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Abstract

Item response theory (IRT) depicts the general tendency of
interactions between items and examinees. IRT is applied in various
areas, such as the item bank. In addition, diverse academic fields, such
as psychology, adopt IRT as a methodology. Therefore, IRT holds both
academic and practical significance.

IRT outperforms classical test theory (CTT) in terms of
practicality and flexibility. However, due to the complex nature of an
examinee's ability, existing models, especially unidimensional IRT
(UIRT), excessively simplify the interaction between the examinees
and items. This characteristic contributes to limitations in accuracy of
diagnosing examinees' abilities and imputing missing data.
Consequently, this limitation restricts the connection between
evaluation and feedback.

To reinforce connectivity, a new IRT model is required to enhance
its performance with respect to level diagnosis and imputation. To
achieve this purpose, we have adopted interactions between two item
pairs. Existing IRT models reflect these interactions indirectly, while
the new IRT model does so directly. These interactions are
conceptualized as response consistency.

In order to strengthen and verify the performance, methodologies
relevant to machine learning were introduced. As a result, a more

generalized level diagnosis of examinees has been accomplished. The
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advanced diagnosis results served as the basis for further enhancing
the imputation performance.

Response consistency is deemed to improve the performance of
IRT by incorporating interactions between item pairs, which further
segregate innocent responses from wild guessing. Meanwhile, it was
confirmed that item categories sorted out by the response consistency
coincided with item group classification in PISA 2018. This
serendipitous finding is expected to open the window of opportunity
for a data—driven approach in educational evaluation. In future studies,
the interaction between two items is expected to be expanded into the
interaction among multiple items for exploration towards the general

response consistency.

Keyword : response consistency, multidimensional item response
theory, item bank, imputation, machine learning, data—driven approach
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Chapter 1. Introduction

1.1. Purpose of Research

According to Douglas Stone and Sheila Heen, "there are three
types of feedback: evaluation, coaching, and appreciation." Evaluation
simply rates points, whereas coaching provides information for
further learning. In addition, appreciation offers sincere reactions
from instructors. In other words, ultimately, feedback requires not
only quantitative information but also qualitative information and
emotional depth. Item Response Theory (IRT) may cover the varied
aspect of feedback.

IRT depicts the general tendency of interactions between items
and examinees. It is applicable in various areas such as achievement
tests, the item bank, and computerized adaptive tests (CATSs).
Additionally, IRT is adopted in diverse academic fields such as
psychology and medical science. Therefore, IRT holds both academic
and practical significance.

Regarding IRT, it does not depend on the characteristics of
examinees, unlike classical test theory (CTT). As a result, IRT is

appraised as outperforming CTT in terms of practicality and



flexibility. Nevertheless, due to the complex nature of the interaction
between items and examinees, existing models, especially
unidimensional IRT (UIRT), excessively simplify this interaction.
Only few IRT wvariables attempt to reenact the complexity of the
interaction. As a result, these circumstances limit the performance of
IRT, consequently restricting the connection between evaluation and
feedback.

Before delving into a detailed discussion, there are two points to
consider. First, the diversity of IRT variables for a more precise level
of diagnosis is important. This point is expected to cover more
aspects of the complex nature of the interaction. Second, the
accuracy of imputation is significant for item banks as well. Item
banks often encounter missing data due to nonresponse. The
incompleteness of the item banks leads to the incompleteness of a
customized test and further feedback. If unresponsive items are
properly imputed, the quality of the customized test and feedback will
be improved.

In this study, a new model called Ising Multidimensional Item
Response Theory (IMIRT) is introduced. IMIRT incorporates a new
exponential term derived from the Hamiltonian of the Ising model.
The Hamiltonian of the Ising model is known for representing the
interaction between adjacent two spins of a material. Similarly, the
new exponential term in IMIRT reflects the interactions between two
items of a test set. This introduced exponential term is expected to
assist in more precise diagnosis of examinees' abilities. Furthermore,

this term is expected to enhance the performance of imputation.
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Regarding the verification process, multiple machine learning
methods, such as gradient descent and train/test splitting, will be
applied. Gradient descent 1s an algorithm used for exploring
optimization through numerical analysis and is applicable to complex
models. On the other hand, train/test splitting is a methodology used
to verify the explanatory power of a model. Both methods are suitable
for the verification process of complex data and models. Therefore,
they are expected to accomplish the verification process of the new

model, IMIRT.

1.2. Research Goals

In the process of the verification of IMIRT, two goals need to be

accomplished.

[Goal 1] Is IMIRT model capable of superior performance in terms

of the accurate imputation and the precise level diagnosis?

[Goal 2] What is the meaning of the parameters and variables in
IMIRT model? In other words, what is the role of each parameter or

variable in improving the performance of the IRT model?



Chapter 2. Theoretical Background

2.1. Item Response Theory

2.1.1 General Description, Assumptions and Types

IRT quantitatively evaluates the interaction between examinees
and items. In comparison with CTT, IRT offers more flexibility in
estimating item difficulty and item discrimination. In CTT, item
difficulty and discrimination are estimated solely based on answer
rates, while IRT takes into account the characteristics of both
examinee groups and test items, along with answer rates, to calculate
these two parameters. For example, if a group of examinees
demonstrates a low level of achievement, IRT estimates the difficulty
of items to be higher and the ability of examinees to be more
generously assessed. In summary, the flexible nature of IRT ensures
higher reliability in evaluation compared to CTT.

There are five basic assumptions in IRT. First, the location of
examinees remains constant during the test. Second, the
characteristics of test items remain static throughout the test. The
first two assumptions exclude the possibility of interaction with the

environment. Third, the response to one test item by an examinee
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does not influence the response to other test items. This assumption
1s referred to as the assumption of independence. Fourth, the
relationship between the ability level and the probability of answering
correctly can be described as a continuous function. Fifth, as the
probability of answering correctly increases, the ability level of the
corresponding examinee monotonically increases. The final
assumption represents the consistency of the model.

The number of variables and parameters determines the type of
IRT model. If the location of ability is determined by a single indicator,
the model is referred to as UIRT. If there are multiple indicators to

determine the location of ability, the model is referred to as MIRT.
2.1.2 UIRT Models

Regarding the binary case, UIRT encompasses various models,
including the Rasch model, the two—parameter logistic model (2PL
model), and the three—parameter logistic model (3PL model).

First, the Rasch model, a one—parameter logistic model (1PL

model), displays a probability distribution as follows:

O+ —B;

e
T _
P(Y! _1|Bi,9u)_m’ (2. 1)

where B; is the difficulty parameter of the ith item, and 8" shows
the location of ability of the pth examinee. Y =1 indicates that the
uth examinee answered the ith item correctly. The 1PL model is

fitted to the reference data with only one extrinsic parameter: B;. In



Probability

Figure 2-1. Three item characteristic curves (ICCs) of 1PL model. The
left ICC curve represents a difficulty of -1, the middle ICC curve
represents a difficulty of 0.2, and the right ICC curve represents a

difficulty of 1.7. (Reckase 2009)
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Figure 2-2. An item characteristic curve (ICC) of 3PL model. The
asymptotic line, with a probability of 0.16, represents the likelihood of

correctly answering the item through guessing. (Reckase 2009)



addition, the 1PL model exhibits high level of flexibility. However,
the 1PL model lacks an important parameter for items, which is
discrimination.

Second, the 3PL model has an expanded logistic form of the
probability distribution as follows:

(6" —B;

P(Y} = 1]a;, By i, 84) = (1 —m% + Vi, (2.2)
where «; is the discrimination parameter of the ith item, y; is the
asymptotic parameter relevant to guessing.

The 3PL model includes two additional extrinsic parameters: o
and y;. As a result, the 3PL model can exhibit a high level of
explanatory power. However, the formula of the 3PL model is
excessively complex for application.

Finally, 2PL model has a logistic form of probability distribution
as follows:

e%i(6"=Bp)

_esO 2. 3)
1 + e%i(6*=B1)

P(Yi"L =1 | Qj, Bi,G”) =

The 2PL model introduces an additional extrinsic parameter: a;.
When «; increases, the item characteristic curve (ICC) exhibits a
steep rise near the probability point of 0.5, as shown in Figure 2—3.
Conversely, when a; decreases, the ICC rises relatively gradually
near the same point, as depicted in Figure 2—3. In summary, a; is

referred to as the discrimination parameter.



Probability

Figure 2-3. Three item characteristic curves (ICCs) of 2PL model. The
ICC of item 1 shows middle-level discrimination and a difficulty of 0.5.
The ICC of item 2 exhibits high-level discrimination and a difficulty of
0. The ICC of item 3 displays low-level discrimination and a difficulty

of —1.2. (Reckase 2009)

2.1.3 MIRT Models

Regarding the binary case, MIRT includes two prominent models:
the compensatory model and the partial—compensatory model. First,
the compensatory model has a general form of the probability

distribution as follows:

eai-el’l—di (2 4)
W _
PO = tas 4, 09) = T Gona, |
where o 0" = ;;0} + ;05 + = Yy, 4,0, , v represents the

number of ability variables and d; is an intercept parameter. aj;
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represents discrimination parameter of the ith item corresponding
the first variable of ability 6.

In the compensatory model, the exponential term of the logistic
model's probability distribution function contains a linear combination
of multiple abilities. This allows the compensatory model to replenish
a vacancy due to lack of a specific ability with other abilities.
Furthermore, the intercept parameter d; in MIRT differs from the
difficulty parameter B; in UIRT. While B; interacts with a single
ability, d; needs to interact with a linear combination of multiple
abilities.

Second, the partial-compensatory model has a probability

distribution function in the following form:

e%iv(0y —Biv)

P(YLl = 1|(Xi, di,B“) = 1_[—“ (2 5)
! v 1+ ealv(ev_BlV)

The formula of the partial-compensatory model consists of
simple multiplications of a series of UIRT models. In the case of the
partial—compensatory model, if an examinee experiences a
significant loss in a specific ability, it becomes difficult to restore the
damage with other abilities of high skill. Therefore, this model is

referred to as a partial—compensatory model.



2.2. Ising Model

The Ising model is a theoretical model in statistical physics used
primarily to describe sudden changes, such as phase transitions and
the Curie temperature. In statistical physics, natural phenomena are
studied using many—body systems through the use of Hamiltonian.
In the case of the Ising model, when there is no external magnetic
field, the Hamiltonian consists of the interaction between two
neighboring spins. A detailed description of the Hamiltonian is
provided below:

I,_1(5)1)5)2) ""§N) = _Z

i#

Ji Si- 85 (2. 6)
j

In the description of Hamiltonian, J;; represents the interaction
between two neighboring spins §; and ;. If J;; is positive (J; > 0), the
interaction is referred to as ferromagnetic. Conversely, if J; is

negative (J < 0), the interaction is referred to as anti—ferromagnetic.

(@ />0 (b) J<O (c) ] >0

Figure 2-4 Spin configurations and spin interactions. (a) Two up—spins
(yellow arrows) with a positive interaction (J > 0). (b) Two up—spins and
a negative interaction (J < 0). (c¢) One up-spin and one down-spin (a

dark blue arrow) with a positive interaction.
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In the diagram (a) of Figure 2—4, interaction between two up—
spins with a positive ] decreases the Hamiltonian. On the other hand,
for the diagram (b) of Figure 2—4, two up—spins with a negative ]
increase the Hamiltonian despite the same spin configuration of (a).
Meanwhile, for the diagram (c) of Figure 2—4, the configuration of
two inverse spins with a positive ] increases the Hamiltonian. In
summary, both the shape of spin configurations and the interaction ]

determine the change direction of the Hamiltonian in the Ising model.

11 i’-! k.= 1_]|



Chapter 3. Research Procedure and Methods

3.1. Overview

The study followed a series of processes. First, we consider
various models. The UIRT 2PL model was chosen as a control group.
As an experimental group, IMIRT was selected. To establish IMIRT,
the compensatory model of MIRT was selected as a framework, and
the Hamiltonian of the Ising model was embedded into the exponential
term of the compensatory MIRT. Second, the Program for
International Student Assessment 2018 (PISA 2018) was selected
as the reference data. Among the chosen data, only Computer—Based
Test (CBT) items responded to by examinees from the Republic of
Korea (ROK) were filtered for this study in order to maintain
uniformity of the sample. Finally, we optimized the models by using
gradient descent that is an optimization algorithm for finding a local
extremum of differentiable objective functions. After completing the
optimization, a verification process was conducted to determine the

superiority of the new model.
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3.2. Model Establishment Process

Among the UIRT models, the 2PL model is suitable for the
control group. As mentioned in Chapter 2, the 1PL model is
insufficient as it only includes the difficulty parameter. Additionally,
the 3PL model is prone to overfitting, which can harm the predictive
capability of the model.

For MIRT models, the compensatory model is adequate to serve
as the framework for the new model. The compensatory model has
the advantage of compatibility and simplicity. Unlike the partial—
compensatory model, which experiences a steady decrease in the
probability distribution as the model dimension increases, the
compensatory model avoids this drawback. This characteristic
facilitates the comparison of performance between the compensatory
MIRT model and UIRT. Furthermore, the simplicity of the
compensatory model allows for easy adoption of new parameters and
variables.

Next, the Hamiltonian of the Ising model is converted into the
new variable 0, , establishing the new model ultimately. The
conversion process consists of two steps. First, the Hamiltonian is

normalized to form a pseudo—probability P as shown below:

1 yhyYHE q
su_ L Qa Y3ty 1 (3. 1)
2 kilzk/;tl/lel/ 2

where P* is a pseudo probability of the pth examinee, and k and 1

are index of items except missing data. In addition, if puth examinee
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answers correctly the k'th item, then Y} = 1. If not, then Y} = —1.
Then the pseudo probability ranges from O to 1. A pseudo probability
is derived from the Hamiltonian of the Ising model to be inserted into
the log odds, which requires a variable ranging from O to 1.

In the conversion process, the scale of Q is adjusted by dividing
it with Zj,2,Qxq, in order to normalize the Hamiltonian of the Ising
model. Since Y’,‘\,ILY’IM ranges from —1 to 1, an additional step of scale
adjustment is required. For this purpose, the normalized Hamiltonian
is halved and 0.5 is added.

Second, the pseudo probability is transformed into log odds to

complete the process as shown below:

e;:m( P ) 3. 2)

1—Pw

In this manner, the new variable 0, has been established, leading

to the suggestion of the new model named IMIRT.

3.3. Data Selection and Preprocessing

3.3.1 Data Selection and Criteria

The PISA 2018 Student questionnaire data file in SPSS (TM)
Data Files format was selected. As the data did not require additional
human—targeted investigations and did not pose a risk of personal
information leakage, it was evident that the data did not violate the

Institutional Review Board (IRB).

14 2 2-tl &l



R “CY07_MSU_STU_COG testlet.sav [BI0]E{ /S 1] - IBM SPSS Statistics Data Editor _ o x

n2E BIE =270 HOHD B0 =240 JHZE) SESEW  TEE W) TSUH)  MetaAnalsis  KorsaPlus(P)

SHE R -~ BLER M BE 19

1:CM0330018 FEA 2171297
& CNTRYID | @ CNT | & CNTSTUID UL E R R R R R R F R @ CM33Q01S | & CMAT4Q01S | & CM155Q01S | & CM155Q04S | @5 CMA11Q01S | d CMAT1G
& Ad qéd 0@ Cdd Sdb Sé s séd qéd ¢
N o] E| o] 4 1f 2] 2| ol o
1 410 KOR at000001 301 4 1 5 1 1 o2 2 2 2[ ] . =
2 410 KOR 41000002 301 41 1 2 12 2 23 2 3 3 .
3 410 KOR 41000003 301 6 1 2 16 1 24 1 1 1 .
4 410 KOR 41000004 301 12 1 1 M 2 24 2 3 3 .
5 410 KOR 41000008 301 17 2 3 7 1 26 1 2 2 .
6 410 KOR 41000006 301 8 1 2 12 2 23 1 3 3 .
7 410 KOR 41000007 301 63 2 3 13 2 26 2 2 3 .
8 410 KOR 41000008 301 5 1 8 118 2 27 2 3 3 .
9 410 KOR 41000009 301 33 1 2 16 2 23 1 3 3 .
10 410 KOR 41000010/ 301 5 1 8 18 2 27 2 3 3 .
1 410 KOR 41000011 301 65 2 7 13 2 25 1 0 0 .
12 410 KOR 21000012 301 42 1 3 13 1 26 2 2 3 .
13 410 KOR 41000013 301 43 1 8 W 2 27 2 3 3 .
14 410 KOR 41000014 301 39 2 5 15 2 2 2 2 2 .
15 410 KOR 21000018 301 3 1 3 13 2 26 2 3 3 .
16 410 KOR 41000016 301 H 2 7 7 2 2% 1 2 3 0 0 1 0 9
17 410 KOR 41000017 301 23 1 1 15 1 2 2 2 2 .
18 410 KOR 41000018| 301 40 1 8 118 2 27 2 3 3
19 410 KOR 41000018 301 5 2 3 17 2 2% 2 2 3
20 410 KOR 41000020 301 48 1 7 A7 1 26 2 1 2
21 410 KOR 41000021 301 220 1 8 W 2 27 1 2 3
2 410 KOR 41000022 301 12 1 5§ 15 2 21 1 3 3
23 410 KOR 41000023 301 56 2 3 13 1 26 2 3 3

Figure 3-1. A part of data from PISA 2018 under preprocessing by
IBM SPSS Statistics Data Editor software. The items responded to by
ROK (Republic of Korea) students were exclusively sampled. Student
data from other nations were excluded to maintain the uniformity of the

sample. The entire dataset was anonymized from the beginning.

Among the data, only responses from ROK students were
sampled exclusively to maintain sample uniformity. Additionally,
items that had never been responded to by Korean students were
removed. All the procedures thus far were conducted using IBM

SPSS Statistics Data Editor version 26.
3.3.2 Procedure of Data Preprocessing

After the data selection, additional preprocessing was necessary
to remove items with partial scores, which do not conform to the
binary case. Additionally, data from examinees with no response
were eliminated. As a result, the initial dataset of 52 items and 6650

examinees were refined to a dataset of 51 items and 2727 examinees.
§ sy
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The preprocessing was performed using Anaconda Jupyter Notebook

version 3.6.

3.4. Model Optimization Algorithm

After inputting the preprocessed data, the model optimization
algorithm for both UIRT and IMIRT follows four major steps in common
(Figure 3-2): initialization, updating variables, judging of newDg,'s

acceptance, and refining final variables. First, in the initialization step,

B and 6 of UIRT and d and 6, for IMIRT were set in a special manner.

The percentages of correct answers for examinees and for items were
collected separately. Then the initial  and d were generated from
the log odds of the correct answer rates for items, while the initial 0
and 6; were from the log odds of the correct answer rates for
examinees.

Additionally, for the optimization of the IMIRT model, extra steps
were required involving reprocessing of reference data Yl-“ and the

variables Q and 6,. First, in the reprocessing from Y/ to Y, set 1

H
for correct responses, —1 for incorrect responses, and O for non-—
responses. Then, the combination, namely the interaction, of two
correct responses or two incorrect responses yields 1, whereas the
interaction of one correct response and another incorrect response
yields —1. Second, in the initialization of the symmetric hollow matrix

Q, all the off-diagonal elements were set to 0.5 to avoid double

counting. Then, the initial Q does not differ the weight of interactions,

16 .__:Ix_s _'q.;:-' ok



Model Optimization Flow Chart for UIRT

Reject

Model Optimization Flow Chart for IMIRT

Preprocessed Data Input Preprocessed Data Input
I l
Initialize Variables: «, B, 8, D2I® Initialize Variables: ay, @y, d, 6y, Q, 6, Dg;" ‘
! |
Update Variables In Order: «, 8, 8 Update Variables In Order: a,, a,, d, 8,, Q, 8,
! |
Calculate DY Calculate DY |

Accept

Reject

‘ Update Dy, : D24 = DFEY

l

Final Variables: a, 8, 6, p2!d

New old
Dgf¥ < Dg® ?

Accept

|

Update Dy, : DZ* = DYV

1

Final Variables: a,, a,, d, 8,, Q, 8,, D2}? |

Figure 3-2. Model optimization flow charts for UIRT (Unidimensional Item Response Theory) and IMIRT (Ising
Multidimensional Item Response Theory). Each flow chart consists of four major steps: initializing variables, updating

variables, iteration, and finalizing variables. Dg; determines the continuation of the flow chart.
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0’5 ln‘ _p;: |

1-p*

1 correct
—1 incorrect

Figure 3-3. Conversion from Hamiltonian of Ising model into 0, of

IMIRT (Ising Multidimensional Item Response Theory).

Y{‘Yj“. Next, concerning the initialization of 8,, the pseudo-probability,
namely P#, is converted into 0, by a log-odds as equation (3.2).
Before the conversion, the pseudo—probability is assembled with the
weighted interaction, Y. QuYi V. Then, the weighted interaction
undergoes normalization in order to set 0 < P# <1 as equation (3.1).
The whole process of initializations is illustrated in Figure 3-3.
Second, the variables were updated using gradient descent, as

shown below™:

a oy, Ay o(New — O(Old _ , (3 3)
Jda
B: BNew — BOld —A%, (3. 4)
ap
aD
" New _ goid _ 5 IPKL (3. 5)
d d A 5d
0, 91: gNew — eOld —A%, (3. 6)
a6
Q: QNew — QOld —A% (3.7)

Third, the iteration of the second process continued until the local

© Detailed calculation of variables by means of gradient descent is shown in
Appendix A.
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minimum was identified. If the newly calculated Kullback—Leibler
divergence (DR€W) was larger than existing one (DY), the last DREW
was rejected and the iteration stopped. Then the process proceeded
to the next step.

Finally, the final variables were standardized to treat @ as a Z—

score. The detailed formulas for standardization are as follows:

0 — E[0]

1st 0, 0,, 0,: std — 3.8
StH, U1, % 0 Std[e] (3.8)
2" set(UIRT): astd(pstd — pstd) = q (6 — B), (3.9
2™ set (IMIRT):  o§tdgstd 4 ostdpstd — gstd = o0, + 0,0, —d, (3. 10)
3, o, @y ostd = std[6] «a, (3.11)
— E[6]

4th : std — —B .12

B B Sstd[0] ’ (3 )
4™ q: dstd = d — E[0,] ay — E[0,] a5 . (3.13)

3.5. Algorithm with Train/Test Splitting for

Performance Verification

At this stage, two additional steps were introduced: sampling
without replacement for the test set and calculating the Kullback—
Leibler divergence of the train set and test set separately. Regarding
the sampling, the number of items to which each examinee responded

was taken into account. From the reference data, 758 examinees

3 *y ] 1
19 A1 = TH <!

|
1r



responded to 18 items, 617 examinees to 16 items, 447 examinees to
17 items, 227 examinees to 15 items, and so on. The total number of
combinations of responded items and corresponding examinees was
40,586. 3953 combinations, approximately 10% of the total
combinations, were then sampled without replacement to generate the
test set, while the remaining combinations formed the train set. The
entire sampling process was Initially conducted for UIRT, and the
results of the sampling were subsequently shared with IMIRT.

Next, in terms of calculating Dg;, both the train set and the test
set were utilized. Nonetheless, only the Dg; of the train set was
considered to determine the continuation of training iteration. The Dy,
of the test set would be collected to assess the explanatory power of
the models.

Finally, in regard to the imputation performance comparison, the
agreement ratio for each model was calculated. To perform the
calculation, if the probability of an item being correct exceeded 0.5,
the item was converted to a correct response value of 1. Additionally,
a stricter agreement ratio was calculated for each model. Specifically,
only when the difference between the probability and the reference
data was within 0.3, the item was considered correct with a value of
1. The converted data and the reference data were collected and then

compared.
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3.6. Data Analysis Procedure

A series of collected data was exploited to verify the superiority
of the suggested model, IMIRT. First, upon completing the optimization,
the Dgy, values of both the existing UIRT and the new IMIRT would be
compared. Second, after the train/test splitting process, a comparison
of the imputation performance and the train-test graph of both models
would be conducted. Finally, the meaning of variables suggested with
IMIRT would be investigated to infer the reasons why the new IMIRT
model outperformed the existing UIRT, along with their implications in

psychometric and evaluation theory.
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Train/Test Splitting Flow Chart for UIRT Train/Test Splitting Flow Chart for IMIRT

Preprocessed Data Input Preprocessed Data Input
} 1
Test Set: Sampling without Replacement Test Set: Sample from UIRT
Train Set: Remainder Train Set: Remainder from UIRT
! |
Initialize Variables: «, g, 8, 7"DZ, Tp2id Initialize Variables: a,, a,, d, 8, Q, 8, ""DZ®, T*p2la
+ |
Update Variables In Order: «, B, 6 Update Variables In Order: a,, a,, d, 8,, Q, 8,
! i
Calculate ™'Dgw, Tephew Calculate ""DJEw, Teplew

Reject TrpNew < Trpgldy Accept Reject TrpNew o Trpoidy Accept
¥ |
Update™ Dy, :""D2ld = Trpliew Update™ Dy,:""D2id = Trpliew
: +
Final Variables: «, 8, 8, "DZ}?, T*p2id Final Variables: ay, a,, d, 8,, Q, 8;, T"D2/4, T°D2}4

Figure 3-4. Train/test splitting flow charts for UIRT (Unidimensional Item Response Theory) and IMIRT (Ising
Multidimensional Item Response Theory). In the flow chart, sampling for test set is inserted. Only TrDKL determines the
continuation of the iteration.
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Chapter 4. Result and Discussion

4.1. Improvement by IMIRT Model

4.1.1 Precise Level Diagnosis by IMIRT

Initial Dy, of lsing IMIRT ______i?iq_ Comparison(UIRT Vs lMlRT)

' —— D of URT
1 === Dy of Ising MIRT

043

Uﬂ-
Initial Dg; of URT — pa1

=
Z
Q o40 Sy “"[ Final Dy, of UIRT
039 \‘\‘ - 0.399
038 e Final Dy, of Ising IMIRT
________________________________ ITrmeeea | 10371
037 17 : : y . . .
0 50 100 150 200 250 300 350
Iteration

Figure 4-1. Quantitative comparison of model fitting between UIRT
(Unidimensional Item Response Theory) and IMIRT (Ising

Multidimensional Item Response Theory) with regard to Dg;

Regarding the degree of model fitting, Kullback—Leibler
divergence( Dy, ) was selected as the criterion ® . After the

optimization algorithm, the Dg; values of IMIRT and UIRT were

2 As a model reaches the reference data closer, Kullback-Leibler
divergence decreases.
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compared in Figure 4—1. To explain in detail, the Dg; was calculated
by averaging all the individual Dg;s of corresponding combinations
consisting of an item and an examinee. At first, the UIRT model, with
the initial Dg; value 0.419, appeared to be more efficient, compared
to IMIRT model, with the initial Dg; value 0.433. However, as
expected, the IMIRT model surpassed the UIRT model during the
optimization process. As a result, the final Dg; of IMIRT reached
0.371, while the Dg; of UIRT 0.399. The quantitative result indicated

the merit of IMIRT over UIRT in terms of model fitting.

4.1.2 Accuracy of Imputation by IMIRT

UIRT Trial "CM943Q01S8" IMIRT Trial [CM9243Q01S]
10 [ 10
°81 correct °81 correct Accordance Ratios (%)
£os Likelinood £ Likelinood
& . elihoo: T . elihoo
%M . Real Data % N Real Data Model
i & |incorrect Bi UIRT IMIRT
02 ao10e . ias
e e R 05 74.62 76.65
Ability (8) Ability (6-)
UVIRT Trial "CM943Q015" 10 IMIRT Trial [CM243Q015] 03 5522 6036
correct
08
c
2 08 . a
il 2
;. | undecid where, feq = 61 + 26,
g 1
**Tincorrect
00
=10 -5 0 5 10
Ability (5) Ability (6-,)

Figure 4-2. The illustration of imputation performance by means of
accordance ratio (right table), and the criteria for accordance ratio (left
graphs). The first criterion (upper graphs) sorted correct responses for
an expectation value over 0.5. The second criterion (lower graphs)
sorted correct responses for an expectation value over 0.7 and a bias
less than 0.3. For the second criterion, expectations between 0.3 and
0.7 were considered undecided and excluded from the accordance ratio

calculation.
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The results shown in Figure 4—2 once again indicate the
superiority of IMIRT. The agreement ratio of IMIRT, 76.65%,
outperformed that of UIRT, which was 74.62%. This represents an
improvement of 2.03%.

Furthermore, for the stricter criterion with a bias of less than 0.3,
the improvement was more significant. IMIRT achieved an agreement
ratio of 60.36%, while UIRT of 55.22%. In this case, the improvement
was enlarged to 5.14%. Given that the second criterion, a bias of less
than 0.3, is stricter, the higher agreement ratio under the second
criterion may reveal the higher quality of imputation accuracy. Then,
IMIRT was suggested to own higher quality of imputation accuracy
than UIRT.

Therefore, these results suggest that IMIRT not only improves
the quantity of imputation but also the quality of imputation compared

to UIRT.

4.1.3 Power of Explanation of IRT Improvement by IMIRT

Regarding the train sets of both models in Figure 4-3, D,
gradually decreased as the iterations progressed. However, there was
a difference in the trend of Dg; progression for the test sets. The
UIRT train result indicated overfitting as the Dg; of the UIRT test set
retrogressed against the Dg; of the UIRT train set. Meanwhile, the
D, progression for the IMIRT test set gradually followed the trend of
the Dg,; of the IMIRT train set, with a slight rebound.

The fact that overfitting diminishes the power of explanation of a

model suggests that the power of explanation of the UIRT model has
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been compromised. Conversely, the absence of this phenomenon in
the IMIRT model indicates its relatively superior power of explanation.

UIRT Di; Progress(Train & Test) MIRT Dg; Progress(Train & Test)

e e
-

—— Dy of Train Set D44 —— Dg of Train Set

050 == Dy of Test Set === Dy of Test Set

Dy

0.40 ¥

0 100 200 300 400 500 600 700 0 0 0 0 0 50
Iteration Iteration

Figure 4-3. Progress of Dg; of train sets (blue line) and test sets
(green dotted line) of UIRT (Unidimensional Item Response Theory) and
IMIRT (Ising Multidimensional Item Response Theory). The Dg; of
UIRT test set retrogressed then sidle along (left), whereas the Dg; of
IMIRT softly landed first along with the train set and then rebounded

slightly (right).

In summary, all the aspects of model fitting result, imputation
performance and power of explanation reinforce the superiority of

IMIRT.

4.2. Meaning of Parameters

4.2.1 Meaning of the New 0

Regarding the © of IMIRT, there are two components: ©; and
©,. To understand the meaning of this new ©, it is necessary to

compare it with the © of UIRT.
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@ comparisons (UIRT vs IMIRT)

y=0.989x+(0.000)
R* =0.978

6, of IMIRT

C7 7 gotumrt
Figure 4-4. Correlation between 0 of UIRT (Unidimensional Item
Response Theory) and 0; of IMIRT (Ising Multidimensional Item
Response Theory). The graph consists of the 2727 examinees (blue
dots) and a trend line (red dotted line). The slope of the trend line is

0.989. The R? value of the correlation is 0.978.

First, in regard to IMIRT 0., a significant correlation with UIRT 6
was observed. As an example, the R? value of 0.978 indicates that 6,
and 0 are practically identical. Therefore, it can be concluded that
IMIRT 6, is well-qualified to be regarded as the index of ability
location as UIRT 6.

Second, regarding the parameter IMIRT 6,, an intriguing pattern
was observed in Figure 4—5 to a certain extent. For the initial case,
namely before model fitting, the graph of 6; and 6, shows a
parabolic pattern. Meanwhile, after model fitting, the graph of 6; and
0, exhibits a boomerang—shaped pattern. Fortunately, those patterns

are reasonable as two graphs shows that low—level examinees tend
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6 compasions (Abil vs Consist)

- smes =y oy -
[ S

6 Consistency

: _-26 Abilityo : )
Figure 4-5. Distributions of examinees with respect to 0, (Ability) and
0, (Consistency) of IMIRT (Ising Multidimensional Item Response
Theory) before model fitting (left) and after model fitting (right). The
distribution of initial 0s forms a parabolic shape (left), whereas the
distribution of 0s after model fitting appears as a dispersed boomerang

shape (right).

to exhibit high—level consistency, similar to high—level examinees.
The distinctive point is that 6, of post model fitting appears to
scatter the examinees in the middle—level and upper—middle—level
range from the initial pattern the most. Comparing the two graphs in
Figure 4—5, it is certain to recognize the distinctive point.

As a result, it is possible to tentatively conclude that 6, has
potential to differentiate the distribution of combinations (8, 0,)
among similar abilities. Therefore, 6, can be denominated as the
response consistency.

The principle underlying the segregation by 0, is proposed as a
qualitative explanation with the aid of the diagrams shown in Figure

4—6 and Figure 4—7. Based on the chart presented above, when there
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Figure 4-6. 2D the graphs (left) for the transition of position of reference data (yellow dots) and the data from corresponding

expectation values (blue dots) and 3D graphs of IMIRT (Ising Multidimensional Item Response Theory) before transition. In

the middle 2D graph, the positions of reference data of examinees who missed the item are shown as indicated by the red

arrows. For the lower case (item code: CM919Q02S), the positions of reference data of examinees who missed the item

progressed. On the right side, the transition from the 3D graph to the 2D graph is depicted, as indicated by the blue arrows.

The transition follows the relation: 6.,

- az
= 0, +26;

29



Expectation Values
o o (=] o [ d
~ kS an o« o

(=3
o

o —
o o

=]
o

Expectation Values
o o
~ &

=3
=3

UIRT Trial “CM411Q015" IMIRT Trial [CM411Q015]
3 ® 10 e e
08
e
206
o Likelihood s ® Likelihood
Real Data § Real Data
a 04
&
a=148 02
B=-024
‘ - SomEI ' 004 _r.. . @
-2 0 2 -4 -2 0 2
Abllity (8) Abllity (8.:)
UIRT Trial "CM919Q02s" IMIRT Trial [CM919Q02S]
R ™ 10 >Q® oo
@
(4 08
€
206
® Likelihood = o Lkelihood
Real Data 3 Real Data
204
o
a=149 02
g=078
m——— 0oi{i®
-2 0 2 -4 -2 0 2
Abllity () Ability (6.)

IRT Trial [CM411Q01S)

Figure 4-7. 2D the graphs (left) for the transition of position of reference data (red dots) and the data from corresponding

expectation values (blurred blue dots) and 3D graphs of IMIRT (Ising Multidimensional Item Response Theory) before

transition. The position of reference data of examinees who missed or correct items unexpectedly was adjusted as red

arrows indicated. The clearance of orange dots represents the density of reference data distribution.
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1s a scenario of one correct response to one item and one incorrect
response to another item, there is a deduction of points by '—1'. This
trend suggests that 0, imposes a penalty for answer inconsistency.

Furthermore, it is expected that 6, would aid in distinguishing
sincere responses from wild guessing. Since wild guessing often
leads to inconsistent answers, namely low consistency, 0, is
anticipated to highlight this characteristic.

Before conducting the actual analysis of Figure 4—6 and Figure
4-"7, the concept of the converted ability, 0¢q, was introduced. 0,4 is
defined as below:

a;
eeq = 91 +_92 . (4 14)
a

After introducing of 8 it is indeed possible to conduct a

eq
qualitative analysis through a direct comparison with UIRT. The
yellow dots and black arrows in Figure 4—6, and red dots and red
arrows in Figure 4—7 illustrate cases where 0, becomes relevant. In
both example items, 0, is assumed to suppress incorrect responses
and push them towards the Ileft. Additionally, for the item
“CM919Q02S”, it was observed that correct responses tend to shift
towards the right.

In summary, IMIRT 0,, one of the new variables, is virtually
identical to the existing variable UIRT 6. Whereas the response

consistency, 6, , serves various roles: segregating ties and

discerning wild guessing among answers.
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Item Code PISA Item Type

Sorted Groups

Item Number Collected Items

Item Groups
12 £

CM033Q01S single select 0 CM033Q01S
CM474Q018 single select 1 CM474Q01S
DM155Q02C constructive(H)
CM155Q01S multiple select 2 CM155Q018
i 1 0 DM155Q03C constructive(H)
M1 CM155Q04S multiple select M 3 CM155Q04S
CM411Q01S constructive(C) 4 CM411Q01S
CM411Q02S single select 5 CM411Q02S
i 8 CM803Q01S  constructive(C) 6 CM803Q01S
CM442Q02S  multiple select 7 CM442Q02S8
DM462Q01C constructive(H)
CM034Q01S  constructive(C) 8 CM034Q01S
6 CM305Q01S single select 9 CM305Q018
CM496Q01S multiple select 10 CM496Q01S
CM496Q02S constructive(C) 11 CM496Q02S
CM423Q018 single select 12 CM423Q018
4 CM192Q018 multiple select 13 CM192Q01S
M2 DM406Q01C  constructive(H) M2
DM406Q02C  constructive(H)
CM603Q01S  multiple select 14 CM603Q01S
CM571Q01S  single select 15 CM571Q01S
2 CM564Q01S  single select 16 CM564Q01S
CM564Q02S  single select 17 CM564Q02S
CM447Q01S single select 18 CM447Q01S
CM273Q018 multiple select 19 CM273Q01S
0 CM408Q01S multiple select 20 CM408Q01S
CM420Q018 multiple select 21 CM420Q01S
M3 CM446Q01S constructive(C) M3 22 CM446Q01S
DM446Q02C  constructive(H)

Figure 4-8. Diagram of the distribution of Q depicted by 51 X 51 matrix (left) and the contrast table of PISA 2018 reference

data and data—driven block tendency (right). The scale of Q ranges from —1.62 to 12.47. The six black squares indicate the

block tendency of the interaction among items. The item groups categorized by blocks are identical to the item groups

categorized in the reference research report.
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4.2.3 Meaning of the Parameter @

Interaction term:

Considering the effect of the new interaction term originated
from the Hamiltonian of the Ising model, it is significant to analyze
the identity of Q, a weight parameter.

In Figure 4—8, a series of block tendencies is observed, forming
six minor off —diagonal square matrices. This block tendency implies
that items may interact exclusively with adjacent items within the
same block.

In reality, according to PISA 2018 research report, mathematics
proficiency is categorized into 6 levels: M1, M2, M3, M4, M5, M6A®,
It has been observed that the range of each proficiency level aligns
closely with the block tendency identified. However, there is one
exception, Q44g, Which deviates from the overall block tendency.
Despite this exception, Q can still be used to track the items that
each examinee personally responded to, with only minor
discrepancies.

Meanwhile, it should be noted that the Hamiltonian of the Ising
model and the interaction term in the IMIRT model (4.4) are not
strictly identical. In the context of the Ising model, the spins of a
material flip due to interactions with adjacent spins. However, in the

context of the IMIRT model, the responses of the reference data

% Some parts of the categorization are shown in the Figure 4-8. The whole

categorization and the check list are enumerated in Appendix C. .
T i)
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Range
1-1.62 ~ 1247

E[Y;QyY;]Range
:-0.96 ~ 1.95

E[Y;Y;]Range
:-0.35 ~ 0.37
Figure 4-9. Correlation triangle scheme between item responses (Y;,
Y;) and Q. E[Y;Y;] ranges -0.35~0.37, E[Y;Q;Y;] -0.96~1.95, Q -
1.62~12.47

never flip by interactions with adjacent responses.

On the other hand, both the Ising model and the IMIRT model
allow for the alteration of the interaction parameter, such as Q in the
IMIRT model. When the magnitude of Q is changed, it also affects
the impact of interactions between adjacent items. For example, if Q
1s positive, analogous to a ferromagnetic interaction, it strengthens
the effect of interactions. Conversely, if Q is negative, analogous to
an anti—ferromagnetic interaction, it reverses the effect of
interactions. Consequently, the scale of the interaction between two
adjacent items, expressed as E[Y;Y;], is amplified to E[Y;Q;;Y;] by Q
as illustrated in Figure 4—9.

Searching for the identity of Q, a hint can be suggested from the
Riemannian geometry. In the Riemannian geometry, which is applied
in General Relativity, it is possible for the Riemannian metric to

distort vectors of Euclidean space. Similarly, it is feasible for Q to
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distort the connection between two responses Y.

In summary, several aspects of the complex nature of Q have
been discovered. First, Q represents the interaction between two
adjacent items, analogous to the interaction in the Ising model.
Second, the block tendency of Q can be excavated by data—driven
approach. Finally, Q plays arole in distorting the correlation between
two items. Then, Q has the potential to both intensify and diminish

the correlation between two interacting items.
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Chapter 5. Conclusion

To summarize, this study aimed to investigate whether the
IMIRT model, which applies the Hamiltonian of the Ising model, can
enhance the performance of IRT. In particular, the introduction of
interaction among item responses implied the potential of merit.
Specifically, the IMIRT model outperformed the existing UIRT model
in terms of model fitting, imputation, and explanatory power.
Additionally, this study examined the significance of the newly
suggested variables and parameters, namely 6;, 6, and Q, to
understand the underlying reasons for the performance improvement
of the IMIRT model. The findings suggest that 0, is proposed to
represent the response consistency of examinees. That 6,
segregated innocent responses from wild guessing is assumed to
contribute to the advance. Finally, Q is identified as a factor that
distorts the correlation between two items and it exhibited a block
tendency with minor exceptions.

Afterwards, we propose two follow—up subjects for further
exploration of general consistency factors. First, it is possible to
expand the category of interactions among item responses. In this

study, we only introduced the interactions between two item
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responses for the IMIRT model. Then, the influence by interactions
among three or more item responses is required to be explored.
Second, we will explore general consistency factors on the scope of
data—driven approaches as well as model—driven approaches. The
block tendency of Q had confirmed the potential of data—driven
approaches. Then, application of data—driven approaches is expected
to contribute to discover new aspects of general consistency factors.

Thus, these subjects are worth of exploring in future studies.
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Appendix A. Detailed Derivations of Formula

A.1. Basic Information of Kullback—Leibler

Divergence

Kullback—Leibler divergence (Dg(Y||P)), also known as relative
entropy, quantifies the disparity between the probability distribution
of the model (P) and the reference probability distribution (Y). In the
binary case, Kullback—Leibler divergence, serving as an objective

function, is defined as follows:

1-Y)

. (A. 16)
1-p)

Y
Dy, (YIIP) = YIn + (1 = V)ln

Kullback—Leibler divergence 1s always non—negative. This

property is also called Gibb’s inequality:
D (Y[|P) = 0. (A.17)

Kullback—Leibler divergence equals zero if and only if Y=P,
indicating that Y is identical to P. The inequality implies that
minimizing Kullback—Leibler divergence allows the model to

approach the real data more closely.
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A.2. Probability Distribution and Variables

The probability distribution of the Multi—dimensional item

response model takes the form of a sigmoid function as shown below:
P(Yiu = 1|(Xi, di,B“) = [1 + exp(—(xi - QM + di)]_l . (A 18)

where ;- 0" = q;;0) + ;,05 . And ‘Y/'=1" means that the pth
examinee corrected the ith item. Meanwhile, 6, has the two step

route for assembly as below

TRy TR
1% step Z Qua ViV 1, (A. 19)
~2 kel Zper e Quertr #:l’Qk’l’ 2

pH
2™ step 8, =In — . (A. 20)
1—PH
where P" is a pseudo probability with 0 <P* <1, and k’ and I’ are

index of items without missing data. In addition, if pth examinee

corrects the kth item, then Y} = 1. If not, then Y’} = —1.

A.3. Detailed Procedures of Calculations for Model

Optimization

To minimize the objective function, appropriate variables such as
o, d, 0, are required for P to fit Y. By calculating the argument
minimum of the objective function, it will be possible to determine the

variables as follows:

3§ 53 17
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argmin Dgp, (Y]|P) . (A. 21)
a,d,0

However, finding the argument minimum of the objective function
analytically is convoluted. Therefore, it is plausible to suggest a
numerical method such as Gradient Descent. Using Gradient Descent,
the optimized variables of a, d, 8 are explored step by step.

First, in order to search the optimized a, the derivative should be

calculated as follows:

, (A. 22)
Jda

ahew — gold _ A

where A is the learning rate.
To perform the calculation, complex calculations of the partial

derivative term should be conducted as follows:

- , (A. 23)
o 0P da
Dg, P-Y
h = A. 24
where P P(1—P)’ (4. 24)
and ®_ OP(1—P). (A. 25)
oa

Then, the partial derivatives of the objective function of the

whole data with respect to both a; and a, are given as follows:

= E My A. 26
0 1 uel(P} . ( )

= E A A. 27
3, . 0, (P" —-Y", ( )

where a;; and a;, are the a; and the a, of the ith item respectively,
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0 and 0} are the 0; and the 8, of the uth examinee respectively.
Second, in order to search for the optimized d, the derivative

should be calculated as follows:

, (A. 28)
ad

dnew — qeold _ A

where A is the learning rate.
Then, the partial derivatives of the objective function of the

whole data with respect to d is given as follows:

0Dy, _ dDij, 0P

= — (A. 29)
ad JdP ad
g, P-Y
where, P = PP’ (A. 30)
0P
and - = = — i (A 31)
n 3= "P-P)

Then, the partial derivative of the objective function of the whole

data by d is given as follows:

aDKL u V]
= E —(P" —Y. A. 32
. ( i Y1 ) . ( 32)

Third, in order to search for the optimized 0,, the derivative

should be calculated as follows:

erllew — 9(1)1d —A

where, A 1s the learning rate.
Then, the partial derivatives of the objective function of the

whole data with respect to 6, is given as follows:
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- (A. 34)
90, 9P 00,
oDy,  P-—Y
where, P PP’ (A. 35)
0P
and — =aP(1-P). (A. 36)
20,

Then, the partial derivatives of the objective function of the

whole data by 6, is given as follows:

6—6‘1*: Zi ai (B —Y),

where E)‘ll is the 6, of the uth examinee, o;; and a;, are the a; and

(A. 37)

the a, of the ith item respectively.
Finally, in order to search for the optimized 6,, the derivative of

Q should be conducted as follows:

ODKL

Qnew — Qold —A

where A is the learning rate.
To perform the calculation, complex calculations of the partial

derivative term need to be conducted as shown below:

dDy;, _ 0Dy, 0P 06 0P

_ 9Dy 0P 06 0P (A. 39)
9Q _ P 809paQ
oDy, P-—Y
h = A. 4
where 9P P(1—P)’ (A. 40)
P
R _ (A.41)
30 a,P(1-P),
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00 1

===, (A 42)
0P P(1-P)

oP  YLY[ -2P+1

o (A. 43)
0Q 2 Zyr oy Qpryr

And

Then, the partial derivative of the objective function with respect

to Q for the entire dataset is given as follows:

M H NG
0Dk, _ Z O(,ilz(Pi _AYi ) (Y,kY,l —2PF + 1>’ (A. 44)
aQ iu PH(1—PK) 2 Zyr oy Quey

where P* is a pseudo probability with 0 <P* <1, and k and 1 are
index of items without missing data. In addition, if pth examinee
corrects the kth item, then Y, = 1. If not, then Y’} = —1. aj, is the
a, of the ith item.

8, can be updated with the newly learned Q using equation (A.

5).
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Appendix B. Detailed Algorithms for Sampling,
Variable 0, Fitting of Ising MIRT
embodied by Python

B.1. Sampling without Replacement to Generate Train

Set and Test Set

def simple_random(num_residues, num_division): # Number
Distribution in Random

result = []
count = 0

for i in range(num_division):
if count < num_residues:
result.append(1)
else:
result.append(9)
count += 1

random.shuffle(result)
result_np = np.array(result)

return result_np # return is yielded in numpy form

def random_colrow_extractor(df_bf_gagong, df_pray_gagong, rate_sam):
# df_pray_gagong 1is of pandas, List cols is of Llist.

cols_num_samp = [] # the number of samples for each item
coord_list = []
ind_n =0

df_decay_train = df_bf_gagong.drop(['NS'], axis=1)
df_decay = df_pray_gagong.drop(['NS'], axis=1)
list_cols = basket_column.copy()
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row_min = df_decay.shape[9]
col_min = df_decay.shape[1]

num_sam = math.trunc(tot_num_ref * rate_sam) # tot_num_ref 1is
universal variable.

# To distribute samples for each item
how_quotient = num_sam // col_min
how_residue = num_sam % col_min

num_dist_col = simple_random(how_residue, col_min) + how_quotient
num_dist _rsh = num_dist_col.reshape(l,col_min)

num_dist _col _pd = pd.DataFrame(num_dist_rsh)
num_dist _col _pd.columns = list cols[:51]

# To distribute samples for each examinee
how_quotient_mu = num_sam // row_min
how_residue_mu = num_sam % row_min

num_dist_row = simple_random(how_residue_mu, row_min) +
how_quotient_mu

num_dist_rshr = num_dist_row.reshape(row_min,1)

num_dist_row_pd = pd.DataFrame(num_dist_rshr,
index=df_decay.index.tolist())

# data for test set

data_collect = []
coord_col = []
coord_row = []
row_col val = []

# result for test set

basket_trial np = np.zeros((rows,columns))

basket_trial_nan = np.where(basket_trial_np == np.nan,
basket_trial_np, np.nan)

basket_test = pd.DataFrame(basket_trial nan)

basket_test.columns = list cols[:51]

# shuffle examinee's index
shf_index = df_decay.index.tolist().copy()
random.shuffle(shf_index)

for mu in shf_index:
col_decay = list_cols[:51].copy()

for j in list_cols[:51]:
if np.isnan(df_decay.loc[mu][j]):
col_decay.remove(j)
elif num_dist_col_pd.loc[9][]j] == ©:
col_decay.remove(j)
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col_decay_len = len(col_decay)

num_col_pick = num_dist_row_pd.loc[mu][@]

picked = simple_random(num_col_pick, col_decay_len)
picked_np = np.array(picked)

loc_picked = np.where(picked_np == 1)[0]

for nm in loc_picked:
col_picked = col_decay[nm]
coord_col.append(col_picked)
coord_row.append(mu)
row_col_val.append(df_decay.loc[mu][col_picked])
num_dist_col pd.loc[@][col_picked] -= 1
df_decay_train.loc[mu][col_picked] = np.nan

basket_test.loc[mu][col_picked] =
df_decay.loc[mu][col_picked]

data_collect.append(coord_row)
data_collect.append(coord_col)
data_collect.append(row_col_val)
data_collect_np = np.array(data_collect)

return df_decay_train, basket_test, data_collect_np # processed
train set, test set and the set of coordinates of test set

# sampling responses to test set

basket_ini = pd.concat([num_dfdf, p_solves], axis=1) # nametagging of
num_dfdf

num_dfdf_stunt = num_dfdf.copy() # num_dfdf's understudent
num_dfdf_stunt.columns = fil4.columns.to_list()

basket_column = fil4.columns.to_list()
basket_column.append('NS") # NS stands for 'N'umber of the 'S'olved
problems

basket_ini.columns = basket_column

gagong_univl = basket_ini.copy()
#gagong_univ21 = gagong_univil[gagong_univ1['NS"'] >= 3]
#gagong_univ31l = gagong_univ21.notnull().sum()

less 2 =[]

for i in range(rows):
if basket_ini['NS'][i] <= 15:
less_2.append(i)

print(less_2) £ :
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basket_sel = basket_ini.copy()
basket_sel.drop(less_2, axis=0, inplace=True)

tot_num_ref = int(gagong_univl.sum()[-1])

train_gagongs = []
test_gagongs = []
num_iter = 10

for i in range(num_iter):

num_df_gagong, test_set_gagong, test_set_coord =
random_colrow_extractor(basket_ini, basket_sel, 0.1)
# 'Gumeong' mean 'a hole' in Korean.

train_gagongs.append(num_df_gagong)
test_gagongs.append(test_set_gagong)

B.2. List of Functions for Updating 6, Only

# Both samjin_data and Q_Llet are of numpy. 'samjin’' means 'trinary'
in Korean.
def Shell_gagong(samjin_data, Q_let):

num_gagong = samjin_data.copy()
rows_let = num_gagong.shape[@]
columns_let = num_gagong.shape[1]

shell list = []

for i in range(rows_let):
garo_pre = num_gagong[i, :] # response vector(Y) of 1D. 'garo'’
means 'horizon' in Korean.
garo_T = np.reshape(garo_pre, (columns_let, 1)) # vertical form
sero = garo_T.copy() # 'sero' means 'the vertical' 1in Korean.
garo = np.transpose(garo_T)
shell_rough = sero * garo # 2D matrix of all the combination of
Y_1 Y_j (symmetric)

carrier = Q_let * shell_rough # 2D matrix with intensity Q
np.fill diagonal(carrier, 0) # off-diagonal

shell_list.append(carrier)

shell _result = np.array(shell_list) # The result is yielded in 3-
Rank Tensor

return shell_result
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# The function to generate 1ingredient for pseudo-probability from Ising

Hamiltonian

# Gagong_data 1is of pandas and Q_Let 1is of numpy.

def answer_covari_bfsum(gagong_data, Q_let):

num_gagong_bf = gagong_data.to_numpy()
rows_let = num_gagong_bf.shape[0]
columns_let = num_gagong_bf.shape[1l]
Yij_shell_let = Yij_shell.copy()

Q_np = Q_let.copy()

# Conversion of (1,0) binary data into (1,-1) binary data (NaN 1is

transformed to zero)

# Refinement for avoiding 'divided by zero' error

num_gagonged_bf = np.where(num_gagong_bf == 0.01, -0.99,

num_gagong_bf)
num_gag_pd = pd.DataFrame(num_gagonged_bf)
num_gag_fna = num_gag_pd.fillna(®)
num_gagonged_np = num_gag_fna.to_numpy()

p_bfsum = Shell gagong(num_gagonged_np, Q_np)

before sum of the formula above

R simple sum up ------- Normalization down
# generation of denominator of the formula above

denomin = []

for i in range(rows):
bf_Qsam = Yij_shell[i] * Q_let
af_Qsam = bf_Qsam.sum()
denomin.append(af_Qsam)

P2_carrier = p_bfsum.copy()
# Ingredient of pseudo-probability

for i in range(rows_let):
if denomin[i] == @:

# the numberator

# 3-Rank Tensor

P2_carrier[i] = @ * P2_carrier[i] # Get rid of the

information of examinees who solved only one item.

else:

P2_carrier[i] = P2_carrier[i] / denomin[i]

return P2_carrier

# Generation of pseudo-probability 1is accomplished in the end.

# Gagong_data 1is of pandas and Q_Let 1is of numpy.

def answer_covari_afsum(gagong_data, Q_let):

# collection of the whole ingredient
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p_bfsum = answer_covari_bfsum(gagong_data, Q_let)
gagong_np = gagong_data.to_numpy()

rows_let = gagong _np.shape[9]

columns_let = gagong np.shape[1]

covari_ini = p_bfsum.sum(axis=2)

covari_mid = covari_ini.sum(axis=1)

covari_carry = np.reshape(covari_mid, (rows_let, 1))
vertical shape

# pseudo-probability of range between @ and 1

# keep the

mid_result = (49/98.01) * (covari_carry) + 0.5 # refinement

avoding 'divided by zero' error

# refinement avoding 'divided by zero' error

scarub = np.where(mid_result > ©0.99, 0.99, mid_result
scourge = np.where(scarub < 0.01, 0.01, scarub)
P2_result = scourge

)

return P2_result # pseudo-probability of numpy form

# The function to calculate the derivative of KLD by Q
# Gagong_data is of pandas the others are of numpy.

def Q_deriv(alpl, alp2, d_let, thtl, tht2, Q_let, gagong_data):

num_gagong_bf = gagong_data.to_numpy()
rows_let = num_gagong_bf.shape[0]
columns_let = num_gagong_bf.shape[1]
Yij_shell_let = Yij_shell.copy()

Q_np = Q_let.copy()

Q_nuul = Q_halves.copy() # The initialized Q matrix of Universality

# Conversion of (1,0) binary data into (1,-1) binary data (NaN 1is

transformed to zero)
# Refinement for avoiding 'divided by zero' error

num_gagonged_bf = np.where(num_gagong_bf == 0.01, -0.99,

num_gagong_bf)
num_gag_pd = pd.DataFrame(num_gagonged_bf)
num_gag_fna = num_gag_pd.fillna(®)
num_gagonged_np = num_gag_fna.to_numpy()

p_bfsum_nossi = Shell_gagong(num_gagonged_np, Q_nuul)

p_bfsum = Shell_gagong(num_gagonged_np, Q_np) # Before calculation

# generation of denominator of the formula above
denomin = []
for i in range(rows):
bf_Qsam = Yij_shell[i] * Q_let
af_Qsam = bf_Qsam.sum()
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denomin.append(af_Qsam)

P2_carrierl = p_bfsum_nossi.copy()
P2_carrier20 = p_bfsum.copy() # 3-Rank Tensor

# The 1st term of the numerator
for i in range(rows_let):
if denomin[i] == O:
P2_carrierl[i]
else:
P2_carrierl[i]

0 * P2_carrierl[i]

P2_carrierl[i] / denomin[i]

# The 2nd term of the numerator
for i in range(rows_let):
if denomin[i] ==
P2_carrier20[i] = @ * P2_carrier20[i]
else:
P2_carrier20[i] = P2_carrier20[i] / (denomin[i] *
denomin[i])

covari2_ini = P2_carrier20.sum(axis=2)

covari2_mid = covari2_ini.sum(axis=1)

P22 _part = np.reshape(covari2_mid, (rows_let, 1)) # keep the
vertical shape

P2_list = []

for i in range(rows_let):
carrier = Yij_shell let[i] * P22_part[i]
P2_list.append(carrier)

P2_carrier2 = np.array(P2_list)

return P2_carrierl, P2_carrier2 # former: the 1st term, Llatter: the
2nd term of the numerator

# The function to sum all the ingredient of the formula above in the
end

# Gagong_data 1s of pandas the others are of numpy.

def Q_learn(alpl, alp2, d_let, thtl, tht2, Q_let, gagong_data):

Q_np_test = Q_let.copy() # Matrix to be Llearned
gagonged_data = gagong_data.to_numpy()

rows_let = gagonged_data.shape[9@]

columns_let = gagonged_data.shape[1]

# the chain of the derivative: 3-Rank Tensor form

P2_mu = answer_covari_afsum(gagong_data, Q_np_test)

Normed_Y = (49/98.01) * (Q_deriv(alpl, alp2, d_let, thtl, tht2,
Q_let, gagong_data)[0] - Q_deriv(alpl, alp2, d_let, thtl, tht2, Q_let,

gagong_data)[1]) % = 3
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R e e L L DT division line-------------------"--- #
# common part
com_pt = preprocess_diff(alpl, alp2, d_let, thtl, tht2,
gagong_data)
# calculation start
common_unit_np = com_pt * alpl # 2-dimensional Matrix
common_unit_T = np.transpose(common_unit_np) # mu for axis=1; 1in
order to Link mu with 3-Rank Tensor
decoy_1st = pd.DataFrame(common_unit_T)
decoy_2nd = decoy_1st.fillna(9)
common_unit = decoy_2nd.to_numpy()
e T T Now, 1it's time to build a 4-Rank tensor ------------ #
P_hat_list = [] # Initialize the list to store a 4-Rank Tensor
P_hat_3D = [] # Initialize the list to store a 3-Rank Tensor

carrier_2D [1
for i in range(columns_let):
for j in range(columns_let):
for mu in range(rows_let):

carrier = common_unit[:, mu] * Normed_Y[mu, i, j] /

(P2_mu[mu, @] * (1 - P2_mu[mu, ©]))
carrier_2D.append(carrier)

P_hat_3D.append(carrier_2D) # combination of mu and k

components 1is added.

carrier_2D = [] # Reset the 2D matrix
P_hat_list.append(P_hat_3D) # complete the ith component
P_hat_3D = [] # Reset the 3-Rank Tensor
P_hat_np = np.array(P_hat_list) # complete the 4-Rank Tensor

#Then, sum it up in terms of k and mu axes.
# KLD Gradient Discent

Q_pre = P_hat_np.sum(axis=3)
Q_presum = Q_pre.sum(axis=2)

# sum it up in mu

# Final Gradient Descendent: update
Q_med = Q_np_test - A * Q_presum
np.fill diagonal(Q_med, ©)

axis

# sum it up in k axis

Q_result = Q_med/(2 * Q_med.mean()) # Normalization: the average of

all the component should be ©.5.

return Q_result # The result is yielded in 2D matrix of numpy form.

# the function to update theta_2
# Only the gagong_data is given 1in pandas.
# Theta_2 1is updated via the imaged process above.
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def set_theta_Q(gagong_data, Q_let):

rate_result = answer_covari_afsum(gagong_data, Q_let)
theta_result = np.log((rate_result)/(1 - rate_result))

return theta_result # The result is yielded in numpy form.

B.3. Iteration Process for Dg; Calculation of Train and

Test Set

albetheQKLD = []

num_iter = 0

#train_trial = []
#train_trial.append(train_gagongs[O])

#for gagong_carrier in train_trial:
for gagong_carrier in train_gagongs:
carrier_shell = []

num_dfdf = gagong_carrier.copy()
p_df = num_dfdf.copy()
num_np = num_dfdf.to_numpy()

# theta_1 initialization

row_pre = p_df.mean(axis=1)

row_prob_1 = row_pre.to_numpy()

row_prob = np.reshape(row_prob_1, (rows,1))

theta_1 = np.log(row_prob/(1l-row_prob))

# d initialization

col _pre = p_df.mean(axis=0)

col _prob_1 = col _pre.to_numpy()
col _prob = np.array([col_prob_1])
do = np.log(col prob/(1-col_prob))
d = np.mean(do) - de

# alpha_1 and alpha_2 initialization
alpha = np.ones((1,columns))

A = 0.005 # Llearning rate

# transformation of (1,0) binary responses into (1,-1)
binary responses
num_expl = num_np.copy()
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num_exp2 = np.where(num_expl == 0.01, -0.99, num_expl) #
transformation

num_exp_df pd.DataFrame(num_exp2)
num_exp_af num_exp_df.fillna(9@) # get rid of NaN
num_exp_np = num_exp_aft.to_numpy()

# Q initialization

Q_np_ini = np.ones((columns, columns))
np.fill diagonal(Q_np_ini, ©)

Q_halves = Q_np_ini / 2

# theta_2 initialization
shell list = []

for i in range(rows):
garo_pre = num_exp_np[i, :]
garo_T = np.reshape(garo_pre, (columns, 1)) # vertial
vector form
sero = garo_T.copy()
garo = np.transpose(garo_T)
carrier = sero * garo
np.fill_diagonal(carrier, 0) # off-diagonal

shell list.append(carrier)

shell _ini = np.array(shell_list) # initial combination of
Y iY_j

# the reference to indicate the location of solved items

Y_solved® = num_np.copy()
Y_solvedl = np.where(Y_solvedo == 0.01, 1, Y_solved®)

Y_solved2 = np.where(Y_solvedl == 0.99, 1, Y_solvedl)
Y_pd = pd.DataFrame(Y_solved2)
Y_fna = Y_pd.fillna(9) # set NaN as zero

Y_solved = Y_fna.to_numpy()
Yij_solved = []

for i in range(rows):
garo_pre = Y_solved[i, :]
garo_T = np.reshape(garo_pre, (columns, 1))
sero = garo_T.copy()
garo = np.transpose(garo_T)
carrier = sero * garo
np.fill diagonal(carrier, 0)

Yij_solved.append(carrier)
Yij_shell = np.array(Yij_solved)
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denominator = []
for i in range(rows):
bf Qsum = Yij_shell[i] * Q_halves
af_Qsum = bf Qsum.sum()
denominator.append(af_Qsum) # generation of the
denominator

P_carrier = [] # basket for initial pseudo-probability
for i in range(rows):

garo_pre = num_exp_np[i, :]

garo = np.reshape(garo_pre, (1, columns))

sero_T = np.copy(garo)

sero = np.transpose(sero_T)

vectormanl = sero * garo

vectormanll = Q_halves * vectormanl
vectormanl11l = vectormanll.sum(axis=1)
vectorman2 = vectormanlll.sum(axis=0)

if denominator[i] == ©:
P_mu =0
else:
P_mu = vectorman2 / denominator[i]

P_carrier.append(P_mu)
P_norm = np.array(P_carrier)

theta_pre = (49/98.01) * (P_norm) + 0.5 # final form of
pseudo-probability initialization

# final initialization of theta_2
thetal bfT = np.log(theta_pre / (1 - theta_pre))
theta_2 = np.reshape(thetal_bfT, (rows,1))

# initialization of the probability distribution of the
model

expl alpha * theta_1

exp2 = alpha * theta_2

ex_prob = np.exp(expl + exp2 - d)/(1l+np.exp(expl + exp2 -
d))

ex_prob_real = ex_prob.copy()

for n in range(ex_prob.shape[0]): # reflect the distribution
of NaN
for m in range(ex_prob.shape[1]):
if np.isnan(num_np[n][m]):
ex_prob_real[n][m] = np.nan

# KLD of each response 5 ;
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KLD_indiv = num_np * np.log(num_np / ex_prob_real) + (1 -
num_np) * np.log((1 - num_np) / (1 - ex_prob_real))

# get rid of missing values

KLD_indiv_df = pd.DataFrame(KLD_indiv)
KLD_NaNga_df = KLD_indiv_df.fillna(®)
KLD_NaNga_np = KLD_NaNga_df.to_numpy()

# KLD initialization
KLD_RowSum = np.sum(KLD_NaNga_np, axis=1)
KLD_TotalSum_np = np.sum(KLD_RowSum, axis=0)

# Model Optimization Start

alphal_mod, alpha2_mod, d_mod, thetal_mod, theta2_mod,
Q_mod, KLDs_mod, KLDs_test_mod = opt_model(alpha, d, theta_1,
theta_2, Q_halves, p_df, test_gagongs[num_iter], 20)

# save for further analysis
carrier_shell.append(alphal_mod)
carrier_shell.append(alpha2_mod)
carrier_shell.append(d_mod)
carrier_shell.append(thetal_mod)
carrier_shell.append(theta2_mod)
carrier_shell.append(Q_mod)
carrier_shell.append(KLDs_mod)
carrier_shell.append(KLDs_test_mod)

# R HF Ry
NV NWNRO

albetheQKLD.append(carrier_shell)
num_iter += 1
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Appendix C. Contrast Table of Item Codes with

PISA 2018

2 A 2] 8

e

Item Groups Iltem Code PISA Item Type Sorted Groups |ltem Number Collected Items
CM033Q01S single select 0 CM033Q01S
CM474Q01S  single select 1 CM474Q01S
DM155Q02C constructive(H)

CM155Q018 multiple select 2 CM155Q018
DM155Q03C constructive(H)

M1 CM155Q04S multiple select M1 3 CM155Q04S
CM411Q01S constructive(C) 4 CM411Q018
CM411Q02S single select 5 CM411Q02S
CM803Q01s constructive(C) 6 CM803Q01S
CM442Q02S multiple select 7 CM442Q02S
DM462Q01C constructive(H)

CM034Q01S8 constructive(C) 8 CM034Q013
CM305Q01S single select 9 CM305Q01S
CM496Q01S multiple select 10 CM496Q01S
CM496Q02S constructive(C) 11 CM496Q02S
CM423Q018 single select 12 CM423Q01S
CM192Q018 multiple select 13 CM192Q018

M2 DM406Q01C constructive(H) M2

DM406Q02C constructive(H)
CM603Q01S multiple select 14 CM603Q01S
CM571Q01S single select 15 CM571Q01S
CM564Q01S single select 16 CM564Q01S
CM564Q02S single select 17 CM564Q02S
CM447Q01S single select 18 CM447Q01S
CM273Q018 multiple select 19 CM273Q01S8
CM408Q018 multiple select 20 CM408Q01S8
CM420Q01S multiple select 21 CM420Q01S

M3 CM446Q01S constructive(C) M3 22 CM446Q01S8
DM446Q02C constructive(H)

23 CM559Q013

24 CM828Q03S

25 CM464Q01S

CM800Qo1s single select 26 CM800Q01S
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M4

CM982Q01S
CM982Q025
CM982Q03S
CM882Q04S
CM992Q01S
CM992Q02S
DM892Q03C
CM915Q018
CM915Q0258
CM806Q01S
DMa06Q02C
DMOOKQO02C

constructive(C)
constructive(C)
multiple select
single select

constructive(C)
constructive(C)
constructive(H)
single select

constructive(C)
single select

constructive(H)
constructive(H)

M4

27 CM982Q01S
28 CM982Q02S
29 CM982Q03S
30 CM982Q04S
31 CM992Q01S
32 CM992Q02S

33 CM815Q018
34 CM915Q02S
35 CM906Q01S

M5

CM908Q01S
CM908Q02S
CM908Q03S
CM948Q01S
CM949Q02S
DM949Q01C
CM00GQO1S
DM955Q01C
DM955Q02C
CM955Q03S
DM998Q02C
CM998Q04S

constructive(C)
single select
constructive(C)
multiple select
multiple select
constructive(H)
constructive(C)
constructive(H)
constructive(H)
constructive(C)
constructive(H)
multiple select

M5

36 CM909Q01S
37 CMS809Q02S
38 CMS09Q03S
39 CM949Q01S
40 CM949Q02S

41 CM00GQO1S

42 CM998Q04S

MBA

CM905Q018
DM905Q02C
CM918Q01S
CM919Q02S
CM854Q018
DM954Q02C
CM854Q04S
CM943Q01S
CM943Q02S
DM953Q02C
CM953Q03S
DM953Q04C

multiple select
constructive(H)
constructive(C)
constructive(C)
constructive(C)
constructive(H)
constructive(C)
single select

constructive(C)
constructive(H)
constructive(C)
constructive(H)

MGBA

43 CM905Q01S

44 CM918Q01S
45 CM919Q02S
46 CM954Q01S

47 CM954Q04S
48 CM943Q01S
49 CM943Q02S

50 CM953Q03S
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