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Abstract 
 
Obsessive-Compulsive Disorder (OCD) is a prevalent and frequently chronic psychiatric 

disorder. Despite the findings of OCD-related brain structure and function based on the 

mass univariate approach, there are limitations in predicting OCD and the developmental 

trajectory of OCD symptoms at the individual level, complicating precise diagnosis and 

personalized interventions. With machine learning approaches, large-scale neuroimaging 

consortium enable research into the potential predictive value of neuroimaging in 

identifying OCD, going beyond traditional mass univariate results. In addition, while 

recent studies adopting a developmental perspective have begun to focus on pre-OCD 

obsessive symptoms, there is limited research on how OCD influences subsequent 

symptom severity. In this thesis, we leveraged two large-scale neuroimaging datasets for 

investigation: first, we used data from the ENIGMA OCD working group to explore 

whether white matter microstructure could predict OCD and its associated clinical traits. 

Our models showed low-to-moderate and site-generalizable accuracy in classifying 

“OCD vs. healthy controls'' (Adults, receiver operator characteristic-area under the curve 

= 57.19 ± 3.47 in the replication set; Children, 59.8 ± 7.39). Second, using child data 

from the Adolescent Brain Cognitive Development, we examined the individual 

differences in the influence of OCD risk on later obsessive symptoms, as well as the 

moderation of resting-state functional connectivity that contribute to these differences. 

We hope our findings will bridge the critical gap in knowledge to advance biologically 

informed understanding of OCD, and ultimately improving targeted interventions. 

 

Keyword: obsessive-compulsive disorder, obsessive-compulsive symptom, diffusion 

magnetic resonance imaging, obsessions, resting-state functional magnetic 
resonance imaging 
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Chapter 1: General Introduction 

 

General Introduction to OCD 

Obsessive-compulsive disorder (OCD) is a highly debilitating mental disorder, which 

often leads to a chronic course. OCD is characterized by the presence of obsession and 

compulsion. According to the Diagnostic and Statistical Manual of Mental Disorder 

(DSM, version 5), obsessions refer to recurring and persistent thoughts, urges, or 

impulses that are intrusive and unwanted, and cause considerable anxiety or distress. 

Compulsions are repetitive behaviors or mental acts that an individual feels driven to 

perform in response to an obsession or according to rules that must be applied rigidly. 

OCD shows a lifetime prevalence of around 1-3% (Carmi et al., 2022). Symptoms 

may wax and wane in severity, but if left untreated, can persist throughout the lifespan 

leading to significant academic, occupational, and social impairment and reducing the 

quality of life (Colucciaa et al. 2016; Stewart et al. 2004). A recent meta-analysis study 

reported that the prevalence of obsessive-compulsive disorder in women was higher than 

that in men (Fawcett et al., 2020).   

Most male cases occur during childhood, while most females show the onset of 

OCD during adolescence (Torresan et al., 2009). Despite the early age of onset, diagnosis 

often follows several years after the start of clinical symptoms (Hezel et al., 2022). OCD 

typically involves a chronic course persisting for decades. Remission is common, and few 

patients experience a full recovery (Fineberg et al., 2013).  
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Although the core symptoms of OCD are obsession and compulsion, individuals 

with OCD show heterogeneous symptom profiles. Studies applying a factor analysis 

approach have consistently reported a four-factor or five-factor model of OCD symptoms 

(Bloch et al., 2008). The factor model includes (1) a contamination dimension 

(contamination or cleanliness obsession and cleaning compulsion), (2) a harmful thoughts 

dimension (thoughts of harm to self and others and checking compulsion), (3) a forbidden 

thoughts dimension (aggressive, sexual, religious obsession with mental rituals or 

praying), (4) a symmetry dimension (symmetry obsession, and repeating, ordering and 

counting compulsion), (5) a hoarding dimension (hoarding or saving obsessions and 

related compulsions). 

 

Neurobiological model of OCD 

Structural abnormalities  

The efforts to identify correlates of OCD began by identifying differences in 

morphology between OCD and healthy controls. While initial studies showed 

inconsistent findings due to the limitation of small sample sizes or methodological 

inconsistency, recent neuroimaging studies have overcome those problems and conducted 

mega-analysis leveraging large sample sizes. 

Neural correlates of obsessive-compulsive disorder. The first voxel-based 

morphometry (VBM) study showed that patients with OCD had reduced grey matter 

volume in the medial frontal gyrus, the medial orbitofrontal cortex, and the left insulo-

opercular region (Pujol et al., 2004). Patients with OCD also showed increased grey 

matter volume bilaterally in the ventral part of the striatum and in the anterior 
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cerebellum. Moreover, OCD patients with aggressive obsession and checking compulsion 

showed reduced amygdala volume, suggesting different neural mechanisms might 

underlie different symptom profiles. 

While initial VBM studies showed promising results, relatively small sample 

sizes might lead to false positive and false negative cases. The first meta-analysis study 

of OCD included 12 different VBM studies (401 people with OCD and 376 healthy 

controls) (Pujol et al., 2004). They found increased grey matter volumes in bilateral 

lenticular nuclei (extending to the caudate nuclei) and decreased volumes in the bilateral 

dorsal medial frontal cortex. However, the decreased dorsal medial prefrontal volume 

was not specific for OCD and was also observed in people with anxiety disorders (Radua 

et al., 2010). 

Because of the limitations of meta-analysis that could not perform analysis with 

raw neuroimaging data, the OCD Brain Imaging consortium began for mega-analysis. 

OCD patients showed reduced volume in the dorsomedial prefrontal cortex, the anterior 

cingulate cortex, and the inferior frontal gyrus, and increased volume in the cerebellum 

(de Wit et al., 2014). They also found group-age interactions, suggesting OCD showed 

relative preservation of volume in the putamen, insula, and orbitofrontal gyrus and a 

relative loss of volume in the temporal cortex bilaterally compared with healthy controls 

with increasing age. Moreover, another study also found age and group interaction in the 

parietal cortex, indicating increased thinning in the parietal cortex with age in the OCD 

relative to healthy controls (Subirà et al., 2016).   
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Large-scale mega-analyses were conducted within the ENIGMA-OCD 

consortium, which allowed the investigation of age-specific morphological differences. 

In a sample of 1,950 OCD patients (adult 1,498, pediatric 407) and 1,760 healthy controls 

(adult 1,436, pediatric 324), OCD patients showed a thinner parietal cortex across age 

groups (Premika et al., 2018). Medicated adult OCD patients showed a more widespread 

pattern of reduced cortical thickness compared with unmedicated adult OCD. In addition, 

pediatric and adult OCD showed distinct subcortical volume abnormalities (Boedhoe et 

al., 2017). Adult OCD patients showed smaller hippocampal and larger pallidal volumes, 

compared with adult healthy controls. Unmedicated pediatric OCD patients showed 

larger thalamic volumes, while adults did not show any differences in the thalamus.  

Alterations in white matter microstructure were also identified in several studies. 

One meta-analysis study reported widespread white matter alterations, particularly in the 

anterior midline tracts (crossing between the anterior parts of the cingulum bundle and 

the body of corpus callosum), and in samples with a higher proportion of medicated 

patients (Jenkins et al., 2016). A recent mega-analysis by the ENIGMA working group 

found that adult OCD patients showed reduced FA in the sagittal stratum and its 

association with a younger age of onset, longer duration of illness, and a higher 

percentage of medicated patients; however, they did not find any significant white matter 

abnormalities in pediatric patients compared to healthy controls (Piras et al., 2021).   

Neural correlates of obsessive-compulsive symptoms. A few neuroimaging 

studies found neural correlates in subclinical levels of OCD. Weeland et al. (2021) 

investigated morphological differences between children with probable OCD (OCS over 
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the clinical cutoff) and the control group with a population-based large sample (N = 

2,551). They found a larger thalamus in children with probable OCD compared with the 

control group. The most recent meta- and mega-analyses by the ENIGMA OCD working 

group found larger thalalums only in pediatric unmedicated patients with OCD (Boedhoe 

et al., 2017). Larger thalamus was observed not only in unmedicated pediatrics but also in 

probable OCD pediatrics who did not have a diagnosis of OCD. These findings suggest 

that larger thalamus would be a potential biomarker of OCD. 

Another population-based OCS study also found neural correlates of OCS (N = 

11,876) (Pagliaccio et al., 2020). While they failed to find any significant morphological 

associations with OCS, they found that higher OCS was associated with lower FA in the 

left superior cortico-striatal tract (SCS). These studies suggest that structural alterations 

can be detected in youths with OCS. 

 

Neurocircuits involved in obsessive-compulsive disorder. 

Initially, OCD has been linked to dysfunctions within cortico-striatal-thalamo-

cortical (CSTC) circuits. However, it's now understood that other circuits, including 

fronto-limbic, fronto-parietal, and cerebellum, also contribute (Shephard et al., 2021). 

Abnormalities in these different neurocircuits likely interact with each other to generate 

the complex OCD phenotype. 

This section summarizes the previous model of the neurocircuitry involved in 

OCD. The fronto-limbic circuit includes subcortical and cortical brain regions involved 

in generating (amygdala) and evaluating (ventromedial prefrontal cortex (vmPFC)) 
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emotional responses (van den Heuvel et al., 2016, Kohn et al., 2014) amongst other 

functions. Additionally, this circuit links to cortical areas, such as the dorsolateral and 

dorsomedial prefrontal (dlPFC/dmPFC) regions of the dorsal cognitive circuit, which are 

implicated in emotion regulation (van den Heuvel et al., 2016, Kohn et al., 2014). A 

consistent observation in OCD is the dysfunctional activity within the fronto-limbic 

circuit during emotional processing (Thorsen et al., 2018). 

The sensorimotor circuit includes cortical and subcortical regions involved in 

the generation and control of motor behaviors and the integration of sensory information 

(van den Heuvel et al., 2016). Sensory phenomena and altered habit formation are 

involved in the sensorimotor cortex. Sensory phenomena, often experienced by a 

significant portion of patients (60-70%), refers to uncomfortable sensations or 

perceptions that induce repetitive behaviors, aside from the well-known fear-driven OCD 

symptoms related to potential threats (Shephard et al., 2021). The term "altered habit 

formation" relates to habits, which are rigid, largely subconscious behaviors indifferent to 

motivation and outcomes. Excessive habit formation, possibly due to heightened activity 

in the sensorimotor circuit or an over-dependence on the habit-learning system rather 

than the goal-oriented system, could be a factor underlying certain compulsive behaviors 

(e.g., checking) in OCD (Shephard et al., 2021). 

The ventral affective circuit encompasses the orbitofrontal cortex (OFC), ventral 

striatum (particularly the nucleus accumbens), and thalamus. This circuit might be 

associated with disrupted reward responsiveness, a term indicating changes in the 
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capacity to anticipate, symbolize, and react to rewards, such as diminished sensitivity to 

rewards and overgeneralization of punishments. 

The dorsal cognitive circuit supports executive functions essential for efficient 

goal-oriented behavior, such as planning, working memory, and superior regulation of 

emotional, motivational, and sensorimotor processes (van den Heuvel et al., 2016). These 

dorsal cognitive areas link with the inferior parietal regions, constituting the fronto-

parietal network. 

The ventral cognitive circuit comprises prefrontal and striatal regions that are 

instrumental in self-regulatory behaviors (van den Heuvel et al., 2016). One critical 

function of this circuit implicated in OCD is response inhibition—the capacity to 

suppress inappropriate actions. This function is partly controlled by the inferior frontal 

gyrus (IFG) and the subthalamic nucleus (STN) (van den Heuvel et al., 2016, Aron et al., 

2014), with additional involvement of regions beyond the ventral cognitive circuit, such 

as the inferior parietal lobule and insula (Swick et al., 2011). The persistence of 

maladaptive, repetitive thoughts and actions in OCD, despite the individual's recognition 

of their excessiveness, irrationality, and negative impacts, points to possible inhibition 

deficits. These dysfunctions might contribute, at least in part, to the manifestation of 

obsessions and subsequent compulsive behaviors. 

 

Developmental perspective on symptoms and disorder onset 

During normative development, children show repetitive, ritualistic, and compulsive-like 

behavior that resembles OCS. Evans et al. (1997) found that many OCSs were found in 



   
 

11 

children aged 2 to 4 years when targeting normal children aged 8 months to 6 years. They 

classified compulsive-like behavior into two groups: repetitive behaviors (e.g., insistence 

on the same routines and schedules, repeating actions over and over again), and ‘just 

right’ behavior (e.g., insistence on symmetry and ordering). This suggests that obsessive-

compulsive behavior may also occur in normal children who do not have obsessive-

compulsive disorder. 

Subsequent studies report that OCS is a risk factor that increases the incidence of 

OCD and is associated with decreased cognitive function. A longitudinal population-

based study found that 8% of children at age 11 reported having OCS, and children who 

reported subclinical OCS at this age were more likely to develop OCD at follow-up 

assessments that occurred at 26 and 32 years (Fullano et al., 2009). Moreover, studies 

also showed that OCS was associated with a deficiency in cognitive ability (e.g., 

cognitive flexibility, response inhibition) (Sternheim et al., 2014, Abramovitch et al., 

2015).  

However, not all children who report OCS will go on to develop OCD. In fact, 

ritualistic and compulsive behavior is also present in normal developments (Evans et al., 

1997). Further, a recent longitudinal study found different developing trajectories for 

youth with OCS (Luke et al., 2021). The authors assessed the occurrence of OCS in the 

study participants from pre-kindergarten to high school. The findings indicated that the 

progression of OCS could be categorized into three distinct paths (i.e., pre-kindergarten 

peak, high school peak, no peak groups). The study demonstrated that OCS fluctuates 

over time, and individuals with OCD may exhibit diverse onset patterns. Given the 
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dynamic brain development during childhood and adolescence, different patterns of brain 

development may correspond to specific OCS progressions, though this hypothesis 

remains unconfirmed.      

To summarize the developmental perspectives on OCD presented above, children 

show compulsive-like behaviors during normative development that coincide with the 

maturation of the neural systems responsible for among others behavioral inhibition. 

These normative compulsive behaviors mirror clinical OCD symptoms in terms of their 

phenomenology and proposed neuropsychological basis. Early OCS can predict clinical 

OCD in later life and the earliest signs of OCD can often be traced back to early 

normative compulsive-like behaviors, suggesting a potential continuity between the 

normative symptoms and clinical OCD. Though mechanisms underlying these risk 

factors are poorly understood, it is proposed they are mediated by alterations in the 

structure and function of OCD-relevant neural circuitry. 
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Rationale, research question, and thesis outline 

The overarching goal of this study is to contribute to early interventions and the 

understanding of the developing mechanism of Obsessive-Compulsive Disorder (OCD). 

To achieve this, I have extensively reviewed OCD neuroimaging studies and, 

consequently, have identified two major gaps in the literature. 

Literature gap 1. The extent to which cerebral white matter microstructure can 

differentiate obsessive-compulsive disorder has not been definitively established in large 

datasets. 

Previous neuroimaging research has disclosed anomalies in the brain structure of 

OCD  patients, providing a basis for a plausible neural circuit model elucidating OCD. 

These studies primarily highlighted pervasive morphometric alterations and white matter 

microstructural aberrations in OCD individuals. Although this body of research has 

significantly contributed to our understanding of the neuroanatomical characteristics 

associated with OCD, the potential of these characteristics in accurately identifying OCD 

patients remains ambiguous. 

A considerable proportion of this research has relied on mass-univariate analyses 

and linear interactions. This approach bears inherent limitations as it fails to encapsulate 

the brain's intricate nature as a complex system underpinned by non-linear interactions. 

This, in turn, casts doubt on the feasibility of implementing early intervention strategies 

grounded in these studies.  

To actualize an early intervention for OCD based on neuroimaging, there is a 

pressing need to assess the disability prediction efficacy using the most comprehensive 
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neuroimaging dataset of OCD patients available currently. This endeavor will provide 

valuable insight into the practicability of OCD prediction based on neuroimaging. 

Furthermore, by discerning the variables that substantially contribute to the predictive 

model, we may ascertain if they correspond with the previously unveiled brain regions. 

This could potentially refine the neurobiological model of OCD, ensuring a more holistic 

understanding of this disorder. 

Considering the literature gap, we proposed research questions as follows: 

Utilizing the most extensive existing neuroimaging dataset for OCD patients, can white 

matter microstructure have utility for OCD identification and associated clinical factors? 

Is there a notable correlation between brain-based OCD risk and clinical variables? 

Which white matter tracts contribute to the recognition of OCD? 

In Chapter 2, we developed machine learning models that classified OCD and 

related clinical variables, such as medication status and unmedicated OCD, leveraging 

data from 1,336 adult and 317 pediatric participants in the ENIGMA-OCD working 

group. This dataset represents the largest neuroimaging collection of OCD patients 

currently available. Our approach involved utilizing H2O Driverless AI (version 1.8.7.1) 

for automated machine learning, applying anisotropy and diffusivity estimates of white 

matter (FA, MD, AD, RD; N=252; 4 * {(19 fascicules * 3 (left, right, total) + 5 fascicules 

(total; e.g., corpus callosum, fornix) + average metrics across all fascicules)} as well as 

biological variables such as age and sex. We then assessed the performance of these 

models using metrics like ROCAUC, sensitivity, specificity, and accuracy. To explore 

associations between brain-based OCD risk and clinical variables such as severity and 
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age of onset, we implemented a generalized linear model. Additionally, we employed k-

LIME (k-Local Interpretable Model-agnostic Explanation) to analyze feature 

significance. Our hypothesis suggested that our models would outperform the 

morphometry model (Bruin et al., 2020), examine a link between brain-based OCD risk 

and clinical characteristics of OCD, and demonstrate the contribution of the CSTC-

related tract to diagnosis classification. 

Literature gap 2. Individuals with Obsessive-Compulsive Symptoms (OCS) are 

heterogeneous, and underlying factors have yet to be investigated. 

Based on current research findings, it is limited to predict the symptomatic 

changes in children at risk for OCD. In the absence of intervention, OCS do not 

necessarily escalate over time. OCS is prevalent among numerous normative developing 

children during their formative years (Evans et al., 1997). Often, these symptoms 

decrease as the child grows, underscoring the potential for spontaneous alleviation of 

symptoms over time (Zohar & Felz, 2001). Indeed, longitudinal studies monitoring OCS 

from pre-kindergarten to high school have identified a symptom reduction trend in high-

risk pediatric OCD cases, despite an elevated risk in adolescence among initial low OCS 

risk groups (Luke et al., 2021). Thus, it is not definitively inevitable for children with 

OCS to experience symptom worsening.  

Heterogeneity in prognoses is anticipated among children presenting with OCS. 

The body of research on OCS prognosis is sparse, with even fewer studies investigating 

individual outcome differences. Previous OCS studies primarily concentrated on the 

OCD risk group, identified by surpassing thresholds on OCS measures. This group 



   
 

16 

exhibited diminished neurocognitive capabilities, including cognitive flexibility and 

response inhibition (Sternheim et al., 2014, Abramovitch et al., 2015). Recent 

neuroimaging studies have suggested potential abnormalities in youth demonstrating high 

OCS, who are generally considered at risk for OCD. Some reports have indicated an 

enlargement of the thalamus and ventral nuclei in children who may develop OCD 

(Weeland et al., 2020, Weeland et al., 2022), and possible abnormal functional 

connectivity in the putamen and thalamus among adolescents (Suñol et al., 2021). These 

findings could imply a link between OCS and neurocognitive deficits, suggesting the 

possibility of underlying brain changes. Yet, it should be noted these studies often treat 

the OCS group as homogenous, potentially neglecting individual prognosis variations, 

and the factors influencing such variations warrant further research. 

Given this literature gap, we proposed research questions as follows: What are 

the patterns of symptomatic changes in children at risk for OCD over time? What factors 

contribute to the spontaneous alleviation or exacerbation of OCS in children, particularly 

in the transition from childhood to adolescence? To what extent does the prognosis vary 

among children presenting with OCS, and what factors influence these variations? 

In Chapter 3, we used a generalized random forest to identify the individual 

differences in the influences of OCD risk on OCD symptom severity in preadolescents 

and whether neural and psychosocial factors contribute to the individual differences. We 

defined a risk for obsessive-compulsive disorder if symptoms exceed a certain threshold. 

We build generalized random forest models to identify variance in OCD risk effect on 
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OCD symptom severity. We statistically tested whether there is heterogeneity in OCD 

risk effect on OCD symptom severity.  
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Chapter 2: White matter diffusion estimates in obsessive-compulsive disorder across 

1,653 individuals: Machine learning findings from the ENIGMA OCD Working Group 

 

This chapter was jointly written with the following principal co-authors; Gakyung Kim†, 

ENIGMA-OCD working group, Paul M. Thompson, Willem B. Bruin, Guido A van 

Wingen, Federica Piras, Fabrizio Piras, Dan J. Stein, Odile A. van den Heuvel, H. Blair 

Simpson, Rachel Marsh, Jiook Cha 

† indicates co-first author.  

 

Introduction 

Obsessive-compulsive disorder (OCD) is a common, often chronic psychiatric disorder, 

affecting 1.0-1.5% of the global population over their lifetime (Fawcett et al. 2020). 

Extensive neuroimaging research suggests structural and functional abnormalities in 

cortico-striato-thalamo-cortical (CSTC) circuits in OCD (Boedhoe et al. 2017; de Wit et 

al. 2014; Norman et al. 2016; Stein et al. 2019; Chamberlain et al. 2008; Menzies et al. 

2008). The field has also started to address the question of whether multivariate analyses 

of neuroimaging data can be used to classify OCD (W. Bruin et al. 2019; W. Bruin et al. 

2020).  

Prior OCD studies with relatively small to modest samples show mixed findings, 

with OCD classification accuracies varying from 66% to 100% (W. Bruin, Denys, and 

van Wingen 2019). However, the generalizability of such findings has rarely been tested, 

and reproducibility failures have been a major challenge in psychiatric neuroimaging 
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(Zhou et al. 2018; W. Bruin et al. 2020; Yun et al. 2015; Hoexter et al. 2013). Indeed, 

typical single-site neuroimaging studies seeking brain-wide associations with 

psychopathology using small sample sizes of tens to hundreds of individuals may report 

inflated effect sizes, decreasing reproducibility (Marek et al. 2022).  

The ENIGMA OCD consortium has allowed rigorous mega-analyses and meta-

analyses based on the largest international multisite neuroimaging datasets to date (W. 

Bruin et al. 2020). A machine learning analysis of regional measures of cortical 

thickness, surface area and subcortical volume found that model performance did not 

exceed chance-level, but that classification performance was improved when individuals 

with OCD were grouped according to medication status.  

Altered white matter pathways have been implicated in the neurobiology of OCD 

(Radua et al. 2014). An ENIGMA-OCD study using diffusion tensor imaging reported 

significantly lower fractional anisotropy (FA) in the sagittal striatum (SS) and posterior 

thalamic radiation (PTR), higher mean diffusivity (MD) in the SS and higher radial 

diffusivity (RD) in SS and PTR (Piras et al. 2021). However, the question of whether 

white matter diffusion tensor imaging findings can be used to classify OCD has not yet 

been explored in large and multisite studies.  

In this study, we therefore used ENIGMA-OCD on diffusion tensor imaging to 

test the classification power of such measures in a large multisite sample of individuals 

with OCD and healthy controls. We tested several machine learning algorithms to 

distinguish those with OCD versus healthy controls, as well as to distinguish OCD 

individuals off medication versus healthy controls, and to distinguish OCD individuals on 
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versus off medication. We also assessed the site-variability and reproducibility of 

predictive models using leave-one-site-out cross-validation and evaluated the utility of a 

post-processing harmonization tool (i.e., NeuroComBat). Finally, we employed a 

machine learning interpretation framework to assess which features were most relevant to 

the various classifications. 

 

Methods 

ENIGMA-OCD Working Group 

Data from the ENIGMA-OCD Working Group recruited from 18 international research 

institutes were used. We analyzed data from 1,653 participants, including 1,336 adult 

participants (429 unmedicated OCD, 261 medicated OCD, 646 HC) and 317 pediatric 

participants (70 unmedicated OCD, 105 medicated OCD, 142 HC) (Table 1). Here, we 

defined pediatrics as under the age of 18 years old, consistent with previous work from 

the ENIGMA-OCD working group (Boedhoe et al. 2017, 2018; W. Bruin et al. 2020). 

The diagnosis of OCD and other comorbid conditions (i.e., anxiety disorders and major 

depressive disorder) were assessed using DSM-Ⅳ criteria (American Psychiatric 

Association, 2000). Clinical characteristics included medication status, childhood-onset, 

disease duration (in years), symptom severity (total scores ranging from 0-40 on the 

(Child) Yale-Brown Obsessive-Compulsive Scale ((C)Y-BOCS) (Goodman, 1989; 

Scahill et al. 1997) and current or lifetime history of symptom dimensions (i.e., 

aggression/checking, cleaning/contamination, sexual/religion, hoarding, 
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ordering/symmetry). Participants who did not have medication information were 

excluded from the medication classification analysis. 

 

Image Acquisition and Processing 

Image preprocessing, including brain extraction, eddy current correction, 

movement correction, echo-planar imaging-induced distortion correction, and tensor 

fitting, was conducted at each site, and Tract-Based Spatial Statistics (TBSS) was 

performed using protocols and quality control pipelines provided by the ENIGMA-DTI 

working group (http://enigma.ini.usc.edu/protocols/dti-protocols/) (Piras et al. 2021). For 

the entire skeleton in each hemisphere, four DTI measures (FA, MD, AD, and RD) were 

estimated within 25 tract-wise regions of interest (ROIs) based on the Johns Hopkins 

University (JHU) white matter parcellation atlas (Piras et al. 2021). 

 

OCD classification with Machine Learning 

We conducted automated machine learning (AutoML) with H2O Driverless 

Artificial Intelligence (AI) (DAI, 1.8.7.1 version) using white matter anisotropy and 

diffusivity estimates (FA, MD, AD, RD; N=252; 4 * {(19 fascicules * 3 (left, right, total) 

+ 5 fascicules (total; e.g., corpus callosum, fornix) + average metrics across all 

fascicules)} and biological variables (age, sex). Three classification models were built in 

adult and pediatric samples, separately: (1) OCD vs. HC, (2) unmedicated OCD vs. HC 

(to test the effects of pure OCD–not confounded by medication effects–on the white 

matter), (3) medicated OCD vs. unmedicated OCD (to test the medication effects on the 
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white matter). To prevent data leakage and reduce model overfitting, we split the entire 

data into a discovery set (80%) and a replication set (20%) (stratified by diagnosis). In the 

discovery set, we used leave-one-site-out (LOSO) cross-validation (11 sites for adults, 

seven sites for pediatrics) (Figure 6). With this scheme, within the discovery set, we 

evaluated the cross-site variability (or generalizability); within the replication set, we 

tested the overall model generalizability considering potential site variability. The test 

samples of the discovery data were not used during model optimization. The machine 

learning pipeline in AutoML involves the estimation of several base models (e.g., 

XGBoost, LightGBM, the general linear model (GLM)) and stacked ensemble models 

(Laan et al. 2007) derived from base models. The AutoML pipeline performs random 

hyperparameter tuning along with feature transformation (e.g., interaction encoding, 

numeric to categorical target encoding). Firstly, in each iteration, models learn and 

update the weights of the features and select important features based on the prior 

iteration. Then, the pipeline searches for the best feature transformations and model 

parameters using genetic algorithm (Whitley, 1994). In DAI, this procedure is called 

“feature evolution”.  In genetic algorithm’s evolution can be seen as a competition 

between mutating parameters to find best “individuals” refering to information about 

feature transformations and hyperparameters. The feature evolution procedure is not 

completely random and is informed from the variable importance interactions obtained 

from the modeling algorithms. So, this model training procedure including feature 

selection, transformation, and hyper-parameter tuning was performed using 11-fold-

cross-validation scheme. In each fold, 10 folds were used for training the model, while 
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the remaining 1-fold was used to (cross)validate the best training model. Finally, the best 

cross-validation models from each fold were combined and tested on a held-out 

replication set. In this way, the validation data within the 11-fold cross validation was not 

used for model optimization and feature evolution. Likely, replication data was not used 

for data preprocessing, model training or optimization. We used the ROC-AUC as the 

primary performance metric and accuracy, sensitivity, and specificity as additional 

metrics. pROC v. 1.16.2 in the R programming language was used to calculate the 

metrics (Robin et al. 2011). 

 

NeuroCombat Harmonization 

To reduce potential biases caused by site and scanner effects, we employed 

NeuroComBat harmonization (Fortin et al. 2018). ComBat, a short name for combatting 

batch effects when combining multiple batches (Fortin et al. 2017, 2018), corrects 

potential scanner/site effects on brain data by harmonizing the mean and variance of 

brain measures across scanners. We separately harmonized the diffusivity measures in the 

discovery and replication data while also including age and sex as covariates in the model 

matrix. Non-parametric empirical Bayes adjustments were used to adjust for batch 

effects. 

 

Model Interpretation  

To interpret the machine learning classifiers, we calculated the relative weights of 

DTI features contributing to OCD classification. We used two steps to determine the 
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relative weights of DTI features contributing to OCD classification. First, we calculated 

the relative weights of each base model according to the model-specific algorithm. For 

LightGBM and XGBoostGBM, DAI computed the average reduction in impurity across 

all trees. Second, the importance of each base model was multiplied by its weight and 

normalized. We further implemented a machine learning interpretation framework, K-

Local Interpretable Model-agnostic Explanation (K-LIME) (Ribeiro, Singh, and Guestrin 

2016). This method fits surrogate linear models to data to extract the important features 

either positively or negatively associated with a target outcome: (1) OCD vs. HC, (2) 

unmedicated OCD vs. HC, and (3) medicated OCD vs. unmedicated OCD. 

 

Statistical Analysis 

To assess the effects of sites on diffusion white matter estimates, we performed 

principal component analysis (PCA). We tested the association between predicted OCD 

probabilities and clinical variables (e.g., medication status, childhood-onset) using 

stepwise regression models (Ganesh et al. 2021). Additionally, we tested site effects on 

individual classification performances (i.e., whether participants were correctly classified 

as OCD or HC). To adjust for potential confounding factors, we included the following 

variables as covariates: age, sex, site, and average DTI metrics (i.e., mean FA, AD, RD, 

MD). 

 



   
 

25 

Results 

Demographic Characteristics 

This study included 1,336 adult participants (690 OCD, 646 HC) and 317 pediatric 

participants (175 OCD, 142 HC). Out of the adult OCD samples, 37.8% were taking 

medication, while 60% of the pediatric OCD sample were taking medication. OCD 

patients showed comorbidity with lifetime anxiety disorders (adult: 11.02%, pediatric: 

27.4%) and major depressive disorder (adult: 12.2%, pediatric: 10.3%). Table 1 and 

Table 2 contain detailed demographic and clinical characteristics of the participants. 

Demographic characteristics were not significantly different between OCD and HC (P’s> 

0.45). However, the clinical characteristics varied across sites, including childhood-onset: 

X2= 93.66, p<0.001, and symptom dimensions: Aggression/checking: X2=64.33, 

p<0.001, Cleaning: X2=53.02, p=0.002, sexual/religious: X2= 46.33, p=0.012, hoarding: 

X2=73.06, p<0.001, symmetry/ordering: X2= 145.03, p <0.001 in adults. Illness duration 

also varied across sites in the pediatric samples, F = 13.20, p<0.001. 
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Table 1. Demographic and clinical characteristics of patients with obsessive-

compulsive disorder (OCD) and healthy controls (HCs). 

Characteristics 
Adult OCD 
sample 
(n = 690) 

Adult HC 
sample 
(n = 646) 

Pediatric OCD 
sample 
(n = 175) 

Pediatric HC 
sample 
(n = 142) 

Demographic Characteristics 

  Age (years) 31.6± 9.78 30.8± 9.97 14.5±2.3 14.3±2.4 
  Male N (%) 397 (25.6) 380 (24.2) 97 (27.8) 77 (22.1) 
Clinical Characteristics 
  OCD illness severity score 25± 7.11  20.8±8.0  

  Childhood-onset N (%) 351 (51.7)    

  Duration of illness 12.4± 11.1  3.0±2.5  

  Medication use at time of scan 
N (%) 

261 (37.8)  105 (60)  

Lifetime diagnosis 
  Anxiety 76 (11.02)  48 (27.4)  

  Major depression 84 (12.17)  18 (10.3)  

Current comorbid disorders 
  Anxiety 69 (10.0)  29 (16.6)  

  Major depression 77 (11.2)  6 (3.4)  

OCD symptom dimension 
  Aggressive/checking 411 (59.6)  73 (41.7)  

  Contamination/cleaning 355 (51.5)  62 (35.4)  

  Symmetry/ordering 370 (53.6)  68 (38.9)  

  Sexual/religious 228 (33.0)  55 (31.43)  

  Hoarding 114 (16.5)  47 (26.9)  
 
Note. Symptom score was indicated by total score on the adult and child version of the 

Yale-Brown Obsessive Compulsive Scales. OCD symptom dimensions were measured 

with the YBOCS symptom checklist. 
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Table 2. Demographic and clinical characteristics of each site. 

Site 
OCD/HC 
(N) 

Age Male 
Medicat
ed N 
(%) 

Childhood-
onset N (%) 

Duration 
of illness 

YBOCS 
score 

Lifetime 
anxiety 
N (%) 

Lifetime 
depression 
N (%) 

(A) Adult 

Amsterdam 38/34 39.2±10.
5 

16 
(42.1) 

0 24 (66.7) 23.7 ± 12.8 21.3 ± 6.
1 

16 
(42.1) 

18 (47.4) 

Bangalore 158/131 28.1±6.2 90 (57) 63 (40) 47 (29.7) 7.2 ± 5.2 
25.5 ± 6.
5 

14 (8.7) 21 (13.3) 

Capetown 22/26 30±10.2 
11 
(47.8) 

9 (39.1) 17 (73.9) 17.2 ± 11.5 23 ± 4.2 0 (0) 0 

Kyoto 35/41 31.3±8.7 14 (40) 0 10 (28.6) 7.7 ± 6.2 
21.9 ± 6.
6 

3 (8.6) 0 

Milan 63/65 
34.3±11.
4 

44 
(69.8) 

38 
(60.3) 

41 (65.1) 18.9 ± 11.6 
31.4 ± 5.
2 

1 (1.6) 5 (7.9) 

NYC 16/18 27.9±6.9 5 (31.3) 
13 
(81.3) 

13 (81.3) 15.1 ± 6.7 
19.9 ± 5.
9 

8 (50) 3 (18.8) 

Munich 73/60 31.1±9.6 
47 
(64.4) 

44 
(60.3) 41 (56.9) 13.5 ± 10.3 

20.8 ± 6.
2 0 (0) 0 

Rome 77/111 36.5±11 
50 
(65.8) 

68 
(89.5) 42 (56.8) 17.3 ± 12.8 

23.2 ± 9.
3 8 (10.5) 7 (9.2) 

Sao Paulo 37/29 
36.3±11.
7 

16 
(43.2) 

13 
(35.1) 31 (88.6) 26.3 ± 13.5 

29.2 ± 6.
2 

25 
(67.6) 28 (75.7) 

Seoul 92/86 26±6.5 60 
(65.2) 

13 
(14.1) 

41 (46.1) 6.2 ± 7 25.8 ± 6.
9 

1 (1.1) 2 (2.17) 

Shanghai 79/45 29.2±9.2 44 
(55.7) 

0 21 (26.9) 6 ± 5.9 26.2 ± 4.
7 

0 (0) 0 

(B) Pediatric 

Bangalore 13/12 13.7±2.0 6 (23.0) 
11 
(42.3) 

 1.46±1.0 21±7.6 3 (23.1) 1 (7.7) 

Barcelona 52/27 14.9±1.8 
30 
(28.9) 

41 
(39.4) 

 2.64±2.2 
18.7±7.
6 

15 
(28.9) 

3 (5.8) 

British 
Columbia 

13/16 13.3±3.2 3 (11.5) 
11 
(42.3) 

 3.12±2.7 
13.4±6.
4 

15 
(38.5) 

0 

Calgary 19/18 12.2±2.4 
10 
(26.3) 

0   23.1±4.
7 

NA 0 

Chiba 20/6 14.3±2.0 
13 
(32.5) 

8 (20)  2.1±1.8 
26.9±6.
2 

2 (10) 0 

Oxford 21/23 16.3±1.3 
11 
(26.2) 

14 
(33.3) 

 4.46±3.2 
19.6±7.
4 7 (33.3) 5 (23.8) 

Yale 23/22 14.3±2.2 
13 
(26.3) 

12 
(28.6) 

  26.9±4.
5 

10 
(43.5) 9 (39.1) 

Zurich 14/18 15.2±1.5 
11 
(27.7) 8 (30.0)  4.74±2.3 

16.1±10
.2 6 (42.9) 0 

 

Note. YBOCS Yale-Brown Obsessive–Compulsive Scale, NA not available. 
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Classification of OCD 

The principal component analysis (PCA) of the four-diffusion metrics (FA, MD, 

AD, RD) across the 18 international sites revealed site variability (Figure 1). In the PCA 

biplot, we observed two sites, one from adults and one from pediatrics, which were 

distinct from other sites. We then performed three classification tasks using the stacked 

ensemble machine learning models (LOSO cross-validation): (1) OCD vs. HC, (2) 

unmedicated OCD vs. HC, and (3) unmedicated OCD vs. medicated OCD (Table 3). 

In adult samples, the models minimally-to-modestly classified participants with 

OCD diagnosis from healthy controls in the discovery set (N = 1068, ROC AUC = 67.29 

± 0.26) and the replication set (N = 268, ROC AUC = 57.19 ± 3.47). The models also 

minimally-to-modestly distinguished unmedicated OCD versus healthy individuals in the 

discovery set (N = 854, ROC AUC = 63.96 ± 0.43) and the replication set (N = 214, ROC 

AUC = 62.67 ± 3.84). Finally, the models distinguished medicated OCD versus 

unmedicated OCD participants in the discovery set (N = 437, ROC AUC = 60.22 ± 0.40) 

and the replication set (N = 137, ROC AUC = 76.72 ± 3.97).  

In pediatric samples, the models classified participants with OCD diagnosis 

versus healthy controls in the discovery set (N = 270, ROC AUC = 69.54 ± 8.59) and the 

replication set (N = 64, ROC AUC = 59.80 ± 7.39). The models also classified 

unmedicated OCD versus healthy individuals in the discovery set (N = 151, ROC AUC = 

65.96 ± 12.33) and the replication set (N = 38, ROC AUC = 48.51 ± 10.14). Finally, the 

models classified medicated OCD versus unmedicated OCD participants in the discovery 
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set (N = 140, ROC AUC = 61.82 ± 15.50) and the replication set (N = 35, ROC AUC = 

72.45 ± 8.87) (Table 3, C). 

In classifying OCD and HC, the ROC AUC of adult samples ranged from 51.6% 

(site C) to 79.1% (site F), and pediatric samples ranged from 35.9% (site M) to 63.2% 

(site L) across sites. Also, mean values of DTI metrics across all ROIs showed significant 

differences across sites (Fs > 97.4, p<.001). The site variability was significantly 

associated with the classification performance in OCD patients (𝟀2 = 57.19, p< .001) and 

HCs (𝟀2 = 50.30, p< .001) when adjusting for the covariates. 
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Table 2. Performance of classification of OCD clinical outcomes in (A) adult, (B) 

adult applied NeuroComBat harmonization, (C) pediatric, (D) pediatric applied 

NeuroCombat harmonization samples. ― mean with 95% confidence interval 
(A) Adult sample 

 
OCD (N = 690) 
 vs. HC (N = 646) 

unmedicated OCD  
(N = 429)  
vs. HC (N = 646) 

unmedicated OCD (N = 429)  
vs. medicated OCD (N = 261) 

Discovery set Replication set Discovery set Replication set Discovery set Replication set 

ROC-AUC 67.29 ± 0.26 57.19 ± 3.47 63.96 ± 0.43 62.67 ± 3.84 60.22 ± 0.40 76.72 ± 3.97  
Accuracy (%) 66.37 ± 0.27 57.08 ± 3.22 64.64 ± 0.49 61.68 ± 3.58 66.88 ± 0.32 67.15 ± 12.83 
Sensitivity (%) 61.96 ± 0.79 75.36 ± 8.49 65.84 ± 1.66 58.82 ± 19.79 58.7 ± 1.53 92.31 ± 2.95 

Specificity (%) 71.87 ± 0.73 37.69 ± 29.44 68.44 ± 1.00 63.57 ± 7.92 73.77 ± 1.44 51.76 ± 16.19 

Note. For the classification of medication status among OCD patients, some sites (i.e., 
Amsterdam, Shanghai) containing only unmedicated OCD were excluded from the 
discovery set. 
 
(B) Adult sample, NeuroComBat 

 
OCD (N = 690)  
vs. HC (N = 646) 

unmedicated OCD (N = 
429)  
vs. HC (N = 646) 

unmedicated OCD (N = 429) vs. medicated 
OCD (N = 261) 

Discovery 
set 

Replication 
set 

Discovery 
set 

Replication 
set Discovery set Replication set 

ROC-AUC 64 ± 0.05 51.07 ± 3.54 67.35 ± 
0.52 52.8 ± 4.18 66.12 ± 3.63 62.24 ± 5.08 

Accuracy 
(%) 

63.87 ± 
0.07 53.36 ± 3.64 66.44 ± 

0.52 60.75 ± 3.09 74.42 ± 0.65 68.6 ± 3.72 

Sensitivity 
(%) 

67.14 ± 
1.20 

37.68 ± 
25.16 

63.95 ± 
1.80 

37.65 ± 
17.42 76.14 ± 0.71  48.08 ± 13.79 

Specificity 
(%) 

60.96 ± 
1.24 70 ± 13.74 71.55 ± 

0.87 75.97 ± 9.51 70.31 ± 1.35 81.18 ± 4.19 

Note. For the classification of medication status among OCD patients, some sites (i.e., 
Amsterdam, Shanghai) containing only unmedicated OCD were excluded from the 
discovery set.  
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(C) Pediatric sample 

 

OCD (N = 175)  
vs. HC (N = 142) 

unmedicated OCD (N = 
105)  
vs. HC (N = 142) 

unmedicated OCD (N = 
105)  
vs. medicated OCD (N = 
70) 

Discovery 
set 

Replication 
set 

Discovery 
set 

Replication 
set 

Discovery set 
Replication 
set 

ROC-AUC 69.54 ± 8.59 59.8 ± 7.39 
65.96 ± 
12.33 

48.51 ± 
10.14  

61.82 ± 
15.50  

72.45 ± 8.87 

Accuracy 
(%) 

73.56 ± 6.82 62.5 ± 6.38 69.15 ± 8.35 57.9 ± 8.06 
69.15 ± 
11.18 

74.3 ± 5.83 

Sensitivity 
(%) 

73.25 
±17.25 

65.71 ± 
16.03 

73.43 ± 
14.12 

50 ± 25.51 
73.43 ± 
12.74 

95.24 ± 2.43 

Specificity 
(%) 

73.03 ± 
13.18 

58.62 ± 
20.58 

68.75 ± 9.90 62.5 ± 19.13 
68.75 ± 
15.95 

42.86 ± 
29.15 

Note. For the classification of medication status among OCD patients, some sites (i.e., 
Calgary) containing only unmedicated OCD were excluded from the discovery set. 

(D) Pediatric sample, NeuroComBat 

 

OCD (N = 175)  
vs. HC (N = 142) 

unmedicated OCD (N = 
105)  
vs. HC (N = 142) 

unmedicated OCD (N = 
105)  
vs. medicated OCD (N = 
70) 

Discovery 
set 

Replication 
set 

Discovery 
set 

Replication 
set 

Discovery 
set 

Replication 
set 

ROC-AUC 
66.05 ± 
0.41 

60.49 ± 7.20 
60.71 ± 
0.92  

55.36 ± 
10.15 

66.78 ± 
0.35 

58.2 ± 8.85 

Accuracy (%) 
67.56 ± 
0.38 

62.5 ± 6.38 
61.46 ± 
0.28 

71.05 ± 8.06 72.1 ± 0.28 60 ± 5.82 

Sensitivity 
(%) 

62.28 ± 
1.55 

71.43 ± 
13.10 

84.06 ± 
0.91 

35.71 ± 
25.51 

77.5 ± 0.91 47.61 ± 2.43 

Specificity 
(%) 

77.16 ± 
1.46 

51.72 ± 
24.63 

54.69 ± 
2.05 

91.67 ± 
19.13 

68.75 ± 
2.05 

78.57 ± 
29.15 

Note. For the classification of medication status among OCD patients, some sites (i.e., 
Calgary) containing only unmedicated OCD were excluded from the discovery set. 
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Classification of OCD with NeuroCombat-harmonized data 

Considering the site variability (Figure 1), we implemented the ML analysis with 

NeuroCombat-harmonized data to correct site effects. The NeuroComBat-harmonized 

data showed slightly lower performance in the adult samples (Table 3, A) and slightly 

higher performance in the pediatric samples (Table 3, B). 
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Figure 1. A biplot of principal component analysis (PCA) using the diffusion tensor 

estimates of the major white matter fascicules across the 18 international sites. (A), 

PCA biplot before applying NeuroCombat. (Left: Adult, Right: Pediatric). Some sites 

(e.g., site B) show apparent clusters distinct from the rest of the sites. (B), PCA biplot 

after applying NeuroCombat. (Left: Adult, Right: Pediatric). 
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Figure 2. Classification of OCD diagnosis and medication status using diffusion 

tensor estimates. (A), classification performances in adult samples. (B), classification 

performances in pediatric samples. 
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Figure 3. Sample characteristics and prediction performance (ROC AUC) across 

sites. (A), in adult samples. (B), in pediatric samples. Left: Violin plots of 

sociodemographic, clinical, and brain features across sites, Right: Box plot of the area 

under the receiver operating characteristic curve (ROC AUC) for the leave-one-site-out 

(LOSO) cross validation in the diagnosis classification task (OCD vs. HC).  
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Variables Associated with OCD Classification 

Results of stepwise regression analysis indicated that, in adults, site (e.g., site H, 

site I), higher age, hoarding symptoms, and adult-onset were significantly associated with 

estimated OCD probabilities (t > 2.04, p<.05) (Table 4). In pediatric samples, site (e.g., 

site M, site S), lifetime diagnosis of depression, and aggression/checking symptoms 

significantly correlated with predicted OCD probabilities (t > 2.15, p<.05). 

 

Table 4. The association between brain-predicted OCD risk probabilities and 

clinical features in a discovery set (stepwise regression).  

(A) Adult sample, Discovery set (OCD = 379) (Adjusted = 15.15%) 

Variable Beta F P value 𝜂! 

Site  6.996 7.72E-08 0.118 

Age 0.011 16.152 7.10E-05 0.042 
Hoarding 0.017 8.316 0.004 0.022 
Childhood-onset -0.010 4.172 0.042 0.011 
Current Depression 0.015 2.372 0.124 0.006 

(B) Pediatric sample, Discovery set (OCD =55) (Adjusted = 32.89%) 

Variable Beta F P value 𝜂! 

Site  11.796 6.57E-05 0.325 

Depression -0.13142 5.062 0.029 0.094 
Aggression, Checking -0.0645 4.619 0.037 0.086 
Age 0.02355 1.896 0.175 0.037 
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Machine Learning Interpretation 

Our machine learning interpretation models showed that various specific diffusion 

white matter features contributed to the OCD classification (Figure 4). For the 

classification of OCD from HC in adult samples, the top 10 features included the superior 

corona radiata (MD), age, posterior thalamic radiation (FA), and posterior limb of the 

internal capsule (FA, AD). In the pediatric samples, the cingulum (MD, AD), uncinate 

fasciculus (MD), fornix (FA), corticospinal tract (FA), and anterior corona radiata (AD) 

were important in classifying OCD diagnosis (Figure 7). In classifying unmedicated 

OCD and HC, the internal capsule contributed to both adult (FA, AD of posterior limb) 

and pediatric samples (FA of the retrolenticular part, AD of anterior limb, FA of posterior 

limb) (Figure 4). In classifying medicated OCD and unmedicated OCD in adult samples, 

the top 10 features included the corpus callosum (total, genu), average FA, and average 

RD (Figure 7). For the pediatric samples, fornix and stria terminalis, cingulum (cingulate 

gyrus, hippocampus) were included in the top 10 features (Figure 7). 
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Figure 4. Top 10 features of classification models in adults. 
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Figure 5. Top 10 features of classification models in pediatrics. 
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Figure 6. Leave-one-site-out cross-validation. 
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Figure 7. Feature importance plot of the diagnosis and medication models in adult 

(Left) and pediatric (Right) samples. (A), relative importance plot of OCD vs. HC 

model. (B), the relative importance of unmedicated OCD vs. HC model. (C), relative 

importance plot of medicated OCD vs. unmedicated OCD model. The top 10 features are 

represented. 
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Discussion 

In this study, we tested the extent to the accuracy of machine learning in classifying the 

diagnosis or medication status of OCD patients based on white matter diffusion estimates 

obtained using the ENIGMA-matched image analysis pipeline across 18 international 

sites. Our results showed a low-to-moderate accuracy in predicting OCD diagnosis and 

medication status. Classification of medicated OCD versus unmedicated OCD had the 

best classification accuracy (ROC-AUC of 76.72 in adults), followed by unmediated 

OCD-health control classification (ROC-AUC of 63.96 in adults) and all OCD-HC 

(ROC-AUC of 57.19 in adults). In all OCD-HC classifications, the performance varied 

significantly across sites with cross-validated ROC AUC ranging 51.6-79.1 in adults, and 

35.9-63.2 in children. Diffusion white matter features contributing to OCD classification 

(compared with HC) include anisotropy and diffusivity estimates of white matter in the 

internal capsules, thalamic radiations, and uncinate fasciculus.  

The low-to-moderate accuracy of our machine learning models is consistent with 

prior work. OCD machine learning studies using structural MRI have found that accuracy 

in classifying OCD and HC, ranges from 60 to 90%, all in small datasets (N < 150) (W. 

Bruin et al. 2019; Zhou et al. 2018). However, these classification performances from 

small studies are likely to be inflated and not generalizable, while the true effect size (i.e., 

the brain-psychopathology association, regardless of the choice of analysis) may be 

smaller (Marek et al. 2022). Indeed, the recent large-scale ENIGMA OCD study found 

that machine learning models trained on grey matter morphometric estimates from 

structural MRI resulted in poor classification of OCD vs. HC (ROC AUC, 0.51-0.54; 
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leave-one-site CV) (W. Bruin et al. 2020). Our model based on white matter features 

showed improved classification performance compared with the grey matter 

morphometry model in adults and pediatric samples, though a direct comparison may not 

be warranted due to different machine learning pipelines and different subsamples used in 

this study. Future studies should determine whether multi-modal machine learning using 

structural and functional MRI can increase classification accuracy (Calhoun & Sui, 2016; 

Kuo et al. 2021; Guggenmos et al. 2020; Menon & Krishnamurthy, 2021). 

We observed significant site variability in classification performance. Firstly, this 

may be related to the variability of the quality of the diffusion MRI across sites. The 

aggregated ENIGMA MRI data were harmonized for the post-imaging processing 

procedure (e.g., TBSS) but not for data acquisition. Though this harmonization method 

was a best practice when the raw image data were not sharable, nevertheless, given the 

sensitivity of diffusion MRI to the image acquisition conditions (e.g., magnets types, 

pulse sequences, such as numbers of gradient directions or b values, etc.; compared with 

the grey matter morphometry validated across scanners, sites, and pulse sequence designs 

(Guo et al. 2019)), our approach is limited in controlling potential confounding factors 

and their impact on the quality of the diffusion white matter metrics. Also, our 

application of another post-processing harmonization method, NeuroComBat, was 

effective in matching the distributions of the data across the sites (in our PCA results). 

However, this method failed to result in a performance gain in the OCD classification 

(slightly higher AUC in pediatric samples, slightly lower AUC in adult samples) or a 

reduction of the cross-site variability. The covariate modeling with NeuroComBat also 
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did not demonstrate a gain in performance. Secondly, our international multisite clinical 

samples show variability in clinical characteristics such as symptom severity, age, adult-

onset, and duration of illness. The sampling variability may have added complexity to the 

already challenging task of OCD classification.  

Our analysis of the machine learning model indicated that OCD probability was 

significantly associated with several sociodemographic and clinical characteristics. In 

adults with OCD, a higher age, adult onset, greater hoarding symptoms, and greater 

depressive symptoms were more likely to be predicted as having OCD. The significant 

correlation of age and adult-onset with the OCD likelihood might reflect age-dependent 

patterns in the diffusion white matter estimates. Though there are no significant group 

differences in age between OCD and HC, the neurobiology of OCD might be related to 

abnormal aging effects on the diffusion white matter estimates. Indeed, some literature 

shows that psychiatric disorders, including OCD and anxiety disorders, are linked to 

accelerated brain aging (Liu et al. 2022; Han et al. 2021). However, the potential 

association between the neuropathophysiology of OCD and age appears more relevant to 

adults than to children because, despite the similar effect sizes of age and the OCD 

likelihood, only adult samples show statistical significance (probably due to a larger 

sample size). This may reflect the effects of chronicity in adult samples (Koch et al. 

2014).  

Our machine learning interpretation is consistent with prior white matter studies 

that have relied on univariate analyses and/or small samples size (Simpson et al. 2020). 

For example, the well-known CTSC pathway includes the internal capsule (posterior limb 
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(FA, AD) in adults and retrolenticular part (MD) in children), which has been implicated 

in habit formation and cognitive control in OCD (Spalletta et al. 2014). In the 

classification model of unmedicated OCD and HC, the corpus callosum - connecting the 

two cerebral hemispheres - was important in adults and pediatric samples alike. This 

finding is in line with the previous ENIGMA-OCD study (Piras et al. 2021) indicating 

that adult OCD was characterized by lower volume in the genu of the corpus callosum 

than HC. However, careful interpretation is needed because of differences in the brain 

metrics used, here based on tensor modeling (FA, MD). In addition, we found that the 

cingulum bundle contributed to the classification of unmedicated OCD and medicated 

OCD in both adult and pediatric samples. The cingulum bundle contains short and long 

connections between the frontal lobe, parietal lobe, and temporal lobe. In short, our 

machine learning findings suggest common patterns of white matter abnormalities in 

adult and pediatric OCD, as well as distinct patterns consistent with prior work (Boedhoe 

et al. 2017).  

The classification model of unmedicated OCD from HC showed greater 

accuracies than the model classifying all OCD from HC. This would suggest medication 

status likely confounds the white matter microstructure of OCD patients. In the literature, 

the causal effects of medication, Serotonin Reuptake Inhibitor (SSRI), on the white 

matter microstructure remain unclear: No randomized controlled trial exists. 

Nevertheless, given the key role of serotonin in neurodevelopment including gliogenesis 

(Milard et al. 2017, changes in extracellular serotonin levels in the brain owing to SSRI 

may impact the integrity of the white matter fibers. Prior correlational research supports 



   
 

47 

this. A cross-sectional study shows a decrease in FA in the sagittal striatum associated 

with medication use in adults with OCD compared to unmedicated OCD (Piras et al. 

2021); longitudinal clinical studies show a decrease in MD of the midbrain white matter 

bundles after 12-week administration of SSRI (Fan et al. 2012), a decrease in MD in the 

frontal regions and the corpus callosum (Seiger et al. 2021). Though some of these 

correlational findings might indicate causal effects of SSRI on the white matter, 

nevertheless, without direct causal evidence it is still unclear if the associations result 

from the neurobiological effects of SSRI, symptom improvement, or both. A practical 

implication of our finding is that the diffusion white matter-based model presents a 

particular utility in classifying medication naïve individuals with OCD from healthy 

individuals. Though not reaching the clinical utility yet (e.g., around AUC of 80%), with 

further research (perhaps with the integration of brain, genetic, and behavioral multi-

modal data (Rahaman et al. 2021) the white matter diffusion estimates might be used to 

predict the risk for OCD. Future research may test whether the models trained on 

medication naïve OCD patients—perhaps capable of learning the neurobiological 

patterns underlying the OCD without medication confounding—may be used for related 

tasks (e.g., via representational learning (Abrol et al. 2021).   

There are limitations of this study. Firstly, the imaging acquisition was not 

harmonized across the sites, so we could not test whether the suboptimal model 

performance or the cross-site variability might result from the issues of the data or not. 

Given the sensitivity of the anisotropy and diffusivity estimates depending on the pulse 

sequence designs (e.g., the number of directions, b-values) (Ni et al. 2006), despite the 
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harmonized image processing method (TBSS), the remaining data quality and validity 

issues perhaps may have worked against model performance. Secondly, since only the 

image-derived phenotypes were available from the ENIGMA consortium, but not the raw 

images, our results are only limited to a single type of analysis (TBSS) and metrics 

(diffusivity and anisotropy). Thirdly, our adult samples were larger than the pediatric 

samples, so our machine learning methods may have resulted in more optimized learning 

outcomes for adult samples.  

In conclusion, using the largest multisite DTI with harmonized image processing, 

our investigation indicates that machine learning models currently allow only poor-to-

modest classification power, but that captures meaningful multivariate patterns of white 

matter features relevant to the neurobiology of OCD. Accuracy is largely constrained by 

site variability, indicating room for future improvement. 
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Chapter 3: Individual Differences in the Influence of OCD on Symptom Severity and the 

Moderation of Resting State Functional Connectivity 

 

Introduction 

Obsessive-Compulsive Symptom (OCS) is common in preadolescence but usually does 

not meet the diagnostic threshold for obsessive-compulsive disorder. Similar to 

Obsessive-Compulsive Disorder (OCD), which affects 2% to 4% of adolescents, OCS is 

characterized by repetitive thoughts and behaviors (Evans et al., 1997). The diagnosis of 

OCD occurs when the distress and impairment arising from OCS manifest as intrusive 

and incapacitating, resulting in significant disruption to an individual's functioning. OCD, 

if untreated, is known to lead to academic, occupational, and social impairments, along 

with a reduced quality of life (Coluccia et al., 2016). The delay between symptom onset 

and diagnosis, averaging at 7.1 years (Hezel et al., 2022), exacerbates the distress 

experienced by individuals manifesting OCD symptoms. Research on OCS facilitates a 

dimensional approach to the disorder, moving away from binary 'all or nothing' 

perspectives, and aids in the identification of those at risk. 

Without treatment, Obsessive-Compulsive Symptoms (OCS) do not always 

worsen over time. OCS can be observed in numerous typically developing children 

during childhood (Evans et al., 1997), with these symptoms frequently diminishing as 

they mature, highlighting the possibility of spontaneous symptom alleviation over time 

(Zohar & Felz, 2001). Indeed, longitudinal studies tracking OCS from pre-kindergarten to 

high school have found a trend of symptom alleviation in high-risk pediatric OCD cases, 



   
 

50 

though increased risk in adolescence was also observed in those initially presenting with 

low OCS risk (Luke et al., 2021). Therefore, it cannot be conclusively assumed that 

children presenting with OCS are destined for symptom deterioration.  

Heterogeneity is to be expected in the prognoses of children presenting with OCS; 

research on the prognosis of OCS is scant, with studies examining individual differences 

in these outcomes even more scarce. Prior OCS literature focused on the OCD risk group, 

which exceeds the threshold in OCS instruments. The OCD risk group showed reduced 

neurocognitive ability including cognitive flexibility and response inhibition (Sternheim 

et al., 2014, Abramovitch et al., 2015). Furthermore, recent neuroimaging research has 

discovered abnormalities in youth groups exhibiting high OCS, considered at risk for 

OCD, based on population-wide samples. These studies reported an enlargement of the 

thalamus and ventral nuclei in children likely to have OCD (Weeland et al., 2020, 

Weeland et al., 2022). Additionally, they found abnormal functional connectivity in the 

putamen and thalamus among adolescents (Suñol et al., 2021). These findings highlight a 

strong link between Obsessive-Compulsive Symptoms (OCS) and decreased 

neurocognition, suggesting possible underlying brain alterations. However, these studies 

consider the OCS group as homogenous. They failed to consider potential individual 

differences in prognosis among these children, and the factors that could influence such 

outcomes remain under-investigated. 

Individual variability in the influence of Obsessive-Compulsive Disorder (OCD) 

on symptom severity presents a significant issue for accurate diagnosis and effective 

treatment. This study aims to explore these individual differences further, with a focus on 
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the moderating effects of resting state functional connectivity and psychosocial variables. 

Notably, prior study on children aged 9-11 by Pagliaccio et al. (2020), examining the 

correlation between OCD symptoms and their neural correlates, discovered differences in 

resting state brain function between children with severe OCD symptoms and those 

without (no such differences were found in brain morphology and white matter 

microstructure). Therefore, based on prior research, this study focuses on exploring the 

individual variability in OCD's impact on symptom severity, particularly considering 

resting-state functional connectivity (RSFC) and psychosocial variables. 

 

Methods 

The ABCD Study 

The Adolescent Brain Cognitive Development (ABCD) Study is a comprehensive 

investigation being conducted across 21 locations in the United States. Its primary 

objectives are to examine the differences in adolescent brain and cognitive growth and to 

comprehend the factors that contribute to such development (Volkow et al., 2018). The 

ABCD Study has implemented a recruitment strategy focused on elementary schools 

(both public and private) to gather baseline clinical, questionnaire, behavioral, and 

neuroimaging data from 9- and 10-year-old participants. This ongoing longitudinal study 

involves regular follow-up assessments (Garavan et al., 2018) The study employed 

exclusion criteria to ensure a specific participant sample, whereby individuals lacking 

proficiency in English, those with substantial medical or neurological conditions, 

premature birth, contraindications for magnetic resonance imaging (MRI), a history of 
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traumatic brain injury, a current diagnosis of schizophrenia, moderate to severe autism 

spectrum disorder, intellectual disability, or an alcohol or substance use disorder were not 

included. The present study examined the fourth public ABCD data release, which 

included baseline clinical, questionnaire, cognitive, and neuroimaging data and 

questionnaire data from the 2-year follow-up assessment. 

This study analyzed 5,284 individuals showing at least one OCS for two years 

recruited from ABCD study (Figure 1). 

 

Figure 1. Participants flowchart.  

 

Variables 

Obsessive-compulsive symptoms. The Child Behavior Checklist (CBCL)  was 

administered to parents/guardians in order to evaluate the emotional and behavioral 

functioning of their children. Age- and sex-normed T-scores were used for analyses 
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based on the prior study showing high correspondence with raw scores (Pagliaccio et al., 

2020). Our primary predictor of interest was the 8-item OCS subscale (Nelson et al., 

2001, Hudziak et al., 2006, Saad et al., 2017) The Child Behavior Checklist's (CBCL) 

Obsessive-Compulsive Symptoms (OCS) subscale is an instrument potentially used for 

evaluating obsessive and compulsive symptoms. It utilizes eight components, each rated 

on a 3-point Likert scale that ranges from 0 to 2. The prior study confirmed good 

psychometrics of the 8-item CBCL OCS subscale, including good fit of a once-

factor/unidimensional model and moderate/good internal consistency (standardized 

Cronbach’s α = .71, ω = .87) (Pagliaccio et al., 2020).  

OCD risk. It has been proposed in the literature that a threshold score of four or 

more on this scale could potentially display superior psychometric characteristics 

(Hudziak et al., 2006). We used this cut-off of 4 points or higher to define an ‘OCD risk’ 

for case-control analysis in generalized random forest models.  

 

Covariates. We included sociodemographic, psychosocial, and neuroimaging 

features from the baseline. These features were selected as they have the potential to 

mediate or moderate the effect of OCD risk on OCD symptom severity. 

Sociodemographic features. We selected 11 factors from the baseline survey, 

including four demographic characteristics (age, gender, and race), three socioeconomic 

statuses (parental education, household income, and marital status), one pubertal status, 

and one physical development factor. These factors were selected because they are likely 

to act as confounders (i.e., predictors of longitudinal OCS that are differentially 
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associated with OCD risk), effect modifiers (i.e., the association between OCD risk and 

longitudinal OCS depends on the level of these factors), or both. 

Psychosocial features. We included potential moderators related to prognosis of 

OCS; 1) the fluid, crystallized, and total scores from the National Institutes of Health 

Toolbox Cognitive Battery (NIHTB-CB) tests, 2) sleep problems from Sleep disturbance 

scale for children, 3) physical activity for one week, 4) parental behavioral problems 

from Adult Self Report Raw Scores Aseba (ASR), 5) the child-rated UPPS-P (urgency, 

premeditation [lack of], perseverance [lack of], sensation seeking, positive urgency) for 

Children Short Form (UPPS-P-CSF; ABCD version), 6) Prodromal Psychosis  Severity 

Score Sum from Prodromal Questionnaire–Brief Child Version, 7) family conflict from 

ABCD Parent Family Environment Scale-Family Conflict Subscale Modified from 

PhenX (FES), 8) Residential History Derived Scores from  

Neuroimaging features and quality control. We used resting-state functional 

connectivity features including internal connectivity measures (i.e., Within-network 

functional connectivities for 12 large-scale brain networks, Between-network functional 

connectivities between the 12 networks and 10 subcortical regions).  

High-resolution resting-state functional MR imaging of children was acquired by 

multi-band scanning (2.4 mm isotropic, TR=800ms, 6 factors). Standardized fMRI 

preprocessing included registration, distortion correction, and normalization. Post-

processing included regression of 24 temporally filtered motion parameters, frame-wise 

displacement (FD)>0.3mm outliers, as well as white matter, cerebral spinal fluid, and 

whole brain signal (Hagler et al., 2019). Within- and between-network connectivity was 
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extracted by averaging all connections between ROIs assigned to given networks of the 

Gordon atlas (Gordon et al., 2014). 

Quality control of imaging data. Par quality control (QC) information provided by 

QC file (abcd_imgincl01) from ABCD 4.0 release, data quality control was performed for 

all brain imaging data according to the quality control parameters recommended by 

ABCD study (Hagler et al., 2019). The QC criteria for rest-state functional MRI data 

mainly include the following: No serious MR findings (mrif_score ~=3 || mrif_score 

~=4); rsfMRI tfMRI series passed rawQC (iqc_rsfmri_ok_ser > 0); T1 series passed 

rawQC (iqc_t1_ok_ser > 0); rsfMRI Number of frames > 375 (rsfmri_c_ngd_ntpoints > 

375); fMRI B0 Unwarp available (apqc_fmri_bounwarp_flag == 1); FreeSurfer QC not 

failed (fsqc_qc ~= 0); fMRI Manual PostProcessing QC not failed (fmri_postqc_qc ~= 

0); fMRI registration to T1w: less than 19 (apqc_fmri_regt1_rigid < 19); fMRI Maximum 

dorsal cutoff score: less than 65 (apqc_fmri_fov_cutoff_dorsal < 65); fMRI Maximum 

ventral cutoff score: less than 60 (apqc_fmri_fov_cutoff_ventral < 60). 

 

Analysis 

The Generalized Random Forest (GRF) method was utilized to examine the 

impact of OCD risk on symptom severity, and to identify variability based on subject-

specific covariates. GRF uses the 'honest trees' strategy, wherein it teaches the tree model 

with one data subset and computes the treatment effect with a different data subset 

(Wager & Athey, 2018). By splitting data for tree model formation and for effect 

estimation, we effectively curtail overfitting risks, thereby enhancing the trustworthiness 
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of the treatment effect we derive. Furthermore, GRF uses a doubly robust estimator (i.e., 

augmented inverse-propensity weighting) in estimating the treatment effect, thus 

reducing the likelihood of potential confounding bias (Glynn & Quinn, 2010). 

The treatment effect was quantified in terms of the OCS severity. The causal 

forest method estimated conditional average treatment effect (CATE) for each participant 

as a conditional OCS severity difference, the difference between weighted OCS severity 

averages among treated and control participants with similar values for potential effect 

modifiers (the more similar values, the higher the weights). Positive CATE values 

indicate a predicted deterioration in OCS severity due to OCD risk exposure, while 

negative values indicate a predicted improvement in OCD risk exposure.  

The analysis process consists of five main steps (Figure 2). First, full model 

fitting. We fitted a causal forest model with preprocessed 134 covariates for the outcome, 

OCD symptom severity. In this procedure, the ‘causal forest’ function was applied, and 

2,000 tree models were composed of each causal forest model. All adjustable parameters, 

such as the size of terminal nodes and the approach to partitioning input data for 

constructing each tree model, were auto-tuned through the 'tune.parameters' arguments. 

Then, we calculated the variable importance of 134 covariates within each causal forest 

model using the ‘variable_importance’ function. This function computes each feature’s 

importance based on the frequency of how often the features were chosen to split trees to 

maximize the heterogeneity of CATEs (Athey & Wager, 2019).  
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Figure 2. Analysis framework of individually different influences of OCD risk on OCS 

severity.  

Second, feature selection. GRF provides the omnibus criterion to evaluate the 

model fit of the causal forest with the ‘test_calibration’ function. It computed the 

coefficient and p-value of estimated ATE and demeaned predicted CATE respectively 

from the best linear predictor model. It means that if the coefficients of estimated ATE 

(ATE) and demeaned predicted CATE (CATE) are significantly close to 1, we can 
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confirm that ATE is correctly estimated and fitted causal forest detects significant 

heterogeneity in sample-level CATEs (Athey & Wager, 2019).  

Third, estimation of ATE and evaluation of heterogeneity. Using the optimized 

model, we estimated ATE of OCD risk on children’s OCD symptom severity levels with 

the ‘average_treatment_effect’ function. In GRF, ATE is calculated by averaging sample-

level CATEs. For acquiring doubly robust estimates of sample-level CATEs, we 

executed an augmented inverse probability weighted (AIPW) estimation using the 

'AIPW' option specified in the 'method' argument. During this process, GRF 

automatically predicts the expected outcome value based on covariates and propensity 

scores for assignment in the treated group, both being necessary for calculating AIPW 

estimates of sample-level CATEs. Because AIPW estimates ensure unbiasedness even if 

one of the two values (i.e., expected conditional outcome or propensity score) is 

incorrectly specified, we can secure more reliable estimates of sample-level CATEs 

compared to traditional conditional analysis, which depends on a single prediction (e.g., 

predicting the propensity score in inverse probability weighting approaches or expected 

conditional outcome in S-learner). 

Fourth, to evaluate significant heterogeneity, we contrasted the characteristics of 

individuals in the upper and lower 50% of the CATE distributions. Those in the upper 

half (i.e., those demonstrating a higher level of OCD symptom exacerbation after OCD 

risk exposure) were classified as the "Vulnerable" group, while those in the lower half 

(i.e., those showing lesser OCD symptom exacerbation after OCD risk exposure) were 

categorized as the "Resilient" group. 
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Last, risk and protective variable analysis. We used the function 

‘best_linear_projection’, fitting a multiple regression model with selected features as 

regressors to all sample-level CATEs (Cui et al., 2023). Through this method, we can 

also explicitly understand the effect size and coefficient of selected features on sample-

level CATEs. 

 

Results 

Demographic characteristics 

The final sample were 5,284 preadolescents, including 626 probable OCD and 4,568 

controls. Of the probable OCD group, 42.2% had OCD diagnosis based on the KSADS-

COMP criteria. The probable OCD group showed higher scores for problem behaviors 

(Table 1).  

Table 1. Demographic characteristics. 

Variables 
Full sample Probable 

OCD Control 

(N = 5284) (N = 626) (N = 4658) 
Sex, Female 2436 (46.1%) 252 (40.3%) 2184 (46.9) 
Age, Months 119 (7.4) 119 (7.5) 119 (7.4) 
Pubertal Status 2.25 (10.1) 1.74 (3.1) 2.32 (10.7) 
Race, White 4163 (78.8) 515 (80.3) 3648 (78.3) 
Race, Black 967 (18.3) 116 (18.5) 851 (18.3) 
Ethnicity, Hispanic 984 (18.8) 125 (20.2) 859 (18.7) 
Parent's Marital Status, 
Together/Married 4006 (76.2) 465 (74.6) 3541 (76.4) 

Parental Education,  
4544 (86.1) 543 (86.9) 4001 (86.0) 

Completed Some College 
Parental Income 7.39 (2.3) 6.96 (2.4) 7.44 (2.2) 
NIH Toolbox - Cognition Total  
(age corrected) 102 (17.4) 100 (18.3) 102 (17.3) 
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CBCL OCS total problem t-score 46.7 (11.0) 62.3 (8.3) 44.6 (9.6) 
KSADS OCD baseline 646 (12.2) 264 (42.2) 382 (8.2) 
Probable OCD in follow up 2 years 581 (11) 283 (45.2) 298 (6.4) 

 

OCD risk influences OCD symptom severity in preadolescents 

We employed causal forest analyses to estimate the average treatment effect 

(‘ATE’) of OCD risk on OCD symptom severity in preadolescents. A full causal forest 

model was fitted. This model included 229 covariates, including brain functional features 

and sociodemographic variables measured before the treatment response.  

To enhance the estimation of ATEs and detect heterogeneity, it is recommended 

to include only a limited number of decisive features in the causal forest model (Athey et 

al., 2019). We excluded covariates with the lowest importance values one by one based 

on the variable importance of all covariates computed in the full model, resulting in 134 

models. 

From these models, we identified the best model in terms of model fit indices in 

the calibration test (Athey & Wager, 2019, Chernozhukov et al., 2018). This test 

evaluates model fit based on two metrics: the correctness of predicted ATE (‘𝛽!"#’) and 

the ability to detect heterogeneity (‘𝛽$"#’) per causal forest model. We selected the best 

model among the 134 models based on these metrics. It is worth noting that a value 

closer to 1 indicates a more precise estimation of ATE and heterogeneity by the causal 

forest (Athey & Wager, 2019).  

Although the model fit indices (𝛽!"# and 𝛽$"#) of the casual forest models 

typically depend on the covariates set (Athey et al., 2019, Athey & Wager, 2019), the 

model consistently estimated ATEs stably estimated across models (Figure 3). All 
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models yielded significant estimates of ATEs, even after false-discovery rate (‘FDR’) 

correction, demonstrating high coherence in effect sizes. These findings provide robust 

evidence of the effect of OCD risk on OCD symptom severity with reliable population-

level estimations. ATEs were estimated by the full model (ATE =0.932, SE = .047, p-

FDR < .001) and the best model (ATE =1.005, SE = .05, p-FDR < .001). This indicates 

OCD risk increase future OCS severity in preadolescents.  

The variable importance plot of the full model reveals that out of 229 variables, 

RSFC ranks among the top. While socio-environmental variables were generally 

dispersed, the level of education in the community stood out, ranking 17th highest 

(Figure 4). 

 

 

Figure 3. Fluctuation in models fits. The best model included three covariates (i.e., PC 

59, PC 184, PC 108 of resting state functional connectivity in the baseline). 
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Figure 4. Variable importance of the full model.  

 

The effect of OCD risk is heterogenous, potentially derived from resting-state 

functional connectivity. 

The best model showed significant detection power for heterogeneity (𝛽$"# = 

1.132, p-FDR < .001). We performed a Welch-independent t-test between two groups 

categorized below and above the median CATEs. The results showed significant 

differences in the CATEs (t(1958.34) = 45.89, p < .001, Figure 5). This finding supports 

the existence of heterogeneity in CATEs from a conventional perspective. 
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Figure 5. Group comparison between high CATE and low CATE. We identified 

significant differences in sample-level CATE between vulnerable group and resilient 

group. 

Best linear projection analysis showed a significant association between PC 59 of 

RSFC and sample-level CATE of OCS severity (Figure 6). The top 5 positive loadings 

were found in functional connectivity within in sensorimotor network (sensorimotor 

mouth, sensorimotor hand network) and between cingulo-opercular & cingulo-parietal 

networks, and retrosplenial temporal network & caudate. The top 5 negative loadings 

were observed in functional connectivity between auditory network & putamen, cingulo-
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opercular network & putamen, retrosplenial temporal network & cerebellum, 

sensorimotor hand network & cerebellum, sensorimotor hand network & pallidum. 

 

Figure 6. Important features contributing to heterogenous OCD risk effect. Using 

best linear prediction, we found that PC 59 of resting-state functional connectivity in the 

baseline significantly contributed to the heterogenous effect of OCD risk on OCD 

symptom severity.  
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Table 2. Top 10 features contributing to PC 59 of RSFC 

Top 5 positive loading features  

Functional connectivity with  Loading 

sensorimotor mouth network & 

sensorimotor hand network 0.195 

auditory network & hippocampus 0.147 

retrosplenial temporal network & caudate 0.126 

default network & brain-stem 0.114 

cingulo-opercular network & cingulo-

parietal network network 0.108 

 

Top 5 Negative loading features  

Functional connectivity with  Loading 

auditory network & putamen -0.196 

cingulo-opercular network & putamen -0.13 

retrosplenial temporal network & 

cerebellum -0.127 

sensorimotor hand network & cerebellum -0.121 

sensorimotor hand network & pallidum -0.11 

 

Discussion 

In this study, we detected individual differences in the influence of OCD risk on 

symptom severity, potentially resulting from resting-state functional connectivity 

(RSFC). In children at risk for OCD, we observed an increase in obsessive-compulsive 

symptoms after two years. Our findings revealed that this effect was primarily driven by 
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neurological factors, with the 59th component of the resting-state functional connectivity 

(RSFC) found to be involved in individual differences in OCD's impact. 

We identified a significant heterogeneous effect of OCD risk on OCD symptom 

severity. This indicates a variation in the progression severity of obsessive-compulsive 

symptoms amongst individuals susceptible to obsessive-compulsive disorder. In 

particular, this heterogenous effect was explained well by three features of RSFC in the 

baseline. Of note, the 59th principal component (PC) of baseline RSFC significantly 

contributed to the heterogeneous effect of OCD risk on symptom severity. Specifically, 

the 2nd PC of baseline RSFC included functional connectivity within sensorimotor 

networks (sensorimotor hand, sensorimotor tongue) as a resilient factor. Reduced within-

network functional connectivity in the sensorimotor network has been associated with 

OCD; for example, a recent large-scale study from ENIGMA-OCD working group found 

significant hypo-connections within the sensorimotor network (Bruin et al., 2023). The 

sensorimotor cortex plays a pivotal role in formulating and managing motor behaviors, as 

well as amalgamating sensory data (van den Heuvel et al., 2016). Alterations in this 

network may be related to sensory phenomena, undesirable or distressing tactile feelings, 

or perceptions inducing repetitive actions (Shephard et al., 2021, Subirà et al., 2015, 

Brown et al., 2019). The sensorimotor cortex collaborates with the sensorimotor CSTC 

circuit significant to OCD due to its fundamental role in creating habits (Stein et al., 2019, 

Shephard et al., 2021, van den Heuvel et al., 2016). Abnormalities in connectivity within 

the sensorimotor areas could indicate hindered sensorimotor gating, a mechanism for 

filtering out unnecessary sensory, cognitive, and motor information to support mental and 



   
 

67 

behavioral adaptability and integration (Cromwell et al., 2008). This could contribute to 

the inability to inhibit undesired thoughts and images and repetitive behaviors or mental 

acts (Hoexter et al., 2018, Ahmari et al., 2012, Moreira et al., 2019). 

In addition, the 59th PC of baseline RSFC included functional connectivity 

between the sensorimotor network and subcortical regions (e.g., putamen, cerebellum 

cortex) as a risk factor. This is consistent with prior studies showing associations between 

OCD and greater functional connectivity among the somatomotor network, cerebellum, 

and subcortical network (Sha et al., 2020). These findings suggest that disrupted 

cerebellar-cortical connectivity is implicated in the pathophysiology of OCD.  

Resting-state functional connectivity (RSFC) represents the synchronous 

activation of distinct, anatomically separated brain regions when at rest, signifying 

functional communication among these regions (Graybiel & Rauch, 2000). Neurocircuit-

based models may be particularly effective in representing OCD. Initially, OCD was 

linked to dysfunctions in cortico-striatal-thalamo-cortical (CSTC) circuits (Graybiel & 

Rauch, 2000, Milad & Rauch, 2012), yet, other circuits like fronto-limbic, fronto-parietal, 

and cerebellar are now acknowledged as contributing factors (Stein et al., 2019). 

Abnormalities in these different neurocircuits likely interact with each other to generate 

the complex OCD phenotype and development trajectories (Milad & Rauch, 2012, Stein 

et al., 2019). Therefore, individuals with OCD may have different degrees and patterns of 

alterations in these neurocircuits, leading to heterogeneous developing trajectories of 

OCS.  
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Confidence can be drawn from these findings for several reasons. This study was 

unable to control for the effects of treatment. Children at risk for OCD may have been 

exposed to medication or psychotherapy, potentially influencing subsequent symptom 

changes. While the study found a significant impact of OCD risk exposure on later 

symptom worsening, and individual variations were meaningful, it is limited by not being 

able to control for interventions following OCD risk exposure. 

The study also has limitations in not considering children who develop OCD risks 

over time. Given that obsessive symptoms can evolve during development, the risk group 

for OCD includes not only children currently having OCD but also those progressively 

developing symptoms. Through GRF analysis, we identified RSFC characteristics in 

children with OCD who are vulnerable to future symptom worsening. However, this 

study did not elucidate the case for children who gradually show obsessive symptoms. 

Future research is needed to characterize the risk group longitudinally. 

Furthermore, the correlation within baseline brain IDPs might potentially amplify 

the occurrence of false negatives. With two mutually correlated variables, the Gaussian 

Random Field (GRF) may assign high significance to one while neglecting the other. 

Despite implementing principal component analysis and utilizing these components as 

covariates to mitigate this issue, correlations between baseline characteristics and change 

rates could still skew the accuracy of feature importance. 

Overall, we identified OCS developing trajectories and the role of RSFC in 

influencing OCS in a large normative sample of 9- and 10-year-olds. Our findings 

underscore the potential of functional connectivity within sensorimotor circuits as a 
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resilient factor and between sensorimotor-subcortical circuits as a risk factor. Subsequent 

research can build on this to provide a deeper understanding of these circuits over 

developmental stages, utilizing future longitudinal data from the ABCD study, and to 

explore the possibility of focusing on these circuits in clinical trials aimed at preventing 

the onset of OCD in young people. 
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Chapter 4. General Discussion 

 

Summary of findings 

In this thesis, we leveraged the largest available neuroimaging dataset of OCD 

patients to determine the current predictive capabilities for OCD, and utilizing a large-

scale child data, we discovered individual variations in the aggravation of subsequent 

symptoms due to OCD risk. 

In Chapter 2, we confirmed that using the largest scale of white matter 

microstructure data, we could accurately classify patients with OCD with an ROC AUC 

of approximately 0.6. The neuroimaging-based probability of OCD was found to be 

associated with OCD sub-symptoms. We demonstrated that the white matter 

microstructure areas within the cortico-striatal-thalamo-cortical (CSTC) circuits, known 

mechanisms for OCD from prior research, are involved in predicting OCD patients. In 

Chapter 3, we explored the influence and individual variability of OCD risk on 

subsequent symptom exacerbation among preadolescents from the ABCD study. 

Utilizing a generalized random forest, we discovered that OCD risk can intensify 

symptoms two years later, with significant individual variations. Notably, we found that 

these individual differences are closely associated with nerual factors.  

 

Neuroimaging based predictive modeling for mental illness 

Leveraging the extensive neuroimaging consortium of the ENIGMA OCD 

working group, we confirmed that brain white matter microstructures could predict OCD 
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with about 60% accuracy. This outcome, based on the largest dataset to date and 

accounting for potential performance declines due to site-specific variability, provides a 

benchmark for the current level of OCD prediction based on neuroimaging. To render 

this useful in a clinical setting, enhancement of prediction accuracy is essential. 

These limitations are not exclusive to OCD, but pervasive across psychiatric 

disorders. Current predictive performance based on large-scale neuroimaging data 

remains partial, with no reports of accuracy reaching 90%. Hence, individual psychiatric 

disorder prediction via neuroimaging holds considerable room for improvement. One 

factor is potential information loss during feature construction, a conventional process 

based on domain knowledge. Traditional human neuroimaging studies have utilized 

phenotype data derived from images rather than the image data itself, applying modeling 

and assumptions typically deemed appropriate, which can result in information loss. As 

an alternative, recent studies have begun applying deep learning directly to 3D brain 

imaging data, bypassing the feature construction stage. Prior study showed that deep 

learning-based models outperformed traditional machine learning-based models (Abrol et 

al., 2021). Future research should examine the predictive performance of OCD based on 

deep learning. 

In our study, we identified differences in brain and clinical features within the 

same OCD patient group depending on the site. Such site variation could potentially 

hinder the model's ability to learn brain abnormalities in OCD patients. There are various 

ways to account for site variability in predictive models. For instance, harmonization 

techniques that alter the data distribution to reduce site variability can be used. 
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Alternatively, increasing the volume of training data can render the prediction probability 

independent of site variability. 

Large-scale neuroimaging consortia studies have provided benchmarks for the 

performance of brain imaging-based prediction models when data is voluminously 

expanded, demonstrating the prediction capabilities when cutting-edge technology is 

applied to unprecedentedly large data sets. However, their utility in clinical settings still 

appears insufficient. For qualitative growth in neuroimaging prediction models, one 

potential approach involves creating foundation models that effectively utilize 

multimodal neuroimaging data. Foundation models, also known as pre-trained models, 

are designed to be fine-tuned for various downstream cognitive tasks (Fei et al., 2022). 

This approach could yield maximum efficiency based on the accumulated data, and it is 

particularly crucial considering the inherently heterogeneous nature of psychiatric 

disorders. Future endeavors should aim at constructing foundation models by integrating 

multimodal neuroimaging data. 

 

Individual differences and developmental trajectories of psychiatric disorders 

Psychiatric disorders have a persistent impact on an individual's life, influencing 

behavior, potentially hindering appropriate treatment, and possibly exacerbating 

functional impairment. These processes manifest differently across individuals, with 

some more vulnerable to psychiatric disorders, and others with similar risk profiles 

experiencing worse prognoses. Identifying individual characteristics that contribute to 

this vulnerability can inform more effective interventions. In this context, we 
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demonstrated that the impact of childhood Obsessive-Compulsive Disorder (OCD) on 

subsequent symptom severity varies among individuals and found that these differences 

are closely linked to resting state functional connectivity features. 

This study built upon previous research by acknowledging that the evolution of 

OCD symptoms during development can differ among children. However, it did not 

consider the concurrent development of brain structure and function during this period. 

Future studies should utilize longitudinal data to explore the relationship between 

changes in OCD symptoms and developmental factors in the brain. 

 

Future direction 

 This thesis aimed to construct neuroimaging-based predictive models for 

obsessive-compulsive disorder (OCD) and identify factors contributing to individual 

differences among patients. Both individual prediction and elucidating underlying 

mechanisms strive for ultimate clinical utility. Future research should focus on 

establishing foundation models adaptable to a variety of cognitive tasks and fine-tuning 

these to accurately predict specific psychiatric disorders. Furthermore, investigation into 

individual trajectories of the onset, persistence, and recovery from psychiatric disorders is 

warranted.  
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