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Abstract

The modeling of spatiotemporal brain dynamics from high-dimensional data, such as

functional MRI, is a formidable task in neuroscience. However, existing studies pre-

dominantly rely on simplistic heuristic features from functional MRI, which poses the

risk of overlooking crucial aspects of brain dynamics. This study addresses the limi-

tations of existing computational approaches by proposing two deep neural networks

for functional MRI: Swin fMRI Transformer (SwiFT) and Swin fMRI Transformer

with UNET (SwiFUN). These models are designed to directly process 4D resting-state

fMRI data and predict cognitive and biological variables and specific task-related brain

activity. We evaluate our modules using multiple largest-scale human functional brain

imaging datasets, such as the Human Connectome Project (HCP), Adolescent Brain

Cognitive Development (ABCD) study, and UK Biobank (UKB). Our experimental

outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models

in predicting sex, age, and cognitive intelligence. Furthermore, SwiFUN surpasses a

commonly used approach, a generalized linear model, for predicting task-related brain

activity from resting-state fMRI. Our work holds substantial potential in facilitating

scalable learning of functional brain imaging in neuroscience research by reducing the

hurdles associated with analyzing complex brain dynamics in high-dimensional fMRI.

Keywords: brain dynamics, functional MRI, Transformers, cognitive and biological

variables, task-related activity
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Chapter 1

INTRODUCTION

1.1 Background

Brain Dynamics and its Relation to Adaptive Human Behavior The human brain

is a complex and dynamic system characterized as an extensive network generating

complex spatiotemporal dynamics of its activity [3]. A growing body of evidence has

indicated that the spatiotemporal dynamics of brain activity are key to shaping adaptive

human behaviors such as perception [4], attention [5], and emotional processing [6].

The dynamics exhibit distinct patterns across subjects as they engage with an ever-

changing environment, thereby manifesting individual variabilities, including cogni-

tive abilities [7, 8, 9, 10] and personality traits, such as neuroticism and extraversion

scores [11, 12] On the other hand, psychiatric disorders emerge when the brain dynam-

ics deviate from their normal trajectory during interactions with the environment. This

disruption leads to a compromised cognitive and emotional state, impairing the capac-

ity to engage in adaptive behavior. For instance, studies have shown that anomalous

disruptions in brain dynamics are highly correlated with psychiatric or neurological
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disorders, such as Alzheimer’s disease [13], schizophrenia [14], and attention deficit

hyperactivity disorder (ADHD) [15]. These abnormalities in brain dynamics are influ-

enced by an individual’s genetic predisposition and inherited vulnerabilities. However,

genetic factors do not guarantee the development of a mental illness. Instead, they in-

fluence the environment one chooses to be in and determine the individual’s sensitivity

to that environment. Our brain dynamics can function optimally when individuals en-

gage in appropriate interactions with positive life experiences and a nurturing home

environment. The Hebbian rule supports this notion by suggesting that the structure

and function of the brain can change through the right interactions [16]. Therefore, it

is crucial in the fields of neuroscience and medicine to establish the connection be-

tween brain dynamics and adaptive cognition and behaviors in the constantly chang-

ing environment, as well as their maladaptive manifestations in the context of disease

conditions. This enables us to comprehend the individual genetic and environmental

factors that impact adaptive brain function and how they are expressed in intricate be-

haviors. Furthermore, understanding individual brain dynamics will provide the basis

for the early identification of risk factors, thereby facilitating the prevention of mental

disorders. This knowledge will also contribute to predicting the trajectory of mental

disorders and implementing appropriate treatments to prevent their progression.

Group comparison with functional MRI Functional Magnetic Resonance Imaging

(fMRI) is a widely utilized neuroimaging modality that enables the noninvasive explo-

ration of intricate brain dynamics, offering a time resolution ranging from 0.5 to 3

seconds. Functional MRI (fMRI) captures a temporal sequence of 3D images (a stack

of 2D slices) of Blood Oxygenation Level Dependent (BOLD) signals, which include

the physiological changes in blood flow, blood volume, and oxygenation that occur in

response to neural activity in the brain. [17]. In fMRI, specific regions are activated to-

gether during rest or when performing a specific task, and this continuous pattern rep-
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resents the functional network organization of the human brain [18]. Functional MRI

has enabled the rapid exploration of detailed functional brain anatomy, significantly

contributing to understanding the relationship between complex brain functioning and

adaptive human behaviors. To analyze the brain network, researchers usually reduce

the sequences of brain volumes into low-dimensional multivariate time series by aggre-

gating voxel intensities in specific brain regions of interest (ROI) based on standardized

brain atlases or statistically-clustered parcellation (e.g., Independent component anal-

ysis). Pairwise correlations between the time series of each ROI are widely used for

analyzing the functional dynamics over the timepoints, called ’functional connectivity’

[19]. To investigate the brain regions related to specific brain functioning and its rela-

tion to human behaviors, mass-univariate analysis that focuses on group comparison

has been widely used for several decades. Mass-univariate analysis refers to a method

that compares individuals with a specific disease to a control group without the disease

in order to identify group-level structural and functional differences in brain regions.

Since the analysis is intuitive and easily interpretable, it has been a longstanding tool

for analyzing brain images and has advanced our understanding of brain mechanisms

for psychiatric diseases. However, there are three primary limitations associated with

mass-univariate analysis. Firstly, this methodology assumes independence among each

brain region and voxel, conducting multiple independent comparisons for every voxel

to determine the extent of significant differences between disease and control groups.

However, this assumption significantly overlooks the characteristic of the brain as a

complex network, where each brain regions consistently interact with each other for

adaptive brain functioning [20, 21, 22]. Secondly, mass-univariate analysis for Func-

tional MRI is highly susceptible to various sources of noise, such as scanner effects

and head movements, which decreases test-retest reliability within and across subjects

[23, 24, 25, 26]. The scanner effect refers to the phenomenon where brain scans ex-

hibit different probabilistic distributions depending on the type of scanner used. This

3



effect complicates the integration of data from different sources in multi-site studies,

which involve using various types of scanners. Lastly, while mass-univariate analysis

can identify group differences between disease and control groups, it cannot be used

to predict individual-level outcomes from a single MRI scan because of its low signal-

to-noise ratio (SNR) [20, 27]. The research on fMRI has been hampered by the lack

of predictive power owing to the gap between the complexity of the brain network and

the contrasting simplicity of brain imaging analytics [28, 27].

Individual-level prediction with Machine Learning The recent objective in neu-

roscience and psychology is not only to identify group differences but also to dis-

cover individual variability in brain dynamics that determine cognitive and behavioral

differences. To provide personalized diagnoses and prognoses of mental disorders,

developing integrative biomarkers including brain imaging, genome, and social in-

formation is of paramount importance in neuroscience and precision psychiatry. To

achieve this objective, machine learning (ML) applications have emerged as a highly

influential approach in developing biomarkers by modeling complex non-linear rela-

tionships between extracted brain features and behavioral outcomes, expected to sur-

pass the limited predictive power imposed by traditional linear models. Unlike the

mass-univariate approach, ML methods assume inter-correlation between brain re-

gions and find the best combinations of brain features for the optimal individual-level

prediction, shifting the research objective from group-based comparison to person-

alized diagnosis and prognosis. The effectiveness of machine learning approaches is

determined by preprocessing methods that support the hypothesis. This requires the

expertise of domain specialists to determine how to extract features (e.g., connectivity

matrices) from large fMRI datasets. There have been attempts to reduce the dimension

of brain images using machine learning-based feature extraction and predict diseases

from an individual’s functional connectivity through predictive ML models such as
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Connectome-based predictive model (CPM), support vector machine (SVM), and en-

semble methods (e.g., XGBoost). For instance, Galioulline et al. [29] proposed that

the future incidence of depression can be forecasted using resting state fMRI from

healthy adults by combining ML methods such as regression dynamic causal mod-

els (rDCMs) and support vector machine (SVM). Moreover, some research focused

on differentiating various subtypes within heterogeneous psychiatric disorders. They

established connections between the subtypes and treatment responsiveness, aiming

to provide personalized treatments based on biomarkers derived from functional MRI

[30]. These studies target psychiatric disorders such as depression and ADHD that

encompass a wide range of co-occurring symptoms and exhibit varied responses to

treatment. DrynsDale et al. [31] suggested that depressive symptom-related subtypes

defined by functional connectivity can enhance the diagnostic accuracy of depression

and predict the responses to the anti-depressant. Specifically, the study used canonical

correlation to extract informative features from resting-state functional connectivity,

discovering four subtypes based on the features with hierarchical clustering. They ver-

ified the high clinical utility of the subtypes by classifying the depressive subtypes of

unseen subjects and predicting the treatment effect of repetitive transcranial magnetic

stimulation (rTMS). However, Dinga et al. [32] criticized the limited reproducibil-

ity of the result, pointing out the low statistical significance of canonical correlation

and clusters observed in another dataset. [32] Despite the promising predictive power

of ML-based approaches in many studies, researchers consistently cast doubt on the

reliability of ML-based approaches. The same ML models can exhibit inconsistent

performance depending on how the brain images are preprocessed. Inappropriate fea-

ture extraction aggravates the biases in fMRI, for example, over- or under-correcting

scanner effects [33, 28]. Furthermore, depending on extracted features can overlook

vital factors in spatiotemporal dynamics, making the predictive model focus on either

spatial or temporal dynamics of functional MRI. Several studies suggest that minimal
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preprocessing can enhance the performances of predictive models by maximally utiliz-

ing the information in brain MRI. [34] Unfortunately, machine learning is not suitable

for dealing with raw images. [35, 36] Given the aforementioned constraints, identi-

fying biomarkers that can aid in psychiatric diagnosis or prognosis at the individual

level is exceedingly challenging, and substantial limitations exist when applying these

methods in practice.

1.2 Deep Learning for fMRI

Deep learning for personalized approach Deep learning models have emerged as

a promising solution for discriminating subtle individual differences in neuroimaging.

Unlike the machine learning approach that requires sophisticated feature engineer-

ing before the analysis, the deep learning approach automatically extracts essential

information (representations) from minimally pre-processed fMRI data. This charac-

teristic alleviates concerns regarding the compromise of critical information through

pre-processing methods. By maximally utilizing rich information in fMRI, deep learn-

ing algorithms can uncover hidden patterns in intrinsic brain dynamics that may not be

apparent through simple linear models and machine learning approaches. Additionally,

previous research shows that deep learning models exhibit significantly higher predic-

tive performance than traditional machine learning models when trained on a sufficient

amount of fMRI data [28]. The rich representation of the deep learning approach stems

from its hierarchical structure also called a deep neural network (DNN). The deep neu-

ral network applies multiple non-linear transformations to input data to model various

levels of complexity [35]. At each layer, a deep learning model represents distinct fea-

tures of the input data. Low-level features tend to capture elementary components in

the data such as contours, edges, and colors for the image, which is more susceptible to

noise. On the contrary, high-level features learned by deep neural networks are more
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semantically meaningful and suitable for discerning content within images that are

robust to noise. Methods such as multi-layer perceptron (MLP), convolutional neural

network (CNN), and Transformer are commonly employed to effectively capture high-

level features. High-level features in deep neural networks can provide insightful solu-

tions to detect individual differences in brain dynamics with highly intricate and subtle

patterns, which are not easily distinguishable from noise [20]. These attributes allow

higher performances in discriminating individual variability than previous approaches.

For instance, research on deep learning approaches has demonstrated outstanding per-

formance in identifying psychiatric disorders compared to existing machine learning

approaches [3, 37, 38]. Deep learning models also offer remarkable flexibility in pro-

cessing the brain in diverse ways based on the characteristics of the brain. For instance,

a recent deep learning approach such as graph neural networks (GNNs) processes

brain images as graphs, which utilizes the spatiotemporal locality of the brain net-

work [39]. The spatiotemporal locality indicates that brain regions in close proximity

in both space and time exhibit a higher degree of information exchange [40, 41]. In

traditional approaches, the relationship between different brain regions is often deter-

mined by calculating correlations between fMRI time series corresponding to regions

of interest (ROI), resulting in a fixed and explicit form of functional connectivity. This

approach typically processes spatial and temporal information independently or fo-

cuses on either of them. On the other hand, graph neural networks (GNNs) allow for

a more dynamic and implicit representation of connectivity by learning the ”embed-

ding” of connections between regions. This flexible approach enables the extraction

of features from brain networks that are relevant to behavioral characteristics. Some

variants of GNNs incorporate spatial and temporal interactions between distant brain

regions, showing superior performances than traditional functional connectivity. For

example, spatiotemporal graph neural network(ST-GCN) has shown higher predictive

performance in biological variables such as sex and age than traditional machine learn-
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ing models. It achieves this by learning patterns in the spatiotemporal connectivity

between brain regions based on parcellated fMRI timeseries [40]. The idea of simulta-

neously learning spatial and temporal representation has emerged as a prominent trend

in the analysis of fMRI using deep neural networks.

Challenges in deep learning approach Several methods have been proposed to ap-

ply deep learning methods to fMRI data, but most of them have been analyzed on

multi-variate fMRI timeseries where features are extracted per ROI using statistical

clustering or anatomical atlas. While this approach allows the model to learn much

more information than traditional functional connectivity, the feature extraction pro-

cess can also cause information loss. To ensure that the model is extracting the most

information possible, it is preferable to run the analysis on minimally processed 4D

fMRI. However, 4D fMRI is a sequence of 3D volumes, and processing such a model

requires significant computing resources. In recent years, there have been many studies

using 3D structural MRI for end-to-end learning, but few researchers have the infras-

tructure (e.g., several terabytes of storage and GPU resources) to analyze 4D fMRI

directly, so it has not received as much attention as ROI-based methods. However,

the few studies that have processed four-dimensional brain images suggest that this

approach significantly outperforms traditional ROI methods. This task is not only fea-

sible but also holds immense value in terms of exploring uncharted areas of research.

However, there are several challenges to developing such a model using 4D fMRI.

Deep neural networks typically require a substantial number of samples to perform

well and generalize to independent datasets [42]. Insufficient samples can result in

unstable training, overfitting to a small number of samples, and poor generalizabil-

ity. In particular, fMRI data is high-dimensional data with a low signal-to-noise ratio

(SNR), which requires a substantial amount of training data to utilize such data with-

out dimensionality reduction [43]. However, performing neuroimaging studies to ac-
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quire fMRI data is costly and requires specialized expertise, which makes it hard to

increase the sample size. To address these limitations, transfer learning has emerged

as a promising technique. Transfer learning is a method to transfer knowledge to solve

one task (source domain) to another similar task (target domain). Typically, a source

domain includes training a large-scale model with huge amounts of data in super-

vised or self-supervised ways [44], which is called the pre-training stage. The pre-

trained model from the source domain is applied to the target domain with smaller

datasets to complement the insufficient sample size and achieve better performances.

Sometimes, the stage requires some updates in the weight of the deep neural network,

which is called fine-tuning. The ’transfer and finetune’ approach has demonstrated

its effectiveness in analyzing neuroimaging. Population studies such as Adolescent

Brain Cognitive Development (ABCD), Human Connectome Project (HCP), and UK

Biobank (UKB) have emerged as valuable resources for large-scale pre-training. By

transferring the knowledge of models trained on these large-scale datasets to smaller

disease datasets, the limited sample size of traditional disease studies can be compen-

sated. For instance, studies have shown that models pre-trained on large-scale struc-

tural MRI datasets can enhance their prediction performance when applied to other

disease-related data [45, 46]. Several studies in the field of fMRI have provided evi-

dence of the effectiveness of transfer learning, either in two sources of datasets [47, 48]

or different tasks in the same dataset [49, 50]. However, to the best of our knowledge,

no models have been developed for 4D fMRI data that can effectively scale to various

types of data. Unlike computer vision (CV) and natural language processing (NLP)

research, which have seen significant investment and interest in developing large-scale

models, limited computing resources (e.g., several terabytes of storage and GPU re-

sources) and the resulting lack of attention from scientists has hindered the develop-

ment of large-scale foundation models for functional MRI. These limitations in fMRI

studies highlight the critical need to develop efficient and scalable models for effective
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representation learning.

Another challenge inherent in deep learning is the difficulty in interpreting the

reasons behind a model’s predictions, regardless of its performance. Deep learning

models have long been referred to as ”black boxes,” and in the context of psychiatric

diseases, it is crucial not only to achieve high diagnostic and prognostic performance

but also to understand the changes in brain regions that lead to such conclusions. This

is particularly important for real-world applications in medical fields and precision

psychology. Deep learning models, directly processing high-dimensional fMRI data

for prediction tasks, can offer valuable insights into which brain regions contributed to

the prediction. The result can be visualized on high-resolution brain images. For ex-

ample, Nguyen et al. [49] demonstrated that GradCAM, a well-known interpretation

method developed for 2D naturalistic images, can be applied to 4D fMRI data to vi-

sualize the explanatory regions. They trained an attention-based deep neural network

(DNN) to detect the type of task from short sequences of 4D task-state fMRI data.

This approach reveals the predominantly activated brain regions over time during spe-

cific types of tasks. The findings of this study align with previous research, confirming

the consistency of the identified brain regions associated with the specific tasks [49].

This result implies that recently famous interpretation methods in the computer vision

domain, such as Integrate Gradients, can be applied to 4D fMRI as well.

1.3 Research Aims and Thesis Outline

This thesis aims to improve our understanding of brain dynamics in functional

MRI relating it to cognitive and biological factors, as well as complex human

behaviors. Although deep learning has recently been heavily applied to ROI-based

parcellated fMRI, few deep learning studies have been developed for minimally pre-

processed 4D fMRI. This is due to insufficient sample size, inefficient and inappro-
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priate model structures for spatiotemporal information, and the lack of explainable

AI (XAI) methods applicable to neuroscience. Currently, fMRI research faces chal-

lenges in developing suitable methodologies to process a huge amount of fMRI data

from increasing population studies such as Adolescent Brain Cognitive Development

(ABCD), Human Connectome Project (HCP), and UK Biobank (UKB).

Transformer, a deep neural network developed to perform natural language pro-

cessing (NLP), has profoundly impacted society, revolutionizing diverse domains in-

cluding voice recognition, machine translation, and image recognition. Its unparalleled

capacity to comprehend intricate patterns and dependencies within data has been in-

strumental in transforming these fields. Furthermore, Transformers have also been ap-

plied to neuroimaging modalities to target diverse research topics in psychology and

neuroscience such as diagnosing psychiatric disorders and detecting brain tumors. The

main advantage of Transformers is that they extract the most important information

from data based on a multi-head self-attention mechanism, and they exhibit scalable

performance improvements as the number of data increases compared to existing deep

learning models. Transformer models have demonstrated remarkable transfer learning

capabilities, enabling knowledge transfer from large-scale models to smaller ones. This

strength allows for the efficient extension of knowledge across different tasks and do-

mains, facilitating effective adaptation and utilization of pre-trained models. Existing

studies have shown significantly higher prediction performance using Transformers

for minimally preprocessed 4D fMRI, suggesting the promise of this research direc-

tion [49, 50]. We demonstrate that Transformers may tackle significant challenges in

neuroscience.

Therefore, this study addresses the limitations of existing fMRI-based studies by

extending the recently developed Video Swin Transformer [51], designed for efficient

video recognition tasks, to the realm of 4D fMRI. This research proposes an efficient,

scalable, and interpretable 4D fMRI transformer. This study shows the effectiveness
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of the developed 4D fMRI Transformer in predicting human biological and cognitive

variables. Furthermore, we demonstrate that the utility of the model can be extended

to predict individual differences in brain activity during specific tasks from resting-

state fMRI—a more challenging task. This thesis consists of two studies which aim to

accomplish two following objectives:

Objective 1: To develop an efficient, scalable, and interpretable fMRI Trans-

former for biological and cognitive variables prediction.

The key research questions for this objective are:

• Does fMRI Transformer exhibit higher predictive performance and computa-

tional efficiency than baseline models?

• How effective is the fMRI Transformer for the transfer learning between different

datasets?

• Which brain regions are observed with an explainable AI method and what can

be inferred from the result?

Objective 2: To predict performed task-state brain activity from resting-state

fMRI

The key research questions for this objective are:

• Does the predicted task activation map generated by the Transformer model ex-

hibit superior overall qualities compared to those produced by the baseline models?

• Does the predicted task activation map exhibit individual variability?
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Chapter 2

EFFICIENT 4D FUNCTIONAL MRI
TRANSFORMERS

2.1 Introduction

Recently, deep neural networks have been applied to fMRI to investigate the nonlinear

relationship of brain dynamics with human cognition and behaviors [37, 38, 20, 40,

52]. Researchers have broadly pursued two distinct lines of work. The first approach

is the so-called ROI-based method, in which the high-dimensional fMRI data (with

around 300,000 voxels) is clustered into the temporal sequence of hundreds of pre-

defined brain regions (ROIs) using anatomical segmentation [53] or statistical cluster-

ing (e.g., Independent component analysis) [54]. The choice of method for extracting

dynamics depends on the hypothesis being tested. By averaging the voxel intensities

within each brain region, this approach reduces volumes into low-dimensional fea-

tures, approximating the number of regions of interest (ROIs) assuming that voxels

within each ROI will demonstrate similar activities across multiple time points. How-

ever, manually extracting features from volumes may be prone to losing information
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important to capture subtle variability across the individual brains [55]. Additionally,

feature extraction can be time-consuming and, depending on how it is performed, can

lead to inconsistent results even for the same data. If the preprocessing is not done in

a proper way, the extracted features can be sensitive to the effects of scanning devices

or parameters, which can decrease the true effect of the extracted features [33]. The

second DNN-based approach is the two-step deep learning approaches, in which the

fMRI data is used as input, with specialized architectures used for spatial and tem-

poral domains separately for better computation and memory efficiency. Namely, for

learning spatial features, convolutional neural networks (CNNs) are used, and for tem-

poral, long short-term memory (LSTM) [56] or Transformers [50, 49] are used. By

making deep neural networks learn spatial and temporal representation from raw fMRI

data with four dimensions, deep learning can fully utilize the information from fMRI

essential for the given task [55, 34]. Previous studies have reported that 4D models

show superior performances in fMRI classification or regression tasks compared to

models using hand-crafted features [56, 50, 49, 50]. However, separating the spatial

and temporal domains may limit the capability of capturing comprehensive informa-

tion among brain regions across time points. Therefore, a critical unresolved issue is

whether an efficient, end-to-end DNN that utilizes 4D fMRI input can be formulated

to better model and learn the brain dynamics compared to previous approaches.

To incorporate spatial and temporal features with attention, research on video

recognition has proposed pure transformer-based models computing attention over

whole image patches in the video. However, the approaches adopted factorization

methods that two separate attention-based encoders sequentially process spatial and

temporal interactions [57, 58]. Furthermore, video Swin Transformer, which features

hierarchical transformer architecture, was proposed to replace the separate spatial and

temporal attention with local attention focusing on the local relationship between

nearby patches, showing considerably higher efficiency and performances in video
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recognition tasks [51]. However, to our best knowledge, such a method has yet to be

applied to fMRI.

To that end, we propose Swin 4D fMRI Transformer (SwiFT), a 4D extension

of the Swin Transformer [59] architecture, which can jointly learn the spatiotemporal

representations of the brain’s intrinsic activity directly from high-dimensional fMRI

in an end-to-end fashion. The main gist of our method is to employ the 4D local win-

dow attention structure, which makes SwiFT readily applicable to process large-scale,

high-dimensional 4D data with low computational complexity. We note that while 3D

variants of Swin Transformers have been proposed before [60, 57, 58, 51] to take video

or medical image inputs, to the best of our knowledge, this is the first work to extend

Swin Transformer to take 4D data input and to apply it to the fMRI data. Our ex-

perimental results show that the end-to-end learning capability of SwiFT unlocks its

potential to learn complex spatiotemporal patterns in fMRI effectively. Specifically,

we evaluate SwiFT’s performance on three representative fMRI benchmarks: the Hu-

man Connectome Project (HCP) [61], the Adolescent Brain Cognitive Development

(ABCD) [62], and the UK Biobank (UKB) [63, 64]. Across various classification and

regression tasks, including sex classification and age/intelligence prediction, SwiFT

significantly outperforms the recent baselines of the above three kinds: i.e, those based

on simple feature-based ML, ROI-based DNNs, or DNNs with separate architecture

for spatial and temporal signals. Furthermore, we also demonstrate that it would be

feasible to apply the widely successful “pre-train and fine-tune” framework to SwiFT.

Namely, by pre-training SwiFT using contrastive loss-based self-supervised learning,

we show that fine-tuning the pre-trained model for each specific task yields supe-

rior results compared to models trained from scratch. We believe this capability has

the potential to empower researchers to construct large-scale foundation models for

fMRI akin to those utilized in several other application domains. Finally, to provide a

comprehensive analysis, we present the interpretation results using Integrated gradient
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with Smoothgrad sQuare (IG-SQ), a recent explainable artificial intelligence (XAI)

technique, for SwiFT’s predictions and conduct ablation studies to substantiate our

modeling choices.

2.2 Related Work

ROI-based Models To analyze the brain network, researchers typically reduce the

sequences of brain volumes into low-dimensional multivariate time series by aggregat-

ing voxel intensities in specific regions of interest (ROI) based on standardized brain

atlases, considering pairwise correlations between the time series of each ROI as func-

tional connectivity[19, 65]. Most DNNs, such as graph neural networks (GNN), were

designed to treat the brain network as a graph, considering each ROI as nodes and

pairwise correlation between them as edges. For instance, BrainNetCNN, consisting

of multiple graph convolutional filters, was proposed to model various levels of topo-

logical interactions in structural [66] and functional connectivity [52]. Kan et al. [52]

proposed Transformer for analyzing brain networks, which employs attention weights

for learning individual connectivity strengths between each ROI and applies an or-

thonormal clustering readout operation for functional connectivity to locate functional

clusters related to specific human behaviors, acquiring informative embeddings for

predicting psychiatric and biological outcomes. Some recent studies proposed meth-

ods to capture spatiotemporal dynamics directly from extracted fMRI timeseries, uti-

lizing Transformer by separating spatial and temporal attention units [67], introducing

masked sequence modeling [68], and focusing on local representations with fused win-

dow multi-head self-attention (FW-MSA) [69].

4D fMRI-based Models Existing DNNs for 4D fMRI typically process spatial and

temporal information separately. The C3d-LSTM [56] integrates 3D convolutional

neural networks (CNNs) to extract spatial embeddings in each 3D volume of a 4D
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fMRI and then feeds the spatial embeddings to LSTM for temporal encoding. TFF [50]

replaces LSTM with Transformer for extracting temporal features and proposes reconstruction-

based pre-training steps. To learn spatial features before the downstream task, TFF

concatenates decoder layers after Transformer and minimizes three reconstruction-

based losses; L1 loss, perceptual loss, and intensity loss. Brain Attend and Decode

(BAnD) [49] suggests a pre-training method to predict the types of cognitive tasks

performed during an fMRI scanning. A 3D CNN encoder is then trained to predict

the target variable from fMRI volumes. Furthermore, the pre-trained encoder learns

temporal features by attaching multi-head self-attention layers. Of note, the aforemen-

tioned models may have issues of unstable training of spatial and temporal data, which

involves multiple training steps and large memory usage. These limitations may result

in sub-optimal model computation and learning capability.

Transformers for Computer Vision Tasks Following the success of Transform-

ers in natural language processing [70, 71], many works apply the multi-head self-

attention mechanism of Transformers for computer vision tasks, such as image classi-

fication, image segmentation, and object detection. One of the major challenges here is

the computation complexity increasing quadratically with respect to the number of to-

kens, an elementary unit for Transformers typically amounting to several hundred. As

images have a much larger number of unique tokens (pixels) than word tokens in nat-

ural languages, using image pixels for the input token to Transformers was infeasible

in most cases. Vision transformer (VIT) [72] tackles this issue by introducing a unique

token unit for vision tasks, a patch consisting of several image pixels, significantly

decreasing the number of tokens compared to using image pixels. However, VIT does

not solve the quadratic increase of computational costs in self-attention layers, limiting

the wider application of VIT for vision tasks such as semantic segmentation and object

detection. Swin Transformer [59] reduces the computational complexity to be linear to
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the number of tokens by applying self-attention only within a local window, consisting

of several patches, instead of running it over whole image patches. Along with the lo-

cal windowed attention, Swin Transformer also introduces shifted window attention to

allow cross-window connections and patch merging (downsampling) steps to produce

hierarchical representations. This approach proved successful in many vision tasks,

such as image classification, object detection, and semantic segmentation. Swin UN-

ETR [1] demonstrated Swin Transformer’s utility in brain tumor segmentation tasks

using 3D structural MRI by coupling a Swin Transformer encoder with CNN-based

decoders. Volumetric Aggregation with Transformers [73], a 4D Convolutional Swin

Transformer, extended the Swin Transformer model to accept a 4D correlation map of

two CNN-extracted 2D image features, utilizing the model for cost aggregation. Liu et

al. [51] suggested the utility of Swin Transformer for capturing spatiotemporal dynam-

ics, applying it to general video recognition tasks including human action recognition,

showing considerably higher efficiency and performances compared to previous video

recognition models [57, 58]. Overall, these works present the feasibility of applying

Swin Transformers to higher spatiotemporal dimensions, and to the best of our knowl-

edge, such a method has yet to be applied to functional brain imaging.

2.3 Method Description

2.3.1 Swin 4D fMRI Transformer (SwiFT)

Overall architecture In line with the recent studies [51, 60], which introduce 3D

extensions to enhance the capabilities of the Swin Transformer [59], we propose an ad-

vancement in the architecture to incorporate an additional temporal dimension, thereby

enabling its application to 4D data. It is worth noting that no previous attempts have

been made to extend the Swin Transformer in this manner.

The overall architecture of our model is depicted in Figure 2.1a. The SwiFT archi-
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tecture utilized in our study consists of four distinct stages. Each stage is constructed

through the implementation of patch merging, with linear embedding employed in

the case of Stage 1. Additionally, positional embedding is incorporated, and multi-

ple (Swin) Transformer blocks are applied repeatedly within the stages. The model

processes an input fMRI data of size T×H×W×D×1, which consists of a length T

sequence of fMRI volumes (H×W×D) with a single channel. During the initial patch

partitioning step, the input fMRI data is partitioned into T×H
P ×W

P ×D
P patches with

P 3 voxels. In this study, H, W, and D are 96, and the initial patch size P is 6. During the

linear embedding process, patches with size P 3 are transformed into C-dimensional

tokens. This transformation effectively maps the spatially-neighboring pixels within a

patch onto a token.

Next, following an absolute positional embedding layer, multiple layers of 4D

Swin Transformer blocks are applied on the embedded patches, forming Stage 1 of

SwiFT. Starting from Stage 2, a patch merging layer at the beginning of each stage

reduces the number of tokens by merging 8 spatially-neighboring patches. After the

patch merging layer, an absolute positional embedding layer followed by multiple lay-

ers of 4D Swin Transformer blocks is applied, together forming Stage 2 and onward.

In the final stage, Stage 4, the 4D Swin Transformer blocks are replaced by global

attention Transformer blocks which carry out global attention instead of local window

attention. This computationally expensive global attention is made possible by the sig-

nificant reduction in the number of tokens achieved through the patch merging steps

executed in the preceding stages. Global attention Transformer blocks allow each to-

ken to globally attend to all other tokens rather than being restricted to the tokens

within the local window.

Patch merging Following prior works [51, 60, 74, 75], the patch merging step is

only performed for the three spatial dimensions (H,W,D) and not for the temporal

19



Patch Partitioning
𝑻×𝑯×𝑾×𝑫×𝟏

𝑻×
𝑯
𝟔 ×

𝑾
𝟔 ×

𝑫
𝟔 ×𝟐𝟏𝟔

Patch Merging & Pos. Embed.

𝑻×
𝑯
𝟒𝟖

×
𝑾
𝟒𝟖

×
𝑫
𝟒𝟖

×𝟖𝑪

Global Attention Block

St
ag

e 
4 ×𝐿!

Linear Embed. & Pos. Embed.

𝑻×
𝑯
𝟔
×
𝑾
𝟔
×
𝑫
𝟔
×𝑪

4D Swin Transformer Block
×𝐿"

Patch Merging & Pos. Embed.

4D Swin Transformer Block
×𝐿#

𝑻×
𝑯
𝑷𝒔
×
𝑾
𝑷𝒔
×
𝑫
𝑷𝒔
×𝑪𝒔

SwiFT

4D fMRI image

𝑯

𝑾

𝑫

𝑻

St
ag

e 
2-

3
St

ag
e 

1

(a) Overall architecture of SwiFT

Layer Norm

4DW-MSA

Layer Norm

MLP

𝑧!"#

�̂�!	

𝑧!	

Layer Norm

4DSW-MSA

Layer Norm

MLP

𝑧!

�̂�!$#	

𝑧!$#	

(b) Successive 4D Swin Transformer Blocks

t=0 t=1 t=2 t=3

W
-M

SA

t=0 t=1 t=2 t=3

SW
-M

SA

4D local window for self-attention A token

(c) 4DW-MSA and 4DSW-MSA

Figure 2.1: Figures depicting the structure of SwiFT and its components.

dimension (T ), thereby merging a group of 8 = 2 × 2 × 2 neighboring patches into

a single patch for each time frame. During the patch merging operation, the spatial

dimensions are reduced by half, and the channel size (C) is doubled as compensation.

Thus, in figure 2.1a, the numbers P2, P3, C2, and C3 are 12, 24, 2C, and 4C, respec-

tively.

As a general example, consider a tensor with arbitrary dimensions T×H ′×W ′×D′×C ′

before passing through the patch merging layer. During patch merging, this tensor is

reshaped into a new tensor with dimensions T×H′

2 ×W ′

2 ×D′

2 ×8C ′, where 2×2×2 spa-

tially neighboring patches are concatenated along the channel dimension. Then, each

8C ′ channel in the resulting tensor is projected onto a 2C ′ dimensional space by apply-
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ing a single fully connected layer, resulting T×H′

2 ×W ′

2 ×D′

2 ×2C ′ in total. The process

of patch merging facilitates the hierarchical feature-extraction structure of SwiFT and

reduces the computational complexity of the subsequent layers. We clarify that while

the patch merging is operated only on the spatial dimensions, the temporal information

is still well-incorporated via the windowed attention.

4D window multi-head self-attention The core of the Swin Transformer model is

the window multi-head self-attention (W-MSA) layer, which allows the model to pro-

cess a larger number of tokens while limiting self-attention only within a local window.

In SwiFT, the 3D window mechanism is extended to 4D windows; given input tokens

with a size of T×H ′×W ′×D′, the tokens are partitioned by a predetermined window

size of P×M×M×M , resulting in ⌈TP ⌉×⌈H′

M ⌉×⌈W ′

M ⌉×⌈D′

M ⌉ non-overlapping local

windows.

However, simply stacking multiple window self-attention layers would be unde-

sirable since there would be no crosstalk across different windows. To that end, a

shifted window multi-head self-attention (SW-MSA) layer enables cross-window con-

nections. Namely, we extend the 3D shifted window mechanism to 4D shifted win-

dows as well; in P×M×M×M windows obtained from the W-MSA layer, we shift

the windows of the successive layer by (P2 ,
M
2 ,

M
2 ,

M
2 ) tokens.

The detailed operations of our 4D W-MSA and SW-MSA are shown in Figure 2.1c.

In this example, the applied size of input tokens and the windows are T×H ′×W ′×D′ =

4× 8× 8× 8 and P×M×M×M = 2× 4× 4× 4, respectively. Then, by following

the window partitioning methods described above, the numbers of grouped windows

in W-MSA and SW-MSA become 2 × 2 × 2 × 2 = 16 and 3 × 3 × 3 × 3 = 81,

respectively. Such separately applied window self-attention plays a key role in effec-

tively extracting spatiotemporal feature representation from the 4D fMRI data. Note

that although the number of windows increases in SW-MSA, the actual computation
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cost is maintained to be similar by leveraging the cyclic-shifting batch computation

proposed in [59].

Combining the W-MSA layer and the SW-MSA layer, two successive 4D Swin

Transformer blocks, as shown in Figure 2.1b, are computed as the following:

ẑl = 4DW-MSA(LN(zl−1)) + zl−1, zl = MLP(LN(ẑl)) + ẑl

ẑl+1 = 4DSW-MSA(LN(zl)) + zl, zl+1 = MLP(LN(ẑl+1)) + ẑl+1,

in which 4D(S)W-MSA, LN, and MLP denote the 4D (Shifted) Window Multi-head

Self-Attention, Layer Norm, and Multi-Layer Perceptron module, respectively. More-

over, ẑl and zl denote the output features of the 4D(S)W-MSA module and the follow-

ing MLP module for block l, respectively.

4D absolute positional embedding Even though previous models utilize relative

position biases to encode positional information, we have opted instead for an ab-

solute position embedding scheme for SwiFT. While absolute positional embeddings

are more computationally expensive for low-dimensional data [59], since we are deal-

ing with much larger scale 4D data, the absolute positional embeddings become more

cost-effective than the relative positional bias. We compare the effectiveness of the two

positional embedding methods in A.3.

To that end, we add a learnable embedding at the beginning of each stage of the

Transformer right after the patch merging step. In line with [58], we separately add po-

sitional embeddings for the spatial and temporal dimensions. Specifically, given an in-

put tensor with dimensions of T×H ′×W ′×D′×C ′, we define spatial and temporal po-

sitional embedding tensors with dimensions of 1×H ′×W ′×D′×C ′ and T×1×1×1×C ′,

respectively. These tensors are then added to the input tensor using broadcasting.
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Figure 2.2: Illustration of two different contrastive losses for the pre-training of SwiFT.

(left: Instance contrastive loss, right: Local-local temporal contrastive loss )

2.3.2 Self-supervised Pre-trainining

Our proposed end-to-end model structure allows efficient self-supervised pre-training

of SwiFT, which can then be fine-tuned for specific tasks. This unique capability sets

our method apart from other approaches in Section 2.2 relying on ROI-based brain data

or a two-step learning approach for 4D fMRI. We achieve this by using two different

contrastive loss-based pre-training objectives adapted from [76]. Figure 2.2 depicts the

positive and negative pairs for the two loss functions, where the InfoNCE [77] loss of

the pairs is calculated for the final loss function.

Instance contrastive loss The instance contrastive loss (LIC) is a type of contrastive-

based loss function that considers a representation to be positive if two distinct fMRI

sub-sequences come from the same subject and negative if they come from different

subjects. The feature representation passes through three layers: SwiFT, global average

pooling, and a multi-layer perceptron (MLP) head. To clearly define this loss function,

we denote the feature representation as fi,p, where i ∈ {1, ..., B} refers to the subject

index for a given batch size B, and p refers to the fMRI sub-sequence index (either 1 or

2). Since we are sampling two sub-sequences for each of the B subjects, this amounts

to a total of 2B representations. For each subject i, the anchor, positive, and negative

representations are set as fi,1, fi,2, and the remaining 2B − 2 feature representations,

respectively. Using this setup, the instance contrastive loss for subject i is denoted and

23



defined as

Li
IC = − log

h(fi,1, fi,2)∑B
j=1[1[j ̸=i] (h(fi,1, fj,1) + h(fi,1, fj,2)])

,

where h denotes the exponential of the cosine similarity between two vectors, and 1

denotes an indicator function that equals one if the condition is true and equals zero

otherwise.

Local-local temporal contrastive loss The local-local temporal contrastive loss (LLL),

in contrast to instance contrastive loss, determines both positive and negative pairs

within a single subject. Namely, a positive representation is derived from the same

fMRI sub-sequence, but they are applied with different random augmentations. On the

other hand, negative representations come from distinct fMRI sub-sequences from the

same subjects. The feature representations are obtained in the same manner as the in-

stance contrastive loss. To clearly define this loss function, we use the same notation

of feature representation as fi,p, but the range of p is changed to {1, 2, ..., N}, where

N is the number of fMRI sub-sequences from a single subject. We denote an fMRI

sub-sequence of the same subject i and fMRI sub-sequence p but different random

augmentation as f̃i,p. Since we are sampling two differently augmented versions for

each of the N sub-sequences, this amounts to a total of 2N representations. Using

this setup, the local-local temporal contrastive loss for subject i is denoted as Li
LL and

defined as

Li
LL = −

N∑
p=1

log
h(fi,p, f̃i,p)∑N

q=1[1[q ̸=p](h(fi,p, fi,q) + h(fi,p, f̃i,q))]
,

where h denotes the exponential of the cosine similarity between two vectors.
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2.4 Experiments

2.4.1 Experimental Setting

Datasets The Adolescent Brain Cognitive Development (ABCD) study is a longitu-

dinal, multi-site investigation of brain development and related behavioral outcomes in

children [62]. The dataset is open to the scientific community but requires authorized

access. After quality control, we used the resting state fMRI of 9,128 children (age

= 118.95± 7.46 months, 52.4% female) from release 2. For fMRI preprocessing, we

used a well-established pipeline, fMRIprep [78, 79], which includes reducing the bias

field, skull-stripping, alignment to structural image, and spatial normalization to stan-

dard space for a pediatric brain [80]. After fMRIprep, we applied low pass filtering to

smooth signal, head movement correction, and artifact removal regressing out signals

from non-grey matters (aCompcor) [81].

We also used the resting-state fMRI of 1,084 healthy young adults (age = 28.80±

3.70 years, 54.4% female) from the Human Connectome Project (HCP) (S1200 data) [82,

83], and 5,935 middle and old aged adults (age = 54.971± 7.53 years, 52.7% female)

from the UK Biobank (UKB) [84]. We used preprocessed data provided by Human

Connectome Projects [85] and UK Biobank [63, 64], which follows the fMRI volume

pipeline, including reducing the bias field, skull-stripping, cross-modality registration,

and spatial normalization to standard space.

For each of the 4D fMRI volumes, we globally normalized brain images over the

four dimensions except for the background regions. Then we filled the background

with the minimal voxel intensity value. To easily divide the volume into patches for

SwiFT, we changed the 3D volume into a shape of 96 × 96 × 96 by cropping and

padding on the background. To evaluate the performances of ROI-based models, fol-

lowing the preprocessing steps of [52] as closely as possible, we applied the HCP

MMP1 atlas [86] to each fMRI volume to obtain the time series data for each ROI. Sub-
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sequently, we processed this ROI series to generate functional connectivities, which

involves computing the Pearson correlation coefficient to construct a correlation ma-

trix. The correlation matrix is then Fisher Transformed, serving as the input for the

ROI-based models in Section 2.4.1.

To evaluate our models, we constructed three random splits with a ratio of (train:

validation: test) = (0.7 : 0.15 : 0.15) and reported the average performances across the

three splits.

Targets We chose the sex [87], age [88], and cognitive intelligence (NIH Tool-

box [89] for ABCD, HCP datasets, and “fluid intelligence” for UKB dataset) of each

subject as the prediction target for our models. These targets are significant since

the relationship between the brain and these targets represents a fundamental brain-

biology and brain-cognition association. Also, the capability to predict these outcomes

can prove the model’s capability to process fMRI volumes, possibly leading to the pre-

diction of clinical outcomes of debilitating brain disorders, such as Alzheimer’s dis-

ease, schizophrenia, autism, and bipolar disorder [90, 91, 92, 93]. For these reasons,

predicting these outcomes from brain imaging has been an important benchmark task

in recent computational neuroscience [52, 37, 94].

The regression targets (age, intelligence) were z-normalized to bring stable training

regardless of the range of the target variable. Since the age has a unit (e.g., years or

months), we transformed the z-scaled age back to its original scale of months or years

when reporting the performance metrics.

Balanced accuracy and AUC (Area Under ROC Curve) were used to evaluate

model performances for the binary classification task. Mean Squared Error (MSE)

and Mean Absolute Error (MAE) were used to evaluate model performances for the

regression tasks.
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Implementation Details

For SwiFT, we use the same architecture across all of our experiments, using the ar-

chitecture corresponding to the Swin-T variant from [59, 51] with a channel number

of C = 36. The numbers of layers are fixed to {L1, L2, L3, L4} = {2, 2, 6, 2} which

corresponds to a model with three stages with 2, 2, 6 consecutive 4D Swin Trans-

former blocks for each stage and a final stage with two consecutive global attention

Transformer blocks. In the 4D(S)W-MSA cases, we set P = M = 4. The final out-

put of the model is obtained by applying a global average pooling layer on the output

feature map of Stage 4, followed by an MLP head. For training, the Binary Cross En-

tropy (BCE) loss was used for the binary classification task, and the Mean Squared

Error (MSE) loss was used for regression tasks. For the ABCD dataset, input train-

ing images were randomly augmented to prevent the model from overfitting. Random

augmentations include affine transformation, Gaussian noise, and Gaussian smoothing.

The same augmentations were applied for contrastive pre-training in section 2.4.3.

Due to memory constraints, instead of inputting the entire fMRI volume of a sub-

ject, we divided the volume into 20-frame sub-sequences and used them as the input.

Each sub-sequence was treated as a data point for training, meaning the appropriate

loss function was calculated and backpropagated for each sub-sequence. For inference,

the logits from the sub-sequences of each particular subject were averaged, yielding a

single output for each subject.

Computational complexity The computational complexities of a single global at-

tention Transformer block (denoted as MSA & MLP) and a 4D Swin Transformer

block (denoted as W-MSA & MLP) for input with a dimension of T×H ′×W ′×D′×C ′

can be calculated as

Ω(MSA & MLP) = 12NC ′2 + 2N2C ′ Ω(W-MSA & MLP) = 12NC ′2 + 2PM3NC ′,
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where the number of tokens N = TH ′W ′D′. In practice, on Stage 1 of SwiFT, setting

the values used for the experiments C ′ = 36, T = 20, H ′ = W ′ = D′ = 16, P =

M = 4, the two terms 12NC ′2 and 2PM3NC ′ are balanced with the second term only

being 1.19 times the first term. Compared to this, with global attention the 2N2C ′ term

becomes 379 times larger than the 12NC ′2 term, taking up most of the computation

budget and creating a bottleneck. For successive stages, N is reduced by a factor of 8,

and C ′ is increased by a factor of 2, resulting in Stage 1 being the most computationally

expensive.

Baselines

ROI-based models We used ROI-based deep learning methods as baseline models,

which are listed as BrainNetCNN [66], VanillaTF [52], and Brain Network Trans-

former (BNT) [52]. These models utilize functional connectivity data as input, which

is computed using temporal correlations (Pearson correlation) of every pair of brain

regions. To evaluate such methods, we followed the hyper-parameter and implemen-

tations of these three models from [52]. In addition, we also employed XGBoost (eX-

treme Gradient Boosting) [95] in conjunction with the features described in [53] to

compare a traditional machine learning model with that of deep learning-based mod-

els. We used the flattened upper triangular correlation matrix as the input for XGBoost.

TFF The Transformer Framework for fMRI (TFF) [50] consists of 3D CNNs to re-

duce the dimensionality of fMRI volumes, which are then passed to a transformer en-

coder layer. It has been reported that the model achieves SOTA (State-Of-The-Art) per-

formances in sex classification and age regression in HCP datasets compared to other

deep neural networks [40, 96]. The original model requires two reconstruction-based

pre-training steps to stabilize training and enhance performance in downstream tasks.

In this study, we adopted the original architecture and added the following strategies to
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Table 2.1: Performance comparison to baselines on classification and regression tasks

Method

ABCD HCP UKB

Sex Intelligence Sex Age (year) Intelligence Sex Age (year) Intelligence

ACC AUC MSE MAE ACC AUC MSE MAE MSE MAE ACC AUC MSE MAE MSE MAE

XGBoost 69.5 76.7 0.977 0.770 68.5 75.5 14.3 3.12 0.991 0.813 79.5 87.6 48.8 5.85 1.055 0.816

BrainNetCNN[66] 80.1 87.9 0.969 0.767 77.1 84.9 12.6 2.97 0.984 0.805 86.8 93.8 42.7 5.36 1.001 0.800

VanillaTF[52] 77.4 85.1 0.961 0.764 77.9 85.2 12.5 2.95 0.987 0.812 87.0 95.1 41.4 5.26 0.999 0.799

BNT[52] 79.1 88.9 0.955 0.767 81.0 88.0 12.8 2.98 1.001 0.830 87.0 94.8 39.6 5.17 0.998 0.798

TFF[50] 73.8 80.2 0.968 0.768 92.5 97.5 13.8 3.11 0.953 0.795 96.8 99.5 42.1 5.10 0.997 0.783

SwiFT (ours) 79.3 87.8 0.932 0.756 92.9 98.0 8.6 2.36 0.903 0.786 97.7 99.8 18.2 3.40 0.992 0.796

enhance the efficiency and prediction performance: we added initial CNN layers with

2×2×2 strides to reduce the intermediate caches, which allows significant reductions

in inefficient memory usage and increased batch size in our experiments. Additionally,

we used learning techniques such as automatic mixed precisions, gradient accumula-

tion, and Stochastic Gradient Descent with Warm Restarts (SGDR) to stabilize training

and enhance prediction performance. Since TFF also accepts the fMRI volume as its

input, due to memory constraints, the technique of dividing the volume into 20-frame

sub-sequences described in Section 2.4.1 is also implemented. Note that this could

potentially lead to a loss of important information during feature extraction because it

processes each fMRI frame independently using 3D CNN, which means that temporal

features do not collaborate.

2.4.2 Classification and Regression Results

In Table 2.1, we compared the performance of SwiFT against various baselines on

sex classification and age, intelligence regression tasks. The 4 ROI-based baselines

include XGBoost, BNT [52], BrainNetCNN [66], and VanillaTF [52]. TFF [50] was

also included as a Transformer-based baseline with a CNN encoder. The SwiFT model

was trained from scratch as in Section 2.4.1.

On the sex classification task, SwiFT outperforms all of the baseline models on
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Figure 2.3: Effect of UKB pre-training evaluated on (A) HCP and (B) ABCD intelli-

gence prediction tasks.

the HCP and UKB dataset while showing competitive results against the best ROI-

based models (BrainNetCNN) on the ABCD dataset. On the regression tasks, SwiFT

outperforms all baselines, especially for the age prediction tasks, although it is to be

noted that all of the models still have a large room for improvement on the UKB

intelligence prediction task.

2.4.3 Effects of Pre-training on Downstream Tasks

To demonstrate the effectiveness of contrastive pre-training described in Section 2.3.2,

SwiFT pre-trained on a larger dataset (UKB) was fine-tuned on a smaller dataset

(HCP), and a comparable-sized dataset (ABCD) for the intelligence prediction task,

which has room for improvement compared to sex and age prediction tasks. The model

was pre-trained using the combination of the instance contrastive loss function (LIC)

and the local-local temporal contrastive loss function (LLL) such that the training ob-

jective is to minimize the sum (LIC+LLL). The feature representations used in the loss

calculation were obtained in the same manner as other tasks; by applying a global aver-

age pooling layer on the output feature map of Stage 4, followed by an MLP head. Fig-

ure 2.3a depicts the average performance of the model for each training epoch during
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Figure 2.4: Interpretation maps with Integrated Gradients (IG) for sex classification.

(Sagittal plane) (a) ABCD (b) HCP (c) UKB

the fine-tuning process. The results from a model trained from scratch (Section 2.4.2)

are also shown for comparison. In HCP intelligence prediction, the pre-trained model

consistently performs better during the early training stage than the model trained from

scratch. In contrast, in ABCD intelligence prediction, the pre-trained model exhibits

dramatic drops in performance at the early stage of training and gradually attains a

better performance at the later stage of fine-tuning. This initial worse performance

might result from the sub-optimal training hyper-parameters for fine-tuning, such as

the sub-optimal initial learning rate. The result suggests that contrastive pre-training

on a larger dataset shows promise toward improving downstream performance.

2.4.4 Interpretation Results

Using an Integrated gradient with Smoothgrad sQuare (IG-SQ) implemented in Cap-

tum framework [55, 97, 98], we identified the brain regions showing high explanatory

power on the sex classification task. We acquired 4D IG-SQ maps from test sets and

filtered out incorrectly predicted samples. To find the spatial patterns of the brain show-

ing explanatory power across subjects, we normalized the IG-SQ maps, smoothing the

maps with a Gaussian filter. Then we averaged the maps over time dimensions and

across subjects.

Figure 2.4 shows the brain regions contributing to successful sex classification.

Each image was thresholded with a z-value of 1.5 for visualization purposes. The brain
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Figure 2.5: Standard deviation over time dimension in Interpretation maps with Inte-

grated Gradients (IG) for sex classification. (The same sagittal plane as Figure 2.4) (a)

ABCD (b) HCP (c) UKB

regions include, in children (ABCD), the medial prefrontal gyrus (mPFC), posterior

cingulate cortex (PCC), precuneus (PCu), and parietal gyrus (the default mode net-

work). In young adults (HCP), similar brain regions were observed with a broader and

higher intensity in mPFC, while showing unique brain regions such as the thalamus and

insular cortex. In middle and old-aged adults (UKB), we acquired the highest IG val-

ues in the inferior temporal gyrus and medial orbitofrontal cortex. The results confirm

those regions implicated in prior brain sex difference literature [99, 100, 101, 102].

To test whether the IG-SQ values are consistent over several time points, we ac-

quired standard deviation over time dimensions within each sub-sequence, acquiring

3D standard deviation maps. The 3D standard deviation maps were averaged across

all subjects. Figure 2.5 represents the resulting map, where each voxel intensity means

how much variability exists within the voxel over time. We found that each brain re-

gion had a different degree of change in sex explainability over time. In particular,

we found that the standard deviation was larger in brain regions with higher average

intensity in Figure 2.4. We checked the Spearman rank-order correlation coefficients

between the two 3D maps used in Figure 2.5 and Figure 2.4. The two maps were sig-

nificantly and highly correlated in ABCD (r = 0.8448, p < 0.001), HCP (r = 0.9982, p

< 0.001), and UKB (r = 0.9994, p < 0.001). These correlations suggest that the brain

regions with the higher explanatory power for predicting gender on average also have
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Table 2.2: Efficiency of 4D fMRI Transformers

Method # Param. FLOPs Throughput (samples/sec)

TFF 729M 40.72G 53.60

SwiFT 4.64M 2.62G 104.46

a higher variation in explanatory power over time.

2.4.5 Model Efficiency

In Table 2.2, we compared the efficiency of SwiFT against TFF [50], the previous

4D fMRI Transformer comparable to SwiFT in their computational costs. Dummy

data with random numbers were used for the experiment. Each sample consists of 20

volumes with the shape of 96× 96× 96. Floating point operations (FLOPs) were used

to estimate the multiply-add computations required to process the 4D fMRI volumes.

The throughput (samples/s) denotes the number of 20-volume samples processed per

second, calculated using a single NVIDIA A100 GPU. For an accurate measurement,

the throughput was measured using synchronized timing with an initial GPU warmup

step and was repeated 100 times. The results show that SwiFT has 158.4 times fewer

parameters, requires 15.5 times fewer multi-add operations, and processes input data

1.94 times faster than TFF. From here, it can be seen that SwiFT is much more efficient

than TFF while also attaining better performance as in Table 2.1.

2.4.6 Effect of Input Sequence Length and Time Window Analysis

To justify using a 4D model, we investigated the effect of the time sequence length

(number of input fMRI volumes). We kept the model architecture and hyper-parameters

constant, such as the local window size, to ensure a fair comparison. We adjusted the
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Figure 2.6: Effect of the number of time frames of the input fMRI volume on (A)

intelligence (HCP, UKB), (B) age (HCP, UKB), and (C) intelligence prediction tasks

(HCP, UKB, ABCD).

mini-batch size to keep the total number of training iterations per epoch constant. We

note that the training data augmentation on the ABCD dataset was not applied in this

experiment to keep the training environment consistent compared to other datasets,

and thus the model has a lower performance compared to the results posted in 2.4.2.

In Figure 2.6, we compared the model performance with a varying number of input

fMRI volumes (4, 8, 16, 32 time frames) on intelligence, age, and sex prediction tasks,

respectively. All the performances in the figure are averaged performances from three

repetitions. In the intelligence prediction task–which is a challenging task considering

the MAE of about 0.8 (z-score) was only slightly better than the variance of one–the

longer sequence lengths (16 and 32) of fMRI led to better results in both young adults

(HCP) and elders (UKB). In age prediction too, in young adults (HCP), we also found
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the positive effect of longer sequence length on predictive performance, observing

peak performance at 16 time frames. However, in predicting the age of elders (UKB),

the longer sequence lengths (16, 32) resulted in poorer performance in age prediction.

Namely, the findings of the former three cases showed that the longer sequence lengths

enabled better learning of temporal dynamics needed to predict intelligence in young

adults and elders and age in young adults. But the last case of the age prediction task in

elders showed that the benefit might not be generalizable to all the cases. The perfor-

mance of the sex classification task on the HCP and UKB dataset is already saturated

near 100% AUC, and thus we observed that changing the number of input time frames

has a small or negligible effect on the performance, ranging within one standard de-

viation. In contrast, the performance peaked at around 20 input frames for the ABCD

dataset, the default number of input volumes used for the other experiments.

SwiFT model was trained by sequentially processing individual 20-frame sub-

sequences of fMRI data to encompass the entire fMRI dataset. For inference purposes,

the predictions obtained from the fMRI sequences were aggregated by averaging the

logit values of each subject. This averaged value was then utilized as the final predic-

tion for the respective subject. To ensure that the predictions of time windows from

the same subjects are homogeneous and a few noisy time windows do not decide the

final predictions, we verified how many subjects exhibited distinct predictions among

their time windows using the sex classification task of ABCD, HCP, and UKB datasets.

Each ABCD, HCP, and UKB subject has 18, 60, and 24 time windows.

As seen in the histogram in Figure 2.7, over 90% of subjects showed identical

predictions among the time windows (0.992 for UKB, 0.907 for HCP, and 0.927 for

ABCD). Of note, 1.0 in the x-axis denotes that the predictions from the time win-

dows of the subjects are perfectly correct, while 0.0 means none of the time windows

exhibited correct predictions. This suggests that the predictions of time windows are

homogeneous and that the final predictions of each subject are not biased toward a few
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Figure 2.7: Inner-subject accuracy of sex classification.

time windows.

2.5 Discussion

Investigating the spatiotemporal dynamics of the human brain poses a formidable chal-

lenge owing to the lack of powerful analytics permitting individual-level prediction of

cognitive or clinical outcomes such as psychiatric or neurological diseases. Thus, we

present an efficient Transformer model designed for high-dimensional 4D brain func-

tional MRI to learn these spatiotemporal dynamics and predict biological and cogni-

tive outcomes. Throughout various tasks, our Transformer models consistently outper-

form the state-of-art Transformer models for four-dimensional fMRI and feature-based

(i.e., functional connectivity) machine learning models commonly used in the domain.

SwiFT performs better with significantly less memory and training time than the ex-

isting Transformer model for 4D fMRI [50]. In addition, the Integrated Gradient with

Smoothgrad shows the feasibility of interpreting the spatial patterns of the functional

representations from the Transformer that contribute to a given task. Lastly, we demon-

strated the feasibility of self-supervised learning for transfer learning between different
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data sources.

In Figure 2.4, we found that explanatory brain regions for classifying sex varied

with age. Across all age groups, we observed brain regions associated with the default

mode network, such as the medial prefrontal gyrus (mPFC), posterior cingulate cortex

(PCC), precuneus (PCu), and parietal gyrus. The default mode network is a set of

regions known to be consistently activated when we are at rest and not performing

a specific cognitive task. Previous studies have frequently reported pronounced sex-

based differences in the activation patterns of these regions [103, 104, 102, 100, 99].

Furthermore, unique regions were observed in young adults (HCP) and middle or old-

aged adults (UKB). The thalamus and insular cortex, where various sensory modalities

are integrated, were observed in young adults (HCP). In middle or older-aged adults

(UKB), the inferior temporal gyrus (ITG) and medial orbitofrontal cortex (mOFC)

indicated higher contribution to sex classification, where diverse sensory information

is integrated for higher-level visual processing (ITG) and decision-making (mOFC). It

matches the previous findings reporting the sex differences in those regions [105, 106,

102]. The observed sex differences in these brain regions suggest that the integrative

hubs for functional networks develop and diverge between males and females as the

human brain ages.

In Figure 2.5, our observations indicate that the integrated gradient value for sex

classification exhibits variation along the time dimensions rather than being uniform.

Further, we discovered that the regions providing better explanations for sex predic-

tion demonstrate significant variability over time. Considering that the observed re-

gions tend to be integrative hubs for functional networks, these explanatory power

fluctuations for sex may stem from ongoing interactions (functional connections) be-

tween these regions. For instance, the connectivity between default mode networks is

known to represent sex differences [103]. These findings shed light on the real-time

manifestation of individual differences in each brain region at the single volume scale.
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Unlike correlation-based approaches that merely yield time averages of brain dynam-

ics, this new approach provides a more comprehensive understanding. Future research

should address intriguing questions, such as investigating the correlation between the

interpretation maps for sex and the local functional connectivity computed within that

window. Moreover, exploring whether this relationship can account for variations in

other variables could be crucial for advancing our understanding of brain connectivity

and individual differences.

The findings from the window-based analysis in Figure 2.7 suggest that the tradi-

tional research paradigm of fMRI, which involves collecting data over multiple trials,

might transform. The consistent outcomes observed across sequences indicate that the

model does not necessitate the utilization of all resting-state fMRI sequences to in-

fer variables in a given subject; only a small subset may suffice. While conventional

functional connectivity-based methods require a large number of time points across

multiple trials to enhance the statistical power of a study, these results suggest that

with an effectively pre-trained deep neural network, it may be feasible to detect the

status of a subject by collecting merely several seconds of fMRI.

Previously, some studies proposed the feasibility of self-supervised learning for

transfer learning between different data sources based on multivariate fMRI time se-

ries [36], grayordinate fMRI data [47], or 4D fMRI [49, 50]. To evaluate the feasibility

of using 4D fMRI to transfer knowledge from large-scale datasets to others, we in-

vestigated the effect of transfer learning with self-supervised contrastive learning for

fMRI. The pre-training fostered early convergence during fine-tuning on some down-

stream tasks, such as HCP and ABCD intelligence prediction. However, the advantages

of self-supervised pre-training were not evident in other tasks. The predictive perfor-

mance in sex or age tasks, after fine-tuning, was not significantly better than training

the model from scratch, and in some cases, it was even worse. This result can be at-

tributed to the distinct age range between UK Biobank used for pre-training and the
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other two datasets for downstream tasks, ABCD and HCP. In addition, the scanner ef-

fect of fMRI, which confounds the biological and cognitive features, can also hamper

knowledge transfer. Otherwise, the performance increase might be limited because we

have already reached the upper bounds for the sex and age prediction tasks.

To enhance the effect of pre-training, we suggest that various datasets should be

included during pre-training. By training the model on datasets from multiple sources

and learning a shared representation, we anticipate obtaining a more resilient repre-

sentation that can mitigate noise, such as the scanner effect. Furthermore, optimizing

pre-training methodology for fMRI with various sources of datasets are promising fu-

ture research topic. We intend to employ other widely-used pre-training strategies that

train deep neural networks in supervised ways, such as continual learning [107] and

multi-task learning [108]. In these methods, establishing suitable training objectives,

which prevent catastrophic forgetting during continual training and overcome unsta-

ble training during multi-task learning, is important for adopting those techniques to

develop foundation models. Lastly, the potential of the ’pre-train and transfer’ ap-

proach is expected to be even more impactful when applied to small-scale disease

data. Researchers have recently been actively recruiting large cohorts datasets such as

the Autism Brain Imaging Data Exchange (ABIDE) and the Healthy Brain Network

(HBN). However, most studies still compare a limited number of disease groups with

a control group. In this study, relatively straightforward variables such as sex, age, and

intelligence were predicted in the downstream task. In addition, the downstream task

included a substantial number of subjects, where the influence of pre-training may be

constrained. If challenging variables such as ASD, ADHD, and depression need to be

predicted with a limited amount of data, the effect of transfer learning can be signif-

icantly magnified. Thus, exploring the additional effects of transfer learning on such

small-scale data will be a prominent research topic in the future. In conclusion, the

strong outcomes of this study may stimulate future exploration of scalable spatiotem-
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poral learning in computational and clinical neuroscience.

2.6 Limitations

Although our model has demonstrated high performance and efficiency compared to

existing models, it still presents certain limitations for neuroscientists aiming to apply

it to their specific subjects. The fMRI data utilized in this experiment ranges from a

minimum volume of 383 (586 megabytes) to 1200 (1.3 gigabytes) per subject. While

SwiFT significantly reduces the number of parameters and enhances computational

speed compared to the existing fMRI Transformer, training a model on such data ne-

cessitates more than 24 gigabytes of GPU resources and storage space for thousands of

fMRI images. This can pose a significant challenge for researchers with limited com-

puting resources. We have demonstrated that the computational cost resulting from

data size can be partially mitigated by partitioning the large volume into smaller vol-

umes (patches) using patch partitioning techniques. To enable broader adoption of our

model among researchers, it becomes imperative to develop an optimal patch parti-

tioning method that can effectively reduce the computational cost associated with data

size while preserving the essential characteristics of fMRI data. Furthermore, it is es-

sential to consider model efficiency aspects, such as gradient compression, to ensure

its widespread applicability.

Our study is based on a sliding window approach, and learning is performed on

sub-sequences, which only offers a limited description of its capability to handle long-

term dynamics. Processing entire fMRI volumes, which can amount to several giga-

bytes for multiple subjects, is unfeasible considering limitations in GPU resources.

When using a sliding window, the model primarily focuses on the local temporal dy-

namics of the fMRI, which restricts its ability to learn long-term temporal patterns.

Figure 2.6 indicates that longer sequences do not necessarily improve the performance
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of some tasks. Considering that long fMRIs exhibit both local and global dynamics, the

performance decrease with larger numbers of fMRI volumes is counter-intuitive. This

raises concerns about the model’s ability to handle long-term temporal dynamics. Ad-

ditionally, comparing performance differences across a range of up to 32 time points is

a small interval to observe the effect of sequence length. Previous connectivity-based

deep neural networks have compared hundreds of time points, and the performance

differences between dozens of time points were not significant [40].

Several studies have examined the minimum sequence length (window size) neces-

sary to capture individual differences. Window-based correlation approaches indicate

that excessively long windows smooth out genuine dynamics, while overly short se-

quences are susceptible to noise and may erroneously focus on spurious connectivity

fluctuations [109]. Leonardi and Van De Ville [110] recommend using fMRI record-

ings of approximately 100 seconds to capture non-stationary fluctuations when using

sliding window correlation. Other research provides statistical support for the hypoth-

esis suggesting that a shorter sequence length of 40 seconds is sufficient for sliding

window correlation [109]. Additionally, a study employing a graph-based deep neural

network for a sex classification task on HCP fMRI data suggests that moderately large

window size is optimal for performance, but excessively large window sizes severely

degrade performance [40]. These findings align with ours, indicating that providing

models with excessively long fMRIs does not necessarily improve performance. The

window-based analysis in Figure 2.7 demonstrates that sub-sequences from the same

subject are homogeneous in predicting sex, suggesting that longer time points may

provide redundant information. If the information within a long fMRI sequence is

redundant, increasing the number of model parameters to accommodate the longer se-

quence becomes wasteful and may lead to overfitting, resulting in poor prediction per-

formance. In the future, it is crucial to explore the relationship between local and global

brain dynamics during resting state to validate this possibility. This can be achieved by
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enhancing the model architecture to accommodate longer data sequences beyond 32

volumes. Alternatively, increasing the sampling rate of fMRI data can cover wider

ranges of fMRI sequences without extending the sequence length. Both approaches

may help in comprehending extended temporal patterns in brain activity.

Lastly, there are limitations associated with implementing Integrated Gradient for

SwiFT. As depicted in (b) and (c) of Figure 2.5, it appears unnatural that the integrated

gradient values are manifested as square-shaped regions. This phenomenon of discon-

tinuous boundaries can be attributed to the utilization of 4D W-MSA and 4D SW-MSA

in SwiFT, wherein the input fMRI volume is divided into patches, and attention is ap-

plied solely between patches that fall within a certain window. These discontinuous

boundaries are an inherent limitation of the current window-based attention mecha-

nism and should be considered when interpreting future results from this model.
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Chapter 3

PREDICTING TASK ACTIVATION
MAP FROM RESTING-STATE FMRI

3.1 Introduction

The biological and cognitive variables examined in Chapter 2 are stable individual dif-

ferences that do not change significantly over time. However, the primary objective of

this study is to comprehend how these distinct variances in brain dynamics manifest as

a neural activity when individuals engage in dynamic interactions with their surround-

ings. One notable advantage of fMRI is its ability to capture real-time brain activity

changes as humans engage in complex environments. Previous studies have examined

the relationship between brain dynamics and human behavior by requiring participants

to perform multiple tasks in fMRI, identifying brain regions associated with specific

functions and behaviors. However, the successful execution of task-based fMRI neces-

sitates participant cooperation, rigorous experimental control, and a laborious fMRI

process, limiting its wider application. Multiple studies have demonstrated that the

brain dynamics observed during resting-state fMRI can reliably predict an individual’s
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brain activities while engaging in diverse tasks [2, 111, 112]. These findings highlight

the predictive power of resting-state fMRI in capturing the underlying neural processes

associated with task performance. Decoding brain activity within a dynamic environ-

ment from resting-state fMRI is more challenging than predicting consistent individual

differences from fMRI. Successfully predicting individual differences in brain activity

during task performance would provide valuable insights into the relationship between

brain dynamics and human behavior. From a practical perspective, if these predictions

prove to be accurate, it could potentially imply the ability to anticipate human brain

activity during a wide range of tasks using only a short resting-state fMRI scan. This

would eliminate the need for extensive resources or controlled experiments conducted

by experts.

The task of predicting task activity from resting-state fMRI is based on the under-

standing that the individual differences observed during task performance are not arbi-

trary but rather grounded in the consistent characteristics of each individual. The pre-

diction of fMRI Task-related changes in the blood-oxygen-level-dependent (BOLD)

signal are typically very small, approximately 2% for cognitive tasks, compared to the

signal observed when no task is performed [27]. Group comparisons are commonly

employed to enhance the signal-to-noise ratio (SNR) and statistical power when in-

vestigating brain function or dysfunction concerning specific situations and behav-

iors [113]. These studies often recruit disease and control groups to identify brain

regions that show the most pronounced differences in group means during task perfor-

mance. In this context, individual variability is viewed as an inconsistent and fluctuat-

ing factor, encompassing aspects like arbitrary task strategy, and is considered a form

of noise that needs to be controlled through experimental manipulation [2]. On the con-

trary, recent studies have argued that individual differences in brain activation while

performing the same task are not just noise but inherent to the brain and are related to

multiple cognitive and behavioral functions. For instance, research has demonstrated
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that brain activation measured during cognitively demanding tasks can effectively pre-

dict individual intelligence, surpassing the predictive power of resting-state functional

connectivity [114, 115, 116]. This suggests that individual differences in task perfor-

mance hold meaningful information and can be directly exploited for greater clinical

value.

Similarities between task-related activation and resting-state functional connectiv-

ity have been proposed in several studies [117, 118, 111, 119]. Based on the same

functional architecture of resting state functional connectivity and task activation, sev-

eral studies have confirmed that the task-state brain activation map of unseen subjects

can be predicted from task-independent connectivity at rest using a generalized lin-

ear model [2, 120, 121, 116, 122]. Tavor et al. [2] conducted an influential study that

revealed the potential of resting-state functional connectivity in accurately predict-

ing task activation in diverse domains, such as language, relational processing, and

working memory. Despite some performance variations within and across tasks, it is

remarkable that resting-state fMRI combined with a simple generalized linear model

can accurately forecast brain activity across different tasks. These findings suggest that

subtle individual differences observed during tasks are not mere noise but reflect con-

sistent personal traits, indicating the presence of a unique individual brain fingerprint

that can be extracted from resting-state fMRI data. Building upon Tavor’s pioneering

work, recent studies have further advanced task activation prediction by leveraging

advanced techniques such as machine learning and deep learning, surpassing the per-

formance of Tavor’s GLM-based model (ConnTask) [123, 113, 47].

Predicting task activation maps accurately from resting-state fMRI offers numer-

ous practical advantages. Beyond predicting task activation maps, these activation

maps can be used for many clinical purposes. The predicted task activation maps are

more informative of the biological and cognitive variables than resting-state functional

connectivity [116, 120, 124]. In a study that predicted brain activity during working
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memory tasks using multi-site fMRI data, the predicted task activation map exhib-

ited even better performance than the actual task activation map in predicting intelli-

gence scores [120]. This suggests that, as the activation maps are obtained from task-

independent states, the maps may be more resilient against confounding factors like

scanner effects, head motion, and arbitrary task strategy than actual activation maps.

As a result, they enable a more precise capture of genuine brain activity. Furthermore,

these models can be utilized to generate task activation maps in people who have diffi-

culty undergoing task fMRI [125, 126]. This approach enables researchers to overcome

the limitations posed by difficulty in obtaining task-based fMRI data and extends the

applicability of resting-state fMRI to a wider range of individuals.

However, existing studies have several limitations. First, the question remains whether

the previous input features of resting state fMRI are optimal for this prediction. The

previous studies mainly use grayordinate fMRI data from the Human Connectome

Project (HCP) to focus on and analyze cortical regions [121, 120, 2, 113, 123]. The

grayordinate data represents the cortical surface based on the functional structure of

cortical gyri and sulci. The advantage of grayordinate fMRI data is that a sparse and

comparable representation can be extracted by projecting the fMRI signals of mul-

tiple people onto a high spatial and temporal resolution map. To effectively process

such surface data, surface-based deep learning models have been developed, showing

new possibilities for fMRI research[127, 128, 47]. However, the loss of information

may accompany the projection of three-dimensional brain images into one dimension.

Furthermore, while the grayordinate fMRI has been used to extract functional con-

nectivity using group ICA and dual regression [129, 130], the optimal preprocessing

processes or the number of features for predicting task activation maps from resting

state fMRI has not yet been systematically analyzed, which requires more thorough

analysis for the best practice [125, 123]. In addition, ConnTask, a widely used glm-

based method for the task, predicts activities in each region separately with several
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linear models based on predetermined parcellation and combines the predicted maps

from each model, limiting the transferability between the brain regions. To accurately

predict the subtle variations observed in individuals during task performance, it is cru-

cial to understand the interconnectedness of all voxels rather than considering each

region of resting-state fMRI in isolation. This integrated approach allows for a com-

prehensive exploration of the relationships between different brain regions, enabling a

more accurate prediction of task activity.

In this study, we propose Swin fMRI Transformer with UNET (SwiFUN), a 4D

fMRI Transformer that can generate better-quality task-activation maps using 4D resting-

state fMRI. This is the first work to apply Transformer to generate 3D task activation

maps from 4D fMRI data. Adapting the basic architecture of Swin UNEt Transformer

(Swin UNETR) [1], which is a variant of SwiFT in Chapter 2 and has a UNET-based

decoder, we show that the end-to-end learning capability of 4D fMRI Transformer

unlocks its potential to predict a high-resolution task-related brain activity by cap-

turing complex spatiotemporal patterns in 4D resting-state fMRI. During the brain

activation map prediction for an emotional matching task in the UK Biobank (UKB)

study [63, 64], we found that the overall concordance, representing the average level

of similarity between the predicted and actual maps, surpassed that of the conven-

tional method. Additionally, to identify the subtle individual variations in each per-

son’s task activation map, we utilized contrastive learning to maximize the difference

between predicted task activation maps, adapting previously proposed reconstruction-

contrastive loss [47]. Our experiments show that learning a richer representation from

resting-state fMRI may better predict human brain activity associated with specific

tasks, suggesting that this approach could be a promising way to create realistic task

activation maps.
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3.2 Method

3.2.1 Experimental Setting

Task definition

We examine task activation maps, three-dimensional volumes representing the active

regions during a specific task. While previous studies often projected volumes into

surface space (CIFTI) [61] due to resource limitations and fMRI characteristics, our

study predicts the activity of whole-brain activation maps in volumetric form. How-

ever, to facilitate comparison with existing baseline models, we masked some regions

using a template atlas image to restrict the analysis to the comparable regions as the

Conntask, a glm-based model proposed by Tavor et al. [2], which requires parcellation

for the prediction (refer to 3.2). Specifically, we employed 100 cortical parcels, each

assigned to one of the seven brain networks provided by Schaefer et al. [131]. As a

result, 132,032 valid voxels were selected for analysis. For the baseline models that

predict one-dimensional task activation maps, we excluded the masked voxels from

the volume and flattened the remaining 132,032 voxels for further analysis.

Datasets

UK Biobank data UK Biobank (UKB) is a large biomedical database that con-

tains health-related information from half a million UK participants. To evaluate the

model’s ability to generate task activation maps, we ran the analysis on the prepro-

cessed resting-state and task-state fMRI of 7,038 individuals (age = 54.971 ± 7.53

years, 52.7% female) from UK Biobank release 2. Resting-state fMRI has a 2.4 ×

2.4 × 2.4mm resolution, TR of 0.735 s, and 6 minutes (490 time points). The initial

preprocessing includes motion correction, group-mean intensity normalization, high-

pass temporal filtering, and EPI warping. Structured artifacts were further removed
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with ICA+FIX cleaning [132, 133]. The resting-state fMRI was then registered to stan-

dard MNI space [134]. The detailed acquisition protocol and preprocessing process are

described in [63] and [64].

The task-state fMRI has a similar acquisition protocol and preprocessing pro-

cesses as resting-state fMRI, except that it has a shorter duration of 4 minutes with-

out ICA+FIX cleansing. Hariri faces/shapes ”emotion” task was executed from UK

Biobank, which has a relatively shorter overall duration and fewer total stimulus block

repeats than those used in the Human Connectome Project (HCP) [135, 136]. During

the experiment, participants are sequentially presented with faces or shapes in each

block of trials. In the face-matching task, participants are instructed to indicate which

of the two faces at the bottom of the screen matches the face at the top. The faces

used in the experiment express either anger or fear. In contrast, the second task in-

volves identifying the matching shape from two options displayed at the bottom of

the screen, with the shape to be matched shown at the top of the screen. This experi-

ment aims to discover brain regions related to emotion and face processing, focusing

on the amygdala which reveals the preferential response to emotional stimuli, such as

the angry face. To evaluate the performances, we used three contrasts derived from the

emotion-matching experiments; Contrast 1 (Shapes), 2 (Faces), and 5 (Faces-Shapes).

Investigating amygdala activation in the last contrast (Faces-Shapes) is particularly

important.

Feature extraction for connectivity-based task activation (connTask) maps Pre-

vious methods have considered resting-state functional modes useful for predicting

task activation maps. Functional modes refer to consistent spatial patterns of brain ac-

tivity observed across different individuals. Group-Independent Component Analysis

(ICA) is widely used to find the group-level functional modes from several resting-

state fMRI. The spatial maps from group-level ICA are often considered data-driven
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parcellation that separates fMRI data into independent components (IC), each repre-

senting distinct brain networks involved in various cognitive processes or functional

systems. UK Biobank executed the group ICA and provided two versions of group-

level ICs (25 and 100) (refer to [63] for the detailed process). We downloaded the

group-level parcellations from the URL: http://biobank.ctsu.ox.ac.uk/

crystal/refer.cgi?id=9028. We filtered out components thought to be arte-

factual from the initial 25 and 100 group-ICA components, leaving 21 and 55 inde-

pendent components for the dual regression.

We executed dual regression using the spatial group IC maps as templates to derive

functional modes for each subject. Before the dual regression, we masked the group IC

maps and 4D fMRI with a whole-brain mask to exclude unnecessary background val-

ues and flattened the volumes, leaving one-dimensional vectors including valid vox-

els (237,969). The dual regression consisted of two steps. The fMRI data were re-

gressed onto these spatial IC maps in the first step to estimate the subject-specific time

courses associated with each IC component. This step aims to extract the network-

specific signal for each individual. In the second step, the previous subject-specific

time courses were regressed into the previous fMRI data, creating individual network-

specific spatial IC maps. The individual network-specific spatial IC maps were then

used for weighted seed-to-voxel analysis. The individual IC maps were used to regress

against the individual resting-state fMRI time series, resulting in a single time series

for each spatial map. Subsequently, each time series was correlated with the original

fMRI data to generate connectivity maps for each spatial IC. The resulting connec-

tivity features have dimensions of voxels by the number of independent components

(ICs).
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Metrics

In this study, we evaluated the predictive performance of task activation maps by as-

sessing the overall agreement of the predicted maps with the true maps and how well

the predicted maps identify individual variability. Since there is a high degree of agree-

ment between activation maps of subjects performing the same task, the overall agree-

ment can be significantly improved by simply predicting the group mean of the actual

task activation map. This can pose a challenge when attempting to incorporate sub-

tle distinctions in the task activation map among individuals performing the identical

task. Therefore, we utilized individual identification metrics to verify that the model

was not just predicting the group average.

We employed the diagonal median based on the Pearson correlation to assess the

similarity between the predicted and actual activation maps. An N by N matrix rep-

resented the pairwise correlation between N individuals’ actual activation maps and

N individuals’ predicted activation maps. The mean and median of the diagonal ele-

ments were used to evaluate overall concordance, providing an overview of how well

the predicted task activation maps correlated with the actual subject’s maps. Addi-

tionally, Mean Square Error, a training objective, was used as an additional metric to

measure overall concordance.

To compare how well the predicted activation maps represent individual differ-

ences, we utilized several metrics based on Pearson correlation: the diagonality index,

top-1 accuracy, and diagonal percentile mean. The diagonality index is calculated by

averaging the off-diagonal elements within the N by N correlation matrix and sub-

tracting it from the previously obtained diagonal mean. While this metric effectively

captures individual differences, it may be sensitive to outliers in the off-diagonal ele-

ments. Top-1 accuracy measures the percentage of cases where the predicted map for

a specific subject exhibits the highest correlation with the subject’s actual map among
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all predicted maps. This metric evaluates how many predicted maps are optimal for

each subject. The top-1 accuracy metric only considers the case where the predicted

map exhibits the highest correlation in a binary manner. As a result, it does not con-

sider the cases where the predicted map shows a higher correlation with the actual map

than most predicted maps but does not exhibit the highest correlation. To address this

limitation, we also utilized the diagonal percentile mean, which averages the percentile

of correlation between the predicted maps and the actual map compared to other pre-

dicted maps for each subject. If the predicted map for a specific subject demonstrates

lower agreement with the actual map compared to other predicted maps, the diagonal

percentile would be closer to 0.5. Conversely, if the predicted activation map for a

subject is the most similar to the real activation map of the subject compared to other

predicted maps, the diagonal percentile for the subject would approach a value of 1.

Furthermore, we conducted a Kolmogorov-Smirnov (K-S) test to determine whether

there is a significant distributional difference between the cumulative density func-

tions (CDF) of off-diagonal and diagonal correlations. These metrics comprehensively

evaluate the predicted activation maps regarding overall concordance and individual

identification.

The metrics used for evaluation are as follows:

Overall concordance

• Diagonal Mean

• Diagonal Median

• Mean Square Error

Individual Identification

• Diagonality index

• Top-1 accuracy

• Diagonal percentile mean

• K-S test statistics
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3.2.2 Swin fMRI UNetr (SwiFUN)

While SwiFT has shown strong performance in processing resting-state fMRI data,

it inherently follows a classification model structure. To generate a 3D activation

map that captures subtle individual differences, a decoder-like structure such as U-

Net [137, 138] is necessary. Additionally, the model needs to have a deep layer struc-

ture to generate high-dimensional images. However, the 4D SW-MSA used in SwiFT

has limitations for such tasks. Therefore, to address these challenges, we propose Swin

fMRI UNet Transformer (SwiFUN), capable of generating task activation maps by

processing the spatiotemporal dynamics of 4D fMRI data. SwiFUN is based on the

architecture of Swin UNet TRansformer (UNETR) model proposed for brain tumor

segmentation tasks in 3D structural MRI. SwiFUN takes multiple time points of fMRI

volumes as input to predict a single 3D task activation map. We implemented based on

SwinUNETR module provided by MONAI framework [1].

As shown in Figure 3.1, the intermediate outputs of each Swin Transformer layer

are fed into the UNET decoder through skip connections. This UNET structure en-

hances training stability and facilitates the generation of higher-resolution image in-

formation. Structurally, SwiFUN differs from SwiFT in Figure 2.1 regarding how it

handles temporal information. While SwiFT incorporates temporal order information

using 4D shifted window multi-head self-attention and temporal positional embedding,

SwiFUN utilizes the temporal axis as a channel. This approach of integrating temporal

information from the initial layers, rather than averaging output activations along the

temporal axis, facilitates the generation of a single task activation map by considering

all the relevant information from resting-state fMRI.

We trained SwiFUN with an AdamW optimizer and Cosine Annealing Warmup

Restart scheduler for ten epochs. The model was trained to minimize mean squared

error (MSE) or Reconstruction-Contrastive loss. Due to memory constraints, utilizing
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Figure 3.1: Overall architecture of SwiFun. Unlike SwiFT, the time dimension (T)

is considered as channel dimension at the first stage. Figure is adapted from Swin

UNETR [1].

the entire sequence simultaneously is not feasible. To accommodate the memory limi-

tations, we partitioned the 490 volumes of each subject into sub-sequences consisting

of 30 volumes. In addition, we used a mini-batch size of 4 during the experiments

(refer to A.2 to find the effect of sequence length and mini-batch size on the perfor-

mances) Subsequently, we trained the model to predict the task activation map for each

subject based on these sub-sequences. During inference for a specific subject’s activa-

tion map, we calculated task activation maps for each sub-sequence and then averaged

them to determine the subject’s final task activation map. Furthermore, we conducted

an evaluation to assess whether the performance varied depending on the length of the

sequence.
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3.2.3 Reconstruction-Contrastive loss

This loss is a contrastive loss proposed by Ngo et al [47] for predicting grayordinate

contrast images. This loss makes the predicted map and the actual map of a particu-

lar subject similar, while the predicted map and another person’s map are far apart.

This loss is developed to complement the trade-off between two contrasting objec-

tives, overall concordance and individual identification. In A.5, the observed trade-off

between overall concordance (diagonal mean) and individual identification (diagonal-

ity index) during the training of SwiFUN with MSE Loss supports for the utilization

of RC loss. This trade-off highlights the need to incorporate the RC loss to balance

capturing group-level patterns and preserving individual differences. Specifically, we

intend to maximize the predicted task activation map’s specificity without decreasing

overall concordance.

Our loss differs from the loss proposed in the previous studies in several ways.

In the previous study, the contrastive loss (LC) was limited to accommodating only

two samples. In contrast, our study extends the contrastive loss to involve multiple

subjects, enabling the computation of pair-wise mean square errors. Unlike previous

approaches that utilized features extracted from one resting state fMRI per subject, we

utilize sub-sequences of 4D fMRI data as input in this study. To treat sub-sequences

from the same subjects differently from those from different subjects, we excluded

sub-sequences cropped from the same subject from the LC calculation. Moreover,

our method differs from previous approaches in that we no longer rely on a two-step

training process, where the same-subject error LR is first trained to converge, and then

LC is applied from a certain point onwards. Instead, we introduced a parameter λ that

allows us to consider the relative weight of the two loss terms. These changes facilitate

end-to-end training of our model, resulting in improved efficiency and performance.
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LR =
1

N

n∑
i=0

d(x̂i, xi), LC =
1

N2 −N

∑
xj∈Bi,j ̸=i

d(x̂j , xi)

LRC = λLR − (1− λ)LC

The reconstructive-contrastive loss LRC is defined as follows: Given a mini-batch

of N samples B, where each sample xi represents the target 3D task activation image of

subject i, and x̂ represents the corresponding prediction. N2 −N in LC loss denotes

the number of all possible pairs between predicted maps and actual maps from different

samples in a batch. d() denotes the distance function, mean square error (MSE).

3.2.4 Baseline

ConnTask

Several previous studies have utilized GLM-based ConnTask to predict task activation

maps from resting state functional modes [2, 121, 120]. While they mainly utilized

1D grayordinate fMRI data by projecting 4D fMRI data into 1D grayordinate space

(CIFTI), in this study, the volume data was masked and flattened to be a vector for a

fair comparison with SwiFUN, which utilizes volumetric fMRI data in voxel space.

As seen in 3.2, one-hundred generalized linear models, corresponding to 100 cortical

parcels in Schaefer’s atlas [131], are trained to predict task activation maps from con-

nectivity features (Independent Components). Each region of interest (ROI) in the task

activation map is predicted from the connectivity features in the corresponding ROI.

Note that only independent components are used as input features, considering voxels

in connectivity features as independent training samples. After βk is trained, βk is av-

eraged over all subjects during inference. Five-fold Cross-validation was executed to

iteratively train the models with 80% of subjects and predict the rest 20% of the task

activation map. We validated the effect of training samples and the number of inde-

pendent components on the predictive performances, changing the number of samples

56



Figure 3.2: ConnTask Pipeline proposed by Tavor et al. [2]. N represents the number

of training subjects, and K denotes the number of brain regions in an atlas image.

After the βks are acquired for each training subject, they are averaged over all training

subjects to predict unseen subjects during inference.

(100, 500, and 1000) and independent components (21, 55). Due to the occurrence of

memory errors when using a larger number of samples, we maximized the utilization

of available samples within the available resources(512 GB of DDR4 memory). The

through experiments with varying hyper-parameters can be found in A.6.

Swin fMRI Transformer (SwiFT)

Since SwiFT, developed for outcome prediction using 4D resting-state fMRI in Study 2,

lacks a decoder for reconstructing a high-dimensional 3D task activation map, we ex-

tended the original SwiFT model by incorporating MLP layers. This allowed us to

predict a long one-dimensional task activation map comprising valid voxels (132,032)

from the 4D resting-state fMRI data. The hyper-parameters, including the embedding
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size and training parameters, remained consistent with those used in Study 2. After

obtaining the intermediate activations from SwiFT with dimensions of (batch, output

channel, width, height, depth, time), we employed adaptive average pooling to reduce

the dimensions in width, height, depth, and time into 1. Subsequently, we utilized

MLP layers to project the resulting embeddings with the dimension of (batch, output

channel) into a one-dimensional task activation map.

Test-Retest Contrasts

The UKB dataset contains revisited data. From the release2 data, which includes 7,038

subjects used in the experiment, we identified 577 subjects who also revisited in release

3. To assess the test-retest reliability of the contrast maps and the performance of our

models in terms of overall correspondence and subject identification, we compared the

task activation maps from the first and second visits. This allowed us to calculate over-

all concordance and individual identification metrics based on the initial and revisited

data correlations.

3.3 Result

3.3.1 Performances Comparison

In Figure 3.3, we compared the performance of SwiFUN against two models, Con-

nTask and SwiFT, on predicting task activation maps of shape, faces, and faces-shapes.

After comparing the performance of ConnTasks with different numbers of samples

and independent components (ICs), we found that the best overall performance was

achieved by utilizing 1000 samples and 55 ICs (refer to A.6 to see the effect of a

varying number of samples and IC). The test-retest contrasts from 577 subjects were

also presented for comparison. In addition, we compared the performances of Swi-

FUN with two different kinds of losses, mean square error (MSE) and reconstruction-
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Figure 3.3: Overall performances of SwiFun and its baseline models. Each row repre-

sents the overall concordance and individual identification.

contrastive (RC) losses. The weight of the contrastive loss term (1−λ) in RC loss was

specified as 0.66 (refer to Figure 3.6 to find the effect of 1 − λ). SwiFT and SwiFUN

were trained with the same train, validation, and test dataset with a ratio of (train: val-

idation: test) = (0.7 : 0.15 : 0.15). The number of SwiFT and SwiFUN test subjects

amounted to 1057, which was used for comparing the performances. The upper row in

Figure 3.3 represents metrics regarding overall concordance, including diagonal mean,

median, and mean square error. The lower row in Figure 3.3 indicates metrics related

to individual identification, including the diagonality index, diagonal percentile mean,

and top-1 accuracy.

Overall Concordance

SwiFUN outperforms ConnTask in all three contrasts and metrics, showing more than

10% increases in diagonality mean and median. Although SwiFUN did not reach the

test-retest reliability, SwiFUN with MSE loss showed the highest performance com-

pared to its baseline models. SwiFT showed comparable performances with SwiFUN
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with RC loss and slightly worse performances than SwiFUN with MSE loss. The com-

parison of MSE revealed that SwiFUN with MSE Loss yielded a significantly lower er-

ror than the test-retest task activation maps, indicating that the model was well-trained

according to the training objective. Minimizing the mean square error was not neces-

sarily aligned with improving other correlation-based metrics.

Individual identification

In the diagonality index, SwiFUN with RC loss showed a higher diagonality index in

FACES and SHAPES contrasts compared to ConnTask and SwiFUN with MSE loss. In

the FACES-SHAPES task, SwiFUN with RC loss outperformed SwiFUN with MSE

loss, but both models exhibited significantly lower performance than the ConnTask.

SwiFT exhibited very poor performance in all three contrast maps, revealing the limi-

tations of relying solely on the structure of the classification model for generating high-

resolution 3D images. The test-rest reliability of the diagonality index is much higher

than predictive models, which means that the activation map from repeated task-state

fMRI preserved the individual variability from the initial task activation maps.

In the diagonal percentile mean, SwiFUN with MSE and RC loss performed bet-

ter than retested task activation maps in FACES and SHAPES contrasts. However,

they exhibited lower performances than retested task activation maps in the FACES-

SHAPES contrast. ConnTask outperformed the other models in all three contrasts,

which shows an overall high diagonal percentile mean. SwiFT showed remarkably

lower performances compared to other models in all three contrasts. Similarly, in top-1

accuracy, SwiFUN showed higher performances than SwiFT, but lower performances

than retested contrasts and ConnTask.

Overall, SwiFUN with RC loss showed higher performances of individual iden-

tification than SwiFUN with MSE loss. While ConnTask showed higher individual

identification in top1-accuracy and FACES-SHAPES contrasts, SwiFUN with RC Loss
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Figure 3.4: The correlation matrix and histograms of diagonal and off-diagonal corre-

lations of SwiFUN with two different losses (left: MSE, right: RC).

showed comparable or higher diagonality index and diagonal percentile mean in FACES

and SHAPES contrasts.

Kolmogorov-Smirov Test

We conducted a Kolmogorov-Smirnov test to assess the statistical significance of the

disparity between the cumulative distribution functions (CDF) of diagonal and off-

diagonal correlations. In Figure 3.4, We examined how the diagonal and off-diagonal

correlations differ when training SwiFUN with two different types of loss. The first

and third column represents the correlation maps between predicted and actual maps.

The diagonal elements of the correlation matrix represent the correlations between

predicted and actual maps from the same individuals. The salient trend in diagonal

elements represents high prediction specificity. Only 100 of 1057 test subjects were

presented for visualization. The second and fourth column shows the histogram of di-

agonal and off-diagonal correlations with the effect size and p-values for the disparity

between the two distribution. The histogram’s red dotted line indicates the diagonal

median.

61



The results revealed that regardless of the loss type, all SwiFUN models exhibited

a significant distinction between diagonal and off-diagonal correlations in all task con-

trast maps (p < 0.0001). In both FACES and SHAPES tasks, it can be observed that

the histogram of diagonal correlations is shifted towards the right compared to the his-

togram of off-diagonal correlations. However, in the FACES-SHAPES contrast map,

the effect size (D) from the Kolmogorov-Smirnov test was smaller, and on the his-

togram, the distributions of diagonal and off-diagonal correlations overlap, indicating

poorer individual identification. Using the RC loss resulted in lower overall correlation

values than the MSE loss. However, the diagonal elements became more prominent

than the off-diagonal components. This observation suggests a trade-off between over-

all concordance and individual identification. For all task contrast maps, RC loss led to

higher diagonality indexes and larger effect sizes (D) from the Kolmogorov-Smirnov

test than the MSE loss.

3.3.2 Prediction of volumetric task activation map

Figure 3.5 displays the top three subjects with the highest correlation between the ac-

tual and predicted maps using SwiFUN with MSE loss for each task contrast (SHAPES,

FACES, and SHAPES-FACES). While the predictions were made on volume data, the

volumetric activation maps were projected onto a surface for visualization. Nilearn,

a brain imaging analysis tool, was utilized for this purpose. Each result underwent

thresholding for the top 3% activated voxels. The three subjects, ’1651120’, ’1716181’,

and ’1354872’, exhibited correlations of 0.806, 0.816, and 0.732 across the tasks. In

the SHAPES and FACES contrasts, the activation in the posterior medial cortex and

visual cortex observed in the actual maps was also evident in the predicted maps. In the

FACES-SHAPE contrast, subtle activations in the prefrontal cortex, superior temporal

gyrus, and visual cortex were accurately predicted.
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Figure 3.5: The actual and predicted activation maps with the highest correlations from

SwiFUN with MSE loss. (lateral and medial view)
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Figure 3.6: The effect of Contrastive Loss on diagonal mean (overall concordance) and

diagonality index (individual identification)

3.3.3 Increasing weight of LC improves individual identification

In Figure 3.6, we investigated how the diagonal median and diagonality index vary

with the adjustment of the weight of the contrastive loss in the RC loss. We conducted

experiments with three settings for 1 − λ: 0 (LR only), 0.5 (LR : LC = 1 : 1), 0.6

(LR : LC = 1 : 1.5), and 0.66 (LR : LC = 1 : 2). The results showed that as

we increased the weight of the contrastive loss term in all contrast maps, the diagonal

median decreased while the diagonality index increased. However, compared with the

results of predicting the SHAPES contrast map in Figure A.5, where no contrastive loss

term was used, we can observe that the increase in the diagonality index is much more

significant compared to the relatively small decrease in the diagonal median. For in-

stance, in the case of predicting the SHAPES contrast in Figure A.5, after the diagonal

median converged at 0.671, it decreased by 0.04, while the diagonality index increased

by only 0.001. On the other hand, while 1−λ increased from 0 to 0.66, the diagonality

index significantly improved by 0.027, with a similar decrease in the diagonal median

by 0.05. This indicates that by using the RC loss, it is possible to effectively enhance

individual identification performance while sacrificing overall concordance to a lesser

extent.
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3.4 Discussion

Generating various task activation maps from resting-state functional connectivity is

a well-established task that has received much attention [2, 111, 116, 120]. The task

holds a substantial potential value, particularly for patients or children who encounter

challenges performing complicated tasks within fMRI. However, the predictive per-

formance of existing approaches was limited due to their simplicity. To this end, we

propose Swin fMRI Transformer with UNet architecture for predicting a 3D task ac-

tivation map to show that brain dynamics from 4D resting-state fMRI can be trained

end-to-end to predict task-state brain activity effectively. SwiFUN outperformed Con-

nTask on diagonal median and mean absolute error, representing better overall concor-

dance in every contrast. The performance was comparable to the test-retest reliability.

While original SwiFUN performed worse than ConnTask on individual identification,

adopting reconstruction-contrastive (RC) boosted the performances of SwiFUN over

ConnTask in SHAPES and FACES contrasts. This result indicates that 4D fMRI analy-

sis models based on deep learning can effectively predict individual task-related brain

activity.

In Figure A.1, we discovered a delicate balance between overall concordance and

individual identification. We employed a mean square error as a training objective to

refine the model’s performance. This objective enhances the diagonal median (repre-

senting overall concordance) and the diagonality index (representing individual identi-

fication) up to a certain threshold. However, there is a notable reduction in the diagonal

median after a few epochs. This phenomenon arises because the model initially learns

the distinct characteristics of each task but subsequently makes trade-offs, prioritizing

maximal individual variability at the cost of overall concordance. During this phase,

the diagonality index tends to be exceedingly low, typically falling below 0.1. Conse-

quently, in metrics concerning individual identification, SwiFUN generally exhibited
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lower performance than ConnTask. To mitigate this decline in overall concordance,

we introduced a reconstruction-contrastive loss. This loss function ensures that the

predicted task activation map remains highly distinctive among subjects through the

training objectives. As a result, individual identification performance was enhanced

with a minimal drop in overall concordance. Thus, considering the trade-off between

overall concordance and individual identification is fundamental to further improve

task activation map prediction with deep learning models.

The value of the models trained in this study may be greater when applied to indi-

viduals who have difficulty performing tasks within fMRI. Transfer learning can make

this possible. A previous study has suggested transfer learning may improve the pre-

diction performance of task activation maps on datasets with small samples [47]. This

transfer learning is also valid from healthy to diseased groups [121] and across dif-

ferent sites, MRI vendors, and age groups [112]. Another finding suggests that there

are shared characteristics between different tasks. Multiple task activation maps can

be predicted from a single model and resting-state fMRI by adopting multi-task learn-

ing [47]. Therefore, the next direction of our research is to verify the effect of transfer

learning using SwiFUN. Transfer learning is possible for Swin UNETR in segmenta-

tion tasks using self-supervised contrastive learning [139]. SwiFUN, which has similar

architecture as Swin UNETR, also has the feasibility for transfer learning. Therefore,

the model trained on the UKB emotion-matching task may foster generating task acti-

vation maps for smaller datasets. This can be validated with the same task from another

dataset, HCP.

What information the predicted task activation maps contain is a major future re-

search question. After all, the purpose of predicting task activation maps is to derive

clinical value from them that does not exist in resting state fMRI. Therefore, beyond

checking how similar the predicted task activation map is to the actual task activation

map, we need to evaluate how it relates to other individual difference variables and
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whether it has predictive power for other variables. Previous studies have shown that

task activation maps predicted by resting-state fMRI better predict cognitive variables

such as intelligence [116, 120] than original resting-state fMRI. Accurate predictions

for task activation maps led to better intelligence predictions [120]. In addition, Tik

et al. [121] demonstrated that the predicted task activation maps of schizophrenia pa-

tients have lower overall qualities than those of healthy individuals. These results sug-

gest that the predictive performance of the task activation map itself may be a clue to

psychiatric disease. Therefore, our model can be used as a feature extraction method

for resting-state fMRI by amplifying individual differences within resting-state fMRI.

Recently, it has been shown that fMRI can reveal more about human cognition and

behavior when presented with naturalistic stimuli compared to the resting state. This

can be implemented by watching movies in fMRI, which are more real-life situations

with complex and dynamic stimuli [140]. Previous studies utilizing movie-watching

fMRI data have shown that these data represent unique patterns in functional connec-

tivity compared to resting-state functional connectivity [141]. In addition, this fMRI

with naturalistic stimuli exhibits higher predictive performance for individual differ-

ences such as intelligence compared to resting-state fMRI, as well as higher perfor-

mance in generating activation maps for working memory tasks [142, 116, 143]. This

may be because environments with richer audiovisual stimuli will likely reveal more

individual differences in human thought processes [141, 125]. The enhanced perfor-

mance in generating task activation maps may be attributed to the similarity between

watching a movie and actively performing a task, as opposed to not engaging in any

task at all [116]. It would be intriguing to observe whether the impacts of this movie-

watching fMRI dataset can be replicated in the proposed 4D fMRI Transformer and to

identify the specific areas where it differs from resting-state fMRI. This may give us

more insight into what type of fMRI data is best suited to capture brain dynamics.

In conclusion, this study validates, for the first time, how much information can be
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extracted from raw resting-state fMRI through various metrics. In addition, we propose

training deep neural networks may improve task activation prediction performance in

an end-to-end manner. In the future, we anticipate achieving the capability to pre-

dict various task-related brain activity from just a few minutes of resting-state fMRI

data, significantly reducing the scanning time and effort required to capture task-based

fMRI.

3.5 Limitations

While reconstruction-contrastive loss worked for the FACES and SHAPES task acti-

vation maps, it was limited in capturing subtle individual differences in a relatively

small area, such as the amygdala in FACES-SHAPES contrast. Further analysis of the

association between each metric and training objectives is required to identify individ-

uals better. Recently, several research has focused on residualized datasets, subtracting

the group-mean activation map from the original task activation maps to leave only in-

dividual variability [111, 113]. This initial preprocessing allows the model to focus on

the unique properties of each activation map than the commonality of whole activation

maps. Thus, the effect of residualization is worth exploring in future work.

Another limitation is that the model’s capacity is constrained by its inability to si-

multaneously address all resting-state fMRI volumes. Given that SwiFUN necessitates

significantly deeper layers than classification models (SwiFT), a limitation exists in in-

creasing sequence length. The resting-state fMRI data is segmented into sub-sequences

to address this constraint by employing a sliding window approach across the entire

fMRI sequence. The task activation predictions from each sub-sequence are subse-

quently averaged for each subject. However, averaging the 3D task activation maps

may potentially obscure subtle individual differences. The reduction in the diagonal-

ity index with an increasing batch size supports this hypothesis, as illustrated in Fig-
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ure A.2. Thus, it is crucial to determine the distinctive information contained within

the task activation maps from each sub-sequence. These maps might show substantial

uniformity or notable diversity in their response to changes in resting-state fMRI. Per-

forming such validation can provide invaluable insights into how the changing brain

dynamics during the resting state contribute to subtle differences in task-related brain

activity.
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Chapter 4

CONCLUSIONS AND FUTURE
WORK

4.1 Summary

Human brain dynamics is the activity of neurons resulting from human interaction

in a changing environment, allowing for adaptive behavior in an ever-changing envi-

ronment. Moving beyond the traditional methods of analyzing fMRI based on hand-

crafted features, this study developed an efficient and scalable Transformer that can

directly process 4D-shaped fMRI to maximize the learning of spatiotemporal brain

dynamics. In Chapter 2, this study showed that brain dynamics extracted from resting-

state fMRI using 4D fMRI Transformer could be used to predict individual biological

and cognitive variables accurately. In addition, by pre-training the model with self-

supervised learning techniques for 4D fMRI, this research found that transfer learning

was partially effective in predicting the intelligence scores of ABCD and HCP dur-

ing fine-tuning. In addition, by utilizing Integrated Gradient, this study confirmed that

regions related to the default mode network contribute significantly to sex classifica-
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tion across all kinds of datasets and identified data-dependent brain regions integrat-

ing sensory information. The biological and cognitive variables studied in Chapter 2

are variables of individual differences that are relatively consistent across individu-

als. However, the main interest is to uncover how individual differences in these brain

dynamics translate into brain activity when humans interact with and act upon their

environment. Therefore, in Chapter 3, we adapted the previous 3D Swin Transformer

with UNET (Swin UNETR) to predict a 3D task activation map from 4D fMRI. As

a result, the study found that models trained directly from 4D fMRI could predict

task activation maps more accurately than the traditional glm-based model. The study

shows that contrastive learning could amplify the subtle differences within task activa-

tion maps. Examining the subjects with the highest prediction accuracy for each task,

we verified that the deep learning model could accurately predict activated regions as

the actual task activation maps.

4.2 Limitations

The fMRI transformers introduced in this study share a common limitation: they only

utilize a portion of the fMRI data within a window. Our fMRI Transformers employ 20

to 30 scans within a sliding window to capture volumetric information. In contrast, ex-

isting connectivity-based methods utilize the entire fMRI sequence. This raises ques-

tions about whether the model adequately captures long-term temporal dynamics. The

results indicate that the optimal cycle for capturing individual differences depends on

the specific task. However, due to the relatively short duration of the employed time

window (ranging from 4 volumes to 32 volumes), the distinction of performances be-

tween the tested windows was quite subtle. To establish the reliability of these findings,

future studies should assess model performance across a broader range of sequence

lengths.
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Furthermore, the methodology employed in this study remains inaccessible to most

researchers due to its resource-intensive nature. The scarcity of storage space and com-

putational resources among researchers limits their capacity to accommodate the data

encompassing over 15,000 subjects, a pivotal facet of this study. Most researchers will

wonder if the model will perform as well when trained on a more limited subset of

subjects. Thus, validating the model’s efficacy in smaller sample sizes is imperative.

This exploration would provide insights into the applicability of deep learning models

in functional MRI research and offer guidance to researchers endeavoring to leverage

such methodologies.

4.3 Future Directions

This study has demonstrated that by analyzing 4D fMRI with deep learning in an

end-to-end learning approach, a richer representation can be obtained compared to ex-

isting methods, and higher prediction performance can be achieved in various tasks.

The methods proposed in this study can be utilized to solve major problems in psy-

chology and neuroscience. Beyond predicting sex, age, and intelligence scores, which

have been validated on various data in this study, the next major challenge will be to

predict variables associated with mental disorders. Since many psychiatric disorders

are strongly related to sex, age, and cognitive ability, the model is expected to discover

individual patterns associated with disease, which can then predict the onset of psy-

chiatric disorders and prevent their progression. In addition, by examining biomarkers

strongly related to existing treatments for mental disorders, this approach may provide

personalized treatments beyond the existing generic treatments.

Chapter 2 showed that deep learning models for 4D fMRI, combined with explain-

able AI methods, can identify brain regions associated with specific biological traits

at high resolution. It would be valuable to see if this approach could also be used to
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help verify brain regions that contributed to the successful prediction of task activation

maps in Chapter 3. For instance, in generating the activation maps associated with the

emotional matching task, we might expect to see brain regions, such as the amygdala or

ventromedial prefrontal cortex (vmPFC), in the resting state associated with the predic-

tion. Previous studies have shown this by representing which independent components

from resting-state fMRI had a relatively large impact on task activation map predic-

tions [121]. However, since each independent component covers multiple regions, it

is difficult to see how each voxel contributes to the prediction. Using explainable AI

methods, evaluating which regions contributed to task activation map predictions for

every voxel in 4D fMRI volumes is possible. If it turns out that unexpected regions in

resting-state fMRI are explainable for the task activation map, the findings will help

us understand the complex interactions between the human brain and behaviors.

4.4 Conclusions

The 4D fMRI transformers presented in this study, along with their promising results,

are anticipated to capture the interest of numerous researchers. SwiFT, a transformer

model developed within this study, exhibits greater efficiency than existing 4D fMRI

transformers while consistently delivering high performance across multiple tasks.

Furthermore, SwiFUN shows that the fMRI Transformer can be expanded to inves-

tigate complicated human behaviors from brain dynamics. The model might be the

first option for researchers studying end-to-end learning on fMRI. Therefore, we be-

lieve that this study can guide many people by expanding the scope of existing research

and demonstrating the feasibility of such research through multiple experiments.
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Appendix A

A.1 Performance Comparison with Standard Deviation

Here, we detail the standard deviation of the results posted in Table 2.1 (manuscript),

which compares the performance of SwiFT against other baseline models on various

downstream tasks. All of the experiments were performed using three pre-determined

random data splits for each dataset, which was shared across all models for a fair com-

parison. The following Tables (A.1, A.2, A.3) show the performance posted in Table

2.1 (manuscript) along with the standard deviation among the three splits. From the

tables, we can conclude that SwiFT outperforms all baseline models above the margin

of variability at the following tasks: ABCD intelligence, HCP sex, HCP age, HCP in-

telligence, UKB sex, and UKB age prediction tasks. Note that the age prediction task

was not carried out on the ABCD dataset due to the narrow age range of 9 to 11 years,

making it hard to obtain meaningful results from the experiments.
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Table A.1: Performance of various models on the ABCD dataset with standard devia-

tion

Method

Dataset: ABCD

Sex Intelligence

ACC AUC MSE MAE

XGBoost 69.5±0.59 76.7±0.86 0.977±0.037 0.770±0.016

BrainNetCNN [66] 80.1±0.69 87.9±0.37 0.969±0.042 0.767±0.016

VanillaTF [52] 77.4±2.47 85.1±3.21 0.961±0.050 0.764±0.025

BNT [52] 79.1±0.80 88.9±0.64 0.955±0.058 0.767±0.025

TFF [50] 73.8±1.13 80.2±1.06 0.968±0.024 0.768±0.009

SwiFT (ours) 79.3±1.29 87.8±1.31 0.932±0.017 0.756±0.009

A.2 Implementation Details

SwiFT To obtain the results detailed in Section 2.4.2 (manuscript), we trained SwiFT

from scratch using the following configuration:

• Optimizer: AdamW using a cosine decay learning rate scheduler with a linear

warm-up (around 5% of total iterations)

• Learning rate: After the warm-up, an initial learning rate of 10−5 for classifica-

tion tasks and 5 × 10−5 for regression tasks on the HCP dataset and 10−5 for

regression tasks on the ABCD dataset.

• Mini-batch size: Mini-batch of size 8

• Epochs: 10 epochs of training for the sex classification and intelligence predic-

tion tasks, and a maximum of 30 epochs for the age prediction task.

• Data Augmentation: Random augmentations including affine transformation,

Gaussian noise, and Gaussian smoothing were applied to the input data during

training for the ABCD sex and intelligence prediction tasks.

After training, we selected the model instances with the highest validation AUC or

lowest validation MSE to report the performance on the test dataset. The model was
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Table A.2: Performance of various models on the HCP dataset with standard deviation

Method

Dataset: HCP

Sex Age Intelligence

ACC AUC MSE MAE MSE MAE

XGBoost 68.5±3.03 75.5±3.14 14.3±1.61 3.12±0.165 0.991±0.084 0.813±0.032

BrainNetCNN [66] 77.1±2.33 84.9±2.28 12.6±0.74 2.97±0.153 0.984±0.034 0.805±0.016

VanillaTF [52] 77.9±2.08 85.2±0.89 12.5±1.15 2.95±0.182 0.987±0.039 0.812±0.014

BNT [52] 81.0±3.11 88.0±3.10 12.8±0.89 2.98±0.155 1.001±0.009 0.830±0.014

TFF [50] 92.5±1.12 97.5±1.77 13.8±1.58 3.11±0.200 0.953±0.074 0.795±0.028

SwiFT (ours) 92.9±1.51 98.0±1.79 8.6±0.57 2.36±0.114 0.903±0.077 0.786±0.030

Table A.3: Performance of various models on the UKB dataset with standard deviation

Method

Dataset: UKB

Sex Age Intelligence

ACC AUC MSE MAE MSE MAE

XGBoost 79.5±1.28 87.6±0.94 48.8±1.01 5.85±0.046 1.055±0.199 0.816±0.078

BrainNetCNN [66] 86.8±0.19 93.8±0.31 42.7±0.17 5.36±0.113 1.001±0.141 0.800±0.060

VanillaTF [52] 87.0±1.31 95.1±0.37 41.4±1.16 5.26±0.142 0.999±0.144 0.799±0.059

BNT [52] 87.0±1.10 94.8±0.46 39.6±1.07 5.17±0.092 0.998±0.139 0.798±0.058

TFF [50] 96.8±0.25 99.5±0.06 42.1±4.80 5.10±0.331 0.997±0.123 0.783±0.046

SwiFT (ours) 97.7±0.31 99.8±0.04 18.2±0.94 3.40±0.083 0.992±0.105 0.796±0.044

trained using four NVIDIA A100 GPUs using the distributed data-parallel (DDP) strat-

egy provided by Pytorch Lightning, with a single training session typically lasting from

4 to 30 hours depending on the dataset and whether data augmentation was used during

training.

To obtain the results detailed in Section 2.4.3. (manuscript), the model was pre-

trained using the following:

• Optimizer: AdamW optimizer using a cosine decay learning rate scheduler with

2000 steps of linear warm-up
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• Learning rate: After warm-up, an initial learning rate of 10−5

• Mini-batch size: 3

• Epochs: six epochs of training

After pre-training, we fine-tuned the model without a learning rate scheduler, using

1/10 of the initial learning rate used for from-scratch training.

TFF We used the same data splits to compare our baseline 4D Transformer, TFF,

with SwiFT. We followed the number of attention heads (16) and embedding size

(2,640) proposed by [50]. To alleviate over-fitting, we applied data augmentation meth-

ods to the brain images, such as Gaussian blur and additive Gaussian noise imple-

mented by imgaug[144]. Since TFF requires more computational resources than SwiFT

to run the codes, at least 8 hours of training were required using 2 nodes with 4 A100

GPUs.

We trained TFF with the following training setup:

• Optimizer: Adam optimizer using a cosine decay learning rate scheduler with a

linear warm-up by 5% of total iterations

• Learning rate: After warm-up, an initial learning rate of 10−4

• Mini-batch size: 32

• Epochs: 10 epochs of training

ROI-based models The four ROI-based model baselines, XGBoost [95], Brain-

NetCNN [66], VanillaTF [52], and Brain Network Transformer [52] were reproduced

for our experiments. The reproductions were based on the official code of [52]. How-

ever, since the preprocessing codes for the ABCD dataset were not provided by [52],

we followed the preprocessing steps described in [52], potentially causing some dif-

ferences. This obscurity in the preprocessing step is suspected to be one of the reasons

for the slight performance gap of the BNT model between our experiments and the
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results posted in the original paper [52], despite utilizing the same ABCD dataset.

We trained BrainNetCNN, VanillaTF, and Brain Network Transformer models

with the following setup:

• Optimizer: Adam optimizer using a cosine decay learning rate scheduler

• Learning rate: Learning rate of 5× 10−5

• Mini-batch size: Mini-batch of size 16

• Epochs: 200 epochs of training

We used grid search for hyper-parameter tuning of XGBoost, adjusting the max-

imum depth and minimal child weight, gamma, learning rate, and colsample by tree.

In addition, we conducted 5-fold cross-validation. Hyperparameters are tuned with the

following setup:

• Maximum depth: Chosen between 3 and 6

• Minimal child weight: Chosen between 1 and 7

• Gamma: Chosen between 0.0 and 0.4

• Learning rate: Chosen between 0.05 and 0.3

• Colsample by tree: Chosen between 0.6 and 0.9

Software Version The major software used for our experiments are as the following:

• python 3.10.4

• pytorch 1.12.1

• pytorch-lightning 1.6.5

• monai 1.1.0

• neptune-client 0.16.4

• scipy 1.8.1

• torchvision 0.13.1

• torchaudio 0.12.1
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Table A.4: Performance comparison of SwiFT for different positional embedding

methods.

Dataset Method
Sex Age Intelligence

ACC AUC MSE MAE MSE MAE

HCP
Relative 89.8±1.87 95.9±1.21 9.0±0.56 2.44±0.116 0.908±0.009 0.775±0.011

Absolute 92.9±1.51 98.0±1.79 8.6±0.57 2.36±0.114 0.903±0.077 0.786±0.030

ABCD
Relative 80.2±1.65 88.9±0.26

N/A
0.936±0.029 0.761±0.013

Absolute 79.3±1.29 87.8±1.31 0.932±0.017 0.756±0.009

UKB
Relative 97.5±0.10 99.8±0.05 19.4±0.53 3.53±0.071 1.019±0.083 0.807±0.035

Absolute 97.7±0.31 99.8±0.04 18.2±0.94 3.40±0.083 0.992±0.105 0.796±0.044

Table A.5: Efficiency comparison of SwiFT for different positional embedding meth-

ods.

Method # Param. FLOPs Throughput

Relative 4.66M 2.62G 94.17

Absolute 4.64M 2.62G 104.16

A.3 Comparison of Positional Embedding Methods

We discuss the impact of the switch from a relative positional bias scheme used in

most Swin Transformer variants [59, 51, 60] to an absolute positional embedding

scheme, as detailed in the paragraph “4D absolute positional embedding” of Section

3.1 (manuscript). We implemented the 4D relative positional bias scheme by extend-

ing the 3D relative positional bias described in [51]. Given a window with dimensions

of P×M×M×M , the 4D relative positional bias B ∈ RP 2×M2×M2×M2
for each

self-attention head is integrated as

Attention(Q,K, V ) = SoftMax(QKT /
√
d+B)V, (A.1)
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where Q,K, V ∈ RPM3×C′
are the query, key, value matrices and C ′ is the channel

number. A parameterized bias matrix B̂ ∈ R(2P−1)×(2M−1)×(2M−1)×(2M−1) is used

to calculate the values in B since there are only 2P − 1 or 2M − 1 possible posi-

tion differences for every axis. A separate parameterized bias matrix is used for each

attention head at each layer of the Transformer.

Table A.4 shows the overall performance comparison of SwiFT between the ab-

solute positional embedding scheme and the relative positional bias scheme for the

HCP, ABCD, and UKB datasets. Comparing the performance of both methods, we

found that the absolute positional embedding scheme performs better in most cases.

Note that the age prediction task on the ABCD dataset was not tested due to the same

reasons detailed in Section A.1.

Additionally, we compared the efficiency of the two methods in Table A.5 through

the number of parameters, the number of FLOPs per forward pass, and the throughput.

Throughput measures how many fMRI sub-sequences of length 20 the model pro-

cesses per second during inference on a single A100 GPU. The absolute positional

embedding scheme is more memory efficient as it only requires parameters at the

beginning of each stage. In addition, the absolute positional embedding scheme is

also more computationally efficient as it does not require the 4D relative positional

bias B to be reconstructed during each self-attention computation, resulting in a 9.6%

throughput improvement. Overall, we conclude that the absolute positional embedding

scheme is appropriate for our tasks compared to the relative positional bias scheme.

A.4 Performance of ConnTask with varying number of sam-
ples, independent components, and contrast types

In A.6, we compared the performances of ConnTask with different training samples

and independent components(IC) over three emotion contrasts. We observed that more
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Table A.6: Performance of ConnTask

Task IC Sample D. Mean D. Median D. Index KS D MSE Acc. D. rank

s 21 100 0.552 0.566 0.064 0.374 4.422 0.88 0.99

s 21 500 0.553 0.583 0.062 0.3 4.645 0.874 0.991

s 21 1000 0.556 0.587 0.063 0.317 4.457 0.864 0.991

s 55 100 0.553 0.566 0.07 0.379 4.419 0.88 0.992

s 55 500 0.56 0.587 0.068 0.327 4.415 0.884 0.994

s 55 1000 0.563 0.596 0.069 0.346 4.598 0.888 0.994

f 21 100 0.556 0.587 0.057 0.342 4.965 0.9 0.992

f 21 500 0.563 0.597 0.056 0.284 4.868 0.888 0.992

f 21 1000 0.568 0.603 0.056 0.305 5.014 0.886 0.989

f 55 100 0.557 0.581 0.064 0.357 4.957 0.9 0.996

f 55 500 0.57 0.604 0.061 0.31 4.825 0.898 0.993

f 55 1000 0.575 0.61 0.062 0.333 4.965 0.898 0.992

f-s 21 100 0.336 0.356 0.046 0.202 2.587 0.55 0.897

f-s 21 500 0.341 0.363 0.051 0.208 2.745 0.584 0.95

f-s 21 1000 0.351 0.377 0.05 0.213 2.756 0.579 0.952

f-s 55 100 0.337 0.346 0.054 0.22 2.591 0.58 0.915

f-s 55 500 0.348 0.374 0.057 0.23 2.733 0.61 0.948

f-s 55 1000 0.359 0.384 0.056 0.236 2.742 0.615 0.955

numbers of components have a positive effect on both overall concordance and indi-

vidual identification. Including more training samples has a positive effect on overall

concordance but seems to have a slightly negative effect on individual identification,

except for the FACES-SHAPES contrast. This result is aligned with the previous find-

ings [123].
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Figure A.1: Training Curve of Diagonal Mean and Diagonality Index

A.5 Trade-off between overall concordance and individual iden-
tification

As shown in Figure A.1, during the training process of SwiFUN with MSE loss, the di-

agonal median and diagonality index initially increase together, but at some point, the

diagonal mean starts decreasing while the diagonality index continues to increase. This

indicates that initially, the model is trained to increase overall concordance, similar to

the group mean activity. However, at a certain point, the model shifts its focus towards

reflecting subtle individual differences at the expense of overall concordance. How-

ever, there is a drawback regarding the sharp decrease in the diagonal median com-

pared to the increase in the diagonality index. Therefore, in this study, we addressed

this issue by incorporating the Reconstruction-Contrastive loss, where the weights for

individual differences are determined directly by the researchers, allowing the model

to train in a direction that avoids excessive convergence towards group means and

instead reveals individual differences.

A.6 Effect of Input sequence length for SwiFUN

In Figure A.2, we confirmed whether the sequence length impacts the overall con-

cordance (diagonal median) and individual identification (diagonality) of SwiFUN.

SwiFUN was trained on the SHAPES contrast map using MSE loss. The experiments
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Figure A.2: Effect of sequence length and batch size on the performance of SwiFUN

were conducted with a fixed mini-batch size of 4, and four different settings were

tested with lengths of 10, 20, 30, and 48 considering the limitations of GPU memory.

The overall performance differences were not substantial, but the diagonal median

showed improvement as the sequence length increased, reaching its peak at length 30.

On the other hand, the diagonality index displayed the best performance at length 30

but did not exhibit consistent improvement with increasing length. Considering these

results and the training speed associated with sequence length, all experiments were

conducted with a length of 30.

A.7 Effect of batch size on Reconstruction-Contrastive Loss

In Figure A.2, we confirmed whether SwiFUN trained with RC loss are impacted by

the mini-batch size. Considering that the contrastive loss compares samples within the

mini-batch, we hypothesized that the mini-batch size would impact performance. In

the RC loss, we set the value of 1 − λ (the weight of the contrastive loss term) to

0.33. Our analysis revealed that in all tasks, the diagonal median exhibited a small

increase as the batch size increased. On the other hand, the diagonality index showed

a significant decrease with larger batch sizes. This suggests that increasing the number

of samples compared can weaken the effect of contrastive loss.
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R. Langner, K. R. Patil, and S. B. Eickhoff, “Predicting personality from

network-based resting-state functional connectivity,” Brain Struct. Funct.,

vol. 223, pp. 2699–2719, July 2018.

85



[12] W.-T. Hsu, M. D. Rosenberg, D. Scheinost, R. T. Constable, and M. M. Chun,

“Resting-state functional connectivity predicts neuroticism and extraversion in

novel individuals,” Social cognitive and affective neuroscience, vol. 13, no. 2,

pp. 224–232, 2018.

[13] N. Franzmeier, J. Neitzel, A. Rubinski, R. Smith, O. Strandberg, R. Ossenkop-

pele, O. Hansson, and M. Ewers, “Functional brain architecture is associated

with the rate of tau accumulation in alzheimer’s disease,” Nature communica-

tions, vol. 11, no. 1, p. 347, 2020.

[14] M.-E. Lynall, D. S. Bassett, R. Kerwin, P. J. McKenna, M. Kitzbichler,

U. Muller, and E. Bullmore, “Functional connectivity and brain networks in

schizophrenia,” Journal of Neuroscience, vol. 30, no. 28, pp. 9477–9487, 2010.

[15] J. C. Mostert, E. Shumskaya, M. Mennes, A. M. H. Onnink, M. Hoogman, C. C.

Kan, A. A. Vasquez, J. Buitelaar, B. Franke, and D. G. Norris, “Characteris-

ing resting-state functional connectivity in a large sample of adults with adhd,”

Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 67,

pp. 82–91, 2016.

[16] D. Hebb, “The organization of behavior. emphnew york,” 1949.

[17] D. J. Heeger and D. Ress, “What does fMRI tell us about neuronal activity?,”

Nat. Rev. Neurosci., vol. 3, pp. 142–151, Feb. 2002.

[18] M. P. Van Den Heuvel and H. E. H. Pol, “Exploring the brain network: a review

on resting-state fmri functional connectivity,” European neuropsychopharma-

cology, vol. 20, no. 8, pp. 519–534, 2010.

86



[19] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann,

T. E. Nichols, J. D. Ramsey, and M. W. Woolrich, “Network modelling methods

for fmri,” Neuroimage, vol. 54, no. 2, pp. 875–891, 2011.

[20] S. Vieira, W. H. L. Pinaya, and A. Mechelli, “Using deep learning to investigate

the neuroimaging correlates of psychiatric and neurological disorders: Methods

and applications,” Neurosci. Biobehav. Rev., vol. 74, pp. 58–75, Mar. 2017.

[21] P. C. Mulders, P. F. van Eijndhoven, A. H. Schene, C. F. Beckmann, and I. Ten-

dolkar, “Resting-state functional connectivity in major depressive disorder: a

review,” Neuroscience & Biobehavioral Reviews, vol. 56, pp. 330–344, 2015.

[22] J. M. Sheffield and D. M. Barch, “Cognition and resting-state functional con-

nectivity in schizophrenia,” Neuroscience & Biobehavioral Reviews, vol. 61,

pp. 108–120, 2016.

[23] J. T. Kennedy, M. P. Harms, O. Korucuoglu, S. V. Astafiev, D. M. Barch, W. K.

Thompson, J. M. Bjork, and A. P. Anokhin, “Reliability and stability challenges

in ABCD task fMRI data,” Neuroimage, vol. 252, p. 119046, May 2022.

[24] S. Noble, D. Scheinost, and R. T. Constable, “A guide to the measurement

and interpretation of fMRI test-retest reliability,” Curr Opin Behav Sci, vol. 40,

pp. 27–32, Aug. 2021.

[25] M. M. Herting, P. Gautam, Z. Chen, A. Mezher, and N. C. Vetter, “Test-retest re-

liability of longitudinal task-based fMRI: Implications for developmental stud-

ies,” Dev. Cogn. Neurosci., vol. 33, pp. 17–26, Oct. 2018.

[26] M. L. Elliott, A. R. Knodt, D. Ireland, M. L. Morris, R. Poulton, S. Ramrakha,

M. L. Sison, T. E. Moffitt, A. Caspi, and A. R. Hariri, “What is the Test-Retest

87



reliability of common Task-Functional MRI measures? new empirical evidence

and a Meta-Analysis,” Psychol. Sci., vol. 31, pp. 792–806, July 2020.

[27] E. S. Finn and R. T. Constable, “Individual variation in functional brain con-

nectivity: implications for personalized approaches to psychiatric disease,” Di-

alogues in clinical neuroscience, 2022.

[28] N. K. Dinsdale, E. Bluemke, V. Sundaresan, M. Jenkinson, S. M. Smith, and

A. I. Namburete, “Challenges for machine learning in clinical translation of big

data imaging studies,” Neuron, 2022.
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국문초록

변화하는 환경에서 적응하는 뇌 기능을 연구하기 위해 기능적 자기공명영상(func-

tional magnetic resonance imaging, fMRI)과 같은 고차원 뇌 이미지에서 뇌 역동을

분석하는 것은 중요한 과제이다. 그러나 기존의 fMRI 연구는 주로 단순한 특징 추

출 기반 방법들에 의존하기 때문에 뇌 역동에서 중요한 측면을 간과할 위험이 존

재한다. 이러한 기존 접근법의 한계를 극복하기 위해 본 연구는 fMRI 분석을 위한

두가지심층신경망(SwiFT, SwiFUN)을제안한다.이모델들은 4차원형태의휴지

상태 fMRI (resting-state fMRI, rs-fMRI)데이터를직접처리함으로써인지및생물

학적변수와특정과제수행시의뇌활동을효과적으로예측할수있다.본연구는

인간커넥톰프로젝트(Human Connectome Project, HCP),청소년뇌인지발달연구

(Adolescent Brain Cognitive Development, ABCD), 영국 바이오뱅크(UK Biobank,

UKB)과같은대규모 fMRI데이터를활용한다.그결과, SwiFT는성별,연령,그리

고지능예측에서현존하는최신방법들보다뛰어난성능을보였다.또한, SwiFUN

은 rs-fMRI에서특정과제수행시의뇌활동을예측하는태스크에서기존일반화된

선형 모델 (generalized linear model, GLM)에 비해 우수한 성능을 보였다. 본 연구

는고차원 fMRI에서복잡한뇌역동을효과적으로분석하는방법을제시함으로써,

신경과학분야에서대규모 fMRI를활용할수있는새로운가능성을시사한다.

주요어: 뇌 역동, 기능적 자기공명영상, 트랜스포머, 인지 및 생물학적 변수, 특정

과제수행시의뇌활동

학번: 2021-23364
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