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Abstract

Generative models, such as GANSs, typically need large-scale training with a
substantial volume of images to generate a variety of realistic images. GANs trained
on small dataset can easily memorize the training samples and display undesirable
properties like stairlike latent space where interpolation in the latent space yields
discontinuous transitions in the output image space. In this work, we consider a
challenging task of pretraining-free few-shot image generation, and seek to train
existing generative models while minimizing overfitting and mode collapse. We
propose mixup-based distance regularization on the feature space of both the
generator and the discriminator that encourages the two adversaries to reason not
only about the scarce observed data points but the relative distances in the feature
space they reside. Qualitative and quantitative evaluations on diverse datasets
demonstrate that our method is generally applicable to existing models to improve
both fidelity and diversity under few-shot setting.

Keyword : Generative Adversarial Networks, Few-shot Image

Generation
Student Number : 2021-27642
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Chapter 1. Introduction
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Figure 1: Cross—-domain Correspondence adaptation of FFHQ source
generator on various target domains (10-shot). We can see that finding a
semantically similar source domain is crucial for CDC.

1.1. Study Background

Fascinating features of Generative Adversarial Networks (GANs)
such as realistic sample quality and smooth semantic interpolation in
the latent space have drawn huge attention from the research
community, but what we have enjoyed with little gratitude claim their
worth in the data—-limited regime. As naive training of GANs with small
datasets often results in suboptimal fidelity and diversity, many have
proposed novel approaches specifically designed for few—shot image
synthesis. Among the most successful are those adapting a generator
pretrained on the source domain to the target domain [31, 34, 26] and
those seeking generalization to unseen domains through feature fusion
[16, 19]. Despite their impressive synthesis quality, these approaches
are often critically constrained in practice as they all require semantic
similarity between the large source domain dataset and the actual
domain of interest [34], as illustrated in Fig. 1. For some domains like
abstract art paintings, medical images and cartoon illustrations, it is
very challenging to collect large scale dataset, while at the same time,
finding an adequate source domain to transfer from 1is not
straightforward either. To train GANs from scratch with limited data,
several augmentation techniques [54, 22] and model architecture [27]
have been proposed. Although these methods have delivered

promising results on low—shot benchmarks consisting of hundreds to

thousands of training images, they fall short for few-shot ge erahon ;
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Figure 2: Training GANs with as little as 10 samples typically result in
complete collapse or severe memorization (left). Strongly overfitted
generators are only capable of producing a limited set of images, displaying
stairlike latent interpolation (right).

where the dataset is even more constrained (e.g., n = 10).

GANSs trained with small dataset typically display one of the two
behaviors: severe quality degradation [54, 22] or complete loss of
diversity [13], as visible from Fig. 2 (left). Therefore, producing a
wide spectrum of good quality samples is the ultimate goal of few-
shot generative models. We note that memorization differs from the
classic mode collapse problem, as the former is not just lack of
diversity, but the fundamental inability to generate unseen samples.

As directly mitigating memorization with as little as 10 training
samples is extremely difficult if not impossible, we choose to tackle a
surrogate problem instead. Our key observation is that strongly
overfitted generators are only capable of producing a finite set of
samples, resulting in discontinuous transitions in the image space upon
latent interpolation. We name this stairlike latent space phenomenon,
which has been pointed out by previous works [36, 8] as an indicator
for memorization. Fig. 2 (right) demonstrates that previous methods
designed for diversity preservation [4] or low—shot synthesis [27] all
display such behavior under few-shot setting (n = 10). Therefore,
instead of tackling the formidable task of suppressing memorization,
we directly target stairlike latent space problem and propose effective
distance regularizations to explicitly smooth the latent space of the

generator (G) and the discriminator (D), which we empirically show is

2 ,',{ﬂ -1]]131 Tu



equivalent to fighting memorization in effect.

Our overall idea is to maximally exploit the scarce data points by
continuously exploring their semantic mixups [51]. The discriminator
overfitted to few real samples, however, displays overly confident and
abrupt decision boundaries, leaving the generator with no choice but
to faithfully reconstruct them in order to convince the opponent. This
results in aforementioned stairlike latent space for both G and D,
rendering smooth semantic mixups impossible. To overcome this
challenge, we explore G’s latent space with a randomly sampled
interpolation coefficient ¢, enforcing relative semantic distances
between samples to resemble the mixup ratio. By simultaneously
imposing similar regularization on D’s feature space, we prohibit the
discriminator from embedding images to arbitrary locations for its
convenience of memorizing, and guide its feature space to be aligned
by semantic distances. Our objective is inspired by the formulation of
[34] that aims to transfer diversity from the source domain to the
target domain. We modify it for our single domain setting, where no
source domain is available to import diversity from, and show that our
method is capable of producing diverse novel samples with convincing
quality even with as little as 10 training images. We further observe
that models trained with our regularizations resist mode collapse
surprisingly well even with no hand-designed augmentations. We
believe that our distance regularizations encourage the model to
preserve inherent diversity present in early stages throughout the
course of training. Resistance to overfitting and mode collapse
combined enables sample diversity under rigorous data constraint,
which we demonstrate later with experimental results.

In sum, our contributions can be summarized as:

— We propose a two—sided distance regularization that encourages
learning of smooth and mode-preserved latent space through
controlled latent interpolation.

— We introduce a simple framework for few—-shot image generation
without a large source domain dataset that is compatible with existing
architectures and augmentation techniques.

— We evaluate our approach on a wide range of datasets and
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demonstrate its effectiveness in generating diverse samples with

convincing quality.



Chapter 2. Related Works

2.1. One-shot Image Generation

In order to create diverse outcomes from a single image, SinGAN
[39] leverages the inherent ambiguity present in downsampled image.
Based on SinGAN, ConSinGAN [18] proposes a technique to control
the trade-off between fidelity and diversity. One-Shot GAN [41] uses
a dual-branch discriminator where each head identifies context and
layout, respectively. As one—-shot image generation methods focus on
exploiting a single image, they are not directly applicable to few—shot
image generation tasks where the generator must learn the underlying
distribution of a collection of images.

2.2. Low—shot Image Generation

Given a limited amount of training data, the discriminator in
conventional GAN can easily overfit. To mitigate this problem,
DiffAugment [54] imposes differentiable data augmentation to both
real and fake samples while ADA [22] devises non-leaking adaptive
discriminator augmentation. FastGAN [27] suggests a skip-layer
excitation module and a self-supervised discriminator, which saves
computational cost and stabilizes low—shot training. GenCo [11] shows
impressive results on low-shot image generation task by using
multiple discriminators to alleviate overfitting. Despite their promising
performances on low-shot benchmarks, these methods often show
significant instability under stricter data constraint, namely in few-
shot setting.

2.3. Few—-shot Generation with Auxiliary Dataset

Thus far, the few-shot image generation task (n = 10) mostly
required pretraining on larger dataset with similar semantics [47, 46,
53, 37] mainly due to its inherent difficulty. A group of works [16, 19,
20, 3] learns transferable generation ability on seen categories and
seek generalization into unseen categories through fusion—-based
methods. FreezeD [31] and EWC [26] further improves transfer
learning framework for GANs. Meanwhile, CDC [34] computes the
similarities between samples within each domain and encourages the
corresponding similarity distributions to resemble each other. It aims
to directly transfer the structural diversity of the source domain to the
target, yielding impressive performance. In this paper, we modify

b ey i
5 -":I'-\._! 'ILI-._'.I... :



the formulation of CDC and propose a novel few-shot generation
framework that does not require any auxiliary data or separate
pretraining step.

2.4. Generative Diversity

Mode collapse has been a long standing obstacle in GAN training. [2,
30] introduce divergence metrics that are effective at stabilizing GAN
training while [12, 14] tackle this problem by training multiple
networks. Another group of works [28, 29, 42, 49, 4] proposes
regularization methods to preserve distances in the generated output
space. Unlike these works, we consider the few—shot setting where
the diversity is restricted mainly due to memorization, and introduce
an interpolation—based distance regularization as an effective remedy.

2.5. Latent Mixup

Since [51], mixup methods have been actively explored to enforce
smooth behaviors in between training samples [6, 43, 5]. In generative
models, [36] emphasizes the importance of smooth latent transition as
a counterevidence for memorization, but as state—of—-the-art GAN
models trained with sufficient data naturally possess such property
[24, 8], it has been mainly studied with autoencoders. [7, 35]
regularize autoencoders to learn smooth latent space while [48, 38]
explore their potential as generative models through interpolation.



Chapter 3. Approach
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Figure 3: Overview of our Mixup—-based Distance Learning (MixDL)
framework.

We consider the situation where only few train examples (e.g., n
= 10) are available with no semantically similar source domain. Hence,
we would like to train a generative model from scratch, i.e., with no
auxiliary dataset or separate pretraining step, using only a handful of
images. Under such challenging constraints, overfitting greatly
restricts a model’s ability to learn data distribution and produce
diverse samples. We identify its byproduct stairlike latent space as the
core obstacle, as it not only indicates memorizing but also prohibits
hallucination through semantic mixup. We observe that both the
generator and the discriminator suffer from the problem with
insufficient data, evidenced by discontinuous latent interpolation and
overly confident decision boundary, respectively.

To this end, we propose mixup—based distance learning (MixDL)
framework that guides the two players to form soft latent space and
leverage it to generate diverse samples. We further discover that our
proposed regularizers effectively combat mode collapse, a problem
particularly more devastating with a small dataset, by preserving
diversity present in early training stages. As our formulation is
inspired by [34], we first introduce their approach in Sec. 3.1, and
formally state our methods in Sec. 3.2 and Sec. 3.3. Our final learning
framework and the corresponding details can be found in Sec. 3.4.

3.1. Cross—domain Correspondence

In CDC [34], the authors propose to transfer the relationship
learned in a source domain to a target domain. They define a
probability distribution from pairwise similarities of generated samples
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in both domains and bind the latter to the former. Formally, they define
distributions as

p' = softmax({sim(G¢(zo), G (z)}iL4
q' = softmax({sim(GL.. (7). Gle (z)};_ )

where G, is the generator activation at the I-th layer and {z;}} are
latent vectors. Note that G; and G,_; correspond to source and target
domain generator, respectively, and p; , q; are N-way discrete
probability distributions consisting of N pairwise similarities. Then,
along with adversarial objective Lgg,, they impose a KL-divergence-
based regularization of the following form:

Ldist = Ez~pz(z) [DKL(qll |pl)]

The benefits of this auxiliary objective are twofold: it prevents
distance collapse in the target domain and transfers diversity from the
source to target via one—to-one correspondence. However, as visible
from Fig. 1, the synthesis quality is greatly affected by the semantic
distance between source and target. Hence, we propose MixDL, which
modifies CDC for pretraining—free few—-shot image synthesis and
provides consistent performance gains across different benchmarks.

3.2. Generator Latent Mixup

In [34], the anchor point zO could be chosen arbitrarily from the
prior distribution p,(z) since they were transferring the rich structural
diversity of the source domain to the target latent space. As this is no
longer applicable in our setting, we propose to resort to diverse
combinations of given samples. Hence, preserving the modes and
learning interpolable latent space are our two main desiderata. To this
end, we define our anchor point using Dirichlet distribution as follows:

—yN ;
Zo = X;21€iZ; , ¢ ~ Dir(aq, ..., ay)

where ¢ = [cy, ¢y, ...,cy]T. Using the above equation, the latent space
can be navigated in a quantitatively controlled manner. Defining
probability distribution of pairwise similarities as in [34], we bind it to
the interpolation coefficients c¢ instead. The proposed distance loss is
defined as follows:

Lflist = Lzep,(2),c~Dir(a) [DKL (ql | |p)]
) -":lx_! _'\-\.I:-' ok i



q" = softmax({sim(G'(z,), G'(z))}iL,

p = softmax({c;}i1)

where Dir(a) denotes the Dirichlet distribution with parameters a =
(a4, ...,ay). This efficiently accomplishes our desiderata. Intuitively,
unlike naive generators that gradually converge to few modes, our
regularization forces the generated samples to differ from each other
by a controlled amount, making mode collapse very difficult. At the
same time, we constantly explore our latent space with continuous
coefficient vector c, explicitly enforcing smooth latent interpolation.
An anchor point similar to [34] can be obtained with one-hot
coefficients c.

3.3. Discriminator Feature Space Alignment

While the generator distance regularization can alleviate mode
collapse and stairlike latent space problem surprisingly well, the root
cause of constrained diversity still remains unresolved, i.e.,
discriminator overfitting. As long as the discriminator delivers
overconfident gradient signals to the generator based on few examples
it observes, generator outputs will be strongly pulled towards the small
set of observed data. To encourage the discriminator to provide
smooth signals to the generator based on reasoning about continuous
semantic distances rather than simply memorizing the data points, we
impose similar regularization on its feature space. Formally, we define
our discriminator D(x) = (d?°d!)(x) where d?(x) refers to the final FC
layer that outputs {real, fake}. When a set of generated samples
{G(z)}Y, and the interpolated sample G(z,) is provided to D, we
construct an N-way distribution similar to the above equations as

r = softmax({sim(proj(d(l)), proj(dil))}ivzl)

where proj refers to a linear projection layer widely used in self-
supervised learning literature [9, 10, 15] and d} = d*(G(z)). Without
the linear projector, we found the constraint too rigid that it harms
overall output quality. We define our distance regularization for the
discriminator as

Lgist = Ez~pz(z),c~Dir(a) [DKL (Tl |p)]

This regularization penalizes the discriminator for storing
s
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memorized real samples in arbitrary locations in the feature space and
encourages the space to be aligned with relative semantic distances.
Thus it makes memorization harder while guiding the discriminator to
provide smoother and more semantically meaningful signals to the
generator.

3.4. Final Objectives

Fig. 3 shows an overall concept of our method. Our final objective
takes the form:

L = Ly + A6LGis
LD = Llc)ldv + ADLLL)iist

where we generally set 4; = 1000 and A, = 1.

As our method is largely independent of model architectures, we
apply our method to two existing models, StyleGAN24[24] and
FastGAN[27]. We keep their objective functions as they are and
simply add our regularization terms. For StyleGANZ2, we interpolate in
W rather than Z, which has been shown to have better properties such
as disentanglement [44, 55, 1]. Mixup coefficients c is sampled from
a Dirichlet distribution of parameters all equal to one. Patch-level
discrimination [21, 34] is applied for mixup images to encourage our
generator to be creative while exploring the latent space.

10 "':l"\-_s _'k.::-' L



Chapter 4. Experiments
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Figure 4: 10—shot image generation results. While baseline methods either
collapse or simply replicate the training samples (yellow box), our method
actively encourages the generator to explore semantic mixups of given
samples, which enables synthesis of various unseen samples.

We mainly apply our method to the state—of-the—art unconditional
GAN model, StyleGAN2 [24]. Data augmentation techniques
introduced by [54] and [22] show promising performance on low—shot
image generation task, so we evaluate them along with ours and refer
to them as DA and ADA respectively. We additionally apply our method
to FastGAN [27], which is a light—-weight GAN architecture that allows
faster convergence with limited data. Although methods designed for
alleviating mode collapse [4, 28, 29] are not directly targeted for data-
limited setting, we further adopt these as baselines considering the
similarity in objective formulation. We implement them on StyleGAN2Z2
for better synthesis quality and fair comparison. Transfer based
methods such as EWC [26] and CDC [34] fundamentally differ from
ours as they require a large scale pre training and thus are not directly
comparable. However, we include CDC [34] since our method adjusts
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Figure 5: Uncurated collection of samples sharing the same training image as
nearest neighbor.

it for a more general single domain setting.

For quantitative evaluation, we use Animal-Face Dog [40],
Oxford-flowers [33], FFHQ-babies [23], face sketches [45], Obama
and Grumpy Cat [54], anime face [27] and Pokemon (pokemon.com,
[27]). Aforementioned datasets contain 100 to 8189 samples, so we
simulate few—shot setting by randomly sampling 10 images, if not
stated otherwise. For qualitative evaluation, we further experiment on
paintings of Amedeo Modigliani [50], landscape drawings [34] and
web-crawled images of Totoro. All the images are 256x256. Additional
synthesis results and information about datasets can be found in the
supplementary.

We measure Fr echet Inception Distance (FID) [17], sFID [32]
and precision/recall [55] for datasets containing a sufficient number
(= 100) of samples along with pairwise Learned Perceptual Image
Patch Similarity (LPIPS) [52]. For simulated few-shot tasks, the FID
and sFID are computed against the full dataset as in [26, 34]. We
further use LPIPS as a distance metric for demonstrating interpolation
smoothness and mode preservation.

4.1. Qualitative Results

Fig. 4 shows generated samples from 10-shot training. We
observe that baseline methods either collapse to few modes or
severely overfit to the training data, resulting in inability to generate
novel samples. Ours is the only method that produces a variety of
convincing samples that are not present in the training set. Our method
combines visual attributes such as hairstyle, beard and glasses in a

natural way, producing distinctive samples under harsh data constraint.

The difference is more distinguished when we take a closer look.
In Fig. 5 we display uncurated sets of generated images along with
their nearest neighbor real images. Samples from DistanceGAN [4]
and FastGAN [27] are either defective or largely identical to the
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Table 1: Quantitative results on 10—shot image generation benchmark.

Anime Face ] Animal-Face Dog ] Oxford Flowers [ Face Sketches [ Pokemon

Method

[FID [ sFID | LPIPS |FID { sFID | LPIPS 1|FID { sFID | LPIPS 7|FID | sFID { LPIPS f|FID { sFID | LPIPS T
FastGAN [27] 1237 127.9 0341 [103.0 1174 0.633 |182.7 111.2 0.667 | 76.3 81.8 0.148 |123.5 105.7 0.578
StyleGAN2 [23] 166.0 1114 0.363 [177.5 127.7 0.569 [177.3 143.0 0537 | 942 844 0435 |257.6 1365 0.439
StyleGAN2 + DA [54] 1620 968 0204 |136.1 123.5 0559 |187.0 1544 0.687 |43.1 59.9 0438 [280.1 1489 0.179
StyleGAN2 + ADA [22]  [130.2 108.0 0.288 [236.5 126.2 0.636 |167.8 835 0.719 | 62.8 67.3 0399 2143 955 0.496
FastGAN + Ours 1076 985 0478 | 998 1117 0625 |1805 755 0657 | 450 58.0 0416 |144.0 1183 0.584
StyleGAN2 + Ours 731 92.8 0548 |96.0 99.9 0.682 [136.6 67.6 0734 | 394 43.3 0479 [117.0 57.7 0.539
StyleGAN2 + DA + Ours [70.2 941 0551 | 964 107.6 0.682 [129.9 669 0.705 |35.6 50.1 0471 [114.3 79.0 0.607
StyleGAN2 + ADA + Ours| 75.0 965 0.571 |94.1 96.6 0.684 |127.7 52.5 0.763 | 30.2 457 0.482 [155.5 657 0.544
StyleGAN2 + CDCT [34] | 934 107.4 0469 |206.7 110.1 0.545 |107.5 99.9 0518 | 457 46.1 0428 |126.6 79.1 0.342

Table 2: Quantitative comparison with diversity preservation methods on 10—
shot tasks.

Anime Face Animal-Face Dog FFHQ-babies
FID | sFID | LPIPS 1|FID | sFID | LPIPS 1|FID | sFID | LPIPS 1

N-Div [28] 175.4 176.4 0.425 |150.4 153.6 0.632 [177.1 177.1 0.510
MSGAN [29] |138.6 100.5 0.536 |165.7 123.0 0.630 |[165.4 120.1 0.569
DistanceGAN [4]| 84.1 93.0 0.543 [102.6 114.2 0.678 [105.7 102.9 0.640
MixDL (ours) |73.1 92.8 0.548 |96.0 99.9 0.682 |83.4 73.9 0.643

Method

corresponding GT, but our method generates unique samples with
recognizable visual features. We believe this is because our distance
regularization enforces outputs from different latent vectors to differ
from each other, proportionally to the relative distances in the latent
space.

4.2. Quantitative Evaluation

Tab. 1 shows FID, sFID and LPIPS scores for several low—shot
generation methods [54, 22, 27] on 10-shot image generation task.
We can see that our method consistently outperforms the baselines,
often with significant margins. Moreover, our regularizations can be
applied concurrently to data augmentations to obtain further
performance gains. Note that while StyleGANZ2 armed with advanced
data augmentations fails to converge from time to time, our method

guarantees stable convergence to a better optimum across all datasets.

Surprisingly, ours outperforms CDC [34] on all metrics even when the
two domains are closely related, e.g. anime—-face and face sketches.
For dissimilar domains like pokemon, CDC tends to sacrifice diversity
(i.e., LPIPS) for better fidelity, which nevertheless falls short overall.
We present training snapshots in the supplementary.

Additional quantitative comparison with diversity preserving
methods is displayed in Tab. 2. Although these methods have some
similarities with ours, especially MixDL-G, we can observe steady
improvements with MixDL. As the baselines are simply designed to
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Table 3: FID-comparison. Table 4: Precision and recall.

Dataset Obama Cat |Flowers|Obama Cat Obama Cat
Shot 100~ 100 | 100 10 10 Method 15 0 Rec. [Prec. Rec.
LPIPS 0.615 0.613| 0.795 | 0.598 0.598 StyleGAN2 047 0.07]/0.15 0.12

StyleGAN2 63.1 43.3| 192.2 174.7 76.4 .

+ DA 469 27.1| 916 66.8 45.6 +MixDL [0.52 0.32(0.86 0.50
+ Ours 58.4 26.6| 82.0 62.7 41.1 FastGAN [ 0.90 0.36| 0.90 0.43
+ DA + Ours| 45.4 26.5| 64.0 57.9 39.3 +MixDL |0.91 0.47|/0.91 0.50
Table 5: Ablation on loss components. Table 6: Coefficient sampling.

MixDL| Dog (10-shot) [Babies (100-shot)|Flowers (100-shot) Distribution Dirichlet Gaussian | Uniform
G D |FID | LPIPS 1|FID | LPIPS T |FID | LPIPS T
1775 0.569 |131.0 0.574 |192.2  0.747 Parameter |a = 0.1 a =1 a = 10|standard
v [118.4 0.649 | 834  0.638 94.1 0.775 FID (1) 764 731 80.8 76.0 748
v 95.4 0.673 | 71.7  0.638 84.0 0.780
v v | 960 0.682 |63.4 0.647 |82.0 0.782 LPIPS (1) | 0.536 0.548 0.532 | 0.548 | 0.546

minimize mode collapse, we believe they are relatively prone to
memorization, which is a far devastating issue in few-shot setting.

While pretraining—free 10-shot image synthesis task has not been
studied much, several works [27, 54] have previously explored
generative modeling with as little as 100 samples. We present
quantitative evaluations on popular low—shot benchmarks in Table 3.
We observe that our method consistently improves the baseline, and
the margin is larger for more challenging tasks, i.e., dataset with
greater diversity or fewer training samples. We discuss experiments
on these benchmarks in depth in Sec. 5. Tab. 4 shows precision and
recall [25] for these benchmarks, where MixDL boosts scores
especially in terms of diversity.

4.3. Ablation Study

We further evaluate the effects of the proposed regularizations,
MixDL-G (generator) and MixDL-D (discriminator), through ablation
under different settings. In Tab. 5, we observe that in general, our
regularizations both contribute to better quality and diversity, while in
some special cases, only adding MixDL-G leads to better FID score.
We conjecture that aligning discriminator’s feature vectors with the
interpolation coefficients can impose overly strict constraint for some
datasets. We nonetheless observe consistent improvements on
diversity.

Fig. 6 shows the evaluation across different subset sizes. Since
FFHQ-babies and Oxford—flowers contain more than 2,000 and 8,000
images respectively, we randomly sample subsets of size 10, 100 and
1,000. We can see that the performance of StyleGANZ steadily
improves with more training samples, but it consistently benefits from
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Figure 6: Shot ablation results. Red indicates FFHQ-babies and blue
represents flowers. (left) FID scores (right) LPIPS score.

MixDL. Hence, we believe that with limited data in general, our method
can be broadly used to improve model performance. Lastly in Tab. 6,
the effect of using different Dirichlet concentration parameters and
sampling distribution for mixup is illustrated. We find that setting o =
1 yields the best performance, so we uniformly use this throughout the
experiments.

4.4, Latent Space Smoothness

Smooth latent space interpolation is an important property of
generative models that disproves overfitting and allows synthesis of
novel data samples. As our proposed method focuses on diversity
through latent smoothing, we quantitatively evaluate this using a
variant of Perceptual Path Length (PPL) proposed by [23].

PPL was originally introduced as a measure of latent space
disentanglement under the assumption that a more disentangled latent
space would show smoother interpolation behavior [23]. As we wish
to directly quantify latent space smoothness, we slightly modify the
metric by taking 10 subintervals between any two latent vectors and
measure their perceptual distances. Tab. 7 reports the subinterval
mean, standard deviation, and the mean for the full path (End ). Note
that as PPL is a quadratic measure, the sum of subinterval means can
be smaller than the endpoint mean. All four models show similar
endpoint mean, suggesting that the overall total perceptual distance is
consistent, while ours displays the lowest PPL standard deviation. As
low PPL variance across subintervals is a direct sign of perceptually
uniform latent transitions, we can verify the effectiveness of our
method in smoothing the latent space. Similar insight can be found from
Fig. 7 where the baselines display stairlike latent transition while ours
shows smooth semantic interpolation. More details on PPL
computation can be found in the supplementary materials.
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Figure 7: Latent space interpolation results.

Table 7: Perceptual Path Length Uniformity.

Dataset Landscape Totoro
Metric Mean Std. End Mean Std. End
StyleGAN2 21.91 12.66 60.90 16.43 15.39 56.53
DistanceGAN 23.07 21.53 70.71 16.76 14.82 61.50
FastGAN 15.49 15.00 67.75 10.03 12.14 54.16
MixDL 12.82 4.19 64.28 11.75 6.44 56.83

@ StyleGAN2 @ StyleGAN2+ours W FastGAN W FastGAN+ours

LPIPS
Number of NN training sample

0
5000 10000 15000 20000 5000 10000 15000 20000 25000 30000

Iteration Iteration

Figure 8: (left) LPIPS in early iterations (right) number of unique NN training
samples.

4.5. Preserving Diversity

As opposed to [34] that preserves diversity in the source domain,
our method can be interpreted as preserving the diversity inherently
present in the early stages throughout the course of training, by
constantly exploring the latent space and enforcing relative similarity
between samples. To validate our hypothesis, we keep track of
pairwise LPIPS of generated samples and the number of modes in the
early iterations. Fig. 8 shows the result, where the number of modes
is represented by the number of unique training samples (real images)
that are the nearest neighbor to any of the generated images. In Fig.
8a, we can see that vanilla StyleGANZ and our method show similar
LPIPS in the beginning, but the baseline quickly loses diversity while
ours maintains relatively high level of diversity throughout the training.
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Fig. 8b delivers similar implication that FastGAN trained with MixDL
better preserves modes compared to the baseline.

Combined with latent space smoothness explained in Sec. 4.4,
generators equipped with MixDL learn rich mode-preserving latent
space with smooth interpolable landscape. This naturally allows
generative diversity particularly appreciated under the constraint of
extremely limited data.
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Chapter 5. Discussion

The trade—off between fidelity and diversity in GANs has been
noted by many [8, 23]. Truncation trick, a technique widely used in
generative models, essentially denotes that diversity can be traded for
fidelity. In few-shot generation task, it is very straightforward to
obtain near—perfect fidelity at the expense of diversity as one can
simply overfit the model, while generating diverse unseen data points
is very challenging. This implies that with only a handful of data, the
diversity should be credited no less than the fidelity.

However, we believe that the widely used low—shot benchmarks,
e.g., 100-shot Obama and Grumpy Cat, inherently favor faithful
reconstruction over audacious exploration. The main limitations we
find in these datasets are twofold: (i) the intra—diversity is too limited
as they contain photos of a single person or object, evidenced by low
LPIPS in Tab. 3 and (i) FID is computed based on the 100 samples
that were used for training. We acknowledge that (ii) is a common
practice in generative models, but the problem with these benchmarks
is that the number of samples is too limited, making it possible for
some models to simply memorize a large portion of them. These two
combined results in benchmarks that allow relatively easy replication
and reward it generously at the same time. In other words, we believe
that a model’s capacity to explore continuous image manifold and be
creative can potentially backfire in these benchmarks.

To address these limitations, in Tab. 3 we extend the benchmark
with three additional datasets: 100-shot flowers, 10-shot Obama and
Grumpy Cat. The first one challenges the model with greater diversity
while the last two evaluate its capacity to learn distribution in a
generalizable manner, as the FID is still computed against the full 100
images. As our method mainly aims for modeling diversity, we observe
marginal performance gains in the traditional benchmarks. However
on the extended benchmarks, it shows significant contributions,
confirming its excellence at learning diversity even under challenging

situations.
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Chapter 6. Conclusion

We propose MixDL, a set of distance regularizations that can be
directly added to existing models for few-shot image generation.
Unlike previous works, MixDL enables high—quality synthesis of novel
images with as few as 5 to 10 training samples, even without any
source domain pretraining. Thorough evaluations on diverse
benchmarks demonstrate the effectiveness of our framework. We hope
our work facilitates future research on data efficient generative

modeling.
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