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Abstract 

 
Generative models, such as GANs, typically need large-scale training with a 

substantial volume of images to generate a variety of realistic images. GANs trained 
on small dataset can easily memorize the training samples and display undesirable 
properties like stairlike latent space where interpolation in the latent space yields 
discontinuous transitions in the output image space. In this work, we consider a 
challenging task of pretraining-free few-shot image generation, and seek to train 
existing generative models while minimizing overfitting and mode collapse. We 
propose mixup-based distance regularization on the feature space of both the 
generator and the discriminator that encourages the two adversaries to reason not 
only about the scarce observed data points but the relative distances in the feature 
space they reside. Qualitative and quantitative evaluations on diverse datasets 
demonstrate that our method is generally applicable to existing models to improve 
both fidelity and diversity under few-shot setting. 
 

Keyword : Generative Adversarial Networks, Few-shot Image 

Generation 
Student Number : 2021-27642 
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Chapter 1. Introduction 
 

 
Figure 1: Cross-domain Correspondence adaptation of FFHQ source 

generator on various target domains (10-shot). We can see that finding a 

semantically similar source domain is crucial for CDC. 

 

1.1. Study Background 
 

Fascinating features of Generative Adversarial Networks (GANs) 

such as realistic sample quality and smooth semantic interpolation in 

the latent space have drawn huge attention from the research 

community, but what we have enjoyed with little gratitude claim their 

worth in the data-limited regime. As naive training of GANs with small 

datasets often results in suboptimal fidelity and diversity, many have 

proposed novel approaches specifically designed for few-shot image 

synthesis. Among the most successful are those adapting a generator 

pretrained on the source domain to the target domain [31, 34, 26] and 

those seeking generalization to unseen domains through feature fusion 

[16, 19]. Despite their impressive synthesis quality, these approaches 

are often critically constrained in practice as they all require semantic 

similarity between the large source domain dataset and the actual 

domain of interest [34], as illustrated in Fig. 1. For some domains like 

abstract art paintings, medical images and cartoon illustrations, it is 

very challenging to collect large scale dataset, while at the same time, 

finding an adequate source domain to transfer from is not 

straightforward either. To train GANs from scratch with limited data, 

several augmentation techniques [54, 22] and model architecture [27] 

have been proposed. Although these methods have delivered 

promising results on low-shot benchmarks consisting of hundreds to 

thousands of training images, they fall short for few-shot generation  
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Figure 2: Training GANs with as little as 10 samples typically result in 

complete collapse or severe memorization (left). Strongly overfitted 

generators are only capable of producing a limited set of images, displaying 

stairlike latent interpolation (right). 

where the dataset is even more constrained (e.g., n = 10).  

GANs trained with small dataset typically display one of the two 

behaviors: severe quality degradation [54, 22] or complete loss of 

diversity [13], as visible from Fig. 2 (left). Therefore, producing a 

wide spectrum of good quality samples is the ultimate goal of few-

shot generative models. We note that memorization differs from the 

classic mode collapse problem, as the former is not just lack of 

diversity, but the fundamental inability to generate unseen samples. 

As directly mitigating memorization with as little as 10 training 

samples is extremely difficult if not impossible, we choose to tackle a 

surrogate problem instead. Our key observation is that strongly 

overfitted generators are only capable of producing a finite set of 

samples, resulting in discontinuous transitions in the image space upon 

latent interpolation. We name this stairlike latent space phenomenon, 

which has been pointed out by previous works [36, 8] as an indicator 

for memorization. Fig. 2 (right) demonstrates that previous methods 

designed for diversity preservation [4] or low-shot synthesis [27] all 

display such behavior under few-shot setting (n = 10). Therefore, 

instead of tackling the formidable task of suppressing memorization, 

we directly target stairlike latent space problem and propose effective 

distance regularizations to explicitly smooth the latent space of the 

generator (G) and the discriminator (D), which we empirically show is 
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equivalent to fighting memorization in effect. 

Our overall idea is to maximally exploit the scarce data points by 

continuously exploring their semantic mixups [51]. The discriminator 

overfitted to few real samples, however, displays overly confident and 

abrupt decision boundaries, leaving the generator with no choice but 

to faithfully reconstruct them in order to convince the opponent. This 

results in aforementioned stairlike latent space for both G and D, 

rendering smooth semantic mixups impossible. To overcome this 

challenge, we explore G’s latent space with a randomly sampled 

interpolation coefficient c, enforcing relative semantic distances 

between samples to resemble the mixup ratio. By simultaneously 

imposing similar regularization on D’s feature space, we prohibit the 

discriminator from embedding images to arbitrary locations for its 

convenience of memorizing, and guide its feature space to be aligned 

by semantic distances. Our objective is inspired by the formulation of 

[34] that aims to transfer diversity from the source domain to the 

target domain. We modify it for our single domain setting, where no 

source domain is available to import diversity from, and show that our 

method is capable of producing diverse novel samples with convincing 

quality even with as little as 10 training images. We further observe 

that models trained with our regularizations resist mode collapse 

surprisingly well even with no hand-designed augmentations. We 

believe that our distance regularizations encourage the model to 

preserve inherent diversity present in early stages throughout the 

course of training. Resistance to overfitting and mode collapse 

combined enables sample diversity under rigorous data constraint, 

which we demonstrate later with experimental results. 

In sum, our contributions can be summarized as: 

– We propose a two-sided distance regularization that encourages 

learning of smooth and mode-preserved latent space through 

controlled latent interpolation. 

– We introduce a simple framework for few-shot image generation 

without a large source domain dataset that is compatible with existing 

architectures and augmentation techniques. 

– We evaluate our approach on a wide range of datasets and 
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demonstrate its effectiveness in generating diverse samples with 

convincing quality. 
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Chapter 2. Related Works 
 

2.1. One-shot Image Generation 
 

    In order to create diverse outcomes from a single image, SinGAN 

[39] leverages the inherent ambiguity present in downsampled image. 

Based on SinGAN, ConSinGAN [18] proposes a technique to control 

the trade-off between fidelity and diversity. One-Shot GAN [41] uses 

a dual-branch discriminator where each head identifies context and 

layout, respectively. As one-shot image generation methods focus on 

exploiting a single image, they are not directly applicable to few-shot 

image generation tasks where the generator must learn the underlying 

distribution of a collection of images. 

 

2.2. Low-shot Image Generation 
 

    Given a limited amount of training data, the discriminator in 

conventional GAN can easily overfit. To mitigate this problem, 

DiffAugment [54] imposes differentiable data augmentation to both 

real and fake samples while ADA [22] devises non-leaking adaptive 

discriminator augmentation. FastGAN [27] suggests a skip-layer 

excitation module and a self-supervised discriminator, which saves 

computational cost and stabilizes low-shot training. GenCo [11] shows 

impressive results on low-shot image generation task by using 

multiple discriminators to alleviate overfitting. Despite their promising 

performances on low-shot benchmarks, these methods often show 

significant instability under stricter data constraint, namely in few-

shot setting. 

 

2.3. Few-shot Generation with Auxiliary Dataset 
 

    Thus far, the few-shot image generation task (n ≈ 10) mostly 

required pretraining on larger dataset with similar semantics [47, 46, 

53, 37] mainly due to its inherent difficulty. A group of works [16, 19, 

20, 3] learns transferable generation ability on seen categories and 

seek generalization into unseen categories through fusion-based 

methods. FreezeD [31] and EWC [26] further improves transfer 

learning framework for GANs. Meanwhile, CDC [34] computes the 

similarities between samples within each domain and encourages the 

corresponding similarity distributions to resemble each other. It aims 

to directly transfer the structural diversity of the source domain to the 

target, yielding impressive performance. In this paper, we modify 
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the formulation of CDC and propose a novel few-shot generation 

framework that does not require any auxiliary data or separate 

pretraining step. 

 

2.4. Generative Diversity 
 

Mode collapse has been a long standing obstacle in GAN training. [2, 

30] introduce divergence metrics that are effective at stabilizing GAN 

training while [12, 14] tackle this problem by training multiple 

networks. Another group of works [28, 29, 42, 49, 4] proposes 

regularization methods to preserve distances in the generated output 

space. Unlike these works, we consider the few-shot setting where 

the diversity is restricted mainly due to memorization, and introduce 

an interpolation-based distance regularization as an effective remedy. 

 

2.5. Latent Mixup 
 

Since [51], mixup methods have been actively explored to enforce 

smooth behaviors in between training samples [6, 43, 5]. In generative 

models, [36] emphasizes the importance of smooth latent transition as 

a counterevidence for memorization, but as state-of-the-art GAN 

models trained with sufficient data naturally possess such property 

[24, 8], it has been mainly studied with autoencoders. [7, 35] 

regularize autoencoders to learn smooth latent space while [48, 38] 

explore their potential as generative models through interpolation. 
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Chapter 3. Approach 

 
Figure 3: Overview of our Mixup-based Distance Learning (MixDL) 

framework.  

    We consider the situation where only few train examples (e.g., n 

= 10) are available with no semantically similar source domain. Hence, 

we would like to train a generative model from scratch, i.e., with no 

auxiliary dataset or separate pretraining step, using only a handful of 

images. Under such challenging constraints, overfitting greatly 

restricts a model’s ability to learn data distribution and produce 

diverse samples. We identify its byproduct stairlike latent space as the 

core obstacle, as it not only indicates memorizing but also prohibits 

hallucination through semantic mixup. We observe that both the 

generator and the discriminator suffer from the problem with 

insufficient data, evidenced by discontinuous latent interpolation and 

overly confident decision boundary, respectively.  

    To this end, we propose mixup-based distance learning (MixDL) 

framework that guides the two players to form soft latent space and 

leverage it to generate diverse samples. We further discover that our 

proposed regularizers effectively combat mode collapse, a problem 

particularly more devastating with a small dataset, by preserving 

diversity present in early training stages. As our formulation is 

inspired by [34], we first introduce their approach in Sec. 3.1, and 

formally state our methods in Sec. 3.2 and Sec. 3.3. Our final learning 

framework and the corresponding details can be found in Sec. 3.4.    
 

3.1. Cross-domain Correspondence 
 

    In CDC [34], the authors propose to transfer the relationship 

learned in a source domain to a target domain. They define a 

probability distribution from pairwise similarities of generated samples 
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in both domains and bind the latter to the former. Formally, they define 

distributions as 

 

𝑝! = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥({𝑠𝑖𝑚(𝐺"!(𝑧#), 𝐺"!(𝑧$))}$%&' ) 
 

𝑞! = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(3𝑠𝑖𝑚(𝐺"→)! (𝑧#), 𝐺"→)! (𝑧$))4$%&
' ) 

 

where 𝐺! is the generator activation at the l-th layer and {𝑧$}#' are 

latent vectors. Note that 𝐺" and 𝐺"→) correspond to source and target 

domain generator, respectively, and 𝑝! , 𝑞! are N-way discrete 

probability distributions consisting of N pairwise similarities. Then, 

along with adversarial objective 𝐿*+,, they impose a KL-divergence-

based regularization of the following form: 
 

𝐿!"#$ = 𝐸%~'!(%)[𝐷*+(𝑞
,||𝑝,)] 

 

    The benefits of this auxiliary objective are twofold: it prevents 

distance collapse in the target domain and transfers diversity from the 

source to target via one-to-one correspondence. However, as visible 

from Fig. 1, the synthesis quality is greatly affected by the semantic 

distance between source and target. Hence, we propose MixDL, which 

modifies CDC for pretraining-free few-shot image synthesis and 

provides consistent performance gains across different benchmarks. 
 

3.2. Generator Latent Mixup 

 
    In [34], the anchor point z0 could be chosen arbitrarily from the 

prior distribution 𝑝-(𝑧) since they were transferring the rich structural 

diversity of the source domain to the target latent space. As this is no 

longer applicable in our setting, we propose to resort to diverse 

combinations of given samples. Hence, preserving the modes and 

learning interpolable latent space are our two main desiderata. To this 

end, we define our anchor point using Dirichlet distribution as follows: 

 

𝑧# = Σ$%&' 𝑐$𝑧$ 	, 𝑐	~	𝐷𝑖𝑟(𝛼&, … , 𝛼') 
 

where 𝑐 = [𝑐&, 𝑐., … , 𝑐']/. Using the above equation, the latent space 

can be navigated in a quantitatively controlled manner. Defining 

probability distribution of pairwise similarities as in [34], we bind it to 

the interpolation coefficients c instead. The proposed distance loss is 

defined as follows: 

 
𝐿!"#$- = 𝐸%~'!(%),/~0"1(2)[𝐷*+(𝑞

,||𝑝)] 
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𝑞! = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥({𝑠𝑖𝑚(𝐺!(𝑧#), 𝐺!(𝑧$))}$%&' ) 
 

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥({𝑐$}$%&' ) 
 

where Dir(α) denotes the Dirichlet distribution with parameters α = 

(𝛼&, … , 𝛼'). This efficiently accomplishes our desiderata. Intuitively, 

unlike naive generators that gradually converge to few modes, our 

regularization forces the generated samples to differ from each other 

by a controlled amount, making mode collapse very difficult. At the 

same time, we constantly explore our latent space with continuous 

coefficient vector c, explicitly enforcing smooth latent interpolation. 

An anchor point similar to [34] can be obtained with one-hot 

coefficients c. 
 

3.3. Discriminator Feature Space Alignment 
 

    While the generator distance regularization can alleviate mode 

collapse and stairlike latent space problem surprisingly well, the root 

cause of constrained diversity still remains unresolved, i.e., 

discriminator overfitting. As long as the discriminator delivers 

overconfident gradient signals to the generator based on few examples 

it observes, generator outputs will be strongly pulled towards the small 

set of observed data. To encourage the discriminator to provide 

smooth signals to the generator based on reasoning about continuous 

semantic distances rather than simply memorizing the data points, we 

impose similar regularization on its feature space. Formally, we define 

our discriminator D(x) = (𝑑.◦𝑑&)(x) where 𝑑.(x) refers to the final FC 

layer that outputs {real, fake}. When a set of generated samples 
{𝐺(𝑧$)}$%&'  and the interpolated sample 𝐺(𝑧#)  is provided to D, we 

construct an N-way distribution similar to the above equations as 

 

𝑟	 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(3𝑠𝑖𝑚(𝑝𝑟𝑜𝑗(𝑑#&), 𝑝𝑟𝑜𝑗(𝑑$&))4$%&
' ) 

 

where proj refers to a linear projection layer widely used in self-

supervised learning literature [9, 10, 15] and 𝑑0& = 𝑑&(𝐺B𝑧0C). Without 

the linear projector, we found the constraint too rigid that it harms 

overall output quality. We define our distance regularization for the 

discriminator as 
 

𝐿!"#$! = 𝐸%~'!(%),/~0"1(2)[𝐷*+(𝑟||𝑝)] 
 

     This regularization penalizes the discriminator for storing 
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memorized real samples in arbitrary locations in the feature space and 

encourages the space to be aligned with relative semantic distances. 

Thus it makes memorization harder while guiding the discriminator to 

provide smoother and more semantically meaningful signals to the 

generator. 
 

3.4. Final Objectives 
 

    Fig. 3 shows an overall concept of our method. Our final objective 

takes the form: 

 

𝐿1 = 𝐿*+,1 + 𝜆1𝐿+$")1  
 

𝐿2 = 𝐿*+,2 + 𝜆2𝐿+$")2  
 

where we generally set 𝜆1 = 1000	and 𝜆2 = 1.  
    As our method is largely independent of model architectures, we 

apply our method to two existing models, StyleGAN24[24] and 

FastGAN[27]. We keep their objective functions as they are and 

simply add our regularization terms. For StyleGAN2, we interpolate in 

W rather than Z, which has been shown to have better properties such 

as disentanglement [44, 55, 1]. Mixup coefficients c is sampled from 

a Dirichlet distribution of parameters all equal to one. Patch-level 

discrimination [21, 34] is applied for mixup images to encourage our 

generator to be creative while exploring the latent space.  
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Chapter 4. Experiments 
 

 
Figure 4: 10-shot image generation results. While baseline methods either 

collapse or simply replicate the training samples (yellow box), our method 

actively encourages the generator to explore semantic mixups of given 

samples, which enables synthesis of various unseen samples. 

    We mainly apply our method to the state-of-the-art unconditional 

GAN model, StyleGAN2 [24]. Data augmentation techniques 

introduced by [54] and [22] show promising performance on low-shot 

image generation task, so we evaluate them along with ours and refer 

to them as DA and ADA respectively. We additionally apply our method 

to FastGAN [27], which is a light-weight GAN architecture that allows 

faster convergence with limited data. Although methods designed for 

alleviating mode collapse [4, 28, 29] are not directly targeted for data-

limited setting, we further adopt these as baselines considering the 

similarity in objective formulation. We implement them on StyleGAN2 

for better synthesis quality and fair comparison. Transfer based 

methods such as EWC [26] and CDC [34] fundamentally differ from 

ours as they require a large scale pre training and thus are not directly 

comparable. However, we include CDC [34] since our method adjusts 
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Figure 5: Uncurated collection of samples sharing the same training image as 

nearest neighbor. 

it for a more general single domain setting. 

    For quantitative evaluation, we use Animal-Face Dog [40], 

Oxford-flowers [33], FFHQ-babies [23], face sketches [45], Obama 

and Grumpy Cat [54], anime face [27] and Pokemon (pokemon.com, 

[27]). Aforementioned datasets contain 100 to 8189 samples, so we 

simulate few-shot setting by randomly sampling 10 images, if not 

stated otherwise. For qualitative evaluation, we further experiment on 

paintings of Amedeo Modigliani [50], landscape drawings [34] and 

web-crawled images of Totoro. All the images are 256×256. Additional 

synthesis results and information about datasets can be found in the 

supplementary. 

    We measure Fr ́echet Inception Distance (FID) [17], sFID [32] 

and precision/recall [55] for datasets containing a sufficient number 

(≥ 100) of samples along with pairwise Learned Perceptual Image 

Patch Similarity (LPIPS) [52]. For simulated few-shot tasks, the FID 

and sFID are computed against the full dataset as in [26, 34]. We 

further use LPIPS as a distance metric for demonstrating interpolation 

smoothness and mode preservation. 
 

4.1. Qualitative Results 
 

    Fig. 4 shows generated samples from 10-shot training. We 

observe that baseline methods either collapse to few modes or 

severely overfit to the training data, resulting in inability to generate 

novel samples. Ours is the only method that produces a variety of 

convincing samples that are not present in the training set. Our method 

combines visual attributes such as hairstyle, beard and glasses in a 

natural way, producing distinctive samples under harsh data constraint. 

    The difference is more distinguished when we take a closer look. 

In Fig. 5 we display uncurated sets of generated images along with 

their nearest neighbor real images. Samples from DistanceGAN [4] 

and FastGAN [27] are either defective or largely identical to the  
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Table 1: Quantitative results on 10-shot image generation benchmark. 

  
 

Table 2: Quantitative comparison with diversity preservation methods on 10-

shot tasks. 

 
 

corresponding GT, but our method generates unique samples with 

recognizable visual features. We believe this is because our distance 

regularization enforces outputs from different latent vectors to differ 

from each other, proportionally to the relative distances in the latent 

space. 
 

4.2. Quantitative Evaluation 
 

    Tab. 1 shows FID, sFID and LPIPS scores for several low-shot 

generation methods [54, 22, 27] on 10-shot image generation task. 

We can see that our method consistently outperforms the baselines, 

often with significant margins. Moreover, our regularizations can be 

applied concurrently to data augmentations to obtain further 

performance gains. Note that while StyleGAN2 armed with advanced 

data augmentations fails to converge from time to time, our method 

guarantees stable convergence to a better optimum across all datasets. 

Surprisingly, ours outperforms CDC [34] on all metrics even when the 

two domains are closely related, e.g. anime-face and face sketches. 

For dissimilar domains like pokemon, CDC tends to sacrifice diversity 

(i.e., LPIPS) for better fidelity, which nevertheless falls short overall. 

We present training snapshots in the supplementary. 

    Additional quantitative comparison with diversity preserving 

methods is displayed in Tab. 2. Although these methods have some 

similarities with ours, especially MixDL-G, we can observe steady 

improvements with MixDL. As the baselines are simply designed to  
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Table 3: FID-comparison.                 Table 4: Precision and recall. 

  
 

Table 5: Ablation on loss components.    Table 6: Coefficient sampling. 

minimize mode collapse, we believe they are relatively prone to 

memorization, which is a far devastating issue in few-shot setting. 

    While pretraining-free 10-shot image synthesis task has not been 

studied much, several works [27, 54] have previously explored 

generative modeling with as little as 100 samples. We present 

quantitative evaluations on popular low-shot benchmarks in Table 3. 

We observe that our method consistently improves the baseline, and 

the margin is larger for more challenging tasks, i.e., dataset with 

greater diversity or fewer training samples. We discuss experiments 

on these benchmarks in depth in Sec. 5. Tab. 4 shows precision and 

recall [25] for these benchmarks, where MixDL boosts scores 

especially in terms of diversity. 
 

4.3. Ablation Study 
 

    We further evaluate the effects of the proposed regularizations, 

MixDL-G (generator) and MixDL-D (discriminator), through ablation 

under different settings. In Tab. 5, we observe that in general, our 

regularizations both contribute to better quality and diversity, while in 

some special cases, only adding MixDL-G leads to better FID score. 

We conjecture that aligning discriminator’s feature vectors with the 

interpolation coefficients can impose overly strict constraint for some 

datasets. We nonetheless observe consistent improvements on 

diversity. 

    Fig. 6 shows the evaluation across different subset sizes. Since 

FFHQ-babies and Oxford-flowers contain more than 2,000 and 8,000 

images respectively, we randomly sample subsets of size 10, 100 and 

1,000. We can see that the performance of StyleGAN2 steadily 

improves with more training samples, but it consistently benefits from 
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Figure 6: Shot ablation results. Red indicates FFHQ-babies and blue 

represents flowers. (left) FID scores (right) LPIPS score. 

MixDL. Hence, we believe that with limited data in general, our method 

can be broadly used to improve model performance. Lastly in Tab. 6, 

the effect of using different Dirichlet concentration parameters and 

sampling distribution for mixup is illustrated. We find that setting α = 

1 yields the best performance, so we uniformly use this throughout the 

experiments. 

 

4.4. Latent Space Smoothness 
 

    Smooth latent space interpolation is an important property of 

generative models that disproves overfitting and allows synthesis of 

novel data samples. As our proposed method focuses on diversity 

through latent smoothing, we quantitatively evaluate this using a 

variant of Perceptual Path Length (PPL) proposed by [23].  

    PPL was originally introduced as a measure of latent space 

disentanglement under the assumption that a more disentangled latent 

space would show smoother interpolation behavior [23]. As we wish 

to directly quantify latent space smoothness, we slightly modify the 

metric by taking 10 subintervals between any two latent vectors and 

measure their perceptual distances. Tab. 7 reports the subinterval 

mean, standard deviation, and the mean for the full path (End ). Note 

that as PPL is a quadratic measure, the sum of subinterval means can 

be smaller than the endpoint mean. All four models show similar 

endpoint mean, suggesting that the overall total perceptual distance is 

consistent, while ours displays the lowest PPL standard deviation. As 

low PPL variance across subintervals is a direct sign of perceptually 

uniform latent transitions, we can verify the effectiveness of our 

method in smoothing the latent space. Similar insight can be found from 

Fig. 7 where the baselines display stairlike latent transition while ours 

shows smooth semantic interpolation. More details on PPL 

computation can be found in the supplementary materials. 
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Figure 7: Latent space interpolation results.  

Table 7: Perceptual Path Length Uniformity. 

 

 
Figure 8: (left) LPIPS in early iterations (right) number of unique NN training 

samples. 

4.5. Preserving Diversity 
 

    As opposed to [34] that preserves diversity in the source domain, 

our method can be interpreted as preserving the diversity inherently 

present in the early stages throughout the course of training, by 

constantly exploring the latent space and enforcing relative similarity 

between samples. To validate our hypothesis, we keep track of 

pairwise LPIPS of generated samples and the number of modes in the 

early iterations. Fig. 8 shows the result, where the number of modes 

is represented by the number of unique training samples (real images) 

that are the nearest neighbor to any of the generated images. In Fig. 

8a, we can see that vanilla StyleGAN2 and our method show similar 

LPIPS in the beginning, but the baseline quickly loses diversity while 

ours maintains relatively high level of diversity throughout the training. 
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Fig. 8b delivers similar implication that FastGAN trained with MixDL 

better preserves modes compared to the baseline. 

    Combined with latent space smoothness explained in Sec. 4.4, 

generators equipped with MixDL learn rich mode-preserving latent 

space with smooth interpolable landscape. This naturally allows 

generative diversity particularly appreciated under the constraint of 

extremely limited data. 
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Chapter 5. Discussion 
 

    The trade-off between fidelity and diversity in GANs has been 

noted by many [8, 23]. Truncation trick, a technique widely used in 

generative models, essentially denotes that diversity can be traded for 

fidelity. In few-shot generation task, it is very straightforward to 

obtain near-perfect fidelity at the expense of diversity as one can 

simply overfit the model, while generating diverse unseen data points 

is very challenging. This implies that with only a handful of data, the 

diversity should be credited no less than the fidelity. 

However, we believe that the widely used low-shot benchmarks, 

e.g., 100-shot Obama and Grumpy Cat, inherently favor faithful 

reconstruction over audacious exploration. The main limitations we 

find in these datasets are twofold: (i) the intra-diversity is too limited 

as they contain photos of a single person or object, evidenced by low 

LPIPS in Tab. 3 and (ii) FID is computed based on the 100 samples 

that were used for training. We acknowledge that (ii) is a common 

practice in generative models, but the problem with these benchmarks 

is that the number of samples is too limited, making it possible for 

some models to simply memorize a large portion of them. These two 

combined results in benchmarks that allow relatively easy replication 

and reward it generously at the same time. In other words, we believe 

that a model’s capacity to explore continuous image manifold and be 

creative can potentially backfire in these benchmarks. 

To address these limitations, in Tab. 3 we extend the benchmark 

with three additional datasets: 100-shot flowers, 10-shot Obama and 

Grumpy Cat. The first one challenges the model with greater diversity 

while the last two evaluate its capacity to learn distribution in a 

generalizable manner, as the FID is still computed against the full 100 

images. As our method mainly aims for modeling diversity, we observe 

marginal performance gains in the traditional benchmarks. However 

on the extended benchmarks, it shows significant contributions, 

confirming its excellence at learning diversity even under challenging 

situations.  
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Chapter 6. Conclusion 
 

We propose MixDL, a set of distance regularizations that can be 

directly added to existing models for few-shot image generation. 

Unlike previous works, MixDL enables high-quality synthesis of novel 

images with as few as 5 to 10 training samples, even without any 

source domain pretraining. Thorough evaluations on diverse 

benchmarks demonstrate the effectiveness of our framework. We hope 

our work facilitates future research on data efficient generative 

modeling. 
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Abstract 

  

생성 모델인 GAN과 같은 도구를 사용하여 다양하고 현실적인 이미지를 

생성하는 것은 대량의 이미지로 대규모 훈련을 요구하는 경우가 일반적

이다. 제한된 데이터로 훈련된 GAN들은 손쉽게 적은 수의 훈련 샘플들

을 기억하게 되고, 출력 공간에서 불연속적인 전환을 초래하는 계단형 

잠재 공간과 같은 불필요한 특성들을 나타내게 된다. 본 연구에서는 사

전훈련이 없는 소량샘플 이미지 합성이라는 어려운 과제를 고려하고, 최

소한의 과적합과 모드 붕괴로 기존 생성 모델을 훈련하는 방법을 탐구한

다. 우리는 생성자와 상대판별자의 특성 공간에 대한 믹스업 기반 거리 

정규화를 제안하며, 이것은 두 플레이어가 희박한 관측 데이터 포인트뿐

만 아니라 그들이 존재하는 특성 공간에서의 상대적 거리에 대해 이해하

도록 장려한다. 다양한 데이터셋에서의 질적 및 양적 평가 결과가 우리

의 방법이 소량샘플 설정 하에서 생성 이미지의 품질과 다양성을 모두 

향상시킬 수 있음을 보여준다. 


	Chapter 1. Introduction
	Chapter 2. Related Works
	Chapter 3. Approach
	Chapter 4. Experiments
	Chapter 5. Discussions
	Chapter 6. Conclusion
	Bibliography
	Abstract in Korean


<startpage>6
Chapter 1. Introduction 1
Chapter 2. Related Works 5
Chapter 3. Approach 7
Chapter 4. Experiments 11
Chapter 5. Discussions 18
Chapter 6. Conclusion 19
Bibliography 20
Abstract in Korean 26
</body>

