

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation of Engineering

Towards an Effective Low-rank
Compression of Neural Networks

심층신경망의효과적인저차원압축

August 2023

Program in
Digital Contents and Information

Graduate School of
Convergence Science and Technology

Seoul National University

Moonjung Eo

Towards an Effective Low-rank

Compression of Neural Networks

Advisor Wonjong Rhee

Submitting a Ph.D. Dissertation of Engineering

August 2023

Program in Intelligence and Information

Graduate School of

Convergence Science and Technology

Seoul National University

Moonjung Eo

Confirming the Ph.D. Dissertation written by

Moonjung Eo

August 2023

 Chair Nojun Kwak (Seal)

 Vice Chair Wonjong Rhee (Seal)

 Examiner Bongwon Suh (Seal)

 Examiner Dongsuk Jeon (Seal)

 Examiner Daeyoung Choi (Seal)

Abstract

Compression of neural networks has emerged as one of the essential research

topics, especially for edge devices that have limited computation power and storage

capacity. The most popular compression methods include quantization, pruning of

redundant parameters, knowledge distillation from a large network to a small one, and

low-rank compression. The low-rank compression methodology has the potential to

be a high-performance compression method, but it does not achieve high performance

since it does not solve the challenge of determining the optimal rank of all the layers.

This thesis explores two methods to solve the challenge and improve compression

performance. First, we propose BSR (Beam-search and Stable Rank), a low-rank

compression algorithm that embodies an efficient rank-selection method and a unique

compression-friendly training method. For the rank selection, BSR employs a modified

beam search that can perform a joint optimization of the rank allocations over all

the layers in contrast to the previously used heuristic methods. For the compression-

friendly training, BSR adopts a regularization loss derived from a modified stable rank,

which can control the rank while incurring almost no harm in performance. Experiment

results confirm that BSR is effective and superior compared to the existing low-rank

compression methods. Second, we propose a fully joint learning framework called

LeSS to simultaneously determine filters for filter pruning and ranks for low-rank

decomposition. We provided a method for rank selection with a training method and

confirmed a significant improvement in performance by integrating it with the existing

pruning method, which has outstanding performance. LeSS does not depend on iterative

or heuristic processes, and it satisfies the desired resource budget constraint. LeSS

comprises two learning modules: mask learning for filter pruning and threshold learning

for low-rank decomposition. The first module learns masks identifying the importance

of the filters, and the second module learns the threshold of the singular values to

i

be removed such that only significant singular values remain. Because both modules

are designed to be differentiable, they are easily combined and jointly optimized.

LeSS outperforms state-of-the-art methods on a number of benchmarks demonstrating

its effectiveness. Finally, to obtain high performance in transfer learning for fine-

grained datasets, we propose mask learning for both rank and filter selection. The mask

learning approach could be employed in transfer learning since it is more crucial to

determine which singular values are useful rather than rank selection. Our approach to

compression for transfer learning yielded either improved or comparable performance

with uncompressed results. We anticipate these techniques will be broadly applicable to

industrial domains.

Keywords: Structured Compression, Low-rank Compression, Filter Pruning, Beam-

search, Mask Learning

Student number: 2017-35557

ii

Table of Contents

Chapter 1. Introduction 1

1.1 Thesis Outline . 4

1.2 Related Publications . 4

Chapter 2. Background 6

2.1 Compression of Deep Neural Networks 6

2.2 Structured Compression of Deep Neural Networks 8

2.2.1 Low-Rank Compression . 9

2.2.2 Filter Pruning . 15

2.3 Low-rank decomposition in other fields 17

2.4 Thesis Roadmap . 19

Chapter 3. An Effective Low-Rank Compression with a Joint Rank Selection

Followed by a Compression-Friendly Training 20

3.1 Introduction . 20

3.2 Contributions . 24

3.3 Related works . 25

3.3.1 Beam search . 25

3.3.2 Stable rank and rank regularization 26

3.4 The basics of low-rank compression 28

3.4.1 The basic process . 28

3.4.2 Compression ratio . 28

3.5 Methodology . 29

3.5.1 Overall process . 29

3.5.2 Modified beam-search (mBS) for rank selection 32

3.5.3 Modified stable rank (mSR) for regularized training 35

3.6 Experiments . 36

3.6.1 Experimental setting . 36

iii

3.6.2 Experimental results . 38

3.6.3 Analysis of BSR . 47

3.7 Discussion . 59

3.7.1 Combined use with quantization 59

3.7.2 Limitations and future works 59

3.8 Conclusion . 60

Chapter 4. Learning to Select a Structured Architecture over Filter Pruning

and Low-rank Decomposition 61

4.1 Introduction . 61

4.2 Contribution . 66

4.3 Related works . 67

4.3.1 Hybrid compression methods 67

4.4 Background . 68

4.4.1 Selection problem for DNN compression 68

4.4.2 Tensor Matricization . 68

4.4.3 CNN decomposition scheme 69

4.5 Learning framework for the selection problem in hybrid compression . 70

4.6 Experiments . 79

4.6.1 Experimental settings . 79

4.7 Analysis and discussion. 85

4.7.1 Learning strategy analysis 85

4.7.2 Influence of matricization scheme 88

4.7.3 Data efficiency of LeSS . 88

4.7.4 Extension to higher-order SVD 90

4.7.5 Extension to transformer architecture 90

4.7.6 Discussion on the reasons for the improved performance of

compressed models compared to the uncompressed baseline

model . 91

iv

4.8 Conclusion . 92

Chapter 5. Conclusion and limitations 93

Bibliography 94

Appendices 108

A The SoTA compression methods . 109

B Resource budget definition . 109

C Implementation details . 110

C.1 Hyper-parameter setting . 110

C.2 Tuning details of hyper-parameters 111

D Full comparison results . 111

v

List of Tables

3.1 Commonly used rank regularizer in many fields. 27

3.2 The performance for ResNet56 on CIFAR-10 is summarized for BSR,

LC, CA, and structured pruning. For the structured pruning, we have

aggregated the literature records that are available. Because most of

the literature records are provided in FLOPs only, we have grouped the

records according to the range of FLOPs reduction ratio for comparison. 44

3.3 The performance for ResNet50 on ImageNet is summarized for BSR

and structured pruning. For the structured-pruning, we have aggregated

the literature records that are available. To be consistent with Table 3.2,

we have grouped the records according to the range of FLOPs reduction

ratio. It is possible to group the records according to the parameter

compression ratio, and the corresponding comparison plot is shown in

Figure 3.8a. 46

4.1 Performance comparison of implementing TDML-S with and without

scheduled factor µi. Results are shown for ResNet56 on CIFAR10. . 72

4.2 The performance comparison for VGG16 on CIFAR10 and for ResNet56

on CIFAR100. 81

4.3 Performance comparison for ResNet18 and MobileNetV2 on ImageNet. 84

A1 Hyper-parameters used for training DIOR on various experiments. σ1

is the largest singular value for each layer. 110

A2 Performance comparison results for CIFAR-10 on ResNet56. 112

A3 Performance comparison results for ImageNet-1k on ResNet50. . . . 113

vi

List of Figures

2.1 The basic LoRA module from the original LoRA study (Figures were

adapted from figure 1 of the reference [Hu et al. 2021]). The structure

contains two decomposed layers, enabling a small portion of the whole

weights to be updated on novel datasets. 18

3.1 Comparison with the baseline algorithms of CA and LC. (a) Perfor-

mance of rank selection methods: a base neural network (ResNet56

on CIFAR-100) was truncated by the selected ranks, and no further

fine-tuning was applied. Modified beam-search (mBS) clearly outper-

forms the other two. (b) Effectiveness of rank regularized training: a

base neural network (ResNet56 on CIFAR-100) was regularized by

each compression-friendly training method. For the target rank of five,

modified stable rank (mSR) is the only one that clearly minimizes the

singular values other than the top five. 22

3.2 Overall process of BSR algorithm. 30

3.3 Illustration of mBS search process for L = 3, K = 2, s = 1, and

Cd = 0.6. 31

3.4 Comparison of BSR with CA and LC for (a) ResNet32 on CIFAR-

10, (b) ResNet56 on CIFAR-10, (c) ResNet56 on CIFAR-100, and (d)

AlexNet on ImageNet. For AlexNet, we used the pre-trained Pytorch

model as the base network (56.55% for top-1 accuracy). 39

3.5 Comparison of BSR with CA and LC for (a) ResNet32 on CIFAR-

10, (b) ResNet56 on CIFAR-10, (c) ResNet56 on CIFAR-100, and (d)

AlexNet on ImageNet. For AlexNet, we used the pre-trained Pytorch

model as the base network (56.55% for top-1 accuracy). 40

3.6 Application of BSR on lightweight networks. 41

3.7 Comparison for ResNet56 on CIFAR-10 (a) Compression ratio (b) FLOPs 43

vii

3.8 Comparison for ResNet50 on ImageNet (a) Compression ratio (b) FLOPs 45

3.9 The effect of K parameters on mBS performance for a fixed s: a base

neural network (ResNet56 on CIFAR-100) was truncated by the se-

lected ranks and no further fine-tuning was applied for this analysis.

Performance and search speed change as a function of K: (a) s is fixed

at 3, (b) s is fixed at 5, (c) s is fixed at 10, (d) s is fixed at 20. 49

3.10 The effect of s parameters on mBS performance for a fixed K: a base

neural network (ResNet56 on CIFAR-100) was truncated by the se-

lected ranks and no further fine-tuning was applied for this analysis.

Performance and search speed change as a function of s: (a) K is fixed

at 3, (b) K is fixed at 5, (c) K is fixed at 10, (d) K is fixed at 20. . . . 51

3.11 Selected rank distribution comparison with the baseline algorithms of

CA and LC when compression ratio is 0.8. 52

3.12 Performance of BSR for ResNet32 on CIFAR-10: (a) For rank selec-

tion, the best performance is achieved when the rank vector is set once

and not updated. For multi-time, we have updated the target rank vec-

tor every 30 epochs. (b) For the scheduling of the strength of λ, the

performance is improved with a scheduled increase in strength. 54

3.14 Comparison of memory usage for (a) ResNet56 on CIFAR10, and (b)

AlexNet on ImageNet. A significant improvement is achieved by using

both quantization and BSR. 58

viii

4.1 Performance comparison for each compression method according to

the FLOP reduction rate category for (a) ResNet56 on CIFAR10 and (b)

ResNet50 on ImageNet. The SOTA performance of each compression

method is selected with respect to the FLOP reduction rate category.

(a) (Idelbayev and Carreira-Perpinán 2020; Zhuang et al. 2018; Li et al.

2020) are selected for the 48-50% category, (Idelbayev and Carreira-

Perpinán 2020; Yu, Mazaheri, and Jannesari 2022; Ruan et al. 2020)

for the 54-57% category, and (Idelbayev and Carreira-Perpinán 2020;

Sui et al. 2021; Li et al. 2020) for the 73-76% category. (b)(Xu et al.

2020; Sui et al. 2021; Ruan et al. 2020) are selected for the 45-50%

category, (Phan et al. 2020; Shang et al. 2022; Li et al. 2020) for the

62-66% category. 63

4.2 Comparison of three representative hybrid compression processes. Or-

ange arrows indicate the iterative process that is computationally bur-

densome. (a) Based on compression-aware regularized training and

heuristic filter/rank selection. To satisfy the target resource budget, the

full process needs to be conducted iteratively. (b) Based on the iterative

process for heuristic filter/rank selection. (c) LeSS: No iteration. Dif-

ferentiable learning that is efficient and effective. Fully joint selection

of filters and ranks. Satisfies target resource budget. 64

4.3 Illustration of LeSS algorithm’s forward process. 74

4.4 Comparison of our method with SOTA pruning, low-rank decomposi-

tion, and hybrid compression methods for (a) ResNet56 on CIFAR10

and (b) ResNet50 on ImageNet. 78

4.5 Analysis of learning techniques. 86

4.6 Comparison results depending on matricization scheme. 87

4.7 Comparison results on data efficiency of LeSS 89

ix

Chapter 1. Introduction

The explosion of both data and computational power has contributed to AI’s current

renaissance. In particular, deep learning has been effectively applied to many difficult

tasks. However, in order to obtain good performance in these various tasks, a huge

network is required. In addition, high-speed hardware is required in order to quickly

learn and infer from the huge network, which makes it nearly impossible to deploy

on low-resource devices or edge devices. For this reason, many studies have recently

been conducted to compress neural networks. This dissertation focused on low-rank

compression among various compression techniques for compressing neural networks

and developed it with the aim of further improving the compression performance.

As deep learning becomes widely adopted by the industry, the demand for com-

pression techniques that are highly effective and easy to use is sharply increasing.

The most popular compression methods include quantization (Rastegari et al. 2016;

Wu et al. 2016), pruning of redundant parameters (Han, Mao, and Dally 2015; Lebedev

and Lempitsky 2016; Srinivas and Babu 2015), knowledge distillation from a large

network to a small one (Hinton, Vinyals, and Dean 2015; Kim, Park, and Kwak 2018;

Romero et al. 2014; Zagoruyko and Komodakis 2016), and network factorization (Al-

varez and Salzmann 2017; Denton et al. 2014; Masana et al. 2017; Xue, Li, and Gong

2013). In this dissertation, we focus on low-rank compression that is based on a matrix

factorization and low-rank approximation of weight matrices. This compression ap-

proach has numerous benefits. First, low-rank approaches have a long history of use in

the domains of linear algebra, signal processing, and statistics with techniques such as

singular value decomposition (SVD) and established software packages such as BLAS

and LAPACK. Second, when the weights of a neural network are compressed using ma-

trices with low ranks, both the size of the network and the computational requirements

for the forward pass are explicitly reduced. Importantly, the computational reductions

1

can be achieved without explicit hardware assistance. This hardware friendliness is in

striking contrast to other compression strategies, such as quantized or element-wise

pruned models, which need the construction of a specialized processor in order to

be deployed efficiently. As mentioned above, typical low-rank compression is based

on a direct application of SVD (Singular Value Decomposition). For a trained neural

network, the layer l’s weight matrix Wl of size ml × nl is decomposed, and only the

top rl dimensions are kept. This reduces the computation and memory requirements

from mlnl to (ml + nl)rl, and the reduction can be large when a small rl is chosen.

The traditional approaches can be divided into two main streams. One considers only a

post-application of SVD on a fully trained neural network, and the other additionally

performs compression-friendly training before SVD.

For the other stream, several works introduced an additional step of compression-

friendly training (Alvarez and Salzmann 2017; Idelbayev and Carreira-Perpinán 2020;

Li and Shi 2018). This can be a promising strategy because it is common sense to

train a large network to secure a desirable learning dynamics (Luo, Wu, and Lin 2017;

Carreira-Perpinán and Idelbayev 2018), but at the same time the network can be

regularized in many different ways without harming the performance (Choi et al. 2021).

For rank selection, however, most of them still used heuristics and failed to achieve

competitive performance. Recently, (Idelbayev and Carreira-Perpinán 2020) achieved

state-of-the-art performance for low-rank compression by calculating target ranks r

with a variant of Eckhart-Young theorem and by performing a regularized training

with respect to the weight matrices truncated according to the target rank vector r.

The existing compression-friendly works, however, require re-calculations of r during

the training, train weight matrices that are not really low-rank, and demand extensive

tuning, especially for obtaining a compressed network of a desired compression ratio.

Hence, the works presented in this thesis aims to enhance the existing low-rank

compression methods in five different aspects. First, we adopt a modified beam-search

with a performance validation for selecting the target rank vector r. Compared to

2

the previous works, our method allows a joint search of rank assignments over all

the layers. The previous works relied on a simple heuristic (e.g., all layers should be

truncated to keep the same portion of energy (Alvarez and Salzmann 2017)) or an

implicit connection of all layers (e.g. through a common penalty parameter (Idelbayev

and Carreira-Perpinán 2020)). Secondly, we adopt a modified stable rank for the rank-

regularized training. Because our modified stable rank does not rely on any instance

of weight matrix truncation, it can be continuously enforced without any update as

long as the target rank vector r remains constant. The previous works used a forced

truncation in the middle of training (Alvarez and Salzmann 2017) or a norm distance

regularization with the truncated weight matrices (Idelbayev and Carreira-Perpinán

2020). In both methods, iteration between the weight truncation step and the training

step was necessary. In our method, we calculate and set the target rank vector r only

once. Our modified stable rank turns out to be very effective at controlling the singular

values. As a result of the first and the second aspects, our low-rank compression

method can achieve performance on par with or even better than the latest pruning

methods. Because low-rank compression can be easily combined with quantization,

just like pruning, a very competitive overall compression performance can be achieved.

Thirdly, we are the first to propose a successful SGD-learning solution for rank-selection

(threshold learning). The results can achieve SOTA over the existing pruning and low-

rank methods. Fourthly, we propose a unified method where joint learning over filter

selection and rank selection is performed. Obviously, we are the first to propose a

unified learning because learning of rank-selection was not available before. Finally,

we suggest a fully mask learning method of rank selection and filter selection for the

transfer learning regime. Our method of compression for transfer learning yielded either

superior or comparable performance to uncompressed results.

3

1.1. Thesis Outline

In each chapter, we propose techniques for improving low-rank compression that

we anticipate will be more broadly applicable to industrial domains. Concretely, the

chapters are organized as follows:

• Chapter 2 gives a brief overview of structured compression methods such as

low-rank compression and filter pruning.

• Chapter 3 provides a method to increase the performance of the low-rank com-

pression using a novel rank selection method and a rank regularizer. We propose

the rank selection algorithm based on beam-search and the rank regularizer

modified from a stable rank.

• Chapter 4 considers the learning-based rank selection method for improving

the performance of low-rank compression. Furthermore, We present a unified

framework by joint learning over filter selection and rank selection. The unified

framework shows enhanced compression performance.

• Chapter 5 provides mask learning for structured compression to obtain higher

performance in transfer learning. The compressed model via our method shows a

better or comparable performance than the non-compressed model.

• Finally, chapter 6 concludes and discusses the future outlook.

1.2. Related Publications

Portions of this thesis appeared in the following publications:

• Chapter 3: Moonjung Eo∗, Suhyun Kang∗, and Wonjong Rhee. "An effective low-

rank compression with a joint rank selection followed by a compression-friendly

training." Neural Networks (2023).

4

• Chapter 4: Moonjung Eo, Suhyun Kang, and Wonjong Rhee. "LeSS: Learning to

Select a Structured Architecture over Filter Pruning and Low-rank Decomposi-

tion." Under review

5

Chapter 2. Background

This chapter provides a comprehensive summary of the different compression methods

that have been researched previously. We begin by providing a brief overview of the

different types of compression methods being studied in deep neural networks in

Section 2.1. We then shift our attention to the structured compression methodology and

present a comprehensive summary in Section 2.2. Specifically, we delve into the two

main approaches of structured compression, filter pruning, and low-rank compression,

and categorize each methodology into regularized training and selection problems.

Our analysis focuses on the technical differences between the methodologies, and we

provide an in-depth exploration of each.

2.1. Compression of Deep Neural Networks

It is generally known that learning on deep and wide networks, then reducing the

network size is better than learning from scratch on shallow and narrow networks. In

other words, it disapproves that the trained network is over-parameterized. To alleviate

this problem, many researchers have attempted to make deep neural networks compact

by pruning redundant individual parameters (Srinivas and Babu 2015; Lebedev and

Lempitsky 2016; Han, Mao, and Dally 2015), quantizing weights by reducing the

number of bits (Rastegari et al. 2016; Wu et al. 2016), distilling knowledge from a

large network to a smaller one (Romero et al. 2014; Zagoruyko and Komodakis 2016;

Hinton, Vinyals, and Dean 2015; Kim, Park, and Kwak 2018), and factorizing a network

(Alvarez and Salzmann 2017; Masana et al. 2017; Xue, Li, and Gong 2013; Denton et al.

2014), among others. A simple way to reduce the size of a deep and wide neural network

is network pruning, which directly removes some of the unimportant parameters. This

process is conducted during training or by analyzing each parameter’s influence on

the training accuracy (Han, Mao, and Dally 2015; Lebedev and Lempitsky 2016;

6

Srinivas and Babu 2015; Zhou, Alvarez, and Porikli 2016) or objective function after

the network has been trained (Liu et al. 2015; Hu et al. 2016). The network pruning

methods require a pruning threshold, which plays an important role and is manually set

according to the targeted loss of accuracy.

Parameter quantization seeks to find efficient representations of parameters with

fewer bits (Buciluǎ, Caruana, and Niculescu-Mizil 2006; Courbariaux et al. 2016;

Gupta et al. 2015; Han et al. 2015; Rastegari et al. 2016; Wu et al. 2016; Yu et al.

2017). The authors of (Courbariaux et al. 2016; Rastegari et al. 2016) proposed to

quantize parameters in the network into +1 or -1, and the author of (Gupta et al. 2015)

used a 16 bit fixed-point number representation when using stochastic rounding to

accelerate computing speed and consume fewer hardware resources. The authors of

(Han et al. 2015) proposed a ‘deep compression’ method to combine pruning, trained

quantization, and Huffman coding. Their results show a significant reduction in the

number of parameters without affecting network performance.

Knowledge distillation aims to transfer essential knowledge of large and compli-

cated networks to smaller and simpler networks. This method was pioneered by the

authors of (Hinton, Vinyals, and Dean 2015) and (Buciluǎ, Caruana, and Niculescu-

Mizil 2006), and their approach used a softened version of the final output of a teacher

network to transfer information to a smaller student network. Additionally, the author of

(Romero et al. 2014) transferred information from hidden layers of the teacher network

to the student network. Recently, the author of (Kim, Park, and Kwak 2018) proposed

an efficient factor extractor and a translator using an unsupervised learning method and

showed that it enhanced the performance of the student network.

An efficient way for matrix factorization is applying SVD to the parameters (Denton

et al. 2014; Xue, Li, and Gong 2013; Yu et al. 2017; Zhou, Alvarez, and Porikli

2016). Recently, the authors of (Masana et al. 2017) have proposed an advanced

matrix factorization method called domain adaptive low rank (DALR) for transfer

learning, which considers activation statistics in compression. Their results show better

7

compression and transfer learning performances than earlier methods. In (Alvarez and

Salzmann 2017), a regularizer is introduced for reducing weight rank while training

and has shown considerable improvement in compression performance. For using this

method, however, the optimization should be divided into two steps: First is minimizing

cross-entropy through back-propagation, and the second is reducing weight rank by

zeroing small singular values after truncated SVD. Thus, optimization might be unstably

converged to satisfy both objective functions. To build lightweight models, there is a

movement to design the network architecture to be compact from scratch. For example,

famous models such as GoogleNet (Szegedy et al. 2015) and ResNet (He et al. 2016)

avoided using fully-connected layers, which occupy a large percentage rather than used

global average pooling. Even though these design strategies help to build a deeper

and more compact network, there is still a lot of necessity for the compression of

these models as they are over-parameterized most of the time. Neural Architecture

Search (NAS) is another recent approach for automatically searching for suitable

neural network architectures based on certain constraints. Few NAS approaches use

reinforcement learning (He et al. 2018b), evolutionary algorithms (Chen et al. 2019a),

and Bayesian optimization method (Cho et al. 2020) for the dynamic exploration of

architectures.

In this study, among various approaches to making a network compact, we focus on

the structured compression method, which consists of low-rank compression and filter

pruning. Because of the structured property, the resulting compression can be easily

implemented without requiring any specialized software or hardware support (Lin et al.

2020), thus it is considered to be a practical and influential method.

2.2. Structured Compression of Deep Neural Networks

Structured compression is a technique that aims to reduce the computational complex-

ity of deep neural networks by decreasing the number of parameters in the network

without creating a sparse structure. Structured compression is particularly well-suited

8

for current hardware, which is optimized for dense matrix multiplications and can com-

pletely remove any zero entries. This technique allows for memory reduction and faster

training/inference times without the need for additional specialized hardware (Wen et

al. 2017).

Structured compression can be categorized into two techniques: low-rank com-

pression and filter pruning. Low-rank compression divides the original layer of the

network into two low-rank layers, which is based on the assumption of the parameter’s

low-rankness. This technique decomposes the weight matrix of a layer into two smaller

matrices with lower rank, significantly reducing the number of parameters in the net-

work, leading to faster computation and reduced memory requirements (Denton et al.

2014).

Filter pruning is another technique used in structured compression to remove less

informative filters from the original network based on a structural assumption of sparsity

in DNN parameters. The process involves setting the weights of the filters to zero and

retraining the network to ensure that the remaining filters can compensate for the

missing filters without significantly affecting the overall accuracy of the network. This

technique can also significantly reduce the number of parameters in the network, leading

to faster computation and reduced memory requirements (Li et al. 2016).

Both low-rank compression and filter pruning techniques can be used individually

or in combination to achieve even greater compression and performance gains. However,

it is crucial to carefully evaluate the performance and trade-offs of different structured

compression techniques for each application since the effectiveness of these techniques

can vary depending on the specific network architecture and task at hand (Han, Mao,

and Dally 2015).

2.2.1. Low-Rank Compression

Low-rank compression of deep neural networks can be achieved through a variety of

strategies that have been extensively explored in the literature. Three main approaches

9

stand out, each with its own advantages and limitations.

The first strategy is to regularize the network to be low-rank during training. This

involves adding a penalty term to the loss function that encourages the weight matrices

of the network to have a low-rank structure. This method has been shown to effectively

reduce the number of parameters in the network while maintaining high accuracy.

However, it requires additional computation during training and may not be suitable for

networks with already low-rank structures.

The second strategy is to select low-rank architectures of pre-trained networks.

This approach involves searching for a low-rank structure in the weight matrices of

a pre-trained network and using this structure to compress the network. This method

has been shown to achieve high compression rates with only a minor decrease in

accuracy. However, searching for the optimal low-rank structure may require extensive

computational resources.

Each strategy will be further explained in the following subsections.

Regularized training

Rank regularized training is a technique used to achieve low-rank compression of deep

neural networks by adding a regularization penalty to the weight matrices of the network

to encourage a low-rank structure. This approach has been extensively studied in the

literature, and a number of methods have been proposed to implement this technique.

The paper (Xu et al. 2019) proposes a method called Trained Rank Pruning (TRP)

that integrates low-rank approximation and regularization into the training process of

DNNs. TRP alternates between low-rank approximation and training, maintaining the

capacity of the original network while imposing low-rank constraints during training. A

nuclear regularization optimized by stochastic sub-gradient descent is utilized to further

promote low rank in TRP. Networks trained with TRP have a low-rank structure in nature

and can be approximated with negligible performance loss, eliminating the need for

fine-tuning after low-rank approximation. The proposed method outperforms previous

10

compression methods using low-rank approximation on CIFAR-10 and ImageNet

datasets.

Another method (Wu, Guo, and Zhang 2019) called Sparse Low Rank (SLR) im-

proves the compression rate of low-rank approximation by sparsifying the decomposed

matrix, giving minimal rank for unimportant neurons while retaining the rank of im-

portant ones. The proposed approach relatively represents the decomposition matrix

entries based on widely used pruning strategies for neuron ranking. Structured sparsity

introduced to the truncated SVD by our approach can achieve higher speed-up using

Basic Linear Algebra Subprograms (BLAS) libraries in addition to higher compression.

The proposed approach outperforms vanilla truncated SVD and a pruning baseline,

achieving better compression rates with minimal or no loss in accuracy.

Recently, the paper (Idelbayev and Carreira-Perpinán 2020) proposes a method that

learns the rank of each layer in a deep neural network, which can be used to compress

the network by performing low-rank approximation on each layer. The rank of each

layer is learned using a Bayesian optimization approach that maximizes the compression

rate while minimizing the loss in accuracy. The proposed method outperforms several

baseline methods on the CIFAR-10 and ImageNet datasets.

Additionally, the paper (Yin et al. 2021) proposes a method that uses tensor de-

composition to compress deep neural networks. The proposed method optimizes the

tensor decomposition by minimizing the Frobenius norm of the difference between

the original weights and the decomposed weights subject to a sparsity constraint. The

sparsity constraint is enforced using a group-lasso regularization term. The proposed

method outperforms several baseline methods on the CIFAR-10 and ImageNet datasets.

In this section, the related works of regularized training strategy are explained.

Training a neural network with a penalty that encourages the weight matrices to be

low-rank is suggested, and the rank selection was performed by humans through

repeated experiments (Jaderberg, Vedaldi, and Zisserman 2014; Denton et al. 2014;

Tai et al. 2015).

11

Rank selection

Early Methods In the early days of research on neural network compression (Xue,

Li, and Gong 2013), applying SVD to a single layer was a popular approach to reducing

computational complexity and the number of parameters. Studies in this area showed

that varying the rank of a single layer can significantly impact both model accuracy and

FLOPs. The main takeaway from these studies was that SVD could effectively compress

neural networks into low-rank matrices on a single layer. This research was significant

in demonstrating the feasibility of using SVD for neural network compression and

providing insights into the relationship between layer rank, accuracy, and FLOPs.

Heuristic Criteria This section provides a comprehensive review of the heuristics

used for rank selection in previous literature. In the previous studies, to determine

the ranks in advance, heuristic strategies such as a greedy approach or a thresholding

method are used (Kim et al. 2015; Kim, Khan, and Kyung 2019; Wen et al. 2017;

Xu et al. 2020). A common approach is to determine the target rank of each layer

through trial and error, which involves fine-tuning the approximated network and can

be highly time-consuming. The most popular and widely used heuristics for selecting

the rank of the ith convolutional layer is as follows (Zhang et al. 2015a; Alvarez and

Salzmann 2017; Li and Shi 2018): Given a set of singular values σ = σ1, σ2, ..., σki

for the ith convolutional layer, they defined Sσ,i = {j | j ≤ ki} such that the first ki

singular values and their corresponding singular vectors account for a certain percentage

of the total variation. Specifically, they chose ki to be the largest integer satisfying the

following constraint:

Σki
j=1σ

2
i,j ≤ β · Σ∀jσ

2
i,j (2.1)

where β is a pre-defined percentage of variation to be retained in the ith layer accounted

by the low-rank approximation, and the σi,j is the jth largest singular value of the

ith convolutional layer. It is evident that the approximated network’s computation and

memory costs are monotonic functions of the compression ratio β.

12

Another heuristic for selecting the rank of each layer was proposed in (Zhang et

al. 2015b). In this approach, the set of singular values for the ith convolutional layer is

denoted by σi, and the target rank is determined by maximizing a product of singular

values subject to the constraint on computation cost. Specifically, Sσ,i = {j | j ≤ ki}

is chosen to maximize the objective function:

Π∀i(Σ
ki
j=1σ

2
i,j) (2.2)

subject to the constraint that the computation cost is less than a pre-defined threshold.

The intuition behind this approach is that the product of singular values reflects the

energy of the feature maps. Selecting the top ki singular values with the highest

energy can lead to a good trade-off between accuracy and complexity. A greedy search

algorithm is employed to approximately solve this problem. Due to the use of the

greedy algorithm, only a single constraint is considered. An improved method for rank

selection was proposed by (Li and Shi 2018), which addresses the limitations of the

previous heuristics by formulating the problem as a mixed-integer optimization problem.

The key idea is to use masking variables to select the singular values for each layer

while enforcing multiple constraints on computation cost and memory cost.

To achieve this, Equation 2.2 is re-formulated as follows:

maximizem Π∀i(Σ∀jmi,jσ
2
i,j)

subject to Nc(m) ≤ NC,max

NM (m) ≤ NM,max

mi,j ∈ {0, 1}

(2.3)

Where mi,j is the masking variable for the jth singular value in the ith convolutional

layer, and Nc(m) and NM (m) denote the computation cost and memory cost, re-

spectively, which are functions of the masking variables. The objective function is

formulated as the geometric mean of the selected singular values, and the constraints on

computation cost and memory cost are enforced using the masking variables. Note that

13

the masking variables and the singular values can only take non-negative values; thus,

the objective in Equation 2.3 is equivalent to maximizing the geometric mean. Even

with the 0-1 integer constraint on the masking variables, modern numerical optimization

engines can efficiently solve this mixed-integer program with provable optimality. This

method provides a more flexible and accurate approach for rank selection, as it can han-

dle multiple constraints and provides a provably optimal solution. In the paper (Kim et

al. 2016), the authors utilized variational Bayesian matrix factorization (VBMF) (Naka-

jima et al. 2015) to determine the desired rank. The corrupted observation V , which

equals U plus additional noise ΣZ, is decomposed by VBMF using a Bayesian ap-

proach. The aim is to identify a matrix U that can be decomposed as B multiplied by A

multiplied by T , where the rank of U is not greater than r. This approach is referred to

as R-VBMF (Rank due to VBMF). It is important to note that the user cannot freely set

NC,max or NM,max with R-VBMF. Instead, the heuristic determines the computational

and memory costs of the approximated network. The following works formulate the

rank selection as optimization problems in which the singular values appear in the

formulations (Kim, Khan, and Kyung 2019; Idelbayev and Carreira-Perpinán 2020;

Liebenwein et al. 2021; Yaguchi et al. 2019). However, their methods are limited in that

either heuristics or approximations are used to solve the problem and are layer-wise rank

selection methods that do not result in globally optimal configurations. Another line of

research involves using a genetic algorithm to determine the proper rank configuration.

For the genetic strategy (Li et al. 2022), as used in neural architecture search, it includes

processes that several parameters are heuristically determined, and the overall iterative

search process is expensive. Distinct from previous research, we make the rank selection

problem differentiable making it the first learnable method (i.e., does not depend on

heuristics and no need for iteration design for an approximation). However, none of

the prior methods were able to formulate the rank selection problem differently; hence,

numerous approximations and heuristics were employed to solve the problem.

14

2.2.2. Filter Pruning

We focused on structured pruning, which removes filters while maintaining the model’s

regular structure, and the resulting compression can be easily implemented with off-

the-shelf CPUs/GPUs (Sui et al. 2021). Pruning is a commonly employed technique in

pre-trained deep neural networks (DNNs) to decrease the number of parameters. This

can result in reduced storage and model runtime while maintaining performance by

retraining the pruned network. Iterative weight pruning is a method that prunes the

network while simultaneously retraining it until the desired network size and accuracy

are achieved. Pruning is not typically carried out randomly but rather involves removing

unimportant weights or neurons using well-informed pruning criteria. Random pruning

can have a negative impact on the model’s performance and requires more retraining

steps to compensate for the removal of important weights or neurons.

Criterion-based methods

Criterion-based methods focus on using a specific metric to evaluate the importance of

filters within a layer. One commonly used metric is the L2-norm/L1-norm of the filter

weights (Li et al. 2016), which measures the magnitude of the filter values. Filters with

smaller weights are considered less important and can be pruned without significantly

affecting the accuracy of the CNN. Other metrics that have been proposed include

the geometric median of the filters and the error contribution toward the output of the

current layer.

The L2-norm or L1-norm is calculated by summing the squares or absolute values

of the weights in a filter, respectively. Filters with a lower L2-norm or L1-norm have

smaller magnitude weights and are considered less important. By pruning filters with

low L2-norm or L1-norm, the size of the CNN can be reduced without significantly

affecting its accuracy.

The geometric median of the filters is another metric that can be used to evaluate

the importance of filters (He et al. 2019b). The geometric median is the point that

15

minimizes the sum of the distances to all the points in a set. In the context of CNNs, the

geometric median of a set of filters is the filter that is closest to all the other filters in

terms of their Euclidean distance. Filters that are far away from the geometric median

are considered less important and can be pruned.

The error contribution towards the output of the current layer is another metric

that can be used to evaluate the importance of filters (Luo, Wu, and Lin 2017; He,

Zhang, and Sun 2017). Filters that contribute less to the output of the current layer are

considered less important and can be pruned. This method was first proposed in the

context of channel pruning, where entire channels of filters are pruned based on their

error contribution.

The advantage of criterion-based pruning methods is that they are relatively simple

to implement and do not require additional training or specialized modules. However,

they often require numerous trial-and-error experiments to achieve the desired resource

budget. Additionally, these methods can result in a sparse CNN, where some filters are

pruned and others are kept. Sparse CNNs can be challenging to deploy efficiently on

hardware because the irregular structure of the network can lead to inefficient memory

access patterns.

Learning based methods

The learning-based methods focus on learning each channel’s importance by associat-

ing scalar gate values. One such method is AutoPruner (Luo and Wu 2020a), which

introduces mask generating modules that are appended at the end of each layer. These

modules generate channel-wise masks, which are multiplied element-wise with the

feature maps. This way, less important channels are removed from the feature maps,

and the network’s computational cost is reduced. Similarly, SSS (Huang and Wang

2018) proposes a channel pruning method that uses an optimization framework to learn

the channel importance scores. SSS employs a sparse softmax function to generate the

channel importance scores, which are then used to select the most important channels

16

for each layer.

Another learning-based method is proposed in PFS (Wang et al. 2020), which

proposes a mask learning method for filter selection. PFS starts with an initialized

network with frozen weight parameters and learns the binary mask for each filter

using a sigmoid function with a constant steepness. The binary mask is then multiplied

element-wise with the filter to obtain the pruned filter. The advantage of PFS is that it

does not require additional training and can be easily applied to pre-trained models.

In general, learning-based methods tend to perform better than criteria-based meth-

ods, as they can adaptively learn the importance of each filter/channel during training,

leading to better compression ratios and higher accuracy retention. However, they

require additional training and specialized modules, which can increase computational

overhead and training time. Additionally, the learned pruning patterns may not be

transferable to different architectures, making the method less generalizable.

2.3. Low-rank decomposition in other fields

Natural language processing LoRA (Hu et al. 2021) addresses the challenge of adapt-

ing large language models to new tasks with limited labeled data. Traditional methods

involve fine-tuning the entire model, which is computationally expensive and data-

intensive. LoRA introduces a low-rank adaptation technique that decomposes the model

into low-rank and high-rank components. The low-rank part captures general knowledge

shared across tasks, while the high-rank part captures task-specific information. By

updating only the high-rank component, LoRA reduces computational costs and allows

effective adaptation with limited labeled data. This innovation leads to a substantial

reduction in memory usage by approximately threefold and a remarkable decrease in

the number of parameters, around 10000 times. Models like RoBERTA, DeBERTa,

GPT-2, and GPT-3 demonstrate similar or even superior fine-tuning performance with

this technique. Although a drawback exists with the pre-defined hyperparameter ’r’,

our method combines seamlessly, enabling automatic determination of ’r’, resulting

17

Figure 2.1. The basic LoRA module from the original LoRA study (Figures were

adapted from figure 1 of the reference [Hu et al. 2021]). The structure contains two

decomposed layers, enabling a small portion of the whole weights to be updated on

novel datasets.

in prominent performance enhancements and significantly reducing the search time

for finding the optimal ’r’. As a result, the integration of our methodology not only

achieves greater efficiency in fine-tuning but also offers a more streamlined and effective

approach to improving model performance across various tasks and applications.

18

Domain generalization The EDG method (Piratla, Netrapalli, and Sarawagi 2020)

is proposed to improve domain generalization, which is training models to perform well

on unseen domains. Traditional methods are computationally expensive and require

abundant labeled data. This approach uses low-rank decomposition to reduce complexity.

The method decomposes model parameters into common and specific components.

The common component captures shared knowledge, while the specific component

captures domain-specific information. By updating only the specific component, which

is smaller, the approach reduces the computational burden. With this decomposition, the

model can generalize to unseen domains with limited labeled data, leveraging common

knowledge.

Image restoration The reweighted Low-Rank factorization with deep prior for the

image restoration method (Chen et al. 2022) begins by decomposing the corrupted image

into low-rank and sparse components. The low-rank component captures the underlying

structure of the image, while the sparse component represents the noise and artifacts.

This decomposition is performed using a reweighted optimization process, which

enhances the ability to handle complex noise patterns. To incorporate deep learning

priors, a deep neural network is trained to learn the characteristics of clean images. The

network is then used to guide the restoration process by enforcing similarity to clean

images during the optimization. The combination of reweighted low-rank factorization

and deep learning priors leads to improved image restoration results.

2.4. Thesis Roadmap

In this thesis, we study how to improve the performance of compressed neural networks

using low-rank compression. In Chapter 3, the method using a rank regularizer and

beam-search algorithm is proposed. In Chapter 4, combining the low-rank and filter

pruning methods is proposed.

19

Chapter 3. An Effective Low-Rank Compression with a

Joint Rank Selection Followed by a

Compression-Friendly Training

3.1. Introduction

Compression of neural networks has emerged as one of the essential research topics,

especially for edge devices that have limited computation power and storage capacity.

The most popular compression methods include quantization (Rastegari et al. 2016; Wu

et al. 2016), pruning of redundant parameters (Han, Mao, and Dally 2015; Lebedev and

Lempitsky 2016; Srinivas and Babu 2015), knowledge distillation from a large network

to a small one (Hinton, Vinyals, and Dean 2015; Kim, Park, and Kwak 2018; Romero

et al. 2014; Zagoruyko and Komodakis 2016), and network factorization (Alvarez and

Salzmann 2017; Denton et al. 2014; Masana et al. 2017; Xue, Li, and Gong 2013).

In this work, we develop a low-rank compression algorithm. To perform a low-rank

compression of a neural network, the weight tensor of a layer needs to be decomposed

and compressed. While there are many ways to approach this problem, such as a direct

tensor decomposition (Kim et al. 2015; Lebedev et al. 2014; Garipov et al. 2016;

Novikov et al. 2015), we limit our focus to the basic approach of reshaping the tensor

into a two-dimensional matrix followed by an SVD (Singular Value Decomposition) as

in (Denton et al. 2014; Tukan et al. 2020; Yu et al. 2017). For a trained neural network,

the layer l’s tensor is flattened into the weight matrix Wl of size ml × nl, and it is

decomposed to keep only the top rl dimensions. This reduces the computation and

memory requirements from mlnl to (ml + nl)rl, and the reduction can be large when a

small rl is chosen. We focus on two main challenges for developing a highly effective

low-rank compression algorithm – the first is rank-selection method, and the second

20

is compression-friendly training method. For the first challenge of rank selection, the

main problem is how to select rl. To be precise, the problem is to select the rank vector

r = [r1, r2, · · · , rL]T for the L layers such that the desired compression ratio can be

achieved without harming the performance too much (Jaderberg, Vedaldi, and Zisserman

2014; Denton et al. 2014; Tai et al. 2015; Zhang et al. 2015a; Wen et al. 2017). We

focus on two main challenges for developing a highly effective low-rank compression

algorithm – the first is rank-selection method, and the second is compression-friendly

training method. For the first challenge of rank selection, the main problem is how to

select rl. To be precise, the problem is to select the rank vector r = [r1, r2, · · · , rL]T for

the L layers such that the desired compression ratio can be achieved without harming

the performance too much (Jaderberg, Vedaldi, and Zisserman 2014; Denton et al. 2014;

Tai et al. 2015; Zhang et al. 2015a; Wen et al. 2017). Because rank selection is a

nonlinear optimization problem, some of the early studies manually selected the rank

of each layer, and some of the later studies proposed energy metrics that are based on

summary statistics of each layer’s singular values. These studies, however, are limited

because they decouple the rank selection into each layer and fail to reflect the aspects

that are important for a joint rank selection over all L layers.

21

(a) Rank selection (b) Singular value distribution

Figure 3.1. Comparison with the baseline algorithms of CA and LC. (a) Performance of

rank selection methods: a base neural network (ResNet56 on CIFAR-100) was truncated

by the selected ranks, and no further fine-tuning was applied. Modified beam-search

(mBS) clearly outperforms the other two. (b) Effectiveness of rank regularized training:

a base neural network (ResNet56 on CIFAR-100) was regularized by each compression-

friendly training method. For the target rank of five, modified stable rank (mSR) is the

only one that clearly minimizes the singular values other than the top five.

22

In our work, we propose mBS (modified Beam-Search) that can perform a joint

selection of ranks over all the layers using a beam search. Also, mBS adopts validation

accuracy as the joint selection metric. Because the validation performance is directly

evaluated for each candidate rank vector, the actual performance after the comple-

tion of low-rank compression correlates well with the selection metric. Most of the

previous rank-selection methods are based on heuristics or summary statistics. The

performance of mBS is shown in Figure 3.1a where mBS is compared against two

low-rank compression algorithms, CA (Alvarez and Salzmann 2017) and LC (Idelbayev

and Carreira-Perpinán 2020). Both are low-rank compression algorithms that utilize

compression-friendly training. To make the beam search fast, the size of the rank-

selection validation dataset is kept small – around the size of a mini-batch. Additionally,

the beam search algorithm is modified for speed up as will be explained in Section 3.5.2.

For the second challenge of compression-friendly training, the goal is to train the

neural network to be ready for low-rank decomposition. The previous works used a

forced weight matrix truncation in the middle of training (Alvarez and Salzmann 2017)

or a norm distance regularization with the truncated weight matrices (Idelbayev and

Carreira-Perpinán 2020). Both require updates on the regularization loss as the training

proceeds. In our method of mSR (modified Stable Rank), the regularization loss depends

only on the target rank of each layer. Because we first fix the target rank of each layer

using mBS and never update it, mSR can have smoother learning dynamics and achieve

better compression-friendly training, as can be seen in Figure 3.1b.

The BSR (Beam-search and Stable Rank) algorithm is defined as a sequential

application of mBS for a practical rank-selection and mSR for effective compression-

friendly training. As we will show in Section 3.6, it outperforms the latest benchmark

low-rank compression algorithms and performs comparably against the state-of-the-art

pruning algorithms.

23

3.2. Contributions

The main contributions of our study can be summarized as follows:

• We propose a new rank selection and regularized training method called BSR for

effective low-rank compression.

• BSR consists of two novel algorithms: (1) The mBS (modified Beam Search)

algorithm, which can perform a joint selection of ranks over all the layers. (2)

The mSR (modified Stable Rank) regularizer, which can train a model into a

compression-friendly form.

• Through experimental validation, we have confirmed that our rank regularizer

is more effective in regularizing compared to conventional nuclear norm-based

regularizers.

• Through experimental validation, we have confirmed that our rank regularizer

is more effective in regularizing compared to conventional nuclear norm-based

regularizers.

• In the field of compression, we have innovatively utilized a modified version

of the beam search method to discover rank configurations. This is the first

time such an approach has been applied in this context. Through experimental

validation, we have empirically confirmed that our method is more effective in

finding optimal rank configurations compared to existing techniques.

• For popular vision benchmarks, BSR outperforms the state-of-the-art low-rank

compression methods with large margins.

• We compare BSR with pruning compression, which is also a structured compres-

sion method. BSR provides a competitive performance compared to the recent

pruning algorithms.

24

• We demonstrate that BSR can be easily combined with the quantization method

for additional compression.

3.3. Related works

We propose a novel low-rank compression algorithm, BSR, to overcome two main

challenges in the field of low-rank compression. BSR consists of rank selection and

rank-regularized training. For rank selection, we propose a modified beam search

algorithm reformulated to find rank configurations efficiently. For rank-regularized

training, we propose a modified stable rank regularizer that does not require repetitive

updates of the regularization loss. In this section, we summarize beam-search-related

works in Section 3.3.1, and rank regularizer-related works in Section 3.3.2.

3.3.1. Beam search

Beam search is a technique for searching a tree or graph, especially when the solution

space is vast (Xu and Fern 2007; Antoniol et al. 1995; Furcy and Koenig 2005). It is

based on a heuristic of developingK solutions in parallel while repeatedly inspecting ad-

jacent nodes of theK solutions in the graph.K is commonly referred to as the beam size,

andK = 1 corresponds to the greedy search (Huang, Fayong, and Guo 2012), andK =

∞ corresponds to the breadth-first search (Meister, Vieira, and Cotterell 2020). Obvi-

ously, beam search is a compromise between the two, where K is the control parameter.

Beam search has been widely adopted, especially for natural languages processing tasks

such as speech recognition (Lowerre 1976), neural machine translation (Lowerre 1976;

Boulanger-Lewandowski, Bengio, and Vincent 2013), scheduling (Habenicht and

Monch 2002), and generation of a natural language adversarial attack (Tengfei.Z et

al. 2021). In our work, we form a graph by defining nodes as possible rank vectors.

For the graph, we modify the basic beam search algorithm for a faster search where

deeper (e.g., level s) children nodes can be searched.

25

3.3.2. Stable rank and rank regularization

Formally speaking, the stable rank of a matrix is defined as the ratio between the squared

Frobenius norm and the squared spectral norm (Rudelson and Vershynin 2007). Simply

speaking, the definition boils down to the ratio between the ‘sum of squared singular

values’ and the ‘squared value of the largest singular value’. Therefore, a smaller stable

rank implies a relatively larger portion of energy in the largest singular value. In previous

works, a stable rank normalization was studied for improving generalization (Sanyal,

Torr, and Dokania 2019), and a stable rank approximation was utilized for performance

tuning (Choi et al. 2021). In our work, we modify the stable rank’s denominator to

the sum of top r singular values such that we can concentrate the activation signals

in the top r dimensions. While our approach requires only the target rank r to be

specified, the previous compression-friendly training calculated the truncated matrices

and directly used their element values for the regularization. Therefore, the previous

methods required a frequent update of the truncated matrices during the training. In

our BSR method, we calculate the target rank vector only once in the beginning and

keep it fixed. Other rank regularizers are summarized in Table 3.1. All the methods

are based on nuclear norms, and the nuclear norm and variants of nuclear norms have

been proven the most effective regularizer for rank control. However, as demonstrated

in the experimental results section of the main text, we have empirically verified that

our method, derived by modifying the stable rank, effectively controls the rank in

comparison to other approaches based on nuclear norms.

26

Name Regularizer

Nuclear norm Σk
i=1λσi

Elastic-Net (Kim, Lee, and Oh 2015) Σk
i=1λ(σi + γσ2i)

Sp-norm (Mohan and Fazel 2012; Nie, Huang, and Ding 2012) Σk
i=1λσ

p
i

TNN (Hu et al. 2012) Σk
i=r+1λσi

WNN (Gu et al. 2014; 2017) Σk
i=r+1λwiσi

CNN (Sun, Xiang, and Ye 2013) Σk
i=r+1λmin(σi, θ)

Logarithm (Friedman 2012) Σk
i=1

λlog(γσi+1)
log(γ+1)

LNN (Peng et al. 2015) Σk
i=1λlog(σi + 1)

Geman (Geman and Yang 1995) Σk
i=1

λσi
σi+γ

Laplace (Trzasko and Manduca 2008) Σk
i=1λ(1− exp(−

σi
γ))

Table 3.1. Commonly used rank regularizer in many fields.

27

3.4. The basics of low-rank compression

3.4.1. The basic process

A typical process of low-rank compression consists of four steps: 1) train a deep neural

network, 2) select rank assignments over L layers, 3) factorize weight matrices using

truncated SVD (Denton et al. 2014; Masana et al. 2017; Xue, Li, and Gong 2013)

according to the selected ranks, and 4) fine-tune the truncated model to recover the

performance as much as possible. In our work, we mainly focus on the rank selection

step and an additional step of compression-friendly training. The additional step is

placed between step 2 and step 3.

3.4.2. Compression ratio

Consider an L-layer neural network with W = (W1,W2, · · · ,WL), where Wl ∈

Rml×nl , as its weight matrices. Without a low-rank compression, the rank vector r corre-

sponds to the full rank vector of rfull = [R1, · · · , RL]
T where Rl = min(ml, nl). The

rank selection is performed over the set ofR = {r ∈ NL | r = [r1, r2, · · · , rL]T , 0 <

rl ≤ min(ml, nl)}, and the selected rank vector is denoted as rselect. With rselect,

we can perform a truncated SVD. For lth layer’s weight matrix Wl = UlSlV
T
l , we

keep only the largest rl singular values to obtain Ŵl = ÛlŜlV̂
T
l where Ûl ∈ Rm×rl ,

Ŝl ∈ Rrl×rl , and V̂l ∈ Rn×rl . Then, the compression is achieved by replacing Wl

with a cascade of two matrices: ŜlV̂
T
l and Ûl. Obviously, the computational benefit

stems from the reduction in the matrix multiplication loads: mn for the original Wl

and (m+ n)rl for ŜlV̂
T
l and Ûl. Similar results hold for convolutional layers. Finally,

the compression ratio C(r) for the selected rank vector r can be calculated as

C(r) = 1−
∑L

l=1{mlnl1l + rl(ml + nl)(1− 1l)}∑L
l=1mlnl

(3.1)

where 1l is a simplified notation of 1(ml, nl, rl) that is defined as 1 if mlnl ≤ rl(ml +

nl) and 0 otherwise.

28

3.5. Methodology

3.5.1. Overall process

The overall process of BSR low-rank compression is shown in Figure 4.3. Starting

from a fully trained network, phase one of BSR performs rank selection using mBS

algorithm where it requires only the desired compression ratio (Cd) as the input and a

small validation dataset (Dval). Once phase one is completed, rselect is fixed, and rank-

regularized training is performed in phase two. The strength of mSR is controlled by λ,

where its strength is gradually increased in a scheduled manner. Upon the completion

of phase two, the trained network is truncated using singular value decomposition

according to rselect. Then, a final fine-tuning is performed to complete the compression.

29

Figure 3.2. Overall process of BSR algorithm.

30

Figure 3.3. Illustration of mBS search process for L = 3, K = 2, s = 1, and Cd = 0.6.

31

3.5.2. Modified beam-search (mBS) for rank selection

When a neural network with W is truncated according to the rank vector r, the accuracy

can be evaluated with a small validation dataset Dval and the accuracy is denoted as

A(r,Dval). The corresponding compression ratio can be calculated as C(r). Our goal of

rank selection is to find the r with the highest accuracy while the compression ratio is

sufficiently close to the desired compression ratio Cd. This problem can be formulated

as below.
max
r∈R

A(r,Dval)

s.t. Cd − τ ≤ C(r) ≤ Cd

(3.2)

Note that since Cd is a real number, we have introduced a small constant τ for relaxing

the desired compression ratio. This relaxation forces the returned solution to have a

compression ratio close to Cd, and it is also utilized as a part of the exit criteria. The

problem in Equation 3.2 is a combinatorial optimization problem (Reeves 1993), and

a simple greedy algorithm can be applied as in (Zhang et al. 2015a). Because the

cardinality of the search spaceR is extremely large, however, greedy algorithms hardly

produce good results in a reasonable computation time. On the other hand, a full search

is also unacceptable because of its long search time. As a compromise, we adopt a

beam-search framework and make adequate adjustments. Before presenting the details

of mBS, a simple illustration of how Equation 3.2 can be solved with our modified beam

search is presented in Figure 3.3. The details of mBS can be explained as the following.

• Stage 1: Initialize the level as lv[1] = 1. Initialize the top-K set as B[1] = {r1[1]},

where r1[1] = rfull (full rank assignments).

• Stage 2: Move to the next level by adding the pre-chosen step size s, lv[t] =

lv[t−1] + s. For each element in B[t−1], find all of its descendants in lv[t] and add

them to the candidate set T[t]. Exclude the descendants that perform excessive

compression by checking the condition C(r[t]) ≤ Cd.

32

• Stage 3: Calculate the new top-K set at level lv[t] by evaluating the small valida-

tion dataset and by finding the ordered top K elements:

B[t] = argmax
r1
[t]
,···rK

[t]
∈T[t]

A(r[t],Dval)

• Stage 4: Repeat Stage 2 and Stage 3 until Cd − τ ≤ C(r1[t]) ≤ Cd is satisfied

for the best element r1[t]. If the condition is satisfied, return r1[t] as rselect.

An implementation of this process is provided in Algorithm 1. Compared to the standard

beam search, the main modification we make is the introduction of the level step

size s for the speed-up of the search. For the rank selection, a weight matrix’s rank

needs to be reduced by a sufficient amount and satisfy the minimum condition of

rl(ml + nl) ≤ mlnl to achieve a positive compression effect. Because most of the

weight matrices can allow a significant amount of rank reduction without harming the

performance at the beginning of the search, we can choose s as a number between three

and ten to make the search faster. As the search progresses, we reduce s and improve

the search resolution whenever no candidate can be found at the next level. Besides s,

the beam size K is another important parameter that determines the trade-off between

speed and search resolution. Instead of performing a fine and slow search with a small

s and a large K, we perform a fast search a few times with different configurations and

choose the best rselect. The configuration details can be found in Section 3.6.1, and

ablation studies for K and s can be found in Section 3.6.3.

33

Algorithm 1 modified Beam Search (mBS) for rank selection
Input: desired comp. ratio Cd; validation data Dval; beam size K; level step size s

Output: selected rank rselect

Required: ratio function C(r); base network M(r) with rank r; evaluation function

A(r,D)

Initialize: rselect ← rfull;

top-K rank set B ← {(rfull, C(rfull), A(rfull,Dval)}

1: while (B is changed) ∨ (Cd − τ ≤ rselect ≤ Cd) do

2: T = {ϕ}

3: for (rp, Cp, Ap) in B do

4: for i = 1 to L do

5: rc ← rp

6: rc[i]← rc[i]− s

7: Cc ← C(rc)

8: if Cc ≤ Cd then

9: Ac ← A(rc,Dval)

10: T ∪ (rc, Cc, Ac)

11: end if

12: end for

13: end for

14: B ← TopK(T ; keys = [A, r, rand])

15: rselect ← B[0]

16: end while

17: return rselect

34

3.5.3. Modified stable rank (mSR) for regularized training

For a weight matrix Wl ∈ Rml×nl , stable rank is defined as

SR(Wl) =
∥Wl∥2F
∥Wl∥22

=

∑Rl
i=1(σ

l
i)
2

(σl1)
2

, (3.3)

where σli is the ith singular value of Wl. Because our goal of compression-friendly

training is to have almost no energy in the dimensions other than the top rl dimensions,

we modify the stable rank as below.

mSR(Wl, rl) =
tr(Σrl:Rl

l)

tr(Σ1:rl
l)

=

∑Rl
i=rl+1 σ

l
i∑rl

i=1 σ
l
i

(3.4)

The modified stable rank mSR is different from the stable rank in four ways. First, it

is dependent on the input parameter rl. Second, the summation in the denominator is

performed over the largest rl singular values. Third, the largest rl singular values are

excluded in the numerator’s summation. Fourth, the singular values are not squared.

The third and fourth differences make mSR regularization allocate less energy in the

undesired dimensions as shown in Figure 3.1a. The compression-friendly training is

performed by minimizing the loss of L(W) + λ
∑L

l=1mSR(Wl, rl), where the first

term is the original loss of the learning task and the second term is the mSR as a penalty

loss.

Through our empirical evaluations, we have confirmed that mSR can stably affect

the weight matrices. In fact, the gradient of mSR can be easily derived. To do so, we

decompose Wl = UlΣlV
T
l into two parts by allocating the first rl dimensions into

W1:rl
l and the remaining dimensions into Wrl:Rl

l as below.

Wl = W1:rl
l +Wrl:Rl

l

= U1:rl
l Σ1:rl

l (V1:rl
l)T +Url:Rl

l Σrl:Rl
l (Vrl:Rl

l)T
(3.5)

35

Then, the derivative can be derived as the following.

∂mSR(Wl, rl)

∂Wl
=

∂

(
tr(Σ

rl:Rl
l)

tr(Σ
1:rl
l)

)
∂Wl

=
1

(tr(Σ1:rl
l))2

(
tr(Σ1:rl

l)
∂tr(Σrl:Rl

l)

∂Wl
− tr(Σrl:Rl

l)
∂tr(Σ1:rl

l)

∂Wl

)

=
tr(Σrl:Rl

l)

tr(Σ1:rl
l)

[
1

tr(Σrl:Rl

l)

(
Vrl:Rl

l (Url:Rl

l)T −
∂tr((Url:Rl

l)TWrl:Rl

l Vrl:Rl

l)

∂Wl

)
− 1

tr(Σ1:rl
l)

(
V1:rl

l (U1:rl
l)T −

∂tr((U1:rl
l)TWrl:Rl

l V1:rl
l)

∂Wl

)]
=
tr(Σrl:Rl

l)

tr(Σ1:rl
l)

(
Url:Rl

l (Vrl:Rl

l)T

tr(Σrl:Rl

l)
−

U1:rl
l (V1:rl

l)T

tr(Σ1:rl
l)

)
.

(3.6)

A crucial issue with the above mSR regularization is its effect on the computational

overhead. Use of mSR requires a repeated calculation of singular value decomposition

(SVD) that is computationally intensive. To deal with this issue, we adopted the random-

ized matrix decomposition method in (Erichson et al. 2016). Because the target rank

rl is typically chosen to be small, the practical choice of implementation has almost

no effect on the regularization while significantly reducing the computational burden.

Furthermore, we obtain an additional reduction by calculating SVD only once every 64

iterations. Consequently, the training time of mSR regularization remains almost the

same as the un-regularized training.

3.6. Experiments

3.6.1. Experimental setting

Baseline models and datasets

To investigate the effectiveness and generalizability of BSR, we evaluate its compres-

sion performance for a variety of models and datasets. For the comparison against

the low-rank compression methods, we mainly followed the experimental settings of

36

LC (Idelbayev and Carreira-Perpinán 2020): ResNet32 and ResNet56 on CIFAR-10,

ResNet56 on CIFAR-100, and AlexNet on ImageNet (ILSVRC 2012). For the compari-

son against the structured pruning methods, we have chosen the two benchmarks that

are most commonly evaluated in the pruning community: ResNet56 on CIFAR-10 and

ResNet50 on ImageNet. We used the standard preprocessing techniques for CIFAR-10,

CIFAR-100, and ImageNet (i.e., random horizontal flip, random crop, and normaliza-

tion were applied). Most of the structured pruning works provide their performance

results for at least one of the two benchmarks.

Rank selection configuration

BSR performs rank selection only once. Therefore, it is important to find a rank vector

that can result in a high performance after compression-friendly training. To improve

the search speed and to make the search algorithm mBS robust, we use three settings

of (s,K) as {(3, 5), (5, 5), (10, 5)}. Search for rselect is performed three times with

the three settings, and the best-performing one is selected as the final choice. Then,

compression-friendly training is performed only once after the final selection. Note that

other low-rank algorithms require multiple attempts of compression-friendly training.

Because we choose s that is larger than one, mBS might not be able to find a solution.

When this happens, the level step size s is multiplied by γ = 0.5 and rounded, and the

search is continued from the last K candidates.

Rank regularized training configuration

We used the initial learning rate of η0 = 0.01 and a cosine annealing method was used as

the learning rate scheduler. We used Nesterov’s accelerated gradient method with a 0.9

momentum on mini-batches of size 256 for the ImageNet dataset and 128 for the others.

A regularization strength scheduling was introduced for stable regularized training,

where λ was gradually increased. To be specific, we used a regularization strength

scheduling of λj = λ0 · b where λj is updated every 15 epochs with the multiplication

37

of constant b. The values of (λ0, b) were chosen as one of (1.0, 1.2) and (2.0, 1.2) for

ResNet50 on ImageNet and (0.02, 1.5) and (0.05,1.5) for all the others. For ResNet50

on ImageNet, a larger λ0 value is beneficial for the early epochs.

3.6.2. Experimental results

We provide three sets of experimental results. The first set focuses on the comparison

against the low-rank compression algorithms, the second set focuses on applying BSR on

lightweight networks, and the third set focuses on the comparison against the structured

pruning algorithms.

Comparison against low-rank compression algorithms

The results are provided in terms of compression ratio and FLOPs. For ResNet, con-

volution layers contain most of the parameters, and we applied BSR only over the

convolutional layers. For AlexNet, the fully connected layers cannot be ignored, and we

applied BSR over the fully connected layers and the convolutional layers. The results are

shown in Figure ??, where the upper four figures are the results of compression ratio,

and the lower four figures are the results for FLOPs. In all figures, BSR outperforms

LC and CA. For CA and LC, the compression ratio cannot be fully controlled, and

the final compression ratio is dependent on the hyperparameter setting. We have tried

numerous hyperparameter settings to generate the CA and LC results. For BSR, the

compression ratio can be fully controlled without any need for tuning. Therefore, we

have first generated LC results and have chosen the compression ratios of BSR to be the

same as what LC ended up with.

38

(a) ResNet32 on CIFAR10, Comp. ratio (b) ResNet56 on CIFAR10, Comp. ratio

(c) ResNet56 on CIFAR100, Comp. ratio (d) Alexnet on ImageNet, Comp. ratio

Figure 3.4. Comparison of BSR with CA and LC for (a) ResNet32 on CIFAR-10, (b)

ResNet56 on CIFAR-10, (c) ResNet56 on CIFAR-100, and (d) AlexNet on ImageNet.

For AlexNet, we used the pre-trained Pytorch model as the base network (56.55% for

top-1 accuracy).

39

(a) ResNet32 on CIFAR10, Flops (b) ResNet56 on CIFAR10, Flops

(c) ResNet56 on CIFAR100, Flops (d) Alexnet on ImageNet, Flops

Figure 3.5. Comparison of BSR with CA and LC for (a) ResNet32 on CIFAR-10, (b)

ResNet56 on CIFAR-10, (c) ResNet56 on CIFAR-100, and (d) AlexNet on ImageNet.

For AlexNet, we used the pre-trained Pytorch model as the base network (56.55% for

top-1 accuracy).

40

(a) EfficientNet-B0 on ImageNet (b) MobileNetV2 on ImageNet

Figure 3.6. Application of BSR on lightweight networks.

41

Compressing lightweight networks with BSR

EfficientNet and MobileNetV2 are well-known models that have been designed specifi-

cally as lightweight models with high performance. We applied BSR to the two networks

to see if BSR can be useful for such lightweight networks. The results are shown in

Figure 3.6. Although EfficientNet and MobileNetV2 are already compact, our method

can further compress the models at the cost of a slight performance sacrifice. BSR out-

performs LC method as shown in Figure 3.6a. In addition, MobileNetV2 compressed

with BSR performs better than MobileNetV3 as shown in Fig 3.6b. Considering that

MobileNetV3 is a compacter version in the MobileNet family, it is interesting to note

that MobileNetV2 with BSR outperforms MobileNetV3.

Comparison against structured pruning algorithms

The previous low-rank methods typically perform worse than SOTA pruning methods.

Because both low-rank and pruning are structured methods, we wanted to show that

our new low-rank method is comparable to the SOTA pruning methods and, therefore,

it is a competitive structured compression solution. We compare BSR against the latest

structured pruning algorithms.

The benchmark pruning algorithms include naive uniform channel number shrink-

age (uniform), ThiNet (Luo, Wu, and Lin 2017), Channel Pruning (CP) (He, Zhang,

and Sun 2017), Discrimination-aware Channel Pruning (DCP) (Zhuang et al. 2018),

Soft Filter Pruning (SFP) (He et al. 2018a), rethinking the value of network prun-

ing (Rethink) (Liu et al. 2018), and include most recent methods such as Pruning From

Scratch (PFS) (Wang et al. 2020), end-to-end trainable method (AutoPruner) (Luo and

Wu 2020a), Compression Using Residual-connections and Limited-data (CURL) (Luo

and Wu 2020b), and Learned Global Ranking(LeGR) (Chin et al. 2020).

42

(a) Compression ratio (b) FLOPs

Figure 3.7. Comparison for ResNet56 on CIFAR-10 (a) Compression ratio (b) FLOPs

43

Range of FLOPs

reduction ratio
Method Algorithm

Test acc.

in %

∆ Test acc.

in %

MFLOPs

(Reduction ratio)

Number of parameters

(Compression ratio)

40% ∼ 50%
Low-rank BSR (ours) 92.73 → 94.00 + 1.27 76.0 (40 %) 0.49M (0.42)

Pruning DP (Kim et al. 2019) 92.66 → 92.36 - 0.30 65.2 (48 %) N/A

50% ∼ 60%

Pruning LeGR (Chin et al. 2020) 93.90 → 93.70 - 0.20 58.9 (53 %) N/A

Low-rank BSR (ours) 92.73 → 93.53 + 0.80 55.7 (56 %) 0.37M (0.56)

Pruning DCP (Zhuang et al. 2018) 93.80 → 93.49 - 0.31 62.7 (50 %) N/A

Pruning SFP (He et al. 2018a) 93.59 → 93.35 - 0.24 62.7 (50 %) 0.51M (0.40)

Low-rank LC (Idelbayev and Carreira-Perpinán 2020) 92.73 → 93.10 + 0.37 55.7 (56 %) 0.38M (0.55)

Pruning Rethink (Liu et al. 2018) 93.80 → 93.07 - 0.73 62.7 (50 %) N/A

Pruning PFS (Wang et al. 2020) 93.23 → 93.05 - 0.18 62.7 (50 %) N/A

Pruning ThiNet (Luo, Wu, and Lin 2017) 93.80 → 92.98 - 0.82 62.7 (50 %) N/A

Pruning CP (He, Zhang, and Sun 2017) 93.80 → 92.80 - 1.00 62.7 (50 %) N/A

Low-rank CA (Alvarez and Salzmann 2017) 92.73 → 91.13 - 1.60 51.4 (59 %) 0.38M (0.55)

Pruning AMC (He et al. 2018b) 92.80 → 91.90 - 0.90 62.7 (50 %) N/A

Pruning Uniform 92.80 → 89.80 - 3.00 62.7 (50 %) N/A

Above 60% Low-rank BSR (ours) 92.73 → 92.51 - 0.22 32.1 (74 %) 0.21M (0.75)

Table 3.2. The performance for ResNet56 on CIFAR-10 is summarized for BSR, LC, CA,

and structured pruning. For the structured pruning, we have aggregated the literature

records that are available. Because most of the literature records are provided in FLOPs

only, we have grouped the records according to the range of FLOPs reduction ratio for

comparison.

44

(a) Compression ratio (b) FLOPs

Figure 3.8. Comparison for ResNet50 on ImageNet (a) Compression ratio (b) FLOPs

45

Range of FLOPs

reduction ratio
Method Algorithm

Test acc.

in %

∆ Test acc.

in %

GFLOPs

(Reduction ratio)

Number of parameters

(Compression ratio)

0% ∼ 40%
Pruning PFS (Wang et al. 2020) 76.1 → 76.7 + 0.6 3.0 (25 %) 17.9M (0.30)

Pruning ThiNet (Luo, Wu, and Lin 2017) 73.0 → 72.0 - 1.0 2.6 (37 %) 14.8M (0.42)

40% ∼ 50%

Pruning PFS (Wang et al. 2020) 76.1 → 75.6 - 0.5 2.0 (49 %) 9.2M (0.64)

Low-rank BSR (ours) 76.2 → 75.0 - 1.1 2.2 (47 %) 12.5M (0.51)

Pruning SFP (He et al. 2018a) 76.2 → 74.6 - 1.6 2.4 (42 %) N/A

Pruning CP (He, Zhang, and Sun 2017) 76.1 → 73.3 - 2.8 2.1 (49 %) N/A

Low-rank BSR (ours) 76.2 → 74.8 - 1.4 1.8 (55 %) 10.1M (0.60)

50% ∼ 60% Pruning SSR (Lin et al. 2019a) 76.2 → 73.4 - 2.8 1.9 (55 %) 15.5M (0.39)

Pruning CP (He, Zhang, and Sun 2017) 76.1 → 73.3 - 2.8 2.1 (51 %) N/A

Low-rank BSR (ours) 76.2 → 74.1 - 2.1 1.4 (67 %) 7.5M (0.70)

Pruning WSP (Guo et al. 2021) 76.2 → 74.0 - 2.2 1.5 (63 %) 11.6M (0.55)

60% ∼ 70% Pruning AutoPruner (Luo and Wu 2020a) 76.1 → 73.0 - 3.1 1.4 (65 %) 12.6M (0.50)

Pruning SSR (Lin et al. 2019a) 76.2 → 72.6 - 3.6 1.7 (60 %) 12.0M (0.53)

Pruning GAL (Lin et al. 2019b) 76.2 → 69.9 - 6.3 1.6 (62 %) 14.7M (0.42)

Low-rank BSR (ours) 76.2 → 73.4 - 2.8 1.1 (73 %) 5.0M (0.80)

Pruning CURL (Luo and Wu 2020b) 76.2 → 73.4 - 2.8 1.1 (73 %) 6.7M (0.74)

Above 70% Pruning PFS (Wang et al. 2020) 76.1 → 72.8 - 3.3 1.0 (76 %) 4.6M (0.82)

Pruning WSP (Guo et al. 2021) 76.2 → 72.1 - 4.1 1.1 (73 %) 9.1M (0.64)

Pruning HRANK (Lin et al. 2020) 76.1 → 69.1 - 7.0 1.0 (76 %) 8.3M (0.68)

Table 3.3. The performance for ResNet50 on ImageNet is summarized for BSR and

structured pruning. For the structured-pruning, we have aggregated the literature records

that are available. To be consistent with Table 3.2, we have grouped the records accord-

ing to the range of FLOPs reduction ratio. It is possible to group the records according

to the parameter compression ratio, and the corresponding comparison plot is shown in

Figure 3.8a.

46

Table 3.2 summarizes the results for ResNet56 on CIFAR-10 and the graphical com-

parisons can be found in Figure 3.7. As can be seen in Table 3.2, the FLOPs information

is provided in all the literature records but the number of parameter information is often

missing. Therefore, we grouped the results according to the range of FLOPs reduction.

For the cases with known compression ratio, the results are compared in Figure 3.7a

where BSR outperforms all of the structured pruning algorithms. The FLOPs results are

compared in Figure 3.7b, and BSR outperforms all of the structured pruning algorithms

except for LeGR (Chin et al. 2020). The performance gap, however, is marginal. We

compared the distributions of rselect as rank selection methods. Table 3.3 summarizes

the results for ResNet50 on ImageNet, and the graphical comparisons can be found

in Figure 3.8. For ResNet50 on ImageNet, both FLOPs information and number of

parameter information is provided in most of the literature records. Nonetheless, we

have organized the Table 3.3 with respect to the range of FLOPs reduction ratio to be

consistent with Table 3.2. The parameter comparison results are shown in Figure 3.8a

and it can be observed that BSR outperforms all but PFS (Wang et al. 2020). FLOPs

comparison results are shown in Figure 3.8b where BSR can outperform PFS for small

FLOPs values, but not for large FLOPs values. For 1.1 GFLOPs, CURL (Luo and Wu

2020b) achieves the same test accuracy as BSR. But BSR requires a smaller number of

parameters (6.7M vs. 5.0M) as can be confirmed in Table 3.3.

3.6.3. Analysis of BSR

In this section, we analyze four aspects of BSR. Firstly, the sensitivity of K and s of

the mBS algorithm is analyzed. Secondly, we look into the rank allocation of mBS and

its characteristics. Thirdly, we analyze the training strategies of mSR including rank

allocation updates during training and scheduled strengthening of the regularization.

Finally, an ablation study of BSR is conducted to confirm the effectiveness of mBS and

mSR.

47

mBS: sensitivity study

The effect of beam size K: We explore the effect of the level step size K for a fixed

beam size s. Here, we fixed Cd to 0.3 and γ to 0.5. The results are shown in Figure 3.9,

and we can observe that a larger K provides a better accuracy performance in general.

The accuracy curve, however, exhibits a large variance and the average performance is

even deteriorated when K is increased from one to three. This can be attributed to the

nature of the rank selection problem. Because it is a non-convex problem, it is difficult

to say what to can be expected with a certainty. Compared to the accuracy curve, the

search time curve shows a monotonic behavior where search time increases as K is

increased. Based on the results in Figure 3.9, we have chosen K to be five.

48

(a) s = 3 (b) s = 5

(c) s = 5 (d) s = 10

(e) s = 20

Figure 3.9. The effect of K parameters on mBS performance for a fixed s: a base neural

network (ResNet56 on CIFAR-100) was truncated by the selected ranks and no further

fine-tuning was applied for this analysis. Performance and search speed change as a

function of K: (a) s is fixed at 3, (b) s is fixed at 5, (c) s is fixed at 10, (d) s is fixed at

20.

49

The effect of level step size s: We explore the effect of the level step size s for a

fixed beam size K. Here, we fixed Cd to 0.3 and γ to 0.5. The analysis was repeated for

a range of K, and the results are shown in Figure 3.10. We can observe that a smaller s

provides a better accuracy performance. On the contrary, a smaller s makes the search

time exponentially larger, especially for a very small s. Because of the trade-off, we

used s between three and ten with an adaptive reduction of s when no solution was

found.

50

(a) k = 3 (b) k = 5

(c) k = 10 (d) k = 20

Figure 3.10. The effect of s parameters on mBS performance for a fixed K: a base

neural network (ResNet56 on CIFAR-100) was truncated by the selected ranks and no

further fine-tuning was applied for this analysis. Performance and search speed change

as a function of s: (a) K is fixed at 3, (b) K is fixed at 5, (c) K is fixed at 10, (d) K is

fixed at 20.

51

(a) ResNet32 on CIFAR-10 (b) ResNet56 on CIFAR-10

Figure 3.11. Selected rank distribution comparison with the baseline algorithms of CA

and LC when compression ratio is 0.8.

52

mBS: characteristics of rank allocations

The results of rank allocation by LC, CA, and BSR are shown in Figure 3.11. It can be

noted that mBS tends to allocate ranks in a less uniform way, as shown in Figure 3.11a.

For a larger network with an extra redundancy, the rank allocation of mBS is even less

uniform, as shown in Figure 3.11b. In fact, mBS chooses crucial blocks and allocates

much larger resources to the chosen blocks. Compared to LC and CA, mBS’ rank

allocation tends to be closer to a layer selection algorithm. While it is difficult to judge

if such a behavior is desired, the compression performance results seem to indicate that

the behavior is indeed helpful.

53

(a) Rank selection updates (b) Scheduled increase of λ

Figure 3.12. Performance of BSR for ResNet32 on CIFAR-10: (a) For rank selection,

the best performance is achieved when the rank vector is set once and not updated.

For multi-time, we have updated the target rank vector every 30 epochs. (b) For the

scheduling of the strength of λ, the performance is improved with a scheduled increase

in strength.

54

mSR: effects of training strategies

Update number of rselect during training: In the previous works of CA and LC,

the rank vector r is a moving target in the sense that CA performs truncated SVD

multiple times during the compression-friendly training and LC updates the target

weight matrices multiple times during the compression-friendly training. To investigate

if BSR can benefit by updating rselect, we have compared three different scenarios -

rselect is calculated only once in the beginning (“once"), rselect is additionally updated

once just before the decomposition and final fine-tuning (i.e., just before the phase three

in Figure 4.3; “again before decomposition"), and rselect is updated at every 30 epochs

(“multiple times"). The results are shown in Figure 3.12a. Interestingly, BSR performs

best when rselect is determined only once in the beginning and never changed until the

completion of the compression. This is closely related to the characteristics of mSR. As

already mentioned, regularization through the modified stable rank does not rely on any

particular instance of weight matrices. In fact, it only needs to know the target rank

vector to be effective. Therefore, there is no need for any update during the training, and

BSR can smoothly fine-tune the neural network to have the desired rselect. Clearly, the

regularization method of mSR has a positive effect on simplifying how rselect should be

used.

Scheduled strengthening of λ: The loss term during compression-friendly training

is given by L(W) + λ
∑L

l=1 mSR(Wl, rl). As the training continues, we can expect

the weight matrices to be increasingly compliant with rselect, thanks to the accumulated

effect of mSR regularization. Then, a weak regularization might not be sufficient as

the training continues. Comparison between fixed λ and scheduled λ (according to the

explanation in Section 3.6.1) is shown in Figure 3.12b. As expected, the scheduled

strengthening of λ is helpful for improving the compression performance.

55

(a) BSR ablation study for ResNet56 on CIFAR-10.

56

Ablation study of BSR

We performed ablation experiments of BSR. When the compression ratio is low, as

shown in Figure 3.13a, there was no significant difference in performance among BSR,

BSR without mSR and PCA energy (without mSR & mBS). However, the performance

gap grows significantly as the compression ratio increases. In the case of PCA energy,

performance degrades rapidly when the compression ratio is 70% or more, and it seems

that performance recovery in the fine-tuning stage is nearly impossible. In the case of

BSR without mSR, the performance drop was less severe than in the case of PCA energy;

nonetheless, at a high compression ratio, it still demonstrated about 22% performance

drop compared to BSR. This is because the allocated ranks become very small (When

compressing more than 80%, rank 1 is selected over several layers); therefore, BSR is

required in order to obtain a high-performance model with a high compression rate.

57

(a) ResNet56 on CIFAR10 (b) AlexNet on ImageNet

Figure 3.14. Comparison of memory usage for (a) ResNet56 on CIFAR10, and (b)

AlexNet on ImageNet. A significant improvement is achieved by using both quantization

and BSR.

58

3.7. Discussion

3.7.1. Combined use with quantization

As known well, low-rank compression can be used together with quantization. The

performance for using both together is shown in Figure 3.14. Because the number of

parameters is not affected by quantization, we are showing the actual memory usage

as the metric of compression. Compared to using quantization only, the hybrid use of

quantization and BSR provide a significant improvement.

We were also able to reach a range of memory usage that could not be attained

by quantization alone by using BSR together. Even with more realistic datasets and

larger networks, using BSR and quantization together is effective in reducing memory

usage. This feature can make it much easier to use deep learning models on edge

devices. Quantization and our low-rank compression are extremely easy to use and can

be applied to practically any situation.

3.7.2. Limitations and future works

It might be possible to improve BSR in a few different ways. While our modified stable

rank works well, it might be possible to identify a rank surrogate with better learning

dynamics. While we choose only one rselected and perform only a single compression-

friendly training, it might be helpful to choose multiple rank vectors, train all, and

choose the best. This can be an obvious way of improving performance at the cost

of extra computation. Pruning and low-rank compression cannot be used at the same

time, but it might be helpful to apply them sequentially. In general, combining multiple

compression techniques to generate synergy remains as a future work.

59

3.8. Conclusion

We have introduced a new low-rank compression method called BSR. Its main im-

provements compared to the previous works are in the rank selection algorithm and

the rank regularized training. The design of the modified beam-search is based on the

idea that beam-search is a superior way of balancing search performance and search

speed. Modifications such as the introduction of level step size s and the compression

rate constraint play important roles. The design of a modified stable rank is based on a

careful analysis of how the weight matrix’s rank is regularized. To our best knowledge,

our modified stable rank is the first regularization method that truly controls the rank.

As a result, BSR performs very well.

60

Chapter 4. Learning to Select a Structured Architecture

over Filter Pruning and Low-rank Decomposition

4.1. Introduction

Deep neural networks (DNNs) have achieved state-of-the-art performance in various

fields, such as image classification, object detection, and video understanding. However,

millions of parameters and high computational costs make their deployment on the edge

and mobile devices challenging. To overcome this problem, DNN compression has

been extensively studied in recent years. Among the various compression techniques,

filter pruning and low-rank decomposition are two representative directions, both of

which do not require hardware modification. They aim to reduce a heavy network to a

lightweight form with two different structural assumptions.

Filter pruning removes less useful filters from an original network based on the

structural assumption that some DNN filters are redundant. On the other hand, low-rank

decomposition reduces the number of weight parameters of the original network by

replacing each layer with two low-rank layers based on the assumption that some

dimensions of the weights are less influential. Considering the distinct structural as-

sumptions of the two compression approaches, investigating the efficient integration of

filter pruning and low-rank decomposition towards a more effective model compression

would be important and meaningful. Figure 4.1 presents a brief comparison of the

existing works.

Two distinct structural assumptions result in two different architectural design

spaces that are coarse-grained and fine-grained. Filter pruning compresses a model at

the granularity of a full set of filters that correspond to an output channel (i.e., coarse

granularity). This can efficiently remove uninformative filters at a low compression rate

but can discard a large amount of useful information in the chosen set of filters as the

61

compression rate increases. On the other hand, low-rank decomposition compresses

a model at the granularity of a weight matrix’s singular-vector dimension (i.e., fine-

granularity). Compared to the structural assumption of redundant filters, the structural

assumption of less influential singular-vector dimensions can be a weaker assump-

tion for a practical DNN. However, low-rank decomposition allows a fine-granularity

removal and can avoid important information being eliminated all at once. It is ob-

vious that properly utilizing the two compression approaches with different levels of

granularity has the potential to provide a superior compression solution.

62

Figure 4.1. Performance comparison for each compression method according to the

FLOP reduction rate category for (a) ResNet56 on CIFAR10 and (b) ResNet50 on

ImageNet. The SOTA performance of each compression method is selected with respect

to the FLOP reduction rate category. (a) (Idelbayev and Carreira-Perpinán 2020; Zhuang

et al. 2018; Li et al. 2020) are selected for the 48-50% category, (Idelbayev and

Carreira-Perpinán 2020; Yu, Mazaheri, and Jannesari 2022; Ruan et al. 2020) for

the 54-57% category, and (Idelbayev and Carreira-Perpinán 2020; Sui et al. 2021;

Li et al. 2020) for the 73-76% category. (b)(Xu et al. 2020; Sui et al. 2021; Ruan et

al. 2020) are selected for the 45-50% category, (Phan et al. 2020; Shang et al. 2022;

Li et al. 2020) for the 62-66% category.

63

Figure 4.2. Comparison of three representative hybrid compression processes. Orange

arrows indicate the iterative process that is computationally burdensome. (a) Based on

compression-aware regularized training and heuristic filter/rank selection. To satisfy

the target resource budget, the full process needs to be conducted iteratively. (b) Based

on the iterative process for heuristic filter/rank selection. (c) LeSS: No iteration. Differ-

entiable learning that is efficient and effective. Fully joint selection of filters and ranks.

Satisfies target resource budget.

64

Recently, several works have been performed to integrate two compression tech-

niques. First of all, compressing the weights by sequentially employing pruning and

low-rank decomposition has been proposed (Dubey, Chatterjee, and Ahuja 2018;

Chen et al. 2019b; 2020). However, sequentially employing algorithms did not ex-

hibit a synergistic effect on the compression performance because the two compression

techniques are not completely independent, as demonstrated in (Yu et al. 2017). To

leverage the benefits of two different compression techniques, compression-aware reg-

ularized training methods (Ruan et al. 2020; Guo et al. 2019; Li et al. 2020) making

a model compression-friendly were proposed to simultaneously handle the sparsity

and low-rankness of the weight parameters (Figure 4.2a). However, controlling the

compression rate with these methods is difficult because it requires numerous trials

and errors to satisfy the target compression rate. In addition, the final rank and fil-

ter selection process for acquiring a compressed network is conducted by heuristic

strategies such as a greedy approach or energy thresholding. Most recently, in (Li et al.

2022), a collaborative compression scheme is introduced to iteratively remove filters

and determine ranks layer-by-layer. The method requires a multi-step heuristic removal

process to satisfy the target compression rate (Figure 4.2b).

Although hybrid compression methods have been developed, as shown in Figure 4.1,

performance improvements of the hybrid methods have not been significant compared to

previous state-of-the-art (SOTA) methods with a single compression method (either filter

pruning or low-rank decomposition). In addition, the performance of the compressed

model with a single compression method is sometimes higher than that of hybrid

compression methods (see Figure 4.1b). The existing hybrid compression methods are

not guaranteed to converge to a desirable solution because the final decision (i.e., rank

and filter selection) for acquiring a compressed network is dependent on heuristics.

In this work, we propose a simple learning algorithm for a joint filter and rank

selection within desired resource budget constraint (Figure 4.2c), and it is called as

Learning to Select a Structured architecture (LeSS). Indeed, filter and rank selection

65

is a well-known combinatorial optimization problem (COP), which is NP-hard and

requires an exhaustive search in a solution space. In order to provide polynomial-time

solutions, various heuristic approaches (e.g., greedy approach and energy thresholding)

have been investigated. To avoid heuristics and solve the COP very efficiently, LeSS is

designed to be learned in a differentiable way by reformulating COP as a continuous

nonlinear problem. LeSS consists of two modules: mask learning inspired by (Wang

et al. 2020) for filter selection and novel threshold learning for rank selection. To be

more specific, masks are learned so that the masks of less informative filters can be

set to zero and thresholds are learned so that less important singular values of each

layer can be set to zero. As shown in Figure 4.2c, LeSS does not require compression-

aware regularized training, which is a burdening process, applies efficient differentiable

learning for selecting filters and ranks, performs a fully joint selection over filters and

ranks, and satisfies target resource budget without an iterative process.

As for the experiments, we demonstrate the effectiveness of LeSS on three datasets

(CIFAR10, CIFAR100, ImageNet-1k) over five popular benchmark networks (ResNet18,

ResNet50, ResNet56, VGG16, MobileNetV2). In all the experiments, LeSS consistently

outperforms the prior SOTA of pruning, low-rank decomposition, and hybrid algorithms

by a large margin. LeSS can even compress the lightweight network of MobileNetV2

without any loss in accuracy.

4.2. Contribution

The main contributions of our work can be summarized as follows:

One of the key highlights of our research is the introduction of a groundbreaking

algorithm within the field of low-rank compression. This algorithm marks the first-ever

approach that enables rank selection based on SGD (Stochastic Gradient Descent).

Building upon this milestone, we seamlessly integrated this SGD-based rank selection

algorithm with filter pruning, creating a powerful hybrid compression framework.

Through the implementation of our newly proposed algorithm, we achieved remark-

66

able performance that rivals state-of-the-art (SOTA) methods using low-rank compres-

sion alone. Additionally, when our algorithm was combined with pruning, it surpassed

existing SOTA methods by a significant margin across various networks. Notably, our

approach demonstrated exceptional superiority even on lightweight contemporary mod-

els like MobileNetV2. Furthermore, the algorithm’s outstanding performance extended

across diverse datasets, showcasing its versatility and applicability.

By introducing the first algorithm to enable rank selection based on SGD and

successfully incorporating it into a hybrid compression framework, our work pushes

the boundaries of compression techniques for deep neural networks. Our research

paves the way for enhanced model efficiency, reduced resource demands, and improved

performance in practical applications.

4.3. Related works

4.3.1. Hybrid compression methods

Previous research (Dubey, Chatterjee, and Ahuja 2018; Chen et al. 2020) has proposed

separate compression stages to integrate multiple compression techniques. These stages

sequentially adopt one compression technique in each step and ignore the interrela-

tions of the different compression methods. For instance, in (Dubey, Chatterjee, and

Ahuja 2018), filter pruning is conducted first to reduce the weights, and the weights are

then decomposed using a corset-based decomposition technique. In addition, several

compression-aware training approaches are proposed using regularization to make a

network compression-friendly (Chen et al. 2019b; Ruan et al. 2020; Guo et al. 2019;

Li et al. 2020). For example, in (Li et al. 2020), they first introduce a sparsity-inducing

matrix at each weight and then impose group sparsity constraints during training. How-

ever, determining a good balance between compression rate and accuracy is challenging

under the desired compression rate with these compression-aware methods. Recently,

(Li et al. 2022) proposes a collaborative compression method to employ the global

67

compression rate optimization method to obtain the compression rate of each layer and

adopt a multi-step heuristic removal strategy. Our hybrid compression method does not

need heuristics on selecting filters and ranks, and does not require compression-aware

regularized training.

4.4. Background

4.4.1. Selection problem for DNN compression

The selection problem for DNN compression can be formulated as constrained optimiza-

tion whose objective is to determine the optimal ν satisfying the resource budget such

as FLOPs, Macs, and the number of parameters while preserving good performance:

min
ν

1

N

N∑
i=1

L(f(xi;h(W, ν)), yi) s.t. B(ν) ≤ Bd. (4.1)

Here, yi is the corresponding label of input xi, L is a cross-entropy loss function, f

is a pre-trained model with parameters W, and ν are selection variables determining the

structure of W. For filter pruning, ν is the collection of binary channel masks associated

with the output filter of each layer (i.e., c = {c1, · · · , cL | cl ∈ {0, 1}p, where p is the

output filter number of the l-th layer}); for low-rank decomposition, ν is the collection of

ranks of each layer (i.e., r = {r1, · · · , rL | rl ∈ N, where L is the number of layers});

For hybrid compression, ν is a collection of the rank and the binary mask of each layer

(i.e., {(rl, cl)}Ll=1). h is a function that returns parameters whose structure is determined

by ν. Generally, h is non-differentiable because ν is a discrete set. B(·) is a function

that measures the resource budget. Bd is the desired resource budget.

4.4.2. Tensor Matricization

In our work, matricization is used to transform the tensor of convolutional kernels into

a matrix to conduct singular value decomposition (SVD) operation. Matricization is

the process of reshaping the elements of an D-dimensional tensor X ∈ RI1×···×ID into

68

a matrix (Kolda and Bader 2009; Kolda 2006). Let the ordered setsR = {r1, ..., rL}

and C = {c1, ..., cM} be a partitioning of the modes D = {1, ..., D}. The matricization

function ψ of an D-dimensional tensor X ∈ RI1×···×ID is defined as:

ψ : X 7−−−→ X(R×C:ID) ∈ RJ×K ,

where J =
∏
n∈R

In and K =
∏
n∈C

In.
(4.2)

For example, the weight tensor of a convolutional layer is represented as a 4-D

tensor (W ∈ RCout×Cin×k×k) where it is composed of kernels, and it can be unfolded

into a matrix as six different forms. The two most common forms used in low-rank

decomposition are as follows: 1⃝W ∈ RCout×(Cinkk), 2⃝W ∈ R(Coutk)×(Cink).

4.4.3. CNN decomposition scheme

To decompose a convolutional layer with Cin, Cout (input/output channels) and k (ker-

nel size), one of the following low-rank structures is used depending on the matricization

form.

Scheme 1 When we use the first reshaping form 1⃝ introduced in Section 4.4.2, the

convolutional weights can be considered as a linear layer with the shape ofCout×Cink
2.

Then, the rank-r approximation presents two linear mappings with weight shapes

Cout × r and r × Cink
2. These linear mappings can be deployed as a sequence of two

convolutional layers: W1 ∈ Rr×Cin×k×k, and W2 ∈ RCout×r×1×1 (Wen et al. 2017;

Xu et al. 2020; Li and Shi 2018).

Scheme 2 When we use the second reshaping form 2⃝ introduced in Section 4.4.2,

the convolutional weights can be considered as a linear layer of Coutk × Cink. For

this scheme, an approximation of rank r has two linear mappings with weight shapes

Coutk× r and r×Cink. These can be implemented as a sequence of two convolutional

layers as follows: W1 ∈ Rr×Cin×k×1, and W2 ∈ RCout×r×1×k (Tai et al. 2015;

Jaderberg, Vedaldi, and Zisserman 2014).

We use Scheme 1 throughout all experiments in our study based on the comparison

69

results in Discussion 4.7.1.

4.5. Learning framework for the selection problem in hybrid

compression

In this section, we propose the new learning framework, called LeSS, which determines

informative filters and the optimal ranks in hybrid compression. The general idea of

LeSS is to transform the problem of solving (4.1) over discrete variables c and r into

minimizing a differentiable surrogate function hLeSS over continuous variables zc and

zr. The discrete solution can be approximated using differentiable functions gc and gr,

and this allows us to use gradients that are not available in discrete problems. More

specifically, we re-define the problem (4.1) as follows:

min
zc,zr

1

N

N∑
i=1

L(f(xi;hLeSS(W, zc, zr))), yi)

+λ
∥∥B(gc(zc), gr(zr))− Bd∥∥2

(4.3)

where gc(zc) is the number of filters for each channel, gr(zr) is the rank for each layer,

and λ is a hyper-parameter used to regularize the budget constraint. For each layer,

LeSS consists of the surrogate function hLeSS which is composed of two modules, sm

and st (i.e., hLeSS = st ◦ sm).

Module sm (mask learning for filter selection): To construct a function hLeSS,

we describe a module sm used for filter selection. Let zc = {M1, · · · ,ML | Ml ∈

RCl
out×(Cl

inkk)} be a set of diagonal matrices (i.e., mask matrix). To establish sm, we

first define a scheduled sigmoid function to generate the approximate binary masks as

follows:

σs(x) =
1

1 + exp(−1 ∗ µi ∗ (x− 0.5))
(4.4)

where µi = min(α, µi−1+β).

70

Note that µi is the scheduling factor affecting the steepness of sigmoid in iteration i,

and it is updated every iteration and does not exceed α. During the beginning phases of

training, µi is kept at a very low value; it is then increased as the optimization process

progresses. When µi grows large enough, the values of approximate binary masks

will become almost 0 or 1. That is, it is completely determined which filter should be

removed. For each weight Wl of the l-th layer, we define a function sm by Eq. (4.2)

and Eq. (4.4) as follows:

sm(Wl,Ml) = ψ−1(σs(Ml) · ψ(Wl)) (4.5)

To approximate the number of filters corresponding to the continuous variable zc,

we define the set-valued function gc as follows:

gc(zc) = {1T · diag(σs(Ml))}Ll=1
(4.6)

Since all functions constituting Eq. (4.5) and Eq. (4.6) are differentiable, we can

easily confirm that sm and gc are differentiable. As in the previous works on filter

pruning (Huang and Wang 2018; Wang et al. 2020), we follow the mask strategy

whose mask variables are learnable parameters. In contrast to the previous works,

however, we adopt a scheduled sigmoid function because the scheduling technique

has been proven to be useful for gradient-descent-based optimization in the general

deep learning field (Kwon et al. 2020; Loshchilov and Hutter 2016; Zhai et al. 2022;

Zhou et al. 2021).

Although the introduction of the scheduled factor is a simple technique, we find

that this can result in a significant improvement in performance, as shown in Table 4.1.

71

Flop reduction rate 0.5 0.6 0.7

Sigmoid with µi 94.13 93.20 92.76

Sigmoid without µi 92.84 92.77 92.25

Table 4.1. Performance comparison of implementing TDML-S with and without scheduled

factor µi. Results are shown for ResNet56 on CIFAR10.

72

Module st (threshold learning for rank selection): To proceed, we explain the st

module used for rank selection. Let zr = {γ1, · · · , γL | γl ∈ R} be a threshold set. To

construct st, we introduce a singular value thresholding (SVT) function. For a matrix

M ∈ Rm×n and threshold γ, SVT is defined as follows:

SVT(M,γ) = U · ReLU(Σ− γ) · V T (4.7)

where U is an m×m real unitary matrix, Σ is an m× n rectangular diagonal matrix

with non-negative real numbers on the diagonal, V is an n× n real unitary matrix, and

ReLU(·) is a rectified linear unit activation function. For each weight Wl of the l-th

layer, we define a function st by (4.2) and (4.7) as follows:

st(Wl, γl) = ψ−1(SVT(ψ(Wl), γl)) (4.8)

To approximate the rank corresponding to zr, we also define the set-valued function gr

as:

gr(zr) = {1T · (tanh(ReLU(Σl − γl) · τ))}Ll=1
(4.9)

where Σl is a diagonal matrix whose diagonal entries are singular values of the l-th

layer weight matrix Wl and τ is a scaling hyper-parameter used to control the steepness

of tanh. Similar to sm and gc, we can easily confirm that st and gr are differentiable.

73

Figure 4.3. Illustration of LeSS algorithm’s forward process.

74

Algorithm 2 Learning to Select Structured Architecture
Input: desired resource budget Bd; model parameters W = {Wl}Ll=1.

Output: thresholding variables zr = {γl}Ll=1; mask variables zc = {Ml}Ll=1

Require: function for measuring resource budget B(·, ·); epoch E; iteration T

Initialize zr = 0, zc = 1

Calculate Bcal = B(gc(zc)gr(zr))

1: while ∥Bcal − Bd∥ ≤ ϵ do

2: for ep = 1: E do

3: for iter = 1: T do

4: for l = 1: L do

5: W comp
l = hLeSS(Wl,Ml, γl) (see (4.11), (4.12))

6: end for

7: Wcomp = {W comp
l }Ll=1

8: Bcal = B(gc(zc), gr(zr))

9: Update zr, zc ←

argminzr,zc L(Wcomp) + λ ∥Bcal − Bd∥2

10: end for

11: end for

12: end while

75

Budget B(gc(zc), gr(zr)): FLOP is used for the resource budget in this paper and

the formula of budget calculation is as follows:

L∑
l=1

Al · kl · kl · gr(l)(zr) · (gc(zc)(l − 1) + gc(zc)(l))

Al · kl · kl · C l
in · C l

out

(4.10)

Al denotes the area of the l-th layer’s feature maps, and kl is the kernel size of the l-th

layer. C l
in and C l

out denote l-th layer’s input- and output-channels of the original model,

respectively. gr(zr)(l) and gc(zc)(l) are the l-th layer’s selected rank and number of

selected filters, respectively. Because all elements in Eq. (2) are differentiable, the

budget function B(gc(zc), gr(zr)) is differentiable. We use FLOP resource budget, but

other resource budget (e.g., number of parameters) also can be used.

Here, we define the surrogate function, hLeSS for two types of layers (convolutonal

layers and linear layers). If the l-th layer is a convolutional layer, the surrogate function

hLeSS is defined as:

hLeSS(Wl,Ml, γl) = st(sm(Wl,Ml), γl) (4.11)

When the l-th layer is a linear layer, hLeSS is defined as below:

hLeSS(Wl,Ml, γl) = st(Wl, γl) (4.12)

Note that Ml is not used for linear layers, as structured pruning (filter pruning) cannot

be applied to linear layers. Algorithm 2 provides the training procedure and Figure 4.3

shows the forward process of LeSS. The two LeSS modules are learned simultaneously

in the training process. Therefore, LeSS can efficiently use two different compression

techniques by considering the impact of the reduction in the number of filters and rank

on the model’s performance.

After training is completed, we require an exact binary mask and rank for each

layer to directly compress the model. To acquire these, we round up the binary mask in

zc and the rank in gr(zr).

76

In the l-th layer weight, we prune the filter whose exact binary mask is zero.

Subsequently, we perform low-rank decomposition with the exact rank on the pruned

weight.

Finally, as in previous studies (Alvarez and Salzmann 2017; Alwani, Wang, and

Madhavan 2022; Cai et al. 2021a; Chin et al. 2020; Idelbayev and Carreira-Perpinán

2020), we fine-tune the compressed model to further improve performance.

77

(a) ResNet56 on CIFAR10

(b) ResNet50 on ImageNet

Figure 4.4. Comparison of our method with SOTA pruning, low-rank decomposition,

and hybrid compression methods for (a) ResNet56 on CIFAR10 and (b) ResNet50 on

ImageNet.

78

4.6. Experiments

4.6.1. Experimental settings

To validate the effectiveness and generalizability of LeSS, we evaluate its compression

performance on five benchmarks: VGG16 on CIFAR10, ResNet56 on CIFAR10 and

CIFAR100, and ResNet50 and MobileNetV2 on ImageNet-1k. These are the most com-

monly examined benchmarks in the compression studies. In particular, MobileNetV2

has recently become one of the most important benchmarks in terms of practicality. We

follow the original VGG and ResNet training settings to prepare a baseline network.

For ResNet50 and MobileNetV2, we use the official PyTorch pre-trained models. The

standard data augmentation techniques are used for all the datasets. Full training dataset

is used to learn masks and thresholds. We fix the hyper-parameter λ = 1 in Eq. (4.3),

α = 50 for µi in Eq. (4.4), and use 2/σ1 for τ in Eq. (4.9). After the compression

process (pruning and low-rank decomposition) is complete, the compressed network

is fine-tuned for 100 epochs as the previous methods did. Fine-tuning is conducted

similarly to the original training, but the initial learning rate is reduced by one-tenth.

CIFAR-10 is a 10-class classification dataset that includes 50k images for training and

10k images for validation. CIFAR-100 is a classification dataset that has 100 different

classes and contains 50k images for training and 10k images for validation. ImageNet

is a huge image classification dataset that contains 1.2 million training images and 50k

validation images with 1,000 different categories. For all the comparisons that we are

able to find in the literature, the full comparison tables can be found in Supplementary

A. We provide graphical summaries for the two cases (ResNet56 on CIFAR10 and

ResNet50 on ImageNet) where sufficiently large number of comparisons exist, and

provide table summaries where less comparison points are available.

ResNet56 on CIFAR10 Figure 4.4a shows the comparison results for ResNet56

on CIFAR10. LeSS outperforms the previous methods by a large margin across all

79

FLOP reduction rates. In particular, the 50% FLOP reduction rate is investigated by

a bunch of previous methods, and LeSS achieves the best performance under this

constraint. Note that the compressed model produced by LeSS consistently exhibits

higher performance than that of the original (baseline) model across all FLOP reduction

rates. LeSS reduces the FLOPs by 40% compared with the baseline model yet improves

accuracy by 1.6%. This demonstrates that our compression method correctly eliminates

redundant dimensions and filters, resulting in a generalizable compressed model. Full

comparison results are summarized in Appendix D.

80

Dataset Model
Compression

method
Algorithm Baseline (%) Test acc.(%) ∆ Test acc.(%)

MFLOPs

(Reduction ratio)

Params

(Compression ratio)

CIFAR10 VGG16

Low-rank LC (Idelbayev and Carreira-Perpinán 2020) 93.43 93.83 + 0.40 132 (57.8 %) 3.16 M (78.7 %)

Pruning

SSS (Huang and Wang 2018) 93.96 93.02 - 0.94 183 (41.6 %) 3.93 M (73.8 %)

CP (He, Zhang, and Sun 2017) 93.99 93.67 - 0.32 156 (50.0 %) N/A

GAL-0.1 (Lin et al. 2019b) 93.96 93.42 - 0.54 141 (54.8 %) 12.25 M (17.8 %)

DECORE (Alwani, Wang, and Madhavan 2022) 93.96 93.56 - 0.40 110 (64.8 %) 1.66 M (89.0 %)

Hybrid

Hinge (Li et al. 2020) 94.02 93.59 - 0.43 122 (60.9 %) 11.92 M (20.0 %)

LeSS 94.14 93.87 - 0.27 125 (60.0 %) 2.24 M (85.0 %)

LeSS 94.14 93.74 - 0.40 109 (65.0 %) 1.79 M (88.0 %)

LeSS 94.14 93.64 - 0.50 94 (70.0 %) 1.47 M (90.1 %)

CIFAR100 ResNet56

Low-rank
CA (Alvarez and Salzmann 2017) 72.39 64.79 - 7.60 75 (40.0 %) N/A

LC (Idelbayev and Carreira-Perpinán 2020) 72.39 69.82 - 2.57 59 (52.5 %) N/A

Pruning

ASFP (He et al. 2019a) 72.92 69.35 - 3.57 59 (52.6 %) N/A

ASRFP (Cai et al. 2021b) 72.92 69.16 - 3.32 59 (52.6 %) N/A

GHFP (Cai et al. 2021a) 72.92 69.62 - 3.30 59 (52.6 %) N/A

PGMPF (Cai et al. 2022) 72.92 70.21 - 2.71 59 (52.6 %) N/A

Hybrid
LeSS 72.39 72.12 - 0.27 63 (50.0 %) 0.41 M (56.4 %)

LeSS 72.39 71.05 - 1.34 55 (55.0 %) 0.37 M (51.7 %)

Table 4.2. The performance comparison for VGG16 on CIFAR10 and for ResNet56 on

CIFAR100.

81

VGG16 on CIFAR10 Table 4.2 presents the comparison results for VGG16 on

CIFAR10 with the SOTA methods. The performance of our method is superior to that

of all the most recent filter pruning, low-rank decomposition, and hybrid methods; in

particular, our method shows no noticeable drop in performance even at higher FLOP

reduction rates (maximum of 0.5 percentage point is dropped). This is because of the

structural characteristics of the VGG16 model consisting of convolutional and fully-

connected layers. Because filter pruning is unable to compress fully-connected layers,

the amount of compression achievable is limited. On the other hand, our hybrid method

is able to successfully compress fully-connected layers using low-rank decomposition.

Clearly, the performance obtained when the model is compressed by 70% using our

method is superior to the performance obtained when the model is compressed by 60%

using Hinge (Li et al. 2020).

ResNet56 on CIFAR100 The result of comparing with the SOTA methods for

ResNet56 on CIFAR100 can also be found in Table 4.2. LeSS is able to preserve

the original model’s performance at half the original model’s FLOP rate. In addition,

compared with other methods, LeSS exhibits the best performance even when the

FLOPs is reduced by a large percentage (@ 55% reduction).

ResNet50 and ResNet18 on ImageNet The result of ResNet50 on ImageNet can be

founded in Figure 4.4b. The graphical summary confirms that LeSS shows superior

performance than that of the other SOTA methods in all FLOP reduction rates. For

instance, when we compare the difference in the FLOP rate between our method and

the CC algorithm (Li et al. 2021) at the same performance (75.59%), our method can

accelerate the inference time by 14% more than the CC method (Li et al. 2021) (0.53

vs. 0.68). In addition, even when ResNet50 is compressed by 50% FLOP reduction,

our method exhibits higher performance than the baseline performance. The result of

ResNet18 on ImageNet is summarized in Table 4.3. Because no experimental results

of hybrid algorithms for ResNet18 on ImageNet are available, the performances of

82

algorithms employing only a single compression method are compared. When compared

with recent SOTA methods, LeSS outperforms them in all FLOP reduction rates, and

even when a model is compressed up to 70%, the performance is higher than the baseline

performance. That is, LeSS removes redundant dimensions and filters effectively.

MobileNetV2 on ImageNet Performance comparison result for ImageNet on light-

weight MobileNetV2 is summarized in Table 4.3. MobileNetV2 is a well-known compu-

tationally efficient model, which makes it harder to compress. Nevertheless, our method

surprisingly increases the model’s top-1 accuracy up to 72% when the FLOP reduction

rate is 35%. Furthermore, despite the fact that the inference time is accelerated more

than twice that of the original model, the performance reduction is only 0.17 percentage

point. From these results, it is convinced that our method can efficiently reduce the size

of a network while keeping performance as high as possible, even if the model size is

already small.

83

Dataset Model
Compression

method
Algorithm Baseline (%) Test acc.(%) ∆ Test acc.(%)

GFLOPs

(Reduction ratio)

Params

(Compression ratio)

ImageNet

ResNet18

Low-rank

Stable (Phan et al. 2020) 69.76 68.62 - 1.14 1.00 (45 %) N/A

TRP (Xu et al. 2020) 69.10 65.51 - 3.59 0.73 (60 %) N/A

ALDS (Liebenwein et al. 2021) 69.62 69.24 - 0.38 0.64 (65 %) N/A

Pruning

SFP (He et al. 2018a) 70.28 67.10 - 3.18 1.06 (42 %) N/A

FPGM (He et al. 2019b) 70.28 68.41 - 1.87 1.06 (42 %) 7.10 M (39 %)

PFP (Liebenwein et al. 2019) 69.74 65.65 - 4.09 1.04 (43 %) N/A

DMCP (Guo et al. 2020) N/A 69.00 N/A 1.04 (43 %) N/A

CHEX (Hou et al. 2022) N/A 69.60 N/A 1.03 (43 %) N/A

SCOP (Tang et al. 2020) 69.76 68.62 - 1.14 1.00 (45 %) N/A

FBS (Gao et al. 2018) 69.76 68.17 - 1.59 0.91 (50 %) N/A

CGNET (Hua et al. 2019) 69.76 68.30 - 1.46 0.89 (51 %) N/A

GNN (Yu, Mazaheri, and Jannesari 2022) 69.76 68.66 -1.10 0.89 (51 %) N/A

ManiDP (Tang et al. 2021) 69.76 68.88 - 0.88 0.89 (51 %) N/A

PGMPF (Cai et al. 2022) 70.23 66.67 - 3.56 0.84 (54 %) N/A

Hybrid

LeSS 69.76 71.24 + 1.48 0.91 (50 %) 4.68 M (60 %)

LeSS 69.76 70.82 + 1.06 0.70 (62 %) 3.51 M (70 %)

LeSS 69.76 70.15 + 0.39 0.55 (70 %) 2.81 M (76 %)

MobileNetV2

Low-rank LC (Idelbayev and Carreira-Perpinán 2020) 71.80 69.80 - 2.00 0.21 (30 %) N/A

Pruning

PFS (Wang et al. 2020) 71.80 70.90 - 0.90 0.21 (30 %) 2.60 M (26 %)

AMC (He et al. 2018b) 71.80 70.80 - 1.00 0.22 (27 %) 2.30 M (34 %)

MetaPruning (Liu et al. 2019) 72.00 71.20 - 0.80 0.22 (27 %) N/A

LeGR (Chin et al. 2020) 71.80 71.40 - 0.20 0.21 (30 %) N/A

NPPM (Gao et al. 2021) 72.02 72.04 + 0.02 0.21 (30 %) N/A

GNN (Yu, Mazaheri, and Jannesari 2022) 71.87 70.04 - 1.83 0.17 (42 %) N/A

Hybrid

EDP (Ruan et al. 2020) N/A 71.00 N/A 0.22 (27 %) N/A

LeSS 71.80 72.16 + 0.20 0.19 (35 %) 2.24 M (36 %)

LeSS 71.80 71.63 - 0.17 0.14 (55 %) 1.54 M (56 %)

Table 4.3. Performance comparison for ResNet18 and MobileNetV2 on ImageNet.

84

4.7. Analysis and discussion.

4.7.1. Learning strategy analysis

LeSS consists of two modules (mask learning, threshold learning) and they are jointly

conducted for filter and rank selection. For analyzing each module’s effectiveness in

LeSS, we intentionally make each module disabled in turn. The experiment is con-

ducted for ResNet56 on CIFAR10. As shown in Figure 4.5a, the individual modules

work fairly well, better or comparable to most of the recent filter pruning and low-rank

decomposition algorithms. In particular, filter pruning shows higher performances at

relatively low FLOP reduction rates, whereas low-rank decomposition shows higher

performance at relatively large FLOP reduction rates. This characteristic is also con-

firmed in Figure 4.1. The result indicates that the structural assumption that some of the

filters are redundant is correct, but only up to a certain level. Once the redundant filters

are removed, pruning starts to suffer with a sharp performance reduction because some

of the required filters need to be removed as a whole. Note that pruning does not allow

a partial reduction for each filter. On the other hand, low-rank decomposition does not

suffer from this problem because it allows a finer grain control of dimension reduction.

As expected, the hybrid algorithm (LeSS) always shows the best performance in all

FLOP intervals. In addition, overall performance of our mask module for pruning is

comparable to the previous results, while that of rank selection module is always higher

than the previous results. This leads to the conclusion that the most important factors in

achieving high performance of LeSS are that the differentiable rank selection module

is properly designed for high reduction rates and that our joint selection method can

effectively combine filter selection and rank selection. We investigate the ratio of each

compression module in the hybrid method, and the results are shown in Figure 4.5b.

The utilization of low-rank decomposition is substantial across all FLOP reduction

rates, and the contribution of pruning to compression increases with the FLOP reduction

rate. That is, while each strategy contributes to compression at differing degrees, higher

85

(a) Performance comparison of each method for ResNet56 on CIFAR10.

(b) The contribution of each method to FLOP reduction.

Figure 4.5. Analysis of learning techniques.

86

(a) ResNet56 on CIFAR10

(b) ResNet56 on CIFAR100

Figure 4.6. Comparison results depending on matricization scheme.

87

performances can be obtained by employing both modules rather than one.

4.7.2. Influence of matricization scheme

In many compression studies, particularly on low-rank decomposition requiring the

reshaping of tensors into matrices, the two matricization schemes described in Sec-

tion 4.4.3 are typically used. Most studies use Scheme1 rather than Scheme 2. We

conduct experiments to compare which scheme performs better for our method. The re-

sults are shown in Figure 4.6. Scheme 1 demonstrates significantly better performances

and the performance gap increases with the FLOP reduction rate. Note that typically

Scheme2 forms a matrix that is square or closer to a square matrix.

4.7.3. Data efficiency of LeSS

We evaluate the data efficiency of LeSS for ResNet56 on CIFAR10 and CIFAR100

datasets. The experiment is conducted based on the assumption that zc and zr in LeSS

are trained to be biased toward the training data when numerous training data are used.

However, contrary to our assumption, the performance of the model steadily drops as

the used training data size reduces, and the performance drastically decreases below

a training data usage of 0.5% (Figure 4.7). This confirms that learning an appropriate

mask and threshold from the entire training data is beneficial rather than over-fitting to

the dataset.

88

(a) ResNet56 on CIFAR10 (b) ResNet56 on CIFAR100

Figure 4.7. Comparison results on data efficiency of LeSS

89

4.7.4. Extension to higher-order SVD

In this work, we focus on the matrix decomposition technique (i.e. SVD) for the design

of sm. However, we can easily extend our method to the tensor decomposition technique

(e.g., a higher-order SVD (HOSVD)) by properly designing sm.

For applying our method to HOSVD, since the spatial dimension in the convolution

layer is small (5 or 7 is used) and it does not need to be decomposed, only two unfolding

matrices are typically considered for a 4-D convolutional weight tensor. That is just

two γl sets corresponding to two rank sets need to be considered for each unfolding

matrix. As such, LeSS can be easily extended to the tensor decomposition technique.

Using our methodology to compare the performance difference between matrix- and

tensor-based decomposition is considered a promising research direction; we left this

as a future work.

4.7.5. Extension to transformer architecture

Our method can be extended to Transformer architectures. Transformers can be broadly

categorized into three main components, and we believe our approach can be applied to

each of them.

Firstly, we can apply a masked pruning module to the attention module. This

would involve selectively pruning connections within the attention mechanism, thereby

reducing the number of attention weights and improving computational efficiency.

Secondly, a gate-based masked pruning module can be utilized to control the number

of heads in the multi-head attention mechanism. By selectively pruning heads, we can

adjust the model’s capacity and fine-tune the attention mechanism based on the specific

task or dataset.

Lastly, by applying both low-rank thresholding and masked pruning modules to

the fully connected layers, we can achieve a significant reduction in parameters and

computational requirements. This combined approach offers a groundbreaking way to

reduce both the number of parameters and the computational complexity associated

90

with the fully connected layers of the Transformer model.

By extending our method to Transformers and applying these variations, we antici-

pate substantial improvements in parameter efficiency and computational effectiveness,

contributing to more efficient and scalable Transformer models.

4.7.6. Discussion on the reasons for the improved performance of com-

pressed models compared to the uncompressed baseline model

The enhanced performance of compressed deep neural networks compared to the

uncompressed baseline model can be attributed to several factors.

Firstly, compression techniques effectively eliminate redundant or unnecessary

information from the network, such as redundant weights or filters. This reduction in

redundancy allows the compressed model to focus on the most essential features and

parameters, resulting in improved efficiency and performance.

Secondly, compression methods, such as weight pruning or quantization, act as a

form of regularization. By reducing the complexity of the model, these techniques help

prevent overfitting and promote generalization. The regularization effect contributes

to improved performance in the compressed model. Moreover, compressed models

often exhibit enhanced generalization capabilities. By removing excessive details and

noise during compression, the models become better at capturing underlying patterns

and can generalize well to unseen data. This improved generalization leads to superior

performance compared to the uncompressed baseline model. Additionally, during

the compression process, optimization opportunities arise. Techniques such as fine-

tuning and knowledge distillation are commonly applied to enhance the compressed

model’s performance further. Fine-tuning allows the model to adapt and optimize

its parameters specifically for the given task or dataset, while knowledge distillation

transfers knowledge from a larger uncompressed model to the compressed model,

benefiting its performance. In summary, the improved performance of compressed

deep neural networks is a result of the removal of redundancy, regularization effects,

91

enhanced generalization, increased model capacity, and the utilization of additional

optimization opportunities introduced by compression techniques.

4.8. Conclusion

In this study, we propose a unified compression algorithm called LeSS to integrate filter

pruning and low-rank decomposition via a joint learning framework. Our framework

consists of two learning strategies: mask learning for filter pruning and threshold

learning for low-rank decomposition. Both strategies are differentiable and are jointly

optimized to satisfy the desired resource constraint. Our unified framework does not

require compression-aware regularized training that is burdensome and is not dependent

on heuristics when selecting filters and ranks. Several experiments confirm that our

compression method is effective and efficient. Although this study demonstrates the

effectiveness of our technique for vision tasks, its effectiveness for natural language

processing and audio tasks using large-scale networks (e.g., transformer, BERT) remains

as a future work.

92

Chapter 5. Conclusion and limitations

In this dissertation, we put forth a number of approaches that aim to enhance the

low-rank compression process. Our first contribution is proposing a new low-rank

compression technique, called BSR, which surpasses previous methods due to its rank

selection algorithm and rank regularized training. The modified beam-search algorithm

is founded on the belief that it presents an optimal way to balance search speed and

performance. Important alterations, such as the introduction of a level step size and

compression rate constraint, are also implemented. Our modified stable rank method is

the first regularization approach that directly regulates the rank, and this is a significant

factor in BSR’s outstanding performance.

Furthermore, we introduce a unified compression algorithm named LeSS, which

combines filter pruning and low-rank decomposition with a joint learning framework.

Our framework involves two learning strategies: mask learning for filter pruning and

threshold learning for low-rank decomposition. Both methods are differentiable and are

jointly optimized to fulfill the specified resource constraint. Unlike previous techniques,

our unified approach does not necessitate compression-aware regularized training,

which is difficult to perform, and it does not rely on heuristics when choosing filters

and ranks. Numerous experiments prove that our compression method is both effective

and efficient. While our research highlights the usefulness of our method for vision

tasks, its usefulness for natural language processing and audio tasks that use large-scale

networks (e.g., transformer, BERT) will be investigated in future work.

We expect that our proposed techniques will have a broad range of applications in

various industrial fields.

In our study, we dedicated significant attention to the SVD method as the primary

focus. However, it is crucial to acknowledge the existence of other tensor decomposition

techniques, such as Tucker decomposition, that warrant further exploration in future

93

research endeavors. By incorporating these alternative methods into our analysis, albeit

with the need for additional hyperparameter tuning, there lies a substantial potential for

further enhancing the accuracy and performance of our approach.

Moreover, it is important to note that our research primarily concentrated on image

classification tasks. While this served as a valuable starting point, expanding our

investigations to encompass a broader range of tasks, such as object detection, would be

invaluable for gaining a comprehensive understanding of the versatility and robustness

of our method. Furthermore, exploring the applicability of our approach on different

datasets across various application domains can provide valuable insights into its

generalizability and effectiveness in diverse contexts.

Additionally, it is worth mentioning that our compression experiments were con-

ducted on a limited set of architectures. While the findings from our study contribute

valuable knowledge, their applicability extends beyond the specific architectures ex-

amined. Notably, the insights gained from our research can be extended to a broader

range of network architectures, including the increasingly popular transformer-based

networks that have garnered significant attention in recent research. By systematically

exploring the application of our method on these diverse architectures, we can further

validate its effectiveness, uncover potential optimizations, and expand its practical

utility in various real-world scenarios.

94

Bibliography

Alvarez, J. M., and Salzmann, M. 2017. Compression-aware training of deep networks.

Advances in neural information processing systems 30:856–867.

Alwani, M.; Wang, Y.; and Madhavan, V. 2022. Decore: Deep compression with

reinforcement learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 12349–12359.

Antoniol, G.; Brugnara, F.; Cettolo, M.; and Federico, M. 1995. Language model rep-

resentations for beam-search decoding. In 1995 International Conference on Acoustics,

Speech, and Signal Processing, volume 1, 588–591. IEEE.

Boulanger-Lewandowski, N.; Bengio, Y.; and Vincent, P. 2013. Audio chord recognition

with recurrent neural networks. In ISMIR, 335–340. Citeseer.

Buciluǎ, C.; Caruana, R.; and Niculescu-Mizil, A. 2006. Model compression. In Pro-

ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery

and data mining, 535–541.

Cai, L.; An, Z.; Yang, C.; and Xu, Y. 2021a. Soft and hard filter pruning via dimension

reduction. In 2021 International Joint Conference on Neural Networks (IJCNN), 1–8.

IEEE.

Cai, L.; An, Z.; Yang, C.; and Xu, Y. 2021b. Softer pruning, incremental regularization.

In 2020 25th International Conference on Pattern Recognition (ICPR), 224–230. IEEE.

Cai, L.; An, Z.; Yang, C.; Yan, Y.; and Xu, Y. 2022. Prior gradient mask guided pruning-

aware fine-tuning. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 1.

Carreira-Perpinán, M. A., and Idelbayev, Y. 2018. “learning-compression” algorithms

for neural net pruning. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 8532–8541.

95

Chen, Y.; Yang, T.; Zhang, X.; Meng, G.; Xiao, X.; and Sun, J. 2019a. Detnas: Backbone

search for object detection. In Advances in Neural Information Processing Systems,

6642–6652.

Chen, Z.; Lin, J.; Liu, S.; Chen, Z.; Li, W.; Zhao, J.; and Yan, W. 2019b. Exploiting

weight-level sparsity in channel pruning with low-rank approximation. In 2019 IEEE

International Symposium on Circuits and Systems (ISCAS), 1–5. IEEE.

Chen, Z.; Chen, Z.; Lin, J.; Liu, S.; and Li, W. 2020. Deep neural network acceleration

based on low-rank approximated channel pruning. IEEE Transactions on Circuits and

Systems I: Regular Papers 67(4):1232–1244.

Chen, L.; Jiang, X.; Liu, X.; and Haardt, M. 2022. Reweighted low-rank factorization

with deep prior for image restoration. IEEE Transactions on Signal Processing 70:3514–

3529.

Chin, T.-W.; Ding, R.; Zhang, C.; and Marculescu, D. 2020. Towards efficient model

compression via learned global ranking. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 1518–1528.

Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; and Rhee, W. 2020. Basic enhancement

strategies when using bayesian optimization for hyperparameter tuning of deep neural

networks. IEEE Access 8:52588–52608.

Choi, D.; Lee, K.; Hwang, D.; and Rhee, W. 2021. Statistical characteristics of deep

representations: An empirical investigation. In International Conference on Artificial

Neural Networks, 43–55. Springer.

Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and Bengio, Y. 2016. Bina-

rized neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830.

Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fergus, R. 2014. Exploiting

96

linear structure within convolutional networks for efficient evaluation. In Advances in

neural information processing systems, 1269–1277.

Dubey, A.; Chatterjee, M.; and Ahuja, N. 2018. Coreset-based neural network com-

pression. In Proceedings of the European Conference on Computer Vision (ECCV),

454–470.

Elkerdawy, S.; Elhoushi, M.; Zhang, H.; and Ray, N. 2022. Fire together wire together:

A dynamic pruning approach with self-supervised mask prediction. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12454–12463.

Erichson, N. B.; Voronin, S.; Brunton, S. L.; and Kutz, J. N. 2016. Randomized matrix

decompositions using r. arXiv preprint arXiv:1608.02148.

Friedman, J. H. 2012. Fast sparse regression and classification. International Journal

of Forecasting 28(3):722–738.

Furcy, D., and Koenig, S. 2005. Limited discrepancy beam search. In Proceedings of

the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, 125–131.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Gao, X.; Zhao, Y.; Dudziak, Ł.; Mullins, R.; and Xu, C.-z. 2018. Dynamic channel

pruning: Feature boosting and suppression. arXiv preprint arXiv:1810.05331.

Gao, S.; Huang, F.; Cai, W.; and Huang, H. 2021. Network pruning via performance

maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 9270–9280.

Garipov, T.; Podoprikhin, D.; Novikov, A.; and Vetrov, D. 2016. Ultimate tensorization:

compressing convolutional and fc layers alike. arXiv preprint arXiv:1611.03214.

Geman, D., and Yang, C. 1995. Nonlinear image recovery with half-quadratic regular-

ization. IEEE transactions on Image Processing 4(7):932–946.

Gu, S.; Zhang, L.; Zuo, W.; and Feng, X. 2014. Weighted nuclear norm minimization

97

with application to image denoising. In Proceedings of the IEEE conference on computer

vision and pattern recognition, 2862–2869.

Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; and Zhang, L. 2017. Weighted nuclear

norm minimization and its applications to low level vision. International journal of

computer vision 121:183–208.

Guo, K.; Xie, X.; Xu, X.; and Xing, X. 2019. Compressing by learning in a low-rank

and sparse decomposition form. IEEE Access 7:150823–150832.

Guo, S.; Wang, Y.; Li, Q.; and Yan, J. 2020. Dmcp: Differentiable markov channel

pruning for neural networks. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 1539–1547.

Guo, Q.; Wu, X.-J.; Kittler, J.; and Feng, Z. 2021. Weak sub-network pruning for

strong and efficient neural networks. Neural Networks 144:614–626.

Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; and Narayanan, P. 2015. Deep learning

with limited numerical precision. In International conference on machine learning,

1737–1746. PMLR.

Habenicht, K., and Monch, L. 2002. A finite-capacity beam-search-algorithm for

production scheduling in semiconductor manufacturing. In Proceedings of the Winter

Simulation Conference, volume 2, 1406–1413. IEEE.

Han, S.; Pool, J.; Tran, J.; and Dally, W. J. 2015. Learning both weights and connections

for efficient neural networks. arXiv preprint arXiv:1506.02626.

Han, S.; Mao, H.; and Dally, W. J. 2015. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, 770–778.

98

He, Y.; Kang, G.; Dong, X.; Fu, Y.; and Yang, Y. 2018a. Soft filter pruning for

accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866.

He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.-J.; and Han, S. 2018b. Amc: Automl for model

compression and acceleration on mobile devices. In Proceedings of the European

Conference on Computer Vision (ECCV), 784–800.

He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; and Yang, Y. 2019a. Asymptotic soft

filter pruning for deep convolutional neural networks. IEEE transactions on cybernetics

50(8):3594–3604.

He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019b. Filter pruning via geometric

median for deep convolutional neural networks acceleration. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 4340–4349.

He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for accelerating very deep neural

networks. In Proceedings of the IEEE international conference on computer vision,

1389–1397.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531.

Hou, Z.; Qin, M.; Sun, F.; Ma, X.; Yuan, K.; Xu, Y.; Chen, Y.-K.; Jin, R.; Xie, Y.;

and Kung, S.-Y. 2022. Chex: Channel exploration for cnn model compression. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

12287–12298.

Hu, Y.; Zhang, D.; Ye, J.; Li, X.; and He, X. 2012. Fast and accurate matrix completion

via truncated nuclear norm regularization. IEEE transactions on pattern analysis and

machine intelligence 35(9):2117–2130.

Hu, H.; Peng, R.; Tai, Y.-W.; and Tang, C.-K. 2016. Network trimming: A data-

driven neuron pruning approach towards efficient deep architectures. arXiv preprint

arXiv:1607.03250.

99

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; and Chen,

W. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint

arXiv:2106.09685.

Hua, W.; Zhou, Y.; De Sa, C. M.; Zhang, Z.; and Suh, G. E. 2019. Channel gating

neural networks. Advances in Neural Information Processing Systems 32.

Huang, Z., and Wang, N. 2018. Data-driven sparse structure selection for deep neural

networks. In Proceedings of the European conference on computer vision (ECCV),

304–320.

Huang, L.; Fayong, S.; and Guo, Y. 2012. Structured perceptron with inexact search. In

Proceedings of the 2012 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, 142–151.

Idelbayev, Y., and Carreira-Perpinán, M. A. 2020. Low-rank compression of neural

nets: Learning the rank of each layer. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 8049–8059.

Jaderberg, M.; Vedaldi, A.; and Zisserman, A. 2014. Speeding up convolutional neural

networks with low rank expansions. arXiv preprint arXiv:1405.3866.

Kim, Y.-D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; and Shin, D. 2015. Compression of

deep convolutional neural networks for fast and low power mobile applications. arXiv

preprint arXiv:1511.06530.

Kim, Y.-D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; and Shin, D. 2016. Compression of

deep convolutional neural networks for fast and low power mobile applications. In In

Proc. of the 4th Int. Conf. Learning Representations (ICLR 2016).

Kim, J.; Park, C.; Jung, H.; and Choe, Y. 2019. Differentiable pruning method for

neural networks. CoRR.

Kim, H.; Khan, M. U. K.; and Kyung, C.-M. 2019. Efficient neural network compres-

100

sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 12569–12577.

Kim, E.; Lee, M.; and Oh, S. 2015. Elastic-net regularization of singular values for

robust subspace learning. In Proceedings of the IEEE conference on computer vision

and pattern recognition, 915–923.

Kim, J.; Park, S.; and Kwak, N. 2018. Paraphrasing complex network: Network

compression via factor transfer. arXiv preprint arXiv:1802.04977.

Kolda, T. G., and Bader, B. W. 2009. Tensor decompositions and applications. SIAM

review 51(3):455–500.

Kolda, T. G. 2006. Multilinear operators for higher-order decompositions. Technical

report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA

Kwon, W.; Yu, G.-I.; Jeong, E.; and Chun, B.-G. 2020. Nimble: Lightweight and parallel

gpu task scheduling for deep learning. Advances in Neural Information Processing

Systems 33:8343–8354.

Lebedev, V., and Lempitsky, V. 2016. Fast convnets using group-wise brain damage.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2554–2564.

Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I.; and Lempitsky, V. 2014. Speeding-

up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553.

Li, C., and Shi, C. 2018. Constrained optimization based low-rank approximation of

deep neural networks. In Proceedings of the European Conference on Computer Vision

(ECCV), 732–747.

Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P. 2016. Pruning filters for

efficient convnets. arXiv preprint arXiv:1608.08710.

Li, Y.; Gu, S.; Mayer, C.; Gool, L. V.; and Timofte, R. 2020. Group sparsity: The hinge

101

between filter pruning and decomposition for network compression. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, 8018–8027.

Li, Y.; Lin, S.; Liu, J.; Ye, Q.; Wang, M.; Chao, F.; Yang, F.; Ma, J.; Tian, Q.; and Ji,

R. 2021. Towards compact cnns via collaborative compression. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6438–6447.

Li, N.; Pan, Y.; Chen, Y.; Ding, Z.; Zhao, D.; and Xu, Z. 2022. Heuristic rank selection

with progressively searching tensor ring network. Complex & Intelligent Systems

8(2):771–785.

Liebenwein, L.; Baykal, C.; Lang, H.; Feldman, D.; and Rus, D. 2019. Provable filter

pruning for efficient neural networks. arXiv preprint arXiv:1911.07412.

Liebenwein, L.; Maalouf, A.; Feldman, D.; and Rus, D. 2021. Compressing neural

networks: Towards determining the optimal layer-wise decomposition. Advances in

Neural Information Processing Systems 34:5328–5344.

Lin, S.; Ji, R.; Li, Y.; Deng, C.; and Li, X. 2019a. Toward compact convnets via

structure-sparsity regularized filter pruning. IEEE transactions on neural networks and

learning systems 31(2):574–588.

Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang, F.; and Doermann, D.

2019b. Towards optimal structured cnn pruning via generative adversarial learning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2790–2799.

Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; and Shao, L. 2020. Hrank:

Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, 1529–1538.

Liu, B.; Wang, M.; Foroosh, H.; Tappen, M.; and Pensky, M. 2015. Sparse convolutional

neural networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, 806–814.

102

Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2018. Rethinking the value of

network pruning. arXiv preprint arXiv:1810.05270.

Liu, Z.; Mu, H.; Zhang, X.; Guo, Z.; Yang, X.; Cheng, K.-T.; and Sun, J. 2019.

Metapruning: Meta learning for automatic neural network channel pruning. In Proceed-

ings of the IEEE/CVF international conference on computer vision, 3296–3305.

Loshchilov, I., and Hutter, F. 2016. Sgdr: Stochastic gradient descent with warm restarts.

arXiv preprint arXiv:1608.03983.

Lowerre, B. T. 1976. The harpy speech recognition system. In Carnegie Mellon

University.

Luo, J.-H., and Wu, J. 2020a. Autopruner: An end-to-end trainable filter pruning

method for efficient deep model inference. Pattern Recognition 107:107461.

Luo, J.-H., and Wu, J. 2020b. Neural network pruning with residual-connections and

limited-data. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 1458–1467.

Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level pruning method for deep

neural network compression. In Proceedings of the IEEE international conference on

computer vision, 5058–5066.

Masana, M.; van de Weijer, J.; Herranz, L.; Bagdanov, A. D.; and Alvarez, J. M. 2017.

Domain-adaptive deep network compression. In Proceedings of the IEEE International

Conference on Computer Vision, 4289–4297.

Meister, C.; Vieira, T.; and Cotterell, R. 2020. If beam search is the answer, what was

the question? arXiv preprint arXiv:2010.02650.

Mohan, K., and Fazel, M. 2012. Iterative reweighted algorithms for matrix rank

minimization. The Journal of Machine Learning Research 13(1):3441–3473.

Nakajima, S.; Tomioka, R.; Sugiyama, M.; and Babacan, S. D. 2015. Condition for

103

perfect dimensionality recovery by variational bayesian pca. J. Mach. Learn. Res.

16:3757–3811.

Nie, F.; Huang, H.; and Ding, C. 2012. Low-rank matrix recovery via efficient schatten

p-norm minimization. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 26, 655–661.

Novikov, A.; Podoprikhin, D.; Osokin, A.; and Vetrov, D. P. 2015. Tensorizing neural

networks. Advances in neural information processing systems 28.

Peng, C.; Kang, Z.; Li, H.; and Cheng, Q. 2015. Subspace clustering using log-

determinant rank approximation. In Proceedings of the 21th ACM SIGKDD interna-

tional conference on Knowledge Discovery and Data Mining, 925–934.

Phan, A.-H.; Sobolev, K.; Sozykin, K.; Ermilov, D.; Gusak, J.; Tichavskỳ, P.; Glukhov,

V.; Oseledets, I.; and Cichocki, A. 2020. Stable low-rank tensor decomposition for

compression of convolutional neural network. In European Conference on Computer

Vision, 522–539. Springer.

Piratla, V.; Netrapalli, P.; and Sarawagi, S. 2020. Efficient domain generalization via

common-specific low-rank decomposition. In International Conference on Machine

Learning, 7728–7738. PMLR.

Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A. 2016. Xnor-net: Imagenet

classification using binary convolutional neural networks. In European conference on

computer vision, 525–542. Springer.

Reeves, C. R. 1993. Modern heuristic techniques for combinatorial problems. In John

Wiley & Sons, Inc.

Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and Bengio, Y. 2014.

Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.

Ruan, X.; Liu, Y.; Yuan, C.; Li, B.; Hu, W.; Li, Y.; and Maybank, S. 2020. Edp: An effi-

104

cient decomposition and pruning scheme for convolutional neural network compression.

IEEE Transactions on Neural Networks and Learning Systems 32(10):4499–4513.

Rudelson, M., and Vershynin, R. 2007. Sampling from large matrices: An approach

through geometric functional analysis. Journal of the ACM (JACM) 54(4):21–es.

Sanyal, A.; Torr, P. H.; and Dokania, P. K. 2019. Stable rank normalization for improved

generalization in neural networks and gans. arXiv preprint arXiv:1906.04659.

Shang, H.; Wu, J.-L.; Hong, W.; and Qian, C. 2022. Neural network pruning by

cooperative coevolution. arXiv preprint arXiv:2204.05639.

Srinivas, S., and Babu, R. V. 2015. Data-free parameter pruning for deep neural

networks. arXiv preprint arXiv:1507.06149.

Sui, Y.; Yin, M.; Xie, Y.; Phan, H.; Aliari Zonouz, S.; and Yuan, B. 2021. Chip:

Channel independence-based pruning for compact neural networks. Advances in Neural

Information Processing Systems 34:24604–24616.

Sun, Q.; Xiang, S.; and Ye, J. 2013. Robust principal component analysis via capped

norms. In Proceedings of the 19th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, 311–319.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Van-

houcke, V.; and Rabinovich, A. 2015. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, 1–9.

Tai, C.; Xiao, T.; Zhang, Y.; Wang, X.; et al. 2015. Convolutional neural networks with

low-rank regularization. arXiv preprint arXiv:1511.06067.

Tang, Y.; Wang, Y.; Xu, Y.; Tao, D.; Xu, C.; Xu, C.; and Xu, C. 2020. Scop: Scientific

control for reliable neural network pruning. Advances in Neural Information Processing

Systems 33:10936–10947.

Tang, Y.; Wang, Y.; Xu, Y.; Deng, Y.; Xu, C.; Tao, D.; and Xu, C. 2021. Manifold

105

regularized dynamic network pruning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 5018–5028.

Tengfei.Z; Zhaocheng.G; Hanping.H; and Dingmeng.S. 2021. Generating natu-

ral language adversarial examples through an improved beam search algorithm. In

arXiv:2110.08036.

Trzasko, J., and Manduca, A. 2008. Highly undersampled magnetic resonance image

reconstruction via homotopic \ell_{0}-minimization. IEEE Transactions on Medical

imaging 28(1):106–121.

Tukan, M.; Maalouf, A.; Weksler, M.; and Feldman, D. 2020. Compressed

deep networks: Goodbye svd, hello robust low-rank approximation. arXiv preprint

arXiv:2009.05647.

Wang, Y.; Zhang, X.; Xie, L.; Zhou, J.; Su, H.; Zhang, B.; and Hu, X. 2020. Prun-

ing from scratch. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, 12273–12280.

Wang, Z.; Li, C.; and Wang, X. 2021. Convolutional neural network pruning with

structural redundancy reduction. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 14913–14922.

Wen, W.; Xu, C.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2017. Coordinating filters for

faster deep neural networks. In Proceedings of the IEEE International Conference on

Computer Vision, 658–666.

Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; and Cheng, J. 2016. Quantized convolutional neural

networks for mobile devices. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 4820–4828.

Wu, K.; Guo, Y.; and Zhang, C. 2019. Compressing deep neural networks with sparse

matrix factorization. IEEE transactions on neural networks and learning systems

31(10):3828–3838.

106

Xu, Y., and Fern, A. 2007. On learning linear ranking functions for beam search. In

Proceedings of the 24th international conference on Machine learning, 1047–1054.

Xu, Y.; Li, Y.; Zhang, S.; Wen, W.; Wang, B.; Dai, W.; Qi, Y.; Chen, Y.; Lin, W.; and

Xiong, H. 2019. Trained rank pruning for efficient deep neural networks. In 2019 Fifth

Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS

Edition (EMC2-NIPS), 14–17. IEEE.

Xu, Y.; Li, Y.; Zhang, S.; Wen, W.; Wang, B.; Qi, Y.; Chen, Y.; Lin, W.; and Xiong,

H. 2020. Trp: Trained rank pruning for efficient deep neural networks. arXiv preprint

arXiv:2004.14566.

Xue, J.; Li, J.; and Gong, Y. 2013. Restructuring of deep neural network acoustic

models with singular value decomposition. In Interspeech, 2365–2369.

Yaguchi, A.; Suzuki, T.; Nitta, S.; Sakata, Y.; and Tanizawa, A. 2019. Decomposable-net:

Scalable low-rank compression for neural networks. arXiv preprint arXiv:1910.13141.

Yin, M.; Sui, Y.; Liao, S.; and Yuan, B. 2021. Towards efficient tensor decomposition-

based dnn model compression with optimization framework. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10674–10683.

Yu, X.; Liu, T.; Wang, X.; and Tao, D. 2017. On compressing deep models by low rank

and sparse decomposition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 7370–7379.

Yu, S.; Mazaheri, A.; and Jannesari, A. 2022. Topology-aware network pruning using

multi-stage graph embedding and reinforcement learning. In International Conference

on Machine Learning, 25656–25667. PMLR.

Zagoruyko, S., and Komodakis, N. 2016. Paying more attention to attention: Improving

the performance of convolutional neural networks via attention transfer. arXiv preprint

arXiv:1612.03928.

Zhai, X.; Kolesnikov, A.; Houlsby, N.; and Beyer, L. 2022. Scaling vision transform-

107

ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 12104–12113.

Zhang, X.; Zou, J.; He, K.; and Sun, J. 2015a. Accelerating very deep convolutional

networks for classification and detection. IEEE transactions on pattern analysis and

machine intelligence 38(10):1943–1955.

Zhang, X.; Zou, J.; Ming, X.; He, K.; and Sun, J. 2015b. Efficient and accurate

approximations of nonlinear convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and pattern Recognition, 1984–1992.

Zhou, H.; Alvarez, J. M.; and Porikli, F. 2016. Less is more: Towards compact cnns. In

European Conference on Computer Vision, 662–677. Springer.

Zhou, Y.; Ren, T.; Zhu, C.; Sun, X.; Liu, J.; Ding, X.; Xu, M.; and Ji, R. 2021. Trar:

Routing the attention spans in transformer for visual question answering. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2074–2084.

Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.; Huang, J.; and Zhu, J.

2018. Discrimination-aware channel pruning for deep neural networks. arXiv preprint

arXiv:1810.11809.

108

Appendices

A. The SoTA compression methods

ResNet56 on CIFAR10 (Idelbayev and Carreira-Perpinán 2020; Zhuang et al. 2018;

Li et al. 2020) are showing the SoTA performance for the 48-50% category, (Idelbayev

and Carreira-Perpinán 2020; Yu, Mazaheri, and Jannesari 2022; Ruan et al. 2020) are

showing the SoTA performance for the 54-57% category, and (Idelbayev and Carreira-

Perpinán 2020; Sui et al. 2021; Li et al. 2020) are showing the SoTA performance for

the 73-76% category.

ResNet50 on ImageNet (Xu et al. 2020; Sui et al. 2021; Ruan et al. 2020) are showing

the SoTA performance for the 45-50% category, (Phan et al. 2020; Shang et al. 2022;

Li et al. 2020) are showing the SoTA performance for the 62-66% category.

Note that the SoTA-achieving algorithm for each FLOP category can vary. This

is because of two reasons. First, each algorithm’s performance curve is different and

achieving a SoTA performance in one FLOP category does not guarantee achieving

SoTA in another FLOP category. Second, for some of the benchmark algorithms, the

experimental results were partially available over the FLOP ranges.

B. Resource budget definition

Parameter budget By gc and gr, we define the formula of the parameter resource

budget as follows:∑L
l=1 gr(zr)(l) · kl · kl · gc(zc)(l − 1) + gr(zr)(l) · gc(zc)(l)∑L

l=1 kl · kl · C l
in · C l

out
(1)

kl denotes the kernel size of the l-th layer. C l
in and C l

out denote l-th layer’s input- and

output-channels of the original model, respectively. gr(zr)(l) and gc(zc)(l) are the l-th

109

layer’s selected rank and number of selected filters, respectively.

Volume budget This budget controls the size of activations, thus setting an upper

bound on the amount of memory required for the inference process. We define volume

budget as follows: ∑L
l=1Al ·

(
gr(zr)(l) + gc(zc)(l)

)∑L
l=1Al · C l

out
(2)

Al denotes the area of the l-th layer’s feature maps. C l
out denote l-th layer’s output

channels of the original model. gr(zr)(l) and gc(zc)(l) are the l-th layer’s selected rank

and number of selected filters, respectively.

C. Implementation details

For reproducibility, we provide the details of implementation and hyper-parameters

used for training DIOR. Our implementations are based on LC (Idelbayev and Carreira-

Perpinán 2020) library. Our implementation codes will be made available online.

C.1. Hyper-parameter setting

For all the experiments, we use the hyper-parameters in Table A1.

Hyper-parameter CIFAR10 CIFAR100 ImageNet

Batch size 128 128 64

Epochs for fine-tuning 100 100 100

Learning rate for baseline model 0.01 0.01 -

Learning rate for fine-tuning 0.001 0.001 0.001

λ 1 1 1

τ 2
σ1

2
σ1

2
σ1

µ0 5 5 5

α (in µi) 50 50 50

β (in µi) 4 4 8

Table A1. Hyper-parameters used for training DIOR on various experiments. σ1 is the

largest singular value for each layer.

110

C.2. Tuning details of hyper-parameters

We fix the hyper-parameter λ = 1 in Eq. (4.3). Both τ in Eq. (4.9) and µi in Eq. (4.4) are

tuned via a light grid-search. τ controls which singular values should be treated as zero.

We define τ as C
σ1

, where σ1 is the largest singular value of each layer, and perform a

light grid search for C. The normalization by σ1 allows a single hyper-parameter C

to be used over all the layers. Therefore, the normalization significantly simplifies the

hyper-parameter search.

For µi, its α is simply set as a large constant of 50 because DIOR’s performance is

not sensitive to the choice, and its β is explored using a light grid search.

D. Full comparison results

We provide the full comparison results for ResNet56 on CIFAR10 and ResNet50 on

ImageNet-1k in Table A2 and Table A3, respectively.

111

Dataset

on Model

Compression

method
Algorithm Baseline (%) Test acc.(%) ∆ Test acc.(%)

MFLOPs

(Reduction ratio)

Params

(Compression ratio)

CIFAR10

on ResNet56

Low-rank

Accelerating (Zhang et al. 2015a) 93.14 91.56 - 1.58 58.9 (53%) N/A

Speeding (Jaderberg, Vedaldi, and Zisserman 2014) 93.14 91.59 - 1.55 58.9 (53%) N/A

LC (Idelbayev and Carreira-Perpinán 2020) 92.73 93.10 + 0.37 55.7 (56 %) N/A

TRP (Xu et al. 2020) 93.14 92.77 - 0.37 52.9 (57 %) N/A

CA (Alvarez and Salzmann 2017) 92.73 91.13 - 1.60 51.4 (59 %) N/A

BSR (?) 92.73 93.53 + 0.80 55.7 (56 %) 0.37 M (56 %)

BSR (?) 92.73 92.51 - 0.22 32.1 (74 %) 0.21 M (75 %)

Pruning

CHIP (Sui et al. 2021) 93.26 94.16 + 0.75 66.0 (47 %) 0.48 M (43 %)

DP (Kim et al. 2019) 92.66 92.36 - 0.30 65.2 (48 %) N/A

AMC (He et al. 2018b) 92.80 91.90 - 0.90 62.7 (50 %) N/A

CP (He, Zhang, and Sun 2017) 93.80 92.80 - 1.00 62.7 (50 %) N/A

ThiNet (Luo, Wu, and Lin 2017) 93.80 92.98 - 0.82 62.7 (50 %) 0.41 M (50 %)

PFS (Wang et al. 2020) 93.23 93.05 - 0.18 62.7 (50 %) N/A

Rethink (Liu et al. 2018) 93.80 93.07 - 0.73 62.7 (50 %) N/A

SFP (He et al. 2018a) 93.59 93.35 - 0.24 62.7 (50 %) N/A

NPPM (Gao et al. 2021) 93.04 93.40 + 0.36 62.7 (50 %) N/A

DCP (Zhuang et al. 2018) 93.80 93.49 - 0.31 62.7 (50 %) 0.43 M (49 %)

LeGR (Chin et al. 2020) 93.90 93.70 - 0.20 58.9 (53 %) N/A

SRR-GR (Wang, Li, and Wang 2021) 93.38 93.75 - 0.37 57.9 (54 %) N/A

GNN (Yu, Mazaheri, and Jannesari 2022) 93.39 93.49 + 0.10 57.6 (54 %) N/A

FTWT (Elkerdawy et al. 2022) 93.66 92.63 - 1.03 47.4 (60 %) N/A

ASFP (He et al. 2019a) 94.85 89.72 - 5.13 35.2 (73 %) N/A

ASRFP (Cai et al. 2021b) 94.85 90.54 - 4.31 35.2 (73 %) N/A

GHFP (Cai et al. 2021a) 94.85 92.54 - 2.31 35.2 (73 %) N/A

CHIP (Sui et al. 2021) 93.26 92.05 - 1.21 34.8 (73 %) 0.24 M (72 %)

Hybrid

CC (Li et al. 2021) 93.33 93.64 + 0.31 65.2 (48 %) 0.44 M (48 %)

Hinge (Li et al. 2020) 92.95 93.69 + 0.74 62.7 (50 %) 0.41 M (51 %)

DIOR 92.73 94.23 + 1.50 62.7 (50 %) 0.43 M (49 %)

DIOR 92.73 94.13 + 1.40 55.1 (55 %) 0.39 M (54 %)

EDP (Ruan et al. 2020) 93.61 93.61 0.00 53.0 (58 %) 0.39 M (54 %)

DIOR 92.73 94.08 + 1.35 47.4 (60 %) 0.37 M (57 %)

DIOR 92.73 93.44 + 0.71 32.2 (75 %) 0.22 M (74 %)

Hinge (Li et al. 2020) 92.95 92.65 - 0.30 31.0 (76 %) 0.17 M (80 %)

Table A2. Performance comparison results for CIFAR-10 on ResNet56.

112

Dataset

on Model

Compression

method
Algorithm Baseline (%) Test acc.(%) ∆ Test acc.(%)

GFLOPs

(Reduction ratio)

Params

(Compression ratio)

ImageNet-1k

on ResNet50

Low-rank

TRP (Xu et al. 2020) 75.90 74.06 - 1.84 2.3 (45 %) N/A

Stable (Phan et al. 2020) 76.15 74.66 - 1.47 1.6 (62 %) N/A

BSR (?) 76.20 75.00 - 1.2 2.2 (47 %) 12.5 M (51 %)

BSR (?) 76.20 74.80 - 1.4 1.8 (55 %) 10.1 M (60 %)

BSR (?) 76.20 74.10 - 2.1 1.4 (67 %) 7.5 M (70 %)

BSR (?) 76.20 73.40 - 2.8 1.1 (73 %) 5.0 M (80 %)

Pruning

PFS (Wang et al. 2020) 76.10 76.70 + 0.60 3.0 (25 %) N/A

ThiNet (Luo, Wu, and Lin 2017) 73.00 72.04 - 0.96 2.4 (37 %) 16.9 M (34 %)

SFP (He et al. 2018a) 76.20 74.60 - 1.60 2.4 (42 %) N/A

CCEP (Shang et al. 2022) 76.13 76.06 - 0.07 2.3 (44 %) N/A

CHIP (Sui et al. 2021) 76.20 76.30 + 0.10 2.3 (45 %) 15.1 M (41 %)

PFS (Wang et al. 2020) 76.10 75.60 - 0.50 2.0 (49 %) N/A

CP (He, Zhang, and Sun 2017) 76.10 73.30 - 2.80 2.1 (49 %) N/A

CP (He, Zhang, and Sun 2017) 76.10 73.30 - 2.80 2.1 (51 %) N/A

SSR (Lin et al. 2019a) 76.20 73.40 - 2.80 1.9 (55 %) 15.5 M (39 %)

SSR (Lin et al. 2019a) 76.20 72.60 - 3.60 1.7 (60 %) 12.0 M (53 %)

GAL (Lin et al. 2019b) 76.20 69.90 - 6.30 1.6 (62 %) 14.6 M (43 %)

WSP (Guo et al. 2021) 76.13 73.91 - 2.22 1.5 (63 %) 11.6 M (54 %)

CCEP (Shang et al. 2022) 76.13 74.87 - 1.26 1.5 (64 %) N/A

AutoPruner (Luo and Wu 2020a) 76.10 73.00 - 3.10 1.4 (65 %) N/A

WSP (Guo et al. 2021) 76.13 72.04 - 4.09 1.1 (73 %) 9.1 M (65 %)

CURL (Luo and Wu 2020b) 76.20 73.40 - 2.80 1.1 (73 %) 6.7 M (74 %)

PFS (Wang et al. 2020) 76.10 72.80 - 3.30 1.0 (76 %) N/A

CHIP (Sui et al. 2021) 76.20 73.30 - 2.90 1.0 (76 %) 7.8 M (69 %)

HRANK (Lin et al. 2020) 76.10 69.10 - 7.00 1.0 (76 %) 8.3 M (67 %)

Hybrid

EDP (Ruan et al. 2020) 75.90 75.51 - 0.39 2.1 (50 %) N/A

DIOR 76.20 77.20 + 1.00 2.3 (44 %) 13.8 M (46 %)

DIOR 76.20 76.93 + 0.73 2.1 (50 %) 12.2 M (52 %)

EDP (Ruan et al. 2020) 75.90 75.34 - 0.56 1.9 (53 %) N/A

CC (Li et al. 2021) 76.15 75.59 - 0.56 1.9 (53 %) 13.2 M (48 %)

Hinge (Li et al. 2020) N/A 74.7 N/A 1.9 (53 %) N/A

EDP (Ruan et al. 2020) 75.90 74.48 - 1.42 1.7 (60 %) N/A

CC (Li et al. 2021) 76.15 74.54 - 1.61 1.5 (63 %) 10.6 M (59 %)

DIOR 76.20 76.13 - 0.07 1.4 (66 %) 8.4 M (67 %)

DIOR 76.20 74.10 - 2.10 0.9 (78 %) 5.4 M (79 %)

Table A3. Performance comparison results for ImageNet-1k on ResNet50.

113

	Chapter 1. Introduction
	1.1 Thesis Outline
	1.2 Related Publications

	Chapter 2. Background
	2.1 Compression of Deep Neural Networks
	2.2 Structured Compression of Deep Neural Networks
	2.2.1 Low-Rank Compression
	2.2.2 Filter Pruning

	2.3 Low-rank decomposition in other fields
	2.4 Thesis Roadmap

	Chapter 3. An Effective Low-Rank Compression with a Joint Rank Selection Followed by a Compression-Friendly Training
	3.1 Introduction
	3.2 Contributions
	3.3 Related works
	3.3.1 Beam search
	3.3.2 Stable rank and rank regularization

	3.4 The basics of low-rank compression
	3.4.1 The basic process
	3.4.2 Compression ratio

	3.5 Methodology
	3.5.1 Overall process
	3.5.2 Modified beam-search (mBS) for rank selection
	3.5.3 Modified stable rank (mSR) for regularized training

	3.6 Experiments
	3.6.1 Experimental setting
	3.6.2 Experimental results
	3.6.3 Analysis of BSR

	3.7 Discussion
	3.7.1 Combined use with quantization
	3.7.2 Limitations and future works

	3.8 Conclusion

	Chapter 4. Learning to Select a Structured Architecture over Filter Pruning and Low-rank Decomposition
	4.1 Introduction
	4.2 Contribution
	4.3 Related works
	4.3.1 Hybrid compression methods

	4.4 Background
	4.4.1 Selection problem for DNN compression
	4.4.2 Tensor Matricization
	4.4.3 CNN decomposition scheme

	4.5 Learning framework for the selection problem in hybrid compression
	4.6 Experiments
	4.6.1 Experimental settings

	4.7 Analysis and discussion
	4.7.1 Learning strategy analysis
	4.7.2 Influence of matricization scheme
	4.7.3 Data efficiency of LeSS
	4.7.4 Extension to higher-order SVD
	4.7.5 Extension to transformer architecture
	4.7.6 Discussion on the reasons for the improved performance of compressed models compared to the uncompressed baseline model

	4.8 Conclusion

	Chapter 5. Conclusion and limitations
	Bibliography
	Appendices
	A The SoTA compression methods
	B Resource budget definition
	C Implementation details
	C.1 Hyper-parameter setting
	C.2 Tuning details of hyper-parameters

	D Full comparison results

<startpage>13
Chapter 1. Introduction 1
 1.1 Thesis Outline 4
 1.2 Related Publications 4
Chapter 2. Background 6
 2.1 Compression of Deep Neural Networks 6
 2.2 Structured Compression of Deep Neural Networks 8
 2.2.1 Low-Rank Compression 9
 2.2.2 Filter Pruning 15
 2.3 Low-rank decomposition in other fields 17
 2.4 Thesis Roadmap 19
Chapter 3. An Effective Low-Rank Compression with a Joint Rank Selection Followed by a Compression-Friendly Training 20
 3.1 Introduction 20
 3.2 Contributions 24
 3.3 Related works 25
 3.3.1 Beam search 25
 3.3.2 Stable rank and rank regularization 26
 3.4 The basics of low-rank compression 28
 3.4.1 The basic process 28
 3.4.2 Compression ratio 28
 3.5 Methodology 29
 3.5.1 Overall process 29
 3.5.2 Modified beam-search (mBS) for rank selection 32
 3.5.3 Modified stable rank (mSR) for regularized training 35
 3.6 Experiments 36
 3.6.1 Experimental setting 36
 3.6.2 Experimental results 38
 3.6.3 Analysis of BSR 47
 3.7 Discussion 59
 3.7.1 Combined use with quantization 59
 3.7.2 Limitations and future works 59
 3.8 Conclusion 60
Chapter 4. Learning to Select a Structured Architecture over Filter Pruning and Low-rank Decomposition 61
 4.1 Introduction 61
 4.2 Contribution 66
 4.3 Related works 67
 4.3.1 Hybrid compression methods 67
 4.4 Background 68
 4.4.1 Selection problem for DNN compression 68
 4.4.2 Tensor Matricization 68
 4.4.3 CNN decomposition scheme 69
 4.5 Learning framework for the selection problem in hybrid compression 70
 4.6 Experiments 79
 4.6.1 Experimental settings 79
 4.7 Analysis and discussion 85
 4.7.1 Learning strategy analysis 85
 4.7.2 Influence of matricization scheme 88
 4.7.3 Data efficiency of LeSS 88
 4.7.4 Extension to higher-order SVD 90
 4.7.5 Extension to transformer architecture 90
 4.7.6 Discussion on the reasons for the improved performance of compressed models compared to the uncompressed baseline model 91
 4.8 Conclusion 92
Chapter 5. Conclusion and limitations 93
Bibliography 94
Appendices 108
 A The SoTA compression methods 109
 B Resource budget definition 109
 C Implementation details 110
 C.1 Hyper-parameter setting 110
 C.2 Tuning details of hyper-parameters 111
 D Full comparison results 111
</body>

