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Abstract

Accelerating Transformer-Based

Model Inference using Efficient Matrix

Multiplications on GPUs

Hailong Li

Intelligence Systems

Department of Transdisciplinary Studies

The Graduate School

Seoul National University

Transformer-based models have become the backbone of many state-of-

the-art natural language processing (NLP) and computer vision tasks. As exist-

ing powerful models become large, enabling the models to learn and represent

complex data relationships. Additionally, increasing the input sequence can

be an effective way to improve performance for challenging real-world tasks.

However, high inference cost hinders the use of powerful transformers because

of large memory footprint, quadratic complexity with input sequence length in

attention layers, and inefficient kernel operations.

In this thesis, we propose Transformer optimization methods to reduce in-

ference costs in various scenarios, depending on the model size, input sequence

length, and batch size. First, we propose Multigrain, an optimization method
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for scenarios where the input length (Lin) is significantly greater than the hid-

den dimension (Dh). Existing sparse attention techniques can effectively reduce

computation and memory footprints in long input sequences; however, they

are inefficiently processed on GPUs and still account for the majority of the

execution time. Multigrain takes into account the sparse patterns of sparse at-

tention, processing the coarse-grained part with a coarse-grained kernel using

high-performance tensor cores and the fine-grained part with a fine-grained

kernel using CUDA cores, respectively. As a result, Multigrain achieves a 2.07×

end-to-end speedup over DeepSpeed when running Longformer inference.

Second, we propose a tiled singular value decomposition (TSVD) method to

reduce inference costs in scenarios where Lin is similar to or smaller than Dh.

TSVD is a technique that divides a matrix into tiles, performs singular value

decomposition (SVD) on each tile, and compresses the matrix using low-rank

approximation. By performing matrix multiplication, the fundamental opera-

tion of attention layers and feed-forward layers in Transformer models, using

low-rank approximation-based TSVD-matmul, memory footprint and com-

putation can be reduced, significantly lowering inference costs. Consequently,

when compressing matrices by 2 to 8×, TSVD-based matrix multiplication is

1.02 to 2.26× faster than the uncompressed matrix multiplication. However,

when applying TSVD to models, the execution time is reduced, but there is a

trade-off in decreased accuracy.

To address this issue, we propose TSVD-common, a parameter-efficient

fine-tuning method based on TSVD. TSVD-common shares one of the sub-

matrices decomposed by SVD in each tile across all tiles and fine-tunes only
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the common submatrix during training. As a result, TSVD-common improves

accuracy by approximately 2% even when compressing the GPT-2 model by 2

or 4× in E2E NLG tasks, compared to full fine-tuning without compression.

keywords: Transformer acceleration, Model optimization, Sparse attention,

Parameter efficient fine-tuning, Model compression

student number: 2017-37405

iii



Contents

Abstract i

Contents iv

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Accelerating Sparse-Attention-Based Transformer Inference . . . 3

1.2 Accelerating Transformer Inference using Low-Rank Approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 Transformer Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Transformer architecture . . . . . . . . . . . . . . . . . . 9

2.1.2 Transformer model trends . . . . . . . . . . . . . . . . . . 12

2.2 Transformer Inference . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



2.3 Sparse Attention-Based Transformers . . . . . . . . . . . . . . . 16

2.4 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . 19

2.4.1 SVD-Based Matrix Multiplication in Transformer models 19

2.5 Parameter Efficient Fine-Tuning (PEFT) . . . . . . . . . . . . . . 21

2.6 Graphics Processing Unit (GPU) . . . . . . . . . . . . . . . . . . 22

3 Multigrain 24

3.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Multigrain mechanism . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Coarse-grained GPU kernels . . . . . . . . . . . . . . . . 27

3.1.3 Compound sparse softmax GPU kernel . . . . . . . . . . 31

3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 End-to-End latency on sparse Transformers . . . . . . . 35

3.2.3 Speedup on the sparse attention . . . . . . . . . . . . . . . 38

3.2.4 Speedup on the sparse softmax . . . . . . . . . . . . . . . 41

3.2.5 Speedup on the coarse-grained kernel . . . . . . . . . . . 43

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Coarse-grained methods . . . . . . . . . . . . . . . . . . 45

3.3.2 Fine-grained methods . . . . . . . . . . . . . . . . . . . . 46

4 Tiled Singular Value Decomposition (TSVD) 48

4.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Tiled Singular Value Decomposition (TSVD) . . . . . . . 49

4.1.2 TSVD-based matrix multiplication in Transformer models 51

4.1.3 Kernel Design . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



4.1.4 TSVD-Common: a PEFT of low-rank approximation . 55

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 End-to-end latency on various input and output tokens

for GPT models . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 TSVD-common accuracy on various cases . . . . . . . . 64

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Model compression . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 PEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusion 71

REFERENCES 84

국문초록 85

vi



List of Tables

3.1 Specifications of the GPUs used in the evaluation. *Peak rates

are based on the GPU’s base clock. **Recent GPU architectures

combine L1 data cache and SMEM functionality into a single

memory block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Impact of increasing the number of trainable parameters while

keeping the compression ratio fixed, by changing the number of

shared matrices or tile sizes when applying TSVD-common to

GPT-2 medium on WebNLG [22] (In our method name, ’T’ de-

notes tile size, and ’U’ denotes the number of shared matrices.) . 64

4.2 Impact of adaptation location when applying TSVD-common

to GPT-2 medium on WebNLG [22] We set the compression

ration as 2. (’attn’ denotes attention part, and ’ff’ denotes the

feedforward part.) . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Impact of the different compression ratio when applying TSVD-

common to GPT-2 medium onWebNLG [22] We set the tile size

as 256. (’all’ denotes both attention and feedforward part. ’R’

represents the compression ratio of the fixed parameter size.) . . 66

vii



4.4 Impact of the different tile size and compression ratios when ap-

plying TSVD-common to GPT-2 medium on DART [39] and

E2E [18] We set the adaptation location as ’all’. . . . . . . . . . . 67

viii



List of Figures

1.1 Various Transformer inference scenarios categorized based on

factors such as the model size, input sequence length, and batch

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Execution time breakdown of Longformer, QDS-Transformer

on an A100 GPU. Detailed model configurations and tasks are

described in Section 3.2.1. . . . . . . . . . . . . . . . . . . . . . 5

2.1 Transformer architecture . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Transformer inference with regard to BERT and GPT2. . . . . . 14

2.3 The sparse attention of a single head in a sparse Transformer. S

and P are sparse matrices, and the other matrices are dense. Lin

refers to the input sequence length, and Dh represents the head

dimension of a single head. . . . . . . . . . . . . . . . . . . . . . 16

ix



2.4 Various atomic sparse patterns in the existing sparse Transform-

ers. From left to right, the patterns are listed from the least to

the most structured pattern. In a sparse pattern, a row refers to

the query vector and a column refers to the key vector. Gray

squares refer to the valid elements resulting from an inner prod-

uct of corresponding query and key vectors. Blank squares are

invalid elements, and the corresponding query and key vectors

are not used for the operations. . . . . . . . . . . . . . . . . . . 18

3.1 A Multigrain mechanism. 1) We categorize sparse patterns into

coarse-grained and fine-grained patterns. 2) we generate the

metadata (e.g., row offsets and column indices) for the com-

pressed sparse matrices with the model configuration and posi-

tions of the special tokens before inferring the model. 3) In the

compound SA, either SDDMM or SpMM is executed through

both coarse-grained and fine-grained kernels, processed in par-

allel using multi-stream. SpSoftmax fused with scaling andmask-

ing is processed by a single kernel that can handle coarse-grained

and fine-grained results represented by different sparse formats. 25

3.2 Hierarchical decomposition of SDDMM with the blocked row

splitting scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Hierarchical decomposition of SpMM with the blocked one-

dimensional tiling scheme. . . . . . . . . . . . . . . . . . . . . . 29

x



3.4 Execution time andmemory traffic of Longformer-large andQDS-

Transformer models by applying Triton, Sputnik, andMultigrain.

We normalized the other results based on the Triton. The abso-

lute execution cycle and memory traffic of each baseline is shown

below each model. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Execution time of Longformer-large at the DeepSpeed and Faster-

Transformer libraries. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Speedup in Longformer-large and QDS-Transformer at the var-

ious batch sizes by applying Triton, Sputnik, and Multigrain. . . 37

3.7 Speedup of Multigrain compared to Sputnik and Triton in the

compound-sparse GEMM with various compound sparse pat-

terns. (L: local, S: selected, G: global, R: random, LB: blocked

local, and RB: blocked random sparse pattern). Compound-

sparse GEMMs are sparse operations in the sparse attention (i.e.,

SDDMM and SpMM). The operations are processed with pa-

rameters such as 1 batch size, 4096 input sequence length, 4

multi-heads, 64 head dimensions, and 95% sparsity in each row. 40

3.8 Speedup of our compound sparse softmax kernel (Multigrain)

compared to Sputnik and Triton with various compound-sparse

patterns in SpSoftmax on A100. . . . . . . . . . . . . . . . . . . 41

xi



3.9 Execution cycles of SDDMMand SpMM (sequence length=4096,

batch size=1, number of heads=4, window size=256, window

block=3, block size=64, and sparsity=95%) by applying Triton

and our customized coarse-grained kernel (Coarse). We nor-

malize the values based on the execution cycles of Triton. The

absolute execution cycle of each Triton is shown next to SD-

DMM and SpMM. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Speedup of our customized coarse-grained kernel (Coarse) com-

pared to Triton with various batch sizes on A100. . . . . . . . . 44

4.1 Concept of the TSVD, which divides a matrix into smaller tiles

and factorizes each tile using SVD. . . . . . . . . . . . . . . . . . 49

4.2 Compression errors on the various SVD methods at a 2× com-

pression ratio. The compression error is calculated by mean

square error (MSE) of each tile between recovered matrix after

compression and original matrix with dimension of (256, 256).

We randomly set an important tile (e.g., the 14th tile values are

much larger than other tiles in the matrix), and the size of this

important tile is (64, 64). As the tile size decreases, TSVD pre-

serves more important information. . . . . . . . . . . . . . . . . 50

xii



4.3 Total computation and weight parameters in GPT-2 medium

with TSVD as the compression ratio increases. When the com-

pression ratio is one, the computation and parameters are iden-

tical to the original GPT-2 medium with 512 input sequences

and 64 output tokens. These results are calculated by applying

TSVD to all trainable parameters, such as the embedding table

and weights in the attention and feedforward. . . . . . . . . . . 52

4.4 A various parallel workload decomposition techniques [46] at the

TSVD-matmul. The green and white blocks in the SMs represent

output tiles. In the figure (a), the entire output tile 0, allocated

by thread block 0 (TB0), is processed on SM0. The two types

of blue blocks represent reduction operations for load and store

from the global memory. . . . . . . . . . . . . . . . . . . . . . . 54

4.5 The concept of the TSVD-common method. It shares one of the

submatrices decomposed by SVD in each tile across all tiles and

fine-tunes only the common submatrix (red U) during training. 55

4.6 TSVD-common decomposition. . . . . . . . . . . . . . . . . . . 56

xiii



4.7 Speedup on matrices of various sizes using different compression

ratios (N×) on the A100 GPU. In Cases 1 and 3, the GEMM

is compute-bound, and the TSVD tile size is 256. In Cases 2

and 4, the GEMM is memory-bound, and the TSVD tile size is

64. The dotted line represents the baseline GEMM without any

low-rank approximation in each case. Additionally, the execu-

tion time of each baseline is displayed below the legend for the

respective cases.(TSVD-K: TSVD with stream-K, Ratio: com-

pression ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Roofline model for the matrix multiplication in four cases. The

performance ceiling is based on the NVIDIA GPU A100 with

80GB HBM achieving up to 1,935GB/s with the base frequency

of SM. The blue circles in the figure are matrix multiplications

without compression as a baseline in Fig. 4.7 In case 3 and 4,

where smaller matrices are involved in the matrix multiplication,

TSVD-based matrix multiplications are faster than the other ap-

proaches by utilizing more GPU resources. . . . . . . . . . . . . 60

4.9 Comparison of speedup among SVD, TSVD, and low-precision

quantization-based GEMM. Here, INT8-GEMM denotes the

8-bit quantization GEMM from Faster Transformer [42], while

INT4-GEMM refers to the 4-bit quantization GEMM fromGPTQ [19]

Triton-based GPU kernel. . . . . . . . . . . . . . . . . . . . . . 61

xiv



4.10 Tradeoff between accuracy and speedup on A100 GPU. Ratio is

the compression ratio for the weights in GPT2-M except for the

embedding layer. (FFT: full fine-tuning, SVD: singular value

decomposition, TSVD: tiled singular value decomposition) . . . 62

4.11 Differences among Quantization, SVD, and TSVDMethods dur-

ing Matrix Multiplication. . . . . . . . . . . . . . . . . . . . . . 63

4.12 speedup of the end-to-end execution time in the GPT-2 medium

model as the length of the output sequence increases. The input

sequence length is fixed at 512, and a beam search width of 10 is

used with a single batch size. The red dotted line is our baseline

without any compression methods. TSVD is more efficient at

shorter output sequence lengths due to the predominance of the

summarization portion. . . . . . . . . . . . . . . . . . . . . . . . 64

xv



Chapter 1

Introduction

The advent of Transformer-based models has catalyzed a revolution in the

realms of artificial intelligence and machine learning, particularly in natural lan-

guage processing (NLP) [5,15,31,52,61,65] and computer vision [17,35]. These

models, due to the power of their Transformer-based structure, can understand

and represent complex data relationships by capturing long-range dependencies

within the data. Furthermore, expanding the size of these models and the length

of their input sequences has shown to significantly enhance their performance,

particularly in the execution of complex, real-world tasks [4,5,28,50,67]. These

advancements have unlocked the potential for more accurate language transla-

tions, more effective sentiment analysis, and more nuanced image recognition,

among other applications.

However, deploying Transformer-based models presents certain difficulties.

As model sizes increase and input sequences lengthen, inference costs rise pro-

portionately. This is due to a number of factors, including an increased memory

footprint, a quadratic complexity associated with input sequence length in at-

tention layers, and the inefficiencies in kernel operations [50]. These challenges

act as substantial hurdles, hindering the broader usage of powerful Transformer

This chapter is based on [32].
”A Slice and Dice Approach to Accelerate Compound Sparse Attention on GPU” ©2022 by

Hailong Li, Jaewan Choi, and Jung Ho Ahn is licensed under CC BY 4.0. https://doi.org/
10.1109/IISWC55918.2022.00019.
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Lin: Input seqeunce length      Dh: Hidden dimension

Scenario type BERT type
GPT type

Summarization Generation

Scenario 1: Lin >> Dh Long input sequence Long input sequence X 

Scenario 2: Lin  ≈  Dh General case General case Large batch size

Scenario 3: Lin << Dh Short input sequence Short input sequence General case

Figure 1.1: Various Transformer inference scenarios categorized based on fac-
tors such as the model size, input sequence length, and batch size.

models in numerous applications where they could be beneficial.

In this dissertation, we propose Transformer optimization methods to re-

duce inference costs on graphics processing units (GPUs), which are known for

their high-performance capabilities in handling parallel operations. We propose

two main strategies for various inference scenarios (see Fig. 1.1), and that these

scenarios are categorized according to the model size, input sequence length,

and batch size. The first, Multigrain, is designed to optimize a scenario where

the input length (Lin) significantly exceeds the hidden dimension (Dh), tak-

ing advantage of the unique characteristics of sparse attention patterns. Our

second proposal, the tiled singular value decomposition (TSVD) method, is de-

vised for scenarios where Lin is similar to or smaller than Dh, and focuses on

matrix compression to reduce inference costs. Recognizing the potential accu-

racy trade-off with the inference costs, we also introduce TSVD-common, a

parameter efficient fine-tuning method that mitigates this issue.
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1.1 Accelerating Sparse-Attention-Based Transformer In-

ference

In a Transformer-based model, the attention mechanism plays a crucial role

in the model’s success. The attention mechanism relates different positions of

an input sequence to capture contextual information from the entire sequence,

representing the long-distance dependency of the model.

Recently, processing long sequences has been gaining interest in NLP re-

search [3,56,57]. For example, scientific literature has 1K–10K words or even

longer in a typical document, and digital humanity books can easily exceed 1K

words. Therefore, existing models must deal with long sequences to understand

long documents for the tasks such as document classification, multi-hop QA,

and reading comprehension. However, early-stage Transformer-based mod-

els exhibit unsatisfying accuracies in long-sequence tasks compared to short-

sequence tasks [55, 56]. The existing studies [13, 15] segment or shorten long

sequences into short sequences during training, which can induce information

loss due to the data loss [4]. To tackle such information loss, [4,67] merge short,

segmented sequences into one single input sequence to increase the contextual

representation. As the sequence length increases, the accuracy of the model is

improved.

Long-sequence processing has shortcomings in that its attention operations

become expensive as the computation and memory footprint sizes are propor-

tional to L2
in when the input length is Lin. For Lin = 4096, BERT-large [15]

requires a memory size of 64GB, which is equipped only in the most expen-

sive graphics processing units (GPUs). Considering that attention operations

3



have quadratic space and time complexities, attention operations on long input

sequences are limited by existing hardware resources.

Recently, sparse Transformer models based on sparse attention (SA) have

been actively researched to address these issues. In particular, they perform SA

with pre-defined sparse patterns using inductive biases, which reflect the addi-

tional assumption of language- and image-data features for accurate predic-

tion. SA exhibits linear complexity, reducing computation and memory foot-

prints. However, SA is processed inefficiently on existing GPUs during infer-

ence because the locality of the pre-defined, compound-sparse patterns, which

combine multiple atomic sparse patterns,1 are not considered for processing SA.

More models adopt a compound SA, with the compound-sparse-pattern-

based SA as the main operation. However, such models only treat the com-

pound SA using either the coarse-grained method based on a blocked sparse

format (e.g., block coordinate format (BCOO) and block compressed row for-

mat (BSR)) or the fine-grained method based on an element-wise sparse for-

mat (e.g., compressed sparse row format (CSR), coordinate format (COO),

and compressed sparse column format (CSC)). Only utilizing one of the two

methods causes unnecessary computation and memory access and also causes

poor data reuse during inference. Also, it is challenging to utilize the high-

performance tensor cores in the fine-grained method [9, 34]. From Fig. 1.2,

SA takes up significant execution time (73.8% and 52.9% in Longformer [4]

and QDS-Transformer [27], respectively). Thus, the compound SA primarily

contributes to the end-to-end execution time of the sparse Transformer model

during inference.

1The atomic sparse pattern means a single sparse pattern in a compound-sparse pattern
having various sparse patterns.
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20%

40%

60%

80%
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Longformer QDS-Transformer

Sparse Attention (SA) Others

73.8%
52.9%

Figure 1.2: Execution time breakdown of Longformer, QDS-Transformer on
an A100 GPU. Detailed model configurations and tasks are described in Sec-
tion 3.2.1.

In this paper, we propose Multigrain, a compound processing method that

accelerates the compound SA on GPUs. We categorize the atomic sparse pat-

terns in the compound sparse patterns into coarse-grained and fine-grained

parts by considering the locality of each pattern. Then, we accelerate the com-

pound SA by performing coarse-grained and fine-grained parts with the cor-

responding kernels separately. To achieve such objectives, we design a cus-

tomized coarse-grained kernel for the coarse-grained part that utilizes high-

performance tensor cores with enhanced data reuse. We use a fine-grained

kernel based on an optimized version of the Sputnik library2 [20] for the fine-

grained part to reduce unnecessary computation and memory access. We ex-

ecute the coarse-grained and fine-grained kernels using multi-stream [36];

hence they can run concurrently in different SMs to utilize the hardware re-

sources better.

Multigrain outperformed the latest sparse Transformer models such as Long-

former and QDS-Transformer up to 2.08× and 1.68× on the latest GPUs (A100

2The optimized version of Sputnik used by our fine-grained method will be referred to as
Sputnik in the following sections.
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and RTX3090). We also evaluated our proposed method in the compound SA

with various sparse patterns. We achieved 1.73×–2.34×, 5.06×–12.63×, and

1.79×–3.04× speedup in the sampled dense-dense matrix multiplication (SD-

DMM), sparse softmax (SpSoftmax), and sparse matrix-matrix multiplication

(SpMM), respectively, over Triton [58], which only uses the coarse-grained

method. Moreover, we achieved 1.34×–5.81×, 1.26×–2.82×, and 1.23×–

5.24× speedup compared to Sputnik, which only uses the fine-grained method.

1.2 Accelerating Transformer Inference using Low-Rank

Approximation

Transformer-based models have become the backbone of many state-of-the-

art natural language processing (NLP) tasks, including large language models

such as GPT3 [5] and GPT4 [45]. These models employ a self-attention mech-

anism that allows them to capture long-range dependencies in text, leading to

improved performance in various NLP tasks [15,51,61]. Matrix multiplication

plays a crucial role in the Transformer models [10, 32, 33, 48]. It accounts for

most of the execution time because key operations such as self-attention and

feed-forward layers heavily rely on matrix multiplications.

Matrix multiplications often have different computational characteristics

with respect to the input sequence length (Lin) and hidden dimension (Dh) in

the Transformer-based models. When Lin is similar to or larger than Dh, the

operation is compute-bound, which means that reducing the computation of

the operation is crucial for decreasing the execution time. When Lin ≪ Dh, the

operation is memory-bound, which means that reducing the data size of the
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input/output matrices can lead to a decrease in execution time [29].

Singular value decomposition (SVD)-based matrix multiplication can ac-

celerate matrix multiplication by reducing the complexity of computation and

memory footprint through rank size reduction [47]. Such techniques can influ-

ence the result and the execution time of the matrix multiplication depending

on the rank size. Compressing Transformer-based models using SVD approach

can degrade the model quality, leading to a drop in accuracy [25] even after

fine-tuning, due to the difficulty in preserving important information. More-

over, in small models (e.g., GPT2-M [51] and BERT-large [15]), the computing

resources of the GPU are not fully utilized, leading to no speedup even at high

degrees of compression. Therefore, we propose tiled SVD (TSVD, see Fig. 4.1)

approach to mitigate the decrease in accuracy of the Transformer-based model

while still achieving speedup.

1.3 Research Contributions

• We categorize the Transformer inferences into three scenarios based on

model size, input sequence length, and batch size (see Fig. 1.1).

• We perform an analysis of the computational characteristics of the oper-

ations in the aforementioned inference scenarios.

• In cases where Lin is much greater than Dh, we propose a Multigrain

solution to accelerate the sparse attention layer.

• When Lin is less than or similar to Dh, we propose a fast matrix multi-

plication method based on TSVD with low-rank approximation.
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• We design a customized GPU kernel to accelerate the TSVD-based matrix

multiplication’s speed on a GPU.

• Additionally, we optimize the TSVD-based matrix multiplication using

the stream-K method [46].

• We propose a parameter-efficient fine-tuning method, TSVD-common,

to improve accuracy.

1.4 Outline

The organization of this dissertation is as follows. Chapter 2: Background

provides an understanding of the Transformer model, Transformer inference,

sparse attention-based Transformers, singular value decomposition, parameter

efficient fine-tuning (PEFT), and graphics processing unit (GPU). Chapter 3:

”Multigrain (Lin ≫ Dh)” introduces the Multigrain mechanism, elaborates its

GPU kernels, and evaluates its effects on Sparse Transformer and Compound

Sparse Attention, followed by a review of related work. Chapter 4: ”TSVD

(Lin ≤ Dh)” details the tiled singular value decomposition (TSVD), its GPU

Kernel, its role in parameter efficient fine-tuning of low-rank approximation,

and compares its performance with conventional SVD. Related work in this

area is also reviewed. Chapter 5: Conclusion summarizes the research, revisits

its contributions, and speculates on the future of the field.
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Chapter 2

Background

2.1 Transformer Model

2.1.1 Transformer architecture

The advent of Transformer models brought a substantial shift in the natural

language processing (NLP) and computer vision (CV) domains. Distinguished

from their precursors, Transformer models operate without recurrence, enabling

greater parallelization.

A vanilla Transformer [61] architecture is composed of an encoder-decoder

structure where each part is a stack of identical blocks. Over time, Transformer

variant models such as those in the BERT [4, 15, 30] and GPT [2, 5, 45, 59]

families have demonstrated superior performance on a variety of tasks.

The BERT family of models, which are comprised exclusively of the encoder

part of the vanilla Transformer model, are auto-encoding models that allow

each token to attend to all other tokens in its context, regardless of their posi-

tions. This enables these models to better capture the contextual relationships

among tokens. As a result, these models excel at natural language understand-

This chapter is based on [32].
”A Slice and Dice Approach to Accelerate Compound Sparse Attention on GPU” ©2022 by

Hailong Li, Jaewan Choi, and Jung Ho Ahn is licensed under CC BY 4.0. https://doi.org/
10.1109/IISWC55918.2022.00019.
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Figure 2.1: Transformer architecture

ing (NLU) tasks such as question answering, sentiment analysis, and reading

comprehension.

On the other hand, the GPT family of models, based on the decoder part

of the Transformer, are auto-regressive models that predict the next token ac-

cording to previous tokens. These models exhibit superior generative abilities,

making them well-suited for natural language generation (NLG) tasks such as

text generation, machine translation, and summarization.

The basic block (e.g., encoder and decoder) in Transformer-based models

primarily consists of a multi-head attention layer (MHA) and a feed-forward

layer (FF) (see Fig. 2.1). Layer normalization and residual connections are uti-

lized between theMHA and FF to stabilize learning and allow for deeper models.
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The MHA allows the model to focus on different tokens in the input se-

quence, thereby enabling a better understanding of the context. In the first

encoder/decoder, the MHA receives hidden states (Lin, Dh) generated by the

embedding layer and produces an output matrix through the following proce-

dure. In subsequent encoders/decoders, the MHA receives hidden states from

the previous FF. Here, Lin denotes the input sequence length, while Dh repre-

sents the hidden vector size of a single token.

Firstly, the MHA utilizes the hidden state as input to prepare the queries

(Q), keys (K), and values (V ) through fully connected layer (FC). Then, Q, K,

and V are split into multiple heads, allowing the attention process to run mul-

tiple times in parallel. Secondly, these are used in scaled dot-product attention

(SDA) for each head. The SDA computes the dot product of Q and the trans-

pose of K (KT ) to generate attention scores that represent the level of focus

for each element in the sequence. The attention scores are then normalized us-

ing a softmax function to obtain attention probabilities (Prob). These attention

probabilities are then used to compute a weighted sum of V . The output ma-

trices from each head are subsequently concatenated. Thirdly, the concatenated

results are passed through another FC. The output matrix of the MHA is then

subjected to layer normalization, and the results are added to the input hidden

states of the MHA (see Fig. 2.1).

The FF following the layer normalization consists of two FC with an activa-

tion layer (e.g., ReLU) in between. This structure enlarges the hidden dimension

of the input hidden states, then reduces it back to the original dimension. As a

result, the model can capture patterns that occur at any position in the sequence.

The first FC enlarges the hidden dimension of the input hidden states from Dh
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to 4 ∗Dh, and the second FC reduces the dimension back to the original Dh.

Recently emerged Transformer-based models still maintain this architecture.

However, as models grow larger and to address the limitations of the attention

mechanism, various Transformer variants have appeared. In particular, there are

many large models that increase the dimensionDh and the number of encoders/

decoders. These models show performance surpassing humans in various tasks.

It leads to trigger a new boom in artificial intelligence. In the following section,

we show the Transformer model trends.

2.1.2 Transformer model trends

The field of NLP has been witnessing significant advancements, primarily driven

by the use of Transformer models. The most dominant strategy to improve per-

formance in these models has been the increase in model size [28]. The trend of

increasing model size is particularly evident in the development of large language

models (LLMs) that followed GPT-2 [51]. These models are characterized by

their ability to demonstrate few- or even zero-shot learning capabilities when

pretrained on large datasets. For instance, GPT-J is an LLM with 6 billion

parameters and trained on 400 billion tokens. It was followed by GPT-3 [5]

from OpenAI, a family of decoder-only models, the largest of which has 175

billion parameters and is trained on 300 billion tokens. Recently, PaLM2 [2]

was released from Google, the largest model in this family having 300 billion

parameters and trained on 1 tillion tokens in various languages.

In tandem with the trend of increasing model size, there has been a notable

focus on making attention mechanisms more efficient, especially for processing

documents with longer sequence lengths. Sparse attention has emerged as a piv-
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otal trend in Transformer models. This technique has been adopted by models

such as Longformer [4] and BigBird [67], which have introduced explicit sparse

bias in their self-attention mechanisms. This innovation has effectively reduced

the computational complexity from O(L2
in) to O(Lin), making these models

more efficient. For instance, Longformer from AllenAI employs a combination

of local attention (attention only calculated from a fixed window size around

each token) and global attention (only for specific task tokens like [CLS] for

classification) to create sparse attention scores instead of full attention scores.

The BigBird [67] model, proposed by Google, employs a unique sparse attention

mechanism that consists of three main components: local, global, and random

attention. Local and global attention are similar to Longformer’s, except that

BigBird’s are composed as blocks. In addition to local and global attention, the

model also includes random attention. The model starts with a sliding window

on the block, then a random subset of all connections is replaced with a random

connection, while retaining the other local connections.

These sparse attention mechanisms reduce the computational and memory

requirement from quadratic to linear in the sequence length, thereby enabling

the handling of longer sequences.

2.2 Transformer Inference

The inference of BERT family models, as shown in the left of Fig. 2.2, processes

multiple input tokens simultaneously. For example, when preprocessing the

sentence ”I like a cat” with a tokenizer and passing it through a embedding layer,

it generates a set of embedding vectors, which is a (Lin, Dh) hidden states. Here,
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Figure 2.2: Transformer inference with regard to BERT and GPT2.

Lin is the input sequence length and Dh is the size of the embedding vector and

also the size of the hidden dimension. This hidden states is passed to the encoder

to perform the MHA and FF operations we described earlier. At last, it carries

out the last layer (e.g., classification layer in the Fig. 2.2) to obtain the final

result. Depending on the task, the last layer is different.

GPT family models, unlike BERT family, are usually divided into a summa-

rization stage and a generation stage. The summarization stage, similar to the

BERT type, processes multiple input tokens at once. However, in the Genera-

tion stage, it processes token-by-token. For instance, in the Generation stage

(see the right graph in Fig. 2.2), it first takes one new token generated from the

summarization stage as input. This one input token, denoted as I2 in the figure,

is converted into an embedding vector through embedding layer and then pro-

cessed by the decoders. During the decoding process, matrix multiplication in

the SDA is carried out in the ”Q by KT , Prob by V ” operations, which include
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the keys and values up to the previous step. To reduce redundant calculations,

the previously calculated keys and values are reused. This is often referred to as

”storing in the KV cache”. The hidden vector generated through the decoders

is then converted back into a new token via embedding layer. Text generation

continues until an end of token (EoT) index is obtained.

However, high inference cost hinders the use of powerful Transformers for

real-world tasks at scale [50]. This cost is often driven by large model size,

long input sequences, and inefficient kernel operations. First, large models have

a high memory footprint due to both the trained model parameters and the tran-

sient state needed during decoding. The model parameters usually do not fit in

the memory of a single accelerator chip. Furthermore, key and value tensors of

each layer, also known as the KV cache, must be stored in memory during the

duration of decoding. This leads to a large amount of memory traffic and a high

total memory bandwidth requirement, particularly to meet certain latency tar-

gets. Larger models need to be partitioned across many accelerator chips to fit

in memory, but this introduces chip-to-chip communication costs. Second, the

inference cost from the attention mechanism in large models scales quadratically

with the input sequence length. The KV cache is unique for each sequence in

the batch, meaning that it grows in size with longer sequences and larger batch

sizes. This places a higher demand on memory capacity and bandwidth costs.

For instance, for a 500B+ model with multihead attention and a context length

of 2048 and a batch size of 512, the KV cache totals 3TB. Third, Sparse atten-

tion mechanisms, which are designed to reduce the computational and memory

burden of attention operations in Transformer models, come with their own

challenges. Sparse attention operations are not as efficiently supported on cur-
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rent hardware as dense operations. Modern hardware accelerators like GPUs

and TPUs are designed to perform dense matrix operations efficiently, but they

may not handle sparse operations as well. This mismatch can lead to inefficient

utilization of hardware resources, thus increasing the inference cost.

We categorize the Transformer inference according to the model size, input

sequence length, and batch size (see Fig. 1.1). In this thesis, we propose Trans-

former optimization methods to reduce inference cost (e.g., low latency, high

throughput, and minimum hardware requirement) for these inference scenar-

ios.

2.3 Sparse Attention-Based Transformers

In a sparse Transformer, SA is performed with multiple heads in the same way

as the multi-head attention [61] in a typical Transformer. In other words, in an

input matrix of (Lin, Dh), a single row vector of (1, Dh) is split by the number of
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heads, and the matrix of Lin×Dh generated by applying it to other row vectors

is repeatedly applied in parallel with a single head SA. Here, Lin represents the

input sequence length, Dh represents the head dimension of a single head, and

Dh (i.e., Dh× the number of heads) represents the vector size for the entire head.

The SA for a single head sequentially performs sparse operations consisting

of SDDMM, scaling and masking, SpSoftmax, and SpMM (see Fig. 2.3). It

finally obtains the context (Ch) by a single head of query (Qh), key (Kh), and

value (Vh). Qh,Kh, and Vh are dense matrices whose shapes are (Lin,Dh), being

split by the number of heads in the query, key, and value of the entire head to

perform SA for a single head. The query, key, and value of the entire head are

hidden states, dense matrices in which hidden vectors with a vector size of Dh

are stacked in Lin and are calculated by multiplying them with different weight

matrices of (Dh, Dh). The hidden states refer to the input sequence consisting

of Lin tokens, an (Lin, Dh) dense matrix, which is the output matrix of the

embedding layer, the previous layer of SA.

We describe each sparse operation below: SDDMM is a sparse operation

that multiplies two dense input matrices to obtain a sparse output matrix. The

sparse output matrix is generated by loading and calculating only the portion

of the non-zero output elements using the metadata of a sparse format. In SA,

SDDMM is an operation that multiplies Qh andKh to obtain an attention score

(S) that shows the relevance between tokens (a word or word piece, which is

different from the tokenizing methods [54,63]).

Scaling is an element-wise operation; a sparse matrix calculated by SD-

DMM is multiplied by scaling factors (SF=1/
√
Dh). It alleviates the gradient

vanishing problem, pushing the softmax function into regions with extremely
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small gradients as the result of SDDMM growing large in magnitude [61].

Masking is an operation that masks out invalid elements in the mask matrix.

If the input sequence length is smaller than the maximum sequence length the

model can process, zero padding is conducted. Masking invalidates the zero-

padded parts. In SA, it also masks out the invalid portion of the pre-defined

sparsity. For invalidating zero-padded parts and the invalid portion, masking

assigns an infinite negative value to them represented in the mask matrix.

SpSoftmax normalizes S to an attention probability (P ) to mitigate the

scale-up of S following SDDMM, scaling, and masking. SpSoftmax performs

row-wise softmax only on non-zero elements of S, a sparse matrix represented

by a sparse format. Similar to S, P is also an attention map expressing input

tokens’ importance.

SpMM is a sparse operation that multiplies the sparse input matrix repre-

sented by a sparse format with a dense input matrix to obtain a dense output

matrix. The output matrix is calculated by loading only the non-zero elements

in the input sparse matrix using the metadata of the sparse format and the cor-
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responding element in the other input dense matrix. In SA, the left-hand side

matrix is a sparse matrix P , the right-hand side matrix is a dense matrix Vh, and

the output matrix is a dense matrix, referred to as context (Ch). Consequently,

the context has a higher value for the more important hidden vector, i.e., it

gives valuable weight to an important token; hence it can attend to important

information.

2.4 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is a well-known technique for decom-

posing a matrix into three matrices, namely, the left singular matrix U, the

singular values S, and the right singular matrix V. Given a matrix W of di-

mensions (K,N ), SVD factorizesW into three matrices U, S, and VT , such that

W = U ∗ S ∗ VT , where U is an (K,R) orthogonal matrix, S is an (R,R) di-

agonal matrix with non-negative values on the diagonal, and VT is an (N,R)

orthogonal matrix. To compute the low-rank approximation of W, we trun-

cate the U, S,VT matrices to a predetermined rank R′, where R′ ≪ min(K,N).

This truncation results inW ≈ Ur ∗ Sr ∗VT
r , where Ur, Sr and V

T
r represent the

truncated matrices with shape of (K,R′), (R′, R′) and (N,R′), respectively.

2.4.1 SVD-Based Matrix Multiplication in Transformer models

Applying SVD-based low-rank approximation to the Transformer model en-

ables model compression. By factorizing the weight matrices involved in the

matrix multiplications of Transformer models, we can obtain smaller matrices,

Ur, Sr, and Vr, decomposed by SVD. In addition, the Sr matrix with dimen-
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sions (R′, R′) can be multiplied by either the Ur matrix with dimensions (K,R′)

or the Vr matrix with dimensions (N,R′). This implies that the actual weight

parameter only needs to retain two matrix parameters with dimensions equiv-

alent to those of Ur and V
T
r . Therefore, if a weight matrix W with dimensions

(4096, 4096) is compressed by SVD, with R′ being 1024, it can be decomposed

into matrices Ur and Vr with dimensions (4096, 1024) and (1024, 4096), respec-

tively. This makes it possible to achieve a compression ratio of 2 : 1.

During inference, applying the SVD approach to matrix multiplications in

Transformer models can reduce execution time by decreasing computation. Ma-

trix multiplication accounts for the most of time in Transformer model [48], and

the computation of this matrix multiplication based on SVD (SVD-matmul,

i.e., Y = X ∗ Ur ∗ Vr) can be reduced as the rank size decreases. For exam-

ple, if the dimensions of X and W are (M,K) and (K,N ), respectively, and

the dimensions of Ur and Vr obtained by factorizing W via SVD are (K,R′)

and (R′, N ), then the computation of the matrix multiplication changes from

2MKN to 2MR′(K + N). If R′ ≪ min(K,N), the computation is reduced.

For example, if M = K = N = 4096 and R′ = 1024, the computation of

the former is twice that of the latter. As R′ decreases (i.e., higher compression

ratio), the computation decreases even further. Therefore, we can accelerate

Transformer models using SVD through the decrease in computation of matrix

multiplication.

However, SVD-matmul (i.e., Y = X∗Ur ∗Vr) is inefficient on GPUs. This is

particularly noticeable in inference scenarios involving skewed matrix multipli-

cation (i.e., including tall-and-skinny matrices) or small matrix multiplication

(e.g., matrix shape dimensions under 1024). Without fusing the SVD-matmul
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(i.e., two GEMMs such as P = X∗Ur,Y = P∗Vr), there are two memory-bound

matrix multiplications in the skewed matrix multiplication. It leads to a memory

bandwidth bottleneck and could waste computing resources [8]. Additionally,

if the partial matrix P is too large to be stored in the L2 cache, unnecessary

memory accesses may occur. We can alleviate the above problems by fusing the

SVD-matmul (i.e., launching Y = X ∗ Ur ∗ Vr with one kernel), but this could

lead to unnecessary data loading or multiplication. To obtain an output tile, re-

peatedly loading the whole U leads to increase the memory traffic and additional

multiplication operations. This hinders performance because GPU compute and

memory resources could be underutilized. To address the limitations of SVD-

matmul and offer a more efficient solution for matrix multiplication, especially

when implemented on GPUs, we propose a tiled singular value decomposition

(TSVD) approach.

2.5 Parameter Efficient Fine-Tuning (PEFT)

Parameter-efficient fine-tuning (PEFT) [7, 16, 26] is a cutting-edge approach

designed to mitigate the challenges that arise when fine-tuning large models

(LMs). PEFT methods only fine-tune a small number of model parameters

while freezing most parameters of the pre-trained models. This approach de-

creases the computational and storage costs and overcomes the issue of catas-

trophic forgetting observed during full fine-tuning of LMs. PEFT methods

also generalize better to out-of-domain scenarios and are useful in low-data

regimes. Furthermore, PEFT methods allow for portability, enabling users to

get tiny checkpoints worth a few MBs compared to the large checkpoints of
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full fine-tuning. This is possible because the small trained weights from PEFT

methods are added on top of the pre-trained models, so the same model can be

used for multiple tasks by adding small weights without having to replace the

entire model.

2.6 Graphics Processing Unit (GPU)

Modern NVIDIA GPU architecture includes arrays of streaming multiproces-

sors (SMs), and multiple SMs are connected to the L2 cache and device memory

via the interconnect. In an SM, there are CUDA cores for arithmetic operations,

special function units for transcendental functions, and tensor cores that sup-

port tensor operations to accelerate machine learning workloads. Register files

(RFs), L1 cache, and shared memory (SMEM) store temporary data. L1 cache

and SMEM are combined into a single memory block, which supports both

types of memory accesses to provide bandwidth and capacity efficiently start-

ing from the Volta architecture. The Ampere architecture starts to provide a

new load-global-store-shared asynchronous copy instruction that saves SM

internal bandwidth by bypassing the L1 cache and the RFs.

A GPU operates in a single instruction multiple thread manner, and a GPU

kernel spawns numerous threads and processes them in parallel. These threads

constitute a thread hierarchy consisting of thread, warp, thread block (TB), and

grid. The consecutive 32 threads compose a warp, multiple warps compose a

TB, and multiple TBs compose a grid. A kernel executes one or more grids in

parallel. Modern GPUs can process up to four warps simultaneously within each

SM, where an SM allocates tasks in units of TBs. One SM can allocate multiple
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TBs if there is no capacity limit on the SMEM or RFs. When the operation for a

single TB finishes, the next TB is assigned to the SM in a round-robin manner.

Besides CUDA cores, the Volta architecture starts to add tensor cores to the

SM, drastically speeding up tensor operations. A tensor core performs one 4×4

matrix multiplication and accumulation in a single cycle, supporting FP16/FP32

mixed precision [11,12].

NVIDIA GPUs introduce the concept of streams [36], a sequence of com-

mands executed in order (i.e., possibly issued by different host threads) to man-

age concurrency by executing asynchronous commands. Multi-stream fully

utilizes hardware resources by enabling concurrent execution of different streams.
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Chapter 3

Multigrain

3.1 Contribution

We propose Multigrain, a new Transformer-specific optimization approach, to

accelerate sparse operations on the compound-sparse patterns to overcome the

problems of the aforementioned approaches. Multigrain can solve the problems

of the existing solutions while maintaining the advantages of the coarse-grained

and fine-grained approaches as much as possible and mitigating the disadvan-

tages.

3.1.1 Multigrain mechanism

Sparse patterns (e.g., local, global, and selected) of compound-sparse-pattern

based Transformer are determined offline by the model to be used, but the num-

ber and position of nonzeros are changed by the input data at every iteration.

According to these environmental characteristics, Multigrain mechanism works

with the following steps (see Fig. 3.1).

First, we classify and group sparse patterns into the coarse-grained and

This chapter is based on [32].
”A Slice and Dice Approach to Accelerate Compound Sparse Attention on GPU” ©2022 by

Hailong Li, Jaewan Choi, and Jung Ho Ahn is licensed under CC BY 4.0. https://doi.org/
10.1109/IISWC55918.2022.00019.
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Figure 3.1: A Multigrain mechanism. 1) We categorize sparse patterns into
coarse-grained and fine-grained patterns. 2) we generate the metadata (e.g.,
row offsets and column indices) for the compressed sparse matrices with the
model configuration and positions of the special tokens before inferring the
model. 3) In the compound SA, either SDDMM or SpMM is executed through
both coarse-grained and fine-grained kernels, processed in parallel using multi-
stream. SpSoftmax fused with scaling and masking is processed by a single
kernel that can handle coarse-grained and fine-grained results represented by
different sparse formats.

fine-grained parts according to the spatial locality before processing the sparse

Transformer with Multigrain. We regard local, dilated, blocked local, blocked

selected, blocked global, and blocked random patterns as the coarse-grained

part and selected, global, and random patterns as the fine-grained part. We

represent the coarse-grained part where nonzeros are structured and clustered

as BSR format and the fine-grained part where nonzeros are unstructured and

distributed as CSR format.

Second, when preprocessed input data are fed, we generate the BSR and CSR

metadata. We use the window size in the model configuration to generate the

BSR metadata for the coarse-grained part; and we use global indices (i.e., start

25



and end tokens for a sentence, paragraph, and document) from the position of

special tokens to generate the CSR metadata for the fine-grained part. How-

ever, the positions of special tokens change depending on each example in the

datasets; we need to generate the CSR metadata at every iteration. In contrast,

we generate the BSR metadata only once due to the fixed window size. We load

the generated the metadata to the GPU for reuse in the repeated SA.

Third, we allocate the part represented in BSR format to the coarse-grained

kernel and the part represented in CSR format to the fine-grained kernel. In

the sparse GEMMs (i.e., SDDMM and SpMM), we process SDDMM/SpMM

through both coarse-grained and fine-grained kernels in parallel using multi-

stream.

We used a coarse-grained kernel we designed, which will be elaborated on in

detail in Section 3.1.2. For the fine-grained kernels, we adopt Sputnik, which

supports sparse GEMMs using CSR. We modify it to support half-precision

(FP16) operations in SDDMM and optimize it further to achieve 3.3× to 6.2×

speedups over the unmodified Sputnik. In SpSoftmax, we fused the scaling

and masking operations with the sparse softmax using our customized sparse

softmax kernel. In QDS-Transformer, we process SDDMM and SpMM of

the local pattern part using our customized coarse-grained kernel using BSR

metadata. Moreover, the selected pattern part is processed in the fine-grained

kernel using CSR metadata.

We make exceptions for the special sparse patterns similar to the global

pattern (a default pattern in the Longformer), whose parts can be processed

independently in SpSoftmax and processed as dense operations in the sparse

GEMMs. For those patterns, we perform SDDMM and SpMM for the special
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Figure 3.2: Hierarchical decomposition of SDDMMwith the blocked row split-
ting scheme.

pattern parts using CUTLASS [1] kernels and perform SpSoftmax using the

TensorRT’s [60] softmax kernel because these libraries perform more efficiently

than Sputnik.

3.1.2 Coarse-grained GPU kernels

We design two new coarse-grained kernels using BSR for the sparse GEMMs

(i.e., SDDMM and SpMM), which handle coarse-grained pattern parts. Al-

though we can use Triton for the coarse-grained part, it uses an inconsistent

blocked sparse format between SDDMM and SpMM, requiring more memory

spaces for storing the metadata of the different sparse formats. Also, Triton is

not written in CUDA; hence it is difficult to process it with other kernels im-

plemented by CUDA concurrently through multi-stream. Our design is on par

with Triton in terms of the execution time, and outperforms Triton by 1.32× by

2.02×, particularly in batch processing (see Fig. 3.10).

Coarse-grained SDDMM kernel design: We design a new coarse-grained

SDDMM kernel that embodies a blocked row-splitting scheme following the

row-splitting scheme [64]. In the blocked row-splitting scheme, we assign each

row block in the output matrix represented by BSR to a single TB. Fig. 3.2 shows
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the hierarchical decomposition of SDDMM using the blocked row-splitting

scheme. We apply tiling to implement SDDMM efficiently by decomposing

the blocked GEMM into a hierarchy of TB-level tiled GEMM, warp-level tiled

GEMM, and thread-level tiled GEMM, similar to CUTLASS. LHS is the left-

hand-side dense matrix, RHS is the right-hand-side dense matrix, and OUT

is the sparse output matrix represented by BSR. The blocked GEMM, a part of

SDDMM, is handled by a single TB. Each TB computes its output non-zero

blocks (OUT blocks) in a row by iteratively loading the matrix blocks from

RHS and LHS.

To exploit locality and parallelism, we partition the blocked GEMM into a

TB-level tiled GEMM. We empirically set kM and kN , the sub-tile sizes of

the column and row dimensions, as the block size of the non-zero blocks be-

cause the maximum number of TBs allocated to SM is limited depending on the

memory resources actively used by a TB. A sub-tile block, a single non-zero

block of the output matrix (OUT block), is obtained by accumulating the prod-

ucts of matrices by stepping through the K dimension (i.e., the row dimension

in the LHS, and the column dimension in the RHS) in blocks. Then, the TB

processes a series of different output non-zero blocks in the row sequentially

to get the entire output row blocks. Thus, we reuse the LHS block repeatedly

when processing OUT blocks sequentially in the TB-level tiled GEMMs, during

which we load data from device memory (D) to SMEM for data reuse.

In processing warp-leveled GEMM, we still follow the blocked row-splitting

scheme. We assign each output row block on the warp level to a single warp.

A warp performs a matrix multiply-accumulate (MMA) operation using the

tensor core with an m16n8k16 shape supporting FP16 operations. We prevent
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Figure 3.3: Hierarchical decomposition of SpMM with the blocked one-
dimensional tiling scheme.

overflow by using an MMA instruction that supports FP32 for the data type of

the output element. We split the warp-level LHS blocks and RHS blocks into

kK dimensions (i.e., the row dimension of the warp-level LHS and the col-

umn dimension of the warp-level RHS, as shown in Fig. 3.2) to reuse registers

(REG). If the warps inside a TB use too much of REG, we enforce SM to use

fewer TBs and decrease the occupancy of GPU. It degrades the GPU perfor-

mance because low occupancy always reduces the ability to hide latencies.

We use software pipelining (double buffering) to hide the latency of memory

operations. The method feeds the output of each stage to its dependent stage

during the next iteration and executes all stages of the GEMM hierachy in par-

allel within a loop. We eliminate the latency of the RHS loading from device

memory to SMEM by double buffering the tile size of SMEM used by the

RHS.

Coarse-grained SpMM kernel design: Our coarse-grained SpMM kernel

uses a blocked one-dimensional (1D) tiling scheme. It follows the blocked row

splitting scheme like our SDDMM, except that a single TB is not mapped to

an entire output row block, but similar to the 1D tiling scheme [20], where we

shard the output matrix into 1D tiles and map independent TBs to each tile.
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We empirically set the output tile size the same as the non-zero block of BSR.

Fig. 3.3 shows the hierarchical decomposition of SpMM using the blocked 1D

tiling scheme, and we also apply tiling to implement SpMM efficiently, similar

to our SDDMM kernel. LHS is a sparse input matrix represented by BSR, RHS

is a dense input matrix, and OUT is a dense output matrix.

In a blocked GEMM, we accumulate the products of matrices by loading

non-zero blocks of the LHS and the corresponding RHS and obtain the OUT

blocks. However, if the number of non-zero blocks is large, a TB cannot load all

LHS non-zero blocks at once due to the limited memory resources in the SMs.

Therefore, we partition the blocked GEMM into the TB-level tiled GEMMs.

In the TB-level tiled GEMM, we accumulate the products of matrices by

stepping through the non-zero blocks in a row of the sparse matrix to obtain

the OUT blocks. We apply a tiling structure to reuse additional OUT blocks

and allocate more TBs to SM. To process a single non-zero block, we split

each non-zero block of LHS and the corresponding block of RHS into the

K dimensions, and we load the slice of LHS and RHS to get the OUT block.

Therefore, an OUT block can be reused by the number of non-zero blocks of

LHS and the number of slices in a non-zero block. First, we store the split slice

of the LHS block and the RHS block in SMEM and then use the warp-level

tiled GEMM. Second, SMEM stores twice as much the slice of the LHS and

RHS blocks. Similar to SDDMM, this is to use software pipelining to hide

latency for data movement. The number of TBs that can be allocated in an SM

is more limited by REG than by SMEM because REG is generally smaller than

SMEM available for TB in an SM. The warp-level tiled GEMM follows the

blocked row-splitting scheme, and we implemented the operations in the same
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way as SDDMM.

3.1.3 Compound sparse softmax GPU kernel

In SpSoftmax, we also design a new sparse softmax kernel. As opposed to

SDDMM and SpMM, we use a single sparse softmax kernel to process the

outputs of coarse-grained and fine-grained kernels altogether. It is difficult

to obtain accurate softmax results with one type of SDDMM output if coarse-

grained and fine-grained sparse patterns are in the same row as softmax sweeps

all row elements (e.g., find the max or exponential sum). Prior to the sparse

softmax operation, we process scaling and masking operations to reduce the

memory access.

Before running the model, we invalidate the overlapped parts if the coarse-

grained and fine-grained patterns are overlapped. It avoids inaccuracies from

the softmax operations due to the overlapped fields. We use a mask matrix, an

attention map where valid elements are represented as zeros and invalid elements

are infinite negative values. The valid elements refer to the coarse-grained pat-

tern because some non-zero blocks represented as BSR for the coarse-grained

patterns, such as the local pattern, may be sparse. The invalid elements refer to

the zero-padding portion to meet the maximum sequence length and overlapped

parts between the coarse-grained and fine-grained patterns.

Our compound sparse softmax kernel follows the blocked row-splitting

scheme. We assign a single TB to an entire output row block to perform a

row-wise softmax operation. As the output row block appears in a combi-

nation of the non-zero blocks represented by BSR and the non-zero elements

represented by CSR, the output row blocks processed by a single TB depend on
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the number of the non-zero blocks present in each row. We proceed with the

following three steps to perform the safe softmax in each row [37]: First, the

max-finding process searches for the maximum of non-zero elements. Second,

in the exponential sum process, we subtract the maximum value from each ele-

ment, exponent the differences, and sum the results. Due to the limited range of

values representable in existing GPUs, the subtraction can prevent overflow or

underflow during the exponent operations. Finally, the normalization process

normalizes each exponent element executed in the previous process to obtain

the final output.

In each step, the dataflow sweeps the row elements of the non-zero blocks

in the BSR format and the non-zero elements in the CSR format. Taking the

max-finding process as an example, we first sweep the non-zero blocks present

in each row using the BSR metadata, and we find the maximum value among

the ones held by each thread in the coarse-grained pattern part. Next, we

sweep non-zero elements in each row using CSR metadata and find the max-

imum value among elements held by a thread in the fine-grained pattern part.

Therefore, each thread holds the maximum value among the swept elements.

We find the maximum element by comparing the elements between threads with

each other through warp shuffling, which exchanges the register values between

threads within the warp. As a result, each thread holds the maximum element

among row elements.

However, we make an exception for the special patterns, which areglobal

patterns that can perform softmax independently. If the compound sparse pat-

tern includes the special pattern, we process the special pattern parts through

the dense softmax kernel and use multi-stream to process with the compound
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Table 3.1: Specifications of the GPUs used in the evaluation. *Peak rates are
based on the GPU’s base clock. **Recent GPU architectures combine L1 data
cache and SMEM functionality into a single memory block.

A100 RTX 3090

Memory Bandwidth (GB/s) 1,555 936.2
TFLOPS (FP16 CUDA core)* 42.3 29.3
TFLOPS (FP16 Tensor core)* 169 58
L1 D$ per SM (KB)** 192 128
L2 (MB) $ 40 6

sparse softmax kernel for other pattern parts in parallel.

3.2 Evaluation

We evaluated the effectiveness of Multigrain with various batch sizes in the

Longformer and QDS-Transformer, which are sparse Transformers based on

the compound SA. To show the performance improvement in the region of

interest, we evaluated Multigrain in the various compound patterns. They

includes real workloads and synthetic workloads considering that the work-

loads will be applied to future models. Finally, we evaluated the performance

improvement of the blocked row-splitting scheme. We compared our cus-

tomized coarse-grained kernels to Triton at the sparse operation based on var-

ious coarse-grained patterns such as a local, blocked local, and blocked random

pattern.

3.2.1 Experiment Setup

We evaluated inference speed for the sparse Transformer models using FP16

operations in real-world tasks. We use the Longformer and QDS-Transformer

models, which achieved superior accuracy due to exploiting the compound SA.
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Longformer employs local, selected, and global patterns and records SOTA

scores on tasks such as question and answer (QA) and reading comprehension.

QDS-Transformer utilizes local and selected patterns and records impressive

accuracy on document ranking tasks. We used a large model of Longformer

provided by HuggingFace [62] and a base, officially-release model of QDS-

Transformer. We measured the end-to-end execution time of Longformer us-

ing the hotpotQA [66] dataset, and of QDS-Transformer using the Microsoft

MAchine Reading Compensation (MS-MARCO) [41] dataset.

We run the PyTorch 1.8.2 framework [49] on two GPUs with different

computational characteristics (A100 [43] and Geforce RTX 3090 [6]) run-

ning CUDA toolkit 11.3 [44]. Hardware specifications are shown in Table 3.1.

The execution time and the off-chip memory accesses on GPUs are measured

throughNVIDIANsight Compute. We used a deep learning optimization library

DeepSpeed (v0.5.1), released by Microsoft, that efficiently handles Transformer

models. This library performs SA with OpenAI’s Triton (v1.1.1) and processes

it in the coarse-grained method. However, it suffers from excessive local mem-

ory accesses due to the register spill issue in SDDMM; hence we applied opti-

mizations to SDDMM in our experiments.1 We used Sputnik, which processes

SDDMM and SpMM in the fine-grained method. We extended it for sup-

porting FP16 and batched operations. Moreover, we optimized the SDDMM

kernel using the row-splitting scheme instead of the 1D tiling scheme, which is

the official Sputnik version.2 In SDDMM, the 1D tiling scheme wastes the SM

1In SDDMM (a single batch, four multi-head, and 64 head dimensions), our optimized
Triton was 6.24×, 6.23×, and 6.73× faster than the original version at the local, blocked local,
and blocked random patterns, respectively.

2The SDDMM kernel optimized with the row-splitting scheme reduces execution time by
3.3× to 6.2× over the 1D tiling scheme.
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Figure 3.4: Execution time and memory traffic of Longformer-large and QDS-
Transformer models by applying Triton, Sputnik, and Multigrain. We normal-
ized the other results based on the Triton. The absolute execution cycle and
memory traffic of each baseline is shown below each model.

resource because warps that do not perform operations cost extra TBs. Thus, it

decreases the achieved active warps per SM and induces overhead from context

switching in the warp scheduler, and the GPU performance degrades.

3.2.2 End-to-End latency on sparse Transformers

Multigrain accelerated Longformer and QDS-Transformer by optimizing com-

pound SA during the inference. Fig. 3.4 shows the end-to-end execution time

and memory traffic of Longformer and QDS-Transformer using Triton, Sput-

nik, and Multigrain on the GPUs (A100 and RTX3090) with different com-

putational characteristics. In Longformer and QDS-Transformer, Multigrain

reduced memory traffic by 2.84× and 3.78×, respectively, compared to Triton,

while reducing execution time by 2.07× and 1.55×. Moreover, it reduced the

execution time by 2.08× and 1.09×, respectively, with similar memory traffic

compared to Sputnik.
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Comparing the speedup in Longformer and QDS-Transformer, we observed

that the degree of performance improvement varies because each model has a

different ratio between the number of the sparse blocks and dense blocks due to

the differences in the window size and the maximum sequence length. For ex-

ample, the ratios between the number of sparse blocks and dense blocks are 1:3

and 2:1, respectively, when performing the sparse operation of a local pattern

with a block size of 64 in Longformer and QDS-Transformer. The more low-

sparsity sparse blocks there are, the more benefits the fine-grained kernel has

over the coarse-grained kernel because the fine-grained kernel only operates

on valid elements. Although the coarse-grained kernel improves performance

using tensor cores in the fine-grained parts, the gains are negated by the unnec-

essary computation and memory accesses when processing sparse blocks with

low sparsity. By contrast, the coarse-grained kernel performed better than the

fine-grain kernel when performing operations with more dense blocks. It bene-

fits from data reuse and high-performance tensor cores. Therefore, Multigrain

has higher speedup in Longformer, where there are more dense blocks than

QDS-Transformer. Moreover, Multigrain achieved more improvement in Tri-

ton than Sputnik for QDS-Transformer.

We evaluated the performance ofMultigrain with DeepSpeed [53] and Faster-

Transformer [42], libraries that accelerate Transformer-basedmodels (see Fig. 3.5).

In the latest FasterTransformer (v5.3), the Longformer is faster than the Deep-

Speed version. As a result, Multigrain demonstrates a speedup of 2.07× in

DeepSpeed and 1.47× in FasterTransformer.

Multigrain exhibits improved performance as the batch size increases (see

Fig. 3.6). The sparsity of the sparse patterns in SDDMM and SpMM is similar
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Figure 3.6: Speedup in Longformer-large and QDS-Transformer at the various
batch sizes by applying Triton, Sputnik, and Multigrain.

for each batch. The local pattern beneficial for Triton remains consistent, while

the global or selected pattern, which is advantageous for Sputnik, can vary based

on the input sequence. Consequently, as the batch size increases, the limitations

of Triton and Sputnik become more expanded. However, Multigrain effectively

mitigates these shortcomings by fully utilizing GPU resources, leading to notable

performance improvement. It shows up to 2.34× and 1.82× speedups compared

to Triton and 2.13× and 1.17× speedups compared to Sputnik, respectively, in
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Longformer and QDS-Transformer.

Multigrain achieved a similar degree of performance improvement for both

RTX3090 and A100 by reducing memory traffic. However, compared to A100,

RTX3090 experiences more performance degradation for the coarse-grained

kernel using tensor cores compared to the fine-grained kernel using CUDA

cores. It is because the peak floating-point operations per second (FLOPS) value

of the tensor cores is reduced more than that of the CUDA cores, as shown in

Table 3.1. Therefore, Sputnik showed a greater performance improvement than

Triton on RTX3090. In Longformer and QDS-Transformer, it shows 1.10×

and 1.64× speedup, respectively. Both coarse-grained and fine-grained ker-

nels exist in Multigrain; hence their performances are determined by the GPU’s

computing abilities. Multigrain shows 1.58× and 1.44× speedups compared to

Triton and Sputnik in Longformer, respectively, which shows less performance

improvement than A100 due to the performance degradation of the tensor core.

By contrast, in QDS-Transformer, Multigrain is 1.68× and 1.02× faster than

Triton and Sputnik, respectively.

3.2.3 Speedup on the sparse attention

Multigrain improves performance for the compound sparse patterns besides the

sparse patterns exploited in the existing sparse Transformers. In the follow-

ing, we analyzed the results of sparse operations in the various sparse patterns,

including existing compound-sparse and synthetic patterns.
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Compound sparse GEMM

In the compound sparse GEMM (i.e., SDDMMand SpMM) of various compound-

sparse patterns, Multigrain is faster than Sputnik and Triton (see in Fig. 3.7).

Especially, Multigrain achieved more speedup if global patterns are included

in the compound-sparse pattern. On the contrary, Multigrain showed lim-

ited performance improvement, if there are random patterns in the compound-

sparse patterns.

In particular, Multigrain achieves a 2×–5× speedup for the sparse oper-

ations of the compound-sparse patterns exhibiting the global pattern, where

Multigrain improves the throughput of SDDMM up to 5.81× and 2.02×, and

SpMM up to 5.24× and 2.13×, respectively, compared to Sputnik and Triton

(see the last two patterns in Fig. 3.7). Sputnik causes load imbalance issues

for SM, which degrades its performance when processing the sparse operations

of such compound-sparse patterns. Sputnik maps an entire row of the out-

put matrix to a TB because it processes SDDMM as a row-splitting scheme.

This way, more elements that require operations are assigned to the TB while

processing the global pattern. The achieved active warp per SM value drops

as these TBs are allocated to the SM along with other TBs. Using the Nsight

Compute, we measured the ratio of the achieved and theoretical occupancies,

a metric representing the load imbalance. The smaller value of the metric, the

more severe the imbalance. In the kernel that processes the sparse operations

of the local, selected, and global patterns (L+S+G), the metric exhibited 61.2%,

which was lower than that of the local and selected patterns (L+S, 89%), which

occurred due to the global pattern part.

The load imbalance issues exist in SPMM as well, even though Sputnik per-
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Figure 3.7: Speedup of Multigrain compared to Sputnik and Triton in the
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dom sparse pattern). Compound-sparse GEMMs are sparse operations in the
sparse attention (i.e., SDDMM and SpMM). The operations are processed with
parameters such as 1 batch size, 4096 input sequence length, 4 multi-heads, 64
head dimensions, and 95% sparsity in each row.

forms SpMM by sharding the output into one-dimensional tiles and mapping

independent TBs to each. In SpMM, the computation and data required to pro-

cess by a TB depend on the sparse matrix. For Triton, the load imbalance issue

that SDDMM and SpMM operations experience has been mitigated. While

processing SDDMM, Triton does not suffer from load imbalances because each

TB processes the same number of non-zero blocks represented by the blocked

sparse format. In SpMM, Triton alleviates the load imbalance issue because the

tile size processed by a TB is larger than Sputnik, and the operations perform

quickly with high-performance tensor cores. Multigrain resolves this problem

by processing the global pattern part, especially with the CUTLASS [1] ker-

nel instead of the fine-grained method, considering the dense row units in the

global patterns.
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Figure 3.8: Speedup of our compound sparse softmax kernel (Multigrain) com-
pared to Sputnik and Triton with various compound-sparse patterns in SpSoft-
max on A100.

In the sparse GEMMs for the compound sparse patterns without a global

pattern, our method is faster than Sputnik and Triton by 1.34×–2.25× and

1.73×–2.34× in SDDMM, and by 1.23×–2.25× and 1.79×–3.04× in SpMM

(see Fig. 3.7). In the sparse operation of a blocked random and random (RB+R)

pattern, the randomness leads to load imbalances, leading to a lower speedup

than the other compound sparse patterns. Moreover, it is difficult to hide over-

head due to not exploiting the thread-level parallelism when a kernel allocates

fewer TBs that perform a large tile for small-sized matrix multiplications.

3.2.4 Speedup on the sparse softmax

SpSoftmax cannot be processed simultaneously by being divided into multiple

parts according to locality differences due to the row-wise operations of the

softmax. We designed a new compound-sparse softmax kernel that processes

the coarse-grained and fine-grained output matrices, whose results are repre-

sented by BSR or CSR in the SDDMM, into a single kernel.
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We compared our designed kernel with Sputnik and Triton to evaluate its

performance; our kernel is faster than both up to 12.63× (see Fig. 3.8). In

the former three compound sparse patterns without a global pattern, our cus-

tomized kernel has 1.26×–1.31× performance improvements over Sputnik,

whereas it has 7.09×–12.63× speedup over Triton. Using the fine-grained

method, Sputnik sends more memory requests for loading and storing the non-

zero elements. This is wasteful because the clustered non-zero elements can be

referenced in blocks for local patterns and blocked local patterns. By contrast,

the coarse-grained method can reduce the number of memory requests because

it refers to the non-zero blocks through the metadata of a blocked sparse for-

mat. Memory requests dropped by up to 80% when we switched from Sputnik

to Triton.

Still, Triton is significantly slower than Sputnik because Triton deals with its

fine-grained pattern parts using the coarse-grained method, inducing unnec-

essary computation and memory access. When the fine-grained pattern part is

processed in a coarse-grained method, Triton wastes operations on the invalid

elements in the sparse blocks with low sparsity.

In the latter two compound sparse patterns with a global pattern (see Fig. 3.8),

our customized kernel achieves 2.20×–2.82× and 5.06×–7.48× speedups com-

pared to Sputnik and Triton, respectively. We processed the global pattern part

separately using a dense kernel like sparse GEMMs. The global pattern has the

characteristic that the entire row is dense; hence the operation of the global

pattern part is not affected by the other patterns. It leads to performing the

global pattern part separately and can alleviate the load imbalance issue in the

end.
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Figure 3.9: Execution cycles of SDDMM and SpMM (sequence length=4096,
batch size=1, number of heads=4, window size=256, window block=3, block
size=64, and sparsity=95%) by applying Triton and our customized coarse-
grained kernel (Coarse). We normalize the values based on the execution cycles
of Triton. The absolute execution cycle of each Triton is shown next to SDDMM
and SpMM.

3.2.5 Speedup on the coarse-grained kernel

We implemented a coarse-grained kernel without using Triton to perform the

coarse-grained method efficiently. We evaluated SDDMM and SpMM using

the coarse-grained patterns, including local, blocked local, and blocked ran-

dom patterns. We decided the parameters3 of coarse-grained patterns based on

Longformer and QDS-Transformer.

In the local or blocked local pattern, our coarse-grained kernel improves

performance up to 1.26× and 1.24× in SDDMM, and 1.15× and 1.44× in

SpMM compared to Triton (see Fig. 3.9). However, our coarse-grained kernel

is 25% slower than Triton on SDDMM in the blocked random patterns. Our

kernel suffers from the load imbalance issue, where non-zero blocks in each

3Window size is 256 in a local pattern, window block is 3 in a blocked local pattern, and the
sparsity of the matrix is 95% in a blocked random pattern. Both blocked patterns have a block
size of 64.

43



0.0

0.5

1.0

1.5

2.0

2.5

SDDMM SpMM SDDMM SpMM SDDMM SpMM

Local Blocked local Blocked random

S
p
e
e
d
u
p

Batch 1 Batch 4 Batch 8

Figure 3.10: Speedup of our customized coarse-grained kernel (Coarse) com-
pared to Triton with various batch sizes on A100.

row may differ in the blocked random pattern. Therefore, it induces a longer

execution time because each TB is assigned to a row in the output matrix in our

row splitting scheme. If the batch size is large, the overhead from load imbal-

ances would be alleviated due to the increased number of TBs. In Fig. 3.10, our

kernel for the blocked random patterns improves up to 1.32× in performance

compared to Triton with four or eight batches. The performance of the other

coarse-grained patterns improves as the batch size increases. The number of

TBs is larger as the batch size increases. Hence the number of active warps

per SM becomes larger, where SMs can exploit warp-level parallelism to re-

duce latency caused by the warp stall. In SpMM, our kernel performs better

as batch size increases for the same reason. In the local pattern, blocked local

pattern, and blocked random pattern, we achieve speedup up to 1.43×, 2.02×,

and 1.49×.
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3.3 Related Work

3.3.1 Coarse-grained methods

Many studies have optimized the sparse attention on GPUs by applying the

blocked sparse format. DeepSpeed [53] uses OpenAI’s Triton [58] to process

the sparse attention. It is effective in the sparse operations for the coarse-grained

patterns because it uses the blocked sparse format. However, as the sparse op-

erations of the fine-grained patterns must be processed in a coarse-grained

method, the method has a disadvantage in that the operations result in unnec-

essary computation and memory access.

NVIDIA introduced cuSPARSE library [40] that provides a set of APIs for

sparse operations. The library provides the cusparseSpMM and cusparseSD-

DMM APIs with a practical speedup on 95% or higher degree of sparsity [9].

Among these APIs, an API can process an SpMMwith a coarse-grained method

using the blocked-ELL format. However, it must process a single batch sequen-

tially for multiple batch operations. Furthermore, the library does not support

SDDMM with a coarse-grained method, so it could not be applied to sparse

attention.

There have been studies to process the sparse operations using dense libraries

after reshaping matrices. BigBird proposed the blockify [67] scheme to process

sparse operations of the blocked local pattern, and Longformer proposed slid-

ing chunk [4] to process sparse operations of the local pattern. However, these

methods require pre-processing and post-processing, which induces consider-

able memory copy overhead.
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3.3.2 Fine-grained methods

To process sparse operations efficiently with irregular sparsity in SA, existing

research has explored several ways to implement the fine-grained method. The

Sputnik library [20] developed by Google accelerates sparse operations such as

SDDMM, sparse softmax, and SpMM on GPU. Sputnik exploits the reusability

of operands by using a one-dimensional tiling scheme to decompose the com-

putation across processing elements. Sputnik also uses vector instructions on

misaligned memory addresses and introduced an approach for load-balanced

computations. However, high-performance tensor-core units are not used in

the sparse operations of the coarse-grained patterns with a high spatial locality.

Moreover, Sputnik does not support batched operations; it only supports FP32

operations for SDDMM.

The NVIDIA cuSPARSE library provides fine-grained kernel APIs for sparse

operations using CSR or CSC. Similar to Sputnik, it does not use tensor cores,

and thus, it has issues with low data reuse in the sparse operation of coarse-

grained patterns. Starting from the Ampere and Hopper architecture GPUs,

NVIDIA introduced sparse tensor cores [38] to accelerate the sparse operation

of the 2:4 (50%) fine-grained structured patterns. NVIDIA provides a cuS-

PARSELt library to perform sparse GEMMs. As the sparsity has been reduced

by half, the cuSPARSELt APIs reduce the execution time by half compared to the

dense GEMM. However, the library only supports the 2:4 fine-grained struc-

tured sparse pattern, making it difficult to be applied to the existing compound

SA-based sparse Transformers.

Besides Sputnik, NVIDIA cuSPARSE, and cuSPARSELt, the VectorSparse

library [9] processes the sparse operations of the special fine-grained patterns.
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It introduced a column-vector-sparse-encoding method and a tensor-core-

based one-dimensional octet tiling scheme, which led to efficient memory access

and computation under a small grain size. The library is efficient for sparse

operations of the column-vector sparse pattern. However, it underperforms

when processing other fine-grained sparse patterns, such as global and random

patterns.
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Chapter 4

Tiled Singular Value Decomposition (TSVD)

4.1 Contribution

We propose a TSVD-based low-rank approximation approach for accelerating

Transformer-based models. TSVD divides an weight matrix into smaller tiles,

factorizes each tile using SVD, and then performs TSVD-matmul during infer-

ence. It enables model compression and computation reduction. Compared to

the conventional SVD approach, TSVD-matmul is efficient on GPUs, partic-

ularly in cases where matrices are small or tall-and-skinny shapes. At equiv-

alent compression ratio as SVD, TSVD achieves a speedup ranging from 1.02

to 2.26× on GPUs, effectively utilizing on-chip memory bandwidth and GPU

parallelism. When deployed to GPT-2 for the E2E NLG task, TSVD achieves a

speedup up to 1.11× and increases accuracy by a 1.5-point BLEU score with-

out a hyperparameter search, compared to full fine-tuning. We further propose

TSVD-common, a parameter-efficient fine-tuning method, which improves

the accuracy decreased by model compression. It leads to enhance the model

accuracy to the original level or beyond.

Consequently, the TSVD approach not only facilitates model compression

almost without accuracy degradation in small models such as GPT-2 but also

reduces the execution time. Moreover, for large models such as GPT-3, the

TSVD approach presents the additional advantage of minimizing the number of

48



Matrix
TSVD

V
U

V

USVD

Figure 4.1: Concept of the TSVD, which divides a matrix into smaller tiles and
factorizes each tile using SVD.

GPU requirements due to model compression.

4.1.1 Tiled Singular Value Decomposition (TSVD)

TSVD is a low-rank approximation technique that breaks down a matrix into

smaller tiles and factorizes each tile using SVD (see Fig. 4.1). Given a matrix

W with dimensions (K,N ), we divide it into smaller tiles, denoted as Wtile,

each with dimensions (tK, tN ). Each Wtile is then independently factorized by

SVD to obtain three smaller tiles: a (tK, tR) orthogonal matrix Utile, a (tR, tR)

diagonal matrix Stile, and a (tN, tR) orthogonal matrix Vtile. Thus, Wtile can

be expressed as Wtile = Utile ∗ Stile ∗ VT
tile. We truncate the Utile, Stile, and

VT
tile to a predetermined tiled rank size of tR′, where tR′ ≪ min(tK, tN). As a

result,Wtile ≈ Utiler ∗ Stiler ∗VT
tiler. Here, Utiler, Stiler, and V

T
tiler represent the

truncated matrices with shape of (tK, tR′), (tR′, tR′) and (tN, tR′), respectively.
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Figure 4.2: Compression errors on the various SVD methods at a 2× compres-
sion ratio. The compression error is calculated by mean square error (MSE) of
each tile between recovered matrix after compression and original matrix with
dimension of (256, 256). We randomly set an important tile (e.g., the 14th tile
values are much larger than other tiles in the matrix), and the size of this impor-
tant tile is (64, 64). As the tile size decreases, TSVD preserves more important
information.

TSVD demonstrates greater robustness than the SVD, as it is more effec-

tive at preserving essential information. To compare the robustness between

SVD and TSVD, we measure the mean square error of each tile between recov-

ered matrix after compression (i.e., SVD and TSVD) and original matrix (see

Fig. 4.2). TSVD retains important information (i.e., 14th tile) more effectively

than the SVD after compression. By factorizing into smaller regions, TSVD can

help mitigate important data loss during the overall factorization process. The

data is confined within its respective tiles and does not propagate to other tiles.

As a result, TSVD can preserve important information in each tile.
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4.1.2 TSVD-based matrix multiplication in Transformer models

We can accelerate Transformer models during inference using TSVD-based

low-rank approximation. Similarly to SVD, applying TSVD to the models can

also compress the model and reduce computation. In Fig. 4.3, the total com-

putation and weight parameters in GPT-2 medium with TSVD decrease as the

compression ratio increases.

Deploying TSVD to Transformer models involves two key steps. Firstly,

we compress the weight matrices involved in matrix multiplications through

TSVD-based low-rank approximation. This results in smaller matrix sets,

namely SUtiler, SStiler, and SV
T
tiler. SStiler is multiplied in advance by either the

SUtiler or SV
T
tiler. Thus, our weight parameters consist only of the SUtiler and

SVtiler. By using this approach, we can achieve the same reduction in the size of

weight parameters as SVD at equivalent compression ratios. We empirically set

the tile size according to the input matrix size and hardware architecture. Sec-

ondly, We perform TSVD-based matrix multiplication (TSVD-matmul, i.e.,

Y = X ∗ SUtiler ∗ SVT
tiler) during inference, instead of the original matrix multi-

plication (Y = X ∗W). When tK = tN for simplicity, we can achieve the same

computation reduction as the SVD method at equivalent compression ratios.

TSVD-matmul is more efficient on GPUs than SVD approach. Through the

roofline analysis (see Fig. 4.8), TSVD-matmul is leveraging GPU resources more

efficiently than other approaches in case 3 and 4 because it employs a small par-

tial matrix Ptile (i.e., the results of the Xtile ∗Utile) which can be stored in faster

memory. This reduces unnecessary data load and multiplication. Furthermore,

TSVD-matmul can mitigate inefficiency by transitioning the memory-bound

characteristics from the whole SVD-matmul to the tile-level, as tile-level op-
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Figure 4.3: Total computation and weight parameters in GPT-2 medium with
TSVD as the compression ratio increases. When the compression ratio is one,
the computation and parameters are identical to the original GPT-2 medium
with 512 input sequences and 64 output tokens. These results are calculated
by applying TSVD to all trainable parameters, such as the embedding table and
weights in the attention and feedforward.

erations can fully utilize the on-chip memory bandwidth.

4.1.3 Kernel Design

We designed a customized TSVD-matmul GPU kernel that adheres to the gen-

eral matrix multiplication mechanism on a GPU, taking reference from NVIDIA

CUTLASS [1] (v2.11.0). Within the thread block that processes the tile-level

operations, it fuses and executes the operations Ptile = Xtile ∗Utiler and Ytile =

Ptile ∗ Vtiler with tensor cores. For warp-level processes and matrix multiply-

and-accumulate (MMA) operations, we adhere to the CUTLASSmethod. Alg. 1

presents the pseudo-codes for our TSVD-matmul.

We optimize our TSVD-matmul kernel using the stream-K [46] method
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Algorithm 1: TSVD-matmul

Input: X ∈ RM×K , SUtile ∈ R#tile×tK×tR, and SVtile ∈ R#tile×tR×tN in
gmem

Output: Y ∈ RM×N in the gmem
foreach thread block TBn, n ∈ (0, MN

tMtN ) do
__shared__ smem[2× size(Xtile + Utile + Vtile)]
Set registers regx, regu, regv, regp, regy
Load Xtile0, Utile0, and Vtile0 from gmem to smem

for ki = 0 to K
tK − 1 do

if ki ̸= K
tK − 1 then

Load Xtile(ki+1), Utile(ki+1), and Vtile(ki+1) from gmem to
smem

end
Load Xtile(ki), Utile(ki), and Vtile(ki) from smem to regx, regu,
regv
Compute regp = regx ∗ regu
Compute regy = regp ∗ regv + regy

end
Store Ytilen from regy to smem
Store Ytilen from smem to regy
Store Ytilen from regy to gmem

end
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Figure 4.4: A various parallel workload decomposition techniques [46] at the
TSVD-matmul. The green and white blocks in the SMs represent output tiles.
In the figure (a), the entire output tile 0, allocated by thread block 0 (TB0), is
processed on SM0. The two types of blue blocks represent reduction operations
for load and store from the global memory.

(TSVD-K), a work-centric parallelization technique, to address load imbalance

issues. Instead of allocating an output tile to a thread block as in typical output

tile-based decomposition (see Fig. 4.4(a)), TSVD-K equally distributes inner

loop iterations among processing output tiles, ensuring optimal utilization of

computing resources (see Fig. 4.4(c)). The SplitK-decomposition, which equally

distributes k-dimension inner loop iterations to thread blocks (see Fig. 4.4(b)),

also fully utilizes computing resources. However, it incurs significant accumu-

lation overhead to achieve complete output tiles (e.g., fixup block, as indicated

by light or deep blue blocks in the output matrix). TSVD-Kmitigates this over-

head by reducing the number of thread blocks, while still maintaining a count

nearly equal to the number of streaming multiprocessors (SMs). Additionally,
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TSVD-K can reuse left-hand-side matrix blocks in shared memory. Therefore,

this strategy not only enables efficient use of GPU computing resources, but also

reduces accumulation overheads.

4.1.4 TSVD-Common: a PEFT of low-rank approximation

We propose TSVD-common, a parameter efficient fine-tuning method, to im-

prove the decreased accuracy by the compression. TSVD-common (see Fig. 4.5

shares one of the submatrices decomposed by SVD in each tile across all tiles and

fine-tunes only the common submatrix during training. It can reuse common

singular vectors such as Utile or Vtile in each thread block when performing tile-

level operations, so we could optimize our TSVD-matmul kernel with common

singular vectors additionally. To reduce the compression error after TSVD-

common, We decompose the weight matrices as shown in Fig. 4.6. First, we

split the weight matrix by the height of the tile and concatenate it as in Fig. 4.6

(a). Next, we obtain U and multiple V after performing SVD as in Fig. 4.6 (b).

If we then reshape V as depicted by the dashed box, all V will share U. In the

end, we can obtain submatrices factorized by the TSVD-common method.

55



Weight matrix

(a)

Fixed param

TSVD-common 
Weight matrix

Trainable 
param

V
U

V

(b)

Figure 4.6: TSVD-common decomposition.

TSVD-common presents two distinct advantages over LoRA [26], a rep-

resentative method for parameter-efficient fine-tuning. The first advantage is

a reduction in the number of parameters due to model compression, and the

second is a decrease in execution time also resulting from model compression.

As LoRA is not a model compression technique, it maintains the same number

of parameters as the original model, and its execution time is similar to, if not

slightly slower than, traditional fine-tuning. In contrast, TSVD is superior to

LoRA in terms of both parameter size and computational time.
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4.2 Evaluation

4.2.1 Experiment Setup

We evaluated TSVD-matmul on the NVIDIA A100 using FP16. We executed

the general matrix multiplication (GEMM) using the NVIDIA cuBLAS library,

and performed SVD-matmul with two GEMMs, as no existing library currently

supports SVD-matmul fusion. We designed the customized TSVD-matmul

GPU kernel based on the NVIDIA CUTLASS library. We also evaluated the

speedup in GPT-2 inference by applying TSVD to the matrix multiplications in

the attention layers and feedforward layers. To maintain the model’s accuracy

after compression, we fine-tuned GPT-2 medium on the E2E NLG task [18]

using TSVD with various compression ratios. We evaluated TSVD-common,

an efficient parameter fine-tuning method, on the WebNLG [22] task, which

is more challenging than the E2E NLG [18] task. Our evaluation considered

factors such as the number of shared submatrices, tile size, and the adaptation

location (e.g., attention or feedforward).

4.2.2 End-to-end latency on various input and output tokens for GPT

models

Fig. 4.7 illustrates the speedup for realistic problem cases at different compres-

sion ratios. Cases 1 and 2 involve specific matrix multiplication in the 175B

GPT-3 model’s inference process, with Case 1 handling an input sequence of

2048 during the summarization stage and Case 2 producing a single output to-

ken during the generation stage. Conversely, Cases 3 and 4 pertain to a similar

operation in the GPT-2 medium model’s inference, with Case 3 dealing with an
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input sequence of 512 in the summarization stage and Case 4 generating a single

output token during the generation stage. The comparison is made with respect

to GEMM without compression (used as the baseline), SVD-matmul, TSVD-

matmul, and TSVD-matmul optimized with the Stream-K method (TSVD-K).

As shown in the figure, TSVD performance improvement is more significant

as the compression ratio increases. In cases where large matrices are decom-

posed by SVD or TSVD (refer to cases 1 and 2 in Fig. 4.7), similar trends can

be observed with SVD. However, TSVD achieves greater speedup than SVD

at higher compression ratios, as the large matrices become tall-and-skinny af-

ter compression. Conventional GPU libraries such as cuBLAS tend to process

skewed matrix multiplications, including tall-and-skinny matrices, inefficiently

due to memory-bound operations. In addition, the operations result in issues

such as load imbalance or limited parallelism. In contrast, TSVD can mitigate

these problems by transitioning the tall-and-skinny feature from full matrices

to tile-level. This strategy fully utilizes the fast memory bandwidth in on-chip

memory, enabling to alleviate the memory-bound bottleneck. Furthermore, the

stream-K method helps resolve load imbalance issues. This method fully uti-

lizes the computing resources because TSVD-K distributes inner loop iterations

processed by the SMs equally.

In cases where smaller matrices are decomposed by SVD or TSVD (refer to

cases 3 and 4 in Fig. 4.7), TSVD achieves a considerable speedup compared to

SVD, attributable to two main factors. First, both TSVD and TSVD-K reduce

kernel launch time. While SVD requires two kernel launches for operations,

both TSVD and TSVD-K need a single kernel launch. In the case 3 and 4, due

to a small amount of computation and memory traffic, the portion of time spent
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Figure 4.7: Speedup on matrices of various sizes using different compression
ratios (N×) on the A100 GPU. In Cases 1 and 3, the GEMM is compute-
bound, and the TSVD tile size is 256. In Cases 2 and 4, the GEMM is memory-
bound, and the TSVD tile size is 64. The dotted line represents the baseline
GEMM without any low-rank approximation in each case. Additionally, the
execution time of each baseline is displayed below the legend for the respective
cases.(TSVD-K: TSVD with stream-K, Ratio: compression ratio)

on kernel launch increases compared to previous cases. Second, SVD is difficult

to fully utilize computing resources due to limited grid sizes (i.e., the number

of thread blocks). Even though adapting to the splitK-decomposition method

to increase grid size, it lags behind TSVD and TSVD-K due to accumulation

overhead. In the case 4, SVD performs even slower than our baseline, which

is executed without compression, mainly due to the time consumed by kernel

launch. Therefore, both TSVD and TSVD-K demonstrates greater efficiency
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Peak Arithmetic Performance

Case 4

Case 2

Case 3

Case 1

Figure 4.8: Roofline model for the matrix multiplication in four cases. The per-
formance ceiling is based on the NVIDIA GPU A100 with 80GB HBM achieving
up to 1,935GB/s with the base frequency of SM. The blue circles in the figure
are matrix multiplications without compression as a baseline in Fig. 4.7 In case 3
and 4, where smaller matrices are involved in the matrix multiplication, TSVD-
based matrix multiplications are faster than the other approaches by utilizing
more GPU resources.

than SVD.

The roofline performance model, as depicted in Fig. 4.8, serves as a per-

formance evaluation tool that shows the computational characteristics of the

operation within computer systems. The x-axis denotes the arithmetic inten-

sity, which is quantified as the ratio of arithmetic operations to singular memory

access. Correspondingly, the y-axis stands for the computational throughput in

terms of arithmetic operations executed per second. The performance of the op-

eration on the side with a diagonal line is bounded bymemory bandwidth, where
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Figure 4.9: Comparison of speedup among SVD, TSVD, and low-precision
quantization-based GEMM. Here, INT8-GEMM denotes the 8-bit quanti-
zation GEMM from Faster Transformer [42], while INT4-GEMM refers to the
4-bit quantization GEMM from GPTQ [19] Triton-based GPU kernel.

the slope means the memory bandwidth. Conversely, in the region bounded by

the horizontal line, performance is limited by the peak arithmetic performance

of the processor. Through the roofline analysis, TSVD-based matrix multi-

plication is leveraging GPU resources more efficiently than other approaches in

case 3 and 4. As a results, TSVD approach achieves greater speedup in these

cases (see Fig. 4.7)
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the compression ratio for the weights in GPT2-M except for the embedding
layer. (FFT: full fine-tuning, SVD: singular value decomposition, TSVD: tiled
singular value decomposition)

We compared our TSVD to the quantization-based matrix multiplication

used for accelerating Transformer-based models on GPUs. Fig. 4.9 repre-

sents the evaluation of INT8-GEMM and INT4-GEMM as quantization ap-

proaches 1. Faster Transformer [42] supports INT8-GEMM, while INT4-

GEMM uses the GPTQ [19]’s Triton-implemented GPU kernel. As a result,

SVD-basedmethods outperform the quantization-based approaches, given that

existing GPUs are not particularly optimized for low-precision quantization

operations. Fig. 4.11 represents differences among quantization, SVD, and

TSVD methods during matrix multiplication.

Fig. 4.10 demonstrates the trade-off between accuracy and speedup when

1Our applied quantization-based matrix multiplication has a data conversion overhead.
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Method Advantage Disadvantage Speed

Quantization It reduces the memory footprint. It has data conversion overhead. Slow 

SVD-nonfusion It reduces the complexity of 
memory footprint and 
computation with increasing 
compression ratio.

It launches two kernels. It involves 
two memory-bound GEMMs. If a 
partial matrix exceeds L2 cache size, 
unnecessary memory access occurs.

Medium

SVD-fusion It reduces the complexity of 
memory footprint and 
computation with increasing 
compression ratio. It allows for a 
single kernel launch. 

Unnecessary data loading for 'U' and 
unnecessary multiplication occur 
while obtaining the partial matrix. It 
requires the implementation of an 
efficient customized kernel.

Medium

TSVD It reduces the complexity of 
memory footprint and 
computation with increasing 
compression ratio. It allows for a 
single kernel launch. It effortlessly 
utilizes GPU resources.

It requires the implementation of an 
efficient customized kernel.

Fast

Figure 4.11: Differences among Quantization, SVD, and TSVDMethods during
Matrix Multiplication.

incorporating TSVD into GPT-2 for the E2E NLG [18] task. TSVD not only

performed competitively with full fine-tuning without compression, but also

it achieved a speedup of 1.06 to 1.11× at compression ratios ranging from 2

to 8, while increasing the accuracy by a 1.5-point BLEU score. By preserving

important information after compression compared to SVD, TSVD mitigates

the degradation of the model quality. It is beneficial to recover the accuracy of

the model during additional fine-tuning.

Fig. 4.12 illustrates the speedup of the end-to-end execution time in the

GPT-2 medium model as the length of the output sequence increases. The input

sequence length is fixed at 512, and a beam search width of 10 is used with a

single batch size. The red dotted line is our baseline without any compression

methods. As shown in the figure, TSVD is more efficient at shorter output

sequence lengths due to the predominance of the summarization portion.
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Figure 4.12: speedup of the end-to-end execution time in the GPT-2 medium
model as the length of the output sequence increases. The input sequence length
is fixed at 512, and a beam search width of 10 is used with a single batch size.
The red dotted line is our baseline without any compression methods. TSVD
is more efficient at shorter output sequence lengths due to the predominance of
the summarization portion.
Table 4.1: Impact of increasing the number of trainable parameters while keep-
ing the compression ratio fixed, by changing the number of shared matrices or
tile sizes when applying TSVD-common to GPT-2 medium on WebNLG [22]
(In our method name, ’T’ denotes tile size, and ’U’ denotes the number of shared
matrices.)

Method
Name

#Trainable
Param

Model
Size

Unseen
Score

Seen
Score

All

Full fine-tuning [51] 354.9M 1420MB 32.7 62.0 48.4
LoRA [26] 0.35M 1420MB 45.5 64.3 55.8

TSVD-U1T64 0.59M 710MB 12.4 60.2 38.9
TSVD-U1T128 2.36M 710MB 17.2 62.5 40.8
TSVD-U1T256 9.44M 710MB 25.3 62.1 45.2
TSVD-U1T512 37.75M 710MB 32.4 62.6 49.0

TSVD-T128U1 2.36M 710MB 15.7 61.7 40.1
TSVD-T128U4 9.44M 710MB 20.9 62.3 42.7
TSVD-T128U16 37.75M 710MB 30.7 62.6 48.1

4.2.3 TSVD-common accuracy on various cases

To recover the model quality compromised by compression, TSVD-common

only trains shared submatrices (i.e., submatrices U in our evaluation), while

64



keeping the other submatrices fixed. We employ TSVD-common to improve

accuracy, taking into account various factors such as the number of shared

matrices, tile size, shared shape (e.g., row-wise, column-wise, and square),

and changes in adaptation location (e.g., attention or feedforward).

Table. 4.1 illustrates the BLEU score associated with increasing the number of

trainable parameters, accomplished by altering the number of shared matrices or

tile sizes. As the number of trainable parameters increases, accuracy improves.

Particularly, when the tile size is set to 512, the accuracy exceeds that achieved by

the full fine-tuning method. However, despite these improvements, the model’s

quality does not fully recover, as indicated by the low unseen score, signifying

that the model’s generality remains compromised.

We applied TSVD-common separately to both the attention and feedfor-

ward components to investigate whether model compression-related informa-

tion loss occurs in either of these areas. As illustrated in Table 4.2, both methods

demonstrate an improvement in BLEU scores as the tile size increases. This im-

provement even surpasses the accuracy of the full fine-tuning method when the

tile size is set to 256. Furthermore, applying TSVD-common to the attention

component results in a better unseen score. Therefore, we can infer that the

feedforward component more significantly impairs the model’s generality.

We compressed the model at different ratios (see Table 4.3). The table shows

that when using TSVD-common without compression, its accuracy closely

matches that of LoRA. However, as the compression ratio increases, the model’s

generality is dramatically compromised.

We evaluated TSVD-common on the different tasks such as DART [39]

and E2E NLG [18] task. Table. 4.4 shows in the DART a similar trend to
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Table 4.2: Impact of adaptation location when applying TSVD-common to
GPT-2 medium on WebNLG [22] We set the compression ration as 2. (’attn’
denotes attention part, and ’ff’ denotes the feedforward part.)

Method
Name

Adaptation
Location

#Trainable
Param

Model
Size

Unseen
Score

Seen
Score

All

Full fine-tuning [51] 354.9M 1420MB 32.7 62.0 48.4
LoRA [26] 0.35M 1420MB 45.5 64.3 55.8

TSVD-U1T64 attn 0.20M 1110MB 28.3 56.4 43.8
TSVD-U1T128 attn 0.79M 1112MB 32.5 62.6 49.2
TSVD-U1T256 attn 3.15M 1122MB 35.3 63.5 50.9

TSVD-U1T64 ff 0.39M 909MB 26.5 59.9 45.1
TSVD-U1T128 ff 1.57M 914MB 31.1 62.9 48.9
TSVD-U1T256 ff 6.29M 932MB 34.9 63.1 50.8

Table 4.3: Impact of the different compression ratio when applying TSVD-
common to GPT-2 medium on WebNLG [22] We set the tile size as 256. (’all’
denotes both attention and feedforward part. ’R’ represents the compression
ratio of the fixed parameter size.)

Method
Name

Adaptation
Location

#Trainable
Param

Model
Size

Unseen
Score

Seen
Score

All

Full fine-tuning [51] 354.9M 1420MB 32.7 62.0 48.4
LoRA [26] 0.35M 1420MB 45.5 64.3 55.8

TSVD-U1T256R1 all 18.87M 1420MB 44.3 63.8 55.2
TSVD-U1T256R2 all 9.44M 710MB 25.3 62.1 45.2
TSVD-U1T256R4 all 3.15M 355MB 8.8 59.7 36.4

WebNLG [22]. When using TSVD-common without compression, its accuracy

also competitively matches that of LoRA. However, in the E2E NLG task, ㅑ

t exhibits performance almost close to LoRA even at high compression rates.

Therefore, the effectiveness of our TSVD method varies with the difficulty of

the downstream task.
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Table 4.4: Impact of the different tile size and compression ratios when applying
TSVD-common to GPT-2 medium on DART [39] and E2E [18] We set the
adaptation location as ’all’.

Method Name #Trainable Param Model Size BLEU score

DART [39] task

Full fine-tuning [51] 354.9M 1420MB 46.0
LoRA [26] 0.35M 1420MB 47.5

TSVD-U1T64 1.18M 1420MB 47.6
TSVD-U1T128 4.72M 1420MB 47.3
TSVD-U1T256 18.87M 1420MB 45.6

TSVD-U1T64R2 0.59M 710MB 41.7
TSVD-U1T128R2 2.36M 710MB 44.1
TSVD-U1T256R2 9.44M 710MB 45.0

E2E NLG [18] task

Full fine-tuning [51] 354.9M 1420MB 67.5
LoRA [26] 0.35M 1420MB 70.2

TSVD-U1T256R1 0.59M 710MB 69.7
TSVD-U1T256R2 2.36M 710MB 69.6
TSVD-U1T256R4 9.44M 710MB 68.2

4.3 Related Work

4.3.1 Model compression

Model compression is a critical area of research in machine learning, particularly

for deploying large models on resource-constrained devices. There are popular

methods for model compression such as singular value decomposition (SVD)

and quantization.

Low-rank approximation

SVD is a linear algebra technique that decomposes a matrix into three other

matrices. In the context of model compression, SVD is often used to approx-

imate the weight matrices of neural networks. The idea is to decompose the
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weight matrix into two lower-rank matrices, which can significantly reduce

the number of parameters without a substantial loss in performance. One of

the earliest works to apply SVD for model compression is by [23], who used

SVD to compress fully connected layers in neural networks. They demonstrated

that SVD could reduce the model size significantly without a substantial drop

in accuracy. In the work by [25], the authors introduced Fisher information to

measure the importance of parameters in SVD, but it required a large amount

of labeled data to fine-tune the compressed model. In conclusion, while SVD

is a powerful tool for model compression, it has limitations, particularly when

applied to Transformer models. Especially, it minimizes the squared error to-

wards reconstructing the original matrix without considering the importance

of different parameters. This can lead to larger reconstruction errors for pa-

rameters that significantly impact task accuracy. In addition, SVD operation is

inefficient on a GPU at high compression ratio. Recent research has focused on

developing new methods that can overcome these limitations and provide more

effective model compression.

Quantization

Quantization is a widely used technique for model compression and acceler-

ation. It involves reducing the precision of the weights in a model, which can

significantly decrease the model size and computational requirements. [48] pro-

pose a system that uses quantization to compress the model size of large-scale

generative language models. Their system, LUT-GEMM, reduces the latency of

individual GPUs and the overall inference process, providing significant perfor-

mance improvements. It supports both non-uniform and uniform quantization
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formats and can greatly reduce energy consumption. Another significant work

is [14], which develops a procedure for Int8 matrix multiplication for feed-

forward and attention projection layers in Transformers. This method cuts the

memory needed for inference by half while retaining full precision performance.

The authors developed a two-part quantization procedure, LLM.int8(), which

uses vector-wise quantization with separate normalization constants for each

inner product in the matrix multiplication to quantize most of the features. [19]

quantized GPT models with 175 billion parameters in approximately four GPU

hours, reducing the bitwidth down to 3 or 4 bits per weight, with negligible

accuracy degradation relative to the uncompressed baseline.

4.3.2 PEFT

Parameter-efficient fine-tuning is a crucial area in machine learning, aiming

to adapt large pre-trained models to specific tasks by updating only a small

fraction of the model’s parameters. Early work includes adapter tuning [24],

which inserts small adapter modules into the pre-existing layers of a pre-trained

model. Low Rank Adaptation (LoRA) [26] is a famous method. LoRA decom-

poses the attention weight update into low-rank matrices, thereby reducing

the number of trainable parameters. This method has been shown to be ef-

fective for fine-tuning large language models like GPT-3. More recent work

includes LLaMA-Adapter [21] and LLaMA-Adapter V2 [68] by researchers

from Stanford University and Google Research. These methods introduce learn-

able adaption prompts and a zero-init attention mechanism to adaptively inject

new instructional cues into the model, with the V2 version incorporating more

learnable parameters and an early fusion strategy. These methods have shown
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promise in adapting large pre-trained models to specific tasks, reducing com-

putational and memory requirements, and representing an important direction

for future research in machine learning.
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Chapter 5

Conclusion

In conclusion, this thesis has developed and proposed novel optimization meth-

ods for Transformer-based models on Graphics Processing Units (GPUs) to

mitigate the increasing inference costs arising from the expanding size of these

models and the lengthening of their input sequences. The proposed strategies,

Multigrain and TSVD, have proven to be highly effective in specific scenarios,

reducing inference costs significantly.

Multigrain is an Transformer-specific optimization method particularly ef-

fective when the input length (Lin) is significantly larger than the hidden dimen-

sion (Dh). By efficiently processing the coarse-grained and fine-grained parts

of the attention mechanism with high-performance tensor cores and CUDA

cores respectively, Multigrain achieves remarkable speedups.

The TSVD method, on the other hand, proves to be invaluable in scenarios

where Lin is similar to or smaller than Dh. By utilizing tiled singular value de-

composition (TSVD) to compress matrices, memory footprint and computation

are substantially reduced, leading to lowered inference costs.

However, we acknowledged the inherent trade-off between reduced infer-

ence costs and decreased accuracy when applying TSVD to models. To mitigate

this, we introduced the TSVD-common fine-tuning method, which maintains a

shared submatrix across all tiles, fine-tuning only the common submatrix dur-

ing training. This method has successfully improved accuracy even when the
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model is compressed.

These approaches present a promising avenue for further enhancing the

performance of Transformer-based models, making them more accessible and

cost-effective for various complex, real-world applications. Future work could

focus on refining these methods or exploring additional ways of reducing in-

ference costs without sacrificing model performance.
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국문초록

최근 Transformer 기반의모델들은자연어처리와컴퓨터비전등다양한분야

에서 높은 성능을 보여주고 있다. 기존 강력한 모델들은 커지면서 모델이 복잡한

데이터 관계를 학습하고 나타낼 수 있게 된다. 또한 입력 시퀀스 길이를 늘려 문맥

학습을 향상시켜 복잡한 문제도 효과적으로 해결한다. 다만 이러한 모델들은 큰

메모리 사용량, 어텐션 레이어에서 입력 길이에 의한 2차복잡도 문제, 또한 커널

최적화가 되어 있지 않아 높은 추론 비용을 야기한다.

본논문에서는Transformer 기반모델들의크기, 입력시퀀스길이, 배치크기에

따라 추론 비용을 줄이는 최적화 방법을 제안한다. 먼저, 입력 길이(Lin)가 은닉

차원(Dh)보다 큰 시나리오를 최적화하는 Multigrain 방법을 제안한다. 기존 희소

어텐션 기법은 긴 입력 시퀀스에서 연산량과 메모리 사용량을 효과적으로 줄일

수 있지만 GPU에서 비효율적으로 처리되며 여전히 대부분 수행시간을 차지한다.

Multigrain은 희소 어텐션의 복합적인 희소 패턴을 파악하고 거친 희소 패턴은

고성능 텐서 코어를 사용한 커널로 처리하고 세밀한 패턴은 CUDA 코어를 사용한

커널로 각각 멀티 스트림으로 동시에 처리한다. 그 결과로 Longformer 모델을

DeepSpeed에서추론을실행한기준시스템에비해 2.07배 더빠른것을보여준다.

그리고본논문에서는 Lin이 Dh와비슷하거나작은시나리오에서추론비용을

줄이는 tiled singular value decomposition(TSVD) 방법을 제안한다. TSVD는 행

렬을 타일로 나누고 각 타일을 특이값 분해(SVD)하며 저랭크 근사를 이용하여 행
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렬을압축하는기법이다. Transformer 기반모델에서어텐션레이어와피드포워드

레이어의 기본 연산인 행렬 곱을 저랭크 근사를 이용한 TSVD기반의 행렬 곱으로

수행하면 메모리 사용량을 줄일 수 있고 연산량도 줄일 수 있으므로 추론 비용을

상당히줄일수있다. 결과적으로행렬을 2배 8배까지압축시, TSVD기반의행렬

곱은 압축하지 않은 행렬 곱보다 1.02배–2.26배 빠른 것을 보인다. 다만 모델에

적용 시 수행시간이 줄어들지만 정확도가 하락하는 문제점이 존재한다.

이러한 문제점을해결하기위해본논문에서는 TSVD 기반의 매개변수효율적

미세조정(parameter efficient fine-tuning) 방법인 TSVD-common을 제안한다.

각 타일에서 SVD로분리된두서브행렬들중하나를모든타일에서공유하는형태

로 하고 공동의 해당 서브행렬만 미세조정 시켜 학습시키는 방법이다. 결과적으로

제안한 TSVD-common은 GPT2 모델에서 2배 또는 4배 압축 시 E2E 태스크에

서는 압축하지 않은 전체 매개변수를 미세조정하는 방법(full fine-tuning)보다

정확도가 2%정도 향상되었고 매개변수 효율적 미세조정 최신 방법인 LoRA와

근접한 정확도를 보여준다.

주요어: 트렌스포머 가속, 모델 최적화, 희소 어텐션, 매개변수 효율적 미세조정,

모델 압축

학번: 2017-37405
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