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Abstract

Music auto-tagging plays a vital role in music discovery and recommendation by
assigning relevant tags or labels to music tracks. However, existing models in the field
of Music Information Retrieval (MIR) often struggle to maintain high performance
when faced with real-world noise, such as environmental noise and speech commonly

found in multimedia content like YouTube videos.

In this research, we draw inspiration from previous studies focused on speech-
related tasks and propose a novel approach to improve the performance of music
auto-tagging on noisy sources. Our method incorporates Domain Adversarial Train-
ing (DAT) into the music domain, enabling the learning of robust music represen-
tations that are resilient to the presence of noise. Unlike previous speech-based re-
search, which typically involves a pretraining phase for the feature extractor followed
by the DAT phase, our approach includes an additional pretraining phase specifically
designed for the domain classifier. By this additional training phase, the domain clas-
sifier effectively distinguishes between clean and noisy music sources, enhancing the

feature extractor’s ability not to distinguish between clean and noisy music.

Furthermore, we introduce the concept of creating noisy music source data with
varying signal-to-noise ratios. By exposing the model to different levels of noise, we
promote better generalization across diverse environmental conditions. This enables
the model to adapt to a wide range of real-world scenarios and perform robust music

auto-tagging.

Our proposed network architecture demonstrates exceptional performance in mu-

sic auto-tagging tasks, leveraging the power of robust music representations even on



noise types that were not encountered during the training phase. This highlights the
model’s ability to generalize well to unseen noise sources, further enhancing its effec-

tiveness in real-world applications.

Through this research, we address the limitations of existing music auto-tagging
models and present a novel approach that significantly improves performance in the
presence of noise. The findings of this study contribute to the advancement of music
processing applications, enabling more accurate and reliable music classification and

organization in various industries.

Keywords: Robust Music Representation, Music Auto-tagging, Domain Adversarial
Training

Student Number: 2021-21802
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Chapter 1

Introduction

1.1 Motivation

Music Auto-tagging refers to the automated process of assigning relevant semantic
tags to musical pieces, typically driven by machine learning algorithms, to facilitate

effective music information retrieval, personalization, and recommendation systems.

The deployment of music auto-tagging mostly employs clean, pure music tracks,
primarily serving the role of facilitating personalized recommendations within music-
streaming services such as Spotify! (figure 1.1). These services utilize extensive meta-
data associated with each track to craft a rich and tailored user experience. This meta-
data, derived from clean musical sources, provides a comprehensive understanding of
the inherent attributes of each track, thus enabling a more accurate alignment with in-

dividual user preferences.

Moreover, music auto-tagging plays a crucial role in enhancing music search and

exploration on video-streaming platforms like YouTube®. By assigning relevant se-

"https://open.spotify.com/
“https://www.youtube.com/results?search_query=live+performance
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Figure 1.1: Personalized mix and recommendation of music for the user in
music-streaming service, Spotify.

mantic tags to music content, users can easily search for specific genres, artists, moods,

or themes, enhancing the overall accessibility and discoverability of music content.



Video with music content (in Youtube)
Real World Music with Noise

180N UvePeformanc Doy 846)

Figure 1.2: Music-related video content such as recordings of live concerts or live
performances in video-streaming service, YouTube.

However, it is important to note that there are not enough tags for effective searching
and exploring in video-streaming services. The sheer volume and diversity of music-
related content uploaded daily make it challenging to rely solely on existing tags.
Hence, the development of advanced music auto-tagging techniques becomes impera-
tive to improve the accuracy and efficiency of music search and exploration, enabling

users to discover relevant music content more easily.

Furthermore, the music content in video-streaming services contains not just clean
music, but also real-world sounds such as crowd noises and applause along with the
music (figure 1.2). This presents a unique challenge: the lack of comparable tagged
datasets for these “noisy” music sources limits the effectiveness of traditional auto-
tagging mechanisms. Al models trained predominantly on clean music sources strug-
gle to recognize and accurately classify these more complex, noise-infused tracks.
Consequently, it becomes imperative to develop and adapt auto-tagging mechanisms

capable of accurately labeling these diverse video sources.

The current situation highlights the necessity for novel strategies in music auto-
tagging. These advancements would seek to bridge the divide between the metadata

tagging used in music-streaming services and the largely untapped potential of com-



plex music content found on video-streaming platforms. This, in turn, would contribute

to a richer and more personalized user experience across various platforms.

1.2 Problem Definition

In this section, we explore the specific issues that arise within the context of music
auto-tagging. One critical problem stems from the innate limitations of models pri-
marily trained on clean music tracks. When confronted with noisy music input, these
models encounter difficulties isolating the musical elements within a composite audi-
tory environment comprising music and extraneous real-world noises. The challenge
is heightened in music auto-tagging tasks, where accurate identification and extraction

of musical features are crucial.

Existing models encounter a significant obstacle: they must maintain consistent
feature extraction irrespective of whether the input originates from a clean or a noisy
version of the same music. Due to the prevalent use of clean music sources in training,
the models’ ability to achieve this consistency is limited. The discrepancy in feature
extraction between clean and noisy versions of the same music hinders the models’

capacity to tag accurately and effectively.

We propose a novel approach to address this issue: the development of a music-
tagged dataset containing both clean and noisy versions of identical music tracks. This
methodology allows models to be trained to recognize music amidst the noise and ex-
tract consistent features regardless of the input’s quality. This proposed solution aims
to enhance the model’s ability to generalize and perform accurately across diverse au-

dio conditions.



The introduction of such a comprehensive training approach could represent a
significant leap forward in the domain of music auto-tagging. However, this novel
approach presents its challenges, including the creation and validation of a suitable
dataset. The path ahead demands a shift in model training and evaluation paradigms
and a more inclusive approach to the complex and diverse reality of real-world music

content.



Chapter 2

Background

This chapter provides an overview of the basic concepts and related works to un-
derstand the thesis. It covers music representation learning, robust music representa-
tion learning, music auto-tagging, domain adversarial training, prior research on music
auto-tagging, and general methods for music enhancement, and describes the baseline
research that inspired this thesis. By exploring these topics, this chapter establishes the
foundation for the subsequent chapters and highlights the significance of the research

in advancing music auto-tagging and robust music representation learning.

2.1 Basic Concepts

2.1.1 Music Representation Learning

Music representation learning is a challenging task within the field of machine
learning, aiming to develop algorithms that capture the complex and multi-dimensional
characteristics of music. It involves transforming raw audio or symbolic musical data
into a format that is easily interpretable and usable by machine learning models. The

main objective is to create efficient and compact representations that preserve essen-
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Figure 2.1: Music Representation Learning Framework: the stages of feature
extraction and downstream task prediction.

tial musical features, enabling effective analysis, synthesis, and manipulation of music.

Within the context of music information retrieval (MIR), representation learning
has played a crucial role in transforming raw music data into a more accessible and

manipulable form.
X = [xl,xg,...,a:n], r; €R" 2.1
Mel Spectrogram = log(M = |S|), S =STFT(X) (2.2)

The raw music audio input X can be discretized into individual samples x; through
a specific sampling rate, serving as the input for the feature extraction process. How-
ever, as the size of the discretized samples is large, raw audio can be transformed into a
mel-spectrogram, which is a 2-dimensional representation of the frequencies present in
an audio signal, emphasizing the human perception of pitch. A shown in equation 2.2,
Mel-spectrogram can be computed by applying a mel filterbank to the power spectrum
of the audio signal, where each filterbank channel captures a specific frequency range
based on the mel scale. The function ST F'T" denotes short-time fourier transform, M

denotes mel-filterbank matrix, and * denotes matrix multiplication.



Z = 21,22,y Zm]s z; € R¢ (2.3)
f:R" — Re°, eLr (2.4)

Feature extraction aims to map these input samples to a vector representation 2
residing in a lower-dimensional embedding space compared to the original input. The
transformative nature of Feature Extractor (FE) enables more efficient and effective

music representation learning.

The selection of specific techniques and algorithms for FE depends on the desired
properties of the resulting embedded representation. Choosing an appropriate FE ap-
proach is critical for achieving high-quality and discriminative music representations,
which significantly impact downstream tasks such as auto-tagging, genre classifica-

tion, and recommendation systems.

Ongoing research in music representation learning aims not only to improve the
quality of representations but also to gain a deeper understanding of the captured musi-
cal elements, enabling more interpretable manipulation. Additionally, the development
of unsupervised and self-supervised learning strategies has gained significant interest,
as they offer the potential to learn powerful representations from unlabeled data, such

as audio recordings and musical scores, which are abundantly available.

2.1.2 Robust Music Representation Learning

In this section, the focus shifts towards robust music representation learning, specif-
ically addressing the challenge of noisy music inputs. While the previous section dis-

cussed music representation learning in general, this section delves into the framework



Real World Music Upstream

with Noise Feature Extraction Downstream Task
— —
! | i |
» | Feature | . { Label |
—_ { Representation —> . ! .
ﬂ 'h | Extractor | P §Pred|ctor§ — Prediction
.AI\I\I\I\I\. ) -/ [0,1,0, .. 1,1]
CNN, Transformer, Examples:
CPC, AE, etc. Genre Classfication,
Auto-tagging,

Emotion Recognition,
Recommendation,
etc.

Figure 2.2: Robust Music Representation Learning Framework: specific example of
downstream tasks, music auto-tagging with multi-labels.

designed to handle the complexities introduced by noisy music.

The goal of robust music representation learning is to extract representations that
are resilient to the presence of additional real-world sounds, such as crowd noises, ap-
plause, speech, and other acoustic interferences while preserving the essential musical
features. The framework incorporates techniques to ensure that the extracted represen-
tations remain consistent regardless of whether the input is clean or noisy music, as

long as the musical content remains the same.

The framework builds upon the foundations of music representation learning, lever-
aging techniques of existing deep learning models. However, it introduces modifica-
tions and adaptations to these methods to enhance their robustness to noise and enable
consistent feature extraction across varying audio conditions. It aims to disentangle
the musical components from the complex auditory environment and extract robust

representations that capture the underlying musical attributes.

To address the challenges posed by noisy music inputs, our research aims to de-
velop a robust framework for music auto-tagging in the context of multimedia content.

This involves employing advanced signal processing algorithms and deep learning ar-



chitectures, while also considering the unique challenges presented by noisy music
inputs. Instead of relying on complex music enhancement models with a larger num-
ber of parameters, our approach focuses on placing both clean and noisy music in the
same embedding space. By tailoring the model to handle these challenges, we aim to

achieve robust music representation learning with more efficient parameter usage.

2.1.3 Music Auto-tagging

Music auto-tagging is a crucial task in the field of MIR, focusing on automatically
assigning relevant tags or labels to music tracks. These tags encompass a broad array
of musical characteristics, such as the genre, mood, instrumentation, and other seman-
tic aspects that describe the music content. This form of metadata can facilitate music
recommendation, music search, playlist generation, and music content organization,

among other applications.

Traditionally, music auto-tagging was performed manually by experts, but this ap-
proach is time-consuming and can lack consistency due to the subjective nature of
music. Hence, machine learning, and more specifically deep learning, has played an

integral role in automating and improving this process.

In the early stages of music auto-tagging, supervised learning methods like Sup-
port Vector Machines (SVMs) [1] and k-Nearest Neighbors (k-NN) [2] were popu-
lar but faced challenges with the complexity of raw audio data. The advent of deep
learning revolutionized music auto-tagging, utilizing Convolutional Neural Networks
(CNNs) [3] for spectrogram-based representations and Recurrent Neural Networks
(RNNs) [4] for waveform or MIDI-based representations. Recent advancements in-

clude attention mechanisms and transformer-based models, enabling focused tag as-

10
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Figure 2.3: The figure of t-SNE visualizations of domain adaptation. Blue points
correspond to the source domain datapoints, while red points correspond to the target
domain.

signment by prioritizing relevant parts of music inputs.

Despite the progress made in this field, there are still challenges to overcome.
Among these is the handling of the scarcity of labeled data, the problem of tag in-
consistency, and the development of models that can provide interpretable reasoning
behind their tag assignments. Active research is also being conducted in unsupervised
and self-supervised music auto-tagging to address the issue of label scarcity and the

high cost of data annotation.

2.1.4 Domain Adversarial Training

Domain Adversarial Training (DAT) [5] is a powerful technique in machine learn-
ing that aims to address the challenge of domain shift, where the distribution of data
differs between the source domain (used for training) and the target domain (where
the model needs to perform well). The goal of domain adversarial training is to learn
representations that are domain-invariant, allowing the model to generalize effectively

across different domains.

A&t 8t
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Figure 2.4: The architecture of Domain Adversarial Neural Network (DANN).

In domain adversarial training, three key components are involved: a feature ex-
tractor (FE), a domain classifier (DC), and a label predictor (LP) (figure 2.4). The
feature extractor learns to extract meaningful representations from the input data, the
domain classifier aims to classify the source domain versus the target domain based
on the extracted features, and the label predictor is responsible for solving the spe-
cific task at hand. These three components are trained simultaneously in an adversarial
manner, where the feature extractor and label predictor aim to minimize the task loss,

while the domain classifier tries to maximize the domain classification accuracy.

An example of domain adversarial loss function is shown in equation 2.5, where
L(-,-)y and L(-,-)q is the loss function of LP and DC, 6y, 6,, and 04 are the parame-
ters of the FE, LP, and DC, respectively. Note that ¢ denotes each datapoint. Among the
two loss terms of DC, the first one denotes the domain loss of the source domain while
the last one denotes the target domain. The parameter A determines the balance be-
tween the two objectives that influence the feature during training. During the training
process, the FE and LP aim to maximize the task-specific performance by minimizing

the task loss, while the DC aims to maximize the domain classification accuracy by

Ralks L
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maximizing the domain loss. The domain loss is calculated based on the discrepancy
between the predictions of the domain classifier on the source and target domain sam-
ples. By jointly training the FE and LP to minimize the task loss while fooling the DC,
the model learns to extract features that are robust to domain shift, effectively reducing

the domain gap.

1 n 1 n
E(0f7 0@/7 ed) = E zglLly(gf’ Qy) - A(ﬁ lglel(Qf’ gd) +

1 N
. Lif0y,0a)

= 2
(2.5)

Domain adversarial training has been successfully applied in various domains, in-
cluding computer vision, natural language processing, and audio processing. It has
been used for tasks such as object recognition and sentiment analysis. The technique
is particularly useful when labeled data in the target domain is scarce or expensive to
obtain, as it allows the model to leverage labeled data from the source domain and

adapt it to the target domain.

Overall, domain adversarial training provides a powerful framework for address-
ing the challenge of domain shift and improving the generalization performance of
machine learning models across different domains. By learning domain-invariant rep-
resentations, the models trained using this technique can effectively transfer knowl-
edge from the source domain to the target domain, enabling improved performance

and adaptability in real-world applications.

13



2.2 Related Work

2.2.1 Music Representation Learning for Auto-tagging

This section provides an overview of prominent deep neural network models that

have demonstrated strong performance in the field of music auto-tagging.

Musicnn  Musicnn [6] is a convolutional neural network specifically tailored for mu-
sic auto-tagging tasks. Its architecture comprises three components: a musically mo-
tivated CNN for front-end feature extraction, dense layers for mid-end feature extrac-
tion, and temporal pooling for classifying 50 tags from the MagnaTagATune dataset
[71, as shown in figure 2.5. The framework is designed to extract musically meaningful
features that can be utilized for various downstream tasks in accordance with the char-
acteristics of the music. Additionally, the provided pretrained models can be finetuned

for transfer learning purposes, enabling their application to other relevant tasks.

log-mel front-end mid-end

spectrogram musically features features taggram
: _ —— 1 DNN ~
187 x 96| —~ motivated —~ (187 x 561| —~ g"y‘;sr‘; — 187x753) - ;?3?;:2 > 50 units = |1% 350

(3 sec x 96 bands)

Figure 2.5: The framework of MusiCNN.

When utilizing a vgg-like baseline model [8], the music auto-tagging performance
on the MagnaTagATune dataset (MTAT) [7] yielded a ROC-AUC of 90.26 and a PR-
AUC of 38.19. Similarly, for the Million Song Dataset (MSD) [9], the achieved ROC-
AUC was 87.67, while the PR-AUC reached 28.19.

Jukebox Jukebox [10], a model built upon the Transformer [11] and VQ-VAE [12]

architectures, utilizes a hierarchical encoding process to transform raw audio input

into a complex representation. Through the VQ-VAE, the input signal is encoded into

14



different-sized vectors, from a sparse representation to a more intricate and detailed
representation. This encoding process allows for the effective quantization of the signal
into 2048 codes. In addition to the quantized codes, Jukebox incorporates conditional
vectors that represent genres or lyrics. By integrating these conditional vectors and
leveraging the Transformer model, Jukebox effectively reduces dataset entropy and
ensures controllability, resulting in the generation of high-quality pop music audio. By
using the extracted feature from the pretrained model with additional strategies [13],

this architecture achieved 91.5 on AUC and 41.4 on AP.
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Figure 2.6: The framework of training three separate VQ-VAE of Jukebox.

CLMR CLMR [14] is an approach inspired by SimCLR [15] that leverages con-
trastive learning to extract musical features. It designates different sections of the same
song as positive samples and sections of different songs as negative samples. By ap-
plying a comprehensive chain of audio augmentation to randomly selected fragments
from raw audio waveforms, positive and negative samples are generated. Using the
SampleCNN [16] architecture as the encoder, features are extracted and elaborate rep-
resentations are learned through contrastive learning. The quality of these represen-
tations is evaluated through music classification tasks using datasets like the MTAT

dataset and MSD, in which CLMR outperforms other state-of-the-art models.
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Figure 2.7: The framework of Contrastive Learning for Music Representation
(CLMR).

2.2.2 Recent Methods for Music Enhancement

The music enhancement task involves improving the quality of noisy or corrupted
music, and the representations generated by these models have the potential to bene-
fit other downstream tasks. While certain architectures employ separate encoder and
vocoder components, allowing for the utilization of the encoder’s extracted output,
other approaches directly address music quality improvement by predicting tokens us-
ing Transformer-based models. Considering the objective of enhancing robustness to
noise and addressing downstream music-related tasks, these studies offer valuable in-

sights that can contribute to the resolution of the research problem at hand.
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Two-stage approach of denoising and enhancement via GAN and DDPM

Kandpal et al. [17] proposed a music enhancement approach for which they em-
ployed Mel2Mel [18] and Diffwave [19] models. The Mel2Mel model is utilized to
enhance distorted music’s mel-spectrogram, while the Diffwave model serves as a
vocoder responsible for converting the mel-spectrogram into waveform. The authors
explored two training strategies: independent training, where Mel2Mel and Diffwave
are trained separately, and joint training, where the models are trained together. In
independent training, the advantage lies in the robustness of the Diffwave vocoder
to artifacts in the enhanced mel-spectrogram, as it is solely trained on clean mel-
spectrograms. Conversely, joint training offers the advantage of achieving a high FAD
(Fréchet Audio Distance) [20] score, which is closely related to human perceptual

quality.

High-Quality
Mel2Mel GAN Spectrogram Musecoder DDPM

Low-Quality Conv Encoder Conv Decoder

Spectrogram High-Quality

Denoising Steps \Waveform

UL

Diffusion Steps

Noise
i

Figure 2.8: Model architecture of Mel2Mel + Diffwave model. This first generates the
high-quality mel-spectrogram from the low-quality with the conditional GAN, and
then synthesizes high-quality audio waveform from Gaussian noise, conditioned on

high-quality mel-spectrogram by using Denoising Diffusion Probabilistic Model
(DDPM).

Post-processing approach along with the source separation
Schaffer et al. [21] conducted research on music enhancement by proposing a
post-processing model called the Make it Sound Good (MSG) post-processor, aimed

at enhancing the output of music source separation systems. The study addressed the
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perceptual shortcomings of state-of-the-art music separation systems, such as the in-
troduction of extraneous noise or the loss of harmonics. The MSG post-processor
was applied to both waveform-based and spectrogram-based music source separa-
tors, including an unseen separator during training. The analysis of errors produced
by source separators revealed that waveform models introduced more high-frequency
noise, while spectrogram models lost transients and high-frequency content. Objec-
tive measures were introduced to quantify these errors, and the MSG post-processor
demonstrated improvements in source reconstruction for both types of errors. Fur-
thermore, subjective evaluations conducted with crowdsourced listeners indicated a
preference for MSG post-processed source estimates of bass and drums. It is worth
noting that the research by Schaffer et al. acknowledged the limitation of enhancing

single-stem outputs of source separation models.

Transformer-based approach

Chae [22] addresses the increasing demand for music enhancement in order to
improve the quality of distorted musical recordings. The proposed approach utilizes
TF-Conformers, which have demonstrated excellent performance in speech enhance-
ment tasks [23]. The study explores various self-attention techniques of the Conformer
model to identify the most effective approach for music enhancement. Experimen-
tal results indicate that the proposed model surpasses the state-of-the-art in enhanc-
ing single-stem music. Notably, the system also demonstrates the ability to perform
general music enhancement with multi-track mixtures, an aspect that previous works
have not explored extensively. The methods employed involve TF-Conformer modules
based on the encoder and decoders of the CMGAN generator [24], which consists of
dilated DenseNet layers, instance normalization, and PReLLU activation functions. The
proposed TF-Conformers, including Cascade, Parallel, and Cascade-Parallel modules,

are further introduced and evaluated. It is noteworthy that these methods have not been
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previously proposed in TF-self-attention-based models.

2.2.3 Improving Robustness for Speech Representation via Domain Ad-

versarial Training

In the baseline research which inspired this thesis, Huang et al. [25] proposed
a novel method using domain adversarial training (DAT) to address the degradation
of speech performance caused by various types of distortions. Unlike existing DAT
approaches, their method employed a two-stage training process. In the first stage,
they utilized a pretrained Hubert model [26] and fine-tuned it on the Librispeech
dataset [27] without labels, dividing the dataset into four parts to represent different
domains. One part served as the source domain, consisting of clean speech without
distortions, while the other three parts represented the target domain with specific dis-
tortions: reverb, Gaussian noise, and noise from the Musan [28] dataset. This continual
training stage aimed to enhance the model’s representation and improve its robustness

to different types of noise.

In the second stage, the authors utilized the SUPERB [29] framework to conduct
experiments on five downstream tasks related to speech. Each task’s dataset was di-
vided into source and target domains, with the source domain containing clean audio
with known labels, and the target domain consisting of distorted audio with the three
aforementioned types of noise. Importantly, the parameters of the FE were trained
alongside the DC and LP. Evaluation of the models on unseen distortions demon-
strated improved performance compared to the baseline architecture for certain tasks.
Notably, the models showed no degradation for the seen noises and, in some cases,

even outperformed the fully supervised model.
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Chapter 3

Method

In this chapter, we present a detailed explanation of the proposed architecture,
training process, and objective function. These components are based on the founda-
tion laid by previous research, which focused on enhancing the robustness of speech

representation as discussed in the preceding section.

3.1 Model Structure

The architecture of the domain adversarial training (DAT) consists of three dis-
tinct models. In our implementation, we similarly structured the main components of

our architecture into three modules, which will be comprehensively discussed in detail.

3.1.1 Feature Extractor

The FE in this study is designed based on the state-of-the-art CLMR architecture,
which has demonstrated exceptional performance in music auto-tagging tasks. CLMR
leverages the SImCLR [15] backbone, which employs contrastive learning strategies

for representation learning without the need for labeled data. In this research, the Sam-
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pleCNN architecture (figure 3.1) is utilized as the encoder component of FE. Notably,

the last fully-connected layer of SampleCNN is substituted with an identity matrix.

The resulting encoder output is then passed through a projector module, consisting of

two fully-connected layers with a ReLU activation function in between, to obtain the

final feature representation.

32 model, 19683 frames

59049 samples (2678 ms) as input

layer stride output # of params
conv 3-128 3 19683 x 128 512
L R
el
ir(l)::(,p::)flsg ; 2712897>:< 225566 98560
el U
sigmoid - 50 25650
Total params 1.9 x 106

Table 3.1: The SampleCNN architecture, serving as the feature extractor and encoder
within the CLMR framework.
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Given that the input sample length of the SampleCNN model is 59,049, it cor-
responds to approximately 2.7 seconds of audio at a sampling rate of 22,050 Hz. The
encoder component of the model produces a 50-dimensional vector as its output, which
aligns with the number of tags present in the MTAT dataset. Further elaboration on the

MTAT dataset and its relevance will be provided in the subsequent section.

3.1.2 Domain Classifier

The structure of the DC is based on the original DAT research. It takes the output
embedding from the FE as input and produces a 1-dimensional vector that classifies
whether the embedding originated from the clean source input or the noisy target input.
The DC model comprises simple fully-connected layers, accompanied by activation

functions and batch normalization, as depicted in Figure 3.1.

( embedding [n] )

( ropse ) ( embeddingn] |
( BatchNorm, ReLU | ( FCl[n] )
( FCl[SO] ) ¢ RelLU )
( AvglPoo| ) ( FC 1[50] ]
( sigmoid | ( Mutiaber cllassiﬁcanon )
( Binary C|alssification]

Figure 3.1: The architecture of domain classifier(left) and the label predictor(right).
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3.1.3 Label Predictor

Among the models in the proposed architecture, the LP stands out with its com-
pact structure and minimal number of layers and parameters. As illustrated in Figure
3.1, the LP model takes the output from the FE as input and sequentially processes it
through two fully-connected layers, with a ReLU activation function in between. The
final output of the LP is a 50-dimensional vector, which corresponds to the classifica-

tion of the 50 multi-tags in the MTAT dataset.

3.2 Domain Adversarial Training for Clean Source Domain

and Noisy Target Domain of Music

The proposed method in this thesis follows a three-stage training approach. In the
first stage, the FE is pretrained. The second stage involves the pretraining of the DC
while keeping the FE frozen. In the final stage, the FE is finetuned, and simultaneously,

the LP is trained.

3.2.1 Pretraining Feature Extractor

In line with previous research [25], the FE was pretrained in this study. However,
instead of using pretrained model, we opted to train the CLMR model from scratch
using the MTG-Jamendo dataset. Although the pretrained model parameters were pro-
vided by the authors, the MTAT dataset, which would be used for downstream tasks,
could not be exposed to the model until the final stage. Additionally, full access to the
MSD dataset was not available at the time. As a result, the MTG-Jamendo dataset,
which is annotated with multi-labels for music auto-tagging, was chosen to allow the

model to learn a generalized representation of music audio during the initial pretrain-
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ing stage. Notably, unlike the previous research, this stage involved training half of
the dataset as a clean source and the other half as a noisy target, incorporating a spe-
cific number of noise sources. Essentially, the separate stages of pretraining with clean
source only and continual training with noisy target were combined into a single stage

in this study.

Upstream Downstream
ef 0y
. |- ———————— :
! 1
! 1
Feature ! !
raw Extractor X PrI;Z!i):tlor X )
e < R R R R LD T e EEEE R » h — >y
audio ex) 1 = trained for each |
CLMR for music : downstream task .
- :
! 1
L 1
90 80, oL
=0, —n(—L — \=2~ : 0, =0, —a(—2
04
T T i
! 1
: Domain : ) d
---------- -): Classifier 1
- :
L 1
0Ly
0y =04 — B(—2
a=0a—pB( a0, )

Figure 3.2: The first stage of the proposed method: Pretraining FE with
MTG-Jamendo dataset.
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3.2.2 Pretraining Domain Classifier

In previous studies on DAT [5] and speech robustness improvement [25], the DC
was trained simultaneously with other models. However, in the context of music repre-
sentation, training DC from scratch in conjunction with FE or LP hindered its perfor-
mance. Therefore, based on empirical observations, we opted to first pretrain DC while
keeping the parameters of pretrained FE frozen to ensure consistent input embeddings.
Moreover, we used the MTAT train dataset divided into a clean source domain and a

noisy target domain in which configuration will be consistent until the last stage.

Upstream Downstream
05 0,
. |- -------- :
! 1
! 1
Feature : !
Label 1
raw S 5 Predictor 1 -
audio ex) ", — trained for each : Y
CLMR for music : downstream task .
- )
! 1
D e e e e o 1
90 90, oL
Or=0;—n(— — A\—= 0. — 0. — a—2
04

L > Domain >d

Classifier
0L,
04 =04 — B(——
a=0a— p( 36,

Figure 3.3: The second stage of proposed method: Pretraining DC with MTAT
dataset.
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Figure 3.4: The last stage of the proposed method: Training LP and finetuning FE
with MTAT dataset.

3.2.3 Domain Adversarial Training for Finetuning Feature Extractor and

Training Label Predictor

The final stage of the proposed method focuses on training LP while simultane-
ously finetuning FE, with the objective of mapping clean and noisy music inputs from
the same song to the same embedding space. This is achieved by reversing the gradient

of DC and incorporating it into FE, weighted by the hyperparameter X to balance the
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scale of domain loss and label loss. Through this approach, FE is trained to disregard
the distinction between clean and noisy music inputs, leading LP to result in highly
similar classification output for music samples from the same song, regardless of their

noise levels.

3.3 Objective Function

At the first stage of pretraining FE, the contrastive learning approach was adapted
thus N7-Xent loss (normalized temperature-scaled cross-entropy loss) [15] is used for

pretraining without labels. The equation of NT-Xent loss is as follows:

exp (sim (z;,2;) /7)

. G.0)
SN Lkt exp (sim (24, 2) /7)

li,j = — log

Note that the function above is for a positive pair of examples (i, j). The function
sim(u, v) denotes the dot product between /5 normalized v and v (i.e. cosine simi-
larity), and 1}, is an indicator function evaluating to 1 iff & # ¢ and 7 denotes a

temperature.

In the second stage and the last stage of the proposed method, DC and LP are
trained by BCE (Binary Cross-Entropy) loss for binary classification for DC and multi-
label classification for LP. The equation of BCE loss is described in equation 3.2.

1 N
Y

BCE(ZL‘) = —N = 4

log(p) + (1 — ;) log(1 —p), p = h(z;0) (3.2)

The total loss function for the DAT stage encompasses the parameter updates for
FE and LP, as depicted in equation 3.4. It is important to note that the parameters of

DC can be either frozen or finetuned during the final DAT stage, as determined through
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experimentation. Note that 6, 6, and 6 correspond to parameters of DC, LP, and FE,

respectively.

oL oL
ba = b= B(G50) + by =0y~ alGg") (3.3)
00 00
5 = b =nlz5- ~ V55, (34
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Chapter 4

Experiment

This chapter provides an overview of the music and noise datasets employed in the
experiment, along with their respective data configurations. Subsequently, the section
presents the implementation details, settings, and architectures of both the baseline and
the fully supervised models. Lastly, comprehensive descriptions are provided for the

evaluation metrics, settings, and the subsequent results obtained from the evaluation.

4.1 Dataset

4.1.1 Music Dataset

For the music dataset, the MTG-Jamendo dataset [30] was utilized to pretrain the
FE, while the MagnaTagATune dataset [7] was employed for pretraining the DC and
training the LP during the DAT stage for the downstream tasks. The FE was specif-
ically trained to exhibit generalization capabilities for both clean source and noisy
target musical representations. To achieve this, the FE was pretrained using the MTG-

Jamendo dataset, which differs from the datasets utilized for the downstream tasks.

30



MTG-Jamendo The MTG-Jamendo dataset comprises a total of 56,639 full au-
dio tracks, with a median duration of 224 seconds per track, amounting to approxi-
mately 3,777 hours of audio. The dataset covers a range of genres, instruments, and
mood/theme categories, encompassing a total of 195 tags. To facilitate specific re-
search requirements, subsets of the dataset containing a specific set of tags have been

created, and these subsets are further divided into train, validation, and test splits.

Considering the size of the full dataset, a filtering process was applied to select rel-
evant tracks. Specifically, two subsets were utilized: one containing 95 genre tags and
another containing 59 mood/theme tags. By cross-referencing the provided metadata,
a subset of 18,255 tracks that included both genre and mood/theme tags was filtered
out. Given that the number of genre and mood/theme tags exceeded that of instrument
tags, it was inferred that the remaining filtered tracks likely encompassed a significant
portion of the remaining tags within the instrument category. Consequently, the final
filtered dataset consisted of 1,108 hours of audio data, featuring 87 genre tags and 56

mood/theme tags.

MagnaTagATune The MagnaTagATune dataset encompasses a collection of 25,863
music clips, each lasting approximately 29 seconds. These clips are derived from a set
of 5,223 unique songs, distributed across 445 albums and performed by 230 artists. The
dataset exhibits a diverse range of musical genres, including Classical, New Age, Elec-
tronica, Rock, Pop, World, Jazz, Blues, Metal, Punk, among others. Each audio clip is
associated with a binary annotation vector, comprising 188 tags. These annotations are
generated through the TagATune game, an online two-player game where participants
listen to audio clips and assign descriptive tags. The game involves players hearing
the same or different audio clips and providing corresponding tags. Tags are assigned

when there is agreement among multiple players. Examples of tags include ‘singer’,
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‘no singer’, ‘violin’, ‘drums’, ‘classical’, and ‘jazz’. To ensure sufficient training data
for each tag, evaluation is commonly performed using the top 50 most popular tags.
The dataset is divided into 16 parts, with parts 1-12 typically used for training, part 13

for validation, and parts 14-16 for testing purposes.

4.1.2 Noise Dataset

The noise dataset used in this study consisted of two primary sources: Audioset
[31] and the Musan dataset [28]. Audioset, a comprehensive collection of labeled au-
dio segments, was utilized for training purposes across all stages of the experiment. In
contrast, the Musan dataset was specifically employed to evaluate the performance of
the trained models. Within the Musan dataset, the noise subset was selected for inclu-
sion in the study. This experimental design was devised to assess the models’ ability
to effectively handle noise from external datasets, thereby providing valuable insights

into the robustness and adaptability of the proposed approach.

Audioset The Audioset is a large-scale dataset of human-labeled 10-second sound
clips developed by Google. It contains a diverse collection of audio recordings from
YouTube videos. The dataset is designed for audio event detection and classification
tasks, providing audio clips labeled with a variety of sound events such as musical in-
struments, animal sounds, human activities, and environmental sounds. Audioset has
been widely used in research and machine learning applications for tasks related to
audio analysis, including speech recognition, sound event detection, and audio classi-

fication.

We performed manual filtering on the dataset, which originally contained 527 la-

bels, to extract music-related labels. The resulting filtered dataset consisted of 348

unique tags for training and 349 tags for evaluation, ensuring there was no overlap
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between the two sets. The training set contained 10,382 files, while the evaluation set
consisted of 9,860 files. Each file in the dataset had a minimum of 1 tag and a maxi-
mum of 10 tags. On average, there were 2.2 tags per file in the training set and 2.3 tags
per file in the evaluation set. During the training process, we used half of the evaluation
set as a validation set, while the remaining half served as the test set. It is important
to note that the noise samples used in the test phase were not present in the training or

validation sets.

Musan Musan dataset presents a new corpus comprising music, speech, and noise
data, which is suitable for training voice activity detection (VAD) models and mu-
sic/speech discrimination systems. The dataset includes music from various genres,
speech in twelve different languages, and a diverse range of technical and non-technical
noises. The corpus is released under a flexible Creative Commons license, enabling re-
distribution of the original audio. The speech portion of the corpus consists of approx-
imately 60 hours of read speech from Librivox and US government hearings, com-
mittees, and debates. The music portion, totaling 42 hours and 31 minutes, is sourced
from platforms like Jamendo, Free Music Archive, Incompetech, and HD Classical
Music. Additionally, the noise segment contains 929 files, featuring an assortment of
technical noises and ambient sounds. The dataset facilitates applications such as VAD

for speaker identification and music/speech discrimination on Broadcast news.

4.1.3 Data Configuration

In this section, we present the data configuration employed during each training
stage, highlighting the specific music and noise datasets utilized, as well as the divi-

sion of data into training, validation, and testing sets.
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Figure 4.1: Data Preprocessing Pipeline for Music and Noise Datasets.

As outlined in Section 4.1, the experiment utilized a total of four datasets, compris-
ing two datasets for music and two datasets for noise. Each dataset underwent prepro-
cessing steps, including the filtering of relevant tags, division into training, validation,

and testing subsets, and resampling to a frequency of 22,050Hz, as shown in figure 4.1.

During the initial stage of FE pretraining, the training subset of the Jamendo
dataset, in conjunction with the training subset of Audioset, were utilized (figure 4.2).
The data was partitioned into two domains based on data indices: the source domain,
comprising clean data, and the target domain, encompassing music data augmented
with noise to yield noisy data. For validation purposes, the entire Jamendo validation
subset was employed for both the source and target domains. Notably, the target do-

main was combined with the validation subset of the Audioset.
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Figure 4.2: Data configuration during the initial stage of FE pretraining.

During the second stage of DC pretraining and the final stage of DAT, the training
subset of the MTAT dataset, in conjunction with the training subset of Audioset, was
employed. Prior to the experiment, the MTAT training subset was divided into a clean
source domain and a noisy target domain, with the noisy data generated by mixing
the target domain with noise from the training subset of Audioset. During the training
process, the range of SNR for the noisy target data was set to [-10, 10]. Various learn-
ing strategies suitable for each specific training stage were employed. For validation
purposes, the entire MTAT validation subset was utilized, encompassing six different
validation configurations. The first configuration consisted of the clean source domain
without any noise, while the remaining five configurations represented the noisy target

domain with a varying signal-to-noise ratio (SNR) settings (figure 4.3).

35



N R ——

Audioset
(train)
(c) Train
( e [ E’
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ (vali'c\iATAc-:-ean) » valid, src (clean) 5 6 validation dlatasets
¥ - H in tota
MTAT all data K\uw e N ettt J
(valid) : (no split) o
N e MTAT .
! (valid - noisy)
‘\ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ g
+ valid, trg (noisy) |
(Valld) X 5 dataset w/ different SNR
(d) Validation

Figure 4.3: Data configuration for the second stage of DC pretraining and final stage
of DAT, with MTAT dataset and Audioset. Training: Clean source and noisy target
domains. Noisy target domains are trained with the SNR range of [-10, 10] with the
given learning strategies. Validation: Clean source and five noisy target configurations
with varying SNR of [-10, -5, 0, 5, 10], respectively.

During the test phase of the experiment, two noise datasets were employed to eval-
uate the performance of the model. The first dataset was the internal dataset, consisting
of the test subset of Audioset. The second dataset was the external dataset, encompass-
ing the complete noise subset of the Musan dataset. The test set for the clean source
domain comprised the full test subset of the MTAT dataset. As for the noisy target do-
main, the test set retained the same signal-to-noise ratio (SNR) configurations utilized

during the validation process (figure 4.4).
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Figure 4.4: Data configuration for the test phase, including internal and external noise
datasets and consistent SNR settings for the noisy target domain.

4.2 Implementation Detail

As described in Section 3.1, our model comprises three components: FE based on
the architecture of CLMR, and two linear classifiers for DC and LP. The FE encoder is
built upon the SampleCNN architecture, consisting of 11 convolutional modules with
a kernel size of 3, a stride size of 1, and a padding size of 1. The hidden layers of
the FE encoder have dimensions of 128, 256, and 512, respectively. The final fully-
connected layer outputs a 50-dimensional vector, corresponding to the number of tags

in the MTAT dataset.

Our model was trained on a single NVIDIA 3090 GPU with 24GB of memory.

The training process lasted for 800 epochs, with a batch size of 48 samples in the final
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stage. The training duration for mixing two noises from the noise dataset was approx-
imately 16 hours. The training time varied depending on the number of noises mixed
with the clean music source. In this study, we experimented with mixing 1, 2, and 4
noises. The Adam [32] optimizer was utilized with an initial learning rate of 0.0003 for

pretraining FE and 0.0001 for all models during the second and final stage of training.

The training process of the baseline model reduces into 2 stages as in this archi-
tecture, DC is excluded. The first stage is as same as the proposed setting, but for the

final stage, the data configuration and the concerned loss values differ.
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Figure 4.5: The training stages of baseline and fully supervised models.
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Figure 4.6: The data configuration of baseline and fully supervised models.

The total loss function varies depending on the architecture being trained. The
baseline model is solely trained with the source domain loss, while the fully super-
vised model is trained with both the source and target domain loss. Consequently, the
labels for the noisy target domain are provided during training for the fully supervised
model. In contrast, the proposed method is trained with both the label and domain
loss for the source domain, while only the domain loss is utilized for the target do-
main where the labels are not available. The domain loss is calculated using BCE loss
to classify whether the input embedding of the DC model originated from the clean
source domain or the noisy target domain. Additionally, the label loss is also com-
puted using BCE to perform multi-label classification for the 50 tags in the MTAT

dataset.
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Source Target
Model \ Loss (clean) (noisy)
label domain | label domain

Baseline 0 X X X
Fully Supervised o X 0 X
Proposed 0 0 X 0

Table 4.1: Comparison of loss functions for different models. The baseline model is
trained with source label loss only, while the fully supervised model incorporates both
source and target label losses. The proposed method utilizes both label and domain

99 99

losses for the source domain, and only the domain loss for the target domain. ~o
represents the presence of the loss and ”x” indicates the absence of the loss.

4.3 Hyperparameter Settings and Learning Strategies

During the final stage of training, various hyperparameters and learning strategies
were explored to optimize performance. Firstly, the weight of the domain loss (\) was
determined empirically to achieve the best performance. A value of 0.05 was found to

be optimal.

Secondly, the range of the signal-to-noise ratio (SNR) was adjusted differently for
different learning strategies during training. For the No Learning Strategies approach,
the SNR range was set to [-10, 10]. Random integer values were selected for each
noisy sample before mixing it with the clean music. In contrast, when employing the
Easy-to-Hard (E2H) learning strategy, the initial SNR range was set to [-10, -5] in the
second training stage. This range was then gradually increased by 1 every 3 epochs
until reaching the maximum value of 10. Similarly, in the final training stage, the SNR
range was initially set to [5, 10] and gradually decreased by 1 every 30 epochs until
reaching the minimum value of -10. These adjustments were made to ensure that the

DC model is progressively exposed to a wider range of SNR conditions.
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In addition, an investigation was conducted to compare the effects of incorporat-
ing the a value, multiplied by the negation of the gradient of the DC model, into the
training process. The calculation method for o was derived from the DANN [5]. This
involved considering factors such as the batch index, number of epochs, and length of

the dataloader when computing the « value.

Lastly, when utilizing the pretrained DC model in the final stage, a decision was
made regarding whether to fine-tune its parameters or freeze them during training.
Interestingly, it was observed that freezing the parameters of the DC model yielded
better results in evaluation metrics such as Area Under the Curve (AUC) or Average
Precision (AP), despite the finetuned model potentially exhibiting higher validation

accuracy and lower loss.

4.4 Results

This section presents a comprehensive comparison and discussion of the evalua-
tion metrics and results for the Baseline, Fully supervised, and Proposed models. The
analysis focuses on three key aspects: the model architecture, the number of noises
utilized for synthesizing the target domain data, and the tuning of hyperparameters

combined with the selection of learning strategies.

In terms of the model architecture, a comparison is made between the Baseline
model, trained solely with the source data and tag label loss, the fully supervised
model trained with both source and domain data along with tag labels, and the Pro-
posed model, which incorporates source tag labels and domain labels for both source
and target domains, excluding target tag labels. Furthermore, the evaluation explores

the impact of using different numbers of noises (1, 2, or 4) for synthesizing the target
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domain data, with a fixed number chosen for each training iteration. Lastly, the effects
of employing the « value, implementing the E2H learning strategy, and fine-tuning the

DC model are discussed and analyzed.

The evaluation metrics employed in this study were the AUC and AP, which were
utilized to assess the accuracy and error of the multi-label classification task. Since
there were six different configurations for validation and evaluation, a total of twelve
values were generated for each experimental setting. These metrics provided a com-
prehensive assessment of the performance of the models across various validation and

evaluation scenarios.

Target ( noisy )
Source
(clean)
SNR 10 SNR 5 SNRO SNR -5 SNR -10
AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP
Baseline 0.716 0.202 | 0.679 0.171 0.641 0.147 | 0.614 0.127 | 0.570 0.097 | 0.549 0.089
noise 1| 0.768 0.234 | 0.742 0.221 | 0.708 0.190 | 0.651 0.142 | 0.587 0.106 | 0.554 0.092
Su::r'\')i’sed noise2| 0.659 0.234 | 0.742 0.220 | 0.703 0.189 | 0.645 0.145 | 0.581 0.104 | 0.561 0.081
noise 4| 0.769 0.241 0.744 0.221 0.708 0.190 | 0.648 0.141 0.582 0.104 | 0.555 0.088

Table 4.2: Validation AUC and AP of the source(clean) and the target(noisy) domain,
using the validation subset of MTAT and Audioset for noisy data.

The validation results, as depicted in Table 4.3, 4.4, and 4.5, indicate that the pro-
posed method, incorporating an additional DC component, generally outperformed the
baseline architecture. Across various experimental trials, it was observed that freezing
the parameters of DC during the final stage of DAT, along with the utilization of the

hyperparameter «, yielded the best performance.
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Source Target ( noisy)
Noise 1 (clean) SNR 10 SNR5 SNRO SNR -5 SNR -10
AUC AP | AUC AP AUC AP AUC AP AUC AP AUC AP

Baseline 0.716 0.202 | 0.679 0.171 | 0.641 0.147 | 0.614 0.127 | 0.570 0.097 | 0.549 0.087

Fully Supervised 0.768 0.234 | 0.742 0.221 | 0.708 0.190 | 0.651 0.142 | 0.587 0.106 | 0.554 0.092

w/ ax1|0730 0.212 | 0695 0.181 | 0.665 0.162 | 0.617 0.118 | 0.577 0.097 | 0.552 0.087

Freeze B2H | 51| 0730 0212|0695 0.181 | 0.657 0.160 | 0.614 0.117 | 0.573 0.096 | 0.556 0.087

w/o ax1|0732 0.215|0.732 0.189 | 0.669 0.165 | 0.627 0.129 | 0.577 0.100 | 0.558 0.088

E2H | a=1|0732 0216 | 0.732 0.192 | 0.668 0.165 | 0.625 0.129 | 0.577 0.097 | 0.556 0.088

w/ ax1| 0719 0.204 | 0.683 0.172 | 0.650 0.149 | 0.608 0.117 | 0.567 0.094 | 0.545 0.085

Finetune E2H | a=1|0716 0202 | 0679 0.173 | 0.648 0.149 | 0.600 0.108 | 0.567 0.090 | 0.548 0.085

DC

w/o | @#1]0.723 0211 | 0.686 0.183 | 0.656 0.156 | 0.610 0.123 | 0.566 0.087 | 0.544 0.087

E2H

a=1]0.719 0.208 | 0.675 0.179 | 0.653 0.155 | 0.609 0.118 | 0.571 0.095 | 0.548 0.088

Table 4.3: The AUC and AP scores for the baseline, fully supervised, and proposed
architectures with the inclusion of 1 noise in the mixture of noisy music data.

Source Target ( noisy )
Noise 2 (clean) SNR 10 SNR5 SNR O SNR -5 SNR -10
AUC AP | AUC AP AUC AP AUC AP AUC AP AUC AP

Baseline 0.716 0.202 | 0.679 0.171 | 0.641 0.147 | 0.614 0.127 | 0.570 0.097 | 0.549 0.089

Fully Supervised 0.659 0.234 | 0.742 0.220 | 0.7083 0.189 | 0.645 0.145 | 0.581 0.104 | 0.561 0.081

a1 | 0730 0214 | 0694 0.183 | 0.665 0.163 | 0.619 0.125 | 0.571 0.096 | 0.549 0.893

w/

Freeze E2H a=1|0.728 0.213 | 0.693 0.183 | 0.667 0.163 | 0.618 0.126 | 0.572 0.096 | 0.547 0.900
DC who | % 110734 0.219 | 0.699 0.189 | 0.669 0.168 | 0.626 0.129 | 0.551 0.098 | 0.552 0.091
E2H a=1|0.722 0.216 | 0.700 0.190 | 0.673 0.166 | 0.626 0.130 | 0.580 0.099 | 0.556 0.091
w/ | OF 110717 0.205 | 0.679 0.172 | 0.648 0.150 | 0.602 0.119 | 0.562 0.917 | 0.549 0.089
Finetune E2H | q=1 | 0.714 0206 | 0677 0.712 | 0.647 0.151 | 0.601 0.117 | 0.561 0.092 | 0.547 0.086
DC wio | @# 110721 0.213 | 0.684 0.183 | 0.654 0.158 | 0.610 0.123 | 0.568 0.095 | 0.552 0.091

E2H

a=1]0.722 0.216 | 0.685 0.186 | 0.656 0.162 | 0.613 0.123 | 0.566 0.095 | 0.548 0.089

Table 4.4: The AUC and AP scores for the baseline, fully supervised, and proposed
architectures with the inclusion of 2 noise in the mixture of noisy music data.

s g kg
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Source Target ( noisy )
Noise 4 (clean) SNR 10 SNR5 SNRO SNR -5 SNR -10
AUC AP | AUC AP AUC AP AUC AP AUC AP  AUC AP

Baseline 0.716 0.202 | 0.679 0.171 | 0.641 0.147 | 0.614 0.127 | 0.570 0.097 | 0.549 0.089
Fully Supervised 0.769 0.241 | 0.744 0.221 | 0.708 0.190 | 0.648 0.141 | 0.582 0.104 | 0.555 0.088
w/ | @#1[0729 0215|0694 0.185 | 0664 0.161 | 0.617 0.127 | 0574 0.096 | 0.548 0.086
Freeze| 21 |a=1[0730 0216 | 0.695 0.187 | 0.665 0.162 | 0.617 0.128 | 0.573 0.100 | 0.546 0.088
DC wio | @#1| 0734 0216 | 0698 0.186 | 0.670 0.166 | 0.627 0.128 | 0.581 0.099 | 0.554 0.088
E2H | q=1{0733 0217 | 0699 0.187 | 0.672 0.167 | 0.629 0.130 | 0.581 0.099 | 0.553 0.088
w/ | @#1[0714 0203|0676 0.170 | 0644 0.147 | 0602 0.115 | 0560 0.091 | 0.543 0.085
Fintune| 21 |a=1|0705 0203 | 0678 0.170 | 0.649 0.149 | 0.604 0.116 | 0.563 0.003 | 0.546 0.083
DC wio | @#1[0723 0215|0687 0.180 | 0.658 0.159 | 0.612 0.123 | 0.572 0.095 | 0.548 0.086
E2H | g-1| 0716 0209 | 0.679 0.178 | 0.649 0.155 | 0.604 0.122 | 0.565 0.095 | 0.548 0.085

Table 4.5: The AUC and AP scores for the baseline, fully supervised, and proposed
architectures with the inclusion of 4 noise in the mixture of noisy music data.

In addition to the validation results, we evaluated the best-performing models us-

ing an internal test dataset and an external test dataset. The internal dataset consisted

of a combination of the test subsets of Audioset and MTAT, while the external dataset

comprised all noise subsets in the Musan dataset that the model had not been exposed

to before. The results, as shown in Table 4.7 and 4.8, clearly indicate that the proposed

model consistently outperformed the baseline. This highlights the superior general-

ization capabilities of the proposed model, particularly in the presence of stronger

degradations. Although the proposed method did not reach the performance level of

the fully supervised model architecture, it approached it closely as the degradation be-

came more pronounced. These findings demonstrate the effectiveness of the proposed

approach in enhancing music auto-tagging accuracy, particularly in challenging noisy

environments.
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Chapter 5

Conclusion

5.1 Overview

In this thesis, we addressed the problem of music auto-tagging in the presence
of noise, aiming to improve the accuracy of the tagging process under challenging
acoustic conditions. We proposed a method of robust speech representation improving
techniques that require domain adversarial training (DAT) along with the appropriate
dataset. The proposed method demonstrated promising results, showcasing its poten-
tial in effectively handling noisy music data and enhancing the robustness of the tag-

ging system.

In the initial stages of the experiment, we pre-trained the feature extractor (FE)
using a large-scale music dataset, MTG-Jamendo, and a noise dataset, Audioset, and
used CLMR as our backbone model. We then pretrained the domain classifier by us-
ing the embedding of pretrained FE. Lastly, we finetuned the FE using the MagnaTa-
gATune (MTAT) dataset, incorporating both clean source domain data and noisy target
domain data. Our experiments involved various configurations, including the number

of noises mixed, learning strategies, and hyperparameter tuning. Through comprehen-
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sive evaluations and comparisons, we observed that the proposed model consistently
outperformed the baseline architecture, demonstrating its superior generalization ca-

pabilities.

The results from the validation and test phases provided valuable insights into the
effectiveness of the proposed method. During the validation phase, the proposed model
achieved higher AUC and AP values compared to the baseline architecture, high-
lighting its ability to handle noisy music data and improve multi-label auto-tagging
classification accuracy. Moreover, the performance of the proposed model approached
the level of the fully supervised model architecture, particularly when dealing with
stronger degradations in the target domain. This finding suggests that the proposed ap-
proach effectively generalizes to noisy music sources, even without explicit labels for

the noisy target domain.

In the test phase, we further evaluated the proposed model using an internal test
dataset and an external test dataset. The results consistently demonstrated the superi-
ority of the proposed method over the baseline, both in terms of internal and external
test datasets. These findings substantiate the efficacy of the proposed approach in im-
proving music auto-tagging accuracy in the presence of noise, showcasing its potential

for real-world applications.

5.2 Future Work and Limitation

In addition to the aforementioned conclusions, there are further avenues for future
work and improvements in the field of music auto-tagging in the presence of noise.
One potential direction is to explore the collection of real-world music-related video

content data, where music tags are available. In this context, "available” refers to in-
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stances where the same music appears in an existing dataset used for auto-tagging,

rather than having explicit tags associated with the video itself.

By collecting such real-world data, researchers can enrich the training process and
improve the model’s performance. Incorporating this additional data would provide
an opportunity to train the model on a more diverse range of music samples and en-
hance its ability to handle variations in musical styles, genres, and acoustic conditions.
Furthermore, the inclusion of real-world data would help bridge the gap between the
model’s performance in controlled experimental settings and its effectiveness in real-

world scenarios.
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