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Abstract 

 

Genome-Wide Methylome Analysis in 

Canine Mammary Tumors and Immune 

Cells Elucidates Epigenetic Tumor 

Regulation and Its Application to a 

Malignancy Prediction 

 

A-Reum Nam 

Major in Veterinary Biomedical Sciences 

Department of Veterinary Medicine 

Seoul National University 

 

Canine mammary tumor (CMT) has long been considered as a good animal model 

for human breast cancer (HBC) due to their pathological and biological similarities. 

However, only a few aspects of the epigenome have been explored in both HBC and 

CMT. Moreover, DNA methylation studies have mainly been limited to the promoter 

regions of genes. Genome-wide dysregulation of CpG methylation accompanies 

tumor progression and characteristic states of cancer cells, prompting a rationale for 

biomarker development. Understanding how the archetypic epigenetic modification 
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determines systemic contributions of immune cell types is the key to further clinical 

benefits. 

In Chapter 1, the study focuses on genome-wide methylome profiles in canine 

mammary tumors (CMT) and adjacent normal tissues, particularly highlighting the 

intron regions as potential targets for epigenetic regulation. The analysis revealed 

the identification of numerous tumor suppressors and oncogenes. Notably, 

differentially methylated genes (DMGs), including intron-DMRs (differentially 

methylated regions), were enriched in cancer-associated biological processes. 

Interestingly, two PAX motifs, PAX5 (tumor suppressive) and PAX6 (oncogenic), 

were frequently observed in hyper- and hypo-methylated intron-DMRs, respectively. 

The study found an inverse correlation between hyper-methylation at PAX5 motifs 

in the intron regions of CDH5 and LRIG1 genes and their gene expression, while 

CDH2 and ADAM19 genes with hypomethylated PAX6 motifs in their intron 

regions showed up-regulation. These findings were validated both in the originally 

MBD-sequenced specimens and additional clinical samples. Additionally, the study 

investigated intron methylation and downstream gene expression of these genes in 

human breast invasive carcinoma datasets from the TCGA database. The regional 

methylation alterations were conserved in the corresponding intron regions, resulting 

in altered gene expression in breast cancer. This study provides evidence supporting 

the conservation of epigenetic regulation in both CMT and human breast cancer 
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(HBC), highlighting the importance of intronic methylation in understanding gene 

regulation in these diseases. 

On the other hand, the response of immune cells to cancer plays a crucial role in 

determining the prognosis of cancer and the efficacy of anticancer treatments. 

Emerging evidence suggests that immune checkpoints, which are key targets of 

immunotherapy, are also subject to epigenetic regulation. Consequently, Chapter 2 

of this dissertation focuses on investigating the differential DNA methylome profiles 

in peripheral blood mononuclear cells (PBMCs) obtained from patients with 

mammary tumors. I conducted methylated CpG-binding domain sequencing (MBD-

seq) and investigated the differential methylome landscapes of peripheral blood 

mononuclear cells (PBMCs) from 76 canines with or without mammary tumors. 

Through gene set enrichment analysis, it was found that genes involved in the growth 

and differentiation of T- and B-cells are highly methylated in tumor PBMCs. 

Furthermore, the study identifies increased methylation and reversed expression in 

representative marker genes (BACH2, SH2D1A, TXK, UHRF1) that regulate 

immune cell proliferation. Although there was no dramatic difference in the PBMC 

methylome between malignant and benign tumors, we devised a machine-learning 

approach to predict malignancy utilizing our methylome dataset. This study provides 

valuable insights into the comprehensive epigenetic regulation of circulating 
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immune cells in response to tumors, offering a new framework for identifying benign 

and malignant cancers through genome-wide methylome analysis. 

In summary, this dissertation provides a comprehensive exploration of epigenetic 

landscapes in canine mammary tumors, utilizing genome-wide analysis of 

methylome and transcriptome profiles both in tumor tissues and peripheral blood 

mononuclear cells. Cancer regulation through methylation of intronic motifs reveals 

intriguing similarities between humans and dogs, highlighting the value of 

companion dogs in advancing our understanding of cancer research. Moreover, the 

application of immune cell methylome data for predicting malignant tumors presents 

potential scalability in diagnosing malignancy across various types of cancer in 

humans as well as dogs. Although additional validation studies are needed for the 

clinical application of the diagnostic models, I believe these studies will be a crucial 

cornerstone for treating and diagnosing tumors. 

 

Keywords: Methylome; Transcriptome; Canine Mammary Tumor; Human Breast 

Cancer; Comparative Medicine; PBMC; Machine Learning; Biomarker 
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Background 

 

1. Epigenetics in cancer 

1-1. What is DNA methylation? 

DNA methylation is a vital epigenetic modification that regulates gene expression 

and genome stability 1. It involves adding a methyl group to cytosine at the carbon 5 

position, mainly occurring in CpG dinucleotides (Figure B.1). During early 

development, DNA methylation patterns are established and faithfully maintained 

throughout cell divisions, contributing to cellular identity and differentiation. 

Abnormal DNA methylation patterns are linked to diseases such as cancer, 

cardiovascular disorders, neurological disorders, and imprinting disorders 2. 

In cancer, alterations in DNA methylation patterns are prominent. Global 

hypomethylation, involving a reduction in genome-wide DNA methylation, is 

commonly observed in cancer cells and is associated with genomic instability and 

the activation of transposable elements. Simultaneously, localized hypermethylation 

at CpG islands in gene promoters can lead to the silencing of tumor suppressor genes, 

contributing to cancer development and progression 3. Additionally, DNA 

methylation changes can occur in various genomic regions, including gene bodies 



2 

 

and enhancers, influencing gene expression and cellular functions in a context-

dependent manner. 

Understanding the dynamic nature of DNA methylation and its influence on gene 

regulation is pivotal in unraveling the molecular mechanisms that drive cancer 

development and progression. Such understanding holds great promise for 

identifying epigenetic alterations associated with cancer, which can serve as valuable 

insights for discovering potential biomarkers for early detection, prognosis, and 

targeted therapeutics. 

 

1-2. DNA methylation in cancer 

Genome-wide CpG methylation is a critical epigenetic modification that regulates 

gene expression and is closely linked to various biological processes, including 

development, differentiation, and disease progression. In cancer, aberrant CpG 

methylation patterns, as depicted in Figure B.2, are frequently observed, leading to 

the disruption of important genes involved in tumor initiation, progression, and 

metastasis. Integrating genome-wide CpG methylation data with gene expression 

data has provided valuable insights into the molecular mechanisms driving cancer 

development and has identified potential biomarkers and therapeutic targets 4,5. 

The relationship between CpG methylation and gene expression is complex and 

dynamic. Hypermethylation of CpG sites located in promoter regions often leads to 
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gene silencing, while hypomethylation can result in increased gene expression 3,6. 

However, recent studies have highlighted the importance of considering CpG 

methylation beyond promoter regions, such as intronic and intergenic regions, which 

have emerged as novel regulatory elements for gene expression 6. Intriguingly, CpG 

methylation changes in these regions have been implicated in the regulation of 

critical cancer-related pathways and the balance between tumor suppressor and 

oncogene activities. 

Furthermore, the investigation of genome-wide CpG methylation profiles in cancer 

has provided valuable insights into the identification of cancer subtypes, disease 

prognosis, and treatment response prediction. The development of high-throughput 

sequencing technologies and advanced bioinformatics tools has enabled the 

comprehensive characterization of CpG methylation landscapes, facilitating the 

discovery of novel CpG methylation markers with diagnostic and prognostic 

potential. 
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Figure B.1. Schematic representation of DNA methylation and its preferential 

occurrence at CpG site. DNA methylation, facilitated by DNA methyltransferase 

(DNMT), converts cytosine to 5'methyl-cytosine. This process primarily targets 

cytosines followed by a guanine, referred to as CpG sites, and plays a crucial role in 

establishing DNA methylation patterns 7. (S-adenosylmethionine, SAM; S-

adenosylhomocysteine, SAH)  
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Figure B.2. Dynamic changes of methylation across the genome-wide CpG 

region in cancer. In cancer cells, hypermethylation in CpG islands leads to the 

silencing of genes, resulting in aberrant gene expression. Simultaneously, 

hypomethylation of intergenic regions and CpG-poor promoters contributes to 

genomic instability and abnormal gene expression, respectively, further 

complicating the disease 3.  
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2. Comparative medicine 

In comparative medicine, the study of dog cancer offers several advantages that 

contribute to our understanding of cancer biology and the development of effective 

therapies (Figure B.3). Here are some key advantages of dog cancer research: 

1) Spontaneous and Naturally Occurring Cancer: Dogs develop cancer 

spontaneously, similar to humans, and share many similarities in terms of tumor 

biology, genetics, and clinical behavior 8. This makes dogs an excellent comparative 

model for studying cancer in a realistic and clinically relevant context. The 

occurrence of cancer in dogs is not artificially induced, providing insights into the 

natural progression and heterogeneity of tumors. 

2) Similarities in Tumor Types and Pathways: Dogs develop a wide range of tumor 

types that closely resemble those found in humans, including breast, lung, skin, bone, 

and prostate cancer 9,10. The similarities extend to the molecular pathways involved 

in tumor initiation, progression, and metastasis. Studying canine cancers allows for 

the investigation of shared mechanisms and potential therapeutic targets across 

species. 

3) Genetic Diversity: Like humans, dogs exhibit genetic diversity within different 

breeds and populations 11,12. This diversity offers an opportunity to investigate the 

influence of genetic factors on cancer susceptibility, tumor development, and 

treatment response. By studying cancer in different dog breeds, researchers can 
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identify genetic variants associated with specific cancer types, paving the way for 

personalized medicine approaches. 

4) Comparative Therapeutic Evaluation: Dogs with cancer can benefit from 

treatment interventions similar to those used in human oncology. This allows for the 

evaluation of novel therapeutic strategies, such as targeted therapies, 

immunotherapies, and gene therapies, in a spontaneous tumor model 9,10. The 

response to treatment and the assessment of adverse effects can provide valuable 

preclinical data to inform human clinical trials. 

In summary, dog cancer research in comparative medicine offers unique 

advantages for understanding cancer biology, evaluating therapeutic interventions, 

and advancing translational medicine. The natural occurrence of cancer in dogs, 

shared tumor types and pathways, genetic diversity, and translational implications 

make dogs a valuable model for improving our understanding of cancer and 

developing more effective treatments for both dogs and humans. 
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Figure B.3. Leveraging pet dogs as a translational model for human clinical 

trials in oncology. Spontaneous tumors in pet dogs offer a valuable opportunity to 

bridge the gap between preclinical rodent models and human clinical trials, 

overcoming limitations and providing a relevant model due to their natural 

occurrence, immune-competence, and genetic similarity to humans 10. 
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3. Genome-wide methylome technologies 

 Genome-wide methylome technologies have revolutionized the field of epigenetics 

by enabling comprehensive analysis of DNA methylation patterns across the entire 

genome. DNA methylation, an essential epigenetic modification, plays a critical role 

in gene regulation, development, and disease. Advancements in sequencing 

technologies and the development of innovative techniques have provided powerful 

tools for studying DNA methylation patterns at a global scale (Figure B.4 & Table 

B.1). 

Whole-genome bisulfite sequencing (WGBS) is a widely used method for genome-

wide DNA methylation analysis. WGBS involves treating genomic DNA with 

sodium bisulfite, which converts unmethylated cytosines to uracil while leaving 

methylated cytosines unchanged 3. Subsequent high-throughput sequencing of the 

bisulfite-treated DNA allows for the determination of DNA methylation status at 

single-base resolution throughout the genome. WGBS provides comprehensive and 

accurate information about DNA methylation patterns, enabling the identification of 

differentially methylated regions (DMRs) and the exploration of their functional 

implications. 

Array-based DNA methylation profiling is another commonly employed approach 

for genome-wide DNA methylation analysis. This method utilizes DNA methylation 

microarrays containing probes targeting specific CpG sites across the genome. By 

hybridizing bisulfite-converted DNA to these arrays, researchers can obtain 
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quantitative measurements of DNA methylation levels at thousands to millions of 

CpG sites simultaneously 13. Array-based profiling offers a cost-effective and high-

throughput method for large-scale DNA methylation studies. 

Another notable technique in genome-wide methylome analysis is Methylated 

DNA Binding Domain sequencing (MBD-seq). MBD-seq capitalizes on the affinity 

of the MBD protein for methylated DNA, allowing for the enrichment and 

sequencing of methylated regions in the genome 3,13. MBD-seq provides a targeted 

approach to investigate DNA methylation patterns by capturing methylated DNA 

fragments, offering an efficient and cost-effective alternative to whole-genome 

sequencing. 

Collectively, these genome-wide methylome technologies, including WGBS, 

array-based profiling, and MBD-seq, have greatly advanced our understanding of 

DNA methylation dynamics and its functional implications. They have facilitated 

the identification of key regulatory regions, discovery of novel epigenetic marks, and 

identification of disease-associated DNA methylation patterns. These technologies 

have become indispensable tools in the field of epigenetics, paving the way for 

further insights into the complex relationship between DNA methylation, gene 

expression, and human health. 
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Figure B.4. Comparison of genome-wide DNA methylation technologies. 

Despite its relatively low overall coverage of 17.8%, MBD-seq demonstrates a 

remarkably high coverage of CpG-rich regions, which is comparable to that of 

WGBS 3.   
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Table B.1. The advantages and disadvantages of representative genome-wide DNA methylation sequencing techniques. 

Method Advantages Disadvantages

WGBS Sodium bisulfite treatment
Single-nucleotide resolution

Whole-genome coverage

Requires computational expertise

and higher costs

[MeDIP] Enrich mC with antibody

: single-stranded DNA fragments

Methylated regions of low CpG density

(e.g., intergenic regions)

Does not provide single-base

resolution of methylation patterns

[MBD] Enrich mCpG with MBD protein

: double-stranded DNA fragments

CpG-dense regions (e.g., CpG islands)

Can focus on CpG-rich regions and

regulatory elements

Can have some bias in capturing

methylated regions.

RRBS
MspI enzyme digestion

Sodium bisulfite treatment

More cost-effective

Provides intermediate resolution and

coverage of CpG-dense regions

Biased towards CpG-rich regions,

limiting the coverage of CpG-poor

regions

MeDIP-seq /

MBD-seq
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4. Aims of the dissertation 

 The primary objective of this dissertation is to comprehensively explore the 

epigenetic landscapes in canine mammary tumors (CMT) and their potential 

implications for cancer prevention, treatment, and diagnosis. The study aims to 

investigate the genome-wide methylome and transcriptome profiles in both tumor 

tissues and peripheral blood mononuclear cells (PBMCs) of CMT. By analyzing 

DNA methylation patterns and gene expression alterations, the research seeks to 

identify key regulatory mechanisms and potential biomarkers associated with CMT. 

Additionally, the study aims to evaluate the similarities and conservation of 

epigenetic regulation between CMT and human breast cancer (HBC), highlighting 

the value of companion dog research in advancing our understanding of cancer in 

both species (Figure B.5). Furthermore, the dissertation explores the application of 

immune cell methylome data for predicting malignant tumors, with the goal of 

expanding its relevance to human oncology and providing insights for practical 

implementation in clinical settings. Ultimately, the research aims to contribute to the 

recognition of the vital role of methylome research in cancer and offer new insights 

for improving cancer prevention, treatment, and diagnosis strategies. 
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Figure B.5. Conceptual scheme of the dissertation. Humans and dogs, sharing 

diverse environments, provide a valuable framework for comparative medicine 

focused on naturally occurring cancers. Through a comparative analysis of the 

epigenome observed in dog mammary tumors and human breast cancer, profound 

insights can be obtained for the diagnosis and treatment of cancer.
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CHAPTER I 

 

 

Alternative methylation of intron motifs is associated 

with cancer-related gene expression in both canine 

mammary tumor and human breast cancer
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Introduction 

Breast cancer (BC) is the most frequently diagnosed and the second leading cause of 

cancer death in woman worldwide 14. The comparison of 5-year survival rates 

between cancer stages 4 and 2, 27% vs. 99% in the USA, clearly shows that earlier 

diagnosis is crucial for increasing patient survival 15. Many BC risk factors have been 

reported; some are uncontrollable, such as old age and gene mutations, while some 

are controllable, such as diet and smoking 16. Only about 5-10% of BCs are thought 

to be hereditary 17. Representatively, inherited mutations in BRCA1 and BRCA2, 

which have roles in DNA repair, have been known as the most common cause of 

hereditary BC 18. In addition to inherited mutations, somatic mutations of dozens of 

genes, including CCND1, ERBB2, PIK3CA, PTEN, etc., have been revealed as driver 

mutations that can lead to functional abnormalities and initiate breast tumorigenesis 

19,20. The fast-growing databases of various human cancers, such as COSMIC and 

TCGA, now provide researchers with access to genomic data to test their hypothesis 

in clinical samples (https://cancer.sanger.ac.uk/cosmic; 

https://www.cancer.gov/tcga) 21,22. On the other hand, the molecular biological 

effects of environmental factors such as smoking, diet and exercise 16 are not readily 

accessible in BC and further approaches are needed to investigate epigenomic 

changes, including DNA methylation 23.  

The association of CpG dinucleotide DNA methylation with cancer-related 

phenotypes 24 is well understood in various types and at all stages of cancer 

https://cancer.sanger.ac.uk/cosmic
https://www.cancer.gov/tcga
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progression 25,26 . Hypermethylation, which has been known to be associated with 

repressed gene expression of tumor suppressors, is one of the important paradigms 

of carcinogenesis 27 and is supported by the activated mutations of DNA 

methyltransferases (DNMTs) being oncogenic in several tissues 28. In various human 

cancers, genome wide methylation has been profiled 27 and global DNA 

hypomethylation 29, along with local hyper- (tumor suppressors) and hypo- 

(oncogenes) methylations concomitant with the respective silencing and activating 

of gene expression 30,31 were reported and suggested as potential diagnostic and 

predictive biomarkers 32. The use of methylation alteration as a biomarker has several 

obvious advantages, such as early detection and relative specimen stability, but only 

a few are currently clinically used (e.g., methylation of MGMT in glioblastoma, 

SEPT9 in hepatocellular carcinoma, and PITX2 in breast cancer) 33. 

Very similar to BC in human, canine mammary tumor (CMT) is one of the most 

common cancers in female dogs 34. Clinical and pathophysiological similarities 

existing between HBC and CMTs are well-documented, including the spontaneous 

tumor incidence, comparable onset age, hormonal etiology and the identical course 

of the disease 34. Furthermore, CMT’s molecular characteristics, including several 

subtype molecular markers such as steroid receptor, epidermal growth factor (EGF) 

and proliferation markers, are also similar to HBC 35. Recently, we reported a 

transcriptome signature in CMT 36 and other high-throughput sequencing studies on 

the aspects of CMT have been reported 37,38. However, no comprehensive genome 
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wide methylome profiles that are comparable to studies in HBC have been uncovered 

yet.   

In the present study, we profiled the CMT-associated genome-wide methylation 

signature using methyl CpG binding domain (MBD) sequencing. In particular, 

altered DNA methylation in the intron region associated with CMT was 

comparatively investigated in both CMT and human breast cancer. Finally, we tried 

to show the putative function of differentially methylated regions (DMRs) in the 

intron region on gene expression using motif analysis with validation in additional 

samples. 
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Materials and methods 

 

Tissue samples 

Based on the methods reviewed and approved by the Seoul National University 

Institutional Review Board/Institutional Animal Care and Use Committee (IACUC 

SNU-170602-1), a total of 11 dog patients with clinically diagnosed CMT were 

enrolled in the present study. Tumor and adjacent normal tissue samples of 

spontaneously occurred canine mammary gland cancer were obtained and freshly 

frozen. The information for CMT dogs is provided in Table 1.1. 

 

Genomic DNA isolation and MBD-sequencing 

Genomic DNA was extracted from 11 pairs of CMT and adjacent normal tissues 

and sheared into 100-300 bp lengths using Bioruptor® Pico (Diagenode, Belgium). 

Methylated DNA fragments were captured by MBD-beads using the MethylMiner™ 

Methylated DNA Enrichment Kit (Cat# ME10025) from Invitrogen (CA, USA) 

according to the manufacturer’s protocol (Invitrogen, Carlsbad, CA). To obtain more 

highly methylated DNA, MBD-captured DNA was eluted step-wise with different 

NaCl concentrations (200, 300, 400, 600 and 800 mM) and ethanol precipitated. 

After we confirmed that methylated DNA was highly enriched in the 600 and 800 
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Table 1.1. Information for CMT tissue samples used for MBD-seq  

No. Subtype Cancer_ID Normal_ID Breeds Sex Age (years) 

1 Simple SC054 SN054 Miniature pinscher FS 12 

2 Simple SC076 SN076 Cocker spaniel FS 13 

3 Simple SC127 SN127 Poodle F 14 

4 Ductal DC011 DN011 Bichon frise F 12 

5 Ductal DC017 DN017 Cocker spaniel FS 13 

6 Ductal DC070 DN070 Maltese FS 12 

7 Ductal DC125 DN125 Schnauzer FS 16 

8 Complex CC001 CN001 Great pyrenees F 10 

9 Complex CC012 CN012 Dachshund F 11 

10 Complex CC128 CN128 Shih-tzu FS 14 

11 Complex CC132 CN132 Maltese F 12 

* F: Female / FS: Female Spayed 
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mM fractions using real-time PCR. We pooled the 600 and 800 mM fractions and 

then conducted paired-end sequencing (read length: 101bp) on the Illumina Hiseq 

4000 next-generation sequencing platform (Illumina, CA, USA) after library 

construction using the TruSeq Nano DNA Sample Preparation Guide (Part # 

15041110 Rev. D) as the manufacturer’s guide. 

 

MBD-sequencing data processing 

Both per base sequence quality and per sequence quality scores were checked with 

FastQC v0.11.8 39 and sequencing reads with low quality were trimmed using Trim 

Galore v0.5.0 40. Processed reads were mapped to the dog reference genome 

CanFam3.1 using Bowtie2 v2.3.4.3 41 and complete BAM files were obtained after 

converting SAM to BAM and removing duplicated reads in Linux OS. Using 

MEDIPS v.1.38.0 (R Bioconductor) 42, MBD reads were calculated in every bin, 

dividing the whole genome into user-defined window sizes (500 bp, total 4,655,287 

bins). Each read per bin was quantile normalized to reduce experimental difference, 

followed by an estimation of genomic CpG coverage by sequencing depth, 

sequencing reproducibility and enriched methylated fragments according to the 

number of CpGs in bins. Read counts across the total bins showed high correlation 

between each sample. The entire process is summarized in Figure 1.1. 
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Figure 1.1. Schematic presentation of genome wide methylation profiling in 

CMT. A) Sample preparation for MBD-seq. B) Sequencing data preprocessing with 

major parameters (window size: 500bp, filtration: bins without any CG, low signal: 

counts ≤20, bins on Chr X). 
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DMR identification using LMM (Linear Mixed Model) 

Bins located in chromosome X were excepted for downstream analysis, because 

some CMT patients were spayed females, which could affect the methylation 

difference on sex chromosome. Low signal bins with ~<20 counts throughout all 

samples and also bins with no CG dinucleotides had been removed to obtain only 

valuable signal peaks. Finally, a total of 1,380,792 bins were used for DMR 

identification. Covariance between ‘CMT vs. adjacent normal’ and ‘between 

subtypes’ respectively, were calculated for the entirety of the bins using R package 

`lme4` and we chose the upper 5% of the bins in each comparison group (between 

‘CMT vs. adjacent normal’ and ‘between subtypes’) following prioritizing variance 

by descending order from 0 to 1. After this, we defined bins whose priority between 

CMT vs. adjacent normal was higher than that between subtypes as `CMT-DMRs`. 

Inversely, if the priority between subtypes was higher than that between CMT vs. 

adjacent normal, we called those bins `Subtype-DMRs`. This LMM analysis and 

further analyses were performed using a custom R script. P-values and fold changes 

for DMRs were obtained using `MEDIPS.meth` function based on the `edge.R` 

calculation method. 

 

RNA expression 

For 10 pairs of CMT dog tissues that we performed MBD-seq on in this study,  

RNA sequencing was also performed in a previous study and the data was obtained 
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from PRJNA527698 (SRA accession number: SRR8741587-SRR8741602) 36. Data 

processing was conducted as mentioned above (`Materials and methods - MBD-

sequencing data processing`). Using `CuffLinks`, a tool to quantitate RNA 

expression data and statistically identify differential expression between groups, we 

estimated expression levels for 32,218 genes and identified DEGs based on p-value 

(p <0.05). 

 

OncoScore 

OncoScore is a tool that scores genes according to their association with cancer, 

based on text-mining technology using the available scientific literature in PubMed. 

OncoScore for DMGs with anti-correlated expression was obtained through the R 

package `OncoScore` (https://github.com/danro9685/OncoScore) 43. 

 

Functional annotation 

To investigate the disease enrichment analysis, we used the interactive web-based 

enrichment analysis tool, `Enrichr` (http://amp.pharm.mssm.edu/Enrichr/) 44,45. 

Among 35 gene set libraries in Enrichr, a category of the Disease Perturbations from 

GEO (Gene Expression Omnibus) down was chosen to find the disease terms. We 

investigated the functional annotation of 7 DMG groups and searched for subtype-

associated GO terms using `DAVID`, a web-based software for functional 

https://github.com/danro9685/OncoScore
http://amp.pharm.mssm.edu/Enrichr/
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annotation analysis 46. Since the database of gene ontology in dog is not well 

established, we converted the dog Ensembl Gene IDs to human IDs using the table 

of human-dog gene orthologues provided by Ensembl BioMart 

(www.ensembl.org/biomart/martview) 47. The functional mechanism studies for dog 

genes are poorly conducted. KEGG terms for CMT DMGs with p-values <0.05 were 

considered relevant. 

 

Motif analysis 

Highly enriched known motifs in hypermethylated and hypomethylated intron 

DMR sequences were respectively identified using the `HOMER – 

findMotifsGenome.pl` command. The CpG normalization option was used since 

genome-wide methylation changes in CMT usually occur in CpG-rich regions. The 

p-value for each motif was estimated by comparing the percentage of target sequence 

with motifs with the percentage of background sequence with motifs. We considered 

motifs relevant when the p-value was <0.01. After that, we found loci where the 

PAX5 and PAX6 motifs exist across the dog reference genome `CanFam3` (or 

`hg19` for human) using a motif scanning tool, `FIMO` (matched p-value <0.01) 

(http://meme-suite.org/doc/fimo.html). 

 

Targeted BS-conversion sequencing 

http://www.ensembl.org/biomart/martview
http://meme-suite.org/doc/fimo.html
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A total 17 pairs of CMT and adjacent normal tissue were used for validation, 

including the same 8 sets used in MBD-sequencing (Table 1.2). Bisulfite conversion 

was done on 500ng of genomic DNA using the EZ DNA Methylation-Lightning Kit 

(Zymo Research, USA). Primers were designed using MethPrimer 

(http://www.urogene.org/methprimer/index1.html) 48 and are listed in Table 1.3. 

After PCR, amplicons were purified from the agarose gels using the QIAquick Gel 

Extraction Kit (Qiagen, Germany) and directly sequenced at Macrogen Co. Ltd. 

(Macrogen Co. Ltd., Seoul, Korea).  

 

Human TCGA (BRCA) expression and methylation data 

RNA-sequencing and Infinium Human Methylation 450K BeadChip array were 

performed in various human cancer types, such as human invasive breast cancer 

patients, and in normal people. Wanderer (http://maplab.imppc.org/wanderer/) 

grants access to a large dataset and offers an interactive viewer to show expression 

and methylation levels for interesting genes in BRCA (data for other cancer types 

also provided) 49. We could thus obtain the methylation beta value for the interesting 

CGs near PAX motif regions of target genes (CDH5, LRIG1, CDH2 and ADMA19) 

and their transcription level changes in BRCA patients (wilcoxon’s test). 

http://www.urogene.org/methprimer/index1.html
http://maplab.imppc.org/wanderer/
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Table 1.2. Information for CMT tissue samples used for BS-seq 

No. Subtype Cancer_ID Normal_ID Breeds Sex Age (years) 

M1 Simple SC054 SN054 Miniature pinscher FS 12 

M2 Simple SC076 SN076 Cocker spaniel FS 13 

M3 Ductal DC011 DN011 Bichon frise F 12 

M4 Ductal DC017 DN017 Cocker spaniel FS 13 

M5 Ductal DC125 DN125 Schnauzer FS 16 

M6 Complex CC001 CN001 Great pyrenees F 10 

M7 Complex CC128 CN128 Shih-tzu FS 14 

M8 Complex CC132 CN132 Maltese F 12 

V1 Simple SC094 SN094 Shih-tzu FS 10 

V2 Simple SC165 SN165 Poodle F 5 

V3 Simple SC200 SN200 Spitz F 9 

V4 Simple SC205 SN205 Shih-tzu FS 12 

V5 Complex CC088 CN088 Schnauzer FS 9 

V6 Complex CC149 CN149 Cocker spaniel F 11 

V7 Complex CC151 CN151 Dachshund FS 14 

V8 Complex CC166 CN166 Dachshund F ~<1 

V9 Complex CC221 CN221 Bichon frise F 12 

* M1~M8 are overlapped samples used for MBD-sequencing 

* V1~V9 are samples used only for BS-seq (Validation set) 

* F: Female / FS: Female Spayed 
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Table 1.3. Primers designed for BS-conversion PCR 

Target Gene Target Locus Strand Sequences (5'→3') 

LRIG1 chr20:25007595-25007877 
Forward GAAGGGTGGGTGATTTTTATTAGATA 

Reverse ACCAAAACTTTTCTCTTCTTTCTAACTC 

CDH5 chr5:82863641-82864024 
Forward GGTTTGTTTTTTAAGAATGGTTTTT 

Reverse CCACCACAAAACCTACCTATCTAC 

ADAM19 chr4:52717697-52718030 
Forward GTATTAGGTATTAAAGTGGGGG 

Reverse AAAAAACAATCAATATCTCAAATACCCT 

CDH2 chr7:60865092-60865487 
Forward ACTTAAGGTTTATGAGTGAAGA 

Reverse CAAAACTACTAATTTCATTTAACA 
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Statistical Analysis 

To estimate the methylated CpG level between CMT and adjacent normal tissues, 

we calculated the ratio of C/(C+T) from the BS-sequencing data. For validating 

methylation changes between them in the target motif DMR regions, statistical 

significance was assessed on p-values obtained by paired t-test using R basic 

command. 
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Results 

Genome-wide methylation was profiled in 11 pairs of CMT and adjacent 

normal tissues via MBD-sequencing 

Eleven pairs of CMT and adjacent normal tissues consisting of three subtypes, 

simple, ductal and complex carcinoma, were subjected to MBD-sequencing (Figure 

1.1A and Table 1.1). The statistic information, including the number of reads, Q20 

and 30 scores for all the raw sequence data and enrichment scores, and the CG 

coverage for the processed sequence data generated in this study showed good 

quality (Table 1.4). From a total of 4,655,287 bins (500 bp in size), 1,380,792 high 

quality bins were obtained by filtration of no CpG, low signals (counts ≥20) and 

bins on the X chromosome (Figure 1.1B). Even signal distribution across CMT and 

adjacent normal in the 11 samples was representatively depicted within the genomic 

region (Chr 1:18,286,500-19,222,630, ~100 Kb) by integrative genomic viewer 

(IGV) 50 with peak and annotation files. Differentially methylated regions (DMRs), 

shown in yellow, were distributed similarly on CpG islands and tended to be 

enriched in gene regions (Figure 1.2). The quality of MBD-enrichment was checked 

according to the coverage of CpGs in the dog genome. Bins with high signal depth 

(>5X) covered 45~55% of the dog genome, indicating that methylated DNA was 

successfully enriched by MBD not only from promoter regions 
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Table 1.4. Quality check for MBD-seq data 

  Raw data QC MBD-seq QC 

Sample 

ID 

Total read bases 

(bp) 
Total reads GC (%) Q20 (%) Q30 (%) 

enrichment. 

score.relH* 

enrichment. 

score.GoGe** 

SN054 6,266,888,624  62,078,552  54.13 97.34 93.16 3.643870699 2.024206695 

SN076 8,074,844,152  79,948,952  55.11 97.07 92.62 4.097720852 2.120520181 

SN127 8,297,964,868  82,158,068  54.87 97.31 93.28 3.776880884 2.029195266 

SC054 6,162,333,745  61,042,716  57.38 97.36 93.07 4.621383356 2.242049714 

SC076 7,055,536,194  69,856,794  53.44 97.36 93.22 3.438118038 1.951425376 

SC127 6,406,478,884  63,430,484  53.67 97.48 93.68 3.412195461 1.948910435 

DN011 6,979,519,920  69,136,566  51.79 97.31 93.3 3.121841121 1.89731437 

DN017 7,717,562,106  76,411,506  53.48 97.37 93.29 3.369929515 1.92720443 

DN070 7,297,507,348  72,252,548  52.96 97.13 92.72 3.273069456 1.915837506 

DN125 7,626,912,586  75,513,986  53.38 97.32 93.2 3.44385977 1.962578118 

DC011 6,592,741,947  65,307,016  52.49 97.1 92.81 3.204819395 1.896182073 

DC017 7,645,841,400  75,701,400  52.81 97.2 93.01 3.328160347 1.923816406 

DC070 7,390,602,280  73,174,280  52.29 97 92.56 3.1279579 1.868868146 

DC125 7,898,553,904  78,203,504  52.94 97.38 93.34 3.406331475 1.969939524 

CN001 7,805,241,418  77,279,618  56.23 97.41 93.31 4.122384585 2.11373002 

CN012 7,605,706,626  75,304,026  53.17 96.98 92.64 3.408393805 1.942141539 

CN128 7,703,398,068  76,271,268  52.22 97.19 93.07 3.194818603 1.8869285 
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CN132 6,843,561,636  67,758,036  56.45 97.56 93.81 4.313466538 2.153527831 

CC001 8,186,238,870  81,051,870  54.11 96.52 91.16 3.65260293 2.010762082 

CC012 8,764,742,428  86,779,628  51.07 96.8 92.3 2.883893082 1.804174017 

CC128 7,143,367,612  70,726,412  52.4 97.44 93.54 3.183262184 1.886515542 

CC132 7,043,265,502  69,735,302  55.35 97.24 93.11 3.923643991 2.049587669 

*enrichment.score.relH 

: the relative frequency of CpGs within the regions / the relative frequency of CpGs within the reference genome 

**enrichment.score.GoGe 

: the o/e ratio of CpGs within the regions / the o/e ratio of CpGs within the reference genome 



33 

 

 

Figure 1.2. Visualizing methylation peaks using processed MBD-seq from 11 

pairs of CMT and adjacent normal tissues. Overall sequencing quality is 

visualized by IGV showing DMRs (yellow) CGI (red) and Reference genes (blue). 

Methylation peaks are colored in 11 cancer tissues as purple and adjacent normal 

tissues as green. The region with high density of DMRs is highlighted by the red 

box. 
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but also from various regulatory regions, including both genic and intergenic regions 

(Figure 1.3). The methylation profiles were analyzed further by focusing on the 

DMRs in intergenic regions for the tissue origin of CMT subtypes and the DMRs in 

genic regions for CMT-enriched methylation. Gene ontology (GO) enrichment 

analysis and OncoScore 43 were employed to elucidate the functional linkage 

between differential methylation and gene regulation. Additionally, the transcription 

factor (TF) binding motifs on the subtype-enriched DMRs were investigated. The 

CMT-enriched methylation signatures and putative regulation were furthermore 

comparatively investigated in HBC datasets to show how epigenetically similar these 

two diseases are. The analytical scheme was depicted in Figure 1.4. 

 

Linearized mixed model (LMM) successfully clustered DMRs between CMT 

and adjacent normal, and among subtypes 

To determine differential methylated bins as variables that respond to CMT as well 

as each subtype, linearized mixed model (LMM) was employed and two different 

thresholds, top 5% and top 10% bins based on standard variation (SD) that 

corresponds to p-value <0.01 and p-value <0.05, respectively, were used to obtain 

DMRs. A total of 137,755 bins (68,741 for CMT DMRs and 69,014 for subtype 

DMRs) were determined as strict DMRs (5%) of either CMT or across subtypes 

(Figure 1.5A). Principal component analysis (PCA) using the DMRs successfully 
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Figure 1.3. The CpG coverage of genome wide DNA sequence patterns. High 

quality signals (depth >5X) cover more than 50% of the canine genome in 22 

samples. 

 

 

Figure 1.4. Analytical strategies. Investigating both intergenic and genic regions 

where subtype-DMRs and CMT-DMRs exist. Additionally, CMT transcriptome data 

set and BRCA expression and methylation data in TCGA were accompanied for 

further analysis. 
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Figure 1.5. Identification of differentially methylated regions (DMRs) among 

the three CMT subtypes and between CMT and adjacent normal. A) LMM 

separated CMT-DMRs and Subtype-DMRs. B) PCA analysis using CMT-DMRs 

and Subtype-DMRs. CMT-DMRs successfully divides adjacent normal and CMT 

and also Subtype-DMRs into simple, ductal and complex types. C) Genomic 

distribution of CMT-DMRs and Subtype-DMRs. Distribution between genic and 

intergenic regions, CGI and non-CGI, and repeat and non-repeat. D) Hyper- and 

hypo methylation profiles in CMT-DMRs and Subtype-DMRs. Colored region 

(orange and blue green): hypermethylation, gray: hypomethylation. 
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separated 22 specimens with multiple variances (CMT and adjacent normal and 

three different subtypes: simple, ductal and complex) into corresponding groups 

(Figure 1.5B). The sum of PC1 and PC2 in both CMT- and Subtype-DMRs 

represented more than 50% of the total DMRs. Although no clear difference was 

found in the comparison of genic features consisting of CMT- and Subtype-DMRs, 

the Non-CGI (CpG island) region showed a clear difference between CMT (67.5%)- 

and Subtype (76.9%)- DMRs that might occur in the alteration of repeat element 

regions (30.9% in CMT-DMR/ 41.9% in Subtype-DMR). On the contrary, the 

proportion of CGI (7.2%) and Shore (16.7%) regions encompassed in CMT-DMRs 

was higher than in Subtype-DMRs (CGI (5.74%) and Shore (10.6%)) (Figure 1.5C). 

Interestingly, methylation profiles (hyper- and hypo-methylation) showed a distinct 

difference between CMT- and Subtype -DMRs, although, no significant difference 

was seen in genome wide methylation distribution. Of note, methylation patterns 

were clearly biased in genic regions of CMT-DMRs. Approximately 66% of CMT-

DMRs in the genetic regions were hypermethylated, while only 45% of DMRs in the 

intergenic region were hypermethylated. This bias was not seen in Subtype-DMRs, 

which indicates that the bias is not due to the MBD-sequencing (Figure 1.5D). This 

biased genic hypermethylation in CMT fits the general features of higher 

methylation of genic region in cancer tissues and is similar to a previous report in 

human BC by Ball et al. (Ball et al., 2009) 
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Gene ontology (GO) enrichment and pathway analysis using DMRs on both 

genic and intergenic regions-fittingly represented the functional relationship 

between DMRs and CMT as well as subtypes 

Extraordinary hypermethylation throughout genic regions including promoter, 

exon, intron and TTS in CMT was shown (Figure 1.5D). On the other hand, 

differential methylation on intergenic regions where enhancers or silencers exist 

contributes to the tissue-type specificity 51. We first performed hierarchical 

clustering and heatmap plotting using the genic regions of CMT-DMRs (Figure 

1.6A). Hypermethylation was more enriched in CMT than adjacent normal, parallel 

to Figure 1.5D and what was previously known (Figure 1.6A). Subsequently, 

OncoScore 43, Functional annotations and Gene ontology (GO) 45 enrichment 

analysis were performed with the list of CMT-DMGs (Figure 1.6B, D) to investigate 

the functional linkage between DMGs and the molecular pathophysiology of CMT. 

As expected, many DMGs that were hypermethylated and down-regulated in CMT 

including TP63, LIFR, PLA2G16, LRIG1, STAT5A and AKAP12 and has been known 

as tumor suppressors, were identified from high scoring (OncoScore >50) CMT-

DMRs (Figure 1.6B). On the contrary, some oncogenes including WT1, TFPI2 and 

ETV1 were also found from hypomethylated and up-regulated DMGs. The 

methylation of 4 representative canine genes and their orthologous human genes, 

identified as three hypermethylated tumor suppressors (TP63, LIFR and FOLH1) 

and one
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Figure 1.6. Functional annotation of CMT-DMGs. A) Hierarchical clustering of 

CMT-DMGs separates 11 adjacent normal (light blue) and 11 CMT (dark blue) 

independent of subtypes (simple- yellow, ductal- green and complex- blue). 

Methylation levels were z-scored and are indicated by blue (hypo) and red (hyper) 

scale. B) OncoScore of 224 CMT-DMGs were measured and those with a score 

greater than 50 are depicted. Dark blue indicates hypermethylated DMGs and down-
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regulated in RNA-seq data and light blue indicates hypomethylated DMGs and up-

regulated in RNA-seq data. C) Box plot shows the expression level of the top 4 

orthologous genes from the TCGA database ranked by OncoScore in normal (light 

blue) and human invasive breast cancer (dark blue). D) CMT-DMGs were clustered 

into the library of Disease perturbations from GEO (down). The top 7 terms are 

composed of breast cancer related terms. h: human, r: rat, m: mouse, (1) Breast 

cancer C0006142 rat GSE1872, (2) Breast cancer DOID-1612 human GSE26910, 

(3) Sporadic breast cancer DOID-8029 human GSE3744, (4) Colorectal 

adenocarcinoma DOID-0050861 human GSE24514, (5) Tendonopathy 971 human 

GSE26051, (6) Neurological pain disorder C0423704 rat GSE15041 and (7) Ductal 

carcinoma in situ DOID-0060074 human GSE21422.
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hypomethylated oncogene (WT1) in CMT, showed an anti-correlation with gene 

expression between normal and cancer in both dogs and humans (Figure 1.6C and 

Figure 1.7). In addition, GO analysis with the Disease Perturbations from the GEO 

library revealed that CMT-DMGs were frequently enriched in the list of down-

regulated genes from various types of cancers including BC (Breast Cancer 

C0006142 rat GSE1872 sample 63 (p-value = 1.4E-16), breast cancer DOID-1612 

human GSE26910 sample 602 (p-value = 9.81E-13), sporadic breast cancer DOID-

8029 human GSE3744 sample 979 (p-value = 2.49E-11)) (Figure 1.6D). 

Furthermore, based on the methylation profiles in the intergenic regions of Subtype-

DMRs, the ductal subtype was distinctively separated from the simple subtype, while 

the complex subtype was located in between (Figure 1.8A). This result may indicate 

that the cell type components are shared by the simple and complex subtypes of CMT 

but not by the ductal subtype. Hierarchical clustering was performed using the 

intergenic Subtype-DMRs (Figure 1.8A) and the nearest genes from the intergenic 

DMRs were found and processed with GO analysis. The list of genes near intergenic 

Subtype-DMRs were presented in Table S8. The top 5 GO_biological process (BP) 

and GO_cellular component (CC) terms found in Subtype-DMRs indicated that 

diverse processes were enriched in each subtype. Of note, simple and complex 

subtypes shared some biological processes, such as extracellular matrix organization 

(GO:0030198, p-value = 6.79E-04 (simple), p-value = 2.32E-03 (complex)) and 

cellular response to tumor necrosis factor (GO:0071356, p-value = 1.25E-03 

(simple), p-value = 4.56E-03 (complex)), but all terms were unique in the ductal 
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Figure 1.7. The expression level of the top 4 orthologous genes ranked by 

OncoScore in canine mammary tumor. Box plots showed the expression level of 

four genes (TP63, LIFR, FOLH1 and WT1) in adjacent normal (n=8) and paired 

CMT tissues (n=8). Expression values are presented by FPKM calculated from 

RNA-sequencing data. Statistical p-value was calculated by Wilcoxon’s 

test.Functional association of DMGs.  
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Figure 1.8. Functional annotation of Subtype-DMGs. A) Hierarchical clustering 

of Subtype-DMGs. B) GO enrichment analysis in biological process (left) and 

cellular component (right). Duct: ductal, Comp: complex and Simp: simple subtype. 

Length of bar represents -log(p-value).
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subtype, such as vascular endothelial growth factor receptor signaling pathway 

(GO:0048010, p-value = 1.69E-03). Similarly, in GO_CC, 4 out of 5 terms were also 

common in simple and complex subtypes whereas all 5 terms in the ductal subtype 

were unique (Figure 1.8B). This coincides with the Hierarchical clustering in Figure 

1.8A. Substantial GO analysis using the nearest gene from intergenic CMT-DMRs 

as well as genic Subtype-DMGs and pathway analysis using intergenic Subtype-

DMRs were performed. In brief, no relevant terms to either cell-types or cancer were 

retrieved. 

 

Aberration in intron methylation is associated with cancer  

A total of 10,583 CMT-DMGs were divided into 7 sub-groups based on the 

distribution of DMRs (Figure 1.9A). More than 60% of DMGs, consisting of 6,745 

genes, harbored DMRs only in the intron region, whereas 977 and 819 genes were 

identified with DMRs in only promoter and exon regions, respectively. A greater 

amount of intronic DMRs than either exonic or promoter DMRs could have been 

expected due to the large discrepancy in chromosomal coverage among the intron 

(26%), exon (1.5%) and promoter (<1%) regions. Indeed, CMT-DMRs in the exon 

and promoter regions account for 22% and 17% of the total DMRs, respectively. 

This is higher than expected based on the coverage of the exon and promoter regions 

in the genomic sequence (less than 2%). This may mean that more CpG enrichment 

was done by MBD-seq in these areas (Figure 1.9A).
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Figure 1.9. Intron DMRs may associate with cancer-related genes. A) The 

DMGs are catagorized into 7 groups based on the combination of the DMR’s genic 

loci. I: intron only, EI: exon+intron, P: promoter only, E: exon only, PI: 

promoter+intron, PEI: promoter+exon+intron, PE: promoter+exon. Red color 

indicates DMGs containing intron DMRs. B) Venn diagram differentially presents 

intron DMRs (red) in 7 groups. C) KEGG pathway analysis with intron DMRs shows 

cancer-related pathways are highly enriched in I and EI group. 
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The most interesting finding was that all terms associated with cancer in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis were enriched in 

DMRs that included intron DMRs such as intron only (I), exon+intron (EI), 

promoter+exon+intron (PEI), and promoter+intron (PI) (Figure 1.9B, C). Not only 

the term of ‘pathways in cancer (hsa05200)’ but also ‘microRNAs in cancer 

(hsa05206)’, ‘proteoglycans in cancer (hsa05205)’, ‘PI3K-Akt signaling pathway 

(hsa04151)’, etc., which are associated with cancer and cancer pathophysiological 

characteristics, were highly enriched in intron only DMGs followed by EI and PI 

groups (Figure 1.9C). However, KEGG terms such as ‘HTLV-1 infection 

(hsa05166)’, ‘Neuroactive ligand-receptor interaction (hsa04080)’ and ‘Lysosome 

(has04142)’ that are extrinsic to cancer and CMT were enriched in DMGs that 

excluded intron DMGs such as the promoter only (P), exon only (E), and 

promoter+exon (PE) groups (Figure 1.9C). Considering that intronic regions 

comprise a large portion of the genome, we counted the number of genes enriched 

in the ‘hsa05205: Pathways in cancer’ term from a group of 530 genes, and the 

proportion for each group was calculated (Data not shown). The percentage of 

cancer-related DMGs containing intron DMRs was 22.85% (I: 5.34%, EI: 7.80%, 

PI: 6.70%, PEI: 3.01%), which is higher than 17.27%, the percentage of cancer-

related DMGs with promoter DMRs (P: 3.51%, PI: 6.70%, PE: 4.05%, PEI: 3.01%). 

Consequently, these results indicate that intron methylation may have important 

regulatory functions that are associated with CMT. It has been reported that intron 

CpG methylation might be associated with gene expression in human cancer. For 
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instance, the methylation of the first intron of the EGR2 gene, known as a tumor 

suppressor, affects the recruitment of proteins required for transcription 52 and anti-

tumorigenic PMP24 gene is silenced by the intronic single CpG methylation in 

prostate cancer cells 53. 

 

Altered CG methylation surrounding transcription factor binding motifs is an 

important epigenetic regulation in CMT 

To investigate enriched CMT-responsible transcription factor (TF) binding motifs, 

intron DMRs were leniently extracted from the upper 10% of covariance in an LMM 

analysis (mean p-value <0.05, Figure 1.10A). The list of the top 10% of CMT-

DMRs was also able to separately group cancer and adjacent normal (Figure 1.10B). 

According to the alteration of methylation, a total of 56,253 intron-DMRs were 

obtained and subsequently divided into hyper- (36,401) and hypo- (19,852) 

methylated intron DMRs in CMT, then subjected to motif analysis using HOMER 

v4.11 54. Motif analysis revealed that 10 putative motifs, including PAX5, USF1, 

ZFX and SREBF1, were enriched in hypermethylated intron DMRs, while 6 motifs, 

including CREB1, ELK1, PAX6 and ELK4 motifs, were enriched in 

hypomethylated intron DMRs. These motifs harbor CG nucleotides the methylation 

of which may influence protein binding activity 6. We indeed focused on two PAX 

motifs, PAX5 and PAX6, that have been known as tumor suppressive and oncogenic, 

respectively 55-58. Additionally, Kaplan-Meier plot 59,60 showed breast cancer patients 
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with lower PAX5 expression live shorter than those with higher, while the survival 

rate of patients with higher PAX6 expression decreased compared to those with 

lower expression (Figure 1.11). It was expected that these two genes would have 

reverse effects in breast cancer. PAX5 and PAX6 motifs, respectively designated by 

16 bp and 20 bp consensus nucleotide sequences (PAX5 – 

GCAGCCAAGCGTGACC, PAX6 – NGTGTTCAVTSAAGCGKAAA), were 

significantly enriched in each DMR group (PAX5 p-value:1E-9, PAX6 p-value: 1E-

3) (Figure 1.12A, B). An enriched heatmap successfully visualized the enrichment 

of hyper- and hypo-methylation signals in the 5 kb surrounding PAX5 and PAX6 

motifs, respectively (Figure 1.12C, D). We then investigated putative target genes 

that harbor hypermethylated PAX5 and PAX6 motifs in their intron regions (Data 

are not shown). Hypermethylation in the intron DMRs of the PAX5 motifs of CMT, 

relative to that in adjacent normal, was visualized in the representative genes, CDH5 

and LRIG1, by IGV (Figure 1.12E). On the other hand, hypomethylation related to 

PAX6 was found in the CDH2 and ADAM19 genes (Figure 1.12F). All of these 

target genes, hyper- and hypomethylated in CMT, were reversely correlated to gene 

expression. RNA expression levels of the candidate genes, were obtained from our 

previous transcriptome data 36 and an anti-correlation was shown by box plot (Figure 

1.12G, H). 
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Figure 1.10. Adjust thresholds to select distinguished CMT-DMRs for intronic 

motif analysis. A) P-values for each DMRs extracted using serial cutoff manner 

(upper 1~20%), B) Dendrogram for 22 cancer and adjacent normal tissue samples 

supervised cancer groups from normal when we identify CMT-DMRs at cutoff 10% 

in linear mixed model (LMM).
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Figure 1.11. Kaplan-Meier plots showed PAX5 and PAX6 expression reversely 

effect on the survival rate of breast cancer patients. Survival rates depends on A) 

PAX5 and B) PAX6 expression are shown. 
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Figure 1.12. PAX motifs are enriched in hyper- and hypo-methylated intron 

DMRs. Consensus motif sequence and sequence frequency of A) PAX5 and B) 

PAX6 motif. CGs on the motifs are highlighted with red. Accumulated heatmaps 

present 5kb up-and downstream regions of C) PAX5 and D) PAX6 motifs. Hyper-

(orange) and hypo- (blue) methylation. E and F) Differential methylation peaks 

between 11 adjacent normal (green) and 11 cancer (purple) samples visualized with 
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motif loci, DMRs, CGI and gene structure annotations. P-values for each DMR were 

generated by paired t-test. The level of candidate gene expression (log2(FPKM+1) 

of G) CDH5 and LRIG1, and H) CDH2 and ADAM19 in adjacent normal (light blue) 

and cancer (dark blue),
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Validation of intron DMRs and their anti-correlation to gene expression  

The methylome signature in CMT identified by MBD-sequencing was validated in 

both the 8 pairs of specimens originally subjected to high-throughput sequencing and 

9 additional validation sets. Bisulfite genomic DNA conversion followed by PCR 

was performed in the pairs of CMT and adjacent normal samples to obtain a fine 

map of intron methylation surrounding PAX5 motif regions of candidate genes. 

Primers used in BS-conversion PCR and sequencing are listed in Table 1.3. Overall, 

a hypermethylated intron was confirmed in two candidate genes that included the 

PAX5 motif, CDH5 and LRIG1, with box plots showing the DNA methylation 

profiles of the intron DMRs of genes (Figure 1.13). As for the CDH5 and LRIG1 

genes, respectively, a total of 16 CGs and 7 CGs surrounding PAX5 motifs, were 

tested in 14 and 17 pairs of CMT and adjacent normal samples. Of the 16 CGs tested 

in the 1st intron region of CDH5, 12 showed significant hypermethylation (Figure 

1.13A, upper panel). Unexpectedly, the PAX5 motif was located on the 14th and 15th 

CGs where no significant difference was found (Figure 1.14A). Pairwise 

comparison of each CG’s methylation between CMT and adjacent normal showed 

significant hypermethylation. In the intron-DMR tested region of LRIG1, all CG loci 

tended to show hypermethylation in CMT and one CG locus (1st CG, p-value = 

0.019, Figure 1.14B) among them showed a significant difference (Figure 1.13A, 

lower panel). In addition, differential intron methylation of CDH5 was clear in all 

three CMT subtypes but showed the best result in the ductal subtype (p-value = 3.9E-

13). 
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Figure 1.13. PAX motifs are enriched in hyper- and hypo-methylated intron 

DMRs. Validation of intron hypermethylation in the candidate genes, CDH5 

and LRIG1. A) Comparison of overall methylation states in the surrounding regions 

of the intronic PAX5 motif in CDH5 and LRIG1 genes. Methylation was measured 

by the ratio of cytosine on each CG site. Red lines between CMT and adjacent normal 

indicate hypermethylation, while blue lines indicate hypomethylation. N: adjacent 

normal, C: CMT. Statistical p-value was calculated by paired t-test. B) Differential 

methylation is depicted in three separated CMT subtypes.
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Figure 1.14. Validation of individual CG methylation around PAX5 motif 

regions in CDH5 and LRIG1 genes. Paired t-test for individual CG in A) CDH5 

and B) LRIG1 intronic PAX5 motif region. Percentage of methylated cytosine (C 

(%)) is represented by (C/C+T) * 100. Red lines between CMT and adjacent normal 

indicate hypermethylation, while blue lines indicate hypomethylation (N: adjacent 

normal, C: CMT). Statistical p-value was calculated by paired t-test.
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The differences in LRIG1 intron methylation was more distinct in the complex 

subtype (p-value = 3.1E-05) than in the other subtypes (Figure. 1.13B). These results 

suggest that hypermethylation of these two intron regions can be useful candidate 

epigenetic markers for CMT as well as subtypes. 

 

CMT-enriched differential intron methylation and its anti-correlation with 

gene expression was conserved in human breast cancer  

To validate our CMT-enriched methylome signature findings to human breast 

cancer (HBC), we investigated the consistency of the aberrations of candidate gene 

methylation and RNA expression between CMT and HBC. The methylation status 

and expression profiles of 4 representative candidate genes in HBC was surveyed 

using the Wanderer database 49. We determined locally corresponding CG sites and 

introns of the human orthologous genes from the breast cancer methylome data. 

Methylation levels were regionally dynamic within a target gene and there were 

some CGs differentially methylated between normal and HBC populations (Figure 

1.15, top panels of mean methylation). The scatter plots for CDH5 and LRIG1 

consisting of hypermethylated intron motifs depicted the trend of increased 

methylation and decreased gene expression in HBC when compared to normal and 

thus resulted in normal being represented by the blue dots located in the top-left and 

HBC being represented by the red dots located in the bottom-right (Figure 1.15A, 

B). On the contrary, CDH2 and ADAM19 showed the opposite
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Figure 1.15. Conservation of intron DMRs and associating RNA expression in 

the candidate genes between HBC and CMT. Hypermethylated candidate genes, 

A) CDH5 and B) LRIG1. Hypomethylated candidate genes, C) CDH2 and D) 
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ADAM19. Human gene structures are line-drawn with intron PAX5 and PAX6 

motifs (arrows). Wanderer database provided CG methylation levels in normal (blue 

line) and cancer (red line). CGs surrounding PAX motifs are labeled in red 

(hypermethylation) or in blue (hypomethylation). Scatter plot presents anti-

correlation between methylation level in selected CG and gene expression; normal: 

blue, cancer: red. Box plot shows overall gene expression levels of normal (blue) 

and cancer (red) in TCGA database.
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 pattern of methylation profiles and gene expression between normal and HBC 

(Figure 1.15C, D). Methylation profiles and gene expression of two CDH genes 

(hypermethylation in CDH5, hypomethylation in CDH2) were well-conserved in 

normal and HBC populations. The 1st intron of CDH5 harboring the hypermethylated 

PAX5 motif in CMT was also hypermethylated and down-regulated in HBC (Figure 

1.15A). Moreover, the 2nd intron of CDH2 which harbors a hypomethylated PAX6 

motif in CMT was also hypomethylated and up-regulated in HBC (Figure 1.15B). 

Of note, LRIG1 has somewhat different gene structures in human and dog, such as 

different number of exons (22 in human, 25 in dog), and thus the hypermethylated 

intron with the PAX5 motif that has anti-correlation with gene expression (Figure 

1.15C) was found in the 3rd and 5th introns in human and dog, respectively. Similarly, 

hypomethylated PAX6 motifs in ADAM19 have an anti-correlation with the gene 

expression even though the hypomethylated intronic PAX6 motifs are located on 

different introns in dog and human (13th intron in dog and 5th intron in human) 

(Figure 1.15D).  

As a whole, our date revealed that the orthologous intron regions of PAX5 and 

PAX6 binding motifs between human and dog have similar CG methylation 

alterations in breast cancers. These results thus suggest that the molecular similarity 

between CMT and HBC exists not only at the genomic and transcriptomic levels but 

also the epigenomic level. 
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Discussion 

This study of CMT has gained increasing importance not only for animal welfare 

but also for better understanding of HBC. Over the past decade, comparative studies 

of CMT and HBC have been conducted at the genome and transcriptome levels using 

high-throughput sequencing data and have presented similarities and discrepancies 

existing between CMT and HBC 36,38. However, a comprehensive analysis of the 

genome-wide methylome in CMT and its comparison with the HBC methylome had 

not been studied yet. 

We employed a linearized mixed model to classify DMRs with multiple variances 

and successfully determined CMT- and Subtype-DMRs. Our methylome data 

showed that DMRs were biased towards hypermethylation on the genic regions 

represented by promoter, exon, intron and TTS in CMT. This is consistent with the 

previous knowledge that the general cancer methylation pattern is represented by 

intergenic hypomethylation and gene body hypermethylation 61. In addition, each 

DMR (CMT- and subtype-) as a methylation signature could separate either normal 

from CMT or among the three subtypes in principal component analysis. The 

OncoScore and the GO enrichment analysis results demonstrated that CMT- and 

subtype-DMRs are functionally linked to CMT and subtypes. 

Of further note in the present study was that most of the enriched cancer-associated 

pathways were from DMRs that included intron regions. Recently, the regulatory 
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role of the intron region has been proposed in certain gene expressions, particularly 

the first intron closely located to the promoter 52,62,63. Some studies proposed 

enhancer sequences in introns and showed the transcription factor (TF) binding to 

the sequences 64. Although, some studies also proposed alternative splicing in RNA 

causing intron retention as putative roles of intron DNA methylation, this needs to 

be further elucidated 62,65,66. Furthermore, the role of TFs and DNA methylation in 

intron regions also needs to be elucidated because, although DNA methylation is 

generally associated with transcriptional silencing, the effect of methylation on 

binding affinity for most TFs is still unknown 67,68. Yet, Yin et. al, measured the TF 

binding affinity to the methylated motif in about half of human TFs using modified 

high-throughput sequencing and suggested that the affinity of individual TFs can 

either be increased or decreased on methylation, depending on the different positions 

within the binding site 6. In this study, we identified PAX5 and PAX6 motifs, known 

to be tumor suppressive and oncogenic TFs, that are enriched in hyper- and hypo-

methylated intron DMRs of CMT, respectively. Nine members are known in the 

Paired box (PAX) gene family and some members 69 particularly PAX5 and PAX6 

are known to have similar binding sites based on their crystal structure 70. However, 

recent studies provided enough evidence that PAX5 and PAX6 work independently 

56-58. For instance, they are clustered in different groups (PAX5 in group 2, PAX6 in 

group 4) 71 and bind to different genomic loci in ChIP-seq analysis 72. It is also known 

that only PAX genes from the same group are capable of complementing the loss of 

function in others 71. We also identified a list of motifs, such as NR2F1, RORA, 
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HNF4G, NR3C, MYB and RUNX, that were enriched in intron DMRs but of which 

the motifs lacked a CG nucleotide inside their recognition sites. The substantial 

putative target genes reversely regulated by intron methylation around motifs were 

investigated. These are also meaningful to study further since these motifs without a 

CG sequence in their recognition site can still be influenced by the surrounding CG 

methylation levels 6. 

There exists some limitation in directly comparing our CMT methylation profile to 

the HBC methylome database since the methylation profiling for HBC provided by 

TCGA was generated from an Infinium Human Methylation450 BeadChip array 

(Illumina, USA), not MBD-sequencing. Nonetheless, the result showing the 

correlation between methylation in the intron region and gene expression may 

support the importance of intron methylation, at least in regard to these candidate 

genes, CDH5 and LRIG1 with PAX5 motifs and CDH2 and ADAM19 with PAX6 

motif in both CMT and HBC. 
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CHAPTER II 

 

 

The landscape of PBMC methylome in canine 

mammary tumors reveals the epigenetic regulation of 

immune marker genes and its potential application in 

predicting tumor malignancy 
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Introduction 

Immune cells interact with the tumor and are involved in tumor invasion, 

metastasis, and systemic immune cell exhaustion in the tumor environment 73. 

Accordingly, cancer treatments have been developed using immune checkpoint 

inhibitor (ICI) that interferes with the signal between immunity and tumor and 

adoptive cell therapy that allows immune cells to attack tumor cells (e.g., CAR-T, 

TILs, etc.). In numerous clinical trials, the effectiveness of immunotherapy on 

tumors depends on the cancer type and the cancer patient's immune status 74. 

Peripheral blood mononuclear cells (PBMCs) containing a variety of cell types such 

as T- and B- lymphocytes, natural killer cells (NK cells), dendritic cells (DCs), and 

monocytes actively respond to tumor cells 75. Though PBMC is a valuable source for 

monitoring immune-relevant tumor mechanisms and diagnosing tumor status 75, a 

comprehensive omics analysis in PBMCs from tumor patients has not been 

performed. Here, we generated a primary dataset suitable for understanding 

epigenetic regulation circulating immune cells respond to tumors using PBMCs 

derived from dog mammary gland tumors. 

Epigenetic modification is an essential factor that enhances the effectiveness of 

cancer treatment by immune cells 76. Recently, clinical trials have been underway on 

the combination therapy of ICI with epigenetic drugs such as HDAC inhibitors 

(HDACi), 5-aza-2-deoxycytidine (5-Aza), and decitabine 77. DNA methylation is a 

reversible change and a valuable target that can be modulated and quickly detected 



68 

 

78. Promoter methylation of checkpoints such as CTLA-4, PD-1, and CD28 has been 

reported to be associated with systemic suppression of immune cells in the tumor 

microenvironment (TME) 79. In addition, methylation of peripheral blood immune 

cells is a strong candidate for diagnosing solid tumors such as head and neck 

squamous cell carcinoma 80, liver cancer 81, bladder cancer 82, and ovarian cancer 83. 

Understanding epigenetic regulation in circulating immune cells provides valuable 

information to diagnose tumor type, grade, and prognosis and treat tumors with 

immune remodeling therapy (e.g., CAR-T therapy) 84. Nevertheless, many studies in 

human cancer methylome have focused on tumor-infiltrating immune cells and 

immune checkpoints. Epigenetic information of PBMC has advantages in providing 

diagnostic, prognostic, and therapeutic information based on easily accessible liquid 

biopsy modality.  

Since epigenetic responses to environmental factors occur actively in dogs as in 

humans, comparative medical studies using dogs have been conducted on aging, 

tumor biogenesis, and inflammatory diseases 8. It has been reported that dogs might 

be helpful animal models for immunotherapy studies because they are immune-

competent, and their tumor biology is similar to that of humans 85. Indeed, several 

recent studies have evaluated the cross-reactivity of immunotherapy against human 

and canine cancers 9.  

We identified epigenetic signatures in circulating immune cells of CMT through a 

genome-wide methylation study of PBMCs in normal, benign tumors and malignant 
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tumors (carcinoma). We investigated abnormal methylation patterns in immune 

regulatory genes associated with the proliferation and normal differentiation of 

various immune cells. This result suggests that immune cell activity is affected by 

CpG methylation not only in the tumor microenvironment but also in peripheral 

blood. Furthermore, we modeled a two-step classifier that can distinguish benign and 

malignant tumors from normal through machine learning (ML) algorithms using the 

PBMC methylome datasets.
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Materials and methods 

 

Clinical samples 

The protocol was approved by the Institutional Review Board (IRB) of Seoul 

National University (IACUC SNU-170602-1) and the Institutional Animal Care and 

Use Committee (IACUC). Blood samples from healthy dogs and dogs with clinically 

diagnosed mammary tumors were collected in EDTA tubes. For PBMC isolation, 1-

2ml of blood was carefully transferred to a 2X volume of Ficoll-Paque PLUS (GE 

Healthcare, 17144002) and centrifuge at 400 g. After washing with phosphate-

buffered saline (PBS), obtained PBMCs were fresh-frozen for storage or used for 

following MBD sequencing, target BS sequencing, and total RNA sequencing. 

Clinical information for normal and mammary tumor dogs is presented in Table 2.1. 

 

Methyl-binding domain (MBD) sequencing 

MBD sequencing was performed as previously reported by our group 86. Briefly, 

genomic DNA has been isolated from dog-derived PBMCs using the DNeasy DNA 

Extraction Kit (QIAGEN, 69504). After 3 μg of genomic DNA was sonicated, MBD-

biotin was incubated with Dynabeads-streptavidin and bound to 500 ng of dsDNA. 

MBD-enriched DNA was obtained from 600 and 800 mM elutes which contain 

highly methylated DNA fragments. MBD-enriched DNA was subjected to library 
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construction and sequenced by Illumina Hiseq 4000 next-generation sequencing 

platform (Illumina, CA, USA). 

 

Genome-wide methylome profiling 

Quality check, trimming, alignment, and quantitation processes for MBD-seq data 

were executed as detailed in our previous methylome study 86. We calculated raw 

counts for bins (called ‘Bins_used’ in Figure 2.1C-E) excluding low signal bins and 

zero CpG bins using the ‘MEDIPS.createROIset’ function of MEDIPS R 

Bioconductor 42. We performed pairwise DMR analysis for the Bins_used by 

applying the ‘MEDIPS.meth’ function of MEDIPS. We set specific parameters (p.adj 

= “fdr”, diff.method = “edge R”, minRowSum = 1000, diffnorm = “quantile”), the 

bins with FDR-adjusted p-value <0.1 and |log2FC| ≥0.585 (same as fold change 

upper 1.5) were defined as significant DMRs. Quantile normalized counts and log2 

transformed CPM values were used for plotting and quantitative analysis. In 

addition, we counted reads in every 50 bp across the whole genome using the source 

code of MethylAction (https://github.com/jeffbhasin/methylaction) to generate high-

resolution ‘bigwig’ files for visualizing methylation peaks in the Integrative Genome 

Viewer (IGV v.2.8.0) 87. 

https://github.com/jeffbhasin/methylaction
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Table 2.1. The information about dog donors providing blood samples used for MBD-seq 

Donor ID Type Subtype Hospital Sex Age (years) Breeds RNA-seq 

N102 N Normal HMR MC 10 Schnauzer O 

N163 N Normal HMR MC 3 Dachshund   

N169 N Normal SNU F 7 Cocker Spaniel   

N171 N Normal SNU FS 2 Cocker Spaniel   

N172 N Normal SNU F 1 Maltese   

N173 N Normal SNU F 2 Maltese   

N174 N Normal SNU F 7 Maltese   

N178 N Normal SNU FS 5 Maltese   

N181 N Normal SNU FS 9 Poodle   

N182 N Normal SNU FS 11 Shih-tzu   

N183 N Normal SNU FS 10 Maltese   

N187 N Normal SNU FS 6 Maltese   

N188 N Normal SNU FS 5 Poodle   

N189 N Normal SNU FS 11 Maltese   

N190 N Normal SNU F 12 Maltese   

B004 B Ductal SNU F 10 Schnauzer   

B006 B Simple HMR FS 12 Poodle   

B007 B Mixed HMR F 12 Maltese   

B013 B Simple HMR F 9 Maltese   

B018 B Complex HMR F 10 Mixed O 

B019 B Complex HMR F 10 Cocker Spaniel   

B020 B Ductal SNU F 12 Chihuahua   
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B022 B Mixed SNU F 9 Maltese   

B024 B Complex SNU F 11 Maltese O 

B029 B Complex SNU F 10 Maltese O 

B034 B Complex HMR FS 10 Shih-tzu O 

B062 B Complex HMR FS 14 Schnauzer   

B063 B Complex HMR FS 14 Schnauzer   

B066 B Complex HMR FS 12 Yorkshire Terrier   

B072 B Complex/Mixed SNU FS 11 Maltese O 

B073 B Complex SNU F 8 Maltese O 

B084 B Complex HMR F 10 Shih-tzu O 

B085 B Mixed HMR F 14 Maltese   

B086 B Complex HMR FS 15 Maltese O 

B087 B Simple HMR F 10 Maltese O 

B091 B Mixed SNU F 16 Maltese O 

B096 B Simple HMR F 5 Yorkshire Terrier O 

B099 B Ductal SNU FS 14 Cocker Spaniel O 

B101 B Complex SNU F 10 Maltese O 

B104 B Complex HMR FS 10 Maltese O 

B109 B Complex SNU F 9 Maltese O 

B110 B Complex SNU FS 10 Bichon Frise O 

B137 B Mixed HMR F 10 Maltese O 

B141 B Complex HMR F 5 Mixed   

B145 B Complex BON FS 7 Old English Sheepdog O 

B155 B Complex SNU FS 13 Mixed   

C009 C Mixed HMR F 11 Maltese O 

C010 C Simple SNU FS 10 Cocker Spaniel O 

C012 C Simple HMR F 11 Dachshund O 
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C021 C Simple SNU FS 13 Pomeranian O 

C028 C Inflammatory HMR FS 13 Schnauzer   

C052 C Simple SNU F 12 Maltese O 

C053 C Inflammatory SNU FS 13 Jindo O 

C064 C Inflammatory HMR F 11 Maltese   

C065 C Comedo HMR F 10 Great Pyrenees   

C067 C Simple HMR F 10 Maltese   

C068 C Simple HMR FS 13 Siberian Husky   

C071 C Inflammatory HMR FS 14 Cocker Spaniel   

C078 C Simple HMR FS 14 Cocker Spaniel   

C079 C Simple HMR F 12 Poodle   

C081 C Simple HMR FS 10 Poodle   

C083 C Simple HMR FS 11 Shih-tzu   

C094 C Simple HMR FS 10 Shih-tzu O 

C095 C Simple HMR FS 11 Maltese O 

C105 C Inflammatory HMR FS 13 Jindo O 

C106 C Simple SNU F 15 Shih-tzu   

C107 C Simple SNU F 14 Cocker Spaniel O 

C128 C Complex SNU FS 14 Shih-tzu O 

C132 C Complex SNU F 12 Maltese O 

C138 C Simple HMR FS 9 Mixed O 

C143 C Simple HMR F 15 Shih-tzu O 

C148 C Simple SNU F 10 Chihuahua   

C149 C Complex SNU F 11 Cocker Spaniel O 

C151 C Complex SNU FS 14 Dachshund O 

C152 C Simple BON FS 14 Dachshund   

C157 C Unknown SNU F 13 Samoyed O 
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Figure 2.1. Pair-wise comparison for genome-wide PBMC methylome datasets 

from benign, carcinoma, and normal dogs. A) Synopsis of genome-wide PBMC 
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methylome study. B) A Venn diagram shows the number of common and unique 

DMRs identified in each comparison (FDR-adjusted p-value <0.1 and |log2FC| ≥

0.585). C-E) The distributions of genomic features in Total bins, Bins_used, and 

each DMR to see pronounced regions. ‘Bins_used’ regarded signal peaks used for 

DMR analysis, excluding noise bins (both low signal bins and zero CpG bins) from 

‘Total bins’. F) Volcano plots and 100%-scaled stacked bar plots with the frequency 

and genomic profile of hypo- and hyper- methylated bins. The x-axis is the ‘log2 

methylation fold change’, and the y-axis means the statistical significance. 

Hypermethylated in ‘N’ is expressed as blue, ‘T’ as purple, ‘B’ as orange, and ‘C’ 

as red. G) Heatmap Clustering of ‘N and T with NT_DMR (2840 DMRs)’, ‘N and 

B with NB_DMR (3373 DMRs)’, ‘N and C with NC_DMR (1876 DMRs)’, ‘B and 

C with BC DMRs (168 DMRs)’. The clustering distance between samples (columns) 

followed Pearson’s correlation, and the ‘complete’ method was used.
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Annotation of methylation peaks 

Information on genomic features of CanFam3.1 (v99), a dog reference genome, 

was obtained in a GTF format from Ensembl Genome Browser (release 104, May 

2021). `Promoter-TSS` means extended regions around TSS from -1000 bp to + 100 

bp, while `TTS` indicates extended regions around TTS from -100 bp to +1000 bp. 

We downloaded the genomic location of CpG islands from the UCSC Genome 

Browser and named the region extending ±2 kb from the CpG island as ‘CpG shore’ 

and the region extending from ±2 kb to ±4 kb from the CpG island as ‘CpG shelf’. 

Total bins, Bins_used, and DMRs were annotated to the prepared genomic 

information using the ‘annotatePeaks.pl’ function provided in HOMER v4.11.1. 

 

Functional enrichment analysis 

We investigated the enriched terms for DMGs using EnrichR (a web server for the 

comprehensive gene set enrichment analysis: maayanlab.cloud/Enrichr/) 44 to 

elucidate the function of genes undergoing aberrant methylation. Because most 

functional terms are derived from human and mouse, we converted dog Ensembl IDs 

into human orthologous gene symbols using multiple species datasets downloaded 

from the Ensembl Biomart (Ensembl Genes 104). Finally, we found significant 

functional terms in various libraries such as Gene Ontology (GO), KEGG pathway 
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(2021), MGI Mammalian Phenotype (Level 4, 2021), and Human Gene Atlas. 

Panglao DB is a web database that shares single-cell RNA sequencing data 

conducted on human and mouse 88. We extracted a list of marker genes for 11 

immune cell types corresponding to the composition of PBMC included in the 

immune system from the Panglao DB. This list was used to identify methylation 

changes in cell marker genes. 

 

Targeted Bisulfite-sequencing (BS-seq) 

Targeted BS-seq was performed using genomic DNA from 9 PBMC samples, 

including PBMCs used for MBD-seq (n=3 in normal (N), benign (B), and carcinoma 

(C), respectively). We designed bisulfite primers using the Bisulfite Primer Seeker 

(https://www.zymoresearch.com/pages/bisulfite-primer-seeker). The overall 

process of targeted BS-seq was conducted as previously described 89. The primer 

sequences are listed in Table 2.2. Subsequently, the sequences were aligned to the 

reference sequence in the amplified region using MEGA v11.0.11 90. The 

methylation (%) for the whole CpGs in each region was calculated and visualized as 

violin plots. To compare the methylation levels between different groups each other, 

the t-test was employed. 
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Table 2.2. The list of primers designed for targeted BS-sequencing 

Target Gene Direction Sequence (5' → 3') 

BACH2 Forward ATTTGTGTGTTTGTTTATTATTTAGAAA 

BACH2 Reverse TTAAAATTAACTTTCTCTAACCTAAACC 

SH2D1A Forward TGGTTTTAATTAGGTATTAYGTTTTTTA 

SH2D1A Reverse CCTTAAATTACCATCACTTAAAACTATT 

TXK Forward AGAAATTAAAATTTGGTTTTTTAGTTTT 

TXK Reverse ATTCTTTCCACCTATAAATAAAATAACT 

UHRF1 Forward GTTTGGATTAGGTAAGAATAAAGGT 

UHRF1 Reverse CACCRTTATTAATCATTAATACACTAAT 
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Classifier modeling and evaluation 

We calculated the log (CPM + 1) values for the entire bins to generate the 

methylome-based classifiers, while log (TPM + 1) was used for modeling 

transcriptome-based classifiers. Five ML algorithms; 1) Support vector machine 

(SVM) with linear kernel, 2) SVM with the radial kernel, 3) Random Forest (RF), 4) 

Gradient Boosting Machines (GBM), and 5) K-Nearest Neighbor (KNN) were 

compared to construct an optimal classifier. We estimated the performance of the 

ML algorithms through the 10-fold cross-validation (10-fold CV) to reduce the 

overfitting of models. In this process, the hyperparameters in each model were 

selected by default because we chose an ML algorithm to find DMRs that generally 

classified the groups well using R package caret (v6.0.85) 91. The two-step classifier 

consists of an NT classifier that distinguishes tumors from normal and a BC classifier 

that distinguishes carcinoma from benign tumors using PBMC methylome. Although 

both classifiers were constructed through the same computational modeling process, 

there was an additional modeling step based on feature importance to enhance the 

performance of the BC classifier. The optimal BC classifier was designed with 127 

DMRs, which had high feature importance from the GBM classifier with the highest 

accuracy among the primary models (Table 2.3). Feature importance was calculated 

based on nested cross-validation using the R package gbm (v2.1.8) 92. We evaluate 

multiple classifiers using the prediction accuracy and 
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Table 2.3. The list of 127DMRs which have high feature importance in BC classifier  

DMR ID DMR Group Hyper_in Importance Gene Name Annotation CpG_annotation 

chr28_28069001 BC_DMR B-hyper 8.938291598 - Intergenic - 

chr20_53056501 BC_DMR C-hyper 6.933393228 MYO1F intron CpG Island 

chr8_65136001 BC_DMR C-hyper 4.335951851 AK7 promoter-TSS CpG Island 

chr26_10793501 BC_DMR C-hyper 3.775880139 - Intergenic CpG Island 

chr9_49248501 BC_DMR C-hyper 3.024101558 LHX3 intron CpG Island 

chr1_630001 BC_DMR C-hyper 2.067359261 ADNP2 intron Shelf 

chr9_56626501 BC_DMR C-hyper 0.673368967 - Intergenic CpG Island 

chr6_55672501 BC_DMR B-hyper 0.580970748 - Intergenic - 

chr33_14546501 BC_DMR C-hyper 0.049627896 - Intergenic - 

chr18_11566001 BC_DMR C-hyper 9.73E-04 - intron - 

chr27_45316001 NB_DMR B-hyper 11.7308111 BCL2L13 intron - 

chr14_58652001 NB_DMR N-hyper 11.48877426 - intron - 

chr13_37124501 NB_DMR N-hyper 2.077878102 MAFA promoter-TSS CpG Island 

chr18_54047001 NB_DMR N-hyper 2.061007414 - Intergenic CpG Island 

chr20_57532501 NB_DMR N-hyper 1.436104355 SBNO2 intron CpG Island 

chr16_53991501 NB_DMR N-hyper 1.321658453 - promoter-TSS CpG Island 

chr1_29205001 NB_DMR B-hyper 1.22912013 - exon - 

chr21_45191501 NB_DMR B-hyper 1.133891561 - intron - 

chr10_67061501 NB_DMR B-hyper 0.871292278 - Intergenic - 
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chr15_50750001 NB_DMR B-hyper 0.427678749 ARFIP1 intron - 

chr8_4259001 NB_DMR N-hyper 0.340928288 - Intergenic - 

chrX_18832001 NB_DMR B-hyper 0.228576134 - Intergenic - 

chr6_7117501 NB_DMR N-hyper 0.145512841 - Intergenic Shore 

chr6_70470001 NB_DMR N-hyper 0.136077045 ST6GALNAC3 intron - 

chr14_20757501 NB_DMR B-hyper 0.133282151 ASB4 intron - 

chr1_97003501 NB_DMR N-hyper 0.117417436 - Intergenic CpG Island 

chrX_7181001 NB_DMR B-hyper 0.109534584 MID1 intron - 

chrX_120970001 NB_DMR B-hyper 0.087101028 - Intergenic - 

chr22_19693501 NB_DMR B-hyper 0.084687271 - Intergenic - 

chr17_60196501 NB_DMR N-hyper 0.083005999 SEMA6C exon CpG Island 

chr12_61573501 NB_DMR N-hyper 0.072993916 - Intergenic - 

chrX_32247501 NB_DMR B-hyper 0.043477542 - Intergenic - 

chrX_43196501 NB_DMR B-hyper 0.038029931 DGKK intron - 

chr27_18679501 NB_DMR B-hyper 0.036513912 FAR2 intron - 

chr18_31993001 NB_DMR B-hyper 0.032511661 LDLRAD3 intron - 

chr5_61583501 NB_DMR B-hyper 0.02876518 PARK7 intron - 

chr4_64336001 NB_DMR B-hyper 0.026342531 - Intergenic - 

chr9_32953001 NB_DMR N-hyper 0.024922147 TSPOAP1 intron - 

chr6_34874001 NB_DMR B-hyper 0.021878134 RBFOX1 intron - 

chr15_38104501 NB_DMR B-hyper 0.017460966 - TTS - 

chr38_22235001 NB_DMR N-hyper 0.016958292 - Intergenic Shelf 

chr36_6205001 NB_DMR N-hyper 0.016113485 - exon - 
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chr20_52911001 NB_DMR N-hyper 0.014547905 KANK3 exon CpG Island 

chrX_113723501 NB_DMR B-hyper 0.013371289 - Intergenic - 

chr21_50661001 NB_DMR N-hyper 0.01335164 MS4A7 intron - 

chr37_23042001 NB_DMR B-hyper 0.01100321 PECR intron - 

chr13_50751501 NB_DMR B-hyper 0.009132059 - intron - 

chr30_27422501 NB_DMR B-hyper 0.008082213 TLN2 intron - 

chr34_41892501 NB_DMR B-hyper 0.008074174 - Intergenic CpG Island 

chr26_25258001 NB_DMR B-hyper 0.006884661 - promoter-TSS - 

chr8_45573501 NB_DMR B-hyper 0.004908331 RGS6 intron - 

chr7_9447001 NB_DMR B-hyper 0.003427105 KCNH1 intron - 

chr4_70971501 NB_DMR N-hyper 0.003336939 GDNF intron CpG Island 

chr9_24848001 NB_DMR N-hyper 0.002674867 - Intergenic CpG Island 

chr5_30026001 NB_DMR B-hyper 0.002237331 - Intergenic - 

chr10_51118501 NB_DMR N-hyper 0.002202345 - intron - 

chr17_62057001 NB_DMR B-hyper 0.001139659 MAGI3 TTS - 

chrX_9220001 NB_DMR B-hyper 7.62E-04 FRMPD4 intron - 

chr5_32680501 NB_DMR N-hyper 3.97E-04 DNAH2 intron - 

chr8_68475501 NB_DMR N-hyper 3.20E-04 DEGS2 intron Shore 

chr2_11338001 NB_DMR N-hyper 2.71E-04 - Intergenic CpG Island 

chr2_4605501 NB_DMR B-hyper 2.70E-04 - Intergenic Shelf 

chr23_8153501 NB_DMR B-hyper 6.88E-05 XYLB intron - 

chr4_142501 NC_DMR N-hyper 7.107012158 - Intergenic - 

chr10_11437501 NC_DMR C-hyper 4.248686749 - Intergenic - 
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chr3_27401001 NC_DMR C-hyper 3.963346636 - promoter-TSS Shore 

chr27_37350501 NC_DMR N-hyper 2.395593107 SLC2A3 intron - 

chr10_910501 NC_DMR N-hyper 1.873185325 - Intergenic Shore 

chr8_2817001 NC_DMR C-hyper 1.79969214 - intron - 

chr2_77318001 NC_DMR N-hyper 1.701805015 HSPG2 intron CpG Island 

chr27_43047001 NC_DMR N-hyper 1.384637872 ERC1 intron - 

chr10_9261501 NC_DMR C-hyper 1.223971759 - Intergenic Shelf 

chr2_36696001 NC_DMR N-hyper 1.085250354 - Intergenic - 

chr31_24657001 NC_DMR N-hyper 1.019872619 GRIK1 intron - 

chr9_50428001 NC_DMR N-hyper 0.807627757 - Intergenic - 

chr17_29263001 NC_DMR C-hyper 0.679763372 - Intergenic - 

chr9_24082001 NC_DMR C-hyper 0.519813452 TBX21 intron Shelf 

chr1_21222001 NC_DMR C-hyper 0.451198724 - Intergenic Shore 

chr17_57218501 NC_DMR C-hyper 0.43712045 PDE4DIP intron - 

chr9_16000001 NC_DMR C-hyper 0.374481999 - Intergenic - 

chr2_32645501 NC_DMR C-hyper 0.348228369 - Intergenic - 

chr25_5055501 NC_DMR C-hyper 0.330430139 MAB21L1 promoter-TSS CpG Island 

chr10_41317501 NC_DMR N-hyper 0.322992905 - TTS - 

chrX_51426501 NC_DMR C-hyper 0.212449079 - Intergenic - 

chr21_47489501 NC_DMR C-hyper 0.178018583 - Intergenic - 

chr7_27483501 NC_DMR N-hyper 0.167991078 - Intergenic - 

chr33_13136001 NC_DMR C-hyper 0.161766794 - Intergenic - 

chr12_68395001 NC_DMR C-hyper 0.159269639 - Intergenic Shelf 
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chr22_1077501 NC_DMR N-hyper 0.118465453 - Intergenic - 

chr1_69608001 NC_DMR C-hyper 0.110420087 - Intergenic - 

chr37_4719001 NC_DMR C-hyper 0.104329829 - intron - 

chr15_2084501 NC_DMR C-hyper 0.087735364 CTPS1 intron - 

chr23_50064501 NC_DMR C-hyper 0.071507163 KCNAB1 exon Shelf 

chr3_49343501 NC_DMR N-hyper 0.069011587 - Intergenic - 

chr8_45100001 NC_DMR N-hyper 0.059384184 SIPA1L1 intron - 

chr11_62869501 NC_DMR C-hyper 0.049798542 - intron CpG Island 

chr1_99648001 NC_DMR N-hyper 0.043905775 ZNF8 intron - 

chr9_50427501 NC_DMR N-hyper 0.039854523 - Intergenic - 

chr25_38162001 NC_DMR C-hyper 0.038411981 DOCK10 promoter-TSS - 

chr1_111974501 NC_DMR N-hyper 0.032059185 CXCL17 intron - 

chr17_35808001 NC_DMR N-hyper 0.025486887 - intron - 

chr21_32086501 NC_DMR N-hyper 0.025086979 TRIM66 intron - 

chr12_67126001 NC_DMR C-hyper 0.014644766 SLC22A16 intron - 

chr16_36268001 NC_DMR C-hyper 0.009128027 - Intergenic - 

chr5_60358501 NC_DMR N-hyper 0.004007098 - Intergenic - 

chr37_16851001 NC_DMR C-hyper 0.003824876 - Intergenic - 

chr18_48696001 NC_DMR N-hyper 0.003499961 - Intergenic - 

chr1_95807001 NC_DMR N-hyper 0.003389147 - exon - 

chr10_13761001 NC_DMR C-hyper 0.00304049 TRHDE intron - 

chr20_51355001 NC_DMR C-hyper 0.002936002 - Intergenic CpG Island 

chr32_21296001 NC_DMR N-hyper 0.002473558 ADH4 intron - 
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chr2_11784001 NC_DMR N-hyper 0.00245975 - Intergenic - 

chrX_16516001 NC_DMR C-hyper 0.002297134 - Intergenic - 

chr3_179001 NC_DMR C-hyper 0.001712125 - Intergenic - 

chr11_73554501 NC_DMR C-hyper 0.001612541 CDK5RAP2 intron Shore 

chr7_38802001 NC_DMR C-hyper 0.001401762 H3-3A exon Shelf 

chr4_5357001 NC_DMR C-hyper 0.001280147 - Intergenic Shore 

chr16_20238501 NC_DMR N-hyper 0.001224167 PTPRN2 intron Shelf 

chr14_3159001 NC_DMR N-hyper 8.94E-04 - Intergenic - 

chr1_17409001 NC_DMR C-hyper 8.18E-04 - Intergenic Shore 

chr7_20661501 NC_DMR N-hyper 7.44E-04 - Intergenic - 

chr27_16380501 NC_DMR N-hyper 6.48E-04 FGD4 intron - 

chr10_34483001 NC_DMR N-hyper 4.77E-04 SH3RF3 intron Shelf 

chr7_62550001 NC_DMR C-hyper 4.31E-04 SS18 intron - 

chr15_63693501 NC_DMR C-hyper 4.14E-04 DDX60 intron - 

chr20_42568501 NC_DMR C-hyper 1.45E-04 FYCO1 intron - 

chr5_80367501 NC_DMR N-hyper 1.44E-04 SNTB2 intron - 
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area under the ROC curve (AUC) using the R package pROC (v1.18.0) 93. 

 

Statistics 

Statistics and statistical tools for each analysis have been described above. The 

correlation coefficient between DMR methylation and gene expression was 

calculated by Pearson correlation and regression analysis. Comparison for the 

expression between The t-test was implemented to compare gene expression 

between groups. The number of asterisks between the two groups indicates the 

degree of statistical significance. If there was no statistical difference between the 

two groups, it was expressed as ‘ns (not significant)’ without an asterisk. We 

exploited Rex (v3.6.1) 94 and R (v4.0.2) in NGS data quantification, statistical 

analyses, and classifier modeling. 
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Results 

Profiling differential methylation of peripheral blood mononuclear cells in 

canine mammary gland tumor 

We first made genome-wide differential methylation profiles of PBMCs in CMT. 

To evaluate the genome-wide effects of mammary tumors on PBMC DNA 

methylation, PBMCs were collected from 15 healthy dogs (Normal; N), 31 dogs with 

mammary adenoma (Benign; B), and 30 dogs with mammary carcinoma 

(Carcinoma; C) (Figure 2.1A). The donor’s information is listed in Table 2.1. The 

healthy samples consist of six dog breeds, aged 1 to 12, and 13 females, including 

eight spayed females and two neutered males. Patient specimens comprise 16 dog 

breeds aged 5 to 16 and six significant subtypes of canine mammary tumors (ductal, 

simple, complex, mixed, inflammatory, and comedo). All patient dogs were females 

or spayed females. 

Global CpG methylomes have enriched and analyzed by methyl-CpG-binding 

domain sequencing (MBD-seq) that has high coverage in highly methylated CpG 

and CpG-rich regions (Figure 2.1A). The quality check for NGS data has also been 

performed. Sequencing reads more than 5X depth (considered as signal peaks) show 

about 50% CpG coverage, indicating that the MBD-seq data was successfully 

produced and informative (Figure 2.2A). The R Bioconductor MEDIPS (v.1.46.0) 

42 was mainly employed to calculate methylation
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Figure 2.2. Quality check and processing MBD-seq data. A) The CpG coverage 

according to the read depth is shown as a 100% stacked bar plot. Compared to Input 

(the first bar), about half of genome CpGs have been covered by reads with high 

depth (>5x) in MBD-seq. It states that MBD-seq data has been successfully enriched 
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in CpG regions across the 76 PBMC samples. B) The workflow of the MBD-seq 

data processing. After trimming and mapping to CanFam3.1, MBD-seq data were 

quantified for DMR analysis, peak visualization, and classifier modeling. The black 

box indicates data pre-processing (from raw data to mapped reads), the blue box 

shows data processing for peak visualization, the red box exhibits the process of 

quantitation and normalization for DMR analysis, and the purple box shows the 

normalizing counts for the classifier modeling.
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 levels and identify differentially methylated regions (DMRs) (Figure 2.2B). 

DMRs were further subjected to ML for modeling an immune classifier for CMT. 

Of the total, 4,655,287 bins (referred to as ‘Total bins’ in Figure 2.1C-E) were 

generated at 500 bp size, and 1,220,164 bins (referred to as ‘Bins_used’ in Figure 

2.1C-E) with reading counts of 25 or more were used for further analysis. 

Together with pair-wise comparisons Normal vs. Benign (NB), Normal vs. 

Carcinoma (NC), and Benign vs. Carcinoma (BC), we also compared Normal vs. 

Tumor (NT), in which tumor includes benign and carcinoma. From each comparison, 

2840, 3373, 1876, and 168 DMRs were identified with significance (|log2FC| ≥0.585, 

which is equal to |Fold Change| ≥1.5, and adjusted p-value (FDR) <0.1) for NT, 

NB, NC, BC, respectively (Figure 2.1B). Interestingly, the NB comparison shows 

the highest number of DMRs, followed by NT. As expected, NT comparison shares 

more than half of DMRs (1514) with NB and NC comparisons. Of note, DMRs from 

NB and NC comparisons share 636 DMRs and methylation directions (that is, B-

hyper = C-hyper, B-hypo = C-hypo), indicating the methylation status of immune 

cells against tumors are similar in benign and carcinoma (Figure 2.3). Most of all, 

we focused if DMR profiles of PBMC can distinguish corresponding tumor types 

(benign or carcinoma) as well as Normal. However, only a small number of DMRs 

were identified from BC, and most BC_DMRs were unique across all DMRs, 

indicating that they are not explicitly associated with tumor states.
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Figure 2.3. Venn diagram for hyper- and hypo-methylated DMRs. A Venn 

diagram shows the number of common and unique DMRs identified in each 

comparison according to the direction of methylation (FDR-adjusted p-value <0.1 

and |log2FC| ≥ 0.585). There is no common DMR between ‘NB_hyper and 

NC_hypo’ OR ‘NB_hypo and NC_hyper’, which suggests that the methylation 

pattern in Benign is similar in Carcinoma PBMCs.
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The uniqueness of BC_DMRs was shown in the genomic and CpG regional 

distribution and gene types linked to DMRs (Figure 2.1C-E). Total bins consist of 

five genomic regions. Compared with the ‘Total bins’, the intron region was 

increased when the intergenic region was decreased in the ‘Bins used’. Moreover, 

more numbers of the CpG island, Shore, and Shelf regions were enriched in the ‘Bins 

used’ compared to the ‘Total bins’. Interestingly, BC_DMRs were enriched in the 

promoter and exon regions and the CpG island regions, which are more associated 

with the protein-coding region. 

We then analyzed the direction of DMRs using volcano plots and 100% stacked bar 

charts in eight genomic regions (Figure 2.1F). Overall, methylation increased in 

tumors compared to Normal. In BC, the Carcinoma group was more methylated than 

the Benign group. Regionally, changes in methylation status were highly dynamic 

according to the comparison group. In the NB comparison, there were more 

hypomethylated DMRs in CpG islands, promoter, and exon compared to other 

regions. Although these characteristics were similarly shown in the NT comparison, 

hypermethylated DMRs are prominent across all eight regions in the NC 

comparison.  

Nevertheless, exon, promoter, and CpG island regions were highly hypomethylated 

in the BC comparison. Most of BC_DMRs, indeed, were hypermethylated in 

carcinoma. It is an essential feature because hypermethylation of certain groups of 

genes and DMRs might be a cancer-specific signature. 
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We then tested whether DMRs separate each comparison group. The pair-wise 

hierarchical clustering separated the Normal group from the Benign, Carcinoma, and 

Tumors groups (Figure 2.1G, Figure 2.4A-B). However, the Benign and Carcinoma 

groups were not entirely separated from each other, suggesting a new clustering 

algorithm for PBMC methylome classification for these group differentiation. The 

PBMC samples used in this study were obtained from dogs with diverse 

characteristics, including age, gender (neutered or not), tumor subtype, hospital 

where the blood was collected, and tumor features, among others. To investigate the 

potential effects of these variables, we performed hierarchical clustering using the 

NT_DMRs that we identified, to examine their influence (Figure 2.4C). These 

results show that the clustering of normal PBMC and tumor PBMC samples using 

NT_DMRs was not influenced by the diverse variables between the samples. 

 

Differential methylation accompanies changes in immune cell populations and 

proliferation in malignant tumor patients.  

Several studies have investigated the methylation patterns of blood immune cells, 

limited to specific target genes and not on a genome-wide scale 95-98. Since PBMC is 

a mixture of a wide variety of immune cells, there is a limit to the regulation or role 

of various immune cells. To this end, single-cell bisulfite sequencing 
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Figure 2.4. Unsupervised and supervised clustering between comparison 

groups. A) PCA clustering comparison groups using total bins. B) PCA clustering 

comparison groups using corresponding DMRs. Unlike unsupervised clustering 

using total bins, supervised clustering using DMRs distinguishes two groups. (N: 

blue, T: purple, B: orange, C: red) C) A total of 2,840 DMRs were identified through 

a comparison of normal and tumor PBMC samples (|Fold Change| ≥  1.5 and 

adjusted p-value (FDR) <0.1), and subjected to hierarchical clustering to examine 
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the effects of various sample variables. Each column represents a different sample, 

while each row represents a variable of the samples, including subtype of tumor, 

metastasis, tumor feature, grade, sex, age, and others.
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technology has been attempted, but several limitations exist in diagnosing cancer 

or defining the immune status. We analyzed the whole genome-wide methylation 

profile obtained from bulk PBMC samples and attempted to confirm various immune 

status changes in different tumors. 

We defined DMGs using DMRs existing in promotor, exon, intron, and TTS and 

performed gene set enforcement analysis (Figure 2.5 and Figure 2.6). Figure 2.5 

shows that the immunocyte-related terms are significantly enriched in Gene 

Ontology (GO), Mammalian Phenotype Ontology in Mouse Genome Informatics 

(MGI), and Human Gene Atlas (HGA) databases 99-101. In all comparative groups, 

genes involved in signal pathways directly related to cell activity, receptor activity, 

and cytokine modulation are hypomethylated in tumors (both benign and 

carcinoma), whereas there is no significant term or pathway found in 

hypermethylated in carcinoma (Part of ‘GO’ and ‘KEGG’ in Figure 2.5). 

The MGI and HGA databases, which focus on the function of immune cells, 

provide clues to infer the immune status in the blood (Part of ‘MGI Mammalian 

Phenotype’ and ‘Human Gene Atlas’ in Figure 2.5). Comparing the normal with the 

overall tumor, the terms associated with the increase or abnormal function of T-cells, 

B-cells, and NK cells were high. The comparison between normal and cancer 

showed that the gene group with higher methylation in cancer PBMC was involved 

in the increasing or decreasing of B-cells or T-cells. Among T-cell types, the genes 
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Figure 2.5. Gene enrichment analysis for DMGs shows differential immune 

signatures between tumor and normal PBMCs. Immune-related terms 

significantly enriched in the Gene Ontology (blue box), the MGI Mammalian 
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Phenotype (pink box), the KEGG pathway (yellow box), and the Human Gene Atlas 

(purple box) are shown. The color of dots means which group is hypermethylated 

(‘N-hyper’ is expressed as blue, ‘T-hyper’ as purple, ‘B-hyper’ as orange, and ‘C-

hyper’ as red. The size of the dots indicates the statistical importance (according to 

-log10 adjusted p-value).



100 

 

 

Figure 2.6. Enriched terms ranked in the Top 3 by combined score according 

to comparison groups. Enriched terms ranked in the Top 3 by combined score 

according to comparison groups. The top three terms are shown based on the 

combined score, the unit used in EnrichR. Terms enriched in Gene Ontology (both 

Biological Process and Molecular Function), KEGG pathway, Human Gene Atlas 

(HGA), and MGI mammalian phenotypes (MGI_Phenotype) are shown. 
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associated with the increase in CD8+ T-cells were most highly associated. On the 

other hand, compared with benign and normal the highly methylated genes in the 

benign group showed abnormalities in NK and B-cells. The primary immune cell 

types responding to benign and carcinoma differ. As for the DMR of BC comparison, 

there was no significant difference in the gene enrichment analysis, as the number 

was minimal, as shown in Figure 2.1B. Through the PBMC DMRs associated with 

immune responses to tumors, it is expected to find methylation biomarkers that can 

distinguish the presence or absence of tumors and the malignancy of tumors. 

 

Immune cell markers functionally involved in cell proliferation and activation 

of B, T, and NK cells are hypermethylated in tumor PBMCs. 

Through gene enrichment analysis (Figure 2.5), we could expect that methylation 

of immune cells in tumor patient dogs is involved in the population or activity of 

specific cell types. The gene enrichment analysis mapped the highest terms. Using 

text mining for meaningful GO terms in adj. p <0.1, words containing ‘receptor’, 

‘signal’, ‘activity’, ‘pathway’, ‘T cell’, and ‘B cell’ were prominent in all 

comparisons (Figure 2.7A). These enrichments suggest that hypermethylation 

occurs in immune cells responding to tumors and is involved in signal transduction 

of immune cells. To confirm whether the methylation change in PBMC is due to the 

alteration of immune cell populations and or the cell activity, we investigated the 
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Figure 2.7. Immune cell markers involved in normal proliferation and 

activation of B-cells, T-cells, and NK cells are hypermethylated in tumor 

PBMCs. A) Text clouds intuitively show the frequency of words enriched in 

immune-related terms. The color of the text indicates which group is 

hypermethylated (‘N-hyper’ is expressed as blue, ‘T-hyper’ as purple, ‘B-hyper’ as 

orange, and ‘C-hyper’ as red). The meaning of the four colors (blue, purple, orange, 

and red) was applied equally to the following graphs in this figure. B) The number 

of hypermethylated genes included in immune cell type markers is expressed as a 
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percentage (%) of total genes in the corresponding cell type. The number of matched 

genes is displayed on the top of each bar. The list of marker genes for 11 types of 

immune cells was downloaded from Panglao DB. C) Among genes enriched in 

significant immune-associated terms, hypermethylated DMGs that reversely 

correlate with expression are shown. The y-axis of the bar graph on top means log2 

fold change of methylation values, and that of the middle one means log2 fold change 

calculated using TPM values derived from RNA-seq. The y-axis of the bottom one 

shows the degree of inverse correlation between methylation and expression by 

Pearson’s correlation. Hypermethylated genes included in Panglao DB and its 

genomic features are listed in Table 2.4. D) The scatter plots with linear regression 

(red line) in 4 representative genes among 49 genes listed in (C).   
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Table 2.4. The list of hypermethylated DMRs in immune cell type markers (Panglao DB) 

Gene Name Cell Type Hyper_in DMR ID adj.p-value log2FC 

ADGRG1 Gamma delta T cells N-hyper chr2_58841501 0.00313083 0.676948196 

ADGRG1 Gamma delta T cells N-hyper chr2_58835501 0.077801732 0.646550585 

ADGRG1 Gamma delta T cells N-hyper chr2_58841501 0.012071425 0.61497088 

ADGRG1 Gamma delta T cells N-hyper chr2_58841001 0.000881389 0.615462186 

ADGRG1 Gamma delta T cells N-hyper chr2_58841501 0.00337687 0.762624348 

ARHGAP45 T memory cells N-hyper chr20_57786501 0.077736441 0.665636421 

ARHGAP45 T memory cells N-hyper chr20_57787001 0.088862344 0.670393428 

ARHGAP45 T memory cells N-hyper chr20_57786001 0.048979573 0.759269837 

ARHGAP45 T memory cells N-hyper chr20_57786501 0.025360276 0.776182674 

BACH2 B cells memory N-hyper chr12_49379501 0.064990035 0.638999182 

BACH2 B cells N-hyper chr12_49379501 0.064990035 0.638999182 

BACH2 B cells naive N-hyper chr12_49379501 0.064990035 0.638999182 

BCL2 T memory cells N-hyper chr1_13875001 0.018474991 0.654214079 

BCL2 T cells N-hyper chr1_13875001 0.018474991 0.654214079 

CD44 Natural killer T cells N-hyper chr18_32793501 0.096986368 0.619997986 

CD44 Monocytes N-hyper chr18_32793501 0.096986368 0.619997986 

CD44 Natural killer T cells N-hyper chr18_32793501 0.088971726 0.712461803 

CD44 Monocytes N-hyper chr18_32793501 0.088971726 0.712461803 
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CHSY1 NK cells N-hyper chr3_39851501 0.084892972 0.6035341 

CLEC10A Dendritic cells N-hyper chr5_32093001 0.006530008 0.736185195 

CSF1R Monocytes N-hyper chr4_58980501 8.96E-02 0.628570853 

CX3CR1 Dendritic cells N-hyper chr23_8953501 0.065729997 0.601648294 

CX3CR1 Monocytes N-hyper chr23_8953501 0.065729997 0.601648294 

CX3CR1 Dendritic cells N-hyper chr23_8953501 0.072895147 0.653970226 

CX3CR1 Monocytes N-hyper chr23_8953501 0.072895147 0.653970226 

CYTIP T memory cells N-hyper chr36_3456001 0.021800899 0.714411794 

FCER1A Dendritic cells N-hyper chr38_22688501 0.088287119 0.647878937 

FCER1A Dendritic cells N-hyper chr38_22688501 0.056950663 0.739279794 

FCER2 B cells N-hyper chr20_52456001 0.009486532 0.730327583 

FCER2 B cells naive N-hyper chr20_52456001 0.009486532 0.730327583 

FCER2 B cells N-hyper chr20_52456501 0.003046101 0.805020388 

FCER2 B cells naive N-hyper chr20_52456501 0.003046101 0.805020388 

FCER2 B cells N-hyper chr20_52456501 0.012656403 0.793595381 

FCER2 B cells naive N-hyper chr20_52456501 0.012656403 0.793595381 

FCER2 B cells N-hyper chr20_52456001 0.03843911 0.694722337 

FCER2 B cells naive N-hyper chr20_52456001 0.03843911 0.694722337 

FCER2 B cells naive N-hyper chr20_52456001 0.001690093 0.791344084 

FCER2 B cells N-hyper chr20_52456001 0.001690093 0.791344084 

FCER2 B cells naive N-hyper chr20_52456501 0.002244865 0.835270952 

FCER2 B cells N-hyper chr20_52456501 0.002244865 0.835270952 

FLT3 Dendritic cells N-hyper chr25_11685001 0.020741486 0.596621498 

GIMAP1 T memory cells N-hyper chr16_14794001 0.019621956 0.986586728 
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GNG7 B cells memory N-hyper chr20_56558001 0.027327207 0.616333427 

GRAP2 T memory cells N-hyper chr10_25202001 0.072728152 0.631888785 

HHEX B cells memory N-hyper chr28_7063001 0.04331472 0.753088556 

HHEX B cells naive N-hyper chr28_7063001 0.04331472 0.753088556 

IL17RA Natural killer T cells N-hyper chr27_44808501 0.015025715 0.609522337 

IL17RA Natural killer T cells N-hyper chr27_44808501 0.026114003 0.666507466 

IL1R2 T helper cells N-hyper chr10_41000501 0.025483805 0.64314538 

IL1RN Monocytes N-hyper chr17_37245001 0.043581459 0.661129035 

IL1RN Monocytes N-hyper chr17_37245001 0.054954839 0.636986022 

IL1RN Monocytes N-hyper chr17_37245001 0.040972246 0.707125318 

IRF8 B cells naive N-hyper chr5_66796501 0.074488273 0.623631462 

IRF8 B cells memory N-hyper chr5_66796501 0.074488273 0.623631462 

IRF8 Dendritic cells N-hyper chr5_66796501 0.074488273 0.623631462 

ITGAM Monocytes N-hyper chr6_16855501 0.047296385 0.648316821 

ITGAM Dendritic cells N-hyper chr6_16855501 0.047296385 0.648316821 

ITGAM NK cells N-hyper chr6_16855501 0.047296385 0.648316821 

LYN Monocytes N-hyper chr29_7380501 0.02819836 0.607660328 

LYN Monocytes N-hyper chr29_7380501 0.023101019 0.585612756 

LYN Monocytes N-hyper chr29_7380501 0.046422882 0.646553763 

MAFF T cells N-hyper chr10_26483001 0.03398335 0.591260482 

MAFF T cells N-hyper chr10_26483001 4.33E-02 0.610506536 

MS4A7 Monocytes N-hyper chr21_50661001 0.077220741 0.614799143 

MS4A7 Monocytes N-hyper chr21_50661001 0.01962606 0.830081583 

NFATC2 T helper cells N-hyper chr24_37672501 0.028863903 0.896844366 
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NFATC2 T helper cells N-hyper chr24_37672501 0.018695174 1.058895044 

NFATC2 T helper cells N-hyper chr24_37672501 0.071177826 0.783472659 

NOTCH3 T cells N-hyper chr20_46963501 0.003961028 0.610745512 

NR4A1 Natural killer T cells N-hyper chr27_2899501 0.004143632 0.730659911 

NR4A1 Natural killer T cells N-hyper chr27_2900001 0.000400681 0.700477974 

NR4A1 Natural killer T cells N-hyper chr27_2900001 0.001973569 0.699916896 

NR4A1 Natural killer T cells N-hyper chr27_2899501 0.004167384 0.776400617 

NR4A1 Natural killer T cells N-hyper chr27_2899501 0.015229302 0.701241641 

NR4A1 Natural killer T cells N-hyper chr27_2900001 0.000529735 0.708558486 

PAX5 B cells memory N-hyper chr11_53342501 0.034524669 0.816040109 

PAX5 B cells N-hyper chr11_53342501 0.034524669 0.816040109 

PPL Dendritic cells N-hyper chr6_36534001 0.024653736 0.623580811 

PTGDS Gamma delta T cells N-hyper chr9_48670001 0.074131546 0.658674298 

SCIMP Dendritic cells N-hyper chr5_31534001 0.016251029 0.689895705 

SP100 T memory cells N-hyper chr25_42610501 1.76E-02 0.61548208 

SPI1 Monocytes N-hyper chr18_42253501 0.065242288 0.663515559 

SPI1 Monocytes N-hyper chr18_42254501 0.081585201 0.626830509 

ADAMTS14 NK cells B-hyper chr4_21541001 0.018875982 0.641171176 

ARHGAP15 T memory cells B-hyper chr19_45576001 0.057169695 0.706521255 

ARHGAP15 T memory cells B-hyper chr19_45761001 0.035632986 0.640142785 

BACH2 B cells memory B-hyper chr12_49247001 0.062080559 0.625552285 

BACH2 B cells B-hyper chr12_49247001 0.062080559 0.625552285 

BACH2 B cells naive B-hyper chr12_49247001 0.062080559 0.625552285 

BCL2 T memory cells B-hyper chr1_13860001 0.029257888 0.612552592 
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BCL2 T cells B-hyper chr1_13860001 0.029257888 0.612552592 

BCL2 T memory cells B-hyper chr1_13750001 0.027410084 0.624605891 

BCL2 T cells B-hyper chr1_13750001 0.027410084 0.624605891 

BCL2 T memory cells B-hyper chr1_13746001 0.004980075 0.792894308 

BCL2 T cells B-hyper chr1_13746001 0.004980075 0.792894308 

CYTIP T memory cells B-hyper chr36_3473501 0.014692478 0.754361237 

CYTIP T memory cells B-hyper chr36_3485001 0.012122645 0.73521525 

CYTIP T memory cells B-hyper chr36_3450001 0.009003416 0.63869298 

DOCK2 NK cells B-hyper chr4_42229001 0.059717155 0.65963723 

FLI1 B cells B-hyper chr5_5853501 0.017541472 0.616215678 

FOXP1 B cells naive B-hyper chr20_20878001 0.012600775 0.687075154 

FOXP1 B cells naive B-hyper chr20_20966501 0.012397454 0.665932809 

FOXP1 B cells naive B-hyper chr20_20809501 0.017748067 0.629669878 

FOXP1 B cells naive B-hyper chr20_20805501 0.008248443 0.725372132 

FOXP1 B cells naive B-hyper chr20_20805001 0.006404841 0.731390333 

IFIT3 T cells B-hyper chr4_100001 0.008797588 0.773218594 

IFIT3 Monocytes B-hyper chr4_100001 0.008797588 0.773218594 

IFIT3 B cells B-hyper chr4_100001 0.008797588 0.773218594 

IL17RB T helper cells B-hyper chr20_36144001 0.018458025 0.663533837 

IL4 T helper cells B-hyper chr11_20973001 0.025997809 0.590530151 

IL4R B cells naive B-hyper chr6_19266001 0.017954467 0.609615651 

NFKB1 T helper cells B-hyper chr32_23983001 0.005390736 0.590831974 

RORA T helper cells B-hyper chr30_25755001 0.075985813 0.591881789 

RORA T cells B-hyper chr30_25755001 0.075985813 0.591881789 
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RORA Natural killer T cells B-hyper chr30_25755001 0.075985813 0.591881789 

RORA T helper cells B-hyper chr30_25702501 0.074142641 0.608536326 

RORA T cells B-hyper chr30_25702501 0.074142641 0.608536326 

RORA Natural killer T cells B-hyper chr30_25702501 0.074142641 0.608536326 

RORA T helper cells B-hyper chr30_25605501 0.032570371 0.722975957 

RORA T cells B-hyper chr30_25605501 0.032570371 0.722975957 

RORA Natural killer T cells B-hyper chr30_25605501 0.032570371 0.722975957 

RORA T helper cells B-hyper chr30_25668001 0.019576872 0.621820977 

RORA T cells B-hyper chr30_25668001 0.019576872 0.621820977 

RORA Natural killer T cells B-hyper chr30_25668001 0.019576872 0.621820977 

TMEM156 B cells memory B-hyper chr3_73398001 0.058696423 0.733628237 

TXK NK cells B-hyper chr13_43959001 0.037400777 0.588824234 

TXK T cells B-hyper chr13_43959001 0.037400777 0.588824234 

ADAM28 B cells memory C-hyper chr25_33234001 0.097963537 0.685999253 

ADAM28 B cells naive C-hyper chr25_33234001 0.097963537 0.685999253 

APBB1IP T memory cells C-hyper chr2_7152001 0.098757585 0.643802461 

BACH2 B cells C-hyper chr12_49247001 0.033769949 0.70773131 

BACH2 B cells naive C-hyper chr12_49247001 0.033769949 0.70773131 

BACH2 B cells memory C-hyper chr12_49247001 0.033769949 0.70773131 

BACH2 B cells C-hyper chr12_49246001 0.074117926 0.638363262 

BACH2 B cells naive C-hyper chr12_49246001 0.074117926 0.638363262 

BACH2 B cells memory C-hyper chr12_49246001 7.41E-02 0.638363262 

BCL11A B cells C-hyper chr10_60673501 0.067718872 0.587200473 

BCL11A B cells C-hyper chr10_60611001 0.011981926 0.594509417 
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BCL11A B cells C-hyper chr10_60611501 0.000162282 0.670194427 

BCL2 T cells C-hyper chr1_13878001 0.062950323 0.67997672 

BCL2 T memory cells C-hyper chr1_13878001 0.062950323 0.67997672 

BCL2 T cells C-hyper chr1_13746001 0.012949546 0.719343756 

BCL2 T memory cells C-hyper chr1_13746001 0.012949546 0.719343756 

BCL2 T cells C-hyper chr1_13860001 0.007644407 0.7489536 

BCL2 T memory cells C-hyper chr1_13860001 0.007644407 0.7489536 

CD84 B cells memory C-hyper chr38_21714501 0.0492882 0.702278504 

CYTIP T memory cells C-hyper chr36_3485001 0.022044971 0.708354999 

CYTIP T memory cells C-hyper chr36_3450001 0.018202776 0.628144247 

FLI1 B cells C-hyper chr5_5853501 0.015835401 0.680938168 

FOXP1 B cells naive C-hyper chr20_20878001 0.074396205 0.619159036 

FOXP1 B cells naive C-hyper chr20_20805001 0.011410933 0.812952118 

IKZF1 T memory cells C-hyper chr18_1721501 0.033531403 0.603541894 

ITGB8 T regulatory cells C-hyper chr14_34373001 0.025529716 0.738108217 

LY6E Monocytes C-hyper chr13_36933501 0.02350524 0.693101151 

MME B cells naive C-hyper chr23_49000501 0.004007966 0.600300531 

MME B cells C-hyper chr23_49000501 0.004007966 0.600300531 

MYB T cells C-hyper chr1_27984001 0.01165958 0.591015459 

NAPSA Dendritic cells C-hyper chr1_106370001 0.085346249 0.754792217 

PLAC8 Dendritic cells C-hyper chr32_7024501 0.060091174 0.718832839 

RORA T helper cells C-hyper chr30_25605501 0.030288129 0.738966894 

RORA T cells C-hyper chr30_25605501 0.030288129 0.738966894 

RORA Natural killer T cells C-hyper chr30_25605501 0.030288129 0.738966894 
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SATB1 T memory cells C-hyper chr23_24688501 0.038231313 0.654693318 

SATB1 T cells C-hyper chr23_24688501 0.038231313 0.654693318 

SATB1 T memory cells C-hyper chr23_24608501 0.023309981 0.69917531 

SATB1 T cells C-hyper chr23_24608501 0.023309981 0.69917531 

SH2D1A T cells C-hyper chrX_95761001 0.04902597 0.695094935 

TBX21 NK cells C-hyper chr9_24082001 0.019852365 0.653606809 

TBX21 Natural killer T cells C-hyper chr9_24082001 0.019852365 0.653606809 

TBX21 T helper cells C-hyper chr9_24082001 0.019852365 0.653606809 

TXK NK cells C-hyper chr13_43976501 0.013669561 0.715530065 

TXK T cells C-hyper chr13_43976501 0.013669561 0.715530065 

TXK NK cells C-hyper chr13_43976001 0.019396734 0.682103308 

TXK T cells C-hyper chr13_43976001 0.019396734 0.682103308 

ARHGAP15 T memory cells T-hyper chr19_45797001 0.094930157 0.651522402 

ARHGAP15 T memory cells T-hyper chr19_45672001 0.009607427 0.706836311 

ARHGAP15 T memory cells T-hyper chr19_45509001 0.099258185 0.623842953 

BACH2 B cells memory T-hyper chr12_49247001 0.04079359 0.653930385 

BACH2 B cells naive T-hyper chr12_49247001 0.04079359 0.653930385 

BACH2 B cells T-hyper chr12_49247001 0.04079359 0.653930385 

BCL2 T cells T-hyper chr1_13860001 0.012425893 0.656767371 

BCL2 T memory cells T-hyper chr1_13860001 0.012425893 0.656767371 

BCL2 T cells T-hyper chr1_13746001 0.007245604 0.742065007 

BCL2 T memory cells T-hyper chr1_13746001 0.007245604 0.742065007 

CYTIP T memory cells T-hyper chr36_3473501 0.027493938 0.685577318 

CYTIP T memory cells T-hyper chr36_3485001 0.016562977 0.705792302 
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CYTIP T memory cells T-hyper chr36_3450001 0.007637485 0.607184036 

FLI1 B cells T-hyper chr5_5853501 0.011823426 0.637224456 

FOXP1 B cells naive T-hyper chr20_20878001 0.02819836 0.645958177 

FOXP1 B cells naive T-hyper chr20_20805001 0.005745927 0.758683679 

FOXP1 B cells naive T-hyper chr20_20805501 0.019613318 0.635652242 

FOXP1 B cells naive T-hyper chr20_20808501 0.020050608 0.723497999 

IFIT3 Monocytes T-hyper chr4_100001 0.041987007 0.694856739 

IFIT3 T cells T-hyper chr4_100001 0.041987007 0.694856739 

IFIT3 B cells T-hyper chr4_100001 0.041987007 0.694856739 

IL17RB T helper cells T-hyper chr20_36144001 0.051201034 0.630689492 

IL6 T helper cells T-hyper chr14_36478001 0.040675109 0.657277776 

IL6 Dendritic cells T-hyper chr14_36478001 0.040675109 0.657277776 

MRC1 Monocytes T-hyper chr2_19128501 0.099219911 0.613722807 

NCAM1 Natural killer T cells T-hyper chr5_19920001 0.05430983 0.596158979 

NFATC2 T helper cells T-hyper chr24_37690501 0.033216081 0.604093172 

RORA Natural killer T cells T-hyper chr30_25825001 0.051956643 0.726234798 

RORA T helper cells T-hyper chr30_25825001 0.051956643 0.726234798 

RORA T cells T-hyper chr30_25825001 0.051956643 0.726234798 

RORA Natural killer T cells T-hyper chr30_25605501 0.029253382 0.719611869 

RORA T helper cells T-hyper chr30_25605501 0.029253382 0.719611869 

RORA T cells T-hyper chr30_25605501 0.029253382 0.719611869 

RYR1 Dendritic cells T-hyper chr1_114487501 0.042923777 0.697831202 

SATB1 T cells T-hyper chr23_24622501 0.061272856 0.596953596 

SATB1 T memory cells T-hyper chr23_24622501 0.061272856 0.596953596 
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SATB1 T cells T-hyper chr23_24688501 0.06698576 0.590731815 

SATB1 T memory cells T-hyper chr23_24688501 0.06698576 0.590731815 

SH2D1A T cells T-hyper chrX_95761001 0.061534081 0.608538367 

TCF7 T memory cells T-hyper chr11_22319501 0.056825387 0.665960997 

TCF7 Natural killer T cells T-hyper chr11_22319501 0.056825387 0.665960997 

TCF7 T cells T-hyper chr11_22319501 0.056825387 0.665960997 

TMEM156 B cells memory T-hyper chr3_73373501 0.022237735 0.695074816 

TXK NK cells T-hyper chr13_43977001 0.01308402 0.801660694 

TXK T cells T-hyper chr13_43977001 0.01308402 0.801660694 

TXK NK cells T-hyper chr13_43976501 0.019534804 0.61820186 

TXK T cells T-hyper chr13_43976501 0.019534804 0.61820186 
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DMR distribution on the immune cell type marker genes in PanglaoDB (Figure 

2.7B). DMGs included in 11 types of immune cell markers are listed in Table 2.4. 

First, NB_DMRs was found increasingly on the marker genes of naive B-cells, T-

cells, and T helper (Th) cells. Instead, NC_DMRs were found more in B-cells, NK 

cells, and many subtypes of T-cells. NT_DMRs were found more in naive B-cells, 

NK cells, and T, Th, and T memory cells, combined with NB and NC. On the 

contrary, it is of note that myeloid lineage cells, such as monocytes are decreased in 

tumors. 

We then identified the most influenced genes by altered methylation among the cell 

type markers. Figure 2.7C shows the cell type marker genes highly enriched in the 

immune-related GO terms considering the gene expression levels. IL4 was most 

frequently altered in the GO terms, and the expression decreased significantly. The 

list of genes, including TBX21, BCL11B, UHRF1, BACH2, SH2D1A, COL4A6, 

PRDM11, LBH, and TXK, showed tumor-associated hypermethylation and a 

significant negative correlation to gene expression. We integrated RNA-seq data to 

show an association between methylation and gene expression in representative 

marker genes (Figure 2.7D). Among them, BACH2, a B-cell marker; SH2D1A, a 

T-cell marker; TXK, an NK cell marker; and UHRF1, known to be related to NK 

cell number, showed a significant negative correlation between the RNA expression 

and overall gene methylation. These results showed that the well-enriched immune 

cell markers in the genome-wide methylation changes are closely linked to gene 

expression and affect overall tumor immune cell activity. 
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Bisulfite-sequencing validated the tumor-associated differential methylation in 

immune cell marker genes.  

We showed that hypermethylation and gene expression of cell-specific gene 

markers are inversely correlated with integration analysis of MBD-seq and RNA-seq 

(Figure 2.7C-D). Representative DMRs, which have a reverse correlation with the 

gene expression, verified the methylation status in vitro by the targeted bisulfite-

sequencing (BS-seq). BACH2, an active marker gene of B cells, has 

hypermethylated DMRs consisting of 11 CpGs on the second intron out of six introns 

in tumors (benign and carcinoma). The SH2D1A gene, a T-cell activity-related 

marker, has a hypermethylated DMR consisting of seven CpGs in the TTS region in 

tumors. A representative carcinoma-related hypermethylated DMR was identified 

from the CpG shore location, consisting of nine CpG promotor-TSS regions of the 

TXK gene. A DMR harboring 22 CpGs, which were hypermethylated in carcinoma, 

was identified from the CpG shore region located in the second exon among 17 exons 

of the UHRF1 gene (Figure 2.8A). The four pairs of primers targeting the flanking 

regions of DMRs used for BS-seq are described in Table 2.2. 

Overall, the DMRs from the MBD-seq analysis were confirmed in the targeted BS-

seq. However, the methylation frequency varied from each CpG (Figure 2.8B). The 

targeted DMR of BACH2 was the most hypermethylated in benign, followed by 

carcinoma. DMR on the UHRF1 was most highly methylated in carcinoma, followed 
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by benign. The methylation levels of TXK were similarly high in benign and 

carcinoma. In the case of SH2D1A gene sites, only the 5th CpG site was a 

differentially methylated CpG in tumors. This can still be sufficiently meaningful 

because studies have reported that even the presence or absence of methylation of a 

single CpG can affect transcription level and cell type specificity 102. Figure 2.8C 

shows the distribution of methylation percentage across samples calculated as the 

number of methylated CpGs/total number of clones * 100 (%). The RNA-sequencing 

results performed on PBMCs of CMTs and normal dogs showed a significant 

decrease in the expression of these four genes (Figure 2.8D). When compared 

between the methylation (Figure 2.8C) and gene expression (Figure 2.8D), overall 

methylation levels on the targeted regions by BS-seq were significantly opposite to 

RNA expression data. Targeted BS-seq results confirmed that the high-throughput 

sequencing analysis after methylated CpG enrichment showed relevant genome-

wide methylation status in PBMC samples. It then identified DMRs that may directly 

link to gene expressions that have crucial roles in cell activity and populations in 

PBMCs. Validation of MBD-seq results through BS-seq increases the likelihood that 

they can be developed for clinical tumor diagnosis. 
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Figure 2.8. Targeted CpG methylation and expression analysis in 

representative hypermethylated genes related to immune cell activation. A) 

Methylation peaks in four interesting gene regions are shown. Pink dumbbells also 

express the loci where primers have been designed. The DMR in the BACH2 gene 

is located in the second intron of 6 introns, the DMR in the SH2D1A gene is located 

in TTS, DMR in TXK is located CpG shore promoter, and the DMR in UHRF1 is 

located in the second exon of 17 exons overlapped with CpG shore. B) The 

methylation validation for 12 CpGs in BACH2 DMR, 7 CpGs in SH2D1A and TXK 

DMR, and 22 CpGs in UHRF1 DMR by performing targeted bisulfite sequencing 

using primers listed in Table S10. Methylated CGs are indicated by black circles, 

and unmethylated CGs are expressed by empty (white) circles. C) Violin plots show 

the distribution of methylated CG (%) between groups. The total percentages of 

methylated CG were calculated as ‘(The number of methylated CG / The number of 

total CG in the amplified region) * 100 (%)’ in each CG for every sample. D) In 

contrast to Violin plots in (C), Box plots show the expression levels are significantly 

down-regulated in Benign and Carcinoma PBMCs versus Normal PBMCs. The y-

axis means the log2 (TPM+1) quantified using RNA-seq.
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Computational modeling of a PBMC methylome-based two-step classifier 

distinguished benign and malignant as well as healthy conditions. 

Methylome-based classification is a potential diagnostic method that reflects the 

stage or subtype of tumors. Previous studies have reported the usefulness of tissue 

methylation-based classifiers in diagnosing CNS tumors 103, bone sarcoma 104, and 

renal cell carcinoma 105. Recently, a model using DNA methylation for 

discriminating cancer from para-cancerous tissue has been developed 106. To develop 

a liquid biopsy-based diagnosis, we attempted to establish a model for diagnosing 

mammary gland tumors using genome-wide methylome data we produced. These 

results thus far showed immune methylome dynamics between normal and tumor 

PBMCs. However, it was difficult to define specific DMRs or functional terms that 

differentiate between benign and malignant tumors by PBMC DMRs. For efficient 

modeling, we devised a method to classify normal and tumor in step 1 (NT 

classifier), then classify benign and carcinoma in step 2 (BC classifier) and named it 

a two-step classifier (Figure 2.9A). The process for modeling and performance 

evaluation is depicted in Figure 2.9B. 

First, NT classifier modeling was performed using 636 common DMRs with FDR-

adjusted p-value <0.1 and |log2FC| ≥0.585 in NB DMR and NC DMR (Figure 2.9C-

E). To overcome the problem that arising from the limited number of samples, 10-

fold cross-validation (10-fold CV) was applied. The classifiers were modeled
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Figure 2.9. A machine learning-based diagnostic two-step classifier 

discriminating tumor from normal PBMCs followed by carcinoma from benign 

PBMCs. A) The concept of a two-step classifier for precisely distinguishing three 

groups (Normal, Benign, and Carcinoma). B) Schematic diagram of the diagnostic 

methylome-based classifier modeling. To generate the best predictive model, 10-fold 

cross-validation with multiple ML algorithms were employed, and then the 

performance of each model was evaluated. C) The ROC curves of the NT classifiers 

were established by SVM_L, SVM_R, RF, GBM, KNN, and logistic regression. 

AUC values are shown in the right-bottom area under the curves. D) Heatmap of the 

confusion matrix (left) for tumor detection by the SVM_L-based NT classifier, 

which has the best AUC value (AUC = 1) and accuracy (Accuracy = 1). The 

confusion matrix for 10-fold cross-validation (right) shows the prediction results for 

seven to nine test samples in each fold. E) Validation of the predictive performance 

in multiple NT classifiers. PBMC MBD-seq data from six dogs with CMT were used 

as the validation set. Except for the logistic classifier, which incorrectly predicted 

three out of six, the SVM_L, SVM_R, RF, GBM, and KNN classifiers predict 

tumors. F) The ROC curves (left) for the BC classifier modeled with 2911 DMRs 

containing ‘BC_DMR’ and DMRs identified ‘only in NB_DMR’ or ‘only in 

NC_DMR’. BC classifiers show lower AUC values compared to NT classifiers. The 

bar graph (right) exhibits the highest accuracy in GBM. 127 DMRs extracted by 

GBM-based feature importance are used for BC classifier re-modeling. This iterative 

process is illustrated in the center of (B). G) The ROC curves of re-modeled BC 
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classifiers using 127 DMRs, which show enhanced performance compared to 

previous BC classifiers. H) The improved performance was confirmed via both a 

heatmap of the confusion matrix (left) and the 10-fold confusion matrix (right) for 

the final BC classifier (SVM_L) generated using 127 DMRs.
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 with five ML algorithms (Support Vector Machine with the linear kernel (SVM_L) 

or the radial kernel (SVM_R), Random Forest (RF), K-Nearest Neighbor (KNN), 

Gradient Boosting Machines (GBM), and Logistic Regression), and the performance 

of each was evaluated with the ROC curve (Figure 2.9C). NT classifier shows strong 

performance with AUC = 1 in SVM_L, SVM_R, GBM, and KNN models except for 

RF (AUC = 0.99) and logistic regression (AUC = 0.7). In both the representative 

SVM_L confusion matrix and the 10-fold validation result, it is confirmed that 

benign and carcinoma are classified as T (Tumor) and normal as N (Normal) (Figure 

2.9D). The accuracy of each model is shown in Figure 2.10A. The high accuracy 

and AUC values of NT classifiers indicate that the PBMC methylome profile in 

tumors is completely different from that of normal samples. To evaluate the 

predictive ability of the NT classifiers, PBMC MBD-seq data from 6 dogs with 

mammary gland tumors that were not used for methylome profiling due to uncertain 

diagnosis were validated in the five NT classifier models (Figure 2.9E, the 

information of 6 unknown donors is listed in Table 2.5). All of the five NT classifiers 

exactly diagnosed total six PBMC samples derived from unknown MGT dogs as T 

(Tumor). 

Next, a BC classifier was developed using significant DMRs with FDR-adjusted p-

value <0.1 and |log2FC| ≥0.585 only in NB_DMR and NC_DMR and additional 

BC_DMR (NB only + NC only + BC DMR = total of 4,122 DMRs). Since the 

original BC_DMRs with FDR-adjusted p-value <0.1 failed to cluster benign and 

carcinoma (Figure 2.1G), the same modeling process was performed using 2,911 
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Figure 2.10. Evaluating the accuracy and predictive performance of the two-

step classifier. A) Classifying accuracy of NT classifiers generated by five ML 

algorithms. B) Heatmap of the confusion matrix (left) for discriminating Carcinoma 

from Benign in the GBM-based BC classifier. The confusion matrix for 10-fold 

cross-validation (right) shows the prediction results for six test samples in each fold. 

C) Classifying accuracy of BC classifiers generated by five ML algorithms. D-E) 

BC classifier modeling using 4,122 DMRs (FDR <0.1) is performed in parallel with 

Figure 2.9F-H. The ROC analysis shows the performance of BC classifiers.
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Table 2.5. The information of unknown dog PBMC donors (used for validation sets of NT classifier) 

Donor ID Type Subtype Sex Age (years) Breeds Histological features 

U055 T unknown FS 6 Maltese (not inspected) 

U114 T unknown F 11 Maltese Complex mammary tumor 

U118 T unknown FS 15 Yorkshire Terrier Mammary tumor 

U120 T unknown F 8 Pomeranian Lobular hyperplasia 

U142 T unknown FS 13 Maltese Mammary tumor 

U147 T unknown F 10 Shih-tzu Mammary tumor 
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DMRs with FDR-adjusted p-value <0.05 (Figure 2.9F-H, Figure 2.10D-E). The BC 

classifier trained with the 2,911 DMRs showed the highest performance when using 

SVM_L (AUC = 0.95), followed by GBM (AUC = 0.92). However, the accuracy of 

SVM_L and GBM was 0.867 and 0.886, respectively, lower than that of the NT 

classifier (Figure 2.9F). The accuracy was about 0.85, which was inferior to that of 

the NT classifier (Figure 2.10B). To improve the performance of the BC classifier, 

the modeling process was repeated one more time with DMRs of high importance in 

the initially selected model to increase the discrimination between benign and 

carcinoma (depicted in Figure 2.9B). The performance of the models was measured 

using 127 DMRs, which showed high relative importance in GBM and the highest 

accuracy in the primary BC classifier (see the bar graph in Figure 2.9F). It shows 

improved accuracy and performance than the first-order classifier using 2,911 DMRs 

(Figure 2.9G-H, Figure 2.10B-C). As mentioned above, a parallel analysis was also 

executed with 4,122 DMRs with an FDR-adjusted p-value <0.1 (Figure 2.10D-E). 

The performance of the primary classifier was similar to that using 2,911 DMRs. 

However, the remodeled classifier using 102 DMRs of high importance in GBM 

showed slightly lower accuracy than the previous classifier in the confusion matrix 

of Figure 2.11. Both BC classifiers developed with important DMRs have the 

highest AUC values and accuracy in the SVM_L model. BC_DMR did not 

differentiate between benign and carcinoma (Figure 2.1G). We performed PCA 

analysis to evaluate whether the DMRs selected for the classifier modeling 

discriminate between benign and carcinoma (Figure 2.11). DMRs with higher 
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importance divided the two groups better, indicating that the GBM-based feature 

importance is relevant. We designed an optimal two-step classifier by utilizing 

various ML methods and comparing the performance of predictive models. Our 

result suggests a new diagnostic strategy using the PBMC methylome that can 

differentiate between normal, benign, and malignant tumors by liquid biopsy.  

We performed permutation importance calculations to assess the biological 

significance of differentially methylated regions (DMRs) that distinguish between 

malignant and non-malignant tumors. Figure 2.12A displays the top 20 DMRs with 

high importance out of the 127 identified DMRs. These DMRs are distributed across 

intergenic regions, introns, and promoters, suggesting their potential involvement in 

epigenetic alterations associated with malignancy. Further investigations are 

required to determine the specific roles of these genes in mammary tumor 

malignancy. To assess the significance of permutation importance, a principal 

component analysis (PCA) was conducted using the top 10 DMRs (Figure 2.12B), 

revealing improved separation of groups B and C compared to using all 127 DMRs 

(Figure 2.11). 

We constructed a machine-learning-based classifier for diagnosing malignant 

tumors using PBMC Methylome. To ensure reliability of methylome classifiers, we 

also modeled the two-step classifier using transcriptome data with the same 

parameters (Figure 2.13). The NT classifier demonstrated the highest performance, 

with an AUC of 0.99 in the GBM model, followed by SVM_R with an AUC of 0.97, 
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which showed a similar performance to the methylome-based NT classifier. The 

initial BC classifier showed the highest predictive performance, with an AUC of 0.66 

in SVM_R. To improve the diagnostic accuracy, we conducted secondary modeling 

of the BC classifier using features with high relative importance, similar to what was 

done in the methylome-based BC classifier. However, despite these efforts, the re-

modeled BC classifier did not demonstrate improved performance, as indicated by 

an AUC of only 0.68 in SVM_L. This suggests that methylome data provides more 

informative and suitable data for discriminating malignant tumors using PBMCs 

compared to transcriptome data. 
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Figure 2.11. PCA analysis using DMRs involved in the BC classifiers. PCA 

analysis of 31 benign (orange) samples and 31 carcinoma samples (red) using 2911 

DMRs (total DMRs involved in the early BC classifier), 127 DMRs (feature 

importance scored by GBM upper 0 used for generating the final BC classifier), and 

53 DMRs (among 127 DMRs, feature importance upper 0.1). DMRs with high 

feature importance divide the two groups better, so the feature importance is 

relevant. 
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Figure 2.12. Permutation accuracy importance of DMRs used for modeling the 

final BC classifier. A) The top 20 DMRs with the highest importance are presented, 

indicating the gene symbols associated with each DMR located in intron or promoter 

regions. B) PCA plot conducted using the top 10 DMRs with high permutation 

accuracy scores to distinguish between 31 benign samples (orange) and 31 

carcinoma samples (red).
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Figure 2.13. The predictive performance of transcriptome-based two-step 

classifier. A) The size of the dataset used for modeling classifiers. B-C) The ROC 

curves of the NT and BC classifiers are shown, established using SVM_L, SVM_R, 

RF, GBM, and KNN. The right-bottom area under the curves represents the AUC 

values. The NT classifier was established using 34 genes differentially expressed in 

benign and carcinoma versus normal PBMCs, while the BC classifier was modeled 

with 2,181 DEGs differentially expressed in benign versus normal PBMCs as well 

as carcinoma versus normal PBMCs. C) The ROC curves of the re-modeled BC 

classifiers using the 1,372 genes did not show improved performance compared to 

previous BC classifiers, unlike the methylome-based BC classifier. 
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Discussion 

This study provides a better understanding of genome-wide epigenomic alteration, 

presenting a new platform for diagnosing malignant tumors from both normal and 

benign tumors based on liquid biopsy and DNA methylation sequencing. In several 

studies, blood-based DNA methylation has been profiled to develop a robust 

diagnostic marker for cancer. The blood-based methylation studies are broadly 

divided into investigating global DNA methylation 107 and gene-specific targeted 

DNA methylation 96. In addition, according to the source of DNA, these studies 

mainly targeted circulating tumor cells (CTCs) and cell-free DNA in serum or 

plasma 108. In the meantime, methylation of repetitive elements was generally 

investigated as surrogates for genome-wide DNA methylation measurement 109. 

There have been consistent attempts to diagnose breast cancer (BC) patients using 

peripheral blood. BC is the most common malignant tumor in women worldwide. 

The prognosis of BC mainly depends on early detection; to this day, it primarily 

relies on mammography. CA15-3 or CA27.29 110, approved by the FDA as blood-

based protein biomarkers for BC, are recommended only for monitoring disease 

recurrence and therapeutic efficacy rather than diagnosis. Recently, several studies 

have reported genome-wide blood DNA hypomethylation in BC patients 111. 

Hypermethylation of the BRCA1 gene in the blood cells and the RASSF1A gene in 

cfDNA has been reported in BC patients 97. On the contrary, some studies have also 

reported an association between low methylation of immune cells and increased BC 
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risk. Thus, the evidence still needs to be more conclusive. It suggests that reliable 

epigenomic information based on PBMC for diagnosing BC and predicting 

therapeutic efficacy are needed to be studied in detail and cross-species approaches. 

Therefore, we performed genome-wide methylome analysis in the canine PBMC 

with CMT as an alternative approach for BC.  

Recently, many studies have revealed that methylation, not only in the promoters 

but also in gene body regions such as exon, intron, and TTS regulates transcription 

112. For this reason, methylation profiling on a genome-wide scale has been steadily 

attempted to confirm the distribution of DMR at various locations targeting only 

specific genes. Since the CpG region is also an area in which epigenetic dynamics 

are actively occurring due to the recovery of methyltransferase and histone 

modifiers, it is also imperative to understand the DMR distribution from CpG islands 

and their surroundings (shore and shelf regions). Although CpG islands account for 

only 4 to 5% of the genome, approximately 70% of promoters are associated with 

CpG islands affecting directly annotated gene regulation 113. Recently, the ±2 kb 

region on both sides of CpG islands (called ‘CpG shore’) has been reported to be 

associated with cell type specificity and highly correlated with gene expression 114. 

Therefore, these methylation changes in various regions of the blood cell genome in 

cancer patient dogs can affect gene expressions in cancer immunity. In this study, 

we observed the increased methylation of CpG shore in TXK and UHRF1 strongly 

anti-correlated with gene expression. Although hypermethylation of CpG islands 

was prominent in PBMCs with carcinoma, DMRs in the CpG shore region showed 
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a significant inverse correlation with gene expression. However, since PBMC 

methylome has more variables depending on the cell type and composition, this 

study has limitations in elucidating the epigenetic regulation dependent on the CpG 

region. 

PBMC has been used in various blood target studies conducted in clinical use. 

However, a recent study raised the question of whether PBMC transcriptome can 

reflect the actual state of the blood 115. It is because PBMC contains a wide range of 

cells that may vary in number from patient to patient rather than a homogeneous cell 

population. Fortunately, projects such as the ENCODE Project and Roadmap 

Epigenomics have shown widespread commonality in these different cell types of 

transcription, but there are still distinct differences among cell types. It means that a 

significant difference may not be detected in PBMC if different cell types are 

oppositely methylated comparing two groups of DMRs. For instance, if DMRs have 

high methylation in T-cells but low methylation in other cells, those differences may 

be offset and undetected. To overcome this limitation, trials to understand PBMC 

data in single-cell levels via computational deconvolution or perform single-cell 

epigenomics are required; however, studies on PBMC methylation in single-cell 

resolution have not been widely conducted yet. 

T-cells are vital immune mediators, differentiating into multiple subtypes in 

response to cancer. For this reason, T-cells have been regarded as valuable 

immunotherapeutic targets, and studies on tumor-infiltrating lymphocytes (TILs), 
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immune checkpoints, chimeric antigen receptor-engineered T cells (CAR-T), and 

TCR-engineered T cells (TCR-T) have been reported 116. T-cells are programmed to 

attack tumors by recognizing tumor-derived antigens and secreting anti-tumorigenic 

cytokines 117. Functional gene annotation analysis confirmed the aberrant 

methylation of genes associated with abnormal T cell differentiation as well as 

decreased CD8+ T cell number in cancer PBMCs. This suggests that DNA 

methylation is an essential key to improving the effectiveness of cancer 

immunotherapy in ameliorating the systemic disorder of T cells in tumors. 

Hypomethylated promoters with the upregulated gene expressions of PD-1, 

CTLA4, and TIM3 are reported in primary breast cancer tissues 95, and CTLA4 and 

TIGIT promoters in colorectal cancer tissues 118. Unlike these epigenetic 

characteristics shown in tumor tissues, it has been reported that methylation and 

expression patterns of immune checkpoints are different in peripheral blood immune 

cells 96. This indicates that genome-wide scale studies on the methylome of 

circulating immune cells are essential to depict T-cell dysfunction and abnormal 

differentiation. Our PBMC methylome profiling of canine mammary tumors showed 

that genes involved in the differentiation and proliferation of T-cells, B-cells, and 

NK cells are abnormally hypermethylated. We observed increased methylation and 

downregulation of four representative genes (BACH2, SH2D1A, TXK, and 

UHRF1). BACH2 and SH2D1A are closely related to the proliferation and activation 

of T cells and B cells 119,120. TXK is involved in the significant kinase signaling 

pathway regulating TCR signaling along with Tec family kinases ltk and Rlk 121. The 
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evidence that UHRF1 is directly related to immune cell activity is insufficient. A 

study described that tumor-derived exosomal circulating UHRF1 promotes NK cell 

exhaustion in hepatocellular carcinoma 122. Since UHRF1 is known to interact with 

methyltransferase to regulate the expression of other genes, it is required to study 

further whether methylation and expression of UHRF1 in cancer immunity are 

related to T-cell dysfunction. 

Overall, our study highlights the unexpected epigenetic regulatory layer in silencing 

the activation of select circulating immune cells via hypermethylation which further 

associates tumor malignant states. 

This hints at the possibility that the mechanism of immune exhaustion in the 

circulation differs from that in local TMEs. This is probably because circulating 

immune cells are less educated by tumors. Immune exhaustion in the peripheral 

blood can be explained through the expression of cell type-specific genes or kinetic 

pathways involved in cell activation rather than immune checkpoints. Although 

these assumptions require experimental validations, we exploited these genome-

wide PBMC methylome profiles to develop a classification framework for biomarker 

discovery. 
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General conclusion 

 

Chapter 1 

In Chapter 1, we comprehensively profiled CMT methylation and inspected its 

correlation with the HBC methylome. We successfully separated CMT-DMRs and 

subtype-DMRs, and showed their biological relevance by GO and pathway 

enrichment analysis. We also suggested that changes in intron-methylation play an 

important role in CMT by altering TF binding affinity. The importance of the intron-

methylation was further confirmed in the HBC data by anti-correlation of selected 

gene expression with intronic hypermethylated PAX5 and hypomethylated PAX6 

motifs. This study allows us to better understand both HBC and CMT at the 

epigenomic level, yielding new insight into cross-species mechanisms of cancer 

initiation and progression by DNA methylation alteration and also into the 

development of cancer biomarkers. 
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Chapter 2 

In this study, we first performed the genome-wide methylome profiling in PBMCs 

of canine mammary gland tumors using MBD-seq. By comparing the PBMC 

methylomes in normal, benign, and malignant tumors, we found that benign and 

cancer PBMCs had distinct methylome profiles from those of normal PBMCs. We 

identified four hypermethylated genes (BACH2, SH2D1A, TXK, and UHRF1) 

involved in T-, B-, and NK cell activity and inversely correlated with gene 

expression by RNA-seq. Furthermore, we developed the PBMC methylome-based 

diagnostic classifier that distinguishes between normal and tumor and benign and 

malignant tumors through ML technology. This study provides an understanding of 

comprehensive epigenetic regulation of circulating immune cells in response to the 

tumor environment. We also present a new paradigm for diagnosing benign and 

malignant tumors based on liquid biopsy PBMC DNA methylation. Furthermore, 

these results provide valuable information on immune cell DNA methylation for 

immunotherapy, aiding in therapeutic decision-making and predicting therapeutic 

efficacy.



 

140 

 

References 

 

1 Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian 

development. Nature Reviews Genetics 14, 204-220 (2013). 

2 Greenberg, M. V. & Bourc’his, D. The diverse roles of DNA methylation 

in mammalian development and disease. Nature reviews Molecular cell 

biology 20, 590-607 (2019). 

3 Stirzaker, C., Taberlay, P. C., Statham, A. L. & Clark, S. J. Mining cancer 

methylomes: prospects and challenges. Trends in Genetics 30, 75-84 

(2014). 

4 Razin, A. CpG methylation, chromatin structure and gene silencing—a 

three-way connection. The EMBO journal 17, 4905-4908 (1998). 

5 Fazzari, M. J. & Greally, J. M. Epigenomics: beyond CpG islands. Nature 

Reviews Genetics 5, 446-455 (2004). 

6 Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities 

of human transcription factors. Science 356, doi:10.1126/science.aaj2239 

(2017). 

7 Zakhari, S. Alcohol metabolism and epigenetics changes. Alcohol 

research: current reviews 35, 6 (2013). 

8 Cotman, C. W. & Head, E. The canine (dog) model of human aging and 

disease: dietary, environmental and immunotherapy approaches. Journal of 

Alzheimer's Disease 15, 685-707 (2008). 

9 LeBlanc, A. K. & Mazcko, C. N. Improving human cancer therapy through 

the evaluation of pet dogs. Nature Reviews Cancer 20, 727-742 (2020). 

10 Mestrinho, L. A. & Santos, R. R. Translational oncotargets for 

immunotherapy: From pet dogs to humans. Advanced Drug Delivery 

Reviews 172, 296-313 (2021). 

11 Han, L. & Zhao, Z. Contrast features of CpG islands in the promoter and 

other regions in the dog genome. Genomics 94, 117-124 (2009). 

12 Han, L., Su, B., Li, W.-H. & Zhao, Z. CpG island density and its 

correlations with genomic features in mammalian genomes. Genome 

biology 9, 1-12 (2008). 

13 Wai-Shin, Y., Hsu, F.-M. & Pao-Yang, C. Profiling genome-wide DNA 

methylation. Epigenetics & Chromatin (2016). 

14 Torre, L. A., Islami, F., Siegel, R. L., Ward, E. M. & Jemal, A. Global 

Cancer in Women: Burden and Trends. Cancer Epidemiol Biomarkers Prev 

26, 444-457, doi:10.1158/1055-9965.EPI-16-0858 (2017). 

15 Weiss, A. et al. Validation Study of the American Joint Committee on 

Cancer Eighth Edition Prognostic Stage Compared With the Anatomic 



 

141 

 

Stage in Breast Cancer. JAMA Oncol 4, 203-209, 

doi:10.1001/jamaoncol.2017.4298 (2018). 

16 Johnson, K. C. Risk factors for breast cancer. Smoking may be important. 

BMJ 322, 365 (2001). 

17 Mahdavi, M. et al. Hereditary breast cancer; Genetic penetrance and current 

status with BRCA. J Cell Physiol 234, 5741-5750, doi:10.1002/jcp.27464 

(2019). 

18 Saleem, M. et al. The BRCA1 and BRCA2 Genes in Early-Onset Breast 

Cancer Patients. Adv Exp Med Biol, doi:10.1007/5584_2018_147 (2018). 

19 Rajendran, B. K. & Deng, C. X. Characterization of potential driver 

mutations involved in human breast cancer by computational approaches. 

Oncotarget 8, 50252-50272, doi:10.18632/oncotarget.17225 (2017). 

20 Korkola, J. & Gray, J. W. Breast cancer genomes--form and function. Curr 

Opin Genet Dev 20, 4-14, doi:10.1016/j.gde.2009.11.005 (2010). 

21 Cancer Genome Atlas Research, N. Comprehensive genomic 

characterization defines human glioblastoma genes and core pathways. 

Nature 455, 1061-1068, doi:10.1038/nature07385 (2008). 

22 Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. 

Nucleic Acids Res 47, D941-D947, doi:10.1093/nar/gky1015 (2019). 

23 Cava, C., Bertoli, G. & Castiglioni, I. Integrating genetics and epigenetics 

in breast cancer: biological insights, experimental, computational methods 

and therapeutic potential. BMC Syst Biol 9, 62, doi:10.1186/s12918-015-

0211-x (2015). 

24 Pfeifer, G. P. Defining Driver DNA Methylation Changes in Human 

Cancer. Int J Mol Sci 19, doi:10.3390/ijms19041166 (2018). 

25 Herceg, Z. & Hainaut, P. Genetic and epigenetic alterations as biomarkers 

for cancer detection, diagnosis and prognosis. Mol Oncol 1, 26-41, 

doi:10.1016/j.molonc.2007.01.004 (2007). 

26 Carmona, F. J. et al. A comprehensive DNA methylation profile of 

epithelial-to-mesenchymal transition. Cancer Res 74, 5608-5619, 

doi:10.1158/0008-5472.CAN-13-3659 (2014). 

27 Sproul, D. & Meehan, R. R. Genomic insights into cancer-associated 

aberrant CpG island hypermethylation. Brief Funct Genomics 12, 174-190, 

doi:10.1093/bfgp/els063 (2013). 

28 Han, M., Jia, L., Lv, W., Wang, L. & Cui, W. Epigenetic Enzyme 

Mutations: Role in Tumorigenesis and Molecular Inhibitors. Front Oncol 

9, 194, doi:10.3389/fonc.2019.00194 (2019). 

29 Torano, E. G., Petrus, S., Fernandez, A. F. & Fraga, M. F. Global DNA 

hypomethylation in cancer: review of validated methods and clinical 

significance. Clin Chem Lab Med 50, 1733-1742, doi:10.1515/cclm-2011-

0902 (2012). 



 

142 

 

30 Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 1, 239-

259, doi:10.2217/epi.09.33 (2009). 

31 Wang, L. H., Wu, C. F., Rajasekaran, N. & Shin, Y. K. Loss of Tumor 

Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol 

Biochem 51, 2647-2693, doi:10.1159/000495956 (2018). 

32 Kaminska, K. et al. Prognostic and Predictive Epigenetic Biomarkers in 

Oncology. Mol Diagn Ther 23, 83-95, doi:10.1007/s40291-018-0371-7 

(2019). 

33 Locke, W. J. et al. DNA methylation cancer biomarkers: Translation to the 

clinic. Frontiers in Genetics 10 (2019). 

34 Abdelmegeed, S. M. & Mohammed, S. Canine mammary tumors as a 

model for human disease. Oncol Lett 15, 8195-8205, 

doi:10.3892/ol.2018.8411 (2018). 

35 Fragomeni, S. M., Sciallis, A. & Jeruss, J. S. Molecular Subtypes and 

Local-Regional Control of Breast Cancer. Surg Oncol Clin N Am 27, 95-

120, doi:10.1016/j.soc.2017.08.005 (2018). 

36 Lee, K. H., Park, H. M., Son, K. H., Shin, T. J. & Cho, J. Y. Transcriptome 

Signatures of Canine Mammary Gland Tumors and Its Comparison to 

Human Breast Cancers. Cancers (Basel) 10, doi:10.3390/cancers10090317 

(2018). 

37 Fish, E. J. et al. Malignant canine mammary epithelial cells shed exosomes 

containing differentially expressed microRNA that regulate oncogenic 

networks. BMC Cancer 18, 832, doi:10.1186/s12885-018-4750-6 (2018). 

38 Kim, K. K. et al. Whole-exome and whole-transcriptome sequencing of 

canine mammary gland tumors. Sci Data 6, 147, doi:10.1038/s41597-019-

0149-8 (2019). 

39 Andrews, S.     (Babraham Bioinformatics, Babraham Institute, 

Cambridge, United Kingdom, 2010). 

40 Martin, M. Cutadapt removes adapter sequences from high-throughput 

sequencing reads. EMBnet. journal 17, 10-12 (2011). 

41 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 

2. Nature methods 9, 357 (2012). 

42 Lienhard, M., Grimm, C., Morkel, M., Herwig, R. & Chavez, L. MEDIPS: 

genome-wide differential coverage analysis of sequencing data derived 

from DNA enrichment experiments. Bioinformatics 30, 284-286 (2013). 

43 Piazza, R. et al. OncoScore: a novel, Internet-based tool to assess the 

oncogenic potential of genes. Sci Rep 7, 46290, doi:10.1038/srep46290 

(2017). 

44 Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment 

analysis web server 2016 update. Nucleic acids research 44, W90-W97 

(2016). 



 

143 

 

45 Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list 

enrichment analysis tool. BMC Bioinformatics 14, 128, doi:10.1186/1471-

2105-14-128 (2013). 

46 Huang, D. W. et al. DAVID Bioinformatics Resources: expanded 

annotation database and novel algorithms to better extract biology from 

large gene lists. Nucleic acids research 35, W169-W175 (2007). 

47 Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across 

taxonomic space. Database 2011 (2011). 

48 Li, L.-C. & Dahiya, R. MethPrimer: designing primers for methylation 

PCRs. Bioinformatics 18, 1427-1431 (2002). 

49 Díez-Villanueva, A., Mallona, I. & Peinado, M. A. Wanderer, an interactive 

viewer to explore DNA methylation and gene expression data in human 

cancer. Epigenetics & chromatin 8, 22 (2015). 

50 Robinson, J. T. et al. Integrative genomics viewer. Nat Biotechnol 29, 24-

26, doi:10.1038/nbt.1754 (2011). 

51 Lokk, K. et al. DNA methylome profiling of human tissues identifies global 

and tissue-specific methylation patterns. Genome biology 15, 3248 (2014). 

52 Unoki, M. & Nakamura, Y. Methylation at CpG islands in intron 1 of EGR2 

confers enhancer‐like activity. FEBS letters 554, 67-72 (2003). 

53 Zhang, X. et al. Methylation of a single intronic CpG mediates expression 

silencing of the PMP24 gene in prostate cancer. The Prostate 70, 765-776 

(2010). 

54 Heinz, S. et al. Simple combinations of lineage-determining transcription 

factors prime cis-regulatory elements required for macrophage and B cell 

identities. Mol Cell 38, 576-589, doi:10.1016/j.molcel.2010.05.004 (2010). 

55 Benzina, S. et al. Pax-5 is a potent regulator of E-cadherin and breast cancer 

malignant processes. Oncotarget 8, 12052 (2017). 

56 Leblanc, N., Harquail, J., Crapoulet, N., Ouellette, R. J. & Robichaud, G. 

A. Pax-5 inhibits breast cancer proliferation through MiR-215 up-

regulation. Anticancer research 38, 5013-5026 (2018). 

57 Zong, X. et al. Possible role of Pax-6 in promoting breast cancer cell 

proliferation and tumorigenesis. BMB reports 44, 595-600 (2011). 

58 Eccles, M. R. & Li, C. G. PAX genes in cancer; friends or foes? Frontiers 

in genetics 3, 6 (2012). 

59 Nagy, Á., Lánczky, A., Menyhárt, O. & Győrffy, B. Validation of miRNA 

prognostic power in hepatocellular carcinoma using expression data of 

independent datasets. Scientific reports 8, 9227 (2018). 

60 Györffy, B. et al. An online survival analysis tool to rapidly assess the effect 

of 22,277 genes on breast cancer prognosis using microarray data of 1,809 

patients. Breast cancer research and treatment 123, 725-731 (2010). 



 

144 

 

61 Ball, M. P. et al. Targeted and genome-scale strategies reveal gene-body 

methylation signatures in human cells. Nat Biotechnol 27, 361-368, 

doi:10.1038/nbt.1533 (2009). 

62 Gallegos, J. E. & Rose, A. B. Intron DNA Sequences Can Be More 

Important Than the Proximal Promoter in Determining the Site of 

Transcript Initiation. Plant Cell 29, 843-853, doi:10.1105/tpc.17.00020 

(2017). 

63 Hoivik, E. A. et al. DNA methylation of intronic enhancers directs tissue-

specific expression of steroidogenic factor 1/adrenal 4 binding protein (SF-

1/Ad4BP). Endocrinology 152, 2100-2112 (2011). 

64 Blattler, A. et al. Global loss of DNA methylation uncovers intronic 

enhancers in genes showing expression changes. Genome biology 15, 469 

(2014). 

65 Jeziorska, D. M. et al. DNA methylation of intragenic CpG islands depends 

on their transcriptional activity during differentiation and disease. Proc Natl 

Acad Sci U S A 114, E7526-E7535, doi:10.1073/pnas.1703087114 (2017). 

66 Kim, D. et al. Population-dependent Intron Retention and DNA 

Methylation in Breast Cancer. Mol Cancer Res 16, 461-469, 

doi:10.1158/1541-7786.MCR-17-0227 (2018). 

67 Keshet, I., Yisraeli, J. & Cedar, H. Effect of regional DNA methylation on 

gene expression. Proceedings of the National Academy of Sciences 82, 

2560-2564 (1985). 

68 Magdinier, F. et al. Regional methylation of the 5′ end CpG island of 

BRCA1 is associated with reduced gene expression in human somatic cells. 

The FASEB Journal 14, 1585-1594 (2000). 

69 Strachan, T. & Read, A. P. PAX genes. Current opinion in genetics & 

development 4, 427-438 (1994). 

70 Czerny, T. & Busslinger, M. DNA-binding and transactivation properties 

of Pax-6: three amino acids in the paired domain are responsible for the 

different sequence recognition of Pax-6 and BSAP (Pax-5). Molecular and 

cellular biology 15, 2858-2871 (1995). 

71 Lang, D., Powell, S. K., Plummer, R. S., Young, K. P. & Ruggeri, B. A. 

PAX genes: roles in development, pathophysiology, and cancer. 

Biochemical pharmacology 73, 1-14 (2007). 

72 Oki, S. et al. ChIP‐Atlas: a data‐mining suite powered by full integration of 

public ChIP‐seq data. EMBO reports 19 (2018). 

73 Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune 

cells in the tumor microenvironment. Nature immunology 14, 1014-1022 

(2013). 

74 Titov, A. et al. Adoptive immunotherapy beyond CAR T-cells. Cancers 13, 

743 (2021). 



 

145 

 

75 Mosallaei, M. et al. PBMCs: A new source of diagnostic and prognostic 

biomarkers. Archives of Physiology and Biochemistry 128, 1081-1087 

(2022). 

76 Hogg, S. J., Beavis, P. A., Dawson, M. A. & Johnstone, R. W. Targeting 

the epigenetic regulation of antitumour immunity. Nature reviews Drug 

discovery 19, 776-800 (2020). 

77 Villanueva, L., Álvarez-Errico, D. & Esteller, M. The contribution of 

epigenetics to cancer immunotherapy. Trends in immunology 41, 676-691 

(2020). 

78 Ramchandani, S., Bhattacharya, S. K., Cervoni, N. & Szyf, M. DNA 

methylation is a reversible biological signal. Proceedings of the National 

Academy of Sciences 96, 6107-6112 (1999). 

79 de Vos, L. et al. CTLA4, PD-1, PD-L1, PD-L2, TIM-3, TIGIT, and LAG3 

DNA Methylation Is Associated With BAP1-Aberrancy, Transcriptional 

Activity, and Overall Survival in Uveal Melanoma. Journal of 

Immunotherapy 45, 324-334 (2022). 

80 Langevin, S. M. et al. Peripheral blood DNA methylation profiles are 

indicative of head and neck squamous cell carcinoma: an epigenome-wide 

association study. Epigenetics 7, 291-299 (2012). 

81 Zhang, Y. et al. The signature of liver cancer in immune cells DNA 

methylation. Clinical epigenetics 10, 1-17 (2018). 

82 Marsit, C. J. et al. DNA methylation array analysis identifies profiles of 

blood-derived DNA methylation associated with bladder cancer. Journal of 

Clinical Oncology 29, 1133 (2011). 

83 Li, L. et al. DNA methylation signatures and coagulation factors in the 

peripheral blood leucocytes of epithelial ovarian cancer. Carcinogenesis 

38, 797-805 (2017). 

84 Carson, W. F., Cavassani, K. A., Dou, Y. & Kunkel, S. L. Epigenetic 

regulation of immune cell functions during post-septic 

immunosuppression. Epigenetics 6, 273-283 (2011). 

85 Park, J. S. et al. Canine cancer immunotherapy studies: linking mouse and 

human. Journal for immunotherapy of cancer 4, 1-11 (2016). 

86 Nam, A. et al. Alternative methylation of intron motifs is associated with 

cancer-related gene expression in both canine mammary tumor and human 

breast cancer. Clinical epigenetics 12, 1-15 (2020). 

87 Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics 

Viewer (IGV): high-performance genomics data visualization and 

exploration. Briefings in bioinformatics 14, 178-192 (2013). 

88 Franzén, O., Gan, L.-M. & Björkegren, J. L. PanglaoDB: a web server for 

exploration of mouse and human single-cell RNA sequencing data. 

Database 2019 (2019). 



 

146 

 

89 Schabort, J. J. et al. Ank2 hypermethylation in canine mammary tumors 

and human breast cancer. International journal of molecular sciences 21, 

8697 (2020). 

90 Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary 

genetics analysis version 11. Molecular biology and evolution 38, 3022-

3027 (2021). 

91 Kuhn, M. et al. Package ‘caret’. The R Journal 223, 7 (2020). 

92 Greenwell, B., Boehmke, B., Cunningham, J., Developers, G. & Greenwell, 

M. B. Package ‘gbm’. R package version 2 (2019). 

93 Robin, X. et al. Package ‘pROC’. Package ‘pROC’. (2021). 

94 Rex: Excel-based statistical analysis software. . doi:URL http://rexsoft.org/. 

(2018). 

95 Sasidharan Nair, V. et al. DNA methylation and repressive H3K9 and 

H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, 

LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin 

Epigenetics 10, 78, doi:10.1186/s13148-018-0512-1 (2018). 

96 Elashi, A. A., Sasidharan Nair, V., Taha, R. Z., Shaath, H. & Elkord, E. 

DNA methylation of immune checkpoints in the peripheral blood of breast 

and colorectal cancer patients. Oncoimmunology 8, e1542918 (2019). 

97 Cao, X. et al. Evaluation of Promoter Methylation of RASSF1A and ATM 

in Peripheral Blood of Breast Cancer Patients and Healthy Control 

Individuals. Int J Mol Sci 19, doi:10.3390/ijms19030900 (2018). 

98 Iwamoto, T., Yamamoto, N., Taguchi, T., Tamaki, Y. & Noguchi, S. 

BRCA1 promoter methylation in peripheral blood cells is associated with 

increased risk of breast cancer with BRCA1 promoter methylation. Breast 

Cancer Research and Treatment 129, 69-77, doi:10.1007/s10549-010-

1188-1 (2011). 

99 Ashburner, M. et al. Gene ontology: tool for the unification of biology. 

Nature genetics 25, 25-29 (2000). 

100 Smith, C. L. & Eppig, J. T. The mammalian phenotype ontology: enabling 

robust annotation and comparative analysis. Wiley Interdisciplinary 

Reviews: Systems Biology and Medicine 1, 390-399 (2009). 

101 Su, A. I. et al. A gene atlas of the mouse and human protein-encoding 

transcriptomes. Proceedings of the National Academy of Sciences 101, 

6062-6067 (2004). 

102 Fürst, R. W., Kliem, H., Meyer, H. H. & Ulbrich, S. E. A differentially 

methylated single CpG-site is correlated with estrogen receptor alpha 

transcription. The Journal of steroid biochemistry and molecular biology 

130, 96-104 (2012). 

103 Karimi, S. et al. The central nervous system tumor methylation classifier 

changes neuro-oncology practice for challenging brain tumor diagnoses and 

directly impacts patient care. Clinical epigenetics 11, 1-10 (2019). 



 

147 

 

104 Wu, S. P. et al. DNA methylation–based classifier for accurate molecular 

diagnosis of bone sarcomas. JCO precision oncology 1, 1-11 (2017). 

105 Chen, W. et al. DNA methylation-based classification and identification of 

renal cell carcinoma prognosis-subgroups. Cancer cell international 19, 1-

14 (2019). 

106 Ma, B. et al. Diagnostic classification of cancers using DNA methylation 

of paracancerous tissues. Scientific Reports 12, 1-14 (2022). 

107 Parashar, S. et al. DNA methylation signatures of breast cancer in 

peripheral T-cells. BMC cancer 18, 1-9 (2018). 

108 Cristall, K. et al. A DNA methylation-based liquid biopsy for triple-

negative breast cancer. NPJ Precision Oncology 5, 1-13 (2021). 

109 Zheng, Y. et al. Prediction of genome-wide DNA methylation in repetitive 

elements. Nucleic acids research 45, 8697-8711 (2017). 

110 Hou, M.-F. et al. Evaluation of serum CA27. 29, CA15-3 and CEA in 

patients with breast cancer. The Kaohsiung journal of medical sciences 15, 

520-528 (1999). 

111 Severi, G. et al. Epigenome-wide methylation in DNA from peripheral 

blood as a marker of risk for breast cancer. Breast cancer research and 

treatment 148, 665-673 (2014). 

112 Yang, X. et al. Gene body methylation can alter gene expression and is a 

therapeutic target in cancer. Cancer Cell 26, 577-590, 

doi:10.1016/j.ccr.2014.07.028 (2014). 

113 Saxonov, S., Berg, P. & Brutlag, D. L. A genome-wide analysis of CpG 

dinucleotides in the human genome distinguishes two distinct classes of 

promoters. Proc Natl Acad Sci U S A 103, 1412-1417, 

doi:10.1073/pnas.0510310103 (2006). 

114 Irizarry, R. A. et al. The human colon cancer methylome shows similar 

hypo- and hypermethylation at conserved tissue-specific CpG island 

shores. Nat Genet 41, 178-186, doi:10.1038/ng.298 (2009). 

115 Day, K. et al. Transcriptomic changes in peripheral blood mononuclear 

cells with weight loss: systematic literature review and primary data 

synthesis. Genes Nutr 16, 12, doi:10.1186/s12263-021-00692-6 (2021). 

116 Zhang, Z. et al. T cell dysfunction and exhaustion in cancer. Frontiers in 

cell and developmental biology 8, 17 (2020). 

117 Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic Regulation of T 

Cell Longevity and Function in Tumor Immunotherapy. Cell Metab 26, 94-

109, doi:10.1016/j.cmet.2017.06.016 (2017). 

118 Sasidharan Nair, V., Toor, S. M., Taha, R. Z., Shaath, H. & Elkord, E. DNA 

methylation and repressive histones in the promoters of PD-1, CTLA-4, 

TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal 

cancer. Clin Epigenetics 10, 104, doi:10.1186/s13148-018-0539-3 (2018). 



 

148 

 

119 Roychoudhuri, R. et al. BACH2 regulates CD8(+) T cell differentiation by 

controlling access of AP-1 factors to enhancers. Nat Immunol 17, 851-860, 

doi:10.1038/ni.3441 (2016). 

120 Morra, M. et al. Defective B cell responses in the absence of SH2D1A. 

Proc Natl Acad Sci U S A 102, 4819-4823, doi:10.1073/pnas.0408681102 

(2005). 

121 Mihara, S. & Suzuki, N. Role of Txk, a member of the Tec family of 

tyrosine kinases, in immune-inflammatory diseases. Int Rev Immunol 26, 

333-348, doi:10.1080/08830180701690835 (2007). 

122 Zhang, P. F. et al. Cancer cell-derived exosomal circUHRF1 induces 

natural killer cell exhaustion and may cause resistance to anti-PD1 therapy 

in hepatocellular carcinoma. Mol Cancer 19, 110, doi:10.1186/s12943-020-

01222-5 (2020). 

 



 

149 

 

국문초록 

개 유선종양 조직 및 면역세포의 메틸롬 분석을 

통한 후성유전학적 암 조절 기전 규명 및 

악성종양 예측모델 개발 

 

남 아 름 

서울대학교 대학원 

수의과대학 수의생명과학 전공 

(지도교수: 조 제 열) 

 

개 유성 종양은 사람 유방암과 병리학, 분자생물학적 유사성으로 인해 

유방암을 연구하는 좋은 동물 모델로 알려져 있다. 또한, 사람과 개는 환경 

요인에 의한 암 발병에 있어 후성유전학적 조절 기전이 유사하기 때문에 개 

유선암과 사람 유방암에서의 후성유전체 연구는 중요하다. 하지만 현재까지의 

연구들에서는 특정 유전자의 프로모터 메틸화에 집중이 되어있고, 유전체 

전반에 거친 메틸롬 연구는 거의 진행된 바 없다. 유전체 전반에 거친 CpG 

메틸화의 조절 이상은 암의 진행을 유발하며 암세포의 특정 상태를 나타내는 

생체 표지자 역할을 한다고 알려져 있다. 따라서, 암 상태에서 후성유전체의 
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유연한 변화가 암세포나 면역세포에 어떠한 영향을 미치는 지를 연구하는 

것은 매우 중요한 임상적 정보가 될 것이라고 생각한다. 

본 학위논문에서는 개 유선 암의 조직과 면역세포에서 유전체 전반에 거친 

광범위한 메틸롬 및 전사체 분석을 통해 진단과 치료를 위한 생체 표지자, 더 

나아가 잠재적 치료 표적을 찾아내는 연구를 진행하였다. 또한, 개 유선 

암에서 보이는 후성유전학적 조절 메커니즘이 사람 유방암과의 유사성을 

보이는지를 비교하는 종간 분석을 수행하였다. 이 연구를 통해 본 저자는 

비교 의학 관점에서 개와 인간의 후성유전체에 의한 유전자 발현 조절에 

대한 이해를 높이는 동시에, 사람과 개 모두에서 암의 진단과 치료에 적용될 

수 있는 새로운 전략을 제시하고자 하였다.  

제 1 장에서는 개 유선 종양 및 인근 정상 조직에서의 유전체 전체 메틸롬 

프로파일에 초점을 맞추어 연구를 진행하였으며, 특히 유전자의 인트론 

지역이 후성유전적 조절의 잠재적 표적이 될 수 있다는 것을 증명하였다. 11 

쌍의 개 유선 암 조직과 인근 정상 조직의 메틸롬을 분석한 결과, 수많은 

종양 억제자와 종양 유전자의 과메틸화가 확인되었다. 특히, 인트론 부위에 

과메틸화가 일어난 유전자들이 암의 항상성과 활성을 조절하는 주요 유전자 

군집에 속해있다는 것을 발견하였다. 흥미롭게도, 정상 대비 암에서 과 

메틸화를 나타내는 PAX5 모티브 (종양 억제성)와 저메틸화를 

나타내는 PAX6모티브 (종양 유발성)가 인트론 영역에서 빈번하게 관찰되었다. 



 

151 

 

추가적으로 수행된 상관성 분석에서, 종양 억제자로 알려진 CDH5 와 LRIG1 

유전자의 인트론 영역에서 PAX5 모티브의 과메틸화와 해당 유전자의 발현 

간에 역 상관 관계를 발견하였으며, 반대로 종양 촉진자로 알려진 CDH2 와 

ADAM19 유전자는 인트론 영역에서 저메틸화된 PAX6 모티브를 가짐과 

동시에 발현이 높아지는 것을 확인할 수 있었다. 이러한 결과는 메틸화 CpG 

결합 도메인 시퀀싱 (MBD-seq)뿐만 아니라 추가적인 임상 시료에서 모두 

검증되었다. 더 나아가, 비교의학 연구에서 인간 유방 침윤성 암에 대한 

TCGA 데이터베이스를 이용하여 이러한 유전자 인트론 영역의 과메틸화와 

유전자 발현의 감소를 확인할 수 있었다. 해당 인트론 지역의 메틸화의 

변화는 인간 유방암에서 유전자 발현도 변화되도록 유도했다. 이러한 연구 

결과는 개 유선암과 인간 유방암에서 후성유전체 조절의 종간 보존성에 대한 

증거를 제공하며, 다양한 질환에서 유전자 조절을 이해하는 데 있어 인트론 

메틸화의 역할이 중요하다는 것을 시사한다. 

한편, 면역세포의 암에 대한 반응은 암의 예후와 항암 치료의 효과를 

결정하는 중요한 역할을 한다. 최근 많은 연구들이 면역 치료의 주요 대상인 

면역 관문 (Immune checkpoint)이 후성 유전적 조절을 받는다는 증거들을 

제시하고 있다. 또한, 암 진행과정에서 면역세포의 탈진 (Exhaustion), 면역 

회피 (Escape)도 후성 유전체의 변화를 동반한다고 알려져 있으며, 이는 

면역세포 치료나 면역 관문 억제제 (Immune checkpoint inhibitor; ICI) 

치료의 예후를 결정하는 중요한 단서가 된다. 
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본 학위논문의 제 2 장에서는 유방 종양 환자로부터 채취한 말초 혈액 

단핵구 세포 (PBMC)의 DNA 메틸롬 프로파일 차이를 조사하는 데 초점을 

맞추었다. 메틸화 CpG 결합 도메인 시퀀싱 (MBD-seq)을 수행하여, 유선 

종양을 가진 개와 정상 개에서 유래한 총 76 개의 PBMC 에서 전장 유전체 

메틸롬을 분석하였다. 유전자 기능 군집 분석 (Gene ontology analysis; GO 

analysis)을 통해, T-세포 및 B-세포의 성장과 분화에 관여하는 유전자들이 

종양 PBMC 에서 고도로 메틸화되어 있는 것을 확인하였다. 또한, 면역세포 

증식을 조절하는 대표적인 면역 표지 유전자들 (BACH2, SH2D1A, TXK, 

UHRF1)에서 높아진 메틸화와 역 상관 관계를 갖는 유전자 발현을 확인할 수 

있었다. 악성 종양과 양성 종양 간에 PBMC 메틸롬의 현저한 차이는 

없었지만, 본 연구의 메틸롬 데이터집합을 활용하여 악성 종양을 예측하는 

기계학습기반 분류기를 모델링하였다. 본 연구는 유전체 전반에 거친 순환 

면역 세포의 메틸화 프로파일을 통해 암에서의 말초혈액 면역 세포의 후성 

유전적 조절에 대한 통찰력 있는 정보를 제공함과 동시에, 유전체 전반에 

거친 메틸롬 정보를 이용한 양성 종양과 악성 종양을 식별하는 새로운 진단 

전략을 제시한다. 

요약하면, 본 학위 논문에서는 개 유방 종양에서 유전체 전반에 거친 

후성유전적 변화에 대한 포괄적인 정보를 제공하며, 개 유선 종양의 메틸화에 

의한 암 조절에 있어 인간과 개 사이에서 흥미로운 유사성을 보여준다. 또한, 

면역세포 메틸롬 데이터를 활용한 악성 종양 예측은 인간과 개의 다양한 암 
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유형에서 악성 종양을 진단할 수 있는 잠재적인 확장성을 제시한다. 진단 

모델의 임상 적용을 위해 추가적인 검증 연구가 필요하지만, 이 연구는 개와 

사람의 암 치료와 진단을 위한 중요한 기반이 될 것이라 기대한다. 
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