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Abstract 

 

Lung cancer is one of the most common types of cancer that frequently metastasizes 

to the brain. For optimal patient care and informed decision-making, accurate 

metastatic status classification is crucial.  

In this study, we propose two approaches that can leverage temporal 

information with contextual information in clinical notes to categorize cancer status 

into four distinct classes. First, we combined a BERT-based model with a 

Conditional Random Field (CRF) layer. Second, we built a Bidirectional Long Short-

Term Memory (BiLSTM) model with sequences of word embedding from the pre-

trained model. The dataset comprises 13,684 clinical notes, of which only 606 are 

annotated.  

We first fine-tune ClincalBERT with 450 annotated data, achieving an 

accuracy of 73.9 %. To augment the model's performance, a CRF layer is integrated 

on top of fine-tuned ClincalBERT, exploiting the temporal information provided by 

each note's date. The CRF layer is trained using 4,237 pseudo-labeled notes with a 

confidence threshold of 0.95, resulting in a model with 89.1 % accuracy. Additionally, 

we employ a semi-supervised approach while training a BiLSTM model with 

Clinical BERT's word embeddings, resulting in a model with 93.4 % accuracy. 

Our findings underscore the significance of leveraging longitudinal 

information and semi-supervised learning techniques for cancer status classification 

using clinical notes, with implications for personalized medicine and clinical support 

systems. 
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Chapter 1. Introduction 
 

 

1.1. Study Background 

Lung cancer is one of the leading causes of cancer-related deaths worldwide. It is 

notorious for its high rate of metastasis, or spread, to other organs, particularly the 

brain. In fact, lung cancers account for over 60% of all brain metastases [1]. 

Metastatic spread to the brain not only significantly deteriorates patients' quality of 

life but also reduces overall survival rates, emphasizing the need for accurate 

detection for informed treatment planning. 

Current detection and diagnosis methods, such as microscopic examination 

or conventional imaging techniques, such as magnetic resonance imaging (MRI) and 

computed tomography (CT) scans, although crucial, are not always conclusive [2]. 

Moreover, these approaches often encounter issues of subjectivity and interpretation 

inconsistencies, potentially compromising the accuracy and effectiveness of cancer 

diagnoses [3]. 

In recent years, there has been a growing interest in using computational 

techniques to automatically classify cancer metastasis from clinical notes [4, 5, 6]. 

Clinical notes are a rich source of data that can be used to identify cancer metastasis, 

but manual extraction and analysis of this data are laborious and prone to human 

error. Therefore, the utilization of advanced computational techniques for automatic 

metastatic status classification is not only beneficial but necessary. 
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1.2. Purpose of Research 

At Seoul National University Bundang Hospital (SNUBH), there is an increasing 

need to ascertain the status of brain metastasis in lung cancer patients for accurate 

cancer staging. This information is vital for proper recording of the patient's cancer 

staging status within their database. To address this, our study aims to assist the 

SNUBH medical team by providing a reliable computational model for metastasis 

classification from clinical reports. 

The advent of Electronic Health Record (EHR) systems and advancements in 

natural language processing (NLP) have led to a greater utilization of clinical notes. 

These notes encapsulate rich information pertaining to patients' medical histories, 

diagnoses, and treatment responses [7]. This shift towards data-driven decision-

making significantly aids in improving patient care. 

One of the most promising NLP models is Bidirectional Encoder 

Representations from Transformers (BERT). BERT has been shown to perform well 

on a variety of NLP tasks, including text classification, question answering, and 

natural language inference [8]. More specifically, in the healthcare sector, 

ClinicalBERT, a domain-specific adaptation of BERT, has exhibited remarkable 

capability in processing and understanding medical language due to its pre-training 

on a large corpus of clinical text [9].  

Despite the promising results exhibited by pre-trained models, their ability to 

capture the temporal structure within EHRs remains limited. This is a significant 

limitation, as temporal information can be crucial for accurate classification of brain 

metastases status as there are strong dependencies for the patients’ brain metastases 

status over time. Therefore, the present study seeks to address this gap by 
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incorporating temporal information into clinical notes. This will provide additional 

insights that could aid in the accurate classification of brain metastases status. 

1.3. Objectives 

As depicted in Figure 1, the principal aim of this thesis is to develop an accurate 

classification system capable of discerning brain metastases statuses from the 

clinical notes of lung cancer patients. This system will integrate both contextual 

and temporal information, leveraging the unique strengths of these two data 

sources. By doing so, this research has the potential to contribute to enhance the 

accuracy of cancer diagnosis and prognosis. Ultimately, it is anticipated that these 

advancements will contribute to improvements in patient care and outcomes.  

 

  

  

Figure 1. Objective of the study 
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Chapter 2. Preliminary Literature Review 

2.1. Deep learning for text classification 

Research in deep learning for text classification can be broadly categorized into two 

distinct areas. The first concentrates on the development of word embedding models 

to represent words as vectors in a high-dimensional space. This allows words with 

similar meanings to be represented by similar vectors, and the quality of these 

embeddings has a significant impact on the outcome of text classification tasks. Two 

popular word embedding models are Word2Vec [10] and BERT. Word2Vec uses 

either the Skip-gram or Continuous Bag of Words (CBOW) algorithm to learn word 

embeddings. BERT uses a self-attention mechanism to learn word embeddings that 

are more contextually aware. 

The second area pertains to deep neural networks, such as Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-

Term Memory Networks (LSTMs). Deep neural networks are a type of machine 

learning model that can learn complex patterns from data. They are often used for 

text classification tasks because they can learn to represent the semantics of text 

documents. For instance, Kim employed a CNN for sentence classification [11], 

representing sentences or documents as matrices with each row corresponding to the 

vector representation of words or characters. The text representation was then 

learned through convolution and pooling operations. Luo utilized an RNN to learn 

text representations by splitting sentences into sequences of words and letting the 

RNN model learn from these sequences [12].  

One of the notable experiments in this field was conducted by Senders et 

al., wherein they undertook a comparative analysis of different NLP models aimed 
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at the automated classification of medical text [13]. Their data source was magnetic 

resonance imaging (MRI) brain reports from patients with brain metastases. The 

reports were manually annotated to provide a binary classification:  whether a patient 

had a single metastasis or two or more metastases. Among the six diverse NLP 

models that they evaluated, the Long Short-Term Memory (LSTM) model 

demonstrated the most promising results. When trained on a data set comprising 

1,179 reports, this LSTM model achieved an accuracy rate of 87% on the binary 

classification tasks, thereby underscoring the potential of NLP in the classification 

of medical text. 

 

2.2. Improving BERT’s performance with CRF layer 

In the pursuit of improving the BERT model, various methods have been proposed 

by researchers. Notably, Souza et al. introduced an additional layer to the BERT 

model for better sequence classification [14]. 

Even though standard BERT-based classifiers have shown promising 

results in various NLP tasks, they face a significant challenge when applied to 

sequential decision-making [14]. While they process each sequence point using 

information from both preceding and succeeding points, the final classification 

decision for a given point is made independently of the decisions at the other points. 

This means that while they consider the context of neighboring data points for 

understanding each point, they do not utilize the classification decisions of these 

neighboring points. This can lead to less accurate results, especially in scenarios 

where the context of classification decisions in the sequence is important. 

Addressing this issue, Souza et al. devised a model that combines BERT 
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with a token-level classifier and further supplements it with a Linear-Chain 

Conditional Random Field (CRF) [15]. The CRF serves as a labeler, with the label 

assigned to a current word being influenced by the label of the previous word. By 

integrating this additional CRF layer, the classifier can consider the classification 

decisions from adjacent points in the sequence before reaching its own decision. This 

improvement allows for more accurate and contextually aware sequence 

classification outcomes. 

 

2.3. BiLSTM  

The BiLSTM model constitutes two separate LSTM structures, processing the input 

sequences in both forward and reverse orders, respectively. This bidirectional 

approach effectively encapsulates the features of the input sequence. The final word 

vector representation is obtained by concatenating the output vectors from the two 

LSTM networks, serving as the ultimate feature descriptor for the sentence. 

As illustrated in Figure 2, an LSTM unit comprises three gates: the forget 

gate, input gate, and output gate [17]. The forget gate governs the degree of 

information to retain from the previous cell state, deciding which information to 

discard. The input gate modulates the extent of new input information added to the 

cell state, while the output gate determines the update of the current memory state 

and the output of the hidden layer. 

The LSTM employs the forget gate to determine what information the cell 

state should preserve. The input gate determines how much new input information 

should be saved to the cell state, and the output gate decides the final output 

information. The following equations define the operations of an LSTM unit at the 

t-th timestep: 
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𝐹𝑜𝑟𝑔𝑒𝑡 𝐺𝑎𝑡𝑒(𝑓𝑡 ) = 𝜎(𝑊𝑓 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑓 ), 

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒(𝑖𝑡) = 𝜎(𝑊𝑖 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑖), 

     𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒(𝑐𝑡
′) = tan h(𝑊𝑐 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑐), 

     Candidate 𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒(𝑐𝑡 )= 𝑓𝑡  ∗  𝑐𝑡−1 + 𝑖𝑡  ∗  𝑐𝑡
′ , 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒(𝑜𝑡) = 𝜎(𝑊𝑜 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑜), 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑆𝑡𝑎𝑡𝑒(ℎ𝑡 ) = 𝑜𝑡 ∗  𝑡𝑎𝑛ℎ(𝑐𝑡 )  

 

where 𝑓𝑡  , 𝑖𝑡  , and 𝑜𝑡  represent the forget gate, input gate, and output gate, 

respectively, ℎ𝑡−1 , W, and b are the output of the previous hidden layer state, weight, 

and bias of gate neurons, and 𝑐𝑡
′  and 𝑐𝑡  are the cell state and the candidate of cell 

state.

 

 

While the LSTM model addresses the issue of short-term memory by 

regulating information flow through internal gate mechanisms, it only processes 

information from front to back, which may limit comprehensive semantic capture. 

The BiLSTM model, however, comprises two LSTMs that effectively encapsulate 

Figure 2. LSTM Architecture 
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bidirectional semantics. One LSTM processes the sequence in the forward direction 

while the other does so in reverse, and the outputs of the two LSTMs are combined. 

The hidden state ℎ𝑡  𝑎𝑡 t-th position in the BiLSTM model, where ℎ𝑡 
⃗⃗ ⃗⃗   𝑎𝑛𝑑 ℎ𝑡 

⃖⃗ ⃗⃗⃗ are the 

forward hidden layer state and the backward hidden layer state, respectively. 

ℎ𝑡  =  ℎ𝑡 
⃗⃗ ⃗⃗   ⊕ ℎ𝑡 

⃖⃗ ⃗⃗⃗  
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Chapter 3. Methodology 

We utilize two separate methods to classify brain cancer metastasis from lung cancer 

patients’ clinical reports: the Conditional Random Fields (CRF) layer added to the 

fine-tuned ClinicalBERT, and a bidirectional Long Short-Term Memory (Bi-LSTM) 

model trained with ClinicalBERT’s sentence-level embedding, which is extracted 

from [CLS] token. Each method takes advantage of a pre-trained model's capacity 

for contextual understanding and is designed to handle sequential information.  

 

3.1. Data Preparation   

Our dataset comprises 13,684 clinical notes, of which only 606 have been annotated. 

These selected reports were manually reviewed and annotated by domain experts 

from the Seoul National University Bundang Hospital (SNUBH). From the 

annotated subset, 500 notes were acquired through random sampling, while the 

remaining 106 notes were specifically selected from patients who have generated 

multiple records over time. This method of selection ensures that our dataset 

encompasses the sequential progression of cancer status within individual patients. 

Consequently, this provides a rich contextual background for the development and 

evaluation of our proposed cancer status classification models, potentially leading to 

more accurate and insightful results. 

As demonstrated in Figure 3, the notes were grouped by PERSON_ID and 

ordered by NOTE_DATE to model the temporal feature. We define each patient’s 

record cluster as a “sequence”, and in this study, we only consider sequences of 

length ten or more. Table 1 provides a description of the number of sequences in 

annotated notes and unlabeled notes, and Table 2 provides the distribution of labels 
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in the annotated dataset.   

 

 

 

 

 

 

3.2. Fine-tuning ClinicalBERT 

In the first stage of our methodology, we fine-tuned the base model, ClinicalBERT, 

Figure 3. Example of Dataset with sequences  

 Number of Notes 
Number of notes 

with sequences 
Number of sequences 

Un-labeled 13,078 4,511 276 

Randomly sampled 500 0 0 

Selectively sampled 106 106 10 

Total 13,684 4617 286 

Table 1.  Data Description 

Table 2. Label distribution of annotated dataset 

Labels Randomly sampled Selectively sampled 

Not-meta 242 45 

Meta 105 49 

Seeding 73 1 

Undetermined 80 11 

Total 500 106 
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using a subset of our annotated data. We selected 450 notes from the 500 randomly 

sampled notes for this purpose. The remaining 50 randomly sampled annotated notes 

were reserved for validation purposes. 

 Fine-tuning is a common practice in transfer learning, wherein a pre-trained 

model is further trained on a specific task using a smaller dataset. This process allows 

the model to adapt its generalized knowledge learned from the large pre-training 

corpus to the specific task at hand. This fine-tuning procedure was carried out to 

ensure that ClinicalBERT is more suited to our specific task and can leverage the 

intricacies and nuances present in our dataset.  

 

 

3.3. ClinicalBERT with CRF layer 

3.3.1 Data preparation with pseudo-labeling 

Figure 4 shows the overall research procedure for combining CRF layer with fine-

tuned ClinicalBERT. Given the limited number of annotated sequences available, we 

augmented the training data by using pseudo-labeled notes generated by the fine-

tuned ClinicalBERT. In an effort to enhance robust training, we selected notes that 

possessed an estimated probability exceeding 0.95. After this augmentation process, 

the CRF layer was trained with 248 sequences of notes, amounting to a total of 4,237 

notes. 
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3.3.2 Condtional Random Field (CRF) layer  

While Fine-tuned ClinicalBERT has achieved significant success in relatively simple 

tasks such as text classification, it is constrained when faced with tasks where output 

labels have strong interdependencies. One such task is brain metastasis classification, 

where metastases status exhibits strong dependencies over time. Hence, instead of 

independently modeling classification decisions, we jointly model them using a 

Conditional Random Field (CRF). 

For an input sentence 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) , we define P as the emission 

scores generated by the ClinicalBERT classifier. P is of size 𝑛  𝑥  𝑘, where n is the 

number of notes in the sequence and k is the number of distinct classes. 𝑃𝑖,𝑗 denotes 

the score of the 𝑗𝑡ℎ label of the 𝑖𝑡ℎ note in a sequence. For a sequence of predictions 

𝑦 = (𝑦1, 𝑦, … , 𝑦𝑛), its score, denotes as s, is defined by the following equation: 

𝑠 = ∑ 𝐴𝑦𝑖,𝑦𝑖+1
+

𝑛

𝑖=0
∑ 𝑃𝑖,𝑦𝑖+1

𝑛

𝑖=1
  

Here, A is a transition score matrix where 𝐴𝑖,𝑗 represents the score of transition from 

the label  𝑖 to label 𝑗. Considering that there are four classes in our study the size of 

Figure 4. ClinicalBERT with CRF layer workflow 
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matrix is 4 x 4. 

Assuming a total of N possible paths, the softmax over all possible 

sequences of metastatic status yields a probability for the sequence y:  

𝑝(𝑦|𝑋) =
𝑒𝑠(𝑋,𝑦)

∑ 𝑒𝑠(𝑋,𝑦)𝑁

1

   

During training, tge log-probability of the correct label sequence is maximized, as 

expressed in the equation:  

𝐿𝑜𝑔𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑔
𝑒𝑠(𝑋,𝑦)

∑ 𝑒𝑠(𝑋,𝑦)𝑁

1

     

By adding a negative sign, we transform our model to learn by miminizing the loss 

function. 

𝐿𝑜𝑔𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

= −𝑙𝑜𝑔
𝑒𝑠𝑅𝑒𝑎𝑙𝑃𝑎𝑡ℎ

𝑒𝑠1 + 𝑒𝑠2 +  … + 𝑒𝑠𝑁
 

 
= −(𝑙𝑜𝑔(𝑒𝑠𝑅𝑒𝑎𝑙𝑃𝑎𝑡ℎ) −(𝑙𝑜𝑔(𝑒𝑠1 + 𝑒𝑠2 +  … + 𝑒𝑠𝑁)) 

= −(𝑆𝑅𝑒𝑎𝑙𝑃𝑎𝑡ℎ − 𝑙𝑜𝑔(𝑒𝑠1 + 𝑒𝑠2 +  … + 𝑒𝑠𝑁)) 

 

Through this formulation, the CRF produce a valid sequence of output 

labels. Finally, CRF layer leverage Viterbi algorithm [16] the CRF layer obtain the 

sequence with the maximum score.  

Figure 5 provides a visual representation how this method works. (1) First, 

the fine-tuned ClinicalBERT takes a sequence of notes as input and (2) generates 

emission scores, which are logits for each class. (3) These emission scores and 

corresponding labels form the the inputs of the CRF layer, which calculates transition 

scores for each transition among the label. Figure 6 shows the transition score matrix 
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that our CRF layer computed. (4) Using the emission score and transition scores, the 

CRF layer computes "path scores" for all possible label sequences given an input 

sequence. (5) The sequence with the highest path score is identified using viterbi 

algorithm.  

 

                                                                           (5) 

                                                                 (4) 

                                      

                                                                   (3) 

 

                                                                            (2) 

 

 

                                                  (1) 

 

 

 

 

 

3.4. BiLSTM approach 

3.4.1 Semi-supervised learning with self-training method  

While the ClinicalBERT classifier with a CRF layer effectively models label 

Figure 6. Transition Score Matrix 

Figure 5. Process of ClinicalBERT with CRF layer 
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dependencies, it does not fully capture contextual dependencies in the input data. 

This is particularly crucial as cancer progression can vary significantly among 

individuals, making it essential to consider the contextual dependencies within a 

sequence of clinical notes. 

To address this challenge, we employ a BiLSTM model trained with 

ClinicalBERT’s sentence level word embeddings and their corresponding labels. The 

overall workflow for the BiLSTM approach is depicted in Figure 7. 

 Initially, we began by partitioning 106 selectively annotated records into a 

training set and test set. We selected the first six records from each individual as the 

training set, and the remaining 46 notes were allocated to the test set. However, given 

the limited number of annotated notes available for training, we employed a semi-

supervised learning technique known as self-training approach. The process of self-

training is illustrated in Figure 8. The self-training approach involves two key steps:  

1. The model is initially trained solely on the annotated data.  

2. With this trained model, we generate pseudo-labeled data for the unlabeled 

instances. This is achieved by assigning labels to the unlabeled instances 

with a confidence threshold of 0.95. 

This semi-supervised learning approach helps us to effectively use 

unlabeled data by leveraging the model's ability to infer labels for instances not in 

the annotated dataset. However, the self-training method presents a potential pitfall 

known as the 'overconfidence problem', where the model becomes too certain about 

its predictions on the unlabeled data, leading to a bias towards its initial predictions. 

This is counterproductive as the initial predictions could be erroneous and the model 

ends up reinforcing these mistakes. 

To mitigate this overconfidence problem, we adjust the confidence 
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threshold after the first 10 epochs, reducing it from 0.95 to 0.90. By lowering the 

threshold, we introduce a degree of uncertainty into the model's predictions on 

unlabeled data. This uncertainty can help the model explore different possibilities 

and learn better from the newly pseudo-labeled data in the subsequent epochs of 

training." 

 

 

 

 

 

Figure 7. Workflow of BiLSTM approach 
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3.4.2 Train BiLSTM with ClinicalBERT’s sentence level embedding 

In this study, we enhance the understanding of a patient's condition and the relevance 

of specific information within each note by integrating both past and future contexts 

using a Bidirectional Long Short-Term Memory (BiLSTM) model. 

Our process, as illustrated in Figure 9, initiates with ClinicalBERT, which 

has been fine-tuned to receive a sequence of clinical notes as input and generate word 

embeddings for each note. Given that the [CLS] token encapsulates the overall 

information of a sentence, we extract its word embedding to represent each note on 

a broader level. These sentence-level word embeddings are then fed into the 

BiLSTM model. By integrating the fine-tuned ClinicalBERT’s embeddings, we 

expect to bolster the model's robustness and its ability to generalize, which could 

enhance its performance even when the available data is limited. 

Figure 8. Self-training method 
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By taking into account the contextual information and labels in a 

bidirectional manner, BiLSTM is able to decipher complex patterns and provide 

accurate predictions that account for both temporal and contextual dependencies. 

This strategy elevates the model's capacity to identify unique features associated 

with each individual's cancer progression, thereby potentially increasing the model’s 

accuracy on brain metastases status classification." 

 

  
Figure 9. Process of BiLSTM approach 
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Chapter 4. Results and Discussion 
 

4.1. Results 

The performance of each model was evaluated using a set of 46 selectively annotated 

notes. These notes included 21 instances of no metastases, 24 instances of metastases, 

and one instance of an undetermined status. Notably, no instances of 'seeding' were 

included in these test notes. 

Table 3 presents a comparative analysis of precision and recall across the 

three models. The results indicate that the proposed methods generally outperform 

the base model in terms of both precision and recall. An exception to this is observed 

in the case of 'not meta', for which the base model achieved the highest precision. 

However, this appears to be primarily due to its relatively low recall. 

The Table 4 shows the comparison of accuracy for the three models. 

Compared to the base model, both CRF and BiLSTM methods achieved 

considerably improved accuracy, increased by 15.2 percent and 19.5 percent, 

respectively.  

Test data 
Base CRF Bilstm 

Precision `Recall Precision Recall Precision Recall 

Not meta 1.00 0.83 0.83 0.95 0.89 1.00 

Meta 0.83 0.71 1.00 0.88 1.00 0.86 

Undetermined 0 0 0 0 1.00 1.00 

 

 

  Correct Incorrect Accuracy 

ClinicalBERT 34 12 73.9 

ClinicalBERT + CRF layer 41 5 89.1 

ClinicalBER + BiLSTM 43 3 93.4 

 
 

Table 3. Comparison of precision and recall  

Table 4. Comparision of accuracy 
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4.2. Discussion 

In this study, we presented two distinct approaches that effectively employ both 

temporal and contextual information from clinical notes to classify cancer status into 

four separate categories. A considerable improvement in performance was observed 

between our base model and the enhanced models—ClinicalBERT with a CRF layer, 

and the BiLSTM model. This result shows the significance of leveraging temporal 

information for metastatic status classification. 

However, we acknowledge that this disparity could be attributed to the 

difference in data distribution between the training and test sets, as demonstrated in 

Table 2. The test set, comprising selectively sampled notes, predominantly includes 

either metastatic or non-metastatic cases. However, the randomly sampled notes in 

the training set encompass a higher proportion of 'seeding' and 'undetermined' 

cases. Upon validating our base model with 50 randomly sampled notes, we 

observed a significant increase in accuracy to 86%.  

We acknowledge that our results warrant further validation using a more 

comprehensive set of test notes. It is also crucial to evaluate the robustness and 

generalizability of our models by applying them to clinical notes from various 

hospitals. 

As a further avenue of research, it would be insightful to investigate the 

specific sections or clauses within the notes that our model prioritizes when making 

its decisions. Enhancing the model's explainability could provide deeper insights 

into its decision-making process. Importantly, a higher degree of explainability can 

foster trust among medical experts by making the model's decision-making process 

more transparent and comprehensible. This comprehension could consequently 
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highlight potential areas for model refinement, thereby leading to even more 

accurate predictions.  



 

 ２４ 

Appendix 
 

Figure 10 illustrates the manner in which the CRF layer refines ClinicalBERT's 

predictions by taking into account temporal dependencies. Notably, the model is 

capable of distinguishing the "undetermined" metastasis status into specific 

categories, demonstrating the value of incorporating temporal information. 

 

  

Figure 10. Sample results from CRF approach 
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Abstract 

폐암은 뇌로 자주 전이되는 가장 흔한 암 유형 중 하나로, 최적의 환자 치료

와 정보 기반 의사 결정을 위해서는 암세포의 뇌 전이 상태를 정확히 분류하

는 것이 중요하다. 본 연구에서는 폐암 환자의 MRI 판독소견서의 시간적 정

보와 맥락적 정보를 함꼐 활용하여 폐암의 뇌전이 상태를 분류할 수 있는 두 

가지 접근법을 제안한다. 첫번쨰 방법으로는 BERT기반의 사전된 모델을 

fine-tuning하여 Conditional Random Field (CRF) 레이어와 결합하였으

며, 두번째 방법으로는 사전학습된 모델에서 문장 수준의 임베딩 시퀀스를 

추출하여 Bidirectional Long-Short Term Memory (BiLSTM)모델을 구

축하였다. 데이터셋은 총 13,684개의 임상기록으로 구성되어있으며, 이 중 

606개의 데이터만이 주석처리 되었다. 주석처리된 데이터의 수가 부족한 문

제는 준지도학습 방법론을 동원하여 해결을 시도하였다. 450개의 주석이 달

린 데이터를 활용하여 ClinicalBERT를 fine-tuning하였으며, 이를 통해 

73.9%의 정확도를 달성하였다. 모델의 성능을 향상시키기 위해, 미세조정

된 ClinicalBERT위에 CRF 레이어를 통합하였고, 이는 89.1%의 정확도를 

달성하였다. 마지막으로, ClinicalBERT의 문장 수준의 임베딩을 사용하여 

BiLSTM을 학습시켜 93.4%의 정확도를 달성하였다.   

우리의 연구 결과는 임상기록을 사용한 폐암의 뇌 전이 상태 분류를 위해 시

간 정보 준지도 학습 기법을 활용하는 것의 중요성을 확인하였고, 보다 신뢰

할 수 있는 모델을 제공함으로써 의료진의 의사 결정을 도울수 있음을 시사

한다.  
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