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Abstract 

 
Aim: To predict annual distribution patterns and reduction rates of 

insufficiently observed species by using co-occurrence pattern 

learning and devising filling-in strategy to overcome structural and 

temporal inconsistencies in multi-source noisy data. 

 

Idea: Although more than 10% of insects will face extinction in the 

coming decades, studies on their reduction rates that will form the 

basis for conservation strategies are still limited. This limitation is first 

due to the dominance of unstructured records available for 

invertebrates, secondly, to the inconsistencies among them, and 

thirdly, to the insufficiencies of them. While compelling to gather data 

across multiple sources, the small amount of data precludes deep 

filtering to handle structural and temporal inconsistencies among 

sources for time-series comparison. This is the first study to estimate 

annual reductions with machine learning from multi-sourced, 

presence-only, and small data, by overcoming its inconsistencies and 

insufficiencies. This study proposes and validates the following two 

novel strategies. (1) Co-occurrence pattern learning: By grouping 

low-quality, unreliable individual occurrence records into patterns, I 

validate that structural and temporal inconsistencies can be overcome 

without deep filtering. (2) Filling-in strategy: I propose a procedure 

for estimating population trends by filling in the prediction into the 

deficiencies of the collected yearly data to be evenly compared. 

 

Location: 51 states of the USA and 6 provinces of Canada 

 

Taxa: four ladybugs native to North America 
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Methods: In chapter 2, seven performance scores were used to 

evaluate the predictions on presence versus absence in the following 

three situations: (1) learning unstructured data to predict structured 

data or low-efficiecy data to high-efficiency data; (2) learning data 

before a particular year to predict after that year and vice versa; (3) 

learning 70% of multi-source data to predict the rest. During both the 

evaluation and generalization phases, a comparison was made between 

the performance of the co-occurence pattern using models and the 

environmental information using models, as well as with the commonly 

accepted benchmark. 

 

 In chapter 3, reduction rates and extinction status were 

estimated by ML's predicting the occupancy of species annually at all 

coordinates where species have appeared since 2007. In addition to 

that, the newly suggested approach's methodological reliability was 

verified, in comparison with pre-established methods. Furthermore, 

the reliability of the newly proposed method was validated by 

examining discrepancies in estimations under the following scenarios: 

variances in data extraction for pseudo-absence data points, variances 

in variable selection techniques, and the stochastic incorporation of 

missing or false information within the presence data. 

 

Results: 1) The COP models' performance surpassed acceptable 

criteria for all validation steps and all species. They also ouperformed 

over the ENV models. 2) Reduction rates were 36.4% for H. 

parenthesis (2007–2021; VU), 29.7% for A. bipunctata (2010–2019; 

NT), 23.7% for C. novemnotata (2009–2018; NT), and 14% for C. 

trasversoguettata (2007–2018; LC). Additionally, the newly proposed 
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approach was confirmed to possess strong methodological validity 

when compared to pre-established methods. In terms of reliability 

tests, the range of estimations from the new method did not 

misrepresent IUCN conservation status to a significant extent. 

 

Conclusion: The combination of using co-occurrence patterns as 

variables and filling-in strategy enabled SDM to predict distribution 

patterns and reduction rates of insufficiently observed species by 

overcoming structural and temporal inconsistencies in multi-source 

data integrating considerable citizen science data. As a result, it 

revealed that four native ladybug species have been declining in North 

America. This study suggests that ML developed with the new method 

can integrate multiple-source data without filtering, allowing for the 

acquisition of more data, and that COP-based SDMs would be more 

advantageous for predictions at finer temporal scale population 

changes than commonly used SDMs developed with environmental 

variables usually spanning over decades. This can aid in tackling the 

challenge in global conservation initiatives posed by rare and 

invertebrate taxa, which frequently face restricted data availability and 

are often underrepresented in conservation lists. 

 

Keyword : conservation status, annual reduction rate, citizen scienece, 

presence-only, speceis distribution model, co-occurrence pattern 

Student Number : 2018-25558 
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Chapter 1. Introduction 
 

 

1.1. General background of the study 
 

 The estimation of year-to-year decline in low-data-

availability taxa poses a significant challenge for entomology in the 

face of the ongoing mass extinction. It is projected that about 9-16% 

(500,000-900,000 species) of insects will become extinct within the 

next 40 years (IPBES 2019, Whalsh et al. 2013), with scientists 

warning about the resulting loss of crucial ecosystem services and the 

subsequent ecological collapse and social costs (Cadosso et al. 2020, 

Losey and Vaughan 2006). However, the limited availability of 

methods to understand temporal changes in individual species' 

distribution and population trends hampers scientists ability to develop 

a basis for conservation strategies to address their rapid decline 

(Montgomery et al. 2020, Jönsson et al. 2021). Consequently, only a 

mere 0.2% of insect species have been evaluated on the IUCN Red 

List, in distinction from 100% of birds and amphibians and 93% of 

mammals. 

 

 Previously available methods to estimate distribution and 

population size changes have heavily relied on monitoring results 

fulfilling high hurdles, such as (1) directly observed ordinal abundance 

data, (2) consistent survey protocols allowing mathematical 

assumptions to estimate abundance from occurrence data (ex. 

checklist, effort unit for each survey, periodi revisit), or (3) the 

availability of highly dense, independent observations over space 

enough to filter them to emulate consist survey protocols. However, 

these cost-intensive data have been rarely available for many taxa 

and regions, which in turn left these taxa overlooked in global 

conservation efforts. Even well-studied species like North American 

ladybugs, with three well-organized national citizen science programs, 

fail to meet the stringent data requirements for the previously 

developed estimation methods. To address this issue, there is a 

pressing need for the active development of methodologies that can 

estimate the time-series variation of species with the combination of 

small volume of and presence-only dataset, which is lacking consistent 

survey protocols or ordinal abundance, concurrently. 
  
 In this regards, for any population estimation method to be 

widely applicable to insects and other understudied taxa, it must 
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address two key challenges: data insufficiency and inconsistency. 

Firstly, the lack of data on these taxa hinders the application of 

conventional filtering techniques (Steen et al. 2019) to quantitatively 

compare regions or periods consistently. The filtering technique aims 

to improve the statistical analysis of data collected opportunistically 

by selecting points where data collection efforts are evenly distributed 

in space and time (Serra-Diaz et al. 2017, Kallimanis et al. 2017, 

Rutten et al. 2019). However, in cases where data is scarce for certain 

taxonomic groups, filtering will only retain a small fraction of their 

overall distribution due to limited survey efforts. It is important to note 

that if the filtering process reduces the total number of data points too 

significantly, the resulting model's predictive power may decrease, 

irrespective of the quality of remained data (Wisz et al. 2019, Van 

Eupen et al. 2021). Moreover, it would reduce the spatio-temporal 

scope of a study (Outhwaite et al. 2019, Outhwaite et al. 2020). 

 

 Secondly, compounding the problem, datasets for less data-

rich taxa are often the result of integrating different survey techniques 

and individual surveys conducted over a wide spatiotemporal range to 

maximize data quantity, leading to inherent inconsistencies in the data. 

Although the recent increase of unstructured citizen science data is 

contributing to increase the volume of data, it produces an additional 

burden in the inconsistent rates of observation across years and 

locations (Figure 1-1). Furthermore, most of the multi-source data 

available does not provide details regarding the objectives and 

methods employed during the conducted investigations. Consequently, 

it is challenging to ascertain whether the absence of further 

observation reports from a location implies the genuine vanishing of 

the species in that area or if it is simply due to the researcher's 

discontinuation of reporting after a certain period of time (Table 1-1).  

 

 

 In conclusion, for a population estimation method to be 

Table 1-1. A conceptual summary of each area's historical records for a 

target species. 



 

 ３ 

applicable to a broader range of insect species, it must address the 

paradox of utilizing low-level data—presence-only data with unknown 

observation procedure—from various sources to compensate for data 

deficiencies, while overcoming temporal and structural inconsistencies 

among them without deep filtering (Figure 2-3 and 2-4). 

 

 

 This study proposes a filling-in approach that allows for 

quantitative comparisons between time points by standardizing them 

with "filling" predictions in periods and locations with insufficient data, 

as the alternative to filtering (Figure 1 and Table 1). In this study, 

ensemble-based species distribution models (SDM), a machine 

learning algorithms based on decision trees, are preferred for 

generating predictions. SDM models learn the relationship between 

predictors and species occupancy information, enabling the prediction 

of species occurrence at undocumented locations (Olden et al., 2008). 

Machine learning-based SDM models have demonstrated their 

effectiveness in inferring species habitats using limited data volumes, 

integrated multisource data, and citizen science presence-only data 

(Radomski et al. 2022). 

 

 However, there is a lack of research on estimating the yearly 

Figure 1-1. This conceptual graph displays how Machine Learning trained 

with known historical observations can dilute temporal bias by producing 

predictions. 
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trend of taxa with small data volumes and presence-only data points. 

While ML-based SDM models have been extensively studied for 

predicting future or past trends as atlases spanning decades (Tingley 

and Beissinger 2009), studies focusing on finer time units have been 

abandoned. This is because SDM models cannot account for detection 

biases, making them vulnerable to datasets with changing detection 

rates over time. Also, models developed for a particular context may 

result in unrealistic predictions when utilized beyond their original 

spatio-temporal scope. For example, Tyler et al. (2019) developed 

independent SDM models for each annual dataset to estimate 

distribution per each year, but lacking a unified criterion for 

comparable predictions across time points prevented establishing a 

predicative trend. By developing a single model that can predict 

individual time points relatively independently of detection biases with 

small number of presence only data points, it can provide robust 

estimates of species occurrence over time, thereby expanding the 

taxonomic range in conservation efforts. 

 

 To increase the temporal generalizability of SDM prediction, 

this study also proposes employing a co-occurrence pattern (COP) as 

a variable. COP, which incorporates co-occurring species as variables, 

is gaining attention and has been validated in recent studies, including 

the Joint Species Distribution Model (JSDM). In this research, I adopt 

COP as a variable and highlight three advantages it offers over 

commonly used environmental variables when predicting at fine 

temporal scales. Firstly, biological variables can capture more 

immediate and dynamic changes compared to environmental variables. 

Secondly, unlike environmental variables, co-occurrence-related 

variables can encompass dynamic relationships among organisms, 

such as competition. Thirdly, the co-occurrence pattern reflects 

organisms' responses to environmental changes; thus, the effect of 

these changes is internalized in the model. 

 

 In sum, this study introduces a novel approach for estimating 

the annual population of species with limited and unstructured data by 

utilizing (1) the co-occurrence pattern learning model and (2) the 

filling-in approach by demonstrating the independence of this model 

from temporal-structural biases. 
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1.2. Purpose of the study 
 

 Chapter two focuses on ensuring that SDM models trained with 

COP can generate applicable predictions to fill in data gaps over time, 

given the importance of verifying the model's ability to overcome 

temporal and structural biases over time. Firstly, it is necessary to 

determine if the model can be generalized rather than only valid on 

patterns observed within specific time frame. Secondly, the chapter 

cross-examines the model for structural inconsistencies to mitigate 

data mixing and to regulate biases driven by prevailing sources across 

time. In sum, this chapter bolsters the model's generalizability. 

Therefore, this study verifies the following three hypotheses. First, 

ML classifiers can distinguish between the presence versus absence 

of target species, based on co-occurring species from a multi-source 

data pool. Second, training patterns of co-occurring species can allow 

ML classifiers’ prediction to be generalized across survey structures 

and protocols, defined as structural generalization. Third, training 

patterns of co-occurring species can allow ML classifiers’ prediction 

to be generalized across time periods, defined as temporal 

generalization. 

 

 Chapter three focuses on utilizing a methodology newly 

proposed by this thesis, the "filling-in" approach, to estimate 

population size and trends over years. This study estimates reduction 

rates of four native ladybugs by “filling-in” the prediction generated 

by our ML classifiers into the deficiencies of the collected yearly data 

to be evenly compared. Subsequently, this study evaluates the validity 

and reliability of this approach, which is critical due to the scientific 

and social costs of incorrect estimations of extinction risk levels. One 

of the key factors contributing to inaccurate population trend 

estimations is the temporal variation in data availability itself. 

Therefore, to assess validity, this study compares the filling-in 

approach with the Relative abundance, the Historical records 

accumulation), and the trends of raw data itself to determine the extent 

to which each method is independent of the temporal variability in the 

quantity of available data. Additionally, to assess reliability, the study 

evaluates the degree of variation in estimations among COP models 

developed using (a) different pseudo-absence datasets, (b) different 

variables, and (c) presence datasets that is partially lost and partially 

replaced with false data points.  
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1.3. Study history 
 

 Species Distribution Modeling (SDM) is a powerful tool in 

ecological research and conservation management. Initially, in the late 

20th century, early attempts to model species distributions had begun 

in response to the broadening interest in ecology studying the 

relationship between a species' occurrence and the factors that 

explained it. Scientists relied on statistical techniques like logistic 

regression and discriminant analysis. These initial methods were data 

hungry and required high cost monitoring efforts (ex. ordinal 

abundance for all seasons and locations, checklist to presume true 

absence) of experts as with common statistical, ecological models. 

 

 Over time, advancements in computational power and data 

availability opened up new avenues for SDM. In the early 2000s, 

machine learning algorithms, such as MaxEnt (Maximum Entropy), 

gained prominence. It is based on the principle of maximum entropy, 

which fundamentally seeks to find the most unbiased probability 

distribution given a set of constraints. MaxEnt introduced an 

innovative approach by incorporating information theory principles to 

estimate species distributions using only presence data. This 

breakthrough overcame the unavailability of absence data. This model 

has also allowed scientists to predict far-future or past distributions 

with significant changes in environmental variables, such as climate 

change, in terms of the mean value of 47 years between each predicted 

atlas from 23 papers. 

 

 Moreover, the advent of ensemble modeling approaches, 

including Random Forest and XGboost, has added new powerful 

options to SDM researchers. Ensemble models combine predictions 

from multiple algorithms to improve model performance and account 

for uncertainties. Techniques like spatial undersampling and 

integrating different sources of dataset have been successfully applied 

to SDM, enabling robust performance. Also, these models have 

demonstrated their effectiveness in inferring species habitats using 

limited data volumes, integrated multisource data, and citizen science 

presence-only data. 

 

 Meanwhile, there is a relatively recent development in the SDM 

field, called Joint Species Distribution Modeling (JSDM), which 

originally began to emerge and gain attention as a statistical approach 

to studying species co-occurrence patterns in the early 2000s. In its 

early stages, the concept of species distribution model's primary 
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approach was to focus on understanding individual species' 

distributions based on environmental variables like SDM. Over time, 

scholars have recognized the need to consider species interactions 

and community-level processes in addition to environmental factors. 

This recognition led to the development of methods that could model 

multiple species simultaneously. 

 

 The application of Bayesian hierarchical modeling techniques 

and advances in computational power facilitated the development and 

implementation of JSDM approaches. By jointly modeling multiple 

species' distributions, JSDM allows for the detection of non-random 

patterns in species co-occurrence, such as positive or negative 

associations. Efforts are being made to incorporate additional factors 

such as species traits, spatial autocorrelation, and temporal dynamics 

into JSDM frameworks. 

 

 Concurrently, the improvements in the SDM field have been 

amplified by the increased availability of the following two types of 

data. Firstly, the integration of remote sensing data and Geographic 

Information Systems (GIS) has further strengthened SDM. High-

resolution environmental data, including climate variables and land 

cover maps, have enhanced the accuracy and precision of predicting 

species' responses to environmental changes and identifying 

conservation areas of interest. 

 

 The second driving factor is the on-going increase in 

opportunistic observations from citizen science. Citizen science 

engages the public in scientific research, allowing non-professional 

individuals to participate in data collection and analysis. In the context 

of SDM, citizen science initiatives often involve volunteers observing 

and recording species occurrences more than any other survey 

methods. These contributions significantly increase the spatial and 

temporal coverage of data. 

 

 However, citizen science has the following limitations that 

prevent it from being used to its full potential by current SDM. Most 

notably, most citizen science data is collected through unknown 

processes, and the observer records their accidental encounters 

without following a specific investigation protocol. Therefore, these 

features make it difficult to make mathematical assumptions about the 

results of citizen science data, hindering quantitative analysis of 

population dynamics such as temporal fluctuations. 
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 Specifically, there are limitations in controlling data quality. 

Participants in citizen science projects may have varying levels of 

expertise and training, leading to inaccuracies or inconsistencies in 

the collected data. Even with quality control measures and protocols, 

data accuracy and reliability remains in question. These 

characteristics deter scientists from integrating citizen science data 

with existing expert-derived data sources or even internally 

integrating among different citizen science projects. 

 

 Another limitation is spatial and temporal coverage, which can 

also be restricted. Participants in citizen science projects are 

dispersed unevenly across different locations, making it difficult to 

cover all areas of interest. Additionally, data collection may be 

inconsistent over time, resulting in gaps in monitoring and hindering 

the data's ability to demonstrate long-term trends or changes 

accurately. 

 

 Yet another limitation is the presence of sampling bias. Citizen 

science projects rely on volunteers who may choose to participate 

based on personal interest or accessibility to certain areas. This can 

result in the overrepresentation of certain regions or habitats, while 

others may be underrepresented. Biases in data collection can affect 

the generalizability and representativeness of the findings. 

 

 Therefore, it is important to devise a method to overcome 

these limitations and maximize the quantitative utilization of citizen 

science data, while ensuring the validity and reliability of the scientific 

conclusions drawn from such data. However, there is no research to 

adopt presence-only citizen science data to generate population 

trends with SDM or JSDM. 

 

 Especially, there is a lack of research on estimating the yearly 

trends of taxa with small data volumes and presence-only data points 

with SDM. While ML-based SDM models have been extensively 

studied for predicting future or past trends on the basis of 20 to 50-

year atlases, studies focusing on finer time units have been abandoned. 

This is because SDM models cannot account for detection biases, 

making them vulnerable to datasets with changing detection rates over 

time. Therefore, models developed for a particular context may result 

in unrealistic predictions when utilized beyond their original spatio-

temporal scope. 

 

 For example, Tyler et al. (2019) developed independent SDM 
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models for each annual dataset to estimate distribution per each year, 

but the lack of a unified criterion for comparable predictions across 

time points prevented establishing a predicative trend. By developing 

a single model that can predict individual time points relatively 

independently of detection biases with small number of presence only 

data points, it can provide robust estimates of species occurrence over 

time, thereby expanding the taxonomic range in conservation efforts. 

 

 Meanwhile, it is important to note occurrence Modeling (OM) 

as a dominant mathematical modeling-based approach in species 

distribution modeling (SDM) for estimating temporal variations in 

species populations. This method effectively incorporates 

investigative efforts and species detection possibilities, making it 

valuable for data collection by citizen scientists (Isaac et al., 2014). 

OM assumes that changes in observed detection probabilities reflect 

changes in species abundance, providing insights into species 

dynamics. However, typical occupancy models used in OM require 

substantial data, including information on investigation efforts, 

checklists for inferring non-detection, and repeated revisits (Perkins-

Taylor & Jennifer, 2020). Although attempts have been made to 

replace repetitive surveys with presence-only data, there are four 

disadvantages compared to machine learning-based models: 

 

 (1) Data density poses challenges for applying OM in many 

species and regions. Previous OM studies on European insects, even 

with "relatively small" data volumes, have 30 to 100 times higher 

density (number of observations per area per year) compared to data-

rich groups like ladybugs in North America. In this region, even with 

compromises on temporal and spatial resolution, achieving the 

necessary data density per grid cell for bees and dragonflies required 

a rough time (two 20-years Atlases) resolution that is not suitable for 

the IUCN Red List or spatial resolution (100km² per a grid cell) 

exceeding the appropriate landscape scale resolution (1-25 km²) 
needed for conservation planning. 

 

 (2) Opportunistic presence-only observational data can violate 

the statistical assumptions of the OM model regarding observation 

efforts and revisit periods. Previous studies have used random 

observation probability models and average detection rates to assume 

observation efforts for presence-only data collected with varying 

efforts. However, there are concerns that these 'flexibility' neglect 

OM's susceptibility to temporal variations in unmodeled detection 

probabilities, introducing biases in trends over time (Merow and 
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Silander, 2014). In contrast, machine learning models do not rely on 

mathematical assumptions about data collection processes, reducing 

the risk of presence-only data violating fundamental model 

assumptions. 

 

 (3) Numerous studies demonstrate that machine learning (ML) 

models perform comparably to OM models for presence-only data. ML 

models exhibit superior performance, particularly for rare species and 

even with small sample sizes, when compared to occupancy models 

(Rota et al., 2011; Gomley et al., 2011; Lahoz-Monfort et al., 2014; 

Perkins-Taylor & Prey, 2020). 

 

 (4) Assessing the reliability of OM predictions for estimating 

species trends is challenging due to the lack of 'ground truth' on the 

subject matter. In contrast, ML models provide their own strong 

performance assessment results during development. 

 

 Considering these factors, it is worthwhile to develop machine 

learning-based SDMs as a method to detect changes in species 

distribution over time in a more effective manner. 

 

 Lastly, here I documented information about the algorithm 

adopted in this study, XGBoost (Extreme Gradient Boosting), in detail. 

This is a well-adopted machine learning algorithm known for its 

efficiency and accuracy in solving supervised learning problems. It is 

an implementation of the gradient boosting framework that utilizes a 

combination of decision trees to make predictions.  In practical terms, 

the performance of XGBoost in SDM has been evaluated across 

diverse ecological systems and species, including both plant and 

animal distributions. Its applications range from predicting species' 

potential distributions under current conditions to projecting future 

distributions under climate change scenarios. The computation 

process of XGBoost involves the following steps: 

 

 Data Preparation: XGBoost requires the input data to be in a 

specific format. The features and the corresponding target values need 

to be transformed into a structured format that XGBoost can process. 

 

 Initialization: XGBoost initializes with an initial prediction value 

for all instances in the dataset. This initial prediction is typically the 

mean or median of the target values. 
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 Building Decision Trees: XGBoost builds decision trees 

sequentially in an iterative manner. Each decision tree is built to 

correct the mistakes made by the previous trees. It uses a technique 

called gradient boosting, where each subsequent tree focuses on 

reducing the errors of the previous trees. 

 

 Calculating Loss: XGBoost uses a loss function to quantify the 

errors made by the model. Commonly used loss functions include 

regression loss functions like mean squared error (MSE) and 

classification loss functions like logistic loss or softmax loss. 

 

 Gradient Calculation: XGBoost calculates the gradient of the 

loss function with respect to the predictions made by the previous 

trees. This gradient provides information on how to update the 

predictions to reduce loss. 

 

 Iterated Tree Building: XGBoost constructs decision trees by 

recursively partitioning the data based on selected features and their 

respective thresholds. It uses an algorithm called the "greedy" 

algorithm, where it selectively, or otherwise "greedily," chooses the 

best split points to minimize the loss function. 

 

 Regularization: XGBoost applies regularization techniques to 

prevent overfitting. It adds penalties to the loss function for having 

complex models or large coefficients, encouraging the model to be 

simpler and more generalized. 

 

 Update Predictions: After each decision tree is built, XGBoost 

updates the predictions by adding the predictions of the new tree, 

multiplied by a learning rate. The learning rate controls the 

contribution of each tree to the final prediction. 

 

 Repeat Steps 4-8: The process of calculating loss, gradients, 

building trees, and updating predictions is repeated for a specified 

number of iterations or until a convergence criterion is met. 

 

 Final Prediction: Once all the iterations are completed, the final 

prediction is obtained by summing up the predictions from all the 

individual trees. 

 

 By iteratively improving the predictions of the weak models 

(decision trees), XGBoost creates a strong ensemble model that can 

capture complex patterns and make accurate predictions. 
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 As a result of these contributions toward ensemble learning 

approaches, handling missing data, nonlinear relationships, and so 

forth, XGBoost has made significant contributions in the realm of SDM 

and has been widely recognized for its effectiveness in this field. 

 

 As researchers began exploring the application of XGBoost in 

SDM, several studies were conducted to evaluate its performance and 

compare it with other algorithms commonly used in this domain, such 

as Random Forest and Support Vector Machines. These studies 

consistently demonstrated the superior predictive capabilities of 

XGBoost, highlighting its ability to capture complex relationships 

between environmental variables and species distributions. 
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Chapter 2. Co-Occurrence Patterns Overcome 

Structural and Temporal Inconsistencies in a Multi-

Source Dataset, Outperforming Environmental 

Variables. 
 

 
2.1. Materials and methods 

 
2.1.1. Summary of materials and methods 

 

 First, by co-occurrence pattern learning, I examined whether 

structural and temporal inconsistencies could be overcome without 

deep filtering. In this validation process, six performance scores were 

used to evaluate the ML predictions of presence versus absence in the 

following three situations. First, learning unstructured data was used 

to predict structured data. Second, learning data before a particular 

year was used to predict after that year and vice versa. Third, learning 

70% of all valid data was used to predict the rest. Next in the prediction 

process, as a filling-in strategy, reduction rates and extinction status 

were estimated. ML was used to predict the occupancy of species 

annually at all coordinates where species have appeared since 2007. 

This was to fill the prediction into the deficiencies of the collected 

yearly data to be evenly compared. 

 

2.1.2. Target species 

 

In a variety of coccinellid complexes in North America, four native 

ladybug species once emerged as dominant species. These include the 

Coccinella novemnotata, Coccinella transversoguttata, Adalia 

bipunctata, and Hippodamia parenthesis. Covering a wide range of 

prey species and habitat types, they comprised a considerable portion 

of the collection (Losey 2007, 2012). Research after the mid-1980s, 

however, found them to be rare, with a drop estimated at 0.009-0.05 

based on relative abundance in the collection (Jason et al. 2006). It has 
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been posited that the cause of this rapid disappearance was the 

introduction and establishment of two adventive species, Coccinella 

septempunctata and Harmonia axyridis (Wheeler and Hoebeke 1995, 

Harmon 2007). After outbreaks, it is common to find the coccinellid 

complex utterly dominated by these adventive species in traditional 

landscapes. This results in the loss of diversity and abundance of 

native species over the continent (Peterson and Losey 2022). The 

vastness of the decline range has, however, often prevented such 

reports from estimating the overall reduction rate and the quantitative 

risk of extinction (Wheeler and Hoebeke 1995, Hesler et al. 2004, 

Jason et al. 2006). These reports have temporal and spatial constraints 

due to the low density of the target species, combined with vast 

distribution. These factors necessitate integrating reports from 

different periods, regions, and methodologies while overcoming biases 

inherent in multi-source data. 

 

2.1.3. Occurrence data 

 

Ladybug records were collected from multiple online databases, 

including two types of unstructured citizen science (CS) platforms, a 

university collection website, and three metadata platforms (Table 2-

1). One type of CS platform was for users to verify species 

identifications (I-Naturalist and bugguide.net), and the other for 

experts to verify (The Lost Ladybug Project). I confirmed the target 

species' identification in I-Naturalist and bugguide.net. A minimal 

degree of preprocessing was applied to the raw collection to confirm 

how co-occurrence patterns itself overcome target biases. First, the 

scope of multi-source data collection was limited to two areas 

between January 2007-December 2021. These included the territories 

of the US (except Alaska and Hawaii) and the border area of Canada 

(Manitoba, Ontario, Saskatchewan, British Columbia, Alberta, and 

Quebec). Second, I sorted a subset of data points identified at the 

species level and observed in adult forms—with relatively less error 

in identification. Third, GPS pinpoint accuracy was limited to 1 km, if 

available (89% of total). Finally, the data points with simultaneously 
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matching species-year-GPS were eliminated. After preprocessing, the 

examined dataset accounted for 188,644 data points for 353 species 

(including sp.) of ladybugs' occurrence data that were stored in 85 

sources. To reveal the temporal and structural inconsistencies 

inherent in our collection, I used descriptive statistics. The collection 

contained 324 data points to C. novemnotata, 510 to C. 

transvuersoguettata, 732 to H. parenthesis, and 1,426 to A. bipunctata. 

The target species’ data points were labeled as the 'presence’.  
 

2.1.4. Pseudo-absence 

 

When a species absence record is nonexistent, the presence 

record of other species is borrowed as a pseudo-absence point. 

Generally, pseudo-absence GPS is randomly sampled from a GPS 

mixture of all other species (Robinson et al. 2018). For two reasons, I 

specified the two alien species' GPSs (C. septempunctata and H. 

axyridis) as the pool of pseudo-absence points in this study. (1) The 

target species and two exotic species compete exclusively within 

communities. This is the main trigger for their reduction across the 

continent that this study's ML aimed to predict. The adventive species' 

occupation in conjunction with the target species absence within an 

18km radius was regarded in two ways. It was interpreted as (i) 

general evidence of absence and (ii) an altered co-occurrence pattern 

following the local extinction of the target species. (2) Accounting for 

61% of the total observations, the adventive species would have 

dominated the pool, although if I had followed the general rule. This 

ensures methodological coherence. 

 

By sampling at regular intervals, I pooled 10,000 pseudo-absence 

points from each state and province. This was done to match the rate 

of the presence data pool for four target species. To minimize human 

intervention, a subset of absence points from the pseudo-absence pool 

was randomly sampled multiple times for practice. The model showed 

higher accuracy in sampling the pseudo-absence pool without 

considering the state ratio. Even so, the variable analysis indicated a 
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stronger dependence on geographically characteristic variables such 

as Coleomegilla maculate, which was concentrated in the east. 

Biological interactions such as competition were considered more 

suitable variables to predict temporal changes rather than static 

distributions. The 'matched state ratio' could address this issue. 

 

2.1.5. Variables 

 

(1) Variables for COP models: Active direct and indirect 

competition structures underlie ladybug assemblages, as adventive 

species dominance creates native species niche differentiation 

(Peterson and Losey 2022) and avoidance (Mukwevho et al. 2017, 

Hesler and Kieckhefer 2008, Elliott 1996). In this study, as variables 

representing co-occurrence patterns, I used the number of records of 

each ladybug species within an 18 km radius of the presence and 

absence points. This exact distance stems from a typical assumption 

of ladybug dispersal ability (Jeffries et al. 2013, COWISE 2017, 2018, 

2020). For example, a group of predators displays high (ex. H. axyridis, 

442km per year; McCorquodale 1998) and active (ex. moving between 

habitats when foraging; Woltz and Landis 2013) mobility in long-

distance flight. A count of the target species was excluded from its 

own variables to avoid self-guidance. Counts in each variable (= a 

ladybug species) are min-max-scaled within each year. This is done 

to treat temporal discrepancy in the annual volumes of the total data 

points. There were no other covariates (ex. survey efforts) besides 

the numbers of each co-occurring ladybug species. To avoid 

multicollinearity in our testing (Kissling 2012), I did not use 

environmental variables. For each ML development, variables were 

filtered through the minimum number of co-occurrences (>30; 85 

species remain) and ’sp.’ data were excluded. Multiple regressions 

were implemented in a forward way (p<0.05) to sort predictable 

factors. Other parameters were variance inflation factor (<10) and 

absolute correlation coefficients (<50%) to reduce multicollinearity 

among variables. SHAP (SHapley Additive exPlanations) values (1st to 

15th) were used to sort and rank a compact list of variables. SHAP is 
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a value to rank input variables in a model’s computing. According to 

classic Shapley values from game theory and typical implementations, 

a model is defined as the linear addition of input variables. It links the 

optimal credit allocation with local explanations.  

 

(2) Variables for ENV models: Environment values have been 

exclusively and dominantly used as SDM variables (Table 2-2). This 

is because they represent key ecological factors that influence 

species' habitat suitability. Climatic variables, such as temperature and 

precipitation, affect species' physiological tolerances and determine 

their ability to survive and reproduce. Land cover variables, on the 

other hand, reflect the availability of suitable resources and habitat 

structure for the species. The variables representing climate included 

annual mean air temperature, average temperature of the warmest 

month, and annual average rainfall (downloaded from: https://chelsa-

climate.org/downloads/). The variables representing land cover 

included Evergreen/Deciduous Needleleaf Trees, Evergreen Broadleaf 

Trees, Deciduous Broadleaf Trees, Mixed/Other Trees, Shrubs, 

Herbaceous Vegetation, Cultivated and Managed Vegetation, 

Regularly Flooded Vegetation, Urban/Built-up, Snow/Ice, Barren and 

Open Water (downloaded from: https://www.earthenv.org/landcover). 

As vegetation indices, Evenness, Shannon, Simpson, and Coefficient of 

variation were included (downloaded from: 

https://www.earthenv.org/texture). To improve consistency among 

measurements, environmental data were downloaded from different 

platforms, and the platform with the closest distance to the measured 

values of ladybug data points was selected. The values of the closest 

measured coordinates of environmental variables were assigned to 

each presence/absence data point. The measurement year was not 

considered. Each variable was min-max scaled. For each machine 

learning development, variables were filtered based on the minimum 

ratio of ladybug data points that had a distance of less than 18km from 

the measured values. Variance inflation factor (<10) was considered 

to reduce multicollinearity among variables. SHAP (SHapley Additive 

exPlanations) values (1st to 15th) were used to sort and rank a 
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compact list of variables. 

 

 

 

  

Table 2-1. collected data on coccinellids from seven sources. A minimal 

amount of data refinement was applied to the dataset in order to confirm 

how co-occurrence patterns alone overcome structural/temporal 

biases. 
 

Table 2-2. collected data on environmental variables from several 

sources. All the data provided with less than 1km resolution. 
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2.1.6. Development and characterization of models 

 

In practice, XGBoost Classifier (“Scikit-Learn” package) was used 

in the Python environment. XGBoost classifiers utilize an optimized 

gradient boosting algorithm to compute predictions and make decisions. 

By iteratively training a series of weak decision tree models, XGBoost 

optimizes a specific objective function, incorporating gradient descent 

and regularization techniques to enhance predictive accuracy. This 

ensemble classifier performs the advanced gradient boosting tree 

algorithm at high speeds. This tool is also known to be capable of 

dealing with regularization and overfitting-underfitting issues (Chen 

and Guestrin 2016). To ensure the generality of our approach, the 

default parameter settings of the package were applied, except setting 

objective=“binary: logistic” and n_estimators=1000. According to the 

rule of thumb, the train-test ratio was set at 7:3 in all tests (except 

structural generalization). The ratio of presence and absence was set 

at 5:5 by undersampling the volume of pseudo-absence, for 50 

independent practices. Within these combinations, training and testing 

in a dataset were randomly split for 50 independent practices, creating 

2,500 unique practices. Eventually there were [(50 different splits of 

train/test) x (50 different combinations of absence data points)]. Each 

practice’s performance scores were derived from the discrepancy 

between predictions and known labels of the test datasets. Their 

overall mean was evaluated through the following six scores. These 

included Accuracy (ratio of true response), Kappa (Cohen 1960; 

considering default chance of true response), Recall (true positive), 

and Precision (positive predictive) to evaluate each model's ability and 

bias in predicting binary presence versus absence. Brier (Brier 1950; 

mean squared discrepancy) and AUC (Fielding and Bell 1997; ranking 

of the prediction classes) are also used to evaluate the quality of 

predicted probabilities. These treatments in development and 

characterization were commonly applied to the following procedures. 

 

 



 

 ２０ 

2.1.7. Generalization 

 

Generalization tests the capacity of the developed model's 

application to a new pool of independent data, denying autocorrelation 

within data (Justice et al. 1999). Successful generalization is important 

evidence of the model's when the ground truth and prediction results 

cannot be directly compared (Justice et al. 1999). In this regard, this 

step requires data that differs from training data in terms of temporal, 

geographical, or source factors (Vaughan 2005). Our tests focused on 

whether our approach can be generalized between structurally or 

timely distinct data pools (Figure 2-1). 

 

1) Structural generalization: To test our approach’s generality 

across survey structures, I trained ‘unstructured’ data points for 

ML to generate a prediction on ‘structured’ data points that the 

models never encountered. Additionally, the differences in co-

occurrence patterns between them were quantified by ANOSIM with 

Manhattan distance. Four target species' presence data points were 

separated into unstructured data points recorded across The Lost 

Ladybug Project (LLP), I-Naturalist, and bugguide.net and structured 

data points stored in 28 institutions. In total, there were 280 

unstructured versus 44 structured records for C. novemnotata, 485 

versus 25 for C. transversoguttata, 626 versus 116 for H. parenthesis, 

and 1,338 versus 88 for A. bipunctata. The structured pseudo-absence 

data points available in the structural generalization ranged from 416 

to 510. Moreover, I evaluated the predictive performance on the LLP 

data (mean efficiency = about 6.8) by the model trained with the rest 

of the data (=about 1.2) in terms of efficiency cross-validation. 

 

(2) Temporal generalization: I examined two directions of testing 

for temporal generalization across periods. (1) forward way. From 

2007 to a year when 70% of the total presence data volume had been 

accumulated, 70% was used for training and 30% for testing. (2) 

backward way. From 2021 to a preceding year when 70% of the total 

presence data volume had been accumulated, 70% was used for 
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training and 30% for testing. 

 

2.1.8. Evaluation 

 

To evaluate the general performance under our approach, I used 

70% of all presence data points and matched the number of absence 

data in training and the remaining 30% in testing. 
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Figure 2-1. The schematic diagram illustrates the procedures employed to 

evaluate the machine's performance. In [A], models predict structured data 

using unstructured data. In [B], models predicts high-efficiency data using 

low-efficiency data. In [C], models train from 2007 to a year when 70% of 

the total presence data volume had been accumulated and predict the 

following years. In [D], models train from 2021 to a preceding year when 

70% of the total presence data volume had been accumulated and predict the 

preceding years. In [E], models predict on the remaining 30% of data after 

training it on 70% of the available data. 
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2.2. Results 
 

2.2.1. Biases in multi-source data 

 

 The dataset I compiled from multiple sources contained 

structural and temporal biases. The inconsistency of efficiency in 

finding target species for sources (quantified by each source’s ratio 

of four target species observations divided by the total observations 

of the source) revealed the structural bias, which was defined as being 

derived from discrepant efforts and methods in producing observations 

(Figure 2-2). Structured data, which accounted for 3.5% of the total, 

recorded target species at about three (or 2.79) times the density of 

unstructured data, which took 96.5% of the total. In addition to the 

differences from institutional collections, citizen science platforms 

exhibited these differences among themselves as well. LLP, which 

accounted for 5% of the total, recorded target species at seven times 

the density of I-Naturalist, which took 89% of the total.  

 

 

 

 

 

Figure 2-2. The efficiency of finding target species is inconsistent among 

sources. Citizen science platforms that report opportunistic observations 

(“unstructured”) also exhibit this difference (The Lost Ladybug Project, I-

naturalist and the bugguide.net). 
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This data collection also displayed temporal bias due to the 

exponential increase in annual observations (Figure 2-3). Data volume 

until and after 2014, which is the midpoint, differed by about ten (or 

9.61) times. 

 

 

 

 

 

2.2.2. Structural and temporal generalization 

 

The ML classifiers developed with the co-occurrence pattern 

method (COP model) outperformed those developed with 

environmental variables (ENV model), in all types of generalization 

methods, including two structural validations between different survey 

structures and efficiencies, as well as two temporal validations 

conducted in both backward and forward ways. Moreover, the COP 

group overcame biases inherent in the dataset and were generalizable, 

whereas the ENV group failed. COP models trained on target species’ 
unstructured citizen science data points (from I-Naturalist, The Lost 

Ladybug Project, and bugguide.net) were able to predict presence 

versus absence data points from structured data stored in institutions, 

surpassing acceptable performance standards (Accuracy, Recall, 

Figure 2-3. The total number of observations on coccinellids has 

exponentially increased. 
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Precision, F1 > 0.65 (as a rule of thumb); AUC > 0.70 (Mandrekar 

2010), Kappa > 0.40 (Landis and Koch 1977), Brier < 0.25 (Brier 

1950)). The three other validations’ results also showed these levels 

of COP models' performance. 

 

During COP model validation between different survey structures, 

C. transversoguttata's model was evaluated as outstanding in AUC and 

excellent in Kappa (Figure 2-4). The other three models were 

evaluated as excellent in AUC and good in Kappa. Across the major 

four scores, C. transversoguttata's models performed the best 

(Accuracy = 0.87, AUC = 0.94, Kappa = 0.75, Brier = 0.11), followed 

by C. novemnotata (0.81, 0.85, 0.61, 0.16), H. parenthesis (0.78, 0.84, 

0.55, 0.17), and A. bipunctata (0.73, 0.84, 0.46, 0.19). ANOSIM results 

showed that there were small sizes of dissimilarity (<0.25, p=0.001) 

between the two types of co-occurrence patterns; one is accompanied 

by citizen scientific data points and the other is accompanied by 

institutional data points. Next, the minimum performance of COP 

models’ predictions made by training data from a low-efficiency 

surveys (1.2) to points from the high-efficiency survey (6.8) is 0.72, 

0.78, 0.45, 0.19, surpassing acceptable performance standards (Figure 

2-4). In contrast, ENV models performed one or two ranks lower than 

COP models overall, and A. bipunctata's model was not generalized to 

different efficiency surveys, or the H. parenthesis model to different 

structure surveys (Figure 2-6). 

 

In terms of COP model's performance, C. transversoguttata, C. 

novemnotata, and H. parenthesis’ models had similar levels of 

performance during both temporal validations, regardless of the 

projecting direction (Figure 2-5). In contrast, the A. bipunctata model 

had a higher performance than H. parenthesis in the forward temporal 

validation, but the lowest performance in the backward temporal 

validation. According to the backward validation, Recall, the ratio of 

correctly predicted positive values to the total true positive value, rose 

11% compared to the forward validation. However, Precision, the ratio 

of correctly predicted positive values to all predicted positive values, 
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dropped by about 15%. Therefore, A. bipunctata's model trained by 

current occupancy displayed tendencies to classify more diverse 

conditions as occupied habitats than it actually was in the past, unlike 

the other three. Meanwhile, the ENV models of C. novemnotata and H. 

parenthesis were not generalized in forward or backward direction, 

displaying a higher loss rate than the cases of structure validations, 

which indicated larger performance degradation (Figure 2-7). 
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Figure 2-4. Structural generalizations of models training co-occurrence 

patterns (COP ML). Above: citizen science data (unstructured) trained COP 

ML predicted presence/absence in institutional data (structured). Below: Low 

efficiency data trained COP ML predicted presence/absence in high efficiency 

data. Box plots show the mean ML performance over 2,500 cases 

(combinations of 50 cases of random train/test splits and 50 cases of random 

absence data sampling) for each species (N = C. novemnotata, T = C. 
transversoguttata, B = A. bipunctata, P = H. parenthesis). 
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Figure 2-5. Temporal generalizations of models training co-occurrence 

patterns (COP ML). Above: learning data before a particular year to predict 

after that year. Below: vice versa. Box plots show the mean COP ML 

performance over 2,500 cases (combinations of 50 cases of random 

train/test splits and 50 cases of random absence data sampling) for each 

species (N = C. novemnotata, T = C. transversoguttata, B = A. bipunctata, 

P = H. parenthesis). 
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Figure 2-6. Structural generalizations of models training environemntal 

variables (ENV ML). Above: citizen science data (unstructured) trained ENV 

ML predicted presence/absence in institutional data (structured). Below: Low 

efficiency data trained ENV ML predicted presence/absence in high efficiency 

data. Box plots show the mean ENV ML performance over 2,500 cases 

(combinations of 50 cases of random train/test splits and 50 cases of random 

absence data sampling) for each species (N = C. novemnotata, T = C. 
transversoguttata, B = A. bipunctata, P = H. parenthesis). 
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Figure 2-7. Temporal generalizations of models training environemntal 

variables (ENV ML). Above: learning data before a particular year to 

predict after that year. Below: vice versa. Box plots show the mean ENV 

ML performance over 2,500 cases (combinations of 50 cases of random 

train/test splits and 50 cases of random absence data sampling) for each 

species (N = C. novemnotata, T = C. transversoguttata, B = A. bipunctata, 

P = H. parenthesis). 
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2.2.3. Evaluation of the developed models 

 

Using the entire multi-source collection, COP models relatively 

outperformed ENV models. Also, COP models were evaluated to be 

satisfactory in terms of absolute accepted standards. Among COP 

models, the highest overall score went to C. transversoguttata 

(number of presence data points = 510), followed by C. novemnotata 

(= 324) and then A. bipunctata (= 1,438), with H. parenthesis' (= 742) 

model at the lowest level. In particular, the minimum accuracy, 

precision, recall, and F1 of all four models were higher than 0.75 (> 

excellent), those AUC scores were higher than 0.87 (> outstanding) 

and those Kappa scores were higher than 0.57 (> substantial). These 

models are evaluated as being capable of predicting binary detections 

and non-detections relatively accurately. All models have Brier scores 

of less than 0.15, which confirms their consistency as prediction 

models. 

 

 ENV models were also evaluated to be acceptable. The highest 

overall score went to C. transversoguttata, followed by A. bipunctata 

and then C. novemnotata, with H. parenthesis’ model at the lowest 

level, similar to the COP models’ order. To be specific, the minimum 

accuracy, precision, recall, and F1 of all four models were higher than 

0.72 (> excellent), those AUC scores were higher than 0.79 (> 

acceptable) and those Kappa scores were higher than 0.47 (> 

moderate)—0.3, 0.08, and 0.1 lower than those of COP models, 

respectively. All models have Brier scores of less than 0.19, which is 

0.04 higher than COP models, but still making them acceptable. 

 

2.2.4. Importance and correlation among variables 

 

Based on SHAP value and Pearson’s correlation analysis, C. 

novemnorata, C. transversoguttata, and H. parenthesis positively 

correlated in our datasets and predictions of their presence depended 

on each other in ML calculations. H. axyridis and C. septempunctata 

were negatively correlated with these three target species and had the 



 

 ３１ 

highest significance among the variables. A. bipunctata, however, was 

an exception, showing a slight positive correlation with H. axyridis and 

C. septempunctata. H. convergence, with the third highest abundance 

in our collection and native to North America, displayed a positive 

association with three of our native species and was used as a major 

variable, exempt from the model of H. parenthesis. 

  

C. novemnotata 

C. transversoguttata 
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  A. bipunctata 

H. parenthesis 

Figure 2-8. SHAP index (vertical axis) indicates the importance rank of a 

variable in ML calculation. R-value (horizontal axis) indicates the degree 

of correlations. 
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2.3. Discussion 
 

2.3.1. The strength of co-occurrence pattern learning 

 

In this study, the ensemble models based on the Co-occurrence 

pattern (COP) demonstrated practical performances for structurally 

and temporally inconsistent data. 

 

Acceptable performances of COP models during the generalization 

across different data structures indicate the strength of COP to utilize 

datasets combined from multiple sources, including varying survey 

protocols. Many studies have recognized the importance of integrating 

data from multiple sources (Miller et al. 2019, Spear et al. 2017, Isaac 

et al. 2020, Robinson et al. 2020, Martino et al. 2021, Shirey et al. 

2021). However, due to concerns about inherent inconsistencies 

between the data (Isaac and Pocock 2015), especially doubts regarding 

the reliability of citizen science data (Isaac and Pocock 2015), some 

researchers have chosen to either avoid using citizen science data or 

multi-source data in their SDM development, thereby sacrificing the 

coverage of their data (Steen et al. 2019). 

 

The findings of this study demonstrate that, at least in some 

situations, the utilization of COP can overcome inconsistencies among 

data. This suggests that despite recent doubts about the true 

effectiveness of the expansion of citizen science (Lukyanenko et al. 

2016, Kamp et al. 2016 Bayraktarov et al. 2019), COP can derive 

benefits from citizen science's quantitative expansion in SDM. 

 

In the other hand, when trained on past data to predict future data 

collected on an annual basis and vice versa, the model showed 

acceptable performance. This suggests that COP can be utilized for 

more precise predictions at finer temporal scales beyond the long-

term atlases that SDMs have traditionally focused on (Tingley and 

Beissinger 2009). Theoretically, COP has been assumed to have 

strength in integrating interactions among organisms (Pollock et al. 
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2014). The results of this study report that these strengths can lead 

to the advantage of capturing more immediate responses of organisms 

to micro changes compared to relatively macro changes in the 

environment. 

 

Additionally, all COP models in this study outperformed the 

Environmental (ENV) models. Some species' ENV models exhibited 

methodologically unacceptable performance levels for specific 

generalization tasks in this research. Although environmental 

information is the most prevalent pool of variables in SDM (Martínez-

Minaya et al. 2018), these findings suggest that COP can be more 

effective in certain tasks or species. 

 

This study's target species are widely distributed across North 

America but threatened by rapid decline due to competition (Harmon 

et al. 2007, Losey et al. 2012). From this perspective, the following 

factors could have made COP stronger than ENV. Firstly, a major 

cause of decline was competition with adventive species (Turnipseed 

et al. 2014, Tumminello et al. 2015). Secondly, the dominance of 

adventive species altered the coccinellid community within its 

traditional landscape (Wheeler and hoebke 1995, Turnock et al. 2003, 

Harmon et al. 2007, Losey et al. 2007, Hesler and Kieckhefer 2008, 

Behali et al. 2015, Peterson and Losey 2022). Thirdly, there have been 

no prominent landscape changes around the presence points over the 

past 15 years (in yale Earth ENV data). Lastly, the target species are 

habitat generalists and their high dispersal abilities allow them to 

actively move to new habitats (McCorquodale 1998, Woltz and Landis 

2013). The fact that biological change is more pronounced than 

environmental change might have played a role in causing the 

performance gap between the COP and ENV models. In other words, 

in these situations, it may be advantageous to utilize COP. Therefore, 

further research is needed to investigate the extent to which the 

performance differences uncovered in this study can be generalized. 
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2.3.2. The interpretation of used variables 

 

The relationship between variables and target species revealed by 

the SHAP index and correlation coefficient analysis aligned with the 

previously known ecological relationships of the following major 

species. In the ML of C. novemnotata and C. transversoguttata, these 

species largely depended on each other. Their known preference for 

overlapping habitats and resources accounts for this observation 

(Hesler et al. 2009). Meanwhile, H. axyridis and C. septempunctata 

were negatively correlated with three target species and had the 

highest significance among the variables. Presumably, intense 

competition across North America produced this result (Wheeler and 

hoebke 1995, Turnock et al. 2003, Harmon et al. 2007, Losey et al. 

2007, Hesler and Kieckhefer 2008, Behali et al. 2015, Peterson and 

Losey 2022). A. bipunctata, however, was an exception, showing a 

slight positive correlation with them. The species is known to share a 

certain degree of niche overlap with H. axyridis on a macro scale 

(Coderre et al. 1995, Koch, 2003, Omkar and Pervez 2005, Hentley et 

al. 2016). The overlap between C. septempunctata and A. bipunctata 

has also been reported in much European research, where both are 

native (Honěk 1985, Nedvěd 1999). However, this does not necessarily 

imply that A. bipunctata is immune to the negative effects of 

competition on a smaller scope (less than the 18 km radius that this 

study employed; Kajita et al. 2000, Soares and Serpa 2007, Kajita et 

al. 2006). Conversely, it appeared that a lower SHAP index 

corresponded to a lesser degree of known ecological interaction with 

the target species. 

 

2.3.3. The incorporation of new variables 

 

As variables, co-occurring species would provide information on 

(1) interactions (ex. competition), (2) habitat types (ex. urban garden), 

and (3) geographical realms (ex. West-East). In this regard, other 

potential organisms from other taxonomic groups of the target species 

(i.e. not the species' own taxonomic groups) could be conceptually 
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incorporated into the pool of variables. 

 

In terms of information, a species that seems unrelated sometimes 

may provide more valuable information compared to a species that is 

directly interactive with the target species. For example, records on 

aphids and parasitic wasps, that directly interact with coccinellids as 

prey and predator, were too scarce to be employed. Meanwhile, our 

ML was shown to perform about 2% better when records of 

Passeriformes (perching birds), slightly related to the ecology of 

ladybugs but abundantly monitored, are included. 

 

Conceptually, this may implies that these variables worked as 

indicators of (2) habitat types or (3) geographical realms. For example, 

it is possible that the geographical distribution of some perching birds 

could have aligned with the geographical realms of target species. 

Even though this study intentionally excluded geographical indicator 

variables to achieve our goal of selecting variables that can predict 

over time, this kind of variables (ex. coordinates) is commonly used to 

static prediction models with invertebrates (Gaul et al. 2022, Tyler et 

al. 2019), so the perching birds might be useful. In any case, to 

establish the validity of new potential variables, increases in 

performance scores should be interpreted as valid only if they result 

in a more descriptive model of the real world, rather just a technically 

improved model. 

 

Over the past 20 years, the increase in observation data is a 

phenomenon shared by most taxonomic groups, but the rate varies 

significantly among species and even across taxonomic groups (Knape 

et al. 2022). Birds, in comparison to insects, exhibit the steepest rate 

of data accumulation. Therefore, if COP can harness information from 

species with rapid data accumulation to predict habitats for species 

with slower data accumulation, it may help bridge the data gap between 

taxonomic groups. However, an increase in overall accuracy cannot 

guarantee the descriptive reliability of prediction actually improved. 

Therefore, further research is needed to determine whether 
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incorporating birds or other taxa will strengthen co-occurrence 

patterns or if it will generate more biases and illusory patterns. 

 

Moreover, additional studies are required to explore the balance 

between expanding the information content through the integration of 

biological variables of new organisms and retaining only high-quality 

correlated variables. 

 

Although environmental variables were excluded from this study 

in order to reveal the effect of biological variables, the use of 

biological and environmental variables is not mutually exclusive, and 

future models may present more accurate results when combined. 

 

2.3.4. The limitation in application 

 

Biological interactions that are temporally and spatially 

inconsistent have been identified as a weakness of the co-occurrence 

pattern as a predictor in species distribution models (Tikhonov et al. 

2017). It is noteworthy that the performance of predicting the recent 

distribution based on the relative past of A. bipunctata declined 

significantly compared to predicting the past based on the recent 

distribution. This may be derived from the changes in the habitat 

preferences of A. bipunctata as a result of the "habitat compression" 

following the introduction of C. septempunctata and H. axyridis over 

the past 15 years (Bahlai et al. 2015). Therefore, there may be 

limitations in predicting the past habitat preferences of A. bipunctata 

based on recent data. In terms of temporal prediction, the COP model 

may have limitations in applying those predictions to a distant past or 

future where there are rapid changes in the relationships between 

species over time or where such changes are inevitable. 

 

 

2.4. Conclusion 
 

This study developed an ensemble model to predict the 



 

 ３８ 

presence/absence of four native ground beetle species in North 

America that are known to decline rapidly due to competition with 

adventive species. Specifically, the performance of the ensemble 

model was compared when trained on co-occurrence pattern variables 

and environmental variables. The study assumed a scenario of 

developing species distribution models (SDMs) for most invertebrates 

and rare species, where only presence-only data is available, data 

quantity and density are low, data from different survey processes 

need to be combined, and accurate predictions at fine temporal scales 

are required. The study compared and derived conclusions about the 

structural and temporal generalization of SDMs by assuming these 

restrictions. The co-occurrence pattern model (COP ML) revealed two 

advantages over the environmental variable model (ENV ML). Firstly, 

co-occurrence patterns were advantageous for integrating data from 

multiple sources compared to environmental variables. In both 

structural generalization tests (trained and tested between different 

degrees of efficiency or structure data groups), COP ML consistently 

outperformed the agreed-upon benchmark, while ENV ML failed to 

meet the benchmark in some generalization tests. Additionally, the 

COP ML performed better than the ENV ML for all four species. 

Secondly, co-occurrence pattern variables provided more predicative 

models than environmental variables because they could generalize to 

predict the present based on the past or predict the past based on the 

present with more accuracy. Moreover, with respect to both temporal 

generalization tests, COP ML consistently outperformed the agreed-

upon benchmark, while ENV ML failed to meet the benchmark in some 

generalization tests. Additionally, the COP ML performed better than 

the ENV ML for all four species. The analysis of biological variables 

revealed that the correlation and importance of key variables with the 

target generally matched known ecological patterns. Based on these 

results, the study suggests that ML developed with COP can integrate 

multiple-source data without filtering, allowing for the acquisition of 

more data, and that COP-based SDMs may be advantageous for 

predictions at finer temporal scales (and thus more precise than 

commonly used SDMs developed with environmental variables usually 
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spanning over decades), which is especially necessary for many 

invertebrates and rare taxa. 
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Chapter 3. Filling Machine Learning Predictions In 

Temporal Data Gaps Can Estimate Annual Reductions 

Across Every Historical Distribution. 
 

 
3.1. Materials and methods 

 
3.1.1. Summary of materials and methods 

 

Same with 2.1.1. 

 

3.1.2. Target species 

 

Same with 2.1.2. 

 

3.1.3. Occurrence data 

 

Same with 2.1.3. 

 

3.1.4. Pseudo-absence 

 

Similar with 2.1.3. but I was randomly pooling pseudo-absence 

datasets without considering the state ratio for reliability comparison 

while pooling 'matched state ratio' pseudo-absence dataset for 

standard models. 

 

3.1.5. Variables 

 

Same with 2.1.5. but I only used COP as variables. 

 

3.1.6. Development and characterization of models 

 

Same with 2.1.6. but I didn't evaluate developed models. 
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3.1.7. Prediction on annual distributions and reduction rates 

 

For an even comparison of temporal changes in population size, I 

applied the trained ML classifiers to fill in the prediction into the 

deficiencies of the collected yearly data. To do this, the models 

predicted the annual existence of the target species in every historical 

coordinate after 2007. 

  
(1) Prediction: Prediction models were developed in the same way 

as the Development and characterization step, except those models 

with 100% training of available presence data were used for predicting 

past annual distributions of each target species, to boost the predictive 

performance (Fielding 1997, Rencher 2002). If more than 50% of 50*50 

numbers of the models developed with each unique combination of 

pseudo-absence data points were in favor, a GPS was considered as 

occupied at the year. This whole process was repeated 30 times by 

changing pseudo-absence pools to obtain confidence intervals of the 

annual distribution.  

  
(2) Analysis: To evaluate and analyze distribution trends, the AOO 

(Area of occupancy) and EOO (Extent of occurrence) of the IUCN Red 

List criteria system were used. Under criteria A, the population 

reduction rate over a ten-year moving time window was obtained from 

analyzing the predicted annual distribution measured by counting 4 

km^2 grid cells, a way devised to measure AOO that indicates how 

much area taxon occupies and presents an indirect value of population 

size. 

 

3.1.8. Validity evaluation 

 

Validity refers to the practical relationship between our 

measurement and the ability of that measurement to accurately 

represent a targeted object. To confirm whether the estimates of the 

methodology for the population over the years are independent of the 

temporal variation in data availability, linear regression analysis and 
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correlation coefficient analysis were conducted with the LLP's total 

annual observations. LLP was selected as an independent variable for 

validation because it has the highest number of data points for the 

target species among sources and its fluctuation is not consistently 

increasing or decreasing. 

 

In addition to the filling-in approach, three traditional methods 

widely used for estimating the rate of decline in presence-only data 

were also implemented and compared: RA (Relative Abundance; 

described mathematically as the target species' annual observations 

divided by the total coccinellids' annual observations), ACC (Historical 

records accumulation; trends of the annual AOOs given that GPS has 

been continuously occupied by the target species from 2007 to the last 

discovery on it), and Raw Records (the simple number of annual 

reports). 

 

3.1.9. Reliability evaluation 

 

Reliability is the consistency and stability of measurement when 

the study is repeated or replicated under similar conditions. To 

evaluate reliability, this study evaluates the degree of variation in 

estimations among COP models developed with (1) different pseudo-

absence datasets, (2) different variables, and (3) different presence 

datasets that is partially lost and partially replaced with false data 

points. 

 

In terms of pooling pseudo-absence, variations between (a) 

randomly sampling absence data from all the research areas and (b) 

sampling absence data to match its ratio with presence data in each 

state was compared were evaluated. 

 

In terms of pooling variables for modeling, variations between the 

two sets of variables, obtained by (a) [independent simple linear 

regression + VIF] and (b) [multiple linear regression + VIF] were 

evaluated. 
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In terms of errors inherent in the presence dataset, variations of 

estimates was evaluated when 10% of the presence records for the 

target species were randomly deleted (representing imperfect 

observations) and replaced with occurrence records of other species 

(representing misidentification errors) for 2,500 times of repetitions. 

Next, the mean squared error (MSE), compared to the values obtained 

from complete dataset, was obtained. 

 

 

3.2. Results 
 

3.2.1. Estimated reduction rates and conservation status 
 

 

The ML classifiers trained with co-occurrence patterns was 

applied to obtain annual occupancy by filling the prediction into the 

deficiencies of the volume of collected yearly data to be evenly 

compared from 2007 to 2021. 

 

 According to ML's predictions, three target species could have 

Figure 3-1. Estimated reductions of the four ladybugs native to 

North America. 
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been undergoing a fundamental extinction process in North America 

(Figure 3-1), currently. Area of occupancy (AOO), a direct indicator 

of the area occupied by the taxon and an indirect indicator of 

population size (IUCN 2022), was found to have declined since 2007 

in all four species; H. parenthesis' AOO, which showed the largest 

decline, decreased by 1,962 km2, A. bipunctata by 584 km2, and C. 

novemnotata and C. transversoguttata by 480 km2 (Table 3-1).  

 

 According to IUCN Red List Criteria A, which evaluates 

extinction risk based on a reduction rate of a population size in recent 

years, a maximum 10-year decline within 2007-2021 was estimated 

to be 36.4% for H. parenthesis (2007-2021; "Vulnerable"), was 29.7% 

for A. bipunctata (2010-2019; "Near Threatened"), was 23.7% for C. 

novemnotata (2009-2018; "Near Threatened"), and was 14% for C. 

trasversoguettata (2007-2018; "Least Concern").  

 

 On the other hand, the extent of occurrence (EOO), a parameter 

of the ability of spatially spreading risks (IUCN 2022), was the most 

significant decrease by numbers in C. transversoguttata—This indicates 

that this LC species also has been undergoing deterioration in the 

ability to resist extinction as well as the progressive population 

reduction. 

 

 

  

Table 3-1. Summary of distributional trends and IUCN status of the four 

target species. 
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3.2.2. Validity comparison with pre-established methodologies 

 

 

This research's filling-in approach (ML), Relative Abundance (RA), 

Historical records accumulation (ACC) and Raw Records (Raw) 

estimated different predictions of population trends as well as distinct 

peak reduction rates over 10 years, thereby determining different 

IUCN Red-List conservation category for each species. Category for 

a species varied from LC (less than 20%: currently least concern in 

extinction risk) to CR (over 80%: indicating the highest level of 

extinction risk). When estimating population trends, the IUCN Red List 

category was highest for RA (H. parenthesis: 88%, C. novemnotata: 

94%, C. transversoguttata: 90%, A. bipunctata: 78%), middle for ACC 

(71%, 84%, 76%, 65%), and lowest for ML (34%, 23%, 14%, 27%; Table 

3-2). Meanwhile, the volume of our yearly data collection has 

increased since 2007 as the "raw records" indicated that targets had 

been reported more frequently (2% of increase per 10 years), while 

the overall density of target species' datapoints divided by all 

coccinellid observations had declined. Linear regression showed ML 

Figure 3-4. CS's spreading has led to a continuous increase of the 

number of datapoints. However, LLP records with the highest 

efficiency in reporting native ladybugs have declined since 2014. 
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had the most statistical independence from these time-series changes 

in data volume and yearly density of target species 

 

 

Descriptive statistics showed that there was an overturn between 

LLP's volumes and I-Naturalist’s volumes (Figure 3-4). LLP, which 

accounted for only 5% of the total observations on coccinellids, 

reported target species at six times the density of I-Naturalist, the 

largest source of the dataset by containing 89% of all observations 

(Figure 2-2 and Figure 3-3). Nonetheless, while the total number of 

LLP observations had been on the decline since 2014, I-Naturalist had 

exponentially and steadily grown, lowering the density of the target 

Table 3-2. The estimated reduction rates derived from the raw data, two 

previously established methods, and a novel approach proposed in this 

study. 

Figure 3-5. Linear Regressions between the number of observations 

from LLP and  population size estimated by RA (Relative 

Abundance) and ACC (Historical Records Accumulation) methods. 
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species in the yearly collected coccinellid data. 

 

To assess the validity of population trends estimated by each 

methods, a linear regression analysis was conducted (Figure 3-5). 

This analysis examined the relationship between the number of annual 

LLP observations and the annual estimated population size from RA, 

ML, and ACC. The result revealed that estimates of RA and ACC for 

all species’ population sizes were dependent on the number of annual 

LLP observations (Table 3-3; RA: F(1,13) > 8.64, p < 0.05; ACC: > 

6.08, < 0.05). ML results were relatively free from bias, since they 

kept the null hypothesis (p > 0.05); the only exception was C. 

transversoguttata. 

 

Although LLP observations only took 4.9% of the multi-source 

dataset, its R squared value wasn’t small, higher than 0.40 for all RA 

models and 0.31 for all ACC models. Conversely, the increase in the 

number of observations within the I-Naturalist dataset explained the 

tendency towards a decrease in the estimated population size (R2 > 

0.31). The volume of LLP observations was positively correlated with 

estimations of RA and ACC (correlation coefficient > 0.631, p < 0.05), 

while the volume of I-Naturalist was negatively correlated with them 

(< -0.563, < 0.05). 

 

 

  

Figure 3-3. The proportion 

of each source from the total 

data collected in this study. 
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  Table 3-3. The results from linear regression between the number of 

annual LLP observations and the annual estimated population size from RA, 

ML, and ACC. 
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3.2.3. Reliability analysis on filling-in approach 

 

Using the filling-in approach resulted in less variation in the 

prediction of the population trend compared to aggregating different 

pseudo-absence data points, variables and presence data points.  

 

In terms of aggregating pseudo-absence data points, (a) randomly 

sampling absence data from all the research areas and (b) sampling 

absence data to match its ratio with presence data in each state 

showed less than 10% of difference in peak reduction rates in each 

period (Table 3-4). This left less than one level of difference in IUCN 

conservation status for each species.  

 

In terms of pooling variables for the Machine Learning modeling, 

the two sets of variables, obtained by (a) [independent simple linear 

regression + VIF] and (b) [multiple linear regression + VIF], showed 

marginal differences (less than 2%) in the reduction rates (Table 3-5). 

 

Lastly, in terms of errors inherent in the presence dataset, this 

study went through 2,500 iterations of randomly deleting 10% of the 

presence of the target species or replacing the presence records with 

occurrence records for other species. This methodology represented 

imperfect observations and misidentifications errors, respectively. On 

average, the 2,500 iterations had an estimated range of variation that 

was within 8% (with an interquartile range less than 3% and a standard 

deviation less than 0.019) for all four species. The mean squared error 

(MSE), compared to the values obtained from the complete dataset, 

was 0.0014.  

 

Conclusively, the filling-in approach demonstrated limited degree 

of variability in population trend and conservation status estimation 

when there are sorting variables, selecting different psuedo-absence 

datasets, missing occurrence records, and including misidentification 

data. 
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Table 3-4. Variations in 10 years of reduction rates for IUCN Red List 

between ways to sample absence data. Left: reduction rates for H. 
parenthesis and C. novempnotata were calculated using 10,000 pseudo-

absence points, which were sampled in proportion to the presence data of 

each state or province. Right: reduction rates for the same species were 

calculated using 2,000 randomly sampled pseudo-absence points. 

Table 3-5. Variations between ways to sort variables. Left: with 15 

variables chosen by simple linear regression. Right: with 9 variables chosen 

by multiple linear regression. These shared seven variables. 
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3.2.4. Predicted distributions 

 

Machine learning predictions suggested that target species 

continued to exist in states where no recent additional records have 

been found (Figure 3-2). C. novemnotata was predicted to still be 

found in Washington, Wyoming, Arizona, South Dakota, Nebraska, 

Wisconsin, and Alberta. C. transversoguttata was to Saskatchewan, 

South Dakota, and Nebraska. A. bipunctata was to Manitoba, Wyoming, 

North Dakota, South Dakota, and Nebraska. H. parenthesis was to 

Oregon, Idaho, North Dakota, Wyoming, Utah, and Arizona. These 

predicted occurrence wasn’t considered in any of RA and ACC's 

estimations and conservation status. 

 

Figure 3-2. Comparision of yearly distributions between ML and ACC. 
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3.3. Discussion 
 

3.3.1. The theoretical rationale for the ML reduction rates 
 

It has been documented that the population of native species 

plummeted largely in recent decades. Nevertheless, there are several 

reasons that the scale of the current reduction rate (2007-2021) 

produced by ML, which is smaller than previous studies, is reliable. (1) 

The decline occurred mainly during the '80s and '90s soon after 

exotic species landed in North America (Colunga-Garcia and Gage 

1998, Bahlai et al. 2015). (2) Several recent reports from regional 

habitats indicate there has been no further decrease in native species 

(Alyokhin and Sewell 2004, Bahlai et al. 2015). (3) Some researchers 

speculate that the coccinellid complex is likely to modulate the effects 

of adventive species over time (Turnock et al. 2003, Harmon et al. 

2007, Hesler and Kieckhefer 2008), as many 'biological invasions' 

reached the chronic phase (Elton 2000, Strayer et al. 2006). (4) The 

remaining colonies might be more resistant and sustainable than other 

lost ones because of their metapopulation dynamics, refuge supply, etc 

(Evans 2000, 2004, Evans et al. 2011). Based on these reasons, I can 

assume that the current reduction amplitude should be lower than it 

was at the onset of the spreading. 

 

In addition to that, (5) When I estimated the RA of H. parenthesis 

(548 number of observations) from a single study (2007-2019) in 

South Dakota (Bahlai et al. 2015; downloaded from: 

lter.kbs.msu.edu/datatables/67), 20 years after the advent of foreign 

species, the reduction rate of the trend line was 40% on a 10-year 

basis. This finding shows a similar intensity to the 34% in our study 

over the continent. Meanwhile, in the UK and Belgium, the rate of 

decrease in A. bipunctata population was 30% and 44% in a single 

study (2003-2008) conducted 25 years after the introduction of H. 

axyridis (Roy et al. 2012). This finding shows a similar level of 27% in 

this study. 
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From a policy perspective, it is crucial to emphasize that the 

projected rate of decline, although less severe than the well-known 

rate of decline, should not be interpreted as an indication that these 

species are no longer at risk or recovering. Despite having been 

heavily exploited in the past and having suffered substantial population 

losses, these species continue to face a decline. 

 

3.3.2. Affect of temporal fluctuations of data on various models 

 

Since the 2000s, the observations stored in crowd-source 

systems have shown a steep increase worldwide (Amano et al. 2016). 

The rapid expansion of citizen science has been identified as the 

primary driver of this trend (Dickinson et al. 2010, Isaac and Pocock 

2015, Chandler et al. 2017). However, the temporal variability in the 

availability of citizen science data poses limitations in directly 

estimating species' abundance and the extent of its change (Boersch-

Supan et al. 2019, Kamp et al. 2016, Bayraktarov et al. 2019). In 

particular, Knape et al. (2022) reported a decrease in the number of 

records submitted per observer, despite an overall increase in number 

of observations for insect taxa. They suggested that this could be due 

to lower knowledge and survey efforts regarding subsequent 

observations by new participants compared to initial participants 

(Knape et al. 2022). Nonetheless, there are studies suggesting that the 

population trends of semi-structured citizen science data can predict 

structured survey trends significantly, given appropriate treatment 

(Boersch-Supan et al. 2019, Horns et al. 2018). However, effective 

methods to control such temporal variability have not yet been agreed 

upon, particularly for taxa with low spatiotemporal data density, such 

as rare species or invertebrates, and especially in situations when data 

collection is entirely unstructured (Kamp et al. 2016). 

 

According to our results, by accounting for the temporal 

discrepancy in the dataset, the estimation derived from the filling-in 

approach proved to be the most independent by accounting for the 

time-series fluctuations in the total dataset. These fluctuations were 
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represented by the number of LLP and I-Naturalist participants. 

Similar with Knape et al. (2022), the I-Naturalist, which constituted 89% 

of the total data and did not involve expert’s verification and specific 

focus, had a six times lower ratio of target species observation 

compared to the LLP (1.17%), which constituted  only 4.9% of the 

total data and was under a campaign to search for native ladybugs, 

aided by educational documents, and verified by experts in 

identification of photos.  

 

Therefore, the more I-Naturalist data enter the model, the lower 

the estimated population density of the target species, even though the 

raw number of observed members of the target species increased. 

This phenomenon has been particularly noticeable since 2014 when 

LLPs began to decline. Consequently, an increase in the number of 

observations within the I-Naturalist dataset, while LLP had decreased, 

was associated with a tendency towards a decrease in the estimated 

population size of RA and ACC.  

 

The results of linear regression revealed that RA and ACC's 

estimates were confounded by their dependence on the LLP data; in 

other words, their measurements could validate replications of LLP 

data, but not valid measures of actual population shifts. In addition to 

that, the reduction rates for RA and ACC are much sharper (as EN to 

CR in IUCN Red-List) than those for ML (LC to VU). To further 

emphasize this point, with the exception of ML, the periods of peak 

reduction rates from other methods tend to vary less, such as 2012 to 

2021 for ACC, no matter the target.  

 

These findings indicate that the estimates derived from RA and 

ACC may result from a decline in LLP or a trade-off with the I-

Naturalist. As a result, using these methods to estimate population 

trends without addressing the inherent fluctuations in unstructured 

citizen science data could lead to significant errors in policy decisions. 
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3.3.3. Practical benefits of the filling-in approach 

 

most reliable method for estimating population trends is to conduct 

long-term sampling at consistent locations (Elliott et al. 1996, Strayer 

et al. 2006, Honek et al. 2016). However, due to the high cost involved, 

most species lack this type of monitoring effort. In comparison, 

unstructured citizen science data is three to four times more cost-

effective than structured sampling efforts (Gardiner et al. 2012). 

Nevertheless, in citizen science data, the sampling effort is not 

consistently distributed in space and time to cover the entire 

population (Bayraktarov et al. 2019). Consistently filtering out only the 

well monitored areas (ex. 5 times of revisit during the study period; 

Schultz et al. 2017) has been a long-standing dilemma for ecologists 

because it removes a substantial portion of the available data volume 

and the overall distribution of species, resulting in a trade-off between 

quantity and quality (Gábor et al. 2019, Wisz et al. 2008). This poses 

particular challenges for species with small population sizes, limited 

geographical ranges, or rapid population declines, which are 

prioritized for assessments of extinction risk, as their sample sizes are 

small (Hertzog et al. 2021).  

 

To mitigate the inherent heterogeneity in citizen science and the 

high costs associated with traditional monitoring, the filling-in 

approach can be utilized to maximize the utility of citizen science data 

and enhance the cost-effectiveness of data collection. For example, 

alternative strategies have been proposed to fill data gaps, such as 

sending people to unsampled areas or providing financial incentives 

(Tulloch et al. 2013, Xue et al. 2016). However, employing machine 

learning predictions to fill these gaps can be more economical than 

sending individuals.  

 

Additionally, in general, more citizen scientists' participation 

broaden the coverage of the surveys' taxonomic scope (Chandler et al. 

2017, Pocock et al. 2019). Instead of reducing participation and volume 

of observation due to strict protocols (Pocock et al. 2017), this study's 
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approach is about to adjust for the inherent discrepancies in 

unstructured data and can cover a broader spatiotemporal range of 

under represented species by maximizing quantitative use of 

unstructured, therefore low hurdled, citizen science. In other words, 

this study's approach benefit from low-hurdled citizen science data's 

broad coverage while also demonstrating robustness. 

 

In summary, utilizing citizen science data through the filling-in 

approach and leveraging machine learning techniques to address data 

gaps and discrepancies can enhance the economic efficiency of data 

collection, particularly for species at risk and with limited monitoring 

efforts. 

 

3.4.4. The filling-in approach in conjunction with data filtering 

methods 

 

 

Citizen science surveys can be used to contour population trends 

in three ways. The first two methods are a direct application of 

Figure 3-6. Conceptual comparison between Filling-in and Filtering 

methods in their coverages on locations for temporally consistent 

estimation. 
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abundance (Newson et al. 2015, Walker and Taylor 2017, Schultz et al. 

2017) or secondly, an application identified effort inputs (ex. survey 

time or check list; LeCroy et al. 2020, Fink et al. 2020) to statistically 

assume an observational chance. The one-million Coccinellid data 

points this study relied on, however, did not carry these pieces of 

information. Thus, if I adopted methodologies (1) and (2), I would have 

been forced to disregard these data in holding with common academic 

practices. 

 

Thirdly, 'filtering' is a procedure to remove some data points from 

unstructured, noisy, or multi-sourced (such as GBIF) datasets in order 

to make them more consistent and evenly distributed enough to 

compare (Steen et al. 2019). Filtering ecological datasets has 

frequently been used as a way to minimize bias to reveal a signal of 

biological change (Hickling et al. 2005, 2006, Kuussaari et al. 2007, 

Roy et al. 2012, Isaac et al. 2014, Aiello-Lammens et al. 2015, Galante 

et al. 2018, Robinson et al. 2018). 

 

However, in the case of taxa with limited data, it is generally 

assumed that information obtained from a larger quantity of records 

surpasses the potential bias of opportunistic sampling (Boersch-Supan 

et al. 2019). Therefore, there is typically a trade-off between 

collecting a relatively heterogeneous (i.e., lower "quality") large 

volume of data and collecting a smaller quantity of higher "quality" data 

that adheres to a defined common structure (Boersch-Supan et al. 

2019). The outcomes of this trade-off between quantity and quality 

are still not fully understood (Aceves-Bueno et al. 2017, Bayraktarov 

et al. 2018, Kelling et al. 2018, Specht and Lewandowski 2018). 

 

In contrast with filtering, our method ‘fills-in’ the gaps that exist 

in inconsistent datasets using prediction (Figure 3-6). As a way to 

moderate the trade-off, it is possible to increase spatio-temporal 

coverage through filling-in while eliminating the inherent bias using 

filtering. Therefore, 'filling-in' and 'filtering' are not mutually exclusive 

and can be combined by the following procedure: (a) filling-in before 
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filtering or (b) filtering before filling-in. This joint methodology  

would be essential due to an insufficient amount of data available on 

the most endangered species or minor taxa to cut off some parts of 

them. It is necessary to test the synergistic effects of the combination 

in terms of the trade-off between data volume and quality. 

 

 

3.5. Conclusion 
 

Due to the lack of consistent surveys across their entire habitats, 

most invertebrates and rare species are underrepresented in 

international conservation efforts. The small size of available data, 

predominantly consisting of presence-only data collected through 

different survey efforts, makes it challenging to estimate temporal 

changes in population size. Previous studies have primarily used 

filtering techniques to retain only a subset of reliable data. In contrast, 

this study proposes and tests a method that fills in predictions using 

machine learning at points of temporal inconsistency, enabling 

consistent temporal comparisons across the entire species habitat (= 

filling-in strategy). The results of validity tests showed that the 

filling-in strategy was independent of inherent temporal variations in 

the data, while the traditionally used methods (RA and ACC) were not. 

Additionally, when there were differences in the methods of data 

extraction for pseudo-absence datapoints, variations in variable 

selection methods, and the random inclusion of missing or false 

information in the presence data, the range of estimates from the 

filling-in strategy for population trends did not misrepresent IUCN 

conservation status to a significant extent. These findings indicate that 

the filling-in strategy, despite having lower quality but cost-effective 

data, exhibits resistance to temporal variations in data richness across 

the entire habitat range of a species and can produce theoretically 

valid predictions. Therefore, this study suggests that the filling-in 

strategy is a promising approach that can include a greater number of 

taxonomic groups in conservation planning. 
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