes and perform various functions, including decomposing inorganic substances
such as dietary fibers (Baky et al., 2022), regulating the immune system (Kamada et al.,
2013), and producing vitamins (LeBlanc et al., 2013). The composition of the human
microbiome differs among individuals and is influenced by age, diet, health status, and
the environment (Qin et al., 2010;Consortium, 2012;Yatsunenko et al., 2012).
Consequently, the microorganisms comprising the human microbiota have a significant

impact on each other’s survival and health beyond mere mutualism.

There has been considerable research on the effects of human microbiota on health. The
advent of next-generation sequencing technologies led to an explosion of studies yielding
significant results. In particular, the Human Microbiome Project (HMP), led by the US
National Institutes of Health, collected and analyzed microbial community samples from

five sites (oral, skin, digestive, reproductive, and respiratory) in thousands of individuals



(Consortium, 2019). This project reported on the diversity and distribution of human
microbial communities, their changes, and their associations with disease onset. The HMP
also developed various technologies and methodologies for analyzing human microbial
community data, contributing to the advancement of microbial community research by

enhancing standardization and the comparability of analyses of microbial communities

The gut is the organ with the highest concentration of microorganisms in the human body.
These microorganisms are called gut microbiota, consisting of bacteria, viruses, fungi, and
protozoa. Gut microbiota are crucial in maintaining barrier functions and promoting a
healthy environment within the gastrointestinal tract (Alam and Neish, 2018). Recent
studies have shown that gut microbiota are involved not only in preserving barrier functions
and promoting a healthy environment within the gastrointestinal tract but also in a wide
range of diseases, including autism spectrum disorder (ASD), depression, peripheral
vascular disease, hypertension, obesity, metabolic syndrome, and inflammatory bowel
disease (IBD), as well as drug metabolism (Lynch and Pedersen, 2016;Dhurjad et al., 2022).
Dietary intake has been shown to significantly impact the composition and functionality of
the gut microbiota in humans (Rinninella et al., 2023). In this review, we examine the roles
of gut microbiota, classified into bacteria and fungi; the mechanisms underlying the
interaction between gut microbiota and diseases; and the impact of gut dysbiosis on disease

development and progression.



I. Functions and contributions of gut microbial community

Bacterial communities constitute the majority of gut microbiota in the human body and
play a crucial role in nutrient absorption and energy metabolism. Gut bacteria collaborate
to digest beneficial components such as dietary fibers and complex carbohydrates, and
decompose simple carbohydrates, proteins, and lipids into simple unsaturated fatty acids
that serve as an energy source in the body (Rowland et al., 2018). Moreover, they synthesize
vitamins, including the vitamin K and B groups (LeBlanc et al., 2013), and produce
appetite-regulating hormones, such as leptin and ghrelin, which affect energy balance and
body weight management (Han et al., 2021). Thus, gut bacterial dysbiosis may disrupt
nutrient absorption and energy metabolism. For example, obese individuals harbor a lower
number of microorganisms than healthy individuals, and their gut microbiota is
characterized by a higher abundance of Firmicutes, which are involved in energy extraction
(Kallus and Brandt, 2012). Several studies have demonstrated that providing prebiotics or
probiotics to obese patients partially restores nutrient absorption and energy metabolism
(Megur et al., 2022). To summarize, the gut bacterial community is crucial for nutrient

absorption and energy metabolism in the human body.

The gut bacterial community is pivotal in preserving intestinal microbial homeostasis
and has three main functions. First, gut bacteria modulate the growth of beneficial
microorganisms and curb that of pathogenic microorganisms. Beneficial microorganisms,
such as Bifidobacterium and Lactobacillus, trigger the immune system and impede the
proliferation of pathogenic microorganisms (Turroni et al., 2014;Nishida et al., 2018). In

contrast, pathogenic microorganisms such as Clostridium difficile may disrupt the gut



microbial balance, leading to gastrointestinal disorders (Samarkos et al., 2018). Second,
gut bacteria preserve the intestinal barrier’s function. The intestinal barrier protects against
the infiltration of pathogenic microorganisms and regulates nutrient absorption, upholding
the intestinal milieu. Gut bacteria produce essential nutrients to maintain this barrier
function and activate the immune system to reinforce this role (Alam and Neish, 2018).
Finally, by metabolizing dietary fibers and various ingested proteins, gut bacteria regulate
and preserve intestinal pH, which is critical for managing the growth of beneficial and

pathogenic microorganisms (Patterson et al., 2014).

Since the gut bacterial community is crucial for maintaining homeostasis of the gut
microbiota, dysbiosis is associated with various diseases. The preservation of an optimal

gut bacterial community necessitates the adoption of suitable dietary and lifestyle habits.

I1. Association between gut bacterial dysbiosis and diseases

Investigation of the role of the gut bacterial community in the human body has revealed
that dysbiosis could lead to the development of diseases. Numerous studies have
demonstrated that intestinal dysbiosis is connected with or might be a consequence of the
onset of several human disorders (Lozupone et al., 2012;Lynch and Pedersen, 2016). Table
1 summarizes bacteria associated with specific diseases and categorizes the effect of gut

bacterial community dysbiosis by disease.



Metabolic disorders

The association between the gut bacterial community and metabolic disorders, such as
diabetes, obesity, and hyperlipidemia have been demonstrated. Regarding metabolic
disorders, gut bacteria are involved in inducing insulin resistance or promoting insulin
sensitivity in metabolic disorders, such as diabetes, obesity, and hyperlipidemia (Caricilli
and Saad, 2013;Khan et al., 2014). Maintaining an ideal composition of the bacterial
community may increase microbial populations that promote insulin sensitivity, leading to
the prevention and treatment of diabetes. Additionally, certain gut bacteria are associated
with weight management by regulating genes involved in energy metabolism and
modulating metabolic activity, thereby influencing changes in body weight (Donohoe et al.,
2011), as well as cholesterol metabolism, which could be a possible mode of prevention
and treatment of hyperlipidemia (Vourakis et al., 2021). The gut bacterial community also
affects liver metabolism and is associated with liver diseases, such as fatty liver and
cirrhosis (Chassaing et al., 2014). Therefore, improving the composition of the gut
microbiome may be a promising approach for preventing and treating liver diseases.
Vegetarians with a high intake of dietary fiber have been reported to have more abundant
gut bacteria and a lower risk of metabolic disorders (Tomova et al., 2019). Thus, detailed
investigations are necessary to explore the interaction between metabolic disorders and the

gut bacterial community.



Neurological disorders

The gut microbiota synthesizes vitamins, neurotransmitters, and short-chain fatty acids
(SCFAs), which regulate human metabolism and brain function (Cryan and Dinan,
2012;Badawy, 2017). These signaling molecules are conveyed to the brain via the vagus
nerve and other central nervous system pathways (Kennedy et al., 2017), modulating the
interaction between the nervous system and the gut microbiota through the gut-brain axis.
Such molecules include redox-active metabolites, SCFAs, and hormone-like molecules.
Redox-active metabolites are signaling molecules produced by the catabolism of amino
acids like tyrosine, phenylalanine, and tryptophan. They inhibit inflammatory responses in
the gut—brain axis and affect mood and behavior (Wu et al., 2022). A variety of SCFAs are
produced from the breakdown of dietary fiber by gut microbiota. These regulate appetite
and metabolism via the gut-brain axis (Han et al., 2021). The structure of hormone-like
molecules produced by the gut microbiota resembles various hormones, such as growth

hormone and insulin, and they modulate hormone levels (Clarke et al., 2014).

Gut-brain axis dysfunction can contribute to the development and progression of various
brain disorders. This happens when gut bacterial dysbiosis induces inflammatory responses,
leading to changes in hormone and signaling molecule levels and subsequent brain function,
promoting the onset and progression of depression and anxiety disorders (Foster and
Neufeld, 2013;Rogers et al., 2016). Furthermore, gut microbiota dysbiosis has been
reported to alter the production of signaling molecules related to neurodevelopment and
alterations in brain function in cases of ASD, a developmental disorder of the central

nervous system (Fowlie et al., 2018). Children with ASD have been reported to show a

8



lower ratio of Akkermansia, Bacteroides, Bifidobacterium, and Parabacteroides and an
increased ratio of Faecalibacterium compared with neurotypical children (Xu et al., 2019).
However, the exact role of gut bacterial dysbiosis in ASD remains unclear. Two of the most
common neurodegenerative diseases, Alzheimer and Parkinson disease, have also been
linked to inflammatory responses induced by gut bacterial dysbiosis, which can damage
neurons in the brain (Lin et al., 2019;Sochocka et al., 2019). Accordingly, therapeutic
approaches that target the gut microbiota are currently under investigation. Notably, the
consumption of prebiotics or probiotics has been reported to exert positive effects on
emotional and cognitive functions that are closely linked to brain function (Liu et al.,

2015;Dahiya and Nigam, 2022).

Immune regulation

The immune system is modulated through a complex with the gut microbiota. First and
foremost, gut bacteria activate immune-regulatory cells such as T-helper (Th) 17 cells,
regulatory T-cells (Tregs), and Th1 cells, which are vital for maintaining and regulating an
appropriate immune response (Stockinger and Veldhoen, 2007;Zhang et al., 2014;0Omenetti
and Pizarro, 2015;Plitas and Rudensky, 2016;Sun et al., 2018). Additionally, gut bacteria
produce immune-regulatory proteins. For example, Lactobacillus reuteri, induces toll-like
receptor 2 protein in the gut, promoting the generation and activation of Th17 cells (Jia et
al., 2020). Furthermore, Bacteroides fragilis produces polysaccharide A, an extracellular
adhesion molecule that stimulates the generation and activation of Treg cells in the gut

(Kayama and Takeda, 2014). Porphyromonas gingivalis and L. rhamnosus interact with

9



Treg cells in the gut, playing a significant role in gut immune regulation (Jia et al. 2020).
Thus, the gut microbiota performs a crucial function in immune regulation, and the
interplay between the gut bacterial community and the immune system provides valuable

insights for developing prophylactic and therapeutic interventions for relevant diseases.

Drug metabolism

Emerging evidence suggests that not only individual biological characteristics but also
interactions with the gut microbiota determine the effects and side effects of drugs. Thus,
the gut bacterial community affects drug absorption, metabolism, and toxicity, and this has
been newly proposed as evidence for explaining differences in an individual’s response to
drugs (Zimmermann et al., 2019a). Gut bacteria can express drug-metabolizing enzymes
affecting the activation or inactivation of drugs, which might increase or decrease their
effects (Wilson and Nicholson, 2017). Moreover, gut bacteria may also biotransform
phytochemicals such as ginsenosides, catechins, and quercetin, leading to differences in the
efficacy of botanical drugs based on nationality or race (Santangelo et al., 2019).
Additionally, some gut bacteria could facilitate or impede drug absorption, influencing
bioavailability and duration of action (Tuteja and Ferguson, 2019). The types of gut bacteria
that affect drug metabolism are highly diverse, and representative examples are

summarized in Table 2.

Thus far, we have explored the role of the gut bacterial community and how it impacts

disease. It is critical in maintaining overall health and well-being. Understanding gut

10



bacteria interactions and regulating their composition may be helpful for disease prevention

and improving health.
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Table 1. Alterations in gut bacterial abundance associated with human diseases

Disease
Significant shifts in bacterial community composition Reference
Class Subtype
Actinobacteria, Bacteriodetes, Escherichia coli, L. acidophilus,
Type 2 diabetes L. gasseri, L. salivarius T Bondy, 2023
Lactobacillus, L. amylovorus
Eubacterium rectale, Clostridium coccoides, Lactobacillus
Metabolic reuteri, Akkermansia muciniphila, Clostridium histolyticum, and ~ Gomes et al., 2018
disorders , Staphylococcus aureus T
Obesity
Firmicutes and Actinobacteria T
Tseng and Wu, 2019
Bacteroidetesd
E. coli and EnterobacterT Moreno-Indias et al.,
Hyperlipidemia
Lactobacillus, Faecalibacterium and Roseburiad 2016
Neurological Algheimer's Collisella, Alistipes, Barnesiella, Odoribacter, Bilophila,
. Escherichia, Shigella, Phascolarctobacterium, Gemella, Blautia, =~ Sochocka et al., 2019
disorders diseases

and Subdoligranulum?

12
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Bifidobacterium, Adlercrutzia, Clostridium, SMB53, Ccll5,

Turicibacter, Eubacterium, Lachnoclostridium, and Roseburial

Parkinson's

diseases

Lactobacillaceae, Barnesiellaceae, Enterococcacea,
Bifidobacteriaceae, Christensenellaceae, Tissierellaceae,
Enterobacteriaceae, Lachnospiraceae, Pasteurellaceae, and
Verrucomicrobiaceae™

Bacteroidetes, Prevotellaceae, Erysipelotrichaceae, Clostridium-

coccoides, and Bacteroides fragilisy

Elfil et al., 2020

Autism spectrum

disorder (ASD)

B. fragilis, Porphyromonas, Clostridium perfringens, Roseburia,
Dorea, S. thermophiles, Prevotella, and Enterobacteriaceael
Oscillospira, Subdoligranulum, Turicibacter, Dialister,

Veillonella, and Bifidobacterium fragilisd

Ho et al., 2020

Autoimmune

disease

Type 1 diabetes

Bacteriodetes and E. coliT

Bondy, 2023

Inflammatory
bowel disease

(IBD)

Ruminococcus gnavus, Enterobacteriaceae, E. coli,
Proteobacteria, Fusobacterium, Streptococcus, Veillonella,
Peptostreptococcus, Campylobacter, Klebsiella pneumonia,
Candida glabrata, and EnterococcusT

Faecalibacterium prausnitzii, Ruminococcus, Cyanobacteria,
Flavobacterium, Oscillospira, Roseburia, Prevotella copri,

Coprococcus, Dorea, Blautia, and Eubacteriumd

Upadhyay et al., 2023

13



Rheumatoid

arthritis

Bacteroides sp., Coprobacillus sp., Gardnerella spp., Prevotella
spp., Lactobacillus sp., Clostridium asparagiforme,
Holdemania- filiformis, Eggerthella lenta, Gordonibacter-
pamelaeae, Ruminococcus lactaris, Bacteroides sartorii, and
Porphyromonas somerael

Bacteroides, Haemophilus sp., Veillonella sp., Klebsiella
pneumoniae, Coprococcus catus, Dialister invisus, Sutterella-
wadsworthensis, Megamonas hypermegale, Lactobacillus-

sanfranciscensis, and Bifidobacterium bifidum<

Miyauchi et al., 2023

Sjogren’s

syndrome

Proteobacteria, Actinobacteria, Bacteroidetes, Escherichia-
Shigella, Sardovia, Veillonella, Insteinimonas, Lactobacillales,
E.- coli, Lactobacillus phage Sal3, Lactobacillus reuteri,
Lactobacillus gasseri, Streptococcus lutetiensis, Streptococcus-

mutans, Scardovia wiggsiae, and Fusobacterrium ulcerans™

Firmicutes, Lactobacillales, and Lactobacillus gasserii«

Mendez et al.,
2020;Wang et al., 2023
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Table 2. Biotransformation of pharmaceuticals by gut microbiota

Biotransformation Therapeutic
Drug Implicated bacteria Reference
type applications
' Peppercorn and
Crohn's disease and Clostridium and Eubacterium
Sulfasalazine Goldman, 1972;Sousa
Rheumatoid arthritis ~ spp.
etal., 2014
Clostridium and Eubacterium Wadworth and Fitton,
Olsalazine Ulcerative colitis
Spp- 1991
Prodrug activation Clostridium and Eubacterium
Balsalazide IBD Chan et al., 1983
Spp.
Cardiovascular
Lovastatin disease and Not Applicable Yoo et al., 2014
Hyperlipidemia
Loperamide oxide  Chronic diarrhea Not Applicable Lavrijsen et al., 1995
o Cardiovascular Haiser and
Digoxin ) Eggerthella lenta
disease Turnbaugh, 2013
Inactivation
) Hepatitis C  virus _
Deleobuvir ) ' Not Applicable McCabe et al., 2015
infection
15



Antibiotic and

Metronidazloe ) Clostridium perfringens Koch et al., 1979
Antiprotozoal
Epacadostat Cancer Not Applicable Boer et al., 2016
o o Zimmermann et al.,
Brivudine Antiviral drug B. thetaiotaomicron
2019b
. Bacteroides, Clostridium, and
Diclofenac NSAID Saitta et al., 2014
Bifidobacterium spp.
Bacteroides, Clostridium, and
Indomethacin NSAID Saitta et al., 2014
Enhanced toxicity Bifidobacterium spp.
Irinotecan Cancer E. coli Wallace et al., 2010
Bacteroides, Clostridium, and )
Ketoprofen NSAID Saitta et al., 2014
Bifidobacterium spp.
Nitrazepam Anxiety and Insomnia  Clostridium leptum Rafii et al., 1997
Sorivudine Antiviral drug Not Applicable Okuda et al., 1998

*: Non-steroidal anti-inflammatory drugs

16



II1. Human diseases influenced by the gut mycobiota

In recent years, the importance of studying the various fungi that inhabit the human gut
has started to receive attention, as research in this area was primarily focused on studying
gut bacteria. These fungi, collectively called the gut mycobiome, have been found to exist
in more significant quantities within the gut than previously recognized (Hallen-Adams
and Suhr, 2017). The interaction between gut fungi and bacteria plays a critical role in
maintaining the homeostasis of gut microbiota. After exposure to antibiotics or other drugs,
some fungal species can inhibit bacterial growth by blocking the secretion of growth factors

or consuming nutrients that bacteria need to thrive (Chin et al., 2020).

Dysbiosis of the gut microbiota may lead to excessive fungal growth and the
development of inflammatory diseases. For example, gut fungi dysbiosis has been
associated with IBD. Although the exact cause of IBD remains unclear, extensive research
has documented the role of dysbiosis in the gut (Sokol et al., 2017;Beheshti-Maal et al.,
2021). Excessive proliferation of certain fungal species, such as Candida albicans, has been
closely linked to the development of IBD. Additionally, C. albicans plays a role in
promoting the growth and survival of colon cancer cells (Zhu et al., 2021), and its toxin,
candidalysin, induces neutrophil and interleukin 17 responses, which may affect various
inflammatory diseases (Ho et al., 2021). Furthermore, gut fungal dysbiosis with an increase
in the Candida genus has also been associated with neurological disorders, such as Rett
syndrome, ASD, schizophrenia, and bipolar disorder (Chin et al., 2020). Similar to gut

bacteria, gut fungi are also associated with dietary and lifestyle changes. Excessive sugar

17



intake, low dietary fiber intake, antibiotic use, and stress may lead to gut fungal dysbiosis
(Hallen-Adams and Suhr, 2017;Markey et al., 2020;Seelbinder et al., 2020), which has been
linked to obesity and metabolic disorders (Mar Rodriguez et al., 2015). However, research
on the role of gut fungi and gut fungi dysbiosis in disease is still in its early stages, so the
exact mechanisms are not yet well understood. Since the relationship between human gut
fungi and disease is complex, specific research on the association of each fungal species

and disease is necessary.
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PERSPECTIVE

Gut microbiota are crucial in maintaining the balance of intestinal microorganisms
and are closely related to health, including nutrient absorption and energy
metabolism. Findings from the HMP have provided a basis for understanding the
diversity and function of gut microbiota and uncovered the association between gut
dysbiosis and several diseases, including metabolic syndrome, neurological
disorders, digestive diseases, and immune diseases. Current studies have focused on
restoring gut dysbiosis to prevent or treat diseases. Furthermore, the use of prebiotics
or probiotics enhances nutrient supply and immune regulation and alleviates various
diseases, such as IBD, diabetes, obesity, and neurodegenerative diseases.
Collectively, these findings indicate that gut dysbiosis is an attractive target for
developing disease therapies. However, studying the gut microbiota has limitations.
Most rely on bioinformatics to predict the composition of the gut microbiota, and
research on how gut microbiota causes specific diseases needs detailed
investigations. Although various mechanistic studies are underway, they are
predominantly conducted on animal models and may not be directly applicable to
humans. The study of the gut mycobiome may be the solution, as it represents a
missing link in the correlation between gut microbiota and human diseases. Thus, it
is essential to recognize the importance of the mycobiome in microbiota research

and to adopt a multidisciplinary approach in future studies.
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CHAPTER 11

Dysbiotic but nonpathogenic shift in the fecal

mycobiota of patients with rheumatoid arthritis

This chapter was published in Gut Microbes.

Lee. et al. (2022) Gut Microbes. 14(1): €2149020.

31



ABSTRACT

Rheumatoid arthritis (RA) is closely associated with the oral and gut microbiomes.
Fungal cell wall components initiate inflammatory arthritis in mouse models.
However, little is known regarding the role of the fungal community in the
pathogenesis of RA. To evaluate the association between RA and the gut microbiome,
investigations of bacterial and fungal communities in patients with RA are necessary.
Therefore, we investigated the compositions and associations of fecal bacterial and
fungal communities in 30 healthy controls and 99 patients with RA. The relative
abundances of Bifidobacterium and Blautia decreased, whereas the relative
abundance of Streptococcus increased, in patients with RA. The relative abundance
of Candida in the fecal fungal community was higher in patients with RA than in
healthy controls, while the relative abundance of Aspergillus was higher in healthy
controls than in patients with RA. Candida species-specific gene amplification
showed that C. albicans was the most abundant species of Candida. Ordination
analysis and random forest classification models supported the findings of structural
changes in bacterial and fungal communities. Aspergillus was the core fecal fungal
genus in healthy controls, although Saccharomyces spp. are typically predominant
in Western cohorts. In addition, bacterial-fungal association analyses showed that
the hub node had shifted from fungi to bacteria in patients with RA. The finding of
fungal dysbiosis in patients with RA suggests that fungi play critical roles in the fecal

microbial communities and pathogenesis of RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects the
synovium in joints. Synovial thickening leads to the destruction of joint cartilage and
bone (Harris Jr, 1990;Klareskog et al., 2009;Smolen et al., 2018). Subsequently, RA
can worsen and affect other joints, thereby increasing the risks of osteoporosis,
Sjogren syndrome, heart diseases, and lung diseases (Haugeberg et al.,
2000;Solomon et al., 2006;Tsuchiya et al., 2011;He et al., 2013). Although the
pathogenesis of RA is incompletely understood, interactions among genetic,
environmental, and lifestyle factors have been proposed. A significant genetic risk
factor for RA is HLA-DRBI (Mclnnes and Schett, 2011). Genome-wide association
studies have shown that PTN22, PADI4, STAT4, and TRAFI-C5 are associated with
the onset of RA (Stahl et al., 2010). Notably, the HLA-DRB1*0405 allele is closely
associated with RA severity and susceptibility in Koreans (Bae, 2010;0kada et al.,
2014). Clinical and experimental animal studies have shown that infection with
Porphyromonas gingivalis, Proteus mirabilis, Epstein—Barr virus, or mycoplasma
contributes to RA pathogenesis (Li et al., 2013). The involvement of microbes in the
etiopathogenesis of RA has prompted the investigation of relationships between RA

and changes in human-associated microbial communities.

Dysbiosis has been identified in the fecal bacterial communities of patients with
RA. Generally, gut microbial diversity is lower in patients with RA than in healthy
individuals (Zhang et al., 2015). Differences in the bacterial abundance were also

observed. Specifically, the abundances of Prevotella copri, Collinsella, Eggerthella,
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and Lactobacillus increased in patients with RA, while the abundances of
Bacteroides, Faecalibacterium, Veillonella, and Haemophilus decreased in those
patients (Wu et al., 2010;Maeda and Takeda, 2019). Among the bacteria affected by
RA, P, copri is predominantly present in the feces of patients with early RA; this
species has been implicated in RA pathogenesis (Maeda et al., 2016). Treatment for
RA also affects the composition of the gut bacterial community. For example,
etanercept increased the abundances of the Cyanobacteria and Nostocophycideae
classes and the MNostocales order; it decreased the abundances of the
Deltaproteobacteria class and the Clostridiaceae family (Picchianti-Diamanti et al.,
2018). Patients who received methotrexate (MTX) showed a reduced abundance of
Enterobacteriales and partial community restoration, compared with the typical
dysbiotic community in patients with RA (Zhang et al., 2015;Chen et al.,
2016;Picchianti-Diamanti et al., 2018). Additionally, the bacterial community is
affected by the presence of rheumatoid factor or anti-citrullinated protein antibody
(ACPA), which are markers used to classify RA. Moreover, the C-reactive protein
level and erythrocyte sedimentation rate are associated with gut microbiome
dysbiosis in patients with RA (Picchianti-Diamanti et al., 2018;Chiang et al.,

2019;Rooney et al., 2021).

Similar to studies of bacteria, an association between fungi and RA pathogenesis
has been reported. Intraperitoneal injections of a fungal cell wall component
(zymosan or fungal B-glucan) into SKG mice in a specific pathogen-free laboratory
resulted in the induction of autoimmune arthritis, whereas injections of an antifungal
agent and antifungal cell wall component did not (Yoshitomi et al., 2005). Therefore,
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fungi are essential for the initiation of autoimmune arthritis. In a previous study that
investigated the gut fungal community of patients with RA in China, the abundance
of Pholiota, Scedosporium, and Trichosporon were lower than in healthy controls.
Suhomyces and Trebouxia, two fungal genera abundant in patients with RA, were
positively correlated with RA biomarkers (Sun et al., 2022). However, the effects of
the fecal fungal community on RA have been less extensively investigated than the

effects of the bacterial community.

Here, we investigated the fecal bacterial and fungal communities of patients with
RA. We aimed to 1) evaluate the fecal bacterial and fungal compositions and their
interkingdom associations, ii) identify key taxa or operational taxonomic units
(OTUs) associated with compositional shifts in the fecal bacterial and fungal
communities, and iii) examine the effects of medications on the fecal fungal
community. The abundance of Candida was increased, while the abundance of
Aspergillus was decreased, in the feces of patients with RA. The abundances of
Candida and Aspergillus showed contrasting correlations with clinical factors used
for RA diagnosis. In addition, the hub node, which plays a central role in bacterial—
fungal associations, shifted from fungi to bacteria in patients with RA. Finally, the
abundance of Candida albicans was affected by treatment for RA. Our study
provides insight into the crucial roles of the fungal community in pathogenesis of

RA.
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MATERIALS AND METHODS

I. Sample collection

Healthy controls (HC) (n = 30) were recruited from the Wonju Severance
Christian Hospital. HC who had a chronic, systemic autoimmune disease and
pregnant or lactating women were excluded. RA (n = 99), who fulfilled the 2010
ACR/EULAR classification criteria (Aletaha et al., 2010), were recruited from the
Catholic University of Korea Seoul St. Mary’s Hospital. Each individual had been
prescribed medication, including non-steroidal anti-inflammatory  drugs,
corticosteroids, csDMARDs, and biologics. All clinical data were obtained
according to established methods, and the DAS28 was used to quantify dis-ease

activity.

The Ethics Committees of the Wonju Severance Christian Hospital Ethics
Committee (IRB Approval Number: 19-008) and the Catholic University of Korea
(IRB Approval Number: KC14TIMI0248) approved this study. Fecal samples were
collected from March 2017 to November 2018 and promptly frozen at —20°C.
Sequentially collected samples were transported to the laboratory and stored at

—80°C before DNA extraction.

I1. DNA extraction from feces
DNA extraction was performed using the QIAamp PowerFecal Pro DNA Kit
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(Qiagen, Germany), in accordance with the manufacturer’s instructions. DNA
concentration and purity were determined with a Nanodrop 1000 (Thermo Fisher
Scientific, USA). The collected DNA was stored at —20°C before amplification by

polymerase chain reaction (PCR).

II1. PCR amplification and sequencing

The V3-V4 regions of 16S ribosomal RNA (rRNA) genes were amplified using
the Illumina-adapted universal primers 314F/805R. Each PCR reaction contained
12.5 ng of genomic DNA, 2.5 pL of Ex Taq 10x PCR buffer (Takara, Japan), 2.5 uL
of ANTP mixture (Takara), 0.125 pL of Takara Ex Taq (Takara), 5 uL of each primer
(200 nM final concentration), and distilled water to a total volume of 25 uL. The
following thermocycler protocol was used: initial denaturing at 95°C for 3 min; 25
cycles of denaturing at 95°C for 30 s, primer annealing at 55°C for 30 s, and
extension at 72°C for 30 s; and final extension at 72°C for 5 min. PCR products were
purified using AMPure XP beads (Beckman Coulter, USA), then quantified using a
KAPA Library Quantification kit (KAPA Biosystems, USA). Sequencing was
conducted on the MiSeq platform using a paired-end 2x300 base pairs reagent kit
(Illumina, USA).

Subsequently, the fungal internal transcribed spacer 2 (ITS2) region of the 18S
ribosomal RNA genes was amplified using the ITS3F/ITS4R primers and i-Starmax
II polymerase (Intron Biotechnology, Korea). Each PCR reaction (final volume, 25
pL) contained 2.5 pL of 10x PCR buffer, 2.5 pL of ANTP mixture, 0.31 pL of i-

Starmax II polymerase (Intron Biotechnology), 1.25 uL of each primer (500 nM final
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concentration), and 50-120 ng of genomic DNA. The following thermocycler
protocol was used: initial denaturing at 94°C for 4 min; 35 cycles of denaturing at
94°C for 1 min, primer annealing at 60°C for 1 min, and extension at 72°C for 1 min;
and final extension at 72°C for 10 min. PCR products were purified using AMPure
XP beads (Beckman Coulter). DNA quality and quantity were measured using an
Infinite 200 pro (Tecan, Switzerland). All samples were diluted to the same
concentration, pooled into a single library, and concentrated using AMPure beads
(Beckman Coulter); the pooled library was subjected to gel purification to remove
any residual unwanted PCR products. Finally, the pooled library was sequenced on
the [llumina MiSeq platform with a read length of 2 x 300 base pairs at the National

Environmental Management Center of Seoul National University.

IV. Sequence processing and filtering

After demultiplexing, overlapping sequences were merged with PEAR, then
filtered with the DADA?2 plugin (Callahan et al., 2016) using the “denoise-single”
command in QIIME2. Subsequently, high-quality sequences were clustered into
OTUs using the open reference vsearch algorithm (vsearch cluster-features-
openreference) (Rognes et al., 2016) against the Silva 99% OTU representative
sequence database (version 132, April 2018) (Quast et al., 2012), then assembled
into an OTU table. Bacterial OTUs were clustered into OTUs using the UCHIME-
de novo algorithm (Edgar et al., 2011), fungal sequences were checked for
chimerism with UCHIME using the June 2017 chimera detection ITS2 database

(Nilsson et al., 2015). Next, the taxonomies of nonchimeric OTUs were assigned
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using the naive Bayes algorithm implemented in the q2-feature-classifier, based on
the Silva database for the V3—V4 region of the 16S rRNA sequences (Bokulich et al.,
2018). Alternatively, eukaryotes were classified using the UNITE database (UNITE

version 7 dynamic of January 2017) for the ITS2 region (Abarenkov et al., 2010).

Short bacterial (400 base pairs) and fungal (100-500 base pairs) sequences were
used for in-depth analyses. First, OTU tables were imported into R using the
readRPM component of the phyloseq package (McMurdie and Holmes, 2013). Next,
sequence data were removed for organisms that had been assigned to non-kingdom-
level groups (bacterial OTUs: orders “Chloroplast” and “Rickettsiales;” fungal
OTUs: kingdoms “Unassigned,” “Rhizaria,” and “Metazoa”). Subsequently, false
positive OTUs were removed from stool samples, while singleton OTUs were
eliminated from all samples. This process reduced the total bacterial OTU count from
1346 to 1338 and total fungal OTU count from 1641 to 1595. The remaining 1338

bacterial OTUs and 1595 fungal OTUs were used for further analysis.

V. Statistical analyses and visualization

Statistical analysis was performed using R statistical software, version 3.5.2 (R-
Core-Team). After multiple hypothesis tests had been corrected using the false
discovery rate method, significant results were determined using a p-value threshold
of 0.05. First, OTU tables were scaled by cumulative-sum scaling (CSS) and log-
transformed (for normalization) using the cumNum and MRcounts functions in the

metagenomeSeq package in R (Paulson et al., 2013). Next, rarefication of bacterial
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(5425 reads) and fungal (4256 reads) reads was conducted using the
rarefy_even_depth function in the Phyloseq package in R; this was followed by
calculation of the Shannon and Simpson indices using the diversity function in the
Vegan (version 2.5-3) package in R. The Wilcoxon rank-sum test and one-way
analysis of variance were also used. A Bray—Curtis dissimilarity matrix was
produced for use in two separate principal coordinates analyses; canonical analysis
of principal coordinates (CAP) was then performed using RA and HC constraints,
respectively, with the capscale and ordinate functions from the Vegan and Phyloseq
packages. Permutational analysis of variance (PERMANOVA) using the adonis
function in the Vegan package (version 2.5-3) was also used for analysis (Oksanen
et al.). Subsequently, the core OTUs of RA and HC groups were identified using a
prevalence threshold of 85% for bacteria and 70% for fungi. Differentially abundant
OTUs between the RA and HC groups were identified using linear discriminant
analysis effect size (LEfSe) (https://huttenhower.sph.harvard.edu/galaxy/) (Segata et
al., 2011). Differences in OTU abundance were considered significant when p-values

were < 0.05.

VI1. Microbial correlation networks

Bacterial-fungal networks were constructed to infer hub and complex OTU
associations for RA and HC groups. Because the number of participants differed
between the RA (n = 99) and HC (n = 30) groups, 30 samples from the RA group
were randomly subsampled using the sample function in R software to avoid

differences in network properties based on differences in sample size. Thus, we
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obtained 1302 OTUs for the HC group and 1428 OTUs for the RA group; these
OTUs were used to construct interkingdom co-occurrence networks. In contrast,
CSS-normalized OTU abundance tables that included bacteria and fungi were used
as an input for SparCC (Friedman and Alm, 2012); significant associations between
OTUs were restricted to OTUs with correlations of > 0.3 and <—0.3 (P <0.05) (Kurtz
et al., 2015). Co-occurrence networks were visualized with Gephi (version 0.9.2)
(Bastian et al., 2009) using the ForceAtlas2 layout. Within the networks, the
proportions of inter-kingdom (associations between bacteria and fungi) and intra-
kingdom (associations within the same kingdom) links were quantified and
displayed in bar graph format (Duran et al., 2018). Specifically, HC and RA networks
were compared in terms of degree, betweenness centrality, closeness centrality, and
eigenvector centrality; these values were computed using igraph (version 1.2.1)
(Csardi and Nepusz, 2006). The hub OTUs of each network were defined as the top
1% of OTUs in terms of degree, betweenness centrality, and closeness centrality. For
the RA group, OTUs of degree > 20, betweenness centrality > 0.05343148, and
closeness centrality > 0.01229823 were defined as hub OTUs. For the HC group,
OTUs of degree > 19.7, betweenness centrality > 0.06493721, and closeness

centrality > 0.02258181 were identified as hub OTUs.

VII. Fungal strain cultivation

C. albicans (KCCM 11282) was obtained from the Korean Culture Center of
Microorganisms (Korea). C. albicans was cultivated and maintained in yeast extract

peptone dextrose (YPD) agar plates or YPD broth at 25°C. Viable cell numbers were
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determined by spreading serially diluted culture medium on YPD agar plates.

Absorbance at 550 nm was measured using a microplate reader (Tecan).

VIII. DNA extraction and qualitative PCR (gel blotting of

samples)

Single C. albicans colonies were inoculated and cultivated in YPD broth for 24 h.
Broth cultures were centrifuged at 12,000 g for 5 min; DNA was then extracted from
cell pellets using the QIAamp PowerFecal Pro DNA Kit (Qiagen). Next, genomic
DNA was amplified using i-Starmax II polymerase (Intron Biotechnology). Each
PCR reaction (final volume, 25 uL) contained 2.5 puL of 10x PCR buffer, 2.5 uL of
dNTP mixture, 0.31 pL of i-Starmax II polymerase (Intron Biotechnology), 1.25 uL
of each primer (500 nM final concentration), and 50—120 ng of genomic DNA. The
following thermocycler protocol was used: initial denaturation at 94°C for 4 min; 35
cycles of denaturation at 94°C for 1 min, primer annealing at 60°C for 1 min, and
extension at 72°C for 1 min; and final extension at 72°C for 10 min. The following
primers were used: forward, 5'-TTTATCAACTTGTCACACCAGA-3'; reverse, 5'-
ATCCCGCCTTACCACTACCG-3' (Frykman et al., 2015). PCR products were
separated by electrophoresis on a 1.5% agarose gel containing SYBR DNA SafeStain
(Thermo Scientific Pierce, USA). Bands were visualized using a ChemiDoc device

(Thermo Scientific Pierce).

42



IX. Real-time quantitative PCR to quantify C. albicans

abundance

Real-time quantitative PCR was conducted with a QuantStudio 6 Flex Real-Time
PCR system (Applied Biosystems, USA) using PowerUp™ SYBR® Green Master
Mix (Thermo Fisher Scientific). The primers used for qualitative PCR of C. albicans
were used for real-time quantitative PCR. Each PCR reaction (final volume, 20 pL)
contained 10 pL of SYBR Green Master Mix, 0.8 pL of each primer, and 2 pL of
genomic DNA. The following thermocycler protocol was used: denaturation at 95°C
for 2 min, followed by 40 cycles of 95°C for 15s and annealing at 60°C for 60s.

Amplification specificity was evaluated by melt curve analysis.
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RESULTS

I. Descriptive statistics

The demographic and clinical features of patients with RA and HC are shown in
Table 1. The study included 99 RA and 30 HC. Ninety-one samples (91.9%) in the
RA group were from women, while 100% of samples in the HC group were from
women. The mean participant ages were 57.8 = 10.1 years in the RA group and 46.9
+ 3.5 years in the HC group. RF and ACPA positivity were detected in 77 (77/93,
82.8%) and 75 (75/98, 76.5%) patients, respectively. Of the RA patients, 87 (87.9%)
were prescribed conventional synthetic disease-modifying antirheumatic drugs
(csDMARDs), while 40 (40.4%) were prescribed biologics (including 32 patients
who were prescribed both biologics and csDMARDs). Medications used by patients

with RA are listed in Table 2.

44



Table 1. Characteristics of study participants.

Healthy controls

Patients with RA

Characteristics
(n = 30) (n =99
Demographics
Mean age (year) 46.9 £ 3.5 57.8 £ 10.1
Female proportion 30 (100%) 91 (91.9%)
BMI 239 + 3.0 22.8 £ 2.7
Disease characteristics
RF positivity at entry of study 2 (6.7%) 77 (n = 93, 82.8%)
Anti-CCP positivity at entry of stu NA 75 (n = 98, 76.
dy 5%)
Disease duration, median (IQR), y 8.9
NA
car (0.1-40)
0.5
CRP, median (IQR), mg/dL NA
(0.0-5.1)
133
ESR, median (IQR), mm/hr NA
(2.0-70.0)

BMI, body mass index; NA, not applicable; CRP, C-reaction protein; ESR,

erythrocyte sedimentation rate
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Table 2. The medication for patients with RA.

Healthy controls Patients with RA
Medication, n (%)
(n = 30) (n =99

c¢sDMARDs

MTX

Leflunomide

Hydroxychloroquine

Sulfasalazine

56 (56.6 %)

42 (42.4 %)

40 (40.4 %)

15 (15.2 %)

Biologics

Eetanercept

Adalimumab

Abatacept

Tocilizumab

3 (3.0 %)

3 (3.0 %)

17 (17.2 %)

17 (17.2 %)

Others

Tofacitinib

Tacrolimus

Glucocorticoids

NSAIDs

1 (1.0 %)

13 (13.1 %)

69 (69.7 %)

54 (54.5 %)




I1. Fecal microbial community composition

Distinct compositional differences between HC and RA were observed in the fecal
bacterial community (Figure 1). Bifidobacterium, Streptococcus, Blautia,
Lachnospiraceae, and an unidentified species were abundant in both the RA and HC
groups (Figure 2a). However, genera with relative abundances < 0.3% constituted
89.4% of genera in the RA group and 54.2% of genera in the HC group (Figure 2a).
Furthermore, the abundances of Bifidobacterium and Blautia were higher in the HC
group than in the RA group; the abundance of Streptococcus was higher in the RA
group than in the HC group. These differences were statistically significant
(Bifidobacterium, P = 0.0299; Blautia, P = 0.0024; Streptococcus, P = 0.0195)
(Figure 2b).

The most abundant fungal phyla were Ascomycota, Basidiomycota, and
Mucoromycota (Figure 3). The ratio of Basidiomycota to Ascomycota was greater in
the HC group than in the RA group (5.28%:65.7% in the HC group; 4.55%:75.42%
in the RA group), while the proportion of Mucoromycota was greater in the HC group
than in the RA group (mean relative abundances: 4.35% in the HC group and 1.74%
in the RA group). The abundance of Saccharomycetes was greater in the RA group
(HC, 35.2%; RA, 59.9%), while the abundance of Aspergillaceae was greater in the
HC group (HC, 23.9%; RA, 10.0%) (Figure 3).

At the genus level, Candida, Saccharomyces, and Aspergillus were the most
abundant fungi (Figure 2c, d). The relative abundance of Candida (P = 0.00013) was
significantly greater in the RA group than in the HC group, while the relative

abundance of Aspergillus (P = 0.00092) was significantly greater in the HC group
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than in the RA group (Figure 2d). Furthermore, the abundances of the genera
Kazachctania, Issatchenkia, Penicillium, and Mucor tended to be greater in the RA
group, although these findings were not statistically significant (Figure 2c, d). In
contrast to the findings in a Western cohort, the abundance of Saccharomyces did not
differ between the two groups (Figure 2d; mean relative abundances: HC, 12.9%;
RA, 14.2%; P =0.6204). Therefore, RA may be associated with compositional shifts

in the fecal bacterial and fungal communities.
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Figure 1. Comparisons of the fecal bacterial community composition between
HC and RA. Community composition was compared at the phylum, class, order,
family, and genus levels, respectively. The columns of different colors represent
different taxa, and the height of the bars represents the proportions of each taxon.
Genera with abundance <0.3% are grouped as "Low abundance." HC, healthy

controls; RA, patients with RA.
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Figure 2. Fecal microbial community composition in healthy controls and
patients with RA. (a) Bacterial community composition at the genus level. (b)
Pairwise comparison of abundant bacterial genera. (c) Fungal community
composition at the genus level. (d) Pairwise comparison of abundant fungal genera.
In panels b and d, boxes and lines represent the interquartile ranges (Q3-Q1) and
medians of relative abundances, respectively. Black dots indicate potential outliers.
Lower and upper whiskers show minimum and maximum relative abundances of
genera. Statistical significance was estimated by two-sided Mann—Whitney U test.
**% P <0.001; **, P<0.01; *, P<0.05; ns, P> 0.05 (not significant). HC, healthy

controls; RA, patients with RA.
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Figure 3. Comparisons of the fecal fungal community composition between HC
and RA. Community composition was compared at the phylum, class, order, family,
and genus levels, respectively. The columns of different colors represent different
taxa, and the height of the bars represents the proportions of each taxon. Genera with
abundance <0.3% are grouped as "Low abundance." HC, healthy controls; RA,

patients with RA.
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II1. Fecal microbial diversity

We next investigated the effects of RA on microbial community diversity. The
alpha diversity indices, including OTUs, Shannon, and Simpson indices, of bacteria
and fungi did not significantly differ between groups (all P > 0.05) (Figure 4). In
CAP, the constrained ordination analysis showed that bacterial and fungal
communities were clearly separated into HC and RA groups (Figure 5a), although
the unconstrained principal coordinates analysis did not show clear clustering of
microbial communities according to RA status (Figure 6). PERMANOVA indicated
significant compositional differences in the bacterial (R?=0.01746, P = 0.0002) and
fungal communities (R* = 0.0216, P = 0.0001) of the RA group (Table 3). The
relative abundances of Bifidobacterium, Streptococcus, Aspergillus, and Candida
differed between the two groups (Figure 5b). Although RA did not affect the richness
or diversity of fecal microbial communities, it significantly affected beta diversity

by shifting the taxonomic compositions of the fecal bacterial and fungal communities.
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Figure 4. Differences in alpha diversity between HC and RA. (a) Alpha diversity
metrics for the fecal bacterial community. (b) Alpha diversity metrics for the fecal
fungal community. Boxes and lines in the boxes represent the inter-quantile range
(Q3—Q1) and median of diversity values, respectively. Black-filled dots indicate
potential outliers. Lower and upper whiskers show minimum and maximum alpha
diversity values in each group. The gray dots correspond to the exact values of the
diversity indices of each sample. Statistical significance was estimated using a two-

sided Mann—Whitney test. HC, healthy controls; RA, patients with RA.
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Figure 5. Ordination analysis of fecal bacterial and fungal communities in
healthy controls and patients with RA. Compositional variations among samples
were estimated by canonical analysis of principal coordinates (CAP), based on the
Bray—Curtis distance metric. (a) Changes in composition of fecal bacterial and
fungal communities. Healthy control (HC) samples are shown in blue; RA samples
are shown in dark yellow. (b) Ordination analysis according to the relative
abundances of abundant genera. Greater intensity denotes higher relative abundance.
Left and right sides of panels a and b are bacterial and fungal communities,

respectively.
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Figure 6. Unconstrained principal coordinate analysis (PCoA) of bacterial and
fungal communities between HC and RA. (a) The data ordination from the beta
diversity metrics for human fecal microbial community structure. (b) Ordination
analysis indexed based on abundant genera of bacterial (left) and fungal (right)

communities. HC, healthy controls; RA, patients with RA.
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Table 3. Results on permutational analysis of variance (PERMANOVA)

Bacteria Df SumsOfSqs MeanSqs F.Model R? Pr(>F)
Diagnosis 1 0.568 0.56787 2.2563 0.01746  2.00E-04 ***
Residuals 127 31.963 0.25168 0.98254
Total 128 32.531 1

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
Age 1 0.466 0.46553 1.86272 0.01431 0.002 **
BMI 1 0.343 0.34328 1.37359 0.01055 0.0493 *
Total cholesterol 1 0.333 0.33307 1.33274 0.01024 0.0705
Duration 2 0.574 0.28697 1.14825 0.01764 0.1493
HDL 1 0.203 0.20323 0.81318 0.00625 0.8217
Triglyceride 1 0.353 0.35321 1.41331 0.01086 0.0412 *
RA_factor 1 0.167 0.16688 0.66775 0.00513 0.9732
anti_CCP 1 0.269 0.26944 1.07813 0.00828 0.3117
CRP 1 0.35 0.35031 1.40172 0.01077 0.0454 *
ESR 1 0.232 0.23171 0.92715 0.00712 0.5988
Residuals 117 29.24 0.24992 0.89885
Total 128 32.531 1
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Fungi Df SumsOfSqs MeanSqs F.Model R? Pr(>F)
Diagnosis 1 0.885 0.88533 2.8042 0.0216  1.00E-04 ***
Residuals 127 40.096 0.31572 0.9784
Total 128 40.981 1

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
Age 1 0.583 0.58312 1.84445 0.01423 0.0002 ***
BMI 1 0.26 0.26037 0.82356 0.00635 0.8672
Total _cholesterol 1 0.504 0.50378 1.5935 0.01229 0.0032 **
Duration 2 0.758 0.37907 1.19903 0.0185 0.0546
HDL 1 0.319 0.31886 1.00858 0.00778 0.4489
Triglyceride 1 0.272 0.2715 0.85879 0.00663 0.8059
RA_factor 1 0.383 0.38336 1.21261 0.00935 0.1014
anti CCP 1 0.304 0.30386 0.96113 0.00741 0.56
CRP 1 0.338 0.33806 1.06932 0.00825 0.3041
ESR 1 0.271 0.27083 0.85665 0.00661 0.8056
Residuals 117 36.989 0.31615 0.90259
Total 128 40.981 1

Signif. codes: 0 ***20.001 ***0.01 *°0.05 '>0.1 " "1

63



IV. RA patient-associated bacterial and fungal OTUs

We investigated the relative abundances of OTUs in the HC and RA groups by
LEfSe analysis. Among 1338 bacterial OTUs and 1595 fungal OTUs, 57 bacterial
OTUs and 45 fungal OTUs were differentially abundant (Figures 7a, 8a). In total, 14
bacterial OTUs and 10 fungal OTUs were more abundant in the RA group than in
the HC group. The RA-enriched OTUs belonged to the fungal genera Candida,
Meyerozyma, Penicillium, Aurobasidium, Xeromyces, Coprinopsis, and Wallemia.
Furthermore, 43 bacterial OTUs and 35 fungal OTUs were more abundant in the HC
group than in the RA group. The HC-enriched OTUs belonged to the fungal genera
Aspergillus, Conocybe, Monascus, and Schizosaccharomyces.

We investigated RA-associated OTUs via machine learning-based classification.
For this analysis, we constructed random forest classification models for bacterial
and fungal communities. The random forest models revealed that 70 bacterial OTUs
and 70 fungal OTUs were needed to classify HC and RA samples (Figures 7b, 8b).
Among these OTUs, 27 bacterial OTUs and 25 fungal OTUs were also identified by
LEfSe (7a, 8a, 9). Two bacterial OTUs and four fungal OTUs were more abundant
in the RA group, while the remaining OTUs were more abundant in the HC group
(Figure 9). These findings imply that decreased abundances of bacterial and fungal

OTUs contributed to compositional differences between the HC and RA groups.
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Figure 7. Fecal bacterial OTUs affected by the dysbiosis of rheumatoid arthritis.
(a) Differentially abundant bacterial OTUs estimated from the LEfse analysis
between HC and RA. Blue and yellow bars indicate enrichment of OTUs in HC and
RA, respectively. The size of the bars corresponds to the logarithmic discriminant
analysis (LDA) score. The threshold of LDA score is 2. (b) Bacterial OTUs
discriminating between the compositional differences in HC and RA using a random
forest classification model. OTUs are colored based on their categorization as “HC-
enriched” and “RA-enriched” groups based on their differential abundance test
results. Each tick on the x-axis indicates an individual control HC and RA sample.

HC, healthy controls; RA, patients with RA.
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Figure 8. Fecal fungal OTUs affected by the dysbiosis of rheumatoid arthritis.
(a) Differentially abundant fungal OTUs estimated from the LEfse analysis between
HC and RA. Blue and yellow bars indicate the enrichment of OTUs in HC and RA,
respectively. The size of the bars corresponds to the logarithmic discriminant
analysis (LDA) score. The threshold of LDA score is 2. (b) Fungal OTUs
discriminating between the compositional differences in HC and RA using a random
forest classification model. OTUs are colored based on their categorization as “HC-
enriched” and “RA-enriched” groups according to the results of the differential
abundance test. Each tick on the x-axis indicates an individual control HC and RA

sample. HC, healthy controls; RA, patients with RA.
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Figure 9. Microbial signatures associated with RA. A random forest model was
used to identify OTUs that explain the gut bacterial (a) and fungal (b) communities.
OTUs are colored based on their classification as “HC-enriched” and “RA-enriched,”
based on the results of differential abundance analysis (Figures S5a, S6a). Random
forest models were constructed using a 10-fold cross-validation method. OTUs are
arranged along the y-axis according to total abundance. Each mark on the x-axis
indicates an individual HC or RA sample. HC, healthy controls; RA, patients with

RA.
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V. Fecal bacterial-fungal associations

We constructed a correlation-based microbial network to investigate microbial
associations. The fecal microbial network of the HC group comprised 701 nodes and
1419 edges (Figure 10a), whereas the fecal microbial network of the RA group
comprised 801 nodes and 1679 edges (Figure 10b). Degree and betweenness
centrality did not significantly differ between the HC and RA groups (Figure 11).
There were more fungal nodes in the HC group than in the RA group, and hub
composition differed between groups. Hub nodes were defined as nodes in which
degree, betweenness centrality, and closeness centrality were in the top 1%. Based
on this criterion, the hub of the bacterial-fungal interkingdom network of the HC
group was the fungal OTU F87_Penicillium (Figure 10c). In the RA group, the hub
node was the bacterial OTU B3 f Lachnospiraceae in the Lachnospiraceae family
(Figure 10d). These data suggest that fungi influence the microbial community
composition in HC, while bacteria associated with dysbiosis influence the microbial

community in patients with RA.
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Figure 10. Interkingdom co-occurrence networks and hub nodes of fecal
microbiota. (a) Interkingdom HC networks. (b) Interkingdom RA networks. In
panels a and b, each node corresponds to an out; edges between nodes correspond to
positive (black) or negative (red) correlations inferred from OTU abundance profiles
using the SparCC method (P < 0.05, correlation values of < —0.3 or > 0.3). OTUs
that belong to different microbial kingdoms are indicated by colors (bacteria, ivory;
fungi, green), and node size reflects degree of centrality. (c) Hub nodes of microbial
HC networks. (d) Hub nodes of microbial RA networks. In panels ¢ and d, the hub
was defined as a node in which degree, betweenness centrality, and closeness
centrality were in the top 1%. Dashed lines indicate threshold values of degree,
betweenness centrality, and closeness centrality. HC, healthy controls; RA, patients

with RA.
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Figure 11. A comparison of the topological properties between microbial HC
and RA networks. (a) The proportion of edges (associations) comprising microbial
Healthy (upper panel) and RA (bottom panel) networks. The proportion of positive
and negative associations is indicated as black- and red-colored bars, respectively. B,
bacterial-bacterial association; BF, bacterial-fungal association, F, fungal—fungal
association. (b) Comparison of the topological properties of microbial control and
RA networks. Pairwise comparison of the topological properties of bacterial nodes
is indicated on the upper panel, whereas that of fungal nodes is displayed on the

bottom panel. HC, healthy controls; RA, patients with RA.

75



VI. Changes in the fecal fungal community in response to

medication

The use of antirheumatic drugs alters the microbial community. For example,
etanercept partially alleviated bacterial dysbiosis in patients with RA (Picchianti-
Diamanti et al., 2018). The gut bacterial community can also determine the responses
of RA patients to MTX (Artacho et al., 2021). We examined the effects of RA
therapeutics on the fungal community. We stratified the patients into three groups:
csDMARDs (patients treated with csDMARDs; n = 55), csDMARDs + biologics
(patients treated with csDMARDs and biologics; n = 32), and biologics (patients
treated with biologics; n = 8). Because few patients were treated with biologics, the
biologics group was excluded from further analysis. The genus Candida was more
abundant in the csDMARDs and csDMARDs + biologics groups than in the HC
group (Figure 12a, b). However, among patients with RA, the relative abundance of
Candida was lower in the csDMARDs group than in the csDMARDs + biologics
group (Figure 12a). Differences in Candida abundance within the RA groups were
not statistically significant (Figure 12b). Compared with the csDMARDs + biologics
group, the relative abundance of Aspergillus was decreased in the csDMARDs group,
while the relative abundance of Penicillium was increased (Figure 12a).

PCR using Candida-specific primers was performed on fecal samples randomly
selected from the HC and RA groups. C. albicans was a fungal species with
significantly greater abundance in RA samples. In the RA group, bands of 200 to 300
bp were observed; such bands were absent in the HC group (Figure 13). The amount

of C. albicans DNA was significantly greater in the RA group than in the HC group
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(HC, Ct=30.4 £ 1.33; RA, Ct=23.9 £ 3.08). The amount of C. albicans DNA was
slightly greater in the csDMARD:s + biologics group than in the csDMARDs group
(csDMARDs, Ct = 24.0 £+ 3.02; csDMARDs + biologics, Ct = 23.7 + 3.19) (Figure
12c¢).

In terms of clinical factors, the relative abundance of Candida was significantly
positively correlated with age (Spearman r = 0.29153, P = 0.000802), rheumatoid
factor (RF) level (Spearman r = 0.20217, P = 0.021579), C-reactive protein (CRP)
level (Spearman r = 0.2927, P = 0.000762), erythrocyte sedimentation rate (ESR)
(Spearman r = 0.27676, P = 0.000136), MTX dose (Spearman r = 0.18648, P =
0.034349), and total cholesterol level (Spearman r = 0.24822, P =0.004563) (Figure
12d). The relative abundance of Aspergillus was significantly negatively correlated
with those factors (RF level: Spearman r =—0.24993, P=0.004283; ESR: Spearman
r=-0.20742, P = 0.018344; MTX dose: Spearman r = —0.22778, P = 0.00943; and

total cholesterol level: Spearman r =—0.238, P = 0.006607).
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Figure 12. Effects of medication on Candida abundance. (a) Fecal mycobiota
composition according to medication. (b) Relative abundance of Candida. Letters
indicate statistical significance, as determined by Kruskal-Wallis test followed by
Dunn’s test. (¢) Results of quantitative PCR analysis of C. albicans. Letters indicate
statistical significance, as determined by analysis of variance followed by Tukey’s
honestly significant difference test. (d) Correlations between relative abundances of
fungal OTUs and quantitative variables. Correlation coefficients were estimated
using Spearman’s rank correlation. Asterisks indicate statistical significance (***, P
<0.001; **, P<0.01; *, P<0.05). Red and blue boxes indicate positive and negative

correlations, respectively.
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Figure 13. Agarose gel electrophoresis image of the C. albicans specific PCR
products. Control and HC exhibit weak primer bands at the bottom. RA confirmed
the presence of C. albicans by observing significant bands at 273 bp. Blank, water;

HC, healthy controls; RA, patients with RA.
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VII. Fungal dysbiosis can be used for characterization of RA

We identified core OTUs (or prevalent OTUs) in fecal samples: core bacterial
OTUs were detected in 85% of the 129 fecal samples, while core fungal OTUs were
detected in 70% of the fecal samples. Five core bacterial OTUs belonged to
Lachnospiraceae, whereas five core fungal OTUs belonged to Candida, Aspergillus,
Issatchenkia, Cladosporium, and an unidentified fungal genus (Figure 14a).
Subsequently, three overlapping core fungal OTUs were discovered, but no
overlapping core bacterial OTU was identified (Figure 14b, ¢). Among the bacterial
core OTUs, B3 f Lachnospiraceae, B8 f Lachnospiraceae, and
B9 f Lachnospiraceae could distinguish between HC and RA groups using a
random forest model. However, LEfSe revealed that differences in the relative
abundances of these OTUs were not statistically significant (Figures 9, 7). Among
the fungal core OTUs, F1_Candida, F4 Aspergillus, and F22 Cladosporium could
distinguish between HC and RA groups using both LEfSe and a random forest model
(Figures 8, 9, 14c). The association between ACPA and RF, which are serological
markers of RA, and the fecal fungal community were investigated. Aspergillus and
Candida, which differed in abundance between the HC and RA groups, were not
associated with ACPA. Aspergillus was significantly associated negatively with RF,
whereas Candida was correlated positively (Figure 12d). Therefore, changes in the
fungal microbial community, particularly involving Candida and Aspergillus, could

be a feature of RA.
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Figure 14. Analysis of core OTUs in fecal microbiota. (a) Core OTUs were
identified based on 85% prevalence for bacteria (dark blue) and 70% prevalence for
fungi (dark green). Box colors indicate relative abundances of OTUs. Greater color
intensity indicates higher relative abundance. Each mark on the y-axis indicates an
individual sample. Venn diagrams of the numbers of (b) bacterial and (c) fungal

OTUs identified by LEfSe, the random forest model, and core out analysis.
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DISCUSSION

The gut or fecal microbiome plays an important role in several human diseases.
We found a distinct fecal microbial composition in patients with RA. Although the
relative bacterial abundance differed between the RA and HC groups, alpha diversity
did not differ (Figures 1, 2, 4a). CAP and random forest analysis revealed that
Bifidobacterium and Streptococcus were representative of the HC and RA groups,
respectively (Figures 5, 7). Similar distributions of bacterial genera in fecal samples
have been identified in Asian cohorts (Zhang et al., 2015;Chiang et al., 2019;Jeong

etal., 2019;Liu et al., 2020).

Fungi affect the composition of the bacterial community (Sam et al., 2017;Deveau
et al., 2018;van Tilburg Bernardes et al., 2020). A bacterial-fungal interkingdom
network analysis showed that F87 Penicillium was the hub OTU in the HC group,
while B3 { Lachnospiraceae was the hub OTU in the RA group (Figure 10). The
Penicillium subgenus produces numerous beneficial secondary metabolites, which
have antibiotic, antifungal, immunosuppressive, and cholesterol-lowering properties
(Kumar et al., 2018). The altered relative abundance of Penicillium was restored in
RA patients via treatment with csDMARDs alone (Figure 12a). Lachnospiraceae are
reportedly abundant in ACPA-positive patients (Mangalea et al., 2021;Rooney et al.,
2021). Because 75 (76.5%) of our RA patients were ACPA-positive, we
hypothesized that the hub OTU shifted from F87 Penicillium to
B3 f Lachnospiraceae in patients with RA. The difference between RA and HC
groups was clearer in the fungal community than in the bacterial community.

F1 _Candida and ¥4 Aspergillus were the most differentially abundant fungal genera
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(Figure 14).

Aspergillus caused substantial changes in the fungal community. An OTU that
belonged to Aspergillus (F4 Aspergillus) was a core fungal OTU (Figure 14a); it
was more abundant in the HC group than in the RA group (Figure 9). Saccharomyces
cerevisiae has a beneficial effect on human health (Nash et al., 2017;Wu et al., 2021).
Alterations in fecal fungal communities have mostly been studied in Western cohorts.
We found a significant difference in Aspergillus abundance, rather than
Saccharomyces abundance, between the HC and RA groups. Saccharomyces is
reportedly more common among individuals who consume a Western diet (e.g.,
bread, beer, and dairy products), while Aspergillus is more common among
individuals with a vegetarian diet (Suhr et al., 2016;Hallen-Adams and Suhr, 2017).
In Japan and China, where the diets are similar to the diet consumed in South Korea,
Aspergillus was more abundant than Saccharomyces in the fecal fungal community
of healthy adults (Motooka et al., 2017;Qiu et al., 2020). Therefore, based on the
dietary proportions of vegetables and fermented soybean foods, Aspergillus is an
essential member of the fecal fungal community in Koreans (Suhr et al.,
2016;Hallen-Adams and Suhr, 2017).

Fungi had a substantial effect on fecal microbial community composition in
patients with RA; Candida was the most abundant fecal genus (Figure 2b, d).
Candida spp. are frequently detected in the human gastrointestinal tract (Hallen-
Adams and Suhr, 2017) and feces (Gurleen and Savio, 2016); their abundance is
increased in patients with inflammatory bowel disease, cystic fibrosis, and vaginal

candidiasis (Limon et al., 2017). We found that medications for RA affected the
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fungal community composition, such that the abundance of C. albicans was
enhanced by csDMARDs and biologics (Figure 12c). This is consistent with
previous reports of increased C. albicans abundance in patients with inflammatory
bowel disease (IBD) who were treated with immunosuppressants (Li et al.,
2014;Sokol et al., 2017;Imai et al., 2019). During treatment with disease-modifying
antirheumatic drugs and tumor necrosis factor-a inhibitors, patients with RA showed
an impaired C. albicans-specific Thl7 response, which led to an increased
abundance of C. albicans. Although the increased abundances of C. albicans in
patients with RA and patients with IBD do not exclude the possibility that dysbiosis
is caused by disease, they suggest that the dysbiosis is caused by medication.
Moreover, although an increased abundance of C. albicans may result in
opportunistic infections, the risk of candidiasis is low in patients with RA because
they retain an effective immune response to C. albicans (Bishu et al., 2014).

The decreased abundance of Aspergillus and increased abundance of Candida in
the feces of patients in our study suggest that such changes are specific to RA.
Further studies regarding Aspergillus will provide insight into its role in the healthy
fecal fungal community and its effect on human health. Our findings suggest that
changes in the fungal community could be used as an indicator of fecal dysbiosis in
patients with RA.

In conclusion, we investigated dysbiosis and fungal-bacterial interactions in the
fecal microbial communities of patients with RA. Changes in fungal communities
indicated significant dysbiosis between HC and patients with RA, whereas changes

in bacterial communities did not. Future research should examine whether the
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increased abundance of C. albicans is caused by immunosuppressive or
immunomodulatory medications. Our results were limited in that they comprised
bioinformatics-based predictions of the effects of RA-related changes on fecal
microbial communities. /n vivo experiments are required to confirm that RA alters
the fungal community. Therefore, an experimental validation studies concerning the
effects of C. albicans and Aspergillus on RA-related immune pathways are needed.
Aspergillus was more abundant in the fecal fungal community of healthy Koreans,
whereas Saccharomyces was comparable to patients with RA. Further research is

necessary to clarify precisely our findings differ from the Western cohort.
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