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Abstract

Background: There have been many attempts to predict the weight-
bearing line (WBL) ratio using plain knee radiographs. Using a
convolutional neural network (CNN), we focused on
WBL ratio quantitatively.

Methods: From March 2003 to December 2021, 2410 patients with
4790 knee AP radiographs were randomly selected using stratified
random sampling. Our dataset was cropped by four points annotated
by a specialist with a 10-pixel margin. The model predicted our
interest points, which were both plateau points, i.e., starting WBL
point and exit WBL point. The resulting value of the model was
analyzed in two ways: pixel units and WBL error values.

Results: The mean accuracy (MA) was increased from around 0.5
using a 2-pixel unit to around 0.8 using 6 pixels in both the
validation and the test sets. When the tibial plateau length was
taken as 100%, the MA was increased from approximately 0.1,
using 1%, to approximately 0.5, using 5% in both the validation and
the test sets.

Conclusions: The DL-based key-point detection algorithm for
predicting lower limb alignment through labeling using plain knee

AP radiographs demonstrated comparable accuracy to that of the
direct measurement using whole leg radiographs. Using this
algorithm, the WBL ratio prediction with plain knee AP radiographs
could be useful to diagnose lower limb alignment in osteoarthritis

patients in primary care.

Keyword : knee; weight-bearing line; machine learning;
convolutional neural network; prediction
Student Number : 2018-24084
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Chapter 1. Introduction

1.1. Study Background

Osteoarthritis (OA) is the most common form of arthritis,
affecting millions of people worldwide [1]. It occurs when the

~ 1 ~

protective cartilage that cushions the ends of the bones wears do

wn
[2]. Therefore, weight-bearing joints, such as the knee joint, are
more vulnerable. The medial compartment of the knee joint is the
most commonly affected site in OA, and the medial joint space
narrows as OA progresses. This induces varus deformity of the
lower limb. Consequently, the adduction moment, which is the
magnitude of the ground reaction force, moves medially from the
center of the knee joint during ambulation, and the moment arm of
the ground reaction force increases [3]. In this manner, the varus
deformity enters a vicious cycle. Therefore, it is important to
intervene through treatment before such vicious cycle develops
[4,5].

The evaluation of the weighl-bearing axis of the lower limb is a
fundamental step in the identification, classification, and treatment
of lower limb deformities, which may result from degeneration,
trauma, inflammation, or congenital diseases. When deciding
between treatment options, such as conservative treatment,
osteotomy, and arthroplasty, the weight-bearing axis should be
considered in addition to the patient’ s basic demographics [6].
Several methods assess the weight-bearing axis of the lower limbs.
Techniques to determine the hip-knee-ankle angle, mechanical axis,
and weight-bearing line (WBL) ratio are commonly used methods
[7,8]. These parameters are usually measured on whole leg
radiographs (WLR) and in institutions, such as large hospitals or
community clinics [9]. Therefore, they may not be readily
available because of the high costs involved. Moreover, primary
physicians may face difficulties in identifying such deformities, and
several attempts have been made to predict the WBL ratio using

1



plain standing knee radiographs

The application of artificial intelligence in medicine has gained
popularity in recent years because of its ability to improve the
efficiency of healthcare delivery and patient diagnosis. Karnuta et
al. used machine learning to identify knee arthroplasty implants
from X-rays [11]. In addition, Joseph et al. employed machine
learning to forecast the development of osteoarthritis over 8 years
using combined MR imaging features, demographics, and clinical
factors as input [12]. Convolutional neural networks (CNNs) are a
subtype of deep learning (DL) that have shown impressive
outcomes in image classification and recognition [13,14]. A CNN
was used in a previous study that predicted the WBL ratio as a
parameter for lower limb alignment in plain knee radiographs [15].
However, a limitation of this study was that the prediction was only
possible within intervals. Therefore, a quantitative assessment that
can predict the WBL ratio and translate it to an accurate point on

the tibial plateau may be more intuitive for clinical use.

1.2. Purpose of Research

This study aimed to develop a DL algorithm to predict the point
at which the weight bearing axis of the lower limb crosses the tibial
plateau. The hypothesis of this study was that the WBL ratio
obtained from weight-bearing WLR could be predicted by a specially
designed DL model using standing plain knee anteroposterior (AP)

radiographs with high predictive value.



Chapter 2. Body

2.1. Materials and Methods

With the assumption that standing plain knee radiographs are a
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most appropriate and accurate model to predict the WBL ratio after
learning the WBL ratio was designed using plain knee radiographs.
This was based on the key-point detection model [16,17]. The key-
point detection model involves locating the key object parts that
represent the underlying object in a feature-rich manner. After
directly labeling the WLR picture according to how we draw the
WBL in a real clinical situation, we cut it into a plain knee
radiograph picture and trained the DL model. Subsequently, the
accuracy of the learned DL algorithm for measuring the WBL ratio
was investigated. For the analysis of the accuracy of the DL model,
its mean absolute error (MAE) and intra-class correlation
coefficients (ICC) were evaluated. In addition, the accuracy values
of the DL model were compared with the ICCs of the rater, using
real measurements of the WBL ratio in WLR to check whether the
DL algorithm was reliable as the measurements of the rater. All
procedures involving human participants were performed following
the ethical standards of the institutional review board (IRB No. B-
2210-784-101) and the Helsinki Declaration (1964) and its later
amendments. Consent was not sought because this study
retrospectively reviewed the medical record image data of patients
who underwent X-ray examination at our hospital, and personal
identification information was not included in the data analysis
process. Therefore, it was difficult to evaluate if the risk for the
patients included in this study was increased compared to that of

other patients. There is no reason to presume the refusal of consent.
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2.1.1 Data Set

From March 2003 to December 2021, 89,709 patients with
knee pain and standing knee AP radiographs were obtained from the
clinical database of our hospital. Among them, 3515 patients (3.9%
of standing knee AP acquisition) who underwent weight-bearing
WLR were included. The exclusion criteria were as follows:
with remaining growth plates; and (3) patients with deformity due
to previous trauma or congenital diseases. After excluding patients
who met the exclusion criteria, finally, AP radiographs of 4790
knees in 2410 patients were randomly selected using stratified
random sampling. To avoid the cluster effect between multiple
radiographs in a single patient, only the initial knee AP radiograph

was used.

2.1.2 WBL Ratio Measurement and Labeling

Our dataset was created by one orthopedic surgeon with five
yvears of experience, and the data were cropped by four points
annotated (tibial plateau at both ends, WBL starting and exit points)
with a 10-pixel margin. Although four points varied on the cropped
data, and the data size was variable, the data were resized
uniformly in the training phase. Therefore, our model was invariant
in relation to the image size to some degree. The model’ s
robustness of the data size was evaluated with various random
margins of 5 to 10 pixels. This experiment showed that the WBL
ratio did not affect the data size, and our model predicted the
line’ s tendency. This revealed that even if the users crop the
image data abnormally, the model’ s prediction result will not
decline.

The WBL ratio was measured using the weight-bearing WLR of
all 4790 lower limbs in 2410 patients for labeling the training set
and analysis of prediction accuracy in the validation and test sets.

The WBL was drawn from the center of the femoral head to the



center of the superior articular surface of the talus. The WBL ratio
was calculated as the ratio of the crossing point of the mechanical

axis, from the medial edge to the entire width of the tibial plateau. .

2.1.3 Image Processing
A

object. The PyDicom library (version 1.3.0) was used for the
preprocessing of DICOM images. The right or left knee was
cropped in a knee radiograph that included both knees. Strong
augmentation, such as sheer, distortion, and high rate of random
brightness, contrast, equalization, and hue saturation for

robustness, was used to improve the performance of the algorithm.

2.1.4 DL Algorithm

The DL algorithm consists of two stages. In the first stage,
key-points heat maps were predicted using the WBL prediction
model. Our WBL prediction model is similar to conventional pose
estimation, which predicts some key—points through heat maps and
1s composed of a feature extractor and a simple convolutional
decoder. The model predicts our points of interest, which are both
plateau points, i.e., the starting WBL point and the exit WBL point.
Using the logits calculated from the model, we trained our model in
an end-to—end manner with the Adam W optimizer and binary cross
entropy loss. The other setting was similar to that of the
conventional DL . In the second stage, the WBL ratio was calculated
using the four predicted points. Two lines from four points were
drawn to determine the intersection of the two lines and calculate
the WBL ratio (Figure 1).



2.1.5 Experiment

In the experiment, our model for 10,000 iterations using Adam
W with 81 =0.9, £2=0.999 was trained; learning rate = 1 X103,
weight decay = 1 X1072, cosine decaying scheduler, and binary
cross entropy loss. In the training phase, the cropped image data

were transformed using random brightness, contrast, equalization,

and hiie catiiratinon for rohiictneace Oinr model wag on four 2080 +1
aliu 11uc vvdatltulr dauviuvull 1u1 1 UiJuoLiiv oo /Ul S SAVAU LSS yvwao uUll 1uul [SAVAWAV) Ll
GPU with an 8-batch size per GPU. The resulting value of the

model was analyzed in two ways: WBL error values and pixel units.
When analyzing the results with the WBL error value, a value of 1
was assigned if the DL prediction value was within each error value
of the tibial plateau, and a value of O was assigned otherwise.
When analyzing the results in pixel units, the accuracy was
calculated by assigning a value of 1 if the DL prediction was
received in each pixel unit, and a value of O otherwise. The
algorithm was first trained by making as many landmarks as
possible, i.e., 27 dots, around the knee joint. According to the
traditional WBL calculation method, radiological landmarks that can
symbolize the bony anatomy of both femur and tibia were used, so
there were 27 of them, as follows. The starting point and exit point
of the WBL line, both endpoints of the femur cortex in X-ray
images, both endpoints of the tibia cortex in X-ray images, both
endpoints of femur and tibia at the tibiofemoral joint—-the most
distant points medial and lateral from femur and tibia and
transepicondyle points at the tibiofemoral joint—trochlear notch
center—-midpoint of both tibial spines and tibial spines, intersection
of tibia and fibula, inflection points at femur and tibia. The marking
was reduced by identifying the most appropriate dots that showed

the best performance (Figure 1).



Test set

Model building and Validation set

Validation set (to
optimize hyper-

parameters)
Deployed
— | Deep Learning (HRNET algorithm) | — Prediction
model

‘Predicted outcome’

Figure 1. Pipeline of the study. Annotations: labeled image.

Training set: The data sample used to fit the model, Validation set: The data sample used to
provide an unbiased evaluation of a model fit on the training dataset while tuning model
hyperparameters. Test set: The data sample used to provide an unbiased evaluation of a

final model fit on the training dataset.

2.1.6 Statistical Anaylsis

Data are presented as means and standard deviations for
continuous variables. One way analysis of variance was performed
to compare the quantitative variables (i.e., age, body mass index
(BMI), and WBL ratio). Pearson’ s chi-squared test or Fisher’ s
exact test was used to compare the qualitative variables (i.e.,
gender). Statistical significance was set at p < 0.05. The data were
analyzed using SPSS 25.0 (IBM, Armonk, NY, USA). To examine
the reproducibility of the calculation of the WBL ratio using WLR,

7
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two observers were chosen: A, an orthopedic surgeon with 5 years
of experience; B. an orthopedic surgeon with 20 years of
experience. Independent measurements obtained by each of the
two raters for each data set (raters A, B) and two independent
measurements (Al and A2) obtained by a rater A for each data set
at a different time were compared. The mean difference between
evaluated. The inter— and intra-observer reliabilities of the
measurements were analyzed using ICC, with ICC < 0.40 indicating
poor agreement, in the range 0.40-0.75 indicating fair to good
(moderate) agreement, and in the range 0.76-1.00 indicating
excellent agreement. MAE was used as a measure to determine
how well the CNN fit the WBL ratio [13-15]. MAE is a measure
that indicate the difference between the actual labeled WBL ratio by
A (AL) using WLR and the WBL ratio predicted by the CNN using

plain knee radiographs, MAE=11VZ,.Z1 l;,y,J , with ;1 : estimated WBL
ratio of ith data, y; : ground-truth WBL ratio of ith data [16].

2.2. Results

The baseline characteristics of the patients and the distribution
of the labels in the training, validation, and test sets are
summarized in Table 1. Age, sex, BMI, and WBL ratio were not
significantly different between the datasets. The performance was
improved through simple labeling that marked both ends of the tibia
and the starting and exit points of the WBL line. Four points
indicated the best performance among the trials. A comparison of
the WBL mean accuracy at 4 and 27 points is shown in Figure 2. As
the threshold of the WBL error percentage value increased, the
accuracy of taking four points approached 0.6, whereas when 27
points were taken, a steady state was reached with an accuracy not

exceeding 0.1. These results were also similarly obtained in the
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pixel unit, and as the threshold increased, the accuracy when
taking four points was close to 0.8 in 6 pixels, while that achieved
when taking 27 points was approximately 0.2 in 6 pixels. A
representative example of a patient” s difference between the
predicted and the correct points on an X-ray image is shown in
Figure 3. The differences between the actual measured WBL ratio
and the WBL ratio predicted by the CNN in this patient were 0.03

Table 1. Baseline characteristics of dataset

Training set Validation set Test set Total P—value

Age (year) 65.1 £ 9.31 65.0 £ 9.42 65.4 £ 9.27 65.2 £12.2 0.521
Gender (M/F) 391/1928 46/241 49/241 486/2410 0.215
BMI (kg/m?) 25.7 £ 3.22 25.8 £ 2,51 25.3 £ 2.37 25.7 £ 3.21 0.333

WBL ratio 0.33 £ 0.17 0.31 £ 0.15 0.32 £ 0.12 0.32 £ 0.15 0.087

Values are presented as number or mean £ standard deviation. M, men: F, female; BMI, body
mass index; WBL, weight—bearing line; Training set, The sample of data used to fit the model;
Validation set, The sample of data used to provide an unbiased evaluation of a model fit on

the training dataset while tuning model hyper—parameters; Test set, The sample of data used

to provide an unbiased evaluation of a final model fit on the training dataset

The prediction of the algorithm implemented by learning is
shown in Table 2 using units of pixels and WBL error values. The
mean accuracy (MA) was increased from around 0.5 using a 2-
pixel unit to around 0.8 using 6 pixels in both the validation and the
test sets. The probability of the prediction and target values
entering within 6 pixels was close to 0.8. When the tibial plateau
length was taken as 100%, the MA was increased from
approximately 0.1, using 1%, to approximately 0.5, using 5%, in
both the validation and the test sets. The probability of obtaining a
value within 5% exceeded 0.5.

The mean difference, ICC, and MAE value are shown in Table
3. The mean difference of the validation and test sets between
intra—observer and inter-observer measurements of the WBL ratio
using a WLR ranged from 0.023 to 0.036. The MAE of the
validation and test sets, with the DL model measuring the WLB

9



ratio using plain knee radiographs were 0.064 (95% CI,
0.057-0.071) and 0.051 (95% CI, 0.044-0.058), respectively.
The ICCs of the validation and test sets were all over 0.8, which
indicated excellent agreement. The distributions of the WBL
predictions in the validation and test sets are shown in Figure 4.
The distribution of the DL model showed less difference in the high
where the WBL ratio was between 0.25 and 0.50.

incidence area,
However, higher differences in the section that showed a lower
incidence of the WBL ratio were noted. These values were similar
for both the validation and the test sets. The MA of the WBL ratio
for the validation and test sets is shown in Figure 5. As the
thresholds of the WBL error percentage value and pixel units
increased, the accuracy increased in both the validation and the test
sets. The accuracy increased from around 0.1 to 0.5 with the
increase in the WBL error percentage value thresholds, and from

around 0.5 to 0.8 with the increase in the pixel threshold.

A. WBL Mean Accuracy B. Pixel Mean Accuracy
-W- 4 points -u 084 —m- 4 points -
s _emh ) B9 -E-dpoins -
044 ~¥- 27points - =-¥- 27points  _ ___-=="7
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0.03 0.05

WBL Error percentage value

SR

4
Pixel Threshold

Figure 2. Comparison of WBL mean accuracy in 4 and 27 points.

(A) Comparison graph of 4 and 27 points in WBL error percentage. (B) Comparison graph of

4 and 27 points in pixel threshold, Validation set: The data sample used to provide an

unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters.

Test set: The data sample used to provide an unbiased evaluation of a final model fit on the

training dataset.
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Figure 3. Prediction and correct point.

A. Prediction point

B. Correct point C. Prediction point

D. Correct point

(A, B, C, D) Prediction point vs correct point, (A) Prediction point in Rt knee, (B) Correct
point in Rt knee. (C) Prediction point in Lt knee. (D) Correct point in Lt knee. Prediction

point: point in which deep learning algorithm is predicted, Correct point: labeled point.

Table 2. Results for prediction of deep learning algorithm

Validation set

Pixel 2 pixels 4 pixels 6 pixels
MA 0.51+0.07 0.71 £0.06 0.80+0.08
WEV 1% 2% 3% 4% 5%
MA 0.08 + 0.04 0.20 + 0.05 0.30+ 0.06 0.38+ 0.07 0.45+ 0.07
Test set
Pixel 2 pixels 4 pixels 6 pixels
MA 0.52+0.06 0.73 £ 0.06 0.84 +0.04
WEV 1% 2% 3% 4% 5%
MA 0.10 £ 0.05 0.22 +0.07 0.37 £ 0.09 0.46 £ 0.11 0.53£0.11

Values are presented as number or mean + standard deviation. MA, Mean accuracy; WEV,
WBL Error value; Validation set, The sample of data used to provide an unbiased evaluation

of a model fit on the training dataset while tuning model hyper-parameters; Test set, The

sample of data used to provide an unbiased evaluation of a final model fit on the training

dataset.
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Table 3. Mean difference and mean absolute error and ICC in validation and test sets

Validation set Mean difference ICC
Al and A2 0.023 +0.005 0.96 = 0.02
Al and B 0.034 + 0.003 0.94 £ 0.05
Test set Mean difference ICC
Al and A2 0.024 £ 0.006 0.97 £0.03
Aland B 0.036+0.004 0.95+0.05
Validation set Mean absolute error iCC
AL and DL 0.064 = 0.007 0.89 = 0.09
Valiidation set Mean absoiute error iCC
AL and DL 0.051+0.007 0.88 +0.08

Values are presented as number or mean £ standard deviation. ICC, Intra—class correlation
coefficients; Validation set, The sample of data used to provide an unbiased evaluation of a
model fit on the training dataset while tuning model hyper—parameters; Test set, The sample
of data used to provide an unbiased evaluation of a final model fit on the training dataset; Al,
rater 1, A2: rater 1 at different times; B, rater 2; AL, rater 1 with labeling on the WLR; DL,

deep learning

A. WBL ratio prediction B. WBL ratio target C. WBL ratio prediction D. WBL ratio target

0.40
040 035 .

035
03s 0.30

Ratio

=

2

8
Ratio
Ratio
Ratio

0.0 0.05 4

0.00 0.00 0.00
000 025 050 075 000 025 050 075 000 025 050 075

0.00 0.25 0.50 0.75

WBL ratio WBL ratio WBL ratio WBL ratio
Figure 4. Histogram of WBL ratio distribution in validation and test set.
(A, B, C, D) Prediction distribution vs target distribution. (A) WBL ratio prediction
distribution in validation set. (B) WBL ratio target distribution in validation set. (C) WBL
ratio prediction distribution in test set. (D) WBL ratio target distribution in test set. WBL
ratio prediction: predicted value of WBL, WBL ratio target: calculated WBL target.
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Figure 5. Graph of WBL mean accuracy.

0.02

(A) Accuracy graph of WBL error percentage value, (B) Accuracy graph of pixel threshold,

validation set: The data sample used to provide an unbiased evaluation of a model fit on the
training dataset while tuning model hyperparameters. Test set: The sample of data used to

provide an unbiased evaluation of a final model fit on the training dataset.

2.3. Discussion

The principal finding of this study is that the novel approach
using the four—-point marked key-point detection algorithm could
predict the alignment of the lower limb using standing knee AP
radiographs with high accuracy, comparable to that achieved with
the direct measurement of the WLR. As one pixel was 0.265 mm,
approximately 80% of the test and validation set prediction values
were entered into 6 pixels. Therefore, it was assumed that
approximately 80% of patients could be correctly evaluated within
approximately 1 mm intervals.

The mean difference, MAE, and ICC values were used to test
the accuracy and reliability of this study [19]. The accuracy of DL
was indirectly estimated by comparing the mean difference between
the values measured by the raters using WLR and the MAE of the
values of DL predicting the WBL ratio using plain knee radiographs.
The WBL ratio showed a slightly increase in the MAE when
compared with the mean difference, because the WLR was not
provided. In addition, the ICC of DL was also lower than the ICC of

the values measured by the raters using WLR, but we observed

13



that it provided a relatively good prediction at 0.8 or more.
Several trials to predict lower limb alignment using plain knee
radiographs by linear regression analysis exist [10,20]. However,
the results are not satisfactory, and to obtain satisfactory results,
an X-ray image approximately 20 cm in length above and below the

knee joint was required [21]. To solve these problems, a new

algorithm was considered the most suitable model because of the
ability of the algorithm to find a specific point where the WBL
passes through the tibia plateau [22,23]. Key-point detection
algorithms are often used for pose estimation, face detection, and
object detection [17,23]. Interestingly, the prediction accuracy
decreased when the marking increased. This seems to be due to
the characteristics of the DL model. DL is so automatic and high
dimensional that the process of calculating the output by extracting
features from the input is represented as a black box [13,24,25].
Therefore, it can be understood that if more labeling is performed,
the labeling error increases, and the automatic feature extraction
process is hindered; thus, the prediction accuracy could be lowered,
as occurred in our study.

From the patient’ s point of view, visiting a tertiary hospital for
WLR is time-consuming, expensive, and leads to high radiation
exposure [26]. If the WBL ratio can be predicted through plain
knee AP radiographs using this algorithm in primary care, it will be
possible to easily determine the treatment process, as well as the
degree of arthritis in more detail. This will also be useful for
follow—up evaluation of patients who underwent re-alignment
procedures such as osteotomy [19,27]. Expecting lower limb
alignment using only plain knee radiographs has a lot of pros in the
decision of patient-specific treatment protocols in various kinds of
institutions. A DL model for predicting the WBL ratio through a
plain knee radiograph was not attempted in the past, but it will
become an essential medical technique in the future society

characterized by the use of artificial intelligence [28].
14



The strength of this study is that a more accurate prediction of
lower limb alignment can be obtained using the DL key-point
detection model. Our study is meaningful in that it not only uses a
key-point detection model, but also takes a significant point and
trains machine learning to make a more precise prediction using this
model. In addition, this study has significance as it allows

knee

predicting the WBL ratio using a plain

situation where WLR imaging is limited. Primary care physicians
can properly diagnose patients with knee OA using the DL model.
In addition, it is expected that planning the realignment procedure
would be possible with high accuracy.

This study has several limitations. First, it was difficult to
interpret the developed CNN model itself; therefore, it was hard to
determine whether the CNN model focused on the WBL prediction.
Second, the number of test sets was small, although the ratio
between the validation and the test sets was adequate. Third, the
WBL predictions of our model were relatively distributed around the
center compared with the target WBL value. Thus, our model was
trained on general WBL values and has limitations in predicting
infrequent WBL values. This is because of the small amount of
WBL data corresponding to outliers, as shown in Figure 4. This
phenomenon is expected to decrease as the amount of data
increases. Fourth, the prediction would be inaccurate if there is a
deformity in the proximal femur or distal tibia, because this cannot
be checked on standing plain knee radiographs. Fifth, since the
study was conducted on patients who presented to tertiary medical
institutions, there may be a selection bias in the patient group. This
1s because these patients were referred from primary and
secondary medical institutions. The severity of disease in patients
visiting tertiary care may be higher than that of patients visiting

primary or secondary health care institutions.
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Chapter 3. Conclusions

This DL-based key-point detection algorithm for predicting
lower limb alignment makes primary physicians possible to predict
lower limb alignment of patients with only plain knee AP

radiographs in considerable amount of accuracy. It will help us to
h
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