

의학박사 학위논문

Integrated analysis of microbiome and in-depth proteome in chronic rhinosinusitis with nasal polyps

비용종을 동반한 만성 비부비동염에서 미생물과 심층 단백체의 통합 분석

2023년 8월

서울대학교 대학원

의과학과 의과학전공

김 이 숙

A thesis of the Degree of Doctor of Philosophy

Integrated analysis of microbiome and in-depth proteome in chronic rhinosinusitis with nasal polyps

비용종을 동반한 만성 비부비동염에서 미생물과 심층 단백체의 통합 분석

August 2023

The Department of Biomedical Sciences,

Seoul National University

College of Medicine

Yi-Sook Kim

Integrated analysis of microbiome and in-depth proteome in chronic rhinosinusitis with nasal polyps

지도 교수 신 현 우

이 논문을 의학박사 학위논문으로 제출함 2023년 4월

김이숙의 박사 학위논문을 인준함 2023년 7월

위 원	신 장	 <u>(인)</u>
부위	원장	 (인)
위	원	 <u>(인)</u>
위	원	 <u>(인)</u>
위	원	 <u>(인)</u>

Integrated analysis of microbiome and in-depth proteome in chronic rhinosinusitis with nasal polyps

by

Yi-Sook Kim

A thesis submitted to the Department of Biomedical Sciences in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Biomedical Sciences at Seoul National University College of Medicine

April 2023

Approved by Thesis Committee: July 2023

Chair	(Seal)
Vice Chair	(Seal)
Examiner	(Seal)
Examiner	(Seal)
Examiner	(Seal)

ABSTRACT

Integrated analysis of microbiome and in-depth proteome in chronic rhinosinusitis with nasal polyps

Yi-Sook Kim The Department of Biomedical Sciences The Graduate School Seoul National University

Chronic rhinosinusitis (CRS) is defined as inflammation of the nasal and paranasal sinus mucosa and exhibits remarkable heterogeneity. Although antibiotics are prescribed frequently to reduce inflammation, effects of antibiotics on nasal environment and host response in CRS is clearly unknown. Therefore, I aimed to reveal the associations between nasal environment and host response using integrated analysis. For in-depth investigation, filter papers were used to obtain nasal secretions from middle meatus. The nasal secretions were collected from 29 controls, 30 patients with CRS without nasal polyp (CRSsNP), and 40 patients with CRS with nasal polyp (CRSwNP). To identify the effects of antibiotics, 99 subjects were divided on whether they had taken antibiotics 3 months prior to sampling. Then, metagenomic sequencing and mass spectrometry-based proteomic analysis were performed. I revealed the associations between the microbiome and secreted proteome could be altered in relation to the use of antibiotics. Furthermore, I identified the use of antibiotics might have stronger effects on not only nasal microbiome and secreted proteome, but also associations between them in CRSwNP compared to those in control and CRSsNP subjects. Although it is not

clear whether the global changes caused by antibiotics are favorable or unfavorable to treat CRS, I suggest that the use of antibiotics need to be regarded as an essential confounding factor in the microbiome and proteome analysis. These findings allow us to obtain new insight on the nasal environment and host response in CRS.

Keywords: Sinusitis; Nasal polyps; Proteomics; Metagenomics; Anti-bacterial agents

Student Number: 2017-26948

Contents

ABSTRACTi
Contentsii
List of tables and figuresiii
List of abbreviationsiv
INTRODUCTION1
MATERIALS AND METHODS
RESULTS
FIGURES
DISCUSSION
REFERENCES
ABSTRACT in Korean

List of tables and figures

Table 1. Demographic characteristics of cohort 1 (DDA set) and 2 (DIA set)4
Table 2. Demographic characteristics of 99 subjects
Table 3. Method comparison between this study and previous proteomic studies on
human nasal sample
Table 4. Total cell number and the percentage of eosinophils and neutrophils in
cohort1
Table 5. Up- or down-regulated proteins in CRSwNP both in the DDA and DIA set
Table 6. Differentially expressed proteins with $ \log_2 (\text{fold change}) \ge 1.0$ and <i>P</i>
value < 0.05 between control, CRSsNP, and CRSwNP
Table 7. GO molecular functions of proteins in IPc and DPc group 57
Table 8. Differentially expressed proteins with $ \log_2 (\text{fold change}) \ge 1.0$ and <i>P</i>
value < 0.05 between Non-NP and NP in NABX and ABX, respectively
Table 9. Differentially expressed proteins with $ \log_2 (\text{fold change}) \ge 1.0$ and <i>P</i>
value < 0.05 between NABX and ABX in total, Non-NP, and NP, respectively 62

Figure 1. Workflow of proteomic analysis	5
Figure 2. Proteome profiles in the DDA set	5
Figure 3. Functional gene ontology (GO) of proteome in nasal secretions27	7
Figure 4. Canoncal pathway analysis of the significantly up- or down-regulat	ted
proteins in CRSsNP and CRSwNP compared to control	3
Figure 5. Hierarchical clustering of DEPs in the DDA set)
Figure 6. Biological processes of up- or down-regulated proteins in CRSwNP.30)

Figure 7. Quantified proteome in the DIA set
Figure 8. Verification of DEPs in CRSwNP
Figure 9. Workflow of metagenomic and proteomic analysis
Figure 10. Diversity of nasal microbiome in relation to disease status
Figure 11. Nasal microbiome composition in relation to disease status
Figure 12. Proteome profiles in nasal secretions
Figure 13. Correlation between up- or down-regulated families and proteins in
CRSwNP
Figure 14. Diversity of nasal microbiome in relation to the use of antibiotics 38
Figure 15. Nasal microbiome composition in relation to the use of antibiotics 39
Figure 16. Comparison of alpha diversity of nasal microbiome between the NABX
and ABX groups
Figure 17. Microbial differences in relation to the use of antibiotics in total of 99
subjects42
Figure 18. Microbial differences in relation to the use of antibiotics in control 43
Figure 19. Microbial differences in relation to the use of antibiotics in CRSsNP 44
Figure 20. Microbial differences in relation to the use of antibiotics in CRSwNP
45
Figure 21. Differences in proteome from nasal secretions in relation to the use of
Figure 21. Differences in proteome from nasal secretions in relation to the use of antibiotics
 Figure 21. Differences in proteome from nasal secretions in relation to the use of antibiotics 46 Figure 22. Antibiotic dependent relationships between the microbiome and
Figure 21. Differences in proteome from nasal secretions in relation to the use of antibiotics
Figure 21. Differences in proteome from nasal secretions in relation to the use of antibiotics
Figure 21. Differences in proteome from nasal secretions in relation to the use of antibiotics

NP51

List of abbreviations

- ABX: The subjects who had taken antibiotics 3 months before sampling
- **aSPC**: Adaptive sum of powered correlation
- **CRS**: Chronic rhinosinusitis
- CRSsNP: Chronic rhinosinusitis without nasal polyp
- CRSwNP: Chronic rhinosinusitis with nasal polyp
- **DDA**: Data-dependent acquisition
- **DEPs**: Differentially expressed proteins
- DFa : Decreased families in ABX group
- **DFc** : Decreased families in CRSwNP patients
- **DIA**: Data-independent acquisition
- **DPa**: Decreased proteins in ABX group
- **DPc**: Decreased proteins in CRSwNP patients
- GO: Gene ontology
- IFa : Increased families in ABX group
- IFc : Increased families in CRSwNP patients
- **IPA**: Ingenuity pathway analysis
- **IPa** : Increased proteins in ABX group
- IPc : Increased proteins in CRSwNP patients
- LC-MS: Liquid chromatography-tandem mass spectrometry
- LDA: Linear discriminant analysis
- LEfSe: Linear discriminant analysis effect size
- L-M: Lund-Mackay
- MS: Mass spectrometry

NABX: The subjects who had not taken antibiotics 3 months before sampling

NP: Nasal polyp

OTU: Operational taxonomic unit

PCoA: Principal coordinates analysis

PERMANOVA: Permutational multivariate analysis of variance

SPT: Skin prick test

INTRODUCTION

Chronic rhinosinusitis (CRS) is defined as inflammation of the nasal and paranasal sinus mucosa that lasts at least 12 weeks¹ and one of the most frequent upper airway diseases in Western and Asian countries.^{2, 3} As this disease exhibits remarkable heterogeneity, researchers have investigated endotypes of CRS. According to the studies, the endotypes were characterized by cytokines⁴, symptoms⁵, microbiota composition⁶, and clinical characteristics.⁷

So far, to identify the endotypes, nasal samples were usually collected by biopsy⁴, lavages⁸, swabs⁹, and scraping¹⁰. As the nasal samples obtained by non-invasive procedure could sufficiently reflect the current disease state, non-invasive approaches like lavages and swabs are preferred. However, only limited number of proteins have been detected in the nasal samples compared to other samples obtained by non-invasive procedure like urine and saliva.¹¹ Herein, I sought to suggest a sampling method for collecting nasal secretions using filter papers. The adsorbed nasal proteins was easily bound to the paper and preserved.¹² Furthermore, it could allow us to enhance site-specificity and analyze relatively less diluted samples.¹³

Recently, for better understanding of human diseases, various studies have been conducted from multiple perspectives with multi-source data.¹⁴ For example, in inflammatory bowel disease, host profiles were obtained from both proteomic and metabolomic analyses in serum and microbial profiles identified by metagenomics in stool.¹⁵ It showed that microbiome could regulate concentration of luminal short-chain fatty acid and succinate that might control the course of inflammation. On the other hand, metagenome and metabolome in induced sputum and host proteome

and transcriptome revealed that microbiome-derived metabolites could alleviate inflammation via cell cross-talk mediated by IL-22 in chronic obstructive pulmonary disease.¹⁶ According to the results, profiles of microbiome and molecular changes in the host should be considered together. Thus, to obtain better understanding of CRS, I sought to reveal the associations between nasal environment and host response using metagenomic and proteomic analyses, respectively.

Antibiotics are prescribed frequently to patients with CRS, although there is lack of evidence to support benefits of them.^{17, 18} However, the use of antibiotics have not been taken into account in the most of previous studies in CRS patients.^{6, 9, 19-33} Thus, it is not clear about the effects of antibiotics on nasal microbiome, epithelium, and associations between them.

Here, I aimed to investigate the associations between microbiome (nasal environment) and secreted proteome (host responses) in relation to disease status using integrative analysis. To conduct in-depth analysis, nasal secretions were collected on the filter papers. Furthermore, I sought to determine the effects of antibiotics on nasal environment, host response, and associations between them. These findings help us to better understand the nasal environment and host response in CRS and how antibiotics, which are used to relieve symptoms of CRS, affect the treatment of CRS.

2

MATERIALS AND METHODS

Study design and collection of nasal secretions

The study was approved from Internal Review Board of Seoul National University Hospital (No. C-1308-099-515) and all subjects had given written informed consent. Chronic rhinosinusitis (CRS) was defined according to the 2012 European position paper on rhinosinusitis and nasal polyps guidelines.¹ It was diagnosed by history taking, physical examination, nasal endoscopy, and sinus computed tomography. Patients with deviated nasal septum but without sinonasal disease were considered as control group. The exclusion criteria were as follows: less than 14 years of age and patients with unilateral rhinosinusitis, allergic fungal sinusitis, antrochoanal polyps, cystic fibrosis, or immotile ciliary disease. The demographic characteristics were described in Table 1 and 2.

Nasal secretions were acquired from both sides of the nose using sterilized strips of filter papers (7 \times 30 mm; Whatman No. 42, Whatman, Clifton, USA) as previously reported.^{34, 35} The paper was placed on the middle meatus for 10 minutes. The two papers from each subject were stored into a tube and 1ml of nuclease-free water was added. The tubes were rotated for 1 hour at room temperature. Then, the aqueous samples (nasal secretions) were stored at -70°C until analysis.

To determine the number of eosinophils and neutrophils, the sinonasal tissue was obtained during endoscopic sinus surgery. After embedded in paraffin, it was cut into 5-mm sections and stained with hematoxylin and eosin (H&E). Eosinophils and neutrophils were counted in 3 high power fields (x400) per section under light microscope.

Sampla	Age (y)	Sex	Asthma	Polyps	Atopy	L-M score	
Sample						Left	Right
Cohort 1							
Control_1	27	М	Ν	Ν	Ν	0	0
Control_2	15	Μ	Ν	Ν	Ν	0	0
Control_3	52	М	Ν	Ν	Ν	0	0
Control_4	52	М	Ν	Ν	Ν	0	0
Control_5	55	М	Ν	Ν	Ν	0	0
CRSsNP_1	29	М	Ν	Ν	Ν	9	4
CRSsNP_2	39	М	Ν	Ν	Y	10	9
CRSsNP_3	25	F	Ν	Ν	Y	6	5
CRSsNP_4	44	М	Ν	Ν	Y	4	4
CRSsNP_5	57	F	Ν	Ν	Ν	2	9
CRSwNP_1	39	М	Ν	Y	Ν	3	12
CRSwNP_2	62	F	Ν	Y	Ν	6	8
CRSwNP_3	14	М	Ν	Y	Ν	12	10
CRSwNP_4	53	М	Ν	Y	Ν	12	12
CRSwNP_5	53	М	Ν	Y	Ν	5	9
Cohort 2							
Control_1	51	М	Ν	Ν	Ν	0	0
Control_2	19	М	Ν	Ν	Ν	0	0
Control_3	17	М	Ν	Ν	Ν	0	0
Control_4	19	М	Ν	Ν	Ν	0	0
Control_5	33	М	Ν	Ν	Ν	0	0
CRSsNP_1	60	М	Ν	Ν	Y	2	2
CRSsNP_2	46	М	Ν	Ν	Ν	10	10
CRSsNP_3	54	F	Y	Ν	Y	8	2
CRSsNP_4	71	М	Y	Ν	Ν	8	8
CRSsNP_5	52	F	Y	Ν	Ν	12	8
CRSwNP_1	69	F	Ν	Y	Ν	8	8
CRSwNP_2	58	М	Ν	Y	Ν	8	6
CRSwNP_3	38	М	Y	Y	Y	8	10
CRSwNP_4	35	М	Ν	Y	Ν	8	7
CRSwNP_5	54	М	Ν	Y	Ν	10	8

Table 1. Demographic characteristics of cohort 1 (DDA set) and 2 (DIA set)

L-M score, Lund-Mackay score

Chanastanistis	Control	CRSsNP	CRSwNP	D 1 *	
Characteristic	(n=29)	(n=30)	(n=40)	P value	
Male	24 (82.8)	16 (53.3)	27 (67.5)	0.054	
Age (yr)	32.4 ± 14.8	41.6 ± 15.1	48.8 ± 14.4	< 0.001	
BMI (kg/m ²)	23.3 ± 3.0	23.2 ± 3.4	25.1 ± 4.7	0.171	
Smoking	7 (24.1)	4 (13.3)	15 (37.5)	0.072	
Atopy	11 (37.9)	7 (24.1)	13 (33.3)	0.515	
Polyps	0 (0)	0 (0)	40 (100.0)	< 0.001	
Lund-Mackay CT score	0	14.2 ± 6.4	17.3 ± 4.4	< 0.001	
Antibiotics [†]	2 (6.9)	8 (26.7)	16 (40.0)	0.009	
Dental problem	1 (3.4)	2 (6.7)	3 (7.5)	0.774	
Asthma	0 (0)	2 (6.7)	2 (5.0)	0.397	
Allergic rhinitis	13 (44.8)	12 (40.0)	8 (20.0)	0.063	
Methodology					
Metagenomic analysis	29	30	40		
Proteomic analysis	23	24	22		

Table 2. Demographic characteristics of 99 subjects

Data are shown as mean \pm standard deviation or number (%).

BMI, body mass index; CT, computed tomography.

 *P values based on χ^2 or Kruskal-Wallis test (categorical or continuous variables,

respectively)

Reagents and materials

Liquid chromatography-mass spectrometry (LC-MS) grade water, methanol, acetonitrile, acetone, and Tris(2-carboxyethyl) phosphine (TCEP) were obtained from Thermo Fisher Scientific (Waltham, USA). Dithiothreitol and urea were purchased from AMRESCO (Solon, USA). Sodium dodecyl sulfate (SDS) and Trizma base were acquired from USB (Cleveland, USA), and sequencing-grade modified trypsin was purchased from Promega Corporation (Madison, USA). POROS20 R2 beads were obtained from Applied Biosystems (Foster City, USA). Unless otherwise noted, all other reagents for proteomic analysis were obtained from Sigma-Aldrich (St. Louis, USA). PowerSoil DNA Isolation Kit for DNA extraction was purchased from Mo Bio Laboratories (Carlsbad, USA).

Preparation of nasal secretions for proteomics

To remove insoluble debris, 100 ml of the aqueous samples were centrifuged at 4°C (15,000rpm, 10 minutes). Then, the protein concentration in supernatant was determined by tryptophan fluorescence at 350 nm at the excitation of 295nm.³⁶ The samples were stored at -80°C. The proteins were precipitated using acetone from 50 ml of the aqueous samples (nasal secretions) overnight at -20°C. The proteins were then digested using a modification of the 2-step filter aided sample preparation (FASP) procedure.^{37, 38} The pellet was reconstituted with SDT buffer (2% [w/v] SDS, 10 mM TCEP, and 50 mM chloroacetamide in 0.1 M Tris pH 8.0) and filtered through 10K Amicon filters (EMD Millipore, Danvers, USA). After centrifugation at 14,000g, the pellet was resuspended in UA solution (8 M urea in 0.1 M Tris pH 8.5). Subsequently, sample was centrifuged and reconstituted with 40 mM ammonium bicarbonate (ABC). The protein was digested using

trypsin/LysC mixture (protein-to-protease weight ratio of 100:1) overnight at 37°C and the digested peptides were collected via centrifugation. The filters were cleaned with 40 mM ABC, and the digestion was repeated at 37°C for 2 hours (trypsin-to-substrate ratio [w/w] of 1:1,000). The collected peptides were acidified with 10% (v/v) TFA and desalted via C18-StageTips prepared in-house, as previously described.^{37, 38} The desalted peptides were lyophilized using vacuum dryer and stored at -80° C.

High-pH StageTip-based peptide fractionation

To establish a spectral library of proteome in nasal secretions, StageTip-based, high-pH peptide fractionation was performed according to modified version of a procedure previously reported.³⁷ Peptides in pooled samples were reconstituted with 200 ml of loading buffer (10 mM ammonium formate [pH 10] and 2% [v/v] ACN) and separated using reversed-phase tip columns filled with POROS 20 R2 resin (Invitrogen, Carlsbad, USA) into 200 μ L tips fitted (at the exit sites) with C18 Empore disk membranes (3M, Bracknell, UK). The microcolumn was conditioned with methanol, ACN, and loading buffer and peptides were then loaded at pH 10. Subsequently, twenty fractions were eluted in ACN buffer (pH 10; 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 60%, and 80% [v/v] ACN). To ensure orthogonal fractionation of reverse phase (RP)-RP separation, the twenty fractions were non-contiguously combined into 6 fractions, dried using vacuum centrifuge, and stored at –80°C until LC-MS/MS analysis.

LC-MS/MS analysis

All LC-MS/MS analyses (DDA and DIA) were performed on a Q-Exactive plus

(Thermo Fisher Scientific; Waltham, USA) coupled with an Ultimate 3000 RSLC system (Dionex, Sunnyvale, USA) via a nanoelectrospray source.³⁹ Peptide samples were separated by a trap (75 μ m internal diameter [ID] \times 2 cm, C18 3 μ m, 100 Å) and analytical column (50 μ m ID \times 50 cm, C18 1.9 μ m, 100 Å). The dried peptide samples were reconstituted with solvent A (2% [v/v] ACN and 0.1% [v/v]formic acid). The samples were then injected into the nano-LC column and eluted with a gradient of 8% to 26% solvent B (100% ACN and 0.1% [v/v] formic acid). The spray voltage and capillary temperature were 2.0 kV (positive ion mode) and 320°C, respectively. In DDA, mass spectra were acquired using a "top 15" method. The Orbitrap analyzer scanned over a mass range 300–1,650 m/z with a mass resolution of 70,000 at 200 m/z. Higher energy collisional dissociation (HCD) scans were collected with a resolution of 17,500 and normalized collision energy (NCE) of 27. The MS/MS scan and maximum ion injection times were 120 and 20 ms, respectively. In DIA, general settings were a resolution of 35,000 (from 400 to 1,220 m/z [automatic gain control target 3×10^6 or injection time 60 ms]). Nineteen DIA windows were acquired at a resolution of 35,000 with an automatic gain of 3×10^6 using the automated injection mode.⁴⁰ HCD peptide fragments were collected using 24 to 30 stepped NCE.

Data processing for label-free quantification

The mass spectra were analyzed with MaxQuant software (version 1.5.3.1). MS/MS spectra were searched against the Human Uniprot protein sequence database (December 2014, 88,657 entries) using the Andromeda search engine.⁴¹ Primary searches were performed at a precursor ion tolerance of 6 ppm when total proteins were analyzed. The MS/MS ion tolerance was 20 ppm. Cysteine

carbamidomethylation was set as a fixed modification. N-acetylation and methionine oxidation were set to variable modifications. Enzyme specificity was set to tryptic. Peptides of with least 6 amino acids in length and with up to 2 missed cleavages were analyzed. The false discovery rate (FDR) was set to 0.01 at the peptide, protein and modification levels. The "Match between Runs" in MaxQuant was applied to maximize the number of identified proteins. In silico pools of 5 biological replicates of the same group (control, CRSsNP, and CRSwNP) were generated to minimize heterogeneity between samples,⁴² To quantify the proteins in samples, the label-free quantification algorithm⁴³ was used. The proteins identified from more than 70% of subjects in each group were analyzed .

Data processing for the DIA MS

To generate mass spectral libraries, 12 urine DDA analysis were performed. Then, the spectra were searched with those in the Human Uniprot protein sequence database (December 2014, 88,657 entries) and the indexed retention time (iRT) standard peptide sequences. The mass spectral library (derived from individual the DIA data) was generated by Spectronaut ver. 10 software (Biognosys; Schlieren, Switzerland). First, the DIA raw files were converted into .htrm format using the GTRMS converter of Spectronaut. FDRs were determined using the mProphet⁴⁴ approach and were set to 0.01 at both the peptide precursor and protein levels. The protein levels were quantified by the q value < 0.01 criterion. The LC-MS/MS data have been deposited to the Proteome Xchange Consortium via the PRIDE⁴⁵ partner repository with the dataset identifier PXD013330 and PXD018960.

DNA extraction and sequencing

For metagenomic analysis, 16S ribosomal DNA (rDNA) in nasal secretions was extracted using the PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, USA) following the manufacturer's instructions. The isolated DNA was amplified and sequences using a Miseq instrument (Illumina, San Diego, USA) in Macrogen Corporation (Macrogen Inc.; Seoul, Korea). Primers 341F (5'-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC A-3') and 805R (5'-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3') were used to amplify the V3-4 region of 16S rDNA. The 16S rDNA libraries were quantified by TapeStation DNA ScreenTape D1000 (Agilent, Santa Clara, USA) and Picogreen assay. The libraries were sequenced by the MiSeq platform for 2×300 cycles. The fastq raw data files have been deposited in the NCBI Sequence Read Archive under BioProject number of PRJNA557492.

Bioinformatics

The protein intensities were transformed to the log₂ scale and missing values were imputed from normal distribution (width = 0.15, downshift = 1.8) using Perseus (version 1.6.0).⁴⁶ Then, the data was normalized via width adjustment.⁴⁷ Functional gene ontology (GO) analysis was performed using DAVID Bioinformatics Resources ver. 6.8 software (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA; http://david.abcc.ncifcrf.gov/). The top 10 enriched biological processes were determined using the Enrichr online tool (http://amp.pharm.mssm.edu/Enrichr/).⁴⁸ Canonical pathways were identified from the Ingenuity Pathway Analysis (IPA; QIAGEN, Hilden, Germany) software.

Raw sequences were analyzed and quality-filtered with Quantitative Insights Into

Microbial Ecology (QIIME) (version 1.9.1).⁴⁹ The sequences were clustered into operational taxonomic units (OTUs) at 97% sequence identity using UCLUST. Taxonomic assignment was then performed SILVA reference database (version 132). To minimize the noise, singletons were excluded from the analysis and 12,634,938 sequences remained. Alpha diversity (Chao1, the number of observed OTUs, Shannon, and Simpson) indices were calculated using the QIIME. To measure beta diversity, principal coordinates analysis (PCoA) was performed with the Bray–Curtis distance matrices using the vegan package in R software (version 3.5.1). Linear discriminant analysis (LDA) effect size (LEfSe) was used to determine differentially abundant families between groups.⁵⁰ The relative abundance of each phyla or families was estimated by dividing the read count by the total number of reads in each subject, excluding *Archaea, Chloroplast*, and *Mitochondria* reads.

Statistical analysis

The Student's t-test or analysis of variance (ANOVA) was used to evaluate parametric data, while Mann-Whitney U or Kruskal-Wallis tests were used to evaluate non-parametric data. The $\chi 2$ test was used to compare categorical variables between two groups. Pearson's and Spearman's correlation coefficient were calculated for parametric and non-parametric data, respectively. The significance of beta diversity was calculated using permutational multivariate ANOVA (PERMANOVA) using the adonis function in vegan package in R software. LEfSe combines the Kruskal-Wallis or paired Wilcoxon test with linear discriminant analysis. In IPA analysis, the canonical pathways were analyzed using Fisher's exact test with significance at *P* value < 0.001. Spearman's correlation was

performed to evaluate the correlation and adaptive sum of powered correlation (aSPC) test.⁵¹ It was used to calculate global association between microbiome and proteome. Statistical analyses were performed with SPSS ver. 25.0 (SPSS Inc., Chicago, USA), Perseus (version 1.6.0), and R software (version 3.5.1).

RESULTS

Protein profiles in the DDA set

First, I sought to confirm whether sufficient number of proteins could be obtained from nasal secretions on filter papers. The proteins were detected by LC-MS/MS that has been established as a reliable technique for proteomic analysis.⁵² To date, there are two main approaches: data-dependent acquisition (DDA) and dataindependent acquisition (DIA).⁵³ DDA is a traditional approach and peptide signals that are larger than the noise are selected for fragmentation and produce MS/MS spectra.⁵⁴ Although it generates high-quality spectra⁵⁵, this approach mainly focuses on the most abundant peptides and has poor reproducibility.⁵³ On the other hand, in Data-independent acquisition (DIA), all peptides within defined mass (m/z) ranges are fragmented and analyzed. It provides accurate peptide quantification and shows better reproducibility than DDA.⁵⁴ However, the peptide quantification in DIA is performed using the spectral libraries derived from DDA experiments.⁵³ So far, there is no conclusion as to which is the best method, and they are complementary to each other. Therefore, to obtain reliable and reproducible results, the proteins were analyzed using both DDA and DIA methods. The workflow was shown in Fig. 1.

First, to investigate the protein profiles of nasal secretions on the filter papers, the nasal secretions from middle meatus of 5 control, 5 CRSsNP, and 5 CRSwNP subjects were analyzed by LC-MS/MS in DDA mode (the DDA set). The mean protein concentration in the DDA set was 1.95 mg/mL (standard deviation [SD], 2.56 mg/mL) in healthy controls, 0.95 mg/mL (SD, 0.84 mg/mL) in CRSsNP

13

patients and 0.85 mg/mL (SD, 0.49 mg/mL) in CRSwNP subjects, respectively; there was no significant difference between groups (P = 0.50).

The number of identified proteins in the set were presented in Fig. 2A. A total of 2,020 proteins was detected in 5 controls, 5 CRSsNP, and 5 CRSwNP subjects (1,745, 1,542, and 1,678 proteins, respectively). Then, I compared the number of proteins identified in nasal secretions collected on filter papers with those of identified in previous proteomic studies of nasal samples (Fig. 2B and Table 3). The number of proteins identified in this study was approximately 3-fold greater than those identified in previous studies.^{9, 56-58} Although I attempted to analyze secreted proteome, the number of detected proteins was comparable to that in the nasal epithelium.⁴²

To identify the significant GO terms, I performed GO enrichment analysis of 1,842 proteins that were identified in the pooled DDA set using DAVID and revealed 13 biological processes (Fig. 3). The term with the lowest *P* value was immune system processes (P = 1.51e-41); the proteome in nasal secretions were thus significantly associated with the immune system. Additionally, to identify the canonical pathways of differentially expressed proteins (DEPs) in CRS, I first detected 924 and 548 DEPs between CRSsNP vs control and CRSwNP vs control in the pooled DDA set, respectively (P < 0.05). Then, ingenuity pathway analysis (IPA) was performed on the DEPs and revealed 112 pathways that were significantly enriched (Fig. 4). Among them, I focused on 11 pathways associated with immune system according to Fig.3. CCR3 signaling in eosinophils and IL-17A signaling in airway cells were enriched in both CRSsNP and CRSwNP compared to control. Interferon signaling, coagulation and complement systems were down-regulated in both CRSsNP and CRSwNP.

Hierarchical clustering of DEPs among control, CRSsNP, and CRSwNP in the DDA set

I then identified 1,666 DEPs among control, CRSsNP, and CRSwNP groups to perform a hierarchical cluster analysis (ANOVA, FDR < 0.05) (Fig. 5). Interestingly, the expression pattern of proteins in CRSsNP differed from those in other groups. As polyposis is more severe form of CRS, I investigated the up- or down-regulated DEPs in CRSwNP and revealed 3 clusters; Cluster 1 included 133 proteins with the highest expression in CRSwNP followed by control, Cluster 2 included 294 proteins with down-regulated in CRSwNP and Cluster 3 included 147 proteins with the highest expression in CRSwNP followed by CRSsNP.

The enriched biological processes of up- or down-regulated proteins in CRSwNP

I used the Enrichr software to investigate the GO biological processes and generate the clustergrams. Twenty proteins belonging to the top 10 biological processes indicated that the up-regulated proteins in CRSwNP (Cluster 1 and 3) were significantly associated with neutrophil-related terms (Fig. 6A, C). To confirm this, histology was performed on nasal tissue from CRS patients in the DDA set (Table 4). The set was composed of 2 patients with eosinophilic CRS (CRSsNP_1, 4), 7 with non-eosinophilic CRS, and 1 with unknown (CRSwNP_3). As 4 out of 5 CRSwNP subjects were non-eosinophilic, enriched neutrophil-related terms in CRSwNP could be explained by the histology. On the other hand, the down-regulated proteins in CRSwNP (Cluster 2) were significantly involved in platelet-related terms (Fig. 6B).

Protein profiles in the DIA set

As noted above, although the DDA mode is used to identify thousands of proteins, its reproducibility and precision are restricted.⁵⁴ Thus, to obtain reliable and reproducible results on different analytical methods and cohorts, the nasal secretions from the other cohorts (cohort 2) were additionally analyzed in DIA mode (the DIA set). A total of 1,278 proteins were quantified in the DIA set and the number of quantified proteins in each subject was represented in Fig. 7.

Hierarchical clustering of DEPs among control, CRSsNP, and CRSwNP in the DIA set

I then identified 125 DEPs among control, CRSsNP, and CRSwNP groups to perform a hierarchical cluster analysis in the DIA set (ANOVA, FDR < 0.05) (Fig. 8A). As mentioned above, I investigated the up- or down-regulated DEPs in CRSwNP and revealed 2 clusters in the DIA set; Cluster 1 included 61 proteins with down-regulated in CRSwNP and Cluster 2 included 55 proteins with upregulated in CRSwNP.

The enriched biological processes of commonly up- or down-regulated proteins in CRSwNP

I sought to select the proteins that showed similar expression patterns in both the DDA and DIA set. Among the up-regulated proteins in CRSwNP (Cluster 1 and 3) in the DDA set, I picked out the same proteins were up-regulated in the DIA set (Cluster 2); 10 proteins were detected (Table 5). Similarly, among the down-regulated proteins in CRSwNP (Cluster 2) in the DDA set, I picked out the same

proteins were down-regulated in the DIA set (Cluster 1); 14 proteins were detected (Table 5).

I used the Enrichr software to investigate the GO biological processes and generate the clustergrams (Fig. 8B, C). Interestingly, the up-regulated proteins (ferritin light chain [*FTL*], ferritin heavy chain [*FTH1*], and lysosomal alpha-glucosidase [*GAA*]) and down-regulated proteins (coactosin-like protein [*COTL1*], calmodulin-like protein 5 [*CALML5*], protein S100-A7 [*S100A7*], and eosinophil cationic protein [*ECP*; *RNASE3*]) in CRSwNP were associated with neutrophil-related terms. Meanwhile, the up-regulated proteins were associated with antimicrobial and peptidase related terms.

Differences in the microbial composition and proteome in relation to disease status

A lot of microorganisms exist in nasal cavity⁵⁹ and their dysbiosis could contribute to pathogenesis of CRS.^{6, 60} To obtain a better understanding of CRS, nasal epithelial response and environment should be considered together. Thus, I performed integrative analysis to investigate associations between nasal environment and host response. The nasal environment was analyzed by identifying the nasal microbial composition through metagenomics and host response was analyzed by determining the secreted proteome in the nasal cavity through proteomics. The workflow was shown in Fig. 9.

First, I performed metagenomic sequencing on nasal secretions from middle meatus of 29 controls, 30 CRSsNP, and 40 CRSwNP subjects and identified 1,329 OTUs at genus level. To explore whether the microbial composition was

17

significantly different in relation to disease status, I analyzed the alpha and beta diversity in total subjects. Shannon and Simpson indices were significantly increased across control, CRSsNP, and CRSwNP subjects, while Chao1 and the number of observed OTUs were not significantly different among the groups (Fig. 10A). There were significant differences in microbial composition among the groups (Fig. 10B).

To investigate which taxa were different in relation to disease status, I compared the microbial community structure at phylum and family levels. Among taxa with relative abundance >3%, Firmicutes and Bacteroidetes were significantly increased across control, CRSsNP, and CRSwNP subjects, while Cyanobacteria levels were significantly decreased across control, CRSsNP, and CRSwNP subjects (Fig. 11A, C). At the family level, *Staphylococcaceae*, *Propionibacteriaceae*, and Moraxellaceae were significantly decreased across control, CRSsNP, and CRSwNP subjects (Fig. 11B, D). Prevotellaceae was significantly increased across control, subjects. CRSsNP. and CRSwNP Among all identified families. Propionibacteriaceae and Moraxellaceae were the most abundant in control, and Entomoplasmataceae was the most abundant in CRSsNP subjects (Fig. 11E).

Next, proteomic analysis was performed using the nasal secretions from the same individual analyzed by metagenomics. Among 99 subjects, nasal secretions from 69 subjects (23 control, 24 CRSsNP, and 22 CRSwNP) were available for proteomic analysis. A total number of 2,162 proteins were quantified and the average number was approximately 1,440 proteins. The number of quantified proteins from each subject is shown in Fig. 12A. When comparing control to CRSsNP groups, relatively small proteome changes were observed compared to other comparisons (Fig. 12B and Table 6).

Given that cells could interact with surrounding environment, I hypothesized that the secreted proteome and microbiome could correlate with each other. As mentioned above, I was interested in investigating the up- or down-regulated microbiome and proteins in CRSwNP compared to control and CRSsNP. To examine the hypothesis, I divided the nasal microbiome and proteins into 2 groups, respectively. IFc group included families were significantly increased across control, CRSsNP, and CRSwNP subjects and DFc group included families were significantly decreased across control, CRSsNP, and CRSwNP subjects (Kruskal-Wallis, P < 0.05). IPc group included proteins were significantly increased across control, CRSsNP, and CRSwNP subjects and DPc group included proteins were significantly decreased across control, CRSsNP, and CRSwNP subjects (ANOVA, P < 0.05). According to GO molecular functions, IPc group were associated with cadherin binding (Table 7). On the other hand, DPc group were associated with cholesterol transfer activity, transition metal ion binding and apolipoprotein receptor binding. After that, I performed correlation analysis among the four groups (Fig. 13A). Furthermore, to evaluate the associations, I used aSPC tests. These analyses uncovered significant global association between IFc and DPc, DFc and IPc, DFc and DPc (aSPC test, P < 0.01) (Fig. 13B). These findings suggest a strong association between the nasal microbiome and secreted proteome in relation to disease status.

Differences in the microbial composition and proteome in relation to the use of antibiotics

To identify the effects of antibiotics on the nasal microbiome and host responses, the subjects were divided on whether they had taken antibiotics 3 months prior to sampling (ABX and NABX, respectively). I then investigated microbial community and secreted proteome. The ABX group comprised of 2 controls, 8 CRSsNP, and 16 CRSwNP subjects, while the NABX group comprised of 27 controls, 22 CRSsNP, and 24 CRSwNP subjects. In the NABX group, unlike Chao1 and the number of observed OTUs, the Shannon and Simpson indices were significantly increased across control, CRSsNP, and CRSwNP subjects (Fig. 14A). There were significant differences in microbial composition among the groups (Fig. 14C). However, in the ABX group, there was no significant difference in the alpha and beta diversities (Fig. 14B, D).

To investigate which taxa were different in relation to disease status, I compared the microbial community structure at the phylum and family levels in the NABX and ABX groups. Among families with relative abundance >3%, in the NABX group, Firmicute, Cyanobacteria, and Bacteroidetes significantly differed in relation to disease status (Fig. 15A, E). At the family level, the relative abundance of Propionibacteriaceae, Moraxellaceae, and Prevotellaceae significantly differed in relation to disease status (Fig. 15B, F). Among all identified families, LEfSe analysis showed that Propionibacteriaceae was significantly decreased in CRSwNP and CRSsNP subjects compared to control (Fig. 15G). On the other hand, in the ABX group, there was no significant difference in phyla and families with relative abundance >3% (Fig. 15C, D). Among all detected families, I identified that Peptostreptococcaceae, Desulfovibrionaceae, and Alteromonadaceae were significantly increased in control (Fig. 15H). Sulfurovaceae was found to be significantly dominant in CRSsNP subjects. Taken together, these findings implied that the use of antibiotics could reduce differences in microbial community in relation to disease status.

To examine the differences in the microbial community in relation to antibiotic use, I first compared alpha diversity between the NABX and ABX groups in each disease status. Shannon and Simpson indices significantly differed only in CRSwNP subjects (Fig. 16). There was no difference in Chao1 and the number of observed OTUs between the NABX and ABX groups in each disease status (Fig. 17A, 18A, 19A, 20A).

In a total of 99 subjects, PERMANOVA revealed that there were significant differences in microbial composition between the NABX and ABX groups (Fig. 17B). Among families with relative abundance >3%, Staphylococcaceae, Propionibacteriaceae, and Streptococcaceae significantly differed between the two groups (Fig. 17C). Among all identified families, I found that *Staphylococcaceae*, Streptococcaceae, and Propionibacteriaceae were significantly dominant in the NABX group (Fig. 17D). Entotheonellaceae and Sandaracinaceae were significantly increased in the ABX group. Then, in control subjects, the beta diversities did not significantly differ between the 2 groups (Fig. 18B). Additionally, there was no significant difference in families with relative abundance >3% (Fig. 18C). Among all identified families, LEfSe analysis revealed that the use of antibiotics contributed to the enrichment of families with relative abundance <3%(Fig. 18D). In CRSsNP subjects, the microbial composition did not significantly differ between the NABX and ABX groups (Fig. 19B). Among families with relative abundance >3%, Staphylococcaceae was significantly decreased in the ABX group (Fig. 19C). LEfSe analysis that was performed on all identified families revealed that Staphylococcaceae, Intrasporangiaceae, and Neisseriaceae were significantly enriched in the NABX group (Fig. 19D). Additionally, Prevotellaceae and Legionellaceae were significantly dominant in the ABX group.

Lastly, the microbial communities were compared between the NABX and ABX groups in CRSwNP subjects. PERMANOVA showed significant differences in microbial composition between the 2 groups (Fig. 20B). Among families with relative abundance >3%, *Streptococcaceae* and *Lachnospiraceae* were significantly enriched in the NABX group (Fig. 20C). Among all detected families, *Streptococcaceae*, *Lachnospiraceae*, and *Neisseriaceae* were significantly dominant in the NABX group (Fig. 20D). According to alpha and beta diversity, it seemed that antibiotics exerted stronger effects on the microbial community in CRSwNP subjects than that in the control and CRSsNP subjects.

Next, I sought to analyze responses of host to antibiotics using proteomic analysis in the non-NP group which consisted of control and CRSsNP subjects and the NP group which consisted of CRSwNP subjects. In the ABX group, relatively small proteome changes were identified between the non-NP and NP groups compared to those in the NABX group (Fig. 21A and Table 8). It was consistent with previous results that the use of antibiotics reduced differences in microbial communities in relation to disease status (Fig. 14, 15).

Furthermore, to determine differences in the secreted proteome in relation to antibiotic use, I compared DEPs ($|\log_2 (\text{fold change})| \ge 1.0 \text{ and } P < 0.05$) between the NABX and ABX groups in total of subjects, the non-NP and NP groups, respectively (Fig. 21B and Table 9). As with previous results in Fig. 16, antibiotics also exerted stronger effects on the secreted proteome in the NP group compared to that in total and the non-NP group. I then sought to identify the canonical pathways which were significantly enriched by DEPs between the NABX and ABX groups. In a total of 99 subjects, B cell receptor signaling, P70S6K signaling were significantly increased in the ABX groups (Fig. 21C). On the other hand, in the NP

group, LXL/RXR activation, innate immunity, and production nitric oxide (NO) and reactive oxygen species (ROS) were significantly enriched in the ABX group (Fig. 21D). There was no significant pathway found in the non-NP group (P > 0.001). Taken together, these analyses revealed that the use of antibiotics might have stronger effects on nasal microbiome and host responses in CRSwNP compared to those in control and CRSsNP subjects.

Antibiotic-dependent relationships between nasal microbiome and secreted proteome

I then sought to examine whether the associations between the microbiome and secreted proteome could be varied in relation to antibiotic use. The associations with a large number of significant correlations between microbiome and proteins were considered as meaningful. Thus, I arranged the microbiome and secreted proteome in descending order from the largest number of significant correlations between each other, respectively. Next, the top 25 percent of the families and secreted proteins were selected, respectively, and hierarchical clustered (Fig. 22A, B). The average R-squared value in the ABX was larger than that in the NABX group. From these results, I confirmed that the correlation between the families and secreted proteins in the ABX group was strengthened compared to those observed in the NABX group. Likewise, the associations between the microbiome and secreted proteome could be altered in relation to the use of antibiotics. In addition, the correlation between them was strengthened in subjects who had taken antibiotics.
Antibiotic-dependent relationships between the nasal microbiome and secreted proteome in the non-NP and NP groups

Finally, given that antibiotics exerted different effects on the nasal microbiome and secreted proteome in relation to disease status, I hypothesized that the associations between microbiome and proteins that were increased or decreased in the ABX group could differ in relation to disease status. To examine the hypothesis, I divided the nasal microbiome and proteins into 2 groups, respectively. IFa group included families were significantly increased in the ABX group and DFa group included families were significantly decreased in the ABX group (Mann-Whitney U test, P < 0.05). IPa group included proteins were significantly increased in the ABX group and DPa group included proteins were significantly decreased in the ABX group (Student's t-test, P < 0.05). After that, I performed correlation analysis among the four groups (Fig. 23A, B). Furthermore, to evaluate the associations, I used aSPC tests (Fig. 23C). The associations between DFa and IPa, DFa and DPa in the NP group were more significant than those in the non-NP group. Therefore, the association between the nasal microbiome and secreted proteome was stronger in CRSwNP than in control and CRSsNP.

Figure 1. Workflow of proteomic analysis

MED-FASP, multi-enzyme digestion filter aided sample preparation.

Figure 2. Proteome profiles in the DDA set

(A) Total number of the identified proteins from technical triplicates in the DDA set (Error bars = mean \pm standard deviations of triplicates). (B) The plot showing the comparison of the identified proteins in this study and previous proteomic studies of nasal samples.

F, filter papers; SW, swab; SU, suction; L, nasal lavage; B, brushing; AR, allergic rhinitis.

Figure 3. Functional gene ontology (GO) of proteome in nasal secretions

Donut chart showing the significant GO biological processes of the proteome (P < 0.05). The terms were arranged in order of P value from smallest to largest (the pathway with the lowest P value was immune system process and with the largest was the cellular process). The percentage of the number of proteins associated with each term was indicated in parenthesis.

Figure 4. Canoncal pathway analysis of the significantly up- or downregulated proteins in CRSsNP and CRSwNP compared to control

The pathways arranged in order of the highest to lowest z-score. The positive and negative scores represented in orange and blue, respectively.

Cont, control; IL, interleukin; CCR3, C-C chemokine receptor type 3.

Figure 5. Hierarchical clustering of DEPs in the DDA set

A heatmap of total number of 1,666 proteins identified as DEPs (ANOVA, FDR < 0.05).

Cluster 1 CRSsNP < Control < CRSwNP

Neutrophil degranulation Neutrophil activation involved in immune response Neutrophil mediated immunity Antibacterial humoral response Positive regulation of cellular protein metabolic process Positive regulation of cellular biosynthetic process Positive regulation of translation Cytokine-mediated signaling pathway Positive regulation of cellular amide metabolic process

Platelet degranulation Regulation of platelet-derived growth factor receptor signaling pathway Negative regulation of peptidase activity Regulated exocytosis Negative regulation of platelet-derived growth factor receptor signaling pathway Positive regulation of exosomal secretion Regulation of exosomal secretion Protein targeting to lysosome

Figure 6. Biological processes of up- or down-regulated proteins in CRSwNP

The clustergrams illustrating the top 10 enriched terms and twenty proteins associated with those terms in Cluster 1 (A), Cluster 2 (B), and Cluster 3 (C), respectively. The rows represented the top 10 enriched terms ranked by their enrichment score, and the columns represented the weighted input genes were hierarchically clustered based on their association with columns.

Figure 7. Quantified proteome in the DIA set

A total of 1,278 proteins quantified in technical duplicates in the DIA set.

Figure 8. Verification of DEPs in CRSwNP

(A) A heatmap and hierarchical clustering of total number of 125 proteins identified as DEPs in the DIA set (ANOVA, FDR < 0.05). Biological processes of up- (B) or down-regulated (C) proteins in CRSwNP both in the DDA and DIA set. The top 10 enriched terms and proteins associated with those terms were illustrated. The rows represented the top 10 enriched terms ranked by their enrichment score, and the columns represented the weighted input genes were hierarchically clustered based on their association with columns.

Figure 9. Workflow of metagenomic and proteomic analysis

Figure 10. Diversity of nasal microbiome in relation to disease status

Comparison of alpha diversity among control, CRSsNP, and CRSwNP (horizontal line = median and whiskers = min and max values). (B) Principal coordinates analysis (PCoA) using Bray-Curtis distance matrix.

Figure 11. Nasal microbiome composition in relation to disease status

The distribution of microbiome at phylum (A) and family (B) level. The stacked bar plots showed the composition of phyla or families with relative abundance greater than three percent. The plots represented the phyla (C) and families (D) with significantly different relative abundance between disease status. (E) Linear discriminant analysis effect size (LEfSe) analysis with LDA score > 3.0 and *P* value < 0.05 in all-against-all (more stringent). Control, CRSsNP, and CRSwNP enriched families were colored in blue, green, and red, respectively.

Figure 12. Proteome profiles in nasal secretions

A total of 2,162 proteins were quantified in technical duplicates (Error bars = mean \pm standard deviations of duplicates). (B) Volcano plots indicated the log₂ fold change against the negative log₁₀ of *P* value between control, CRSsNP, and CRSwNP. The horizontal dashed line represented *P* value of 0.05, and the vertical dashed lines represented with | log₂ (fold change) | of 1.0. Red squares illustrated proteins with | log₂ (fold change) | \geq 1.0 and *P* value < 0.05.

Figure 13. Correlation between up- or down-regulated families and proteins in CRSwNP

A heatmap of the secreted proteins (ANOVA, P < 0.05) and families (Kruskal-Wallis, P < 0.05). The proteins and families were ordered from top to bottom and from left to right in order of lowest to highest P value, respectively. Orange and green colors represented significantly increased and decreased families or proteins, respectively, from control to CRSwNP. Redundant microbiome and proteins were ruled out. (B) Association between families and proteins were significantly increased or decreased from control to CRSwNP (aSPC test, P < 0.05). Orange and green colors indicated the same groups previously described in (A). Families and proteins were considered as Others (colored in gray).

Figure 14. Diversity of nasal microbiome in relation to the use of antibiotics

Alpha diversity in relation to disease status in the NABX (A) and ABX (B) groups (horizontal line = median and whiskers = min and max values). Principal coordinates analysis (PCoA) using Bray-Curtis distance matrix in the NABX (C) and ABX (D) groups.

Figure 15. Nasal microbiome composition in relation to the use of antibiotics

The distribution of microbiome at phylum (A, C) and family (B, D) level. The stacked bar plots showed the composition of phyla or families with relative abundance greater than three percent. The plots represented the phyla (E) and families (F) with significantly different relative abundance between disease status in the NABX group. Linear discriminant analysis effect size (LEfSe) analysis with LDA score > 3.0 and *P* value < 0.05 in all-against-all (more stringent) in the NABX (G) and ABX (H) groups. Control, CRSsNP, and CRSwNP enriched families were colored in blue, green, and red, respectively.

Figure 16. Comparison of alpha diversity of nasal microbiome between the NABX and ABX groups

Shannon and Simpson indices between the NABX and ABX groups in a total of 99 subjects (A), control (B), CRSsNP (C), and CRSwNP (D), respectively (horizontal line = median and whiskers = min and max values).

Figure 17. Microbial differences in relation to the use of antibiotics in total of 99 subjects

(A) Chao1 and observed OTUs indices between the NABX and ABX groups in a total of 99 subjects (horizontal line = median and whiskers = min and max values). (B) Principal coordinates analysis (PCoA) using Bray-Curtis distance matrix. (C) The distribution of microbiome at family level. The stacked bar plots showed the composition of families with relative abundance greater than three percent. (D) Linear discriminant analysis effect size (LEfSe) analysis with LDA score > 3.0 and P value < 0.05 in all-against-all (more stringent). NABX and ABX enriched families were colored in blue and red, respectively.

Figure 18. Microbial differences in relation to the use of antibiotics in control

(A) Chao1 and observed OTUs indices between the NABX and ABX groups in control group (horizontal line = median and whiskers = min and max values). (B) Principal coordinates analysis (PCoA) using Bray-Curtis distance matrix. (C) The distribution of microbiome at family level. The stacked bar plots showed the composition of families with relative abundance greater than three percent. (D) Linear discriminant analysis effect size (LEfSe) analysis with LDA score > 3.0 and P value < 0.05 in all-against-all (more stringent). NABX and ABX enriched families were colored in blue and red, respectively.

Figure 19. Microbial differences in relation to the use of antibiotics in CRSsNP (A) Chao1 and observed OTUs indices between the NABX and ABX groups in CRSsNP patients (horizontal line = median and whiskers = min and max values). (B) Principal coordinates analysis (PCoA) using Bray-Curtis distance matrix. (C) The distribution of microbiome at family level. The stacked bar plots showed the composition of families with relative abundance greater than three percent. (D) Linear discriminant analysis effect size (LEfSe) analysis with LDA score > 3.0 and *P* value < 0.05 in all-against-all (more stringent). NABX and ABX enriched families were colored in blue and red, respectively.

Figure 20. Microbial differences in relation to the use of antibiotics in CRSwNP

(A) Chao1 and observed OTUs indices between the NABX and ABX groups in CRSwNP patients (horizontal line = median and whiskers = min and max values). (B) Principal coordinates analysis (PCoA) using Bray-Curtis distance matrix. (C) The distribution of microbiome at family level. The stacked bar plots showed the composition of families with relative abundance greater than three percent. (D) Linear discriminant analysis effect size (LEfSe) analysis with LDA score > 3.0 and P value < 0.05 in all-against-all (more stringent). NABX and ABX enriched families were colored in blue and red, respectively.

Figure 21. Differences in proteome from nasal secretions in relation to the use of antibiotics

(A, B) Volcano plots showed the \log_2 fold change against the negative \log_{10} of *P* value. The horizontal dashed line represented *P* value of 0.05, and the vertical dashed lines represented | \log_2 (fold change) | of 1.0. Red squares illustrated proteins with | \log_2 (fold change) | \geq 1.0 and *P* value < 0.05. In the NP subjects, the labeled squares represented proteins involved in LXR/RXR activation. (C, D) Pathway analysis indicating significantly up- or down-regulated pathways in ABX compared to those in NABX group (*P* < 0.001). The pathways were ordered from top to bottom in order of lowest to highest *P* value. The $-\log_{10} P$ value were indicated in parenthesis.

Figure 22. Antibiotic dependent relationships between the microbiome and proteins

Heatmaps showing hierarchical clustering of the top 25 percent families and proteins with high number of significant correlations with each other in the NABX (A) and ABX (B) groups. The means of squared Spearman's correlation coefficients were determined using all the coefficients in the heatmaps.

Α

В

Figure 23. Antibiotic dependent relationships between up- or down-regulated families and proteins in the ABX group

Heatmaps of the secreted proteins (Student's t-test, P < 0.05) and families (Mann-Whitney U test, P < 0.05) in the Non-NP (A) and NP (B) subjects. The proteins and families were ordered from top to bottom and from left to right in order of lowest to highest P value, respectively. Orange and green colors represented families and proteins significantly enriched in the ABX and NABX, respectively. Redundant microbiome and proteins were ruled out. (C) Associations between families and proteins were significantly enriched in the ABX and NABX groups in the Non-NP and NP subjects, respectively (aSPC, P < 0.05). Orange and green colors indicated the same groups previously described in (A, B). Families and proteins were not included in the orange and green colors were considered as Others (colored in gray).

Figure 24. Graphical summary of differential effects of antibiotics in patients with NP

As PLEC, ACTR3, OLFM4, and TFF3 were known to induce epithelial– mesenchymal transition (EMT),⁶¹⁻⁶⁴ it could lead to impaired epithelial barrier function. Thus, the perturbations by antibiotics could easily shift the microbiome toward a different equilibrium only in CRSwNP.

JournalSampleSampling methodTarget diseaseThis studyNasal secretionsfilter papersCRSBiswas et al.9Nasal mucusswabsCRSTomazic et al.57Nasal mucussuctionARMortstadt at al.56Nasal lawage fluidpaged lawagesPhinitis				
This studyNasal secretionsfilter papersCRSBiswas et al.9Nasal mucusswabsCRSTomazic et al.57Nasal mucussuctionARMortstadt at al.56Nasal lawage fluidpasal lawagesPhinitis	Journal	Sample	Sampling method	Target disease
Biswas et al.9Nasal mucusswabsCRSTomazic et al.57Nasal mucussuctionARMortstadt at al.56Nasal lawage fluidpasal lawagesPhinitis	This study	Nasal secretions	filter papers	CRS
Tomazic et al.57Nasal mucussuctionARMortstodt et al.56Nasal lavage fluidpasal lavagesPhinitis	Biswas et al. ⁹	Nasal mucus	swabs	CRS
Mortetedt et al ⁵⁶ Negal lavage fluid negal lavages Phinitic	Tomazic et al. ⁵⁷	Nasal mucus	suction	AR
Monsteut et al. Ivasai lavage fiulu ilasai lavages Killinus	Mortstedt et al. ⁵⁶	Nasal lavage fluid	nasal lavages	Rhinitis
Tomazic et al.58Nasal mucussuctionAR	Tomazic et al. ⁵⁸	Nasal mucus	suction	AR
Ndika et al.42Nasal epitheliumbrushingAR	Ndika et al. ⁴²	Nasal epithelium	brushing	AR

Table 3. Method comparison between this study and previous proteomicstudies on human nasal sample

CRS, chronic rhinosinusitis; AR, allergic rhinitis

Table 4. Total cell number and the percentage of eosinophils and neutrop	ohils
in cohort1 [©]	

Sample	Total cell	Eosinophils	Eosinophil (%)	Neutrophils	Neutrophil (%)
CRSsNP_1	551	103	18.69	27	4.9
CRSsNP_2	1640	0	0	0	0
CRSsNP_3	1871	5	0.27	0	0
CRSsNP_4	1026	226	22.03	1	0.1
CRSsNP_5	1805	3	0.17	385	21.33
CRSwNP_1	955	6	0.63	28	2.93
CRSwNP_2	355	0	0	0	0
CRSwNP_3	NA	NA	NA	NA	NA
CRSwNP_4	1345	12	0.89	25	1.86
CRSwNP_5	702	19	2.71	10	1.42

CRS, chronic rhinosinusitis; CRSwNP, chronic rhinosinusitis with nasal polyp

^① 보라매병원 김대우 교수님께서 분석해 주셨음.

Table 5. Up	p- or down-regul	ated proteins	in	CRSwNP	both	in	the	DDA	and
-------------	------------------	---------------	----	--------	------	----	-----	-----	-----

Cluster	Gene name	Protein name
Up-regulatin CRSwl	ated proteins	
	BPIFB1	BPI fold-containing family B member 1
	CLTC	Clathrin heavy chain 1
	CRYM	Ketimine reductase mu-crystallin
	FTH1	Ferritin heavy chain
	FTL	Ferritin light chain
	GAA	Lysosomal alpha-glucosidase
	GLUL	Glutamine synthetase
	PFKP	ATP-dependent 6-phosphofructokinase, platelet type
	PGM3	Phosphoacetylglucosamine mutase
	USP5	Ubiquitin carboxyl-terminal hydrolase 5
Down-reg	gulated proteins	
	CALML5	Calmodulin-like protein 5
	COTL1	Coactosin-like protein
	ERO1L	ERO1-like protein alpha
	FKBP4	Peptidyl-prolyl cis-trans isomerase FKBP4
	HBA2	HCG1745306, isoform CRA_a

CALML5	Calmodulin-like protein 5
COTL1	Coactosin-like protein
ERO1L	ERO1-like protein alpha
FKBP4	Peptidyl-prolyl cis-trans isomerase FKBP4
HBA2	HCG1745306, isoform CRA_a
HBD	Hemoglobin subunit delta
LMNB1	Lamin-B1
PABPC1	Polyadenylate-binding protein 1
REXO2	Oligoribonuclease, mitochondrial
RNASE3	Eosinophil cationic protein
S100A7	Protein S100-A7
SERPINB13	Serpin B13
SERPINB8	Serpin B8
SRI	Sorcin

Accession number		Gene name	Log ₂ (Fold change)	- Log (P value)
CRSsNP vs. Control	Q9NYQ8	FAT2	3.02	1.55
	P04003	C4BPA	1.39	2.69
	A6PVU8	TUFT1	1.38	1.42
	A0A087X0P6	IGKV2D-29	1.37	3.29
	P01031	C5	1.35	3.31
	P23142	FBLN1	1.33	4.69
	A0A087WSX0	IGLV5-45	1.31	1.94
	P02747	CIOC	1.29	1.59
	P01616	- 2 -	1.29	2.10
	P08236	GUSB	1.13	1.61
	O6P4A8	PLBD1	1.12	1.36
	P01825		1.03	2.03
	A0A087X0N5	IGKV1-17	1.02	2.06
	O960K1	VPS35	1.01	1.37
	P68871	HBB	-2.57	2.09
	G3V1N2	HBA2	-2.39	1.41
	P02042	HBD	-2.30	1.91
	P69905	HBA1	-2.28	1.79
	P00915	CA1	-2.24	1.68
	P69891	HBG1	-2.00	1.74
	015195	VILL	-1.61	1.33
	P62328	TMSB4X	-1.11	1.90
	P81605	DCD	-1.11	2.33
	P00918	CA2	-1.08	2.07
CDCND	E9PN89	HSPA8	-1.05	1.35
vs. Control	Q9NYQ8	FAT2	3.43	1.80
	H3BT29	PML	1.98	1.61
	A0A075B6K3	IGLV2-11	1.97	2.45
	A0A087WVM2	CD177	1.89	2.23
	Q8WXI7	MUC16	1.83	3.06
	Q86UN6	AKAP14	1.71	2.03
	A0A075B7D0	IGHV10R15-1	1.68	2.01
	Q6UX06	OLFM4	1.66	1.67
	P36222	CHI3L1	1.51	1.80
	C9JC71	FCGR3A	1.49	1.45
	P01773		1.46	3.57
	Q92743	HTRA1	1.46	1.70
	P01615		1.45	1.71
	A0A075B6H9	IGLV4-69	1.44	1.34
	A0A075B6R9	IGKV2D-24	1.43	3.01
	P01708		1.43	2.39
	P59665	DEFAI	1.38	2.20
	P13671	<i>C6</i>	1.36	1.84
	A0A087X0N5	IGKV1-17	1.31	3.22
	075884	RBBP9	1.28	2.06
	A0A087X0P6	IGKV2D-29	1.28	2.49
	A0A075B7B8	IGHV3OR16-12	1.28	3.86
	Q5T5Y3	CAMSAPI	1.26	1.66
	A0A096LPK4	MUC5AC	1.25	2.72
	Q15782	CHI3L2	1.24	1.50

and *P* value < 0.05 between control, CRSsNP, and CRSwNP

P15328	FOLR1	1.24	1.70
P29401	TKT	1.23	2.51
P05089	ARGI	1.22	1.62
P01707	/11(0)	1.22	1.62
007654	TFF3	1.15	1.07
Q07034	CDNN	1.13	2.02
Q90BG3	CRIVIN	1.14	2.03
P01825		1.14	2.37
075348	ATP6VIGI	1.12	2.18
P49788	RARRESI	1.11	1.42
P08236	GUSB	1.10	1.55
A0A087X0S5	COL6A1	1.08	1.67
P01031	C5	1.08	2.18
Q6ZVX7	NCCRP1	1.07	1.62
P23142	FBLN1	1.06	3.05
O9BZG9	LYNX1	1.06	2.83
P61006	RAB8A	1.03	2.52
P04209	Nubber 1	1.03	1.46
104207 A0A075B683	ICKV2 30	1.01	1.40
AUAU/JD03J		1.01	1.05
D14//5		1.01	1.59
BIAKGU	CFHRI	1.01	1.55
Q02383	SEMG2	1.00	1.46
P04745	AMYIA	1.00	2.27
G3V1N2	HBA2	-3.30	2.37
P69905	HBA1	-2.78	2.51
P69891	HBG1	-2.60	2.31
P68871	HBB	-2.56	2.38
P00915	CAI	-2.54	1.96
P02042	HBD	-2.51	2.20
P09210	GSTA2	-1.91	1.61
O6UWW0	LCN15	-1.87	1.66
P11684	SCGR1A1	-1 79	4.03
015105	VILI	-1.79	4.03
		-1.07	2.73
AUAU96LPE2	SAA2-SAA4	-1.6/	1.92
P42331-6	ARHGAP25	-1.67	2.65
E9PN89	HSPA8	-1.52	2.86
P16050	ALOX15	-1.52	1.46
P19338	NCL	-1.47	2.42
P62857	RPS28	-1.40	2.11
Q96KN2	CNDP1	-1.38	1.87
C9J0K6	SRI	-1.38	1.74
P40394	ADH7	-1.33	2.24
F6WQW2	RANBP1	-1.32	2.96
096C23	GALM	-1.29	2.18
P02647	APOA1	-1.25	2.68
I30L71	SCRN2	-1.22	2.05
P00326	ADHIC	-1.21	1.52
012442	PDAP1	-1.21	1.52
012228	I DAI I SELENDDI	-1.17	2.04
Q15228	SELENDET	-1.1/	2.04
P02/68	ALB	-1.16	2.39
P02652	APOA2	-1.15	2.05
P00918	CA2	-1.13	2.16
A6NGP5	HN1L	-1.10	1.66
Q9H477	RBKS	-1.09	1.53
Q13885	TUBB2A	-1.09	1.53
P02794	FTH1	-1.07	1.35
P61956	SUMO2	-1.06	2.44
Q9H0E9	BRD8	-1.06	1.77
MOROK9	TRIM28	-1.03	1.62
P09382	LGALSI	-1.02	3.26
R87706	PTMA	_1.02	1 51
DOLLQU	1 1 1/1/1	-1.01	1.51

vs. CRSSNP OF CONTROL 1000 1000 1000 1000 1000 1000 1000 10	CRSwNP	C9IZR7	ACTB	2.08	1 92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	vs. CRSsNP	CJJERT	nerb	2.00	1.92
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q86UN6	AKAP14	1.76	2.27
B4DDF4 $CNN2$ 1.452.85Q9UBG3 $CRNN$ 1.452.07P20930 FLG 1.401.57Q86UX7 $FERMT3$ 1.392.19Q725R6 $APBBIP$ 1.361.97P05089 $ARGI$ 1.281.34Q8WXI7 $MUC16$ 1.271.66A0A087X188 $BIN2$ 1.221.78Q92743 $HTRAI$ 1.212.05Q9376 $CA839$ 1.301.48Q9NUQ9 $FAM49B$ 1.192.37P52790 $HK3$ 1.181.59Q9Y678 $COPGI$ 1.172.23Q6UWP8 $SBSN$ 1.142.63Q6UWP8 $SBSN$ 1.142.63Q6UWP8 $SBSN$ 1.141.89P29401 TKT 1.141.26Q0203 $AP3BI$ 1.082.00P19878 $NCF2$ 1.081.29Q9490 $TLNI$ 1.062.20P26583 $HMCB2$ 1.062.05O75348 $AP76VIGI$ 1.041.41P10644 $PRKARIA$ 1.021.56 $ADA0SWWV46$ $LAMTOR4$ 1.021.40Q9HC84 $MUC5B$ 1.011.61B1AH77 $RAC2$ 1.011.61B1AH77 $RAC2$ 1.011.61B1AH77 $RAC2$ 1.011.64P0210 $GSTA2$ -2.282.71 $A6PVU8$ $TUFT1$ -2.033.17Q96C33 $GALM$ -1.642.7		Q04695	KRT17	1.51	2.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		B4DDF4	CNN2	1.45	2.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q9UBG3	CRNN	1.45	2.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		P20930	FLG	1.40	1.57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q86UX7	FERMT3	1.39	2.19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q7Z5R6	APBB11P	1.36	1.97
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		P05089	ARG1	1.28	1.34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q8WXI7	<i>MUC16</i>	1.27	1.66
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A0A087X188	BIN2	1.22	1.78
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q92743	HTRA1	1.21	2.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q9Y376	CAB39	1.20	1.48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q9NUQ9	FAM49B	1.19	2.23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A0A075B6R9	IGKV2D-24	1.19	2.37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		P52790	НКЗ	1.18	1.59
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q9Y678	COPG1	1.17	2.32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		P84085	ARF5	1.14	2.63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		O6UWP8	SBSN	1.14	1.89
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		P29401	TKT	1.11	2.68
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		O00203	AP3B1	1.08	2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		P19878	NCF2	1.08	1.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		O9Y490	TLNI	1.06	2.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P26583	HMGB2	1.06	2.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		075348	ATP6VIGI	1.00	2.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		013838	DDX39B	1.04	1 41
A0A087WV46LAMTOR41.021.30Q9HC84 $MUC5B$ 1.011.61B1AH77 $RAC2$ 1.011.49P09210 $GSTA2$ -2.282.71A6PVU8 $TUFT1$ -2.033.17Q13938 $CAPS$ -2.032.26Q96C23 $GALM$ -1.642.77Q13885 $TUBB2A$ -1.552.54C9J0K6 SRI -1.533.24P04003 $C4PPA$ -1.493.01P02747 $CIQC$ -1.442.26P00326 $ADHIC$ -1.413.00A0A096LPE2 $SAA2-SAA4$ -1.401.59P62857 $RPS28$ -1.391.62P08263 $GSTAI$ -1.371.95Q9BW30 $TPPP3$ -1.371.84Q9H477 $RBKS$ -1.362.45P51857 $AKRIDI$ -1.331.59P40394 $ADH7$ -1.292.28P11117 $ACP2$ -1.262.41P06576 $ATP5B$ -1.253.17P12277 CKB -1.231.78P48595 $SERPINB10$ -1.181.71Q8WVM8 $SCFD1$ -1.111.49Q01105 SET -1.062.27Q9733 $NAPILA$ -1.062.27Q9733 $NAPILA$ -1.041.62A6NGP5 $HNIL$ -1.041.62A6NGP5 $HNIL$ -1.041.62A6NGP5 $HNIL$ -1.041.62A6NGP5 $HNIL$		P10644	PRKARIA	1.01	1.56
InstructInstructInstructInstructQ9HC84MUCSB1.011.61B1AH77 $RAC2$ 1.011.49P09210GSTA2-2.282.71A6PVU8 $TUFT1$ -2.033.17Q13938 $CAPS$ -2.032.26Q96C23 $GALM$ -1.642.77Q13885 $TUBB2A$ -1.552.54C910K6 SRI -1.533.24P04003 $C4BPA$ -1.493.01P02747 $CIQC$ -1.442.26P00326 $ADH1C$ -1.413.00A0A096LPE2 $SAA2-SAA4$ -1.401.59P62857 $RPS28$ -1.391.62P08263 $GSTA1$ -1.371.95Q9BW30 $TPPP3$ -1.371.84Q9H477 $RBKS$ -1.362.45P51857 $AKRID1$ -1.331.59P40394 $ADH7$ -1.292.28P11117 $ACP2$ -1.262.41P06576 $ATP5B$ -1.253.17P43595 $SERPINB10$ -1.181.71Q8WVM8 $SCFD1$ -1.111.49Q01105 SET -1.062.27Q99733 $NAPILA$ -1.062.27Q99733 $NAPILA$ -1.041.62A6NGP5 $HNIL$ -1.041.62A6NGP5 $HNIL$ -1.041.62A6NGP5 $HNIL$ -1.041.62A6NGP5 $HNIL$ -1.041.62A6NGP5 <td< td=""><td></td><td>A0A087WV46</td><td>LAMTOR4</td><td>1.02</td><td>1.50</td></td<>		A0A087WV46	LAMTOR4	1.02	1.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09HC84	MUC5B	1.02	1.10
DMAILDMAILDMAILDMAILP09210GSTA2 -2.28 2.71 A6PVU8TUFTI -2.03 3.17 Q13938CAPS -2.03 2.26 Q96C23GALM -1.64 2.77 Q13885TUBB2A -1.55 2.54 C9J0K6SRI -1.53 3.24 P04003C4BPA -1.49 3.01 P02747C1QC -1.44 2.26 P00326ADH1C -1.41 3.00 A0A096LPE2SAA2-SAA4 -1.40 1.59 P62857RPS28 -1.39 1.62 P08263GSTA1 -1.37 1.84 Q9H477RBKS -1.36 2.45 P11117ACP2 -1.26 2.41 P06576ATP5B -1.25 3.17 P12277CKB -1.23 1.78 P48595SERPINB10 -1.18 1.71 Q8WVM8SCFD1 -1.11 1.49 Q01105SET -1.06 2.27 Q99733NAP1L4 -1.06 2.24 K7EU8KATNAL2 -1.04 2.19 P23141CES1 -1.04 2.19 P23141CES1 -1.04 1.53 Q8TD06AGR3 -1.03 1.60 Q13740ALCAM -1.02 3.20		R14H77	RAC2	1.01	1.01
A6PVU8TUFTI-2.033.17Q13938 $CAPS$ -2.032.26Q96C23 $GALM$ -1.642.77Q13885 $TUBB2A$ -1.552.54C9J0K6 SRI -1.533.24P04003 $C4BPA$ -1.493.01P02747 $CIQC$ -1.442.26P00326 $ADHIC$ -1.413.00A0A096LPE2 $SAA2-SAA4$ -1.401.59P62857 $RPS28$ -1.391.62P08263 $GSTAI$ -1.371.95Q9BW30 $TPPP3$ -1.362.45P51857 $AKIDI$ -1.331.59P40394 $ADH7$ -1.292.28P11117 $ACP2$ -1.262.41P06576 $ATP5B$ -1.253.17P12277 CKB -1.231.78P48595 $SEPINB10$ -1.111.49Q01105 SET -1.062.27Q99733 $NAP1L4$ -1.062.24K7EU8 $KATNAL2$ -1.042.19P23141 $CESI$ -1.041.62A6NGP5 $HNIL$ -1.041.63Q8TD06 $AGR3$ -1.031.60Q13740 $ALCAM$ -1.023.20		P09210	GSTA2	-2.28	2 71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A6PVU8		-2.03	3 17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		013938	CAPS	-2.03	2.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		096C23	GALM	-1.64	2.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		013885	TUBB2A	-1.55	2.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C910K6	SRI	-1.53	3 24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P04003	C4BPA	-1 49	3.01
PO0326ADH1C-1.413.00A0A096LPE2 $SAA2-SAA4$ -1.401.59P62857 $RPS28$ -1.391.62P08263 $GSTA1$ -1.371.95Q9BW30 $TPPP3$ -1.371.84Q9H477 $RBKS$ -1.362.45P51857 $AKRID1$ -1.331.59P40394 $ADH7$ -1.292.28P11117 $ACP2$ -1.262.41P06576 $ATP5B$ -1.253.17P12277 CKB -1.231.78P48595 $SERPINB10$ -1.181.71Q8WVM8 $SCFD1$ -1.111.49Q01105 SET -1.062.27Q99733 $NAP1L4$ -1.062.24K7EIJ8 $KATNAL2$ -1.042.19P23141 $CES1$ -1.041.62A6NGP5 $HNIL$ -1.041.53Q8TD06 $AGR3$ -1.031.60Q13740 $ALCAM$ -1.023.20		P02747	CLOC	-1 44	2.26
A0A096LPE2 $SAA2-SA44$ -1.401.59P62857 $RPS28$ -1.391.62P08263 $GSTA1$ -1.371.95Q9BW30 $TPPP3$ -1.371.84Q9H477 $RBKS$ -1.362.45P51857 $AKRID1$ -1.331.59P40394 $ADH7$ -1.292.28P11117 $ACP2$ -1.262.41P06576 $ATP5B$ -1.253.17P12277 CKB -1.231.78P48595 $SERPINB10$ -1.181.71Q8WVM8 $SCFD1$ -1.111.49Q01105 SET -1.062.27Q99733 $NAP1L4$ -1.062.24K7EIJ8 $KATNAL2$ -1.042.19P23141 $CES1$ -1.041.62A6NGP5 $HNIL$ -1.041.53Q8TD06 $AGR3$ -1.031.60Q13740 $ALCAM$ -1.023.20		P00326	ADHIC	-1 41	3.00
P62857 RPS28 -1.39 1.62 P08263 GSTA1 -1.37 1.95 Q9BW30 TPPP3 -1.37 1.84 Q9H477 RBKS -1.36 2.45 P51857 AKRID1 -1.33 1.59 P40394 ADH7 -1.29 2.28 P11117 ACP2 -1.26 2.41 P06576 ATP5B -1.25 3.17 P12277 CKB -1.23 1.78 P48595 SERPINB10 -1.18 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HNIL -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20 <td></td> <td>A0A096LPF2</td> <td>SAA2-SAA4</td> <td>-1.40</td> <td>1 59</td>		A0A096LPF2	SAA2-SAA4	-1.40	1 59
P08263 GSTA1 -1.37 1.95 Q9BW30 TPPP3 -1.37 1.84 Q9H477 RBKS -1.36 2.45 P51857 AKRID1 -1.33 1.59 P40394 ADH7 -1.29 2.28 P11117 ACP2 -1.26 2.41 P06576 ATP5B -1.25 3.17 P12277 CKB -1.23 1.78 P48595 SERPINB10 -1.18 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HNIL -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		P62857	RPS28	-1 39	1.62
Q9BW30 TPPP3 -1.37 1.84 Q9H477 RBKS -1.36 2.45 P51857 AKRID1 -1.33 1.59 P40394 ADH7 -1.29 2.28 P11117 ACP2 -1.26 2.41 P06576 ATP5B -1.25 3.17 P12277 CKB -1.23 1.78 P48595 SERPINB10 -1.18 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HNIL -1.03 1.60 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		P08263	GSTAL	-1.37	1.02
Q9H477 RBKS -1.36 2.45 P51857 AKRIDI -1.33 1.59 P40394 ADH7 -1.29 2.28 P11117 ACP2 -1.26 2.41 P06576 ATP5B -1.25 3.17 P12277 CKB -1.23 1.78 P48595 SERPINB10 -1.18 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EU8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HNIL -1.03 1.60 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		O9BW30	TPPP3	-1.37	1.95
P51857 AKRIDI -1.33 1.59 P40394 ADH7 -1.29 2.28 P11117 ACP2 -1.26 2.41 P06576 ATP5B -1.25 3.17 P12277 CKB -1.23 1.78 P48595 SERPINBIO -1.18 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HNIL -1.03 1.60 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		09H477	RBKS	-1.36	2 45
P40394 ADH7 -1.35 1.35 P40394 ADH7 -1.29 2.28 P11117 ACP2 -1.26 2.41 P06576 ATP5B -1.25 3.17 P12277 CKB -1.23 1.78 P48595 SERPINB10 -1.18 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HNIL -1.03 1.60 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		P51857	AKRIDI	-1.30	1 59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P/030/		-1.35	2.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P11117	ACP2	-1.25	2.20
P10070 ATF3D -1.23 5.17 P12277 CKB -1.23 1.78 P48595 SERPINB10 -1.18 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HN1L -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		P06576	ATP5R	-1.25	2.41
P48595 SERPINB10 -1.125 1.70 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HN1L -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		P12277	CKB	-1.23	1 78
14333 SERT INDIO -1.16 1.71 Q8WVM8 SCFD1 -1.11 1.49 Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HN1L -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		D18505	SEPDINE 10	-1.25	1.70
Q01105 SET -1.06 2.27 Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HN1L -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		08WVM8	SCEDI	-1.10	1./1
Q99733 NAP1L4 -1.06 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HN1L -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		001105	SCI DI SFT	-1.11	1.49
R77124 -1.00 2.24 K7EIJ8 KATNAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HN1L -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		000722	SEI NADIIA	-1.00	2.21
NTLISC NATIVAL2 -1.04 2.19 P23141 CES1 -1.04 1.62 A6NGP5 HN1L -1.04 1.53 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		K7FII8	ΚΔΤΝΔΙ ?	-1.00	2.24 2.10
A6NGP5 HN1L -1.04 1.02 Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		P73141	CFS1	-1.04 _1.04	1.67
Q8TD06 AGR3 -1.03 1.60 Q13740 ALCAM -1.02 3.20		A6NGP5	HNII	-1.04 -1.04	1.02
Q13740 ALCAM -1.02 3.20		08TD06	AGR3	-1.04	1.55
		013740	ALCAM	-1.02	3.20

	GO Term	- Log(adj. <i>P</i> -value)
IPc group	Cadherin Binding	1.44
DPc group		
0 1	Cholesterol Transfer Activity	2.82
	Sterol Transfer Activity	2.82
	Transition Metal Ion Binding	2.75
	Phosphatidylcholine-Sterol O-acyltransferase Activator Activity	2.75
	Apolipoprotein Receptor Binding	2.75
	Arylesterase Activity	2.75
	Telomeric DNA Binding	2.66
	Heme Binding	2.66
	RNA Binding	2.39
	Copper Ion Binding	2.38
	Endopeptidase Inhibitor Activity	2.38
	Hyaluronic Acid Binding	2.10
	Lipoprotein Particle Receptor Binding	1.56
	Protein Homodimerization Activity	1.46
	Peptidase Inhibitor Activity	1.35

Table 7. GO molecular functions of proteins in IPc and DPc group

Table 8. Differentially expressed proteins with $|\log_2 (\text{fold change})| \ge 1.0$ and *P* value < 0.05 between Non-NP and NP in NABX and ABX, respectively

Accession	Accession number		Log ₂ (Fold change)	- Log (<i>P</i> value)
Non-NP vs. NP in NABX	Q9NYQ8	FAT2	3.87	1.72
	A8MTF8	FAM3B	2.86	2.93
	Q9Y230	RUVBL2	2.74	2.78
	C9JZR7	ACTB	2.52	2.36
	H3BT29	PML	2.22	1.59
	A0A087WVM2	CD177	2.21	2.08
	P15814	IGLL1	2.06	1.46
	A0A075B6R9	IGKV2D-24	1.92	3.51
	Q9GZZ8	LACRT	1.87	2.07
	Q86UN6	AKAP14	1.84	1.55
	P61626	LYZ	1.78	2.08
	A0A096LPK4	MUC5AC	1.75	3.83
	P47897	QARS	1.70	2.86
	P04206	~	1.61	1.60
	P01778		1.61	1.82
	Q96S96	PEBP4	1.59	1.54
	P01708		1.57	2.49
	Q14240-2	EIF4A2	1.53	1.64
	Q92882	OSTF1	1.51	1.42
	Q6UX06	OLFM4	1.50	1.49
	P18065	IGFBP2	1.48	1.62
	Q6P5S2	C6orf58	1.47	1.69
	A0A075B7D0	IGHV1OR15-1	1.44	1.46
	P20827	EFNA1	1.43	1.95
	Q9UBC9	SPRR3	1.43	2.51
	O75884	RBBP9	1.42	1.69
	P15328	FOLR1	1.41	1.56
	Q5T5Y3	CAMSAP1	1.41	1.83
	Q07654	TFF3	1.40	2.04
	Q9HC84	MUC5B	1.40	1.78
	P29401	TKT	1.39	3.01
	Q9Y678	COPG1	1.38	1.97
	A0A087WV46	LAMTOR4	1.37	2.09
	Q8WXI7	MUC16	1.37	1.35
	A0A087WZB2	TYW1B	1.37	1.39
	P49788	RARRES1	1.31	1.41
	Q14204	DYNC1H1	1.31	1.63
	Q86SQ4	GPR126	1.30	1.76
	P00387-3	CYB5R3	1.29	2.30
	J3KNB4	CAMP	1.29	1.34
	D6REX3	SEC31A	1.23	1.91
	P01615		1.21	1.57
	Q9UBG3	CRNN	1.19	1.35
	A0A087WXT3	ZNF33B	1.15	2.52
	P84085	ARF5	1.12	2.36
	Q9BRX2	PELO	1.09	1.32
	P80188	LCN2	1.09	3.69
	P01833	PIGR	1.09	1.89
	P09417	QDPR	1.07	1.34

H0YL18	B2M	1.06	2.24		
A0A075B6S8	IGKV1-5	1.06	5.17		
A0A087X0N5	IGKV1-17	1.06	1.57		
P01621		1.05	3.43		
P78324	SIRPA	1.02	1.55		
P01773		1.00	1.90		
A0A096LPE2	SAA2-SAA4	-2.88	4.51		
B0YIW2	APOC3	-2.44	2.37		
P69905	HRAI	-2.35	1 38		
P69891	HBGI	-2.33	1.50		
P42331-6	ARHGAP25	-2.33	3 52		
F7FT70	CALMI	-2.27	1.56		
P3/031	HSPAII	-2.14	1.30		
G3V2U4	UNC79	-2.13	2.03		
K7EP74	APOCA-APOC2	-2.11	2.03		
D22151	CDH5	-2.00	2.11		
D22801		-2.02	2.01		
F22091 D10229	FROZ	-1.60	2.30		
F 19550	NCL ADOCI	-1.03	2.21		
K/EKI9	APOCI	-1.85	2.33		
C9J0K6	SKI	-1.79	2.38		
0/5636	FCN3	-1.79	2.37		
Q96KN2	CNDP1	-1.75	2.90		
Q99733	NAP1L4	-1.73	4.38		
P02649	APOE	-1.71	2.97		
014/91	APOLI	-1.70	1.80		
P04114	APOB	-1.70	1.47		
Q6UWW0	LCN15	-1.70	1.33		
Q9H477	RBKS	-1.69	2.33		
G3V0E5	TFRC	-1.66	1.71		
P11684	SCGB1A1	-1.65	1.70		
Q6P387	C16orf46	-1.65	2.81		
P27169	PONI	-1.65	3.36		
P02747	ClQC	-1.62	1.71		
P62701	RPS4X	-1.61	3.38		
Q13885	TUBB2A	-1.61	2.80		
H0Y8X4	DNPH1	-1.58	1.46		
E9PIA8	PPT1	-1.58	2.55		
P02652	APOA2	-1.55	3.25		
P23141	CESI	-1.52	1.85		
P02647	APOA1	-1.49	3.25		
P80108	GPLD1	-1.41	1.61		
P62857	RPS28	-1.40	1.78		
Q05BV3	EML5	-1.39	1.90		
Q15056	EIF4H	-1.38	2.85		
G3XAL9	SLC12A2	-1.38	1.64		
P16050	ALOX15	-1.37	1.40		
Q9H4G0-2	EPB41L1	-1.34	2.01		
P52597	HNRNPF	-1.34	2.47		
O96C23	GALM	-1.33	2.14		
P04180	LCAT	-1.32	1.69		
A6NNI4	CD9	-1.30	1.81		
O9UBE0	SAEL	-1.28	1.74		
P02794	FTH1	-1.27	1.64		
O8WVM8	SCFD1	-1.24	1.88		
095445	APOM	-1.23	2.19		
015046	KARS	-1.23	2.53		
P62805	HISTIHAA	-1.23	1 34		
D6R967	ΡΡΔ?	-1 21	2 83		
P05455	SSR	_1 10	2.05		
Δ2Δ274	ACO?	-1.19	1 86		
112112/4	11002	-1.17	1.00		
	01/126	DSG2	_1.18	1.55	
--------	----------------	---------------	-------	------	---
	D06576	D502 ATD5D	-1.18	2.52	
	P00570	ATTJD	-1.15	2.55	
	P1111/	ACP2	-1.15	2.28	
	P04003	C4BPA	-1.15	1.40	
	P01023	A2M	-1.14	2.32	
	A6NGP5	HN1L	-1.14	1.57	
	P09622	DLD	-1.14	1.50	
	Q15257	PPP2R4	-1.13	2.64	
	P00326	ADH1C	-1.12	1.37	
	094760	DDAH1	-1.12	1.76	
	P98160	HSPG2	_1 11	1.68	
	08WZA0		-1.11	2.50	
	QOUIDED		-1.10	2.50	
	Q9H0E9	DRD0	-1.10	2.02	
	000410	IPOS	-1.10	1.56	
	043175	PHGDH	-1.09	1.30	
	P68371	TUBB4B	-1.09	2.65	
	Q15121	PEA15	-1.09	2.37	
	Q96NY7	CLIC6	-1.09	2.05	
	P12277	CKB	-1.08	1.54	
	P22792	CPN2	-1.07	2.11	
	B7WNR0	ALB	-1.07	3.07	
	1301 71	SCPN2	1.07	1.30	
	D00724	SCRV2 F2	-1.07	1.30	
	P00754		-1.07	2.72	
		CIRBP	-1.06	1.42	
	H3BM11	SLC6A2	-1.06	3.32	
	P06727	APOA4	-1.06	2.53	
	Q9H977	WDR54	-1.05	1.76	
	Q9BX68	HINT2	-1.05	1.66	
	Q9NQ48	LZTFL1	-1.04	1.70	
	J3KN67	TPM3	-1.02	1.96	
	O9BW04	SARG	-1.02	1.53	
	003154	ACYI	-1.01	2.18	
	E5GX07	REXO2	-1.01	2.10	
	D07255	ANVA2	-1.01	2.75	
	F07333	ANAAZ	-1.01	2.71	
	C9JF1/	APOD	-1.00	5.05	-
in ABX	Q86UN6	AKAP14	3.39	3.28	
	P33151	CDH5	2.31	2.60	
	Q9UGM5	FETUB	2.28	1.99	
	P20930	FLG	2.08	1.46	
	P13671	<i>C6</i>	2.00	1.42	
	O6UWP8	SBSN	1.89	1.42	
	E9PBS1	PAICS	1.88	2.01	
	A6NI N1	PTRP1	1 76	2.26	
	P04180		1.76	1 44	
	D62262		1.74	1.44	
	0000700		1.71	2.19	
	Q9BZG9		1.00	2.18	
	P00748	F12	1.66	1.53	
	043390	HNRNPR	1.39	1.63	
	P05198	EIF2S1	1.36	1.50	
	E7ETH6	ZNF587B	1.23	1.79	
	P02753	RBP4	1.15	1.73	
	P10643	<i>C</i> 7	1.15	1.33	
	E9PEB5	FUBP1	1.13	1.70	
	P01019	AGT	1.00	1.32	
	09NY08	FAT2	-4 34	1.34	
	E7EVA0	ΜΔΡΛ	_2.86	2.04	
	D51857		-2.00	1.75	
	1 3 1 0 3 /		-2.34	1.40	
	AUAU8 / W W 33	PK221	-2.55	1.33	
	076003	GLRX3	-2.23	1.84	

P48595	SERPINB10	-2.16	2.06
000757	FBP2	-1.78	1.44
P52895	AKR1C2	-1.72	1.70
Q04828	AKR1C1	-1.70	1.75
P17050	NAGA	-1.32	1.70
Q9BRP8	WIBG	-1.14	1.33

Table 9. Differentially expressed proteins with $|\log_2 (\text{fold change})| \ge 1.0$ and *P* value < 0.05 between NABX and ABX in total, Non-NP, and NP, respectively

Accession number		Gene name	Log ₂ (Fold	- Log (P
		Oche name	change)	value)
NABX vs. ABX in total	A0A075B6H9	IGLV4-69	2.14	2.37
	D00742	F10	1.01	2.50
	P00/42	FIU	1.91	3.50
	Q9UN86	G3BP2	1.76	5.91
	P08779	KRIIO	1.68	1.95
	P36222	CHI3LI	1.59	2.26
	P05160	FI3B	1.51	2.14
	E/END6	PROC	1.51	2.26
	Q/Z5R6	APBBIIP	1.49	3.00
	P20930	FLG	1.34	1.47
	Q6P4A8	PLBDI	1.33	1.87
	P11234	RALB	1.29	2.49
	B7ZKW8	RCSD1	1.26	3.30
	B4DUR8	CCT3	1.20	1.58
	H0YLA2	SRP14	1.18	3.36
	B1AKG0	CFHR1	1.16	2.30
	P07948-2	LYN	1.15	1.79
	Q9Y376	CAB39	1.13	1.67
	P80217	IFI35	1.13	1.75
	Q8WXI7	MUC16	1.11	1.35
	P78371	CCT2	1.09	1.48
	P18428	LBP	1.09	1.57
	E9PG40	APP	1.08	1.85
	P29350	PTPN6	1.08	1.59
	C9JB55	TF	1.06	1.35
	Q86YZ3	HRNR	1.03	2.07
	P27361	MAPK3	1.02	1.53
	P13647	KRT5	1.01	2.35
	Q5THJ4	VPS13D	-2.55	2.63
	O14948	TFEC	-2.37	1.89
	O15195	VILL	-2.23	2.56
	F6TR53	HS1BP3	-1.78	3.01
	P47929	LGALS7	-1.70	2.14
	H0YLI6	IDH3A	-1.68	2.96
	A0A087WZW8	IGKV3-11	-1.65	2.85
	P21964	COMT	-1.42	1.87
	P01742		-1.38	2.23
	Q14258	TRIM25	-1.38	1.51
	A0A087WZG4	ARHGEF18	-1.37	1.50
	P01703		-1.33	2.57
	P01778		-1.32	1.52
	P62328	TMSB4X	-1.31	2.25
	P01699		-1.22	1.98
	P63313	TMSB10	-1.20	3.29
	P01772		-1.18	2.71
	P40394	ADH7	-1.17	2.10
	P62857	RPS28	-1.17	1.61
	P01700		-1.17	1.74
	P01763		-1.17	2.51
	F8VXU5	VPS29	-1.14	2.44

	F8VVT9	AGAP2	-1.14	2.46
	H7BZJ3	PDIA3	-1.13	2.55
	P04792	HSPB1	-1.10	2.80
	K7EJC1	PSMD8	-1.10	1.64
	F6WQW2	RANBP1	-1.09	3.44
	O96C23	GALM	-1.09	1.87
	B8ZZO6	PTMA	-1.06	1.70
	P16403	HIST1H1C	-1.05	1.46
	P01876	IGHA1	-1.02	3.70
	095881	TXNDC12	-1.01	4 76
	P06703	S100A6	-1.01	2.32
NABX vs ABX	100700	5100110	1101	2102
in Non-NP	Q9NYQ8	FAT2	4.06	1.31
	A0A087WW55	PRSS1	2.49	1.50
	075976	CPD	2.24	2.45
	F7FND6	PROC	1.75	1 45
	A0A075B6I3	IGLV3-27	1.75	2 39
	B4DUR8	CCT3	1.62	2.37
	E7EVA0	MADA	1.56	1.43
	O16719	WAT 4 KVNII	1.50	2.05
	Q10/19	CDVI	1.52	2.05
	AUA08/WUQ0	GPAI	1.43	1.54
	P01/81	DELO	1.42	2.01
	Q9BRX2	PELO	1.39	1.51
	P12429	ANXA3	1.29	1.33
	Q12765	SCRNI	1.29	1.99
	Q9UHJ6	SHPK	1.27	2.55
	P48739	PITPNB	1.27	1.63
	Q13185	CBX3	1.20	1.86
	P53634	CTSC	1.19	2.94
	B7ZKW8	RCSD1	1.14	1.35
	O00754	MAN2B1	1.11	1.61
	P11279	LAMP1	1.10	1.35
	Q8WW12	PCNP	1.05	1.90
	Q9BVG4	PBDC1	1.00	1.33
	O15195	VILL	-3.65	2.69
	F6TR53	HS1BP3	-2.59	2.82
	K7ER74	APOC4-APOC2	-2.45	1.86
	A0A087WZW8	IGKV3-11	-2.12	2.26
	H0YLI6	IDH3A	-2.01	2.58
	G3V0E5	TFRC	-1.96	1.41
	P16403	<i>HIST1H1C</i>	-1.73	1.75
	P01772		-1.70	2.41
	P01699		-1.68	1.58
	E7EU04	FOLR2	-1.66	2.28
	P63313	TMSB10	-1.66	2.41
	O9BW04	SARG	-1.60	2.09
	P01703	~~~~~	-1.54	1.65
	P01700		-1.52	1.31
	A0A075B6F3	DNAH8	-1.52	2.72
	P62195	PSMC5	-1.52	1.68
	P02652	APOA2	-1.43	1.55
	F272G4	WFDC3	-1 36	1.55
	P01608	,, i DC3	-1 21	1 70
	I3KP15	SRSF7	_1 20	1.70
	D160/0	STMN1	-1.10	2 25
	1 10747 D00066	A C C 1	-1.10	2.33 2.23
	FUU900	ASSI	-1.13	2.22
	PU9382	LGALSI	-1.14	1.85
	AUAU/5B6J9	IGLV2-18	-1.14	1.53
	E/ETH6	ZNF38/B	-1.12	2.30
	P62318	SNRPD3	-1.11	1.37

	A0A087WSY5	CPB2	-1.05	1.71
	P09238	MMP10	-1.05	2.35
NABX vs. ABX in NP	P01775		4.33	1.68
	G3V2U4	UNC79	3.34	2.62
	P33151	CDH5	3.27	4.84
	C9IB55	TF	2.92	3.15
	4040961 PF2	5442-5444	2.92	2 24
	A0A075B6H0	ICLVA 60	2.00	2.24
	D05160	IULV4-09 E12D	2.78	2.00
	P03100		2.38	1.91
	014791	APOLI	2.52	2.00
	B0YIW2	APOC3	2.50	1.68
	Q9UN86	G3BP2	2.44	3.11
	P80108	GPLD1	2.43	2.51
	Q9P265	DIP2B	2.38	4.03
	O75636	FCN3	2.36	3.04
	F8WBL1	L3MBTL2	2.33	1.60
	A0A087WUS7	IGHD	2.32	1.57
	D6RAT0	RPS3A	2.31	1.66
	P62805	HIST1H4A	2.29	1.89
	H0YLA2	SRP14	2.17	3.82
	P20930	FLG	2.14	2.00
	P00742	F10	2.14	1.83
	P0/180		2.05	3.63
	005 BV2	EMI 5	2.03	1.40
	Q03B V 3		2.04	1.49
	P09022	DLD	2.05	1.69
	P2/169	PONI	1.98	3.38
	Q96JB5	CDKSRAP3	1.97	2.43
	P18428	LBP	1.97	1.72
	P31942	HNRNPH3	1.97	1.54
	K7ERI9	APOC1	1.94	1.48
	B1AKG0	CFHR1	1.89	2.15
	P14923	JUP	1.87	1.92
	F8WF14	BCHE	1.82	1.55
	Q9Y570	PPME1	1.80	1.97
	P04839	CYBB	1.79	1.35
	Q9UNH7	SNX6	1.79	2.20
	P02649	APOE	1.78	2.09
	Q6UWP8-2	SBSN	1.73	1.64
	B7ZKW8	RCSD1	1.69	1.75
	P11234	RALB	1.69	1.63
	P41250	GARS	1.68	1.93
	P80217	IF135	1.67	1.55
	OQUCM5		1.67	1 44
	OULDEU OULDEU	CAE1	1.05	1.44
	Q20DE0 06D207	SALI Cl6aul46	1.05	1.30
	Q6P387	C1001740	1.62	1.59
	P13647	KRIS	1.62	2.09
	P35908	KRT2	1.57	1.58
	P19338	NCL	1.56	1.65
	Q8NFL0	B3GNT7	1.55	1.38
	P34913	EPHX2	1.54	2.62
	P00739	HPR	1.53	2.09
	P22792	CPN2	1.51	1.93
	P07305	H1F0	1.50	2.01
	P05154	SERPINA5	1.49	2.60
	P02753	RBP4	1.49	3.94
	097536	PPIAL4A	1.48	1.75
	O9HC10	OTOF	1.40	2 24
	COIVIS	TMFM108	1.47	1 70
	D/2657	A FM	1.40	2.17
	F43032		1.40	2.07
	PU3388	KPLP0	1.40	1.85

Q06033	ITIH3	1.44	2.06
095445	APOM	1.42	1.61
P05546	SERPIND1	1.42	2.56
Q86YZ3	HRNR	1.41	1.38
Q8N1G4	LRRC47	1.38	2.04
O60814	HIST1H2BK	1.37	1.62
F5H5U2	DDX55	1.33	2.89
C9JF17	APOD	1.32	3.05
P15169	CPN1	1.32	2.06
Q9P1F3	ABRACL	1.31	1.74
P01042-2	KNG1	1.31	3.18
P04217-2	AIBG	1.30	2.60
P07358	C8B	1.30	1.59
Q8NC51	SERBP1	1.30	2.59
Q5SSJ5	HP1BP3	1.30	1.62
P55884	EIF3B	1.28	1.90
Q9H0P0-1	NT5C3A	1.26	1.68
P00748	F12	1.26	1.69
Q14624	ITIH4	1.24	2.40
Q9P258	RCC2	1.24	1.70
E9PM52	SIRT3	1.24	1.37
A0A087X232	CIS	1.23	1.80
Q8WW12	PCNP	1.22	1.45
P12429	ANXA3	1.22	1.73
H3BM11	SLC6A2	1.22	2.85
Q12882	DPYD	1.21	1.94
B4DEB1	H3F3A	1.21	1.56
B5MBZ0	EML4	1.20	2.04
P07225	PROS1	1.18	1.90
D6R967	PPA2	1.14	2.23
J3KN67	TPM3	1.13	1.51
Q8WZA0	LZIC	1.13	1.45
P00734	F2	1.12	1.61
P02743	APCS	1.11	2.25
O00487	PSMD14	1.11	1.70
Q8TDW7	FAT3	1.10	1.45
P05114	HMGN1	1.09	1.40
P05198	EIF2S1	1.08	1.40
Q96HC4	PDLIM5	1.07	1.35
A0A087WVQ6	CLTC	1.07	2.02
P55036	PSMD4	1.05	1.46
Q3YEC7	RABL6	1.03	1.39
Q9NYQ8	FAT2	-3.62	1.33
Q5THJ4	VPS13D	-2.95	1.62
H3BT29	PML	-2.35	1.67
A0A087WZB2	TYW1B	-2.35	1.54
P47929	LGALS7	-2.31	1.45
P15814	IGLLI	-2.22	1.72
A0A087WZW8	IGKV3-11	-2.18	1.76
P01778	14174	-2.15	1.94
E7EVA0	MAP4	-2.14	1.73
P01742		-2.10	1.79
P61626	LYZ	-2.10	2.38
P01833	PIGR	-2.08	2.32
P02/88	LTF	-1.99	1.89
P01877	IGHA2	-1.91	2.60
P01876	IGHA1	-1.86	2.41
P01703	ac (==)	-1.85	1.79
Q6P5S2	Coorf58	-1.75	1.42
K7EJC1	PSMD8	-1.69	1.80

O9UBC9	SPRR3	-1.69	1.88	
09UGM3	DMBT1	-1.62	2.02	
P00387-3	CYB5R3	-1.62	2.00	
P06703	S100A6	-1.59	2.28	
P25815	S100P	-1.57	2.47	
Q14566	МСМ6	-1.54	1.60	
Q01469	FABP5	-1.49	2.15	
H0YL18	B2M	-1.49	2.04	
O00757	FBP2	-1.48	2.34	
P25311	AZGP1	-1.47	2.26	
P48594	SERPINB4	-1.44	1.39	
P31949	S100A11	-1.43	2.27	
F8VXU5	VPS29	-1.41	1.72	
P01772		-1.40	1.56	
Q8TAX7	MUC7	-1.39	1.35	
Q9C005	DPY30	-1.38	1.49	
Q92616	GCN1L1	-1.38	1.62	
P18510-2	ILIRN	-1.37	1.74	
F8VVT9	AGAP2	-1.34	1.77	
A0A087WYR4	IGLL5	-1.34	3.19	
P01708		-1.32	1.45	
A0A075B7E8	IGHV3OR16-13	-1.30	1.43	
P01621		-1.30	2.19	
P01591	IGJ	-1.29	2.75	
P23528	CFL1	-1.28	1.69	
A0A075B6R9	IGKV2D-24	-1.27	2.42	
A0A075B6K4	IGLV3-10	-1.27	1.31	
P17931	LGALS3	-1.25	1.92	
P20061	TCN1	-1.25	1.85	
P06733	ENO1	-1.24	1.96	
A0A075B6K9	IGLC2	-1.23	2.22	
O95994	AGR2	-1.22	2.06	
P26447	S100A4	-1.21	2.27	
H7BZJ3	PDIA3	-1.20	1.59	
P01034	CST3	-1.20	1.75	
P17066	HSPA6	-1.16	1.64	
E7ES19	THBS4	-1.16	1.90	
P61960	UFM1	-1.15	1.36	
A0A096LPK4	MUC5AC	-1.14	1.33	
P60709	ACTB	-1.13	1.44	
P80188	LCN2	-1.12	1.80	
P04207		-1.11	1.85	
A0A075B6S8	IGKV1-5	-1.09	2.62	
P01610		-1.07	1.81	
P31947	SFN	-1.05	2.32	
A0A087WYL9	IGKC	-1.03	3.10	
A0A087X1V9	IGKV2-28	-1.02	2.73	
A0A087WV47	IGHG1	-1.01	1.73	

DISCUSSION

To my knowledge, this is the first report on the effects of antibiotics on the microbiome, secreted proteome, and associations between them in CRS using multi-omics. Expectedly, the use of antibiotics could diminish differences in the microbial community and secreted proteome in relation to disease status. Interestingly, I revealed the use of antibiotics might have stronger effects on not only nasal microbiome and secreted proteome, but also associations between them in CRSwNP compared to those in control and CRSsNP subjects. On the other hand, proteomic analysis of the nasal secretions on the filter papers identified approximately three times higher number of proteins than previous studies. The possible reason could be explained by that the filter papers provided a solid protein-stabilizing matrix blocking the cytokine-mediated protein neutralization and protein degradation.^{12, 13}

I speculated that the differential effects of antibiotics in CRSwNP could be caused by impaired barrier function of epithelial cells. The down-regulation of tight junction proteins like occludin-1 and Zo-1 and defective epithelial barrier by IL-4 are common features in CRSwNP.⁶⁵⁻⁶⁷ In this study, proteins, which were significantly increased across control, CRSsNP, and CRSwNP subjects, were associated with cadherin binding (Table 7). The term contains *USO1*, *SEPTIN2*, *SEPTIN7*, *OLFM4*, and *PLEC*. *USO1* is critical for mitotic spindle and plays an important role in apoptosis.⁶⁸ Septins are essential to polarization of epithelial cells.⁶⁹ *OLFM4* and *PLEC* promote epithelial–mesenchymal transition (EMT) process.^{61, 63} In addition, *ACTR3* and *TFF3*, which were significantly up-regulated across control, CRSsNP, and CRSwNP, are known to induce EMT. ^{62, 64} On the other hand, a previous study has suggested a simple quantitative model based on a stability landscape conception.⁷⁰ According to the report, the microbiome are in multiple stable equilibria of landscape, however, sufficiently strong perturbations like antibiotics could alter the microbiome from its normal equilibrium to other states. Because of the impaired epithelial barrier function in CRSwNP, I speculated the perturbations by antibiotics could easily shift the microbiome toward a different equilibrium only in CRSwNP. Furthermore, the perturbations could have stronger effects on associations between microbiome and proteome (Fig. 24).

It remains controversial as to whether the alpha diversity is increased or decreased in CRS patients compared to control.^{6, 9, 19-21, 23-26, 28, 30-32, 71} Generally, these studies excluded patients who had taken antibiotics within approximately one month prior to sampling, although antibiotics are prescribed frequently to patients with CRS.^{17,} ¹⁸ A study had demonstrated gut microbial richness was significantly decreased over approximately 6 months following antibiotic perturbation.⁷² Therefore, differences in alpha diversity between control and CRS subjects should be analyzed by considering the use of antibiotics. In present study, Shannon and Simpson indices were significantly increased across control, CRSsNP and CRSwNP subjects (Fig. 10A). I believe that it is the results from real-world cohorts.

I sought to identify up- or down-regulated proteins in CRSwNP both in the DDA and DIA set. Interestingly, *FTL* and *FTH1* were significantly upregulated in CRSwNP (Fig. 8B) and are known as components of ferritin.⁷³ As ferritin level in serum is a well-known marker of inflammation, it is increased in patients with various inflammatory conditions such as autoimmune diseases.⁷⁴ However, the association between nasal polyps and iron metabolism is unknown and further studies are required. Most of families that were increased in control were aerobes, while most of families that were increased in CRSwNP were anaerobes (Fig. 13A). *Propionibacteriaceae* and *Caulobacteraceae*, which were significantly decreased in CRSwNP, are known as the most common families in healthy nasal mucosa.^{75, 76} *Ruminococcaceae* is significantly decreased in Crohn's disease patients⁷⁷ and it was dominant in control. *Prevotellaceae* was significantly increased across control, CRSsNP, and CRSwNP. The deficiency of NLRP6 inflammasome in murine colonic epithelial cell results in exacerbation of colitis and increase of *Prevotellaceae*.⁷⁸

The IPA analysis revealed that the most significantly increased terms was LXR/RXR activation term in the ABX compared to the NABX group in NP subjects (Fig. 21D). Several studies have reported that Liver X receptor (LXR) activation exerted anti-inflammatory functions by acting as a strong suppressor of pro-inflammatory processes.⁷⁹⁻⁸¹ In addition, it can induce regulatory T cells.⁸² On the other hand, a partial retinoid X receptors (RXR) agonist, CBt-PMN, reduces the production of pro-inflammatory cytokines like *Tnf* and *Il6* in DSS-induced colitis model.⁸³ Also, in a murine model of emphysema, treatment with NEt-4IB, another partial RXR agonist, significantly induces the anti-oxidant activity and suppresses the progression of airway remodeling by inhibiting expression of VEGF.⁸⁴ Moreover, in Fig. 23B, *Actinomycetaceae* significantly decreased in the ABX compared to NABX. It is known as dominant family in nasal lavage of asthma patients.⁸⁵ In addition, *S100A11* and *MUC5AC*, which were significantly decreased in the ABX group, are known to be up-regulated in CRSwNP.^{86, 87} *S100A4* could promote EMT process in CRS ⁸⁸ and its expression is significantly down-regulated

in the ABX group. Based on these reports, I speculated that antibiotics might have beneficial effects to treat CRSwNP.

On the other hand, antibiotics might negatively affect the treatment of CRSwNP. In Fig. 23B, *Streptococcaceae* was significantly decreased in the ABX compared to NABX while its relative abundance is increased in healthy control compared to allergic rhinitis patients.⁸⁹ In addition, *KNG1*, which was significantly up-regulated in the ABX group, shows increased expression in mucus from CRSwNP compared to control.⁹⁰ *PIGR* and *AZGP1* are known to be significantly decreased in CRSwNP compared to control^{91, 92} and their expression was significantly down-regulated in the ABX group. These results help to understand how antibiotics, which are used to relieve symptoms of CRS, affect the treatment of CRS.

There were some limitations in present study. As antibiotics are prescribed frequently to patients with CRS, a relatively small number of subjects who taken antibiotics was included in control than in CRSsNP and CRSwNP. Thus, further studies with similar proportions of subjects who had taken antibiotics are needed. Moreover, to verify the association between nasal microbiome and host responses in relation to the use of antibiotics, a larger sample size will be required.

In conclusion, I identify large number of proteins from nasal secretions on the filter papers compared to previous studies. Using the sampling technique, I reveal the associations between the microbiome and secreted proteome could be altered in relation to the use of antibiotics. In addition, the correlation between them is strengthened in subjects who had taken antibiotics. Especially, antibiotics could have different effects on the association in the non-NP and NP group. I identify the use of antibiotics might have stronger effects on not only nasal microbiome and secreted proteome, but also associations between them in CRSwNP compared to

those in control and CRSsNP subjects. However, it is not clear whether the global changes caused by antibiotics are favorable or unfavorable to treat CRS. I suggest that the use of antibiotics need to be regarded as an essential confounding factor in the microbiome and proteome analysis, especially in CRSwNP patients. These findings allow us to obtain new insight on the nasal environment and host response in CRS.

REFERENCES

1. Fokkens, WJ; Lund, VJ; Mullol, J; Bachert, C; Alobid, I; Baroody, F, et al., EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012;50:1-12.

2. Hirsch, AG; Stewart, WF; Sundaresan, AS; Young, AJ; Kennedy, TL; Scott Greene, J, et al., Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy 2017;72:274-281.

3. Zhang, Y; Gevaert, E; Lou, H; Wang, X; Zhang, L; Bachert, C, et al., Chronic rhinosinusitis in Asia. J Allergy Clin Immunol 2017;140:1230-1239.

4. Tomassen, P; Vandeplas, G; Van Zele, T; Cardell, LO; Arebro, J; Olze, H, et al., Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 2016;137:1449-1456 e4.

5. Divekar, R; Patel, N; Jin, J; Hagan, J; Rank, M; Lal, D, et al., Symptom-Based Clustering in Chronic Rhinosinusitis Relates to History of Aspirin Sensitivity and Postsurgical Outcomes. J Allergy Clin Immunol Pract 2015;3:934-40 e3.

6. Cope, EK; Goldberg, AN; Pletcher, SD; Lynch, SV, Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome 2017;5:53.

7. Liao, B; Liu, JX; Li, ZY; Zhen, Z; Cao, PP; Yao, Y, et al., Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy 2018;73:1459-1469.

8. Klingler, AI; Stevens, WW; Tan, BK; Peters, AT; Poposki, JA; Grammer, LC, et al., Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. Journal of Allergy and Clinical Immunology 2021;147:1306-1317.

9. Biswas, K; Wagner Mackenzie, B; Waldvogel-Thurlow, S; Middleditch, M; Jullig,M; Zoing, M, et al., Differentially Regulated Host Proteins Associated with Chronic Rhinosinusitis Are Correlated with the Sinonasal Microbiome. Front Cell Infect Microbiol

2017;7:504.

10. Wang, BF; Cao, PP; Norton, JE; Poposki, JA; Klingler, AI; Suh, LA, et al., Evidence that oncostatin M synergizes with IL-4 signaling to induce TSLP expression in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2023.

11. Csosz, E; Kallo, G; Markus, B; Deak, E; Csutak, A; Tozser, J, Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness. J Proteomics 2017;153:30-43.

12. Alam, R; Sim, TC; Hilsmeier, K; Grant, JA, Development of a new technique for recovery of cytokines from inflammatory sites in situ. J Immunol Methods 1992;155:25-9.

13. Badorrek, P; Muller, M; Koch, W; Hohlfeld, JM; Krug, N, Specificity and reproducibility of nasal biomarkers in patients with allergic rhinitis after allergen challenge chamber exposure. Ann Allergy Asthma Immunol 2017;118:290-297.

14. Kreitmaier, P; Katsoula, G; Zeggini, E, Insights from multi-omics integration in complex disease primary tissues. Trends Genet 2023;39:46-58.

15. Lee, JWJ; Plichta, D; Hogstrom, L; Borren, NZ; Lau, H; Gregory, SM, et al., Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe 2021;29:1294-1304 e4.

16. Yan, Z; Chen, B; Yang, Y; Yi, X; Wei, M; Ecklu-Mensah, G, et al., Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol 2022;7:1361-1375.

17. Barshak, MB; Durand, ML, The role of infection and antibiotics in chronic rhinosinusitis. Laryngoscope Investig Otolaryngol 2017;2:36-42.

18. Smith, SS; Evans, CT; Tan, BK; Chandra, RK; Smith, SB; Kern, RC, National burden of antibiotic use for adult rhinosinusitis. J Allergy Clin Immunol 2013;132:1230-2.

19. Gan, WG; Yang, FJ; Tang, YP; Zhou, DM; Qing, D; Hu, JJ, et al., The difference in nasal bacterial microbiome diversity between chronic rhinosinusitis patients with polyps and a control population. International Forum of Allergy & Rhinology 2019;9:582-592.

20. Rom, D; Bassiouni, A; Eykman, E; Liu, ZX; Paramasivan, S; Alvarado, R, et al., The Association Between Disease Severity and Microbiome in Chronic Rhinosinusitis. Laryngoscope 2019;129:1265-1273.

21. Mahdavinia, M; Engen, PA; LoSavio, PS; Naqib, A; Khan, RJ; Tobin, MC, et al., The nasal microbiome in patients with chronic rhinosinusitis: Analyzing the effects of atopy and bacterial functional pathways in 111 patients. Journal of Allergy and Clinical Immunology 2018;142:287-290.

22. Biswas, K; Cavubati, R; Gunaratna, S; Hoggard, M; Waldvogel-Thurlow, S; Hong, J, et al., Comparison of Subtyping Approaches and the Underlying Drivers of Microbial Signatures for Chronic Rhinosinusitis. Msphere 2019;4.

23. Paramasivan, S; Bassiouni, A; Shiffer, A; Dillon, MR; Cope, EK; Cooksley, C, et al., The international sinonasal microbiome study: A multicentre, multinational characterization of sinonasal bacterial ecology. Allergy 2020;75:2037-2049.

24. Copeland, E; Leonard, K; Carney, R; Kong, J; Forer, M; Naidoo, Y, et al., Chronic Rhinosinusitis: Potential Role of Microbial Dysbiosis and Recommendations for Sampling Sites. Frontiers in Cellular and Infection Microbiology 2018;8.

25. Chalermwatanachai, T; Vilchez-Vargas, R; Holtappels, G; Lacoere, T; Jauregui, R; Kerckhof, FM, et al., Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota. Scientific Reports 2018;8.

26. Lal, D; Keim, P; Delisle, J; Barker, B; Rank, MA; Chia, N, et al., Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol 2017;7:561-569.

27. Jain, R; Hoggard, M; Biswas, K; Zoing, M; Jiang, YN; Douglas, R, Changes in the bacterial microbiome of patients with chronic rhinosinusitis after endoscopic sinus surgery. International Forum of Allergy & Rhinology 2017;7:7-15.

28. Hoggard, M; Biswas, K; Zoing, M; Mackenzie, BW; Taylor, MW; Douglas, RG, Evidence of microbiota dysbiosis in chronic rhinosinusitis. International Forum of Allergy

& Rhinology 2017;7:230-239.

29. Ramakrishnan, VR; Gitomer, S; Kofonow, JM; Robertson, CE; Frank, DN, Investigation of sinonasal microbiome spatial organization in chronic rhinosinusitis. Int Forum Allergy Rhinol 2017;7:16-23.

30. Biswas, K; Hoggard, M; Jain, R; Taylor, MW; Douglas, RG, The nasal microbiota in health and disease: variation within and between subjects. Frontiers in Microbiology 2015;6.

31. Choi, EB; Hong, SW; Kim, DK; Jeon, SG; Kim, KR; Cho, SH, et al., Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy 2014;69:517-526.

32. Aurora, R; Chatterjee, D; Hentzleman, J; Prasad, G; Sindwani, R; Sanford, T, Contrasting the Microbiomes From Healthy Volunteers and Patients With Chronic Rhinosinusitis. Jama Otolaryngology-Head & Neck Surgery 2013;139:1328-1338.

33. Ramakrishnan, VR; Hauser, LJ; Feazel, LM; Ir, D; Robertson, CE; Frank, DN, Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. Journal of Allergy and Clinical Immunology 2015;136:334-+.

34. Kim, YS; Han, D; Kim, J; Kim, DW; Kim, YM; Mo, JH, et al., In-Depth, Proteomic Analysis of Nasal Secretions from Patients With Chronic Rhinosinusitis and Nasal Polyps. Allergy Asthma Immunol Res 2019;11:691-708.

35. Kim, YS; Han, D; Mo, JH; Kim, YM; Kim, DW; Choi, HG, et al., Antibiotic-Dependent Relationships Between the Nasal Microbiome and Secreted Proteome Nasal Polyps. Allergy Asthma & Immunology Research 2021;13:589-608.

36. Wisniewski, JR; Gaugaz, FZ, Fast and sensitive total protein and Peptide assays for proteomic analysis. Anal Chem 2015;87:4110-6.

37. Han, D; Jin, J; Woo, J; Min, H; Kim, Y, Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation. Proteomics 2014;14:1604-1609.

38. Woo, J; Han, D; Park, J; Kim, SJ; Kim, Y, In-depth characterization of the secretome of mouse CNS cell lines by LC-MS/MS without prefractionation. Proteomics 2015;15:3617-22.

39. Lee, H; Kim, K; Woo, J; Park, J; Kim, H; Lee, KE, et al., Quantitative Proteomic Analysis Identifies AHNAK (Neuroblast Differentiation-associated Protein AHNAK) as a Novel Candidate Biomarker for Bladder Urothelial Carcinoma Diagnosis by Liquid-based Cytology. Molecular & Cellular Proteomics 2018;17:1788-1802.

40. Bruderer, R; Bernhardt, OM; Gandhi, T; Miladinovic, SM; Cheng, LY; Messner, S, et al., Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 2015;14:1400-10.

41. Cox, J; Neuhauser, N; Michalski, A; Scheltema, RA; Olsen, JV; Mann, M, Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 2011;10:1794-805.

42. Ndika, J; Airaksinen, L; Suojalehto, H; Karisola, P; Fyhrquist, N; Puustinen, A, et al., Epithelial proteome profiling suggests the essential role of interferon-inducible proteins in patients with allergic rhinitis. J Allergy Clin Immunol 2017;140:1288-1298.

43. Cox, J; Hein, MY; Luber, CA; Paron, I; Nagaraj, N; Mann, M, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 2014;13:2513-26.

44. Reiter, L; Rinner, O; Picotti, P; Huttenhain, R; Beck, M; Brusniak, MY, et al., mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nature Methods 2011;8:430-U85.

45. Perez-Riverol, Y; Csordas, A; Bai, J; Bernal-Llinares, M; Hewapathirana, S; Kundu, DJ, et al., The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2019;47:D442-D450.

46. Tyanova, S; Temu, T; Sinitcyn, P; Carlson, A; Hein, MY; Geiger, T, et al., The

Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 2016;13:731-40.

47. Deeb, SJ; Tyanova, S; Hummel, M; Schmidt-Supprian, M; Cox, J; Mann, M, Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles. Mol Cell Proteomics 2015;14:2947-60.

48. Kuleshov, MV; Jones, MR; Rouillard, AD; Fernandez, NF; Duan, Q; Wang, Z, et al., Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44:W90-7.

49. Caporaso, JG; Kuczynski, J; Stombaugh, J; Bittinger, K; Bushman, FD; Costello, EK, et al., QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6.

50. Segata, N; Izard, J; Waldron, L; Gevers, D; Miropolsky, L; Garrett, WS, et al., Metagenomic biomarker discovery and explanation. Genome Biol 2011;12:R60.

51. Xu, ZY; Xu, GJ; Pan, W; Neuroimaging, AD, Adaptive testing for association between two random vectors in moderate to high dimensions. Genetic Epidemiology 2017;41:599-609.

52. Kim, MS; Pinto, SM; Getnet, D; Nirujogi, RS; Manda, SS; Chaerkady, R, et al., A draft map of the human proteome. Nature 2014;509:575-81.

53. Hu, A; Noble, WS; Wolf-Yadlin, A, Technical advances in proteomics: new developments in data-independent acquisition. F1000Res 2016;5.

54. Doerr, A, DIA mass spectrometry. Nature Methods 2015;12:35-35.

55. Guo, J; Huan, T, Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Analytical Chemistry 2020;92:8072-8080.

56. Mortstedt, H; Ali, N; Karedal, M; Jacobsson, H; Rietz, E; Diab, KK, et al., Targeted proteomic analyses of nasal lavage fluid in persulfate-challenged hairdressers with bleaching powder-associated rhinitis. J Proteome Res 2015;14:860-73.

57. Tomazic, PV; Birner-Gruenberger, R; Leitner, A; Spoerk, S; Lang-Loidolt, D, Seasonal proteome changes of nasal mucus reflect perennial inflammatory response and reduced defence mechanisms and plasticity in allergic rhinitis. J Proteomics 2016;133:153-160.

58. Tomazic, PV; Birner-Gruenberger, R; Leitner, A; Obrist, B; Spoerk, S; Lang-Loidolt, D, Nasal mucus proteomic changes reflect altered immune responses and epithelial permeability in patients with allergic rhinitis. J Allergy Clin Immunol 2014;133:741-50.

59. Kumpitsch, C; Koskinen, K; Schopf, V; Moissl-Eichinger, C, The microbiome of the upper respiratory tract in health and disease. BMC Biol 2019;17:87.

60. Kim, MR; Hong, SW; Choi, EB; Lee, WH; Kim, YS; Jeon, SG, et al., Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy 2012;67:1271-81.

61. Xu, R; He, S; Ma, D; Liang, R; Luo, Q; Song, G, Plectin Downregulation Inhibits Migration and Suppresses Epithelial Mesenchymal Transformation of Hepatocellular Carcinoma Cells via ERK1/2 Signaling. Int J Mol Sci 2022;24.

62. Hu, H; Zhang, S; Xiong, S; Hu, B; He, Y; Gu, Y, ACTR3 promotes cell migration and invasion by inducing epithelial mesenchymal transition in pancreatic ductal adenocarcinoma. J Gastrointest Oncol 2021;12:2325-2333.

63. Gao, XZ; Wang, GN; Zhao, WG; Han, J; Diao, CY; Wang, XH, et al., Blocking OLFM4/HIF-1alpha axis alleviates hypoxia-induced invasion, epithelial-mesenchymal transition, and chemotherapy resistance in non-small-cell lung cancer. J Cell Physiol 2019;234:15035-15043.

64. Yusufu, A; Shayimu, P; Tuerdi, R; Fang, C; Wang, F; Wang, H, TFF3 and TFF1 expression levels are elevated in colorectal cancer and promote the malignant behavior of colon cancer by activating the EMT process. Int J Oncol 2019;55:789-804.

65. Wise, SK; Laury, AM; Katz, EH; Den Beste, KA; Parkos, CA; Nusrat, A, Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb

intercellular junction protein expression. Int Forum Allergy Rhinol 2014;4:361-70.

66. Soyka, MB; Wawrzyniak, P; Eiwegger, T; Holzmann, D; Treis, A; Wanke, K, et al., Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol 2012;130:1087-1096 e10.

67. Khalmuratova, R; Park, JW; Shin, HW, Immune Cell Responses and Mucosal Barrier Disruptions in Chronic Rhinosinusitis. Immune Netw 2017;17:60-67.

68. Radulescu, AE; Mukherjee, S; Shields, D, The Golgi protein p115 associates with gamma-tubulin and plays a role in Golgi structure and mitosis progression. J Biol Chem 2011;286:21915-26.

69. Wang, X; Wang, W; Wang, X; Wang, M; Zhu, L; Garba, F, et al., The septin complex links the catenin complex to the actin cytoskeleton for establishing epithelial cell polarity. J Mol Cell Biol 2021;13:395-408.

70. Shaw, LP; Bassam, H; Barnes, CP; Walker, AS; Klein, N; Balloux, F, Modelling microbiome recovery after antibiotics using a stability landscape framework. ISME J 2019;13:1845-1856.

71. Koeller, K; Herlemann, DPR; Schuldt, T; Ovari, A; Guder, E; Podbielski, A, et al., Microbiome and Culture Based Analysis of Chronic Rhinosinusitis Compared to Healthy Sinus Mucosa. Front Microbiol 2018;9:643.

72. Palleja, A; Mikkelsen, KH; Forslund, SK; Kashani, A; Allin, KH; Nielsen, T, et al., Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 2018;3:1255-1265.

73. Arosio, P; Ingrassia, R; Cavadini, P, Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 2009;1790:589-99.

74. Zandman-Goddard, G; Shoenfeld, Y, Ferritin in autoimmune diseases. Autoimmun Rev 2007;6:457-63.

75. Bassis, CM; Tang, AL; Young, VB; Pynnonen, MA, The nasal cavity microbiota of healthy adults. Microbiome 2014;2.

76. Zhang, X; Dong, K; Kang, Z; Ji, X; Ning, X; Ma, Q, et al., Characteristics and associations of microbial community in the eye, anterior nares, and oropharynx of healthy adults: eye-nose microbiota transmission. Am J Transl Res 2023;15:2241-2255.

77. Morgan, XC; Tickle, TL; Sokol, H; Gevers, D; Devaney, KL; Ward, DV, et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012;13:R79.

78. Elinav, E; Strowig, T; Kau, AL; Henao-Mejia, J; Thaiss, CA; Booth, CJ, et al., NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011;145:745-57.

Jakobsson, T; Vedin, LL; Hassan, T; Venteclef, N; Greco, D; D'Amato, M, et al.,
The oxysterol receptor LXRbeta protects against DSS- and TNBS-induced colitis in mice.
Mucosal Immunol 2014;7:1416-28.

Thomas, DG; Doran, AC; Fotakis, P; Westerterp, M; Antonson, P; Jiang, H, et al.,
 LXR Suppresses Inflammatory Gene Expression and Neutrophil Migration through cis Repression and Cholesterol Efflux. Cell Reports 2018;25:3774-+.

81. Higham, A; Lea, S; Plumb, J; Maschera, B; Simpson, K; Ray, D, et al., The role of the liver X receptor in chronic obstructive pulmonary disease. Respir Res 2013;14:106.

82. Herold, M; Breuer, J; Hucke, S; Knolle, P; Schwab, N; Wiendl, H, et al., Liver X receptor activation promotes differentiation of regulatory T cells. PLoS One 2017;12:e0184985.

83. Onuki, M; Watanabe, M; Ishihara, N; Suzuki, K; Takizawa, K; Hirota, M, et al., A partial agonist for retinoid X receptor mitigates experimental colitis. Int Immunol 2019;31:251-262.

84. Morichika, D; Miyahara, N; Fujii, U; Taniguchi, A; Oda, N; Senoo, S, et al., A retinoid X receptor partial agonist attenuates pulmonary emphysema and airway inflammation. Respir Res 2019;20:2.

85. Chen, MP; He, SY; Miles, P; Li, CL; Ge, YJ; Yu, XC, et al., Nasal Bacterial

Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Frontiers in Cellular and Infection Microbiology 2022;12.

86. Liu, C; Du, H; Wang, Y; Gong, N; Qi, W; Zhou, X, et al., S100A11 regulates nasal epithelial cell remodeling and inflammation in CRSwNPs via the RAGE-mediated AMPK-STAT3 pathway. Mol Immunol 2021;140:35-46.

87. Zhang, Y; Derycke, L; Holtappels, G; Wang, XD; Zhang, L; Bachert, C, et al., Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy 2019;74:131-140.

88. Gong, N; Shi, L; Bing, X; Li, H; Hu, H; Zhang, P, et al., S100A4/TCF Complex Transcription Regulation Drives Epithelial-Mesenchymal Transition in Chronic Sinusitis Through Wnt/GSK-3beta/beta-Catenin Signaling. Front Immunol 2022;13:835888.

89. Chiang, TY; Yang, YR; Zhuo, MY; Yang, F; Zhang, YF; Fu, CH, et al., Microbiome profiling of nasal extracellular vesicles in patients with allergic rhinitis. World Allergy Organ J 2022;15:100674.

90. Kao, SS; Bassiouni, A; Ramezanpour, M; Finnie, J; Chegeni, N; Colella, AD, et al., Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. J Allergy Clin Immunol 2021;147:168-178.

91. Hulse, KE; Norton, JE; Suh, L; Zhong, Q; Mahdavinia, M; Simon, P, et al., Chronic rhinosinusitis with nasal polyps is characterized by B-cell inflammation and EBVinduced protein 2 expression. Journal of Allergy and Clinical Immunology 2013;131:1075-+.

92. Wang, M; Tang, S; Yang, X; Xie, X; Luo, Y; He, S, et al., Identification of key genes and pathways in chronic rhinosinusitis with nasal polyps and asthma comorbidity using bioinformatics approaches. Front Immunol 2022;13:941547.

국문 초록

만성 비부비동염(CRS)은 비강 내에 12주 이상 지속되는 염증질환으로 동서양을 막론하고 가장 빈번히 발생하는 상기도 질환이다. 이 질환은 이질성이 높아, 연구자들은 cytokine, 증상과 미생물의 구성 등의 여러 측면에서 endotype을 밝히고자 하였다.

endotype을 연구하기 위한 비강 샘플은 대부분 biopsy, lavages, swabs, scraping 등의 방법으로 얻었다. 하지만 lavages, swabs와 같이 비침습적 방법으로 얻은 비강 샘플에서는 소변이나 타액 등 다른 비침습 적 방식으로 얻은 샘플들에 비해 적은 수의 단백질만을 얻을 수 있었다. 그래서 이 논문에서는 단백질이 쉽게 흡착되고 보존될 수 있는 filter papers를 이용하여 비침습적 방법으로 상대적으로 많은 수의 비강 단백 질을 얻고자 하였다.

항생제가 CRS의 증상을 완화시키는데 효과가 있는지는 논란의 여지 가 있지만 환자들에게 빈번히 처방이 되고 있다. 하지만 기존의 대부분 의 CRS 연구에서는 환자의 항생제 복용 이력은 고려되지 않았다. 그렇 기 때문에 현재까지 항생제가 비장 내 미생물과 상피세포에 어떠한 영향 을 미치는지 밝혀진 바가 없다.

본 연구는 29명의 질환이 없는 대조군, 30명의 폴립을 동반하지 않은 만성 비부비동염 환자 (CRSsNP) 그리고 40명의 폴립을 동반한 만성 비 부비동염 환자 (CRSwNP)를 대상으로 진행되었다. 이 연구를 통해 비강

내 미생물과 분비된 단백질의 연관성이 질환의 상태에 따라 달라질 수 있음을 확인하였다. 더 나아가서 항생제 복용 여부에 따라 미생물과 분 비된 단백질의 연관성도 달라짐을 확인하였다. 흥미롭게도 항생제 복용 여부의 영향은 NP (nasal polyps; CRSwNP) 환자와 Non-NP (대조군과 CRSsNP) 그룹에서 다르게 나타났다. Non-NP 그룹에 비해, 항생제는 NP 그룹의 미생물과 분비된 단백질 그리고 그 둘의 상관관계에 더 크게 작용했다. 여전히 항생제가 CRS의 증상 완화에 도움이 되는지는 명확히 알지 못하지만 앞으로 CRS에서의 미생물과 단백질 연구에서 항생제 복 용 여부를 중요한 교란 변수로 여겨야 함을 보여주었다. 따라서 본 연구 는 CRS에서 비강 내 환경과 host의 반응의 연관성을 통해 질환의 이해 를 높이고자 하였으며 항생제가 미생물과 host에 미치는 영향에 대한 새로운 관점을 제시하였다.

주요어: 비부비동염, 비용종, 단백체학, 군유전체학, 항생제 *학법: 2017-26948*