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Abstract

While rare genetic variants significantly contribute to diverse phenotypes, their

low frequency poses challenges for association tests. Meta-analysis is a practical ap-

proach for identifying such variants by combining summary statistics from multiple

studies. However, current methods for rare variant meta-analysis exhibit limitations,

particularly when analyzing low-prevalence dichotomous traits.

In this paper, we introduce Meta-SAIGE, a novel approach for rare variant meta-

analysis. Meta-SAIGE is designed to reduce type 1 error inflation through precise

estimation of the distribution of test statistics. By allowing to reuse the LD-matrix for

different phenotypes, Meta-SAIGE enhance the computational efficiency and enables

phenom-wide analysis.

We evaluated the performance of Meta-SAIGE using Whole Exome Sequencing

data from the UKBiobank. Simulated null phenotypes were used to assess the type

1 error rate, and real UK-Biobank case-control phenotypes showed the consistency of

the meta-analysis results with SAIGE-GENE+, a joint analysis of individual level data.

Keyword: Meta-Analysis, Rare-variant, Gene-based association test
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Chapter 1

INTRODUCTION

1.1 GWAS

The Genome-Wide Association Studies (GWAS) are one of the important methods that

changed the way to explore the genetic basis of complex phenotypes. Before GWAS,

genetic association tests were performed on a small number of candidate genes that

were assumed to be related to the traits of interest. The genetic association tests were

often carried out using linkage analysis(Ott et al. [2015]), which was very limited in

the sample sizes and statistical power. However, with the completion of the Human

Genome (Consortium et al. [2001]) and advancements of high-throughput sequenc-

ing technologies(Reuter et al. [2015]), researchers can genotype millions of single

nucleotide polymorphisms (SNPs), which enabled large-scale association studies.

The first GWAS was published in 2005, which identified the single-marker associ-

ation to the age-related macular degeneration(Klein et al. [2005]). This study demon-

strated that GWAS could be a useful tool to detect novel genetic associations for com-

plex diseases. Since then, the number of GWAS has grown exponentially. Numerous

studies are published to date, uncovering associations of not only continuous phe-

notypes, but binary phenotypes such as diagnosis codes for diseases (Visscher et al.

[2017]).
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The establishment of large biobanks and consortia have further facilitated the

growth of GWAS by providing researchers with access to extensive datasets and re-

sources. These collaborative efforts have enabled the discovery of numerous genetic

associations, providing valuable insights into the genetic architecture of complex traits

and diseases.

1.2 Importance of Rare Variants

Although GWAS has proven to be a valuable tool in identifying novel genetic asso-

ciations, they have a significant limitation. Specifically, the heritability from GWAS

variants are considerably lower than those obtained through sibling recurrence risk or

residual phenotypic variance measurements (Manolio et al. [2009]). This phenomenon,

known as ”missing heritability,” has been observed in a wide range of diseases, includ-

ing age-related macular degeneration, Crohn’s disease, and type 2 diabetes, among

others. Various hypotheses have been proposed to explain this discrepancy. One of

the possible reason is that GWAS primarily captures the effects of common genetic

variants, while failing to account for the contributions of rare variants.

1.3 Gene-based Association Test

Due to low minor allele frequencies, single variant tests in GWAS have limited effi-

cacy for identifying phenotype associated rare variants. As an alternative, gene-based

association tests have been developed, capable of detecting the collective impact of

multiple rare variants. Methods such as the Burden test and SKAT have been proposed

to the combine the effects of variants in each gene. SKAT-O method, which integrated

both the Burden test and SKAT, has gained widespread adoption for gene-based asso-

ciation tests (Lee et al. [2012]).

While this effect combining method is useful, statistical power can be further im-

proved by collapsing ultra-rare variants (Zhou et al. [2022]). The ultra-rare variant
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collapsing also has been shown to effectively control both type 1 error rates. The

new SAIGE-GENE+ method combines all the listed methods and can also incorporate

functional annotations and different minor allele frequency (MAF) cutoffs. It performs

multiple gene-based test with different functional annotations and MAF cutoffs, and

combines significance using the Cauchy combination(Liu and Xie [2020]).

1.4 Meta-analysis of Rare Variants

Meta-analysis is a widely used statistical method that enables the identification of ge-

netic associations that may not be detectable in individual studies, but become signif-

icant when data from multiple studies are combined. This is particularly relevant in

the context of rare variant association tests, where the low frequencies of the variants

can limit their detection in individual studies. As biobanks continue to grow in size

and scope, researchers are increasingly motivated to collaborate in large-scale meta-

analyses of rare variants. To facilitate such efforts, international consortia such as the

Biobank Rare Variant Analysis (BRaVa) has been established. These consortia aim to

harmonize data collection, annotation, and analysis across multiple studies, thereby

increasing statistical power and enabling the identification of rare variants that may

be associated with complex diseases. By leveraging the strengths of multiple studies,

meta-analysis of rare variants has the potential to provide a more comprehensive under-

standing of the genetic basis of disease and to inform the development of personalized

diagnostic and therapeutic strategies.

Several meta-analysis methods have been developed to address the challenges of

detecting rare genetic variants, including RareMetal (Feng et al. [2014]), MetaSKAT

(Lee et al. [2014]), and MetaSTAAR (Li et al. [2023]). While these methods have

made significant contributions to the field, they have limitations in terms of type I error

control, scalability and statistical power. For example, RareMetal and MetaSKAT have

been shown to have limited scalability for large whole-genome sequencing studies.

3



MetaSTAAR is a recently developed method targeted for large whole-genome se-

quencing studies. It incorporates multiple variant functional annotations into the anal-

ysis process and accounts for sample relatedness for both continuous and dichotomous

traits. However, for low-prevalence dichotomous traits, MetaSTAAR can produce false

positives. It is a critical limitation as many diseases have low prevalence. Additionally,

MetaSTAAR requires generating covariance matrices of individual variant score statis-

tics for each phenotype separately, which hampers the analysis of many phenotypes.

In this study, I propose a new rare variant meta-analysis method called Meta-

SAIGE. Meta-SAIGE aims to 1) reduce the type 1 error inflation by accurately es-

timating the variance of score statistics through GC-based saddlepoint approximation

method(Dey et al. [2019]), 2) be computationally more efficient by sharing one sparse

LD matrix only for the covariance matrix of score statistics for all phenotypes, 3) pro-

pose a novel method that complies to biobanks’ privacy policies regarding ultra-rare

variant handling.
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Chapter 2

Methods

2.1 Workflow of Meta-SAIGE

Meta-SAIGE is a three-step process that involves: (1) preparing single variant level

association summaries for each cohort, (2) combining summary statistics from all the

studies into a single super-set, and (3) running gene-based tests, as illustrated in Figure

2.1.

2.1.1 Generating Summary Statistics From Each Study Cohorts

Initially, the first step can be performed using SAIGE, which generates score statistics

for each variant (S), its variance (V ), and sparse LD-matrix (Ω). For binary pheno-

types, the following logistic regression model is employed for association tests (Dey

et al. [2017]).

logit[Pr(Yi = 1|Xi, Gi)] = XTβ +Giγ

where for the ith sample, Yi denotes the phenotype, Xi denotes the non-genetic co-

variates, and Gi denote the genotype.

Assuming there are K studies, the score statistic for each variant j in the kth study

is computed as follows, where nk is the sample size, G̃i,j is the covariate adjusted
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genotype, and µ̂i is the estimate of Pr(Yi = 1|Xi) under H0.

Sj,k =

nk∑
i=1

G̃i,j,k(Yi,k − µ̂i,k)

Vj,k, the variance of Sj,k, can be calculated as follows, where G̃j,k is a covariate

adjusted genotype vector, and Wk is a diagonal matrix with (1 − µ̂i,k)µ̂i,k as the ith

diagonal element.

Vj,k = G̃T
j,kWkG̃j,k

However, utilizing this Vj,k in the score test can lead to an inflation of type 1 error.

This issue arises because the score distribution may not follow a Gaussian distribu-

tion, but instead exhibit skewness, which is commonly observed for phenotypes with

unbalanced case-control ratios. To address this problem, SAIGE incorporates the sad-

dlepoint approximation (SPA) method, as introduced by Daniels [1954], which utilizes

the cumulant generating function(CGF). SPA is a moment-based method that provides

a more accurate approximation for skewed distributions, thus reducing the occurrence

of type 1 errors. The CGF, K(t), can be defined as below, and its second derivative can

be used to approximate adjusted Vj,k.

Kk(t) =

nk∑
i=1

log(1− µ̂i,k + µ̂i,ke
G̃i,kt)−

nk∑
i=1

G̃i,kµ̂i,k

The sparse LD matrix (Ω) can also be generated by SAIGE as below.

Ωk = GT
kGk

2.1.2 Combining Summary Statistics Into a Single Super-Set

In Meta-SAIGE, summary statistics from multiple studies are consolidated into a sin-

gle table, namely, super-set. Subsequently, the super-set is employed to conduct gene-

based tests. In this step, Sj and Vj from each study are combined as

Sj = Sj,1 + ...+ Sj,k
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Vj = Vj,1 + ...+ Vj,k

Suppose that researchers want to test a region with the first m variants (j = 1, ...,m).

To calculate the covariance matrix of S = (S1, . . . , Sm)T , we first calculate the cor-

relation matrix of S, Cor, using sparse LD matrix Ωk and the MAF of each variant

obtained from each respective study. Where MAC represents the vector of minor al-

lele counts, Cor matrix of a certain region can be expressed as:

Ω =

K∑
k=1

Ωk, F =

∑K
k=1MACk∑K

k=1 nk

Cov = Ω/n− 4FF T

Cor = (CovT ∗ 1√
diag(Cov)

)T ∗ 1√
diag(Cov)

Then, S follows a multivariate normal distribution, given that Cor is the correlation

among genetic markers

S ∼ MVN(0, Ṽ
1
2CorṼ

1
2 )

where Ṽ is a diagonal matrix with diagonal element being V .

2.1.3 Running Gene-Based Test With the Super-Set

Prior to running the gene-based test, ultra-rare variant collapsing, a key concept that

contributed to the reduction of type 1 and 2 error rates in SAIGE-GENE+, was em-

ployed. Ultra-rare variants (minor allele count (MAC) ≤ 10) were collapsed as a

pseudo-variant and treated as a single variant. Summary statistics including Sj , Vj ,

and MAC were simply added up for the collapsing variants.

Subsequently, the super-set undergoes a gene-based test performed using SKAT-O,

which is an optimal unified association test that combines Burden test and SKAT test

(Lee et al. [2014]). The Burden method, which collapses rare variants within a specific

gene, can be potent when the majority of variants in a region are causal and the effects

are uni-directional. Conversely, the SKAT method, a kernel-based test method, can be

more powerful when a substantial fraction of the variants in a region are noncausal or

8



the effects of causal variants are different. The test statistics Q for Burden and SKAT

can be defined as follows:

QBurden = (

m∑
j=1

wjSj)
2

QSKAT =

m∑
j=1

w2
jS

2
j

Here, w represents a weighting vector, which is generated by employing MAF and a

flexible beta density function with Beta(1, 25). This weighting method can be used

under the assumption that rarer variants are more likely to be causal variants with

larger effect sizes. The SKAT-O test is an improved method that maximizes power by

leveraging the strengths of both the Burden and SKAT methods. It optimally combines

the Burden and SKAT methods by striking a balance between them. The final test

statistic can be derived as follows:

QSKAT−O = (1− ρ)QSKAT + ρQBurden

Finally, for each gene, multiple tests were conducted with various MAF cutoffs

and functional annotations. P-values from multiple testing results were collectively

combined using the Cauchy combination method (Liu and Xie [2020]). In this study,

MAF cutoffs of 1%, 0.1%, and 0.01% were used, and for functional annotations, LoF

(Loss of Function), LoF+Missense, and LoF+Missense+Synonymous were used.

2.2 Further Adjustment with GC-based Meta-Analysis Ap-

proach

In conventional meta-analysis, the aggregation of Vj across various studies is typically

performed as outlined earlier. However, when dealing with rare variant association

tests for highly imbalanced binary phenotypes, additional adjustments to Vj are nec-

essary. This is due to the discrete distributions of study-specific statistics, rendering

9



a simple summation inadequate. Hence, in the study Dey et al. [2019], a proposed

solution is the utilization of genotype-count based (GC) meta-analysis to redefine the

cumulative generating function (CGF) K(t). Through simulation studies, GC-based

meta-analysis was shown to substantially reduce the type 1 errors by more accurately

estimating the score distribution.

2.3 Cohort-Specific Collapsing

To enhance the robustness of the test, Meta-SAIGE can optionally employ cohort-

specific collapsing to generate a super-set. Each cohort underwent ultra-rare collapsing

with a MAC of ≤ 5 before being merged into the super-set. Importantly, if an ultra-rare

variant was collapsed in any of the considered cohorts due to its MAC being ≤ 5, it

was treated as an ultra-rare variant across all other cohorts, regardless of whether its

MAC exceeded 5 in other cohorts. This method provides a substantial benefit in terms

of clinical data privacy.

As ultra-rare variants typically exhibit very low MACs, they could potentially be

used to identify specific samples, which would breach the biobank’s privacy policy.

As a result, it is highly probable that future GWAS will conceal ultra-rare variants by

collapsing, even in single-variant summaries. Evaluations on this method is provided

in Appendix.

2.4 Type 1 Error Evaluation

The Type 1 error rate was assessed using the UK Biobank (UKB) whole-exome se-

quencing (WES) data of 160,000 white British samples. The null phenotypes were

generated following the same procedure described in Zhou et al. [2022]. The logistic

regression model used for generating the null phenotypes is presented below, where

α0 represents the intercept term determined by the phenotype prevalence (5% and

1%), Xs are the simulated covariates, and L = 30, 000 linkage disequilibrium (LD)

10



pruned markers from alternating chromosomes. This implies that only even chromo-

some markers L were used for null phenotype generation if the analysis was conducted

on odd chromosomes and vice versa. Null phenotype generation was replicated 40

times to yield approximately one million tests.

logit(πi0) = α0 +Xi1 +Xi2 +
L∑

j=1

Ĝijβ

Subsequently, the population was divided into three cohorts with varying sam-

ple sizes (Table 2.1), ensuring that related samples were assigned to the same cohort

(relatedness ≥ 0.05). Meta-SAIGE was then applied to these cases, and the Type 1

error rates were evaluated.

Table 2.1: Sample sizes of study cohorts for type 1 error evaluation

Case Sample size ratio 1st cohort 2nd cohort 3rd cohort

1 1 : 1 : 1 55655 55654 50652

2 4 : 3 : 2 74205 55654 37102

2.5 Real Data Evaluation

We further evaluated Meta-SAIGE using real binary phenotypes with low prevalences,

as indicated in 2.2. Type 2 diabetes (T2D) was selected to represent a phenotype with

a prevalence of 5%, while glaucoma and colorectal cancer (ColCa) were chosen to

represent phenotypes with a prevalence of 1%. A cohort comprising 160,000 white

British samples was selected from the UK Biobank Whole Exome Sequencing (WES)

dataset, and subsequently divided into two subgroups with respective sizes of 81, 657

and 85, 304. Subsequently, Meta-SAIGE was employed to perform the analysis on

these cohorts. The meta-analysis results were compared to the SAIGE-GENE+ results,

which was performed on the whole 160,000 white British population.

11



Table 2.2: List of tested binary phenotypes.

PHENOTYPES T2D Glaucoma ColCa

PHECODE 250.2 365 153

CASE-CONTROL RATIO 1:22 1:91 1:89

12



Chapter 3

Results

3.1 Type 1 Error Evaluation

The results of the type 1 error simulation on a phenotype with a prevalence of 1%

are shown in Figure 3.1. Without any adjustment for V (A), the type 1 error rate is

exceedingly high. However, a substantial reduction in the type 1 error rate is observed

when the SPA adjustment is applied. The GC-based adjustment further reduces the

type 1 error inflation. Similar trends were discerned for a phenotype with a prevalence

of 5% (refer to Figure 3.2). Table 3.1 computed and summarized the type I error rate

with a significance level of 2.50 ∗ 10−6. Despite the GC-based method proving to be

the most effective in curtailing the number of type 1 errors and the associated inflation,

there exist slight inflation of type 1 error. The cohort-specific method also reduced the

type 1 error rate and inflation (refer to Appendix Figure 1.), albeit not to the same

extent as the GC-based method.

3.2 Real Data Evaluation

Figures 3.3, 3.4, and 3.5 show scatter plots that compare the results from Meta-SAIGE

and SAIGE-GENE+ for type 2 diabetes, glaucoma, and colorectal cancer. As antici-

13



pated, the meta-analysis without adjustment exhibited many false positives (A). How-

ever, they were eliminated with either the SPA (B) or the GC-based method (C).

In general, SPA and GC-based adjustment successfully preserved the true signals

as indicated by SAIGE-GENE+ and exhibited high correlations (Table 3.2), without

presenting any genes that were not significant in SAIGE-GENE+ results, but signifi-

cant in Meta-SAIGE. It is noteworthy that the cohort-specific collapsing method also

effectively maintained the signals from SAIGE-GENE+, albeit with one instance of a

false positive observed in the case of glaucoma (refer to Appendix Figure 2. (B)).

Figure 3.1: qq-plot for prevalence 1% null phenotype - A) qq-plot without any V ad-

justment. B) qq-plot with SPA adjusted V . C) qq-plot with GC-based method adjusted

V .
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Figure 3.2: qq-plot for prevalence 5% null phenotype - A) qq-plot without any V ad-

justment. B) qq-plot with SPA adjusted V . C) qq-plot with GC-based method adjusted

V .

Table 3.1: Number of false positives with significance level at 2.5 ∗ 10−6 for null

phenotypes.

METHODS Prevalence Number of FP FPR

V NOT ADJUSTED 1% 311 2.13 ∗ 10−4

V NOT ADJUSTED 5% 41 2.80 ∗ 10−4

V ADJUSTED WITH SPA 1% 11 7.53 ∗ 10−6

V ADJUSTED WITH SPA 5% 17 1.16 ∗ 10−5

V ADJUSTED WITH GC-BASED METHOD 1% 7 4.80 ∗ 10−7

V ADJUSTED WITH GC-BASED METHOD 5% 6 4.10 ∗ 10−7

15



Figure 3.3: Real data analysis on type 2 diabetes (prevalence approximately 5%)

- X-axis represents the −log10(pval) of SAIGE-GENE+ and the Y-axis represents

the −log10(pval) of the meta-analysis. Significant genes are annotated in the plot. A)

scatter plot without any V adjustment. B) scatter plot with SPA adjusted V . C) scatter

plot with GC-based method adjusted V .

Figure 3.4: Real data analysis on glaucoma (prevalence approximately 1%) - X-

axis represents the −log10(pval) of SAIGE-GENE+ and the Y-axis represents the

−log10(pval) of the meta-analysis. Significant genes are annotated in the plot. A)

scatter plot without any V adjustment. B) scatter plot with SPA adjusted V . C) scatter

plot with GC-based method adjusted V .
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Figure 3.5: Real data analysis on colorectal cancer (prevalence approximately 1%)

- X-axis represents the −log10(pval) of SAIGE-GENE+ and the Y-axis represents the

−log10(pval) of the meta-analysis. Significant genes are annotated in the plot. A)

scatter plot without any V adjustment. B) scatter plot with SPA adjusted V . C) scatter

plot with GC-based method adjusted V .

Table 3.2: R2 correlation between Meta-SAIGE results and SAIGE-GENE+ results of

real binary phenotypes.

METHODS T2D Glaucoma ColCa

V NOT ADJUSTED 0.92 0.86 0.84

V ADJUSTED WITH SPA 0.94 0.95 0.95

V ADJUSTED WITH GC-BASED METHOD 0.91 0.94 0.94

17



Chapter 4

Discussions

This study introduces Meta-SAIGE, a novel approach for meta-analyzing rare variants.

By employing SPA and GC-based adjustment methods, Meta-SAIGE is able to more

accurately estimate the distribution of score statistics, thereby reducing type 1 error

rates while preserving true signals. As demonstrated in the null phenotype simulation

results, substantial reduction in type 1 error rates were observed when compared to

scenarios where V was not adjusted.

Examining real phenotypes demonstrated the high degree of consistency of Meta-

SAIGE and SAIGE-GENE+. The findings from the Meta-SAIGE analysis not only

exhibited a strong correlation with those of SAIGE-GENE+, but also showed no in-

stances of false positives or false negatives. This highlights the potential of Meta-

SAIGE as a reliable and robust method for meta-analyzing rare variants in imbalanced

binary phenotypes.

As like SAIGE-GENE+, Meta-SAIGE can incorporate multiple variant sets, con-

structed with different functional annotations and MAF cutoffs, by testing selected

variants only and combining the results using the Cauchy combination. This enables

researchers to curate the effects of particular rare variants such as deleterious missense,

loss of function and etc.

Meta-SAIGE offers improved computational efficiency, a significant advantage
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over other methods. For instance, Meta-STAAR computes the PC accounted null model

for each phenotype, a process that is notably time-consuming. In contrast, Meta-SAIGE

simply aggregates GTG from each cohort. This can dramatically decrease the compu-

tational cost associated with running a meta-analysis on numerous different pheno-

types, thereby facilitating a more cost-effective phenome-wide analysis.

Despite the aforementioned advantages, Meta-SAIGE is not without its limita-

tions. A primary constraint is the degree of inflation observed when dealing with an

extremely unbalanced binary phenotype. While this degree of inflation was neglectable

for phenotypes with a 5% prevalence, it became larger for those with a 1% preva-

lence. Potential solutions could include posterior adjustment methods such as Fisher’s

method or supplementing more cases to relieve the case-control imbalance.
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Appendix

Results for Cohort-Specific Collapsing method

Appendix Figure 1: Type 1 error evaluation on cohort-specific collapsing method

using simulated null phenotype - A) qq-plot for prevalence 1% phenotype. B) qq-

plot for prevalence 5% phenotype.
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Appendix Table 1: Number of false positives with significance level at 2.5 ∗ 10−6 for

null phenotypes for cohort-specific collapsing method.

METHODS Prevalence Number of FP FPR

V ADJUSTED WITH GC-BASED METHOD 1% 8 7.53 ∗ 10−6

+ COHORT-SPECIFIC COLLAPSING

V ADJUSTED WITH GC-BASED METHOD 5% 12 1.12 ∗ 10−5

+ COHORT-SPECIFIC COLLAPSING

Appendix Figure 2: Real data analysis on cohort-specific collapsing method - X-

axis represents the −log10(pval) of SAIGE-GENE+ and the Y-axis represents the

−log10(pval) of the meta-analysis. Significant genes are annotated in the plot. A)

scatter plot for T2D (R2 = 0.92). B) scatter plot for glaucoma (R2 = 0.92). C) scatter

plot for ColCa (R2 = 0.91).
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초록

희귀 유전 변이들은 다양한 표현형 발현에 중요한 인자로 여겨진다. 하지만 희

귀성은일반적인변이단위의연관성분석을어렵게하며,이에따라유전자기반의

메타분석이그해결방법으로제시되었다.많은희귀유전변이들의메타분석방법들

이개발되었으나이는불균형한이진표현형을분석할때제 1종오류인플레이션이

심한것으로나타났고,높은계산비용이발생한다는한계가있다.

이러한 한계를 해결하기 위해, 본 논문에서는 Meta-SAIGE를 소개한다. Meta-

SAIGE는점수분포의정확한추정을통해제 1종오류인플레이션을줄이고,인구

계층화를고려한영모델을계산하지않아효율성을향상시킨다.또한,바이오뱅크

의개인정보보호정책과일치하는초희귀변이처리방법을제안한다.

이연구에서는UKBiobank의Whole Exome Sequencing데이터를사용하여Meta-

SAIGE의성능을평가했다.시뮬레이션된표현형을사용하여제 1종오류율을평가

하고,유병율이불균형한실제질병들을사용하여메타분석결과가일반적인유전

자기반희귀변이연관성검사(SAIGE-GENE+)와일치하는지확인했다.

주요어: Meta-Analysis, Rare-variant, Gene-based association test

학번: 2021-27059
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