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Abstract 

 
This paper proposes an interactive visualization tool to 

thoroughly investigate correlations within time series data. Although 

visualizing Pearson correlations among variables within a data is 

common practice in the process of Exploratory Data Analysis, a 

simple look into the correlations may not be sufficient in the case of 

time series data. There are two major problems that a data explorer 

may overlook, which are the fact that 1) two variables within a time 

series data may show high positive or negative correlations with 

some time difference, and 2) the correlations among a given time 

series may change over time. In order to address these problems, 

this paper proposes an interactive visualization system that allows 

users to look into correlations with time differences in variables and 

change of correlations throughout time segments, through time-shift 

view and time-segmentation respectively. The time-shift view 

generates correlations using the Time-Lagged Cross Correlations 

algorithm, which derives the correlation value with the highest 

absolute value gained by shifting one of the two columns within a 

given window range. The time-segmentation view splits the time 

series data into a number of segments that is set as an input to view 

the change of correlations as time passes. The correlations of the 

time series variables are visualized as network graphs for the 

explorer, along with heatmaps and line charts which are 

comparatively common methods in visualizing time series data or 

correlations. Also, a community detection algorithm is implemented 

to group or color the variables of the data which are denoted as 

nodes in the network graph visualization, which introduces a 

relatively novel method to group or cluster time series data. The 

effectiveness of this proposed tool is demonstrated by applying 

several time series data as possible examples. Through these 

examples, we have found that the visualization system is useful in 

finding patterns in cyclic data through the time-shift view, and 

identify shifts in correlation through the time-segmentation view. 
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Chapter 1. Introduction 
 

 

In the process of analyzing time series data, checking the correlation 

among the columns is typically one of the crucial as well as basic steps of 

exploring the data. Even before applying machine learning techniques to 

multivariate time-series data such as those for anomaly detection or 

prediction, data scientists and analysts often visually look into the Pearson 

correlations of the variables usually in the form of heatmaps. 

There are multiple papers for exploring time series correlations to 

extract meaning from them prior to data analysis. Some studies aim to 

extract information from general multivariate time-series data considering 

the distances of the data and the correlations among them with a matrix. 

[29, 30] Other research on time series correlations include more domain-

specific studies such as in the field of finance and economics. [28] 

Although it is common practice to simply looking into the Pearson 

correlations when exploring time series data as data scientists and analysts 

do for exploring the relationships among other types of data, this kind of 

exploration may overlook meaningful patterns and fail to find relationships 

that takes place between two variables with time differences. For example, 

two columns of time series may have high correlations when we shift one of 

the columns by some period, but may fail to find relationships between them 

when correlations are calculated without giving time shifts. In addition, the 

correlations may change over time, and therefore the correlations may be 

different over certain time segments. However, simply calculating the 

correlations for the entire time stamps given in the data may offset the 

differences in correlations that change over time. 

Therefore, this paper proposes a visual exploration system that aims to 

allow users to thoroughly look into the correlations among the variables. 

While conventional heatmaps that visualizes Pearson correlations in a simple 

way may miss many crucial information, the visualization system supports 
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interactive exploration with various visualization methods to allow the 

analyst to capture potential information hidden behind various temporal 

relationships. 

In order to address the stated problem, the proposed visualization 

system supports two kinds of views: the time-shift view and time-

segmentation view. The time-shift view offers a view for the user to check 

correlations among variables giving time shifts for each column. The 

algorithm under the hood explores correlations between every two variables 

within a given range of time-shifts to calculate the correlations that have the 

highest absolute value as well as the time-lag that was applied for that 

specific point. This allows the users to find the correlation values taking into 

account the time shifts between every two variables. On the other hand, the 

time-segmentation view allows users to explore correlations of the given 

time series data by specific time segments. The number of segments is one of 

the inputs for the visualization system, and the time stamps of the data to be 

explored are divided into the number of segments. Therefore, the user is able 

to explore change of correlation values over time. This time-segmentation 

view may later aid data scientists in analyzing time series data, as the users 

can explore the change of relationships over time. 

Another contribution of this paper in investigating time series data is 

that the proposed tool visualizes correlations not only with heatmaps, which 

is the most conventional way, but also with networks. Networks are one of 

the possible methods to visualize the relationships of time series data. With 

each node indicating the column of the time series and the edges formed 

according to the absolute correlation values calculated with either time shifts 

or time segments, the visualization captures the overall view of the 

relationships within the time series data. The nodes are classified and 

colored by groups formed by a community detection algorithm and a 

traditional machine learning method in clustering data. According to a 

survey paper on time series visualization research, small fraction of papers 



 

 ３ 

has focused on visualizing time series data with network graphs. [7] The 

traditional line chart is also included as one of the visualizations, which 

shows the trend of the original data in addition to the correlation values of 

the data. By going back and forth with the correlation data and the original 

data. 

The methods involved in this visualization is another contribution of 

this paper on time series visualization research. The visualization system 

incorporates machine learning methods as well as the Time-Lagged Cross-

Correlations algorithm to calculate the correlation values giving time shifts. 

Although some past studies have included time shifts in deriving the 

correlation values, the proposed visualization system also derives the shifted 

days that result in the highest absolute correlation value which differentiates 

from past related studies. 

To summarize, major contributions of this paper are: 

- We present a tool to explore multivariate time series data in terms of 

the relationships between variables using Time-Lagged Cross-

Correlations over time, and also derives the amount of shifted time 

that gives the output value. 

- The tool also displays visualizations to view the change of 

correlation values over time within the data, by dividing the data 

into some time segments and allowing the user to compare the 

correlation values for each segment. 

- We design an interface using various visualization methods to 

summarize and exhibit the multifaced aspects of time series 

correlations including heatmaps and line charts which are more 

conventional methods to visualize time series data, and network 

graphs which is comparatively newer method in visualizing time 

series data. This captures and allows the users to thoroughly view 

the relationship within the data. 

- We cluster the time series data with machine learning algorithms, or 
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k-medoids and Louvain algorithm to cluster the time series data. 

The k-medoids is a more conventional data clustering machine 

learning method. On the other hand, the Louvain algorithm which 

is one of community detection algorithm clusters the time series 

data based on the network visualization formed. Using the Louvain 

algorithm may capture the relationships of the time series data 

compared to the k-Medoids clustering algorithm. 
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Chapter 2. Related Work 
 

 

2.1. Time Series Visualization Serving Various 

Purposes 
 

There has been a plethora of researches on time series visualization for 

various purposes. The list of some papers that this study has referred to 

include those written on visualization tools for time series data pattern 

search [1], and other studies on preprocessing multivariate time series data. 

[2] There are also several papers that explore the clusters of time series data, 

often including an interactive interface. [3, 4, 5, 6] 

Prior researches on visualizing correlations for time series also exist. 

There are domain specific visualization systems that are specialized for 

financial and economic time series data. [29] Also some papers that attempt 

to take into account distances among time series data while calculating 

correlations have been published as references. [28, 30] 

In this paper, our visualization method incorporates machine learning 

techniques to explore the positive and negative correlations of time series 

data. Some similar attempts have also been implemented for more domain 

specific areas to recognize patterns in correlations [25] of to cluster time 

series data. [26] Other visualization systems for exploring time series data 

include those using parallel coordinates, [17, 18] and Sankey diagram. [19] 

 

2.2. Similarity Measures for Time Series Data 
 

According to a survey paper that overviews interactive visualizations for 

time series data that incorporates machine learning methods, or clustering 

and classification methods in the case of this survey, [7] the most commonly 

used methods to calculate similarities or distances are Euclidean Distance 

and Dynamic Time Warping (DTW). Distance measures such as Euclidean 
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Distance can be utilized in turn as similarity measures by flipping the values. 

For example, distance metrics that are naturally between 0 and 1 such as the 

Euclidean Distance can be turned into a similarity score by calculating 1 – 

distance. Cross-correlations are also another method used to calculate 

distances between two time series variables. Cross-correlation is a measure 

of distance to check the similarity of the shape of two time series variables at 

its peak. Equation (1) is the mathematical formula for calculating the 

Cross-correlation between {Xi} and {Xj}, which is defined by covariance 

divided by the root-mean variance. To get the formula for sample Cross-

correlation   statistically, the numerator and denominator of Equation (1) 

are replaced by sample covariance and sample root-mean variance 

respectively, as shown in equation (2).  

 (1) 

 

(2) 

One of the contributions of this paper is that we have used the Time-

Lagged Cross-Correlation algorithm, taking into account the lagged time at 

the peak value as well as the correlation value itself. This allows the user to 

check the similarity of the shape of two time series variables and also the 

amount of time difference there are between two similarly shaped time 

variables. Another point that we have looked into is that we deemed not 

only positive but negative values as meaningful relationships. Therefore, we 

calculated the peak of the absolute value of correlations within the time shift 

range given as an input to capture not only similar shapes but also similar 

shapes that are flipped upside down. 

In like manner, the edges for the network visualization are also formed 

based on the peak value of the absolute value of the correlation within the 

input time shifting range. Therefore, both positively and negatively related 

variables are taken into account in analyzing the correlations and visualizing 



 

 ７ 

them. In other words, having high negative relationships as well as positive 

relationships are considered as meaning having close relationships with each 

other. 

 

2.3. Time Series Visualization with Clustering 

Methods 
 

There are several prior researches on data visualization that incorporate 

time series visualization with clustering methods. According to the survey 

paper on time series visualizations with interactivity and clustering methods 

involved, [7] methods of clustering that are frequently used across most 

studies are hierarchical clustering, model-based clustering methods, which 

include the self-organizing map (SOM), and partitioning methods that 

include k-Means, k-Medoids and Fuzzy c-Means algorithms.  

We attempted to incorporate both relatively conventional and one that 

is not so commonly used. We used total two clustering algorithms, which 

are k-Medoids and Louvain algorithm. The reason for using two clustering 

algorithms was to simplify the visualization system at the current stage, 

although many more clustering algorithms may be implemented in the future 

to compare and contrast the effects of implementing different algorithms. 

However, we have focused on comparing traditional clustering algorithm to 

implementing a community detection algorithm in this visualization system. 

As a relatively new method of clustering proposed in this paper, a 

community detection algorithm was implemented and considered. Therefore, 

the k-Medoids algorithm represents a more conventional time series 

clustering algorithm while the Louvain algorithm tests the effect of 

implementing a community detection algorithm to capture clusters formed 

based on the relationships among the variables. 

Other classical data clustering methods include k-Means, Fuzzy c-

Means etc. as mentioned beforehand. Although the k-Means and k-

Medoids algorithm both cluster data based on the distance measure, the k-
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Means method forms clusters in a direction that minimizes the total squared 

error, while the k-Medoids method tries to minimize the sum of 

dissimilarities within clusters. Another point that we may take into account 

is that the k-Medoids method derives a data point as the central point of 

each of the clusters unlike the k-Means. Several community detection 

algorithms besides the Louvain algorithm include Surprise and Leiden 

community detection, and the Girvan-Newman algorithm. We used the 

Louvain algorithm because it is one of the most popular community 

detection methods that has high computing speed even on large network 

data. While the Louvain detection algorithm does not take the number of 

clusters as input, the user must set the number of clusters for k-Means and 

k-Medoids as input for executing the algorithm. 

A contribution of this paper includes the fact that it incorporates a 

community detection algorithm as one of the clustering algorithms to group 

time series data. This stems from the observation that clustering time series 

based on the relationship network may produce meaningful results, since 

network graphs capture individual relationships between highly correlated 

variables. [8] Compared to visualization and clustering based on network 

graphs, it may be difficult for users to identify specific variables with high 

correlations with more commonly used algorithms such as k-Means and k-

Medoids. These more conventional algorithms fit all of the data into one of 

the clusters, which leads to unclear distinction in identifying which 

individual variables are highly correlated with other specific variables in 

terms of absolute value. 

Other references that use clustering methods in its time series 

visualization include those that are more domain specific, such as a study on 

visualizing click stream data. [21] There is also study that uses distance-

based correlations to test network dependence that explores some methods 

in a deeper way. [30] 
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2.4. Network Visualization 
 

According to a survey paper on interactive visualizations on time series 

data using machine learning methods, [7] common visualization techniques 

used in this field of research include line plots, geographic maps, heat maps, 

histograms and bar graphs. There are some link node visualizations in the 

proportion, but they are not as common. Time series visualization that uses 

model-based methods such as the self-organizing map (SOM) specifically 

adopt link-nodes and glyphs as their common visualization technique. 

There are prior studies that analyze time series data with machine 

learning and deep learning methods using graph or neural-based methods. 

[8, 9, 10] Recently there has been studies on multivariate time series using 

Graph Neural Networks for anomaly detection [11, 12, 13, 14] as well as 

forecasting. [15, 16] Therefore, we look to the possibility of visually aiding 

or incorporating the process of such time series analysis with the 

visualization system in this paper as future work. 

The contribution of this paper in this aspect is that we utilize network 

graphs to visualize the relationships derived by Time-Lagged Cross-

Correlations by denoting each time series variables with nodes and 

connecting them with edges if the peak absolute correlation is larger than 

the threshold that is one of the inputs that is set by the user of the proposed 

visualization system. This is also related to the other contribution of the 

paper mentioned in the last subsection, which is the fact that the system 

provides for the user a community detection algorithm as an option to 

group the variables, which is visualized through the color of the nodes in the 

system. 

Some visualization tools that visualize non-time series data using 

network visualization techniques include those for more general purposes 

such as exploring the operations for GNN models [22] or to visualize data 

embedding methods. [23] There are also papers on graph visualizations for 
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data that are more domain specific data such as traffic jam data that target 

to solve similar tasks. [24, 25, 27] Other studies that attempt to capture 

temporal changes in relationships with networks also exist. [26] 
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Chapter 3. Overview 
 

 

3.1. Input Data 
 

The input data for the system are multivariate time series data with 

numerical values for each variable and along with a time stamp. For 

example, let’s say we use data as an input with changes of the average 

temperature for each day in 2017 for 50 countries with the name of each 

country as the column name. Therefore, there will be a total of 365 rows 

(365 days in the year 2017) for each day and 50 columns for each country. 

Through utilizing the data visualization system, we expect to find the 

correlations among the temperatures of each country, taking into account 

various time shifts and time segmentations. We will use this example to 

explain below the two views provided in the system in this section to have 

an idea of the goal of the implementation of this system. The system 

provides mainly two types of views: the time-shift view and the time-

segmentation view. 

 

3.2. Preparation for the Time-Shift View 
 

The input data for the system are multivariate time series data with 

numerical values for each variable and along with a time stamp. For 

example, let’s say we use data as an input with changes of the average 

temperature for each day in 2017 for 50 countries with the name of each 

country as the column name. Therefore, there will be a total of 365 rows 

(365 days in the year 2017) for each day and 50 columns for each country. 

First type of view offered by the visualization system which is the time-

shift view visualizes the results of the Time-Lagged Cross-Correlation 

values with heatmaps, network and line chart with various time ranges and 

threshold options that the user chooses as an input. The choices of time-
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shift range and threshold for creating the edges for the nodes are provided 

with a drop-down menu. As shown in figures 1 and 2, The sidebar on the 

lefthand provides the menus that the user can choose to view the 

visualization. The user can choose the time shift range, clustering method 

that will color the nodes of the network, and the threshold level by which 

the edges of the network are formed if the absolute correlation value exceeds 

the threshold level. 

 

 
Figure 1 – A screenshot of a sample view of time-shift view 

 

 
Figure 2 – Names of each section of time-shift view 
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Although for k-Medoids clustering method needs the number of 

clusters set by the user as an input, the current visualization system chose the 

number of clusters as the same number of clusters formed when the Louvain 

algorithm is run on a network that is formed when there is no threshold 

level set. Adding the number of cluster options for such clustering may be 

one of the future works for this project. 

As shown in figure 1 and 2, there are a total of four sections for 

visualizing the results of the Time-Lagged Cross-Correlations algorithm. 

First there is a line chart that visualizes the original forms of the time series 

data. This is a common line chart graph to visualize time series data, which 

was included since it may be one of the crucial information that the user 

may want to view even when the focus of this tool is to analyze correlations 

among time series data. A detailed view is given in figure 3. 

 

 

 

 
Figure 3 – Line chart visualizations and the color and tooltip effects when the 

mouse is hovered over each line 
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The second type of visualization given are the two heatmaps that each 

visualize the amount of time shifted at the peak level of absolute correlation 

value and the correlation value at that point. As shown in figure 1 and 

denoted in figure 2, the heatmap at the top right-hand corner of the 

visualization system shows the correlation values derived from the Time-

Lagged Cross-Correlations algorithm. Correlation values that are close to 

dark red denotes values that are close to 1.0, while color closer to dark blue 

denotes a value close to -1.0. The diagonal values from the top left-hand 

side to the bottom right-hand side has dark red colors which denotes 

correlation values of 1.0, since the correlation value of each column to itself 

equals to 1.0. One thing to note here is that the heatmap of the correlation 

values is not symmetric like normally heatmaps with Pearson correlation 

values are, because the values differ for a pair of columns depending on 

which column was shifted in respect to the other. 

Another heatmap located right left to the correlation heatmap is another 

heatmap that visualizes the length of lagged period for each corresponding 

Time-Lagged Cross-Correlation value. In this heatmap the maximum value 

is decided by the amount of time range that the user has set as one of the 

input options, and the minimum value is 0. The closer the value is to 0, the 

color is closer to white, and as it gets closer to the maximum value the color 

becomes darker and closer to green. The heatmap for the lagged time values 

have a sequential color scale while the heatmap for the correlation values 

have a sequential color scale to fit the visualization purposes. The diagonal 

values corresponding to the former heatmap in the latter heatmap has values 

of 0, because the highest correlation values of each column with itself is 1.0 

when the time shift is 0. A closer and more detailed view of the heatmaps is 

shown in figure 4 and 5. Also, slight changes of color of the heatmaps when 

the window range is provided in figure 6 to check the effects of the input 

values that has on the output values and its visualization outcome. Even as 

the time shift range increases by just 10 timestamps, starting from range 20, 
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then going on to 30, and then 40, we can check that the absolute value of 

the correlation values slightly increases. 

 

Figure 4 – Heatmap on the top right-hand corner of the visualization system, that 

visualizes the correlation values derived from the Time-Lagged Cross-Correlation 

algorithm. The values are shown when the mouse is hovered on each tile. 

 

Figure 5 – Heatmap that is on the left side of the heatmap in figure 3 in the 

visualization system, that visualizes the lagged time derived from the Time-Lagged 

Cross-Correlation algorithm corresponding to the values in the heatmap in figure 3. 

The values are shown when the mouse is hovered on each tile. 
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Figure 6 – Screenshots of heatmaps when the time-shift range increases from 20, 

30 to 40 respectively. Although relatively slight changes are given in the time-shift 

range, some of the absolute correlation values become larger. 

 

The last type of visualization offered in the time-shift view is the 

network graph visualization. The network graph visualization is drawn 

based on the heatmap, or the Time-Lagged Cross-Correlation values for all 

the columns. Each node denotes a column of the time series data, and with 

the threshold put in as another input value, edges between two nodes are 

formed if the absolute value of the correlation exceeds the threshold value. 

The thickness of the edges increases as the absolute value of the edges 

increase. If a node does not have any connection with other nodes, it is not 

shown in the visualization. The color of the nodes is decided by the cluster 

that is formed with the option that is also chosen at the left-hand sidebar by 

the user. Currently, since there are only 3 maximum nodes in the example, a 

simple version of how the network graph is visualized is shown in figure 7. 
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Figure 7 – Screenshots of possible network graphs according to the correlation 

values and the threshold values set as an input value by the user. Also, the name of 

the variable pops up when mouse is hovered over a node. 

 

To explain with the given example, let us say the input range was 60 

days and we are trying to gain the cross-correlation value for Korea and 

New Zealand in the example data. The algorithm calculates 60 correlation 

values between the two columns, shifting New Zealand’s temperature data 

by 0~60 days. If the largest absolute value was -0.86 when the shifted day 

was 12, the Time-Lagged Cross-Correlation value for Korea and New 

Zealand becomes -0.86 when the lagged time was 12. Through the line 

chart visualization, the user is able to check the original temperature data of 

Korea and New Zealand. With the heatmaps we can check the relationship 

between the trends of the temperature in Korea and New Zealand, such as 

how much the weather is most similar with some time differences. We will 

also be able to view if they have significant correlations with the network 

graph visualization along with the relationship with other countries in the 

data. We will also be able to check if those can be clustered into a same 

group according to the k-Medoids algorithm of the Louvain algorithm. 
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3.3. Preparation for the Time-Segmentation View 
 

The second type of view is the time-segmentation view that allows the 

users to explore the change of correlations between two variables over time. 

The user inputs the number of segments, in which the system divides the 

time series data into by its time stamps. In other words, the time stamp is 

divided into the number of segments to look into. Then the user can explore 

the change of correlation between time variables over time. Similar to the 

time-shift view, the user can change from time-shift view to time-

segmentation view by choosing the radio button on the top left-hand corner 

of the visualization system as shown in figure 8 and 9. The user should 

choose the number of segments he or she would like to generate, and the 

segment number to look into though the visualization, the clustering method 

and the threshold level for the visualization on the left-hand sidebar. After 

selecting the options, then clicking on the red generation button will create 

the corresponding visualization. 

The visualization provides a heatmap, line chart and network 

visualization which is similar to the time-shift view, but does not contain 

the heatmap to indicate the amount of time-lag. This is because the Pearson 

correlation is calculated once for each segment, and thus does not have 

different time lag outputs. Moreover, the heatmap in this view is symmetric 

unlike the one in the time-shift view, since there is only one correlation 

value for a pair of variables. Another difference with the time-shift view is 

that the line chart shows not the whole dataset but the part of the segment 

that the user wants to look into. Therefore, the view in the line chart section 

changes as the number of total segments and the specific segment chosen 

changes in the side bar. 
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Figure 8 – A screenshot of a sample view of time-segmentation view 

 

 
Figure 9 – Names of each section of time-segmentation view 

 

The changes in the visualization according to the change of options is 

demonstrated with a simple toy data example in figures 10 and 11. Figure 10 

shows the change of network visualization with the change of thresholds, 

and figure 11 shows a change of correlations across time segments, which 

could derive useful meaning in real world data. 

As in the time-shift view, we could imagine the use of the time-

segmentation view with a more realistic example. For instance, let’s say that 

the user chose to have 4 segments for the weather data example. Then each 

segment will approximately contain data for each quarter of the year 2017 
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for every country. By looking into the visualization system, we can take a 

look into the change of correlation of New Zealand and Korea over the 4 

quarters of the year 2017. Some quarters may show higher positive or 

negative correlations, but other quarters may show lower positive or 

negative correlation. Whether each country has much difference between 

and/or within seasons may have an effect of the results of their change in 

correlation values. 

 

 

 

 

 

 

 

Figure 10 – Change of network graph as the threshold decreases from 0.3 to 0.2 to 

0.1 for the first segment out of 4 segments of the data 
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Figure 11 – Change of network graph as the threshold decreases from 0.3 to 0.2 to 

0.1 for the first segment out of 4 segments of the data 
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Chapter 4. Description of Dataset 
 

 

In order to test the effectiveness of this visualization tool, we have used 

1 toy data to demonstrate the function of this tool as well as 2 time series 

datasets from the Kaggle website to actually explore the correlations of time 

series data perhaps in its EDA process. One of the datasets is a weather data 

in India, and the other is a S&P 500 stock market dataset. 

 

4.1. Synthetic Data 
 

Synthetic data was created to test the functioning of the visualization 

tool. Using sine and cosine functions, 3 columns were generated with daily 

timestamps starting from January 1st of 2017 to December 30th 2020. 3 of 

the column names were ‘sine,’ ‘cosine,’ and ‘sample cycle’ with a total of 

1460 rows. The sine and cosine column was generated to have a complete 

cycle in 292 days, and the value was multiplied by 100. The sample cycle 

was made by adding two sine functions that were transformed and the cycle 

was 365 days. Then gaussian white noise was added to all the three columns. 

The line chart for this data is shown in figure 12 with the data table in 

figure 13. 

We expect to experiment if the Time-Lagged Cross-Correlation 

algorithm works as we expect it to, since sine and cosine functions should 

have the same form with some time differences, not considering the white 

noise that was added. For the ‘sine’ and ‘cosine’ columns, it should show 

almost perfect positive correlation when the ‘cosine’ column is shifted by 73 

days or almost perfect negative correlation the same column is shifted 219 

days. 
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Figure 12 – 3 columns of the synthetic data. From top to bottom, ‘sine,’ ‘cosine,’ 

and ‘sample cycle’ columns and the three columns plotted together respectively. 
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Figure 13 – Synthetic data table made of sine and cosine functions 

 

4.2. Weather Data 
 

A second dataset that we explored with the visualization tool is a 

weather data of Delhi, India from the Kaggle website. There are four 

columns each denoting the mean temperature, humidity, wind speed and 

mean pressure for each day as the timestamp. The date of the timestamp 

ranges from January 1st of 2013 to January 1st of 2017. The data contains 

1462 rows of daily data. The line chart of each column and the figure of the 

data table are shown in figures 14 and 15 respectively. This dataset may also 

have a cycle with a length of a year, as one can conjecture through the 

pictures in the line graph. 
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Figure 14 – Line chart of the four columns from the weather data of Delhi, India. 

Columns denoting mean temperature, humidity, wind speed, mean pressure 

respectively. 

 

 
Figure 15 – Table of the weather data of Delhi, India 

 

4.3. Stock Market Data 
 

The third dataset also from the Kaggle website is a daily stock market 

data set from NASDAQ, NYSE and S&P 500. A vast amount of data exists 
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from year in this dataset, from January 4th of 1970 to the current date for 

412 companies. Also, because the columns include ‘Date,’ ‘Volume,’ ‘ High,’ 

‘Low,’ ‘Open.’ and ‘Close,’ and ‘Adjusted Close,’ we used the ‘Adjusted 

Close’ column to get rid of redundant information. We also cut the data and 

cleansed it to use a period of about 6 and 2/3 years, from January of 2016 

to August of 2022. When the dates were decided the dataset contained 401 

companies with valid data. However, because there were too many columns 

for us to explore in the current visualization system, we picked 49 

companies to look into, a fraction of companies out of the 401 companies. 

These data may haves some cyclic factors every year, but overall, the cyclic 

factors may not also be very strong since the other factors affecting the 

market trend may be more influential in the data. Figure 16 shows the table 

of the stock market data that we used and figure 17 shows the line chart of 

the 49 stocks. 

 

 
Figure 16 – Stock market data table 
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Figure 17 – Line chart of the forty-nine columns from the stock market data. 

Columns denoting stock market prices over the time stamps for each stock. 
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Chapter 5. Visualization Results and Case 

Study 
 

 

5.1. Synthetic Data Exploration 
 

First experiment with the visualization system was with the synthetic 

data created with sine and cosine functions. Two out of three columns of 

this data, ‘sine’ and ‘cosine’, should show high correlations either in a 

positive or negative way with some time difference. Both columns have a 

complete cycle in 292 timestamps. We expect that when the cosine column is 

shifted for 73 timestamps (= 292 / 4), or 73 + 292 * n where n is an integer 

equal to or larger than 0, then it will show almost a perfect positive 

correlation with the sine column. We also expect that when the cosine 

column is shifted for 219 timestamps (= 292 * 3/4), or 219 + 292 * n where 

n is equal to or larger than 0, then it will show almost a perfect negative 

correlation with the sine column. In the case of shifting the sine column, we 

expect that it will have almost perfect negative correlation when it is shifted 

by 73 + 292 * n columns, and positive correlation when it is shifted by 219 

+ 292 * n columns. On the other hand, the ‘sample cycle’ data runs on a 

different cycle, or 365 days. Therefore, it is unclear how the correlations will 

be derived. 

First, in the time-shift view, experiment was run on 5 different time-

shift ranges, or 50, 100, 150, 200, and 250 time-shift ranges. 5 different 

thresholds for creating edges were given, or 0.1, 0.3, 0.5, 0.7 and 0.9. The 

results somewhat matched our hypothesis for the relationship between the 

columns to some extent. An example screenshot of this view is shown in 

figure 16. 

One point to look into was the relationship between the sine and cosine 

columns. The results for when the time-shift range input changed from 50, 

100, 150, 200 to 250 is shown in figure 17, where the clustering method and 
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threshold are fixed to k-Medoids and 0.1 respectively. When the time-shift 

range was 50, the output all of the green columns in the time-lag heatmap’s 

value was 50. However, when the time-shift range was set equal to or over 

100 and equal to or lower than 200, the time-shift values in the heatmap 

remained the same: 1) when the sine column is shifted in respect to the 

cosine column, the point with the highest absolute correlation value is -0.99 

when 73 periods are shifted, and 2) when the cosine column is shifted in 

respect to the sine column, the point with the highest absolute correlation 

value is 0.99 when 72 periods are shifted. When the time shift range reached 

250 the values in case 1) became 0.99 at 219, and -0.99 at 220 in case 2). 

These results match our assumptions. 

In the case of sample cycle column which does not have the same cycle 

length with the other two columns, the time lag values did show some 

patterns in the given time shift ranges. However, we were able to find that 

the absolute correlation values in relation to the other two columns were not 

high in all of the time shift range options. 

 

 
Figure 18 – Synthetic data time-shift view example screenshot 
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Figure 19 – Experiment results with synthetic data, changing time shift range from 
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50, 100, 150, 200 to 250 under threshold level 0.1 and k-Medoids as the clustering 

method 

 

For the time-segmentation view, the number of segments that the user 

could choose was 1, 4, 8, 12, and 16. If the user chooses to see the 

correlations under 16 segments, then the user can choose next a number 

between 0~15 as the segment number to look into. Two of the clustering 

options were k-Medoids and Louvain, while the threshold options were 0.1, 

0.3, 0.5, 0.7 and 0.9, The results of this finding show that when the time 

series data is segmented, it seems to show some level of correlation although 

the correlations are almost close to 0 when the Pearson correlation values 

are calculated for the whole dataset. The detailed results are shown in figure 

18. The trend seemed to show that as the time series data is segmented into 

smaller units, the absolute correlation values may tend to go higher then 

when more longer periods are observed. 

The results at least with this data showed that perhaps exploring into 

time-segmentation may have some drawbacks, as one may conclude that 

some variables are related to one another in a segmented view, but is 

actually not when a longer period of the data is observed. Perhaps a deeper 

and more of a multifaceted view may need to be derived to look into the 

time-segmentation view in a meaningful way.  

Overall, through this sample dataset we found that the time-shift view 

functions as we have planned, but that the time-segmentation view may 

need further exploration and complements to give useful and meaningful 

visualization results for the users. However, since this case of synthetic data, 

it did not have enough columns to thoroughly explore the network graph 

visualization and the effects of each clustering method. The value of network 

graph visualization method and each clustering method may be further 

explored in the next two examples. 
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Figure 20 – Time segmentation view with the synthetic data, with k-Medoids as 

the clustering method, 0.1 as the threshold. From top to bottom, left to right, are 

screenshots of segments when the data is segmented into 1, 4, 8, 12, 16 segments 

respectively. 
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5.2. Weather Data Exploration 
 

By looking into the weather data with four columns related to the 

weather condition in Delhi, India, we were able to find which columns had 

positive and negative correlations.  As shown in figure 19, the temperature 

and humidity had a negative correlation without time shifts when the time 

shift range was given to 10. We were able to conjecture which data was 

closely related even though we were not experts in this field. However, 

through exploring with the visualization system, we were able to find that 

the dataset could have a cycle around a length of a year. A figure of a time-

shift view of the weather data is shown in figure 21. 

We tested to give various time ranges to check the Time-Lagged Cross-

Correlations. The given time ranges were 10, 30, 60, 90, 200, and 400. We 

found that the mean temperature, humidity and wind speed columns overall 

have high absolute correlations. On the other hand, the wind pressure 

column did not seem to show high absolute correlations with the other three 

columns. Especially the temperature and humidity, wind speed and humidity 

constantly show negative correlations when the time lag is 0 over the time 

ranges. Another characteristic we can find is that when the wind speed is 

lagged in respect to the temperature, it constantly shows the highest positive 

correlation when the time lagged is 43 days when the time range is high 

enough. The screen shots are shown in figure 22. 
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Figure 21 – Time shift view of the weather data 

 

Figure 22 – Screenshots of time-shift view of the weather data, when the time 

ranges are 10, 30, 60, 90, 200 and 400 respectively from left to right, top to bottom 

with the threshold of the edges is set at 0.3. 
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One thing to note was that in case of the wind pressure column, it 

showed low level of correlation with other columns, and the time lag 

heatmap tended to show high level of time lags. This may point to the fact 

that possibly columns that have varying level of time lags for each time 

range and columns that show dark colors in the time lag correlation 

heatmap may tend to have low level of actual relationship with other 

columns. This may mean that maybe looking into correlations with which 

its corresponding time lag does not vary often may produce meaningful 

results. In this case, the correlations between the three columns, mean 

temperature, humidity and wind speed may have meaningful correlations 

because the time lag heatmap shows some consistency over the various time 

ranges. 

In addition, when the time range is set to 400, the colors of the 

correlation heatmap becomes darker overall, with the network graph of all 

the columns completely connected at the threshold level of 0.3. Also, 

considering the exploration with the synthetic data example, we can 

conjecture that the wind speed and temperature columns may have some 

similarity in its shape with a cycle length of around 377 (= 334 + 43) days. 

The wind pressure column also seems to have higher correlations with other 

columns when this column is shifted in regard to the other three columns, 

with time lags under 364 days. For this characteristic, we will have a look 

into the time segmentation view of the data. 

Next, we looked into the time-segmentation view with the weather 

data. The number of segments given to look at were 1, 4, 8 and 16. These 

number of segments were given to look at the whole dataset, yearly view, 

semi-annul view, and quarters of every year respectively, given the fact that 

the timestamp of the dataset ranges over a period of 4 years. The screenshot 

of the time-segmentation view is shown in figure 23. 

Some interesting patterns were observed when the time series data was 

split into several segments. When the correlation for the whole data was 
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calculated, the wind pressure column seemed to have low correlations with 

the other columns. However, when the data was split into 4 segments, in 

other words yearly data, the wind pressure column actually showed high 

level of correlation as well as the other three columns for the first three years, 

and only showed low correlation values in the last one year of the data. The 

total correlation of the wind pressure column when there was only one 

segment, which showed low absolute correlation seems to have been 

affected by the fourth year of the data. By looking into the raw data through 

the line chart visualization, it seems that there are some outliers in the wind 

pressure dataset in the fourth year of the dataset. Therefore, some process 

for taking care of outliers may be needed in the data cleaning process, or we 

can check if there were actual exceptional phenomenon in the year 2016 of 

Delhi, India. In addition, when we look into the 8-segment view and 16 

segment view, we can notice that there are some semi-annual and quarterly 

trends each year in the data. 
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Figure 23 – Screenshots of time-segmentation view of the weather data, when the 

numbers of segment(s) are 1, 4, 8, 16 respectively from left to right, top to bottom 

with the threshold of the edges is set at 0.3, with clustering method set to k-

Medoids. 

 

5.2. Stock Market Data Exploration 
 

By looking into the weather data with four columns related to the 

weather condition in Delhi, India, we were able to find which columns had 

positive and negative correlations.  As shown in figure 19, the temperature 

and humidity had a negative correlation without time shifts when the time 

shift range was given to 10. We were able to conjecture which data was 

closely related even though we were not experts in this field. However, 
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through exploring with the visualization system, we were able to find that 

the dataset could have a cycle around a length of a year. A figure of a time-

shift view of the weather data is shown in figure 21. 

With the stock market data, we were able to capture interesting findings 

by looking into the time-shift view of the visualization system. One of the 

meanings of looking into the stock market data was that we were able to 

look into the meaning of clusters in this system. Also, we found that 

interestingly, the lines with negative correlations tend to have higher time 

lags, which were some facts to look into. With more columns in the data, 

we were able to find higher number of clusters in the network graph 

visualization. A sample time shift view is shown in figure 24. 

 

 
Figure 24 – A time-shift view of the stock market data 

 

The stock market dataset was explored with time range of 30, 60 and 

90 days. The screen shot for each time range is given below in figure 25. 

Although background knowledge in this field may be needed for deeper 

understanding of the data, the dataset seems to show high level of positive 

correlation among the columns, possibly because most stocks follow the 

trend of the stock market. We can conjecture from the previous exploration 
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of datasets that correlations that have high corresponding time lag values 

even with varying time ranges may have insignificant relationships. While 

most columns showed positive correlations, some columns that showed 

negative correlations seemed to show a high number of time stamps lagged 

over various time ranges, which the explorer may look into and may come 

to a conclusion that it does not have significant correlation compared to 

relationships within other columns. 

 

 

 

 

 

Figure 25 – Screenshots of time-shift view of the stock market data, when the time 

ranges are set to 30, 60 and 90 days respectively from left to right, top to bottom 

with the threshold of the edges is set at 0.7, with clustering method set to Louvain 

community detection algorithm. 

 

To have a closer look into the threshold of the network, we changed the 

threshold level from 0.5, 0.7 to 0.9 when the time range was 90 and the 

clustering method was set to Louvain community detection algorithm. As 

the threshold level was raised, the explorer was able to find columns that are 

very closely correlated to one another. When the threshold level was low, 

the user was able to explore the communities or clusters formed with a 

larger portion of the columns of the dataset included. The images ae shown 

in figure 26. 
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Figure 26 – Screenshots of network graphs formed, when the threshold levels are 

0.5, 0.7, and 0.9 respectively from left to right, top to bottom with clustering 

method set to Louvain community detection algorithm. 

 

Going on to the time-segmentation view, we were able to check that in 

the case of stock market data, the user of the visualization system can look 

into time periods with specific events that the user wishes to look at. An 

example view of time-segmentation view with the stock market data is 

given in figure 27. Also, screenshots of view of the data when it is segmented 

into 18 segments are shown in figure 28. As an example, segment number 8 

and 11 may show time periods with notable events in the stock market trend. 

Segment number 12 shows one of the periods when the columns of the data 

are relatively not as correlated as other periods. 

 
Figure 27 – A time-segmentation view of the stock market data 
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Figure 28 – Screenshots of time-segmentation view of the stock market data, when 

the numbers of segment(s) are 18, starting from left to right, top to bottom with the 

threshold of the edges is set at 0.7, with clustering method set to Louvain 

community detection algorithm. 
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Chapter 6. Discussion 
 

 

This section introduces some options that were considered in the 

visualization system but were not implemented. The main reasons for this 

fact that as the system was in the process of development, we considered 

which options would be the most crucial options, and that options that were 

thought to have secondary importance should be added in the future after 

further exploration of the time series data with the given tool. Since practical 

usage of this visualization tool is important, decisions for which options 

should be added could be possibly added with further exploration with real 

data. 

 

6.1. Option to Choose a Specific Lagged Time for the 

Time-Shift 
 

One of the options that were considered in this way was an option that 

enables the user to choose the specific shifted time instead of the entire result 

of the Time-Lagged Cross-Correlations algorithm. If the Time-Lagged 

Cross-Correlation algorithm was found to be an effective method to explore 

time series data, the user of this tool may want to have a detailed view of the 

process that this algorithm that was run on the data. 

Specifically, if the user chooses the range of the time-shift window, then 

the user can view the correlation results for each step of the shifts as well as 

the total result of the Time-Lagged Cross-Correlation algorithm. For 

example, if the window range was set to 20, the viewer can also look into 

the heatmaps, network, and line chart visualization when the shifts were 

given through 0~20 for every pair of columns. In this case, the line chart 

will stay the same while the heatmaps and networks differ for each time step. 
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Figure 29 – Interface with the option to choose a specific lagged time under the 

Time-Shift View 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 – The side bar when the default option for the time-shift view is chosen, 

versus when the user chooses to view correlations given for specific time lags using 

slide bars when the option other than ‘Default’ is chosen. 
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Although this option may be useful when the information for each time 

shift is important, we were not able to find out if this would be one of useful 

information in time series data analysis in correlations. For example, 

drawing networks for edges formed for each step of the time shift and 

viewing the heatmaps may not be as effective, and could be even superfluous 

information. Therefore, the considered option in the next subsection was 

also considered that could capture the change of correlations through steps 

in time shifts in a more effective and information-compact visualization. 

 

6.2. Line Chart Visualizing the Change of Correlations 

over the Given Time-Shift Range 
 

Another option that was considered was a line chart that allows the 

user to view the change of correlations over the amount of shifted time 

periods. Therefore, the x-axis of the line chart becomes the amount of time 

lagged, and the y-axis becomes the correlation value of a pair of columns. 

The range of the x-axis would be integer numbers starting from 0 to the 

number given as the input for the range of time-shift the user wants to 

explore. The range of the y-axis would be [-1, 1], since the values indicate 

the correlation values for each time shift given. The number of lines drawn 

in this line chart would be n * (n-1) when there are n number of columns 

in the dataset. This is because two lines are drawn for a pair of columns, let 

us say column A and column B, for each case when column A is shifted in 

respect to column B and vice versa. 

This line chart would be useful when the user would like to check the 

validity of the correlations derived from the Time-Lagged Cross-

Correlations in a sense, because the results may be deemed to be trustworthy 

if the correlation values over the shifted time range changes with some 

continuity while correlation values are calculated for each time shift. In 

addition, since the Time-Lagged Cross-Correlations derives the point where 

the absolute value of the correlation value reaches its peak, the algorithm 
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may not clearly show cases where a pair of columns show both high positive 

correlation value and negative value at two different points. By looking into 

the line chart, the user will easily spot all the local minimum and maximum 

points other than the global minimum or maximum point derived by the 

algorithm. 

 

6.3. Heatmaps to Visualize the P-values 

Corresponding to Each Correlation Value 
 

Another method of validating the correlation values derived from the 

Time-Lagged Cross-Correlation algorithm is to check the p-values for each 

of the correlation values derived. It is one of the methods for checking the 

validity of correlation values. Therefore, we considered visualizing this 

information also into heatmaps. Such heatmap could be added along with 

the heatmaps visualizing the correlation values and lagged time at the point 

where the absolute correlation value reached its peak in the case of time-

shift view, and with the heatmap visualizing correlation value for each 

segment of data in the case of time-segmentation view. 
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Chapter 7. Conclusion and Future Work 
 

 

This paper proposes an interactive visualization tool that allows the user 

to explore time series data using Time-Lagged Cross-Correlation and time-

segmentation in various facets using network graphs, heatmaps and line 

charts. This allows data analysts and data scientists to thoroughly explore 

the relationships of time series data either in the EDA process or even in the 

process of analyzing the data. The tool will aid the users to look into the 

relationships among the variables in a deeper way compared to when they 

generate simple heatmaps to visualize Pearson correlations. 

Although the visualization explores Time-Lagged Cross-Correlation 

between variables, there may be other possible relationships to explore, such 

as logarithmic relationships, exponential relationships, etc. There are also 

other similarity or distance measures such as the Euclidean Distance or 

Dynamic Time Warping (DTW). Through further research, we may develop 

as future work an interactive visualization system that allows the users to 

explore these different relationships and methods, and perhaps compare the 

different outcomes of using these methods. 

Moreover, the current visualization system is more of a simple version 

of a visualization system that has the potential to become richer in 

expanding on its options. For example, in the case of clustering methods, the 

current visualization system offers only two options that each represent a 

more conventional method of clustering data and a community detection 

algorithm that is more novel in clustering time series data. While the 

visualization allows the user to compare and contrast the differences of 

using these two clustering methods, we may need to increase options such as 

k-Means, Girvan-Newman community detection algorithms, etc. This will 

enlarge the potential of looking into correlations in various aspects and trials 

with different methods that fit best for each dataset to explore. 
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These options may become more useful if the visualization system offers 

a real-time analysis function embedded in it, that allows the user to input 

the time range window for the Time-Lagged Cross-Correlation algorithm 

etc., unlike the current way where the options are already set at the analysis 

step and the user can only choose among the set options with the 

visualization system. For more development in these option choices and 

functions, further study should be made with datasets to figure out which 

options would be useful and economical, to not try to make superfluous 

options. 

In addition, we conjecture that this tool will be mainly useful in the 

process of exploring data. However, further research may be done to 

develop a tool to explain the process of analyzing time series data using 

machine learning and deep learning. Especially in the case of Graph Neural 

Networks, or GNN, we look into the possibility of connecting with our 

visualization system to help in its process of analyzing data. By capturing the 

trends of the changes in the relationships between two variables, the tool 

may aid improving the performance of deep learning algorithms such as 

these. 
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Abstract 

 

이 논문은 시계열 데이터 내의 상관관계를 다양한 각도에서 조사하

기 위한 대화형 시각화 도구를 제안한다. 데이터 탐색 과정에서 변수들 

간의 피어슨 상관관계를 시각화하는 것은 흔한 방법이지만, 시계열 데이

터의 경우에는 단순히 상관관계를 살펴보는 것만으로는 충분하지 않을 

수 있다. 시계열 데이터의 상관관계를 탐색하는 중에 간과할 수 있는 두 

가지 주요 문제가 있다고 보았다. 첫째, 시계열 데이터에서 변수들은 특

정한 시간 차이를 두고 높은 양의 또는 음의 상관관계를 보일 수 있다. 

둘째, 주어진 시계열 데이터에서의 상관관계는 시간이 지남에 따라 변할 

수 있다. 이러한 문제를 해결하기 위해 본 논문은 사용자가 변수 간의 

시간 차이에 따른 상관관계를 살피고 시간 구간별로 상관관계의 변화를 

관찰할 수 있는 대화형 시각화 시스템을 제안한다. 먼저 이 시스템에서 

시간 이동 뷰는 시간 교차 상관관계 알고리즘을 활용하여 시간 차이를 

반영한 시각화를 제공한다. 이 알고리즘은 주어진 범위 내에서 두 변수 

중 하나의 시간대를 이동시키며 얻은 절대값이 가장 높은 상관관계 값

을 계산한다. 또한, 시간 분할 뷰는 구간별로 상관관계의 변화를 관찰하

기 위해 시계열 데이터를 여러 구간으로 나누어 상관관계에 대한 시각

화를 생성한다. 시계열 변수들의 상관관계를 시각화한 방법으로는 시계

열 데이터나 상관관계를 일반적으로 사용되는 방법인 히트맵과 라인차

트뿐 아니라 네트워크 그래프를 사용하였다. 또한, 커뮤니티 탐지 알고

리즘을 사용하여 네트워크의 노드로 표현된 시계열 데이터의 변수들을 

그룹화 또는 클러스터링하여 각 노드의 색상을 지정하였다. 본 논문에서 

제안한 도구의 효과를 확인하기 위해 여러 시계열 데이터 예시에 적용

해 보았다. 이러한 예시를 통해, 시간 이동 뷰를 통해 주기가 있는 데이

터에서 패턴을 발견하는 것, 시간 분할 뷰를 통해 상관관계의 변화를 확

인하는 데 본 시각화 시스템이 유용하다는 것을 알 수 있었다. 논문에서

는 또한 향후 연구에 대한 가능성도 언급하였다. 
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