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Abstract

Machine Learning-Based Classification
of Proximal and Distal Gastric Cancer
INn The Cancer Genome Atlas Database

Eunju Lee
College of Medicine, Department of Surgery
The Graduate School

Seoul National University

Background: Gastric cancer is a major global health concern, with different
classifications based on its histological subtypes or anatomical location. Proximal
gastric cancer (PGC) and distal gastric cancer (DGC) are two anatomically distinct
subtypes with different risk factors, and understanding their clinicopathological and
genetic characteristics is important for accurate diagnosis and treatment. This study
investigated the genetic differences between PGC and DGC using machine learning
(ML) approaches and data from The Cancer Genome Atlas (TCGA) program, and

focused on identifying differences in DNA copy number variation and RNAseq.

Methods: The TCGA-Stomach Adenocarcinoma (STAD) dataset was used to
investigate genetic differences between PGC and DGC. The study conducted
classical bioinformatic approaches to distinguish PGC and DGC using a volcano plot
and heap map from the selected features. To apply ML algorithms, data
preprocessing was conducted by utilizing statistical tests to select noteworthy
features, and false discovery rate correction was used to address the multiple testing
problem. The study used 10-fold cross-validation for the ML algorithms to predict

the location of gastric cancers using the selected features.

The validation was performed on subsets of the data, where different approaches
were taken for handling the Fundus/Body data: In Group 1, the analysis excluded the
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Fundus/Body data; in Group 2, the Fundus/Body data was classified as proximal
gastric cancer for analysis; and in Group 3, the Fundus/Body data was classified and
analyzed as a separate new group. The best algorithm was then chosen and used to

interpret the results with the top 30 features of importance and EnrichR analysis.

Results: The study utilized ML techniques to identify potential genetic features in
copy number variation and RNAseq to classify PGC and DGC within the TCGA-
STAD dataset. Among the ML algorithms, gradient-boosting algorithms such as
CatBoost and LightGBM consistently achieved high performances based on the Area
Under the Curve (AUC), regardless of the differences in datasets. When classifying
the Fundus/Body as PGC (Group 2), the AUC of the ROC curve was 0.75. However,
when analyzing the data excluding the Fundus/Body as PGC (Group 1), the AUC of
the ROC curve improved to 0.89. Furthermore, we identified the top 30 important
features of CatBoost for classifying the tumor location, including LRRC8D and
GULP1, and used them to perform EnrichR analysis, which provided information

regarding their relationship with gastric cancer.

Conclusion: By applying ML to the TCGA-STAD database, this study identified
potential genetic distinguishing features between PGC and DGC, indicating potential

differences in their genetic profiles.

Keywords : Gastric cancer, TCGA, Genetics
Student Number : 2021-20463
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Introduction

Gastric cancer is the fourth most commonly diagnosed cancer in Korea, and
the fifth most commonly diagnosed cancer worldwide, according to the 2020
GLOBOCAN data.* The classification of gastric cancer can be based on that of The
World Health Organization or Lauren's classification, which categorizes gastric
cancer based on its histological subtypes.>® Alternatively, gastric cancer can be
classified based on its anatomical location, as proximal gastric cancer (PGC) or distal
gastric cancer (DGC).* DGC commonly occurs in the antrum and pylorus, while
PGC occurs in the cardia and fundus, with the latter being more common in Western
countries.®® The risk factors for DGC include H. pylori infection, while
gastroesophageal reflux disease and obesity are associated with PGC.”®

Many research studies have examined the different clinicopathologic
characteristics between PGC and DGC.® However, the molecular mechanisms
behind these differences are still under investigation.'* Therefore, understanding the
clinicopathological and genetic characteristics of PGC and DGC is crucial for the
accurate understanding of gastric cancer and its treatment.'? Recently, machine
learning (ML), a subset of artificial intelligence,* has been increasingly adopted in
various fields, including medicine, to advance research and enhance outcomes. ML
automatically acquires knowledge from data to accomplish a given object, so it may
capture important and complex patterns which are undetectable to humans.
Therefore, this study aims to investigate the genetic differences between PGC and
DGC using ML techniques and The Cancer Genome Atlas (TCGA) database. The
study also aimed to assess whether there were differences in copy number variation
and gene expression profiles, derived from RNAseq data, between the two groups.

Methods
1. Data Preprocessing

The TCGA project is a collaboration between the National Cancer Institute
(NCI) and the National Human Genome Research Institute (NHGRI), which began
in 2005.** Its objective is to better understand the genomic and epigenomic
alterations that occur in different types of cancer by collecting tissue samples and
subjecting them to various genomic and epigenomic analyses. The data generated
from this project has been made publicly available for researchers Worlldwide to
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develop new therapeutic targets, diagnostic tools, and improve cancer biology. The
TCGA project has also served as a model for other large-scale genomic initiatives
such as the Genotype-Tissue Expression project and the International Cancer
Genome Consortium.

The study utilized a subset of the TCGA database called TCGA-STAD,
which focuses on STomach ADenocarcinoma, to analyze the genetic characteristics
of proximal and distal gastric cancer. The formation of TCGA-STAD involved the
collection of tumor samples from over 400 patients with stomach adenocarcinoma.
These samples were subjected to various genomic and epigenomic analyses such as
whole genome sequencing, RNAseq, methylation analysis, and proteomic analysis.

In detail, the study uses three types of data. The first is the TCGA-STAD
gene-level copy number variation (CNV), estimated (n=441 with 24,777 identifiers)
using the GISTIC2 method.* The GISTIC module identifies regions of the genome
that are significantly amplified or deleted across a set of samples.'® Each aberration
is assigned a G-score that considers the amplitude of the aberration as well as the
frequency of its occurrence across samples.

Several studies have identified specific CNVs that are associated with
STAD.Y For example, amplification of the HER2 (ERBBZ2) gene, involved in cell
growth and division, is commonly observed in STAD and is associated with a poorer
prognosis.t” The copy number profile was measured experimentally using a whole
genome microarray at a TCGA genome characterization center. Subsequently, the
TCGA FIREHOSE pipeline applied the GISTIC2 method to produce segmented
CNV data, mapped to genes to produce gene-level estimates. Genes are mapped onto
the human genome coordinates using the University of California Santa Cruz(UCSC)
Xena HUGO probe map.*®

The second type of data is TCGA-STAD gene expression by RNAseq
(n=417 with 26,541 identifiers), which was mean-normalized (per gene) across all
TCGA cohorts. Indeed, many studies have used RNAseq to investigate the molecular
mechanisms underlying STAD and to identify potential biomarkers and therapeutic
targets.® For example, RNAseq analysis has identified genes that are differentially
expressed in STAD compared to normal stomach tissue, including genes involved in
cell cycle regulation, cell signaling, and immune function.? In addition, RNAseq

analysis has been used to identify gene expression signatures that can predict patient
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outcomes and responses to therapy.?* For example, a gene expression signature that
is associated with a better response to chemotherapy in patients with STAD. All
RNAseq values are generated at UCSC by combining the "gene expression RNAseq"
values of all TCGA cohorts. Values are mean-centered per gene, then the converted
data from the cohort is extracted. The last data type is phenotypes (n=580 with 108
identifiers), which includes gender, age, anatomic neoplasm subdivision, and so on.*®
To combine the above data types, we match the sample ids for each data and then
concatenate it. As a result, 336 cases with 51,323 identifiers are available.

Since one of the study objectives is to observe the difference in genetic
characteristics between PGC and DGC, we index the category values in the anatomic
neoplasm subdivisions, as shown in Table 1. Since TCGA does not separate the
fundus and body, the study considered different groups for the dataset: the fundus
and body category values are removed (Group 1), or are set as PGC (Group 2), or
are regarded as a new classification class (Group 3), which should be predicted
(Table 1).

Category Number Index
Gastroesophageal )
) 37 0 (Proximal)
Junction
Cardia/Proximal 45 0 (Proximal)
Group 1: Drop (Exclusion)
Fundus/Body 124 Group 2: 0 (Proximal)
Group 3: 2 (Fundus/Body)
Antrum/Distal 130 1 (Distal)
Other 3
Stomach (Not otherwise )
. 5 Drop (Exclusion)
specified)
Discrepancy 1

Table 1. The distribution of the anatomic neoplasm subdivisions in gastric cancer.
(In Group 1, the analysis was conducted excluding the Fundus/Body data, while in
Group 2, the Fundus/Body data was classified as proximal gastric cancer for analysis,

and in Group 3, it was classified and analyzed as a separate new group.)

2. Statistical analysis



The study performed several statistical tests to identify the noteworthy
features. A normality test for both distributions, by indexing the anatomic neoplasm
subdivisions, was performed to determine if both distributions passed the normality
test. If both distributions passed the normality test, an equality test was performed,
and t-tests with or without equality were performed accordingly. In addition, if
normality was not passed, the Mann-Whitney U test and the chi-square test were
performed for continuous and categorical values, respectively. If there is a genetic
difference between PGC and DGC, and the P value was less than 0.05, that was
regarded as statistically significant.

However, we remark that multiple testing correction is necessary because
it provides a way to control the rate at which false positives occur when performing
multiple statistical tests simultaneously.”? When conducting multiple tests, it is
possible to obtain meaningful results by chance alone, even when there is no true
effect present. This can lead to false positive results, which can lead to wrong
conclusions. Some commonly used methods for addressing the multiple testing
problem when conducting multiple statistical tests simultaneously, each with its
advantages and disadvantages, include the Bonferroni correction, false discovery
rate (FDR), Benjamini-Hochberg correction, and so on. This study used the FDR
since it is less conservative with high statistical power, and it minimizes the risk of
missing important results.? The alpha parameter was set as 0.05, which is a threshold
that controls the overall FDR. This value represents the significance level of the
statistical test. The value is compared to the P value, which represents the probability
of obtaining the observed results by chance alone. Using the P values obtained with
the FDR, we finally chose 2,109 candidates from the 7,784 features whose P values
are less than 0.05 among more than 50,000 identifiers, which may result in PGC or
DGC. For statistical analysis, the study utilized Python libraries including SciPy,

which is an open-source software for mathematics, science, and engineering.

3. Standard Approach

Before utilizing ML, feature distributions were compared between PGC
and DGC patients, where each feature has a P value smaller than 0.05. Next, volcano
and heatmap plots were produced to check whether some of the RNA and DNA data

are separable between PGC and DGC patients.
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4. Machine Learning Approach

To apply ML algorithms, data was split after FDR into training and test
datasets, where P values for each feature distribution are smaller than 0.05. Then,
10-fold cross-validation was performed for various ML algorithms. The study
validated various tree generation methods: from the vanilla decision tree method,?
some methods generated new trees independently, which were used for voting to
improve the performance (e.g., Random Forest®® and Extra Trees®). Gradient
boosting classifiers are a type of machine learning algorithm, where the generation
of a decision tree depends on the previous trees and focuses on their errors (e.g.,
vanilla Gradient Boosting,”” Light Gradient Boosting Machine,?® CatBoost,?

Extreme Gradient Boosting,® Ada Boost®!). In addition, other standard methods

t,32 t,33

were considered: logistic regression, linear discriminant,> quadratic discriminan
ridge,* Naive Bayes,® support vector machine,* the K-Nearest Neighbor
algorithm,*” and Dummy Classifier, which ignore features and determine a class
randomly. Among them, the best algorithm is selected to analyze which features are
significant for predicting gastric cancer locations.

Finally, the study conducted EnrichR analysis for the top 30 important
features to confirm whether they are indeed related to gastric cancers or not.*®**° Note
that the study objective is to determine which features are significant, so we do not
consider an ensemble of ML models to improve performance (e.g., blending machine

learning models).

Results

In the TCGA data, the location of the gastric cancer and the number of
corresponding patients were ‘Antrum/Distal: 130, ‘'Cardia/Proximal’: 45,
'Fundus/Body": 124, 'Gastroesophageal Junction': 37, 'Other": 3, 'Stomach (NOS)": 5,
and 'Discrepancy": 1.

The study first extracted the top 10 genes with respect to copy numbers and
RNA seq, sorted by P values, as shown in Table 2 and Table 3. PTEN is a tumor
suppressor gene that is involved in various cellular processes, including cell growth,
differentiation, and survival.** Loss of PTEN function has been implicated in the
development and progression of several types of cancer, including gastr_ic cancer.
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Although there are some high-ranking genes, e.g., HMX3, to the best of our
knowledge, there is little evidence linking these genes to gastric cancer. However, it
is noteworthy that they have different distributions for proximal and distal cancers.
1 shows the distribution of the DNAs which have the smallest P values. Figure 2
shows that there are also some differences between the two different cancer positions.
However, analyzing features independently is inefficient due to the large number of
features, and some feature distributions between PGC and DGC are barely
distinguishable (Figure 1). Therefore, it is unclear which combination of genes or
samples are suitable for characterizing the gastric cancer position. Indeed, the study
compared the copy number variation and expression of RNAseq. Among the genes
that are commonly expressed, 62 showed significant differences in both copy
number and expression of RNAseq. Furthermore, 1,659 genes showed significant
differences in copy number but not in the expression of RNAseq, while there were
no genes that showed significant expression differences in RNAseq but no
differences in copy number. This result suggests that copy humber may be a more
important expression phenotype for determining the location of gastric
cancer. However, as we observed, there are many features with high correlations
(Figure 1), so it is naive to conclude that the combination of low P value features is
effective. Besides, even by using a heatmap (Figure 3), the study could not observe
some differences between PGC and DGC. Accordingly, a new approach that can

capture multiple features simultaneously is necessary.



Proximal dominant

Distal dominant

Feature P value Feature P value
NKAP 0.005362 | RTKNZ2 0.0000895
FGF13 0.006486 | ADO 0.000117
KIAA1210 0.007785 | EGR 0.000117
LONRF3 0.007966 | RN7SL591P 0.000145
WDR44 0.0086 | ZNF365 0.000145
MIR1277 0.0086 | IMJD1C 0.00017
IL13RA1 0.009243 | NRBF2 0.000186
DOCK11 0.009243 | MIR1296 0.000213
ZCCHC12 0.009965 | REEP3 0.000228
SMIM10 0.010270047 | PTEN 0.000466

Table 2. Top 10 important copy numbers (gene level) with respect to the copy level

sorted by P values.

Proximal dominant

Distal dominant

Feature P value Feature P value
MYBPH 0.000051 | MPP3 0.000156
ZAR1L 0.000066 | IRX3 0.001313
LOC100131257 0.000236 | ARNT2 0.001515
SNORA70D 0.000251 | HOMER2 0.002174
CACNA2D4 0.000536 | RELA 0.00237
GPR128 0.000546 | EYA2 0.00256
ALKBH1 0.000551 | IRS4 0.002954
SPAM1 0.000691 | ADRB1 0.003034
ZNF18 0.000853 | WWTR1-AS1 0.00324
DQ594410 0.000946 | FAM102A 0.003635

Table 3. Top 10 important features with respect to RNAseq sorted by P values.
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Figure 1. Distribution of gene values across different types. The distributions of
individual genes between distal gastric cancer (DGC) and proximal gastric cancer
(PGC) are markedly different. However, the distributions for DNA features are

almost identical between the two groups.
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Figure 2. Volcano plot with respect to RNA and DNA features after false discovery
rate correction. The blue and red points denote features having different distributions

with a large fold change.
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Figure 3. Heatmap Plot. The x-axis represents patients, while the y-axis represents
individual features, including RNA sequences and DNA copy humbers.
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Since the determination of the ideal combinations of RNA and DNA
features for gastric cancer positions is complex, the study utilized ML algorithms to
predict the locations of gastric cancer because well-trained models can identify
which features are crucial for determining the location of cancers. The various ML
algorithms require validation, and it is then possible to choose the best algorithm. As
illustrated in Table 1, the study considered three types of datasets (Group 1: the
fundus and body category values are removed, Group 2: the fundus and body
category values belong to PGC, and Group 3: the fundus and body category values
are in a new class). To validate the methods, 10-fold cross-validations were used. To
perform this, the training and test datasets were randomly split into 75% and 25%

portions, respectively.
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Linear Kernel

Model Accuracy AUC? Recall Precision | F1 score Kappa MCCP
Gradient Boosting | 0.7571 0.905 0.85 0.787 0.8032 0.4789 0.5187
Classifier
Light Gradient Boosting | 0.7929 0.889 0.8611 0.8188 0.8317 0.5593 0.5817
Machine
CatBoost Classifier 0.7929 0.8758 0.8958 0.7968 0.8361 0.5508 0.5809
Extreme Gradient | 0.7571 0.8568 0.8486 0.7809 0.8054 0.4784 0.5048
Boosting
Extra Trees Classifier 0.7786 0.8508 0.8722 0.7952 0.8235 0.5232 0.5536
Random Forest | 0.7714 0.841 0.8611 0.7918 0.8182 0.5035 0.522
Classifier
Ada Boost Classifier 0.7786 0.8246 0.8264 0.8231 0.8174 0.5319 0.5499
Logistic Regression 0.7786 0.8197 0.8597 0.7995 0.8241 0.5263 0.539
Naive Bayes 0.7 0.7469 0.7486 0.7782 0.7506 0.3789 0.4022
K-Nearest Neighbor | 0.7 0.7446 0.8236 0.7358 0.7703 0.3333 0.3504
algorithm
Decision Tree Classifier | 0.6857 0.6668 0.7569 0.7417 0.7381 0.339 0.3581
Linear  Discriminant | 0.6857 0.6666 0.7542 0.7374 0.742 0.3328 0.3388
Analysis
Quadratic Discriminant | 0.4929 0.5032 0.5097 0.6249 0.5317 0.0036 0.0031
Analysis
Dummy Classifier 0.6143 0.5 1 0.6143 0.7605 0 0
Ridge Classifier 0.7143 0 0.7806 0.7814 0.7685 0.3988 0.4144
SVM - 0.6571 0 0.6417 0.7049 0.6218 0.3373 0.3885

Table 4. Results of

algorithms with Group 1. (In Group 1, the analysis was conducted excluding the

Fundus/Body data.)

10-fold cross-validation using various machine learning

2 AUC : Area under curve
®MCC : Matthews Correlation Coefficient
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Model Accuracy AUC? Recall Precision | F1 score Kappa MCCP
Logistic Regression 0.7786 0.8136 0.8611 0.799 0.8248 0.5215 0.5374
CatBoost Classifier 0.7643 0.8018 0.9069 0.7709 0.8276 0.455 0.4837
Random Forest 0.7571 0.7974 0.8611 0.7715 0.8076 0.4715 0.4977
Classifier
Gradient Boosting 0.75 0.779 0.8625 0.7717 0.8083 0.4445 0.4668
Classifier
Extra Trees Classifier 0.7429 0.7812 0.825 0.779 0.7948 0.4427 0.4637
Ridge Classifier 0.7357 0 0.85 0.7623 0.7983 0.4153 0.4381
Ada Boost Classifier 0.7286 0.7614 0.8278 0.7678 0.7899 0.3995 0.4169
K-Nearest Neighbor 0.7214 0.7099 0.8708 0.7326 0.7924 0.3722 0.4014
algorithm
Light Gradient 0.7143 0.7939 0.8153 0.7561 0.7756 0.3689 0.3854
Boosting Machine
SVM - Linear Kernel 0.7 0 0.7028 0.8051 0.7103 0.4102 0.4642
Naive Bayes 0.6714 0.7033 0.725 0.7369 0.7251 0.303 0.3006
Decision Tree 0.6571 0.6483 0.7 0.7382 0.7142 0.2907 0.2945
Classifier
Dummy Classifier 0.6143 0.5 1 0.6143 0.7605 0 0
Linear Discriminant 0.5929 0.6189 0.6056 0.703 0.6363 0.1731 0.1875
Analysis
Quadratic 0.5571 0.5693 0.4986 0.7103 0.5607 0.1245 0.1428
Discriminant
Analysis

Table 5. Results of 10-fold cross-validation using various machine learning

algorithms with Group 2. (In Group 2, the Fundus/Body data was classified as

proximal gastric cancer for analysis.)

2 AUC : Area under curve
® MCC : Matthews Correlation Coefficient
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Model Accuracy | AUC? Recall Precision | F1 score Kappa MCCP
CatBoost Classifier 0.7281 0.6853 0.1595 0.5333 0.2352 0.1441 0.1836
Light Gradient Boosting | 0.7235 0.6743 0.3167 0.4338 0.3575 0.2179 0.2201
Machine
Random Forest Classifier 0.7233 0.65 0.1571 0.51 0.2203 0.1277 0.1645
Gradient Boosting Classifier 0.7194 0.6485 0.3 0.4625 0.3421 0.2054 0.2227
Dummy Classifier 0.7146 0.5 0 0 0 0 0
Extra Trees Classifier 0.7142 0.6179 0.1238 0.5333 0.1952 0.0946 0.1373
Ada Boost Classifier 0.7012 0.6774 0.3476 0.5079 0.3969 0.2113 0.226
Logistic Regression 0.6885 0.6781 04714 0.469 0.4556 0.2432 0.2513
K-Nearest Neighbor algorithm | 0.6826 0.5348 0.1071 0.35 0.1583 0.0247 0.0368
Linear Discriminant Analysis 0.6557 0.6208 0.481 0.4035 0.4323 0.1898 0.1963
Ridge Classifier 0.652 0 0.4833 0.4016 0.4255 0.1838 0.1934
Decision Tree Classifier 0.6344 0.5493 0.3548 0.3549 0.3421 0.0978 0.0994
SVM - Linear Kernel 0.6338 0 0.4167 0.3224 0.3221 0.1186 0.1482
Quadratic Discriminant | 0.5986 0.5375 0.4 0.3254 0.3507 0.0671 0.0702
Analysis
Naive Bayes 0.5937 0.5926 0.4881 0.3626 0.4111 0.1201 0.1191

Table 6. Results of 10-fold cross-validation using various machine learning
algorithms with Group 3. (In Group 3, the Fundus/Body data was classified and
analyzed as a separate new group.)

4 AUC : Area under curve

®MCC : Matthews Correlation Coefficient

The results demonstrated that the gradient boosting methods were superior
to the other methods. Especially, CatBoost belongs to the top three ML algorithms
in each of Group 1, Group 2, and Group 3, based on the AUC (Table 4~6). The
performance in Group 3 degrades significantly because there is a large gap between
the binary classification and multiple classification with many features.

Therefore, the study focused on Group 1 and Group 2, but not Group 3, and
selected CatBoost to analyze the results, since it is known as one of the best gradient
boosting methods due to its ability to handle large datasets with high-dimensional
features and its efficient memory usage. It also has several built-in features to prevent
overfitting, such as the ability to perform early stopping and to use a custom loss
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function. Additionally, it has a robust implementation of feature importance
calculation, which can help users understand which features are most important in
their models.

For Group 1, the study observed an AUC of the ROC curve of 0.89 when
using the test dataset, as shown in Figure 4. (a). This demonstrates a remarkable
performance. For Group 2, the study obtained an AUC of 0.75 for ROC curve when
using the test dataset, which means that the prediction performance is fairly good,
but there is a gap between Group 1 and Group 2, as shown in Figure 4. (b).
Commonly, adding uncertain data for training and testing may degrade ML
algorithms. Moreover, we computed the feature importance calculated by CatBoost.
Figure 5. (a)-(b) shows which features are important in determining the position of

gastric cancers for Group 1 and Group 2, respectively.
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(@) Group 1 (b) Group 2
Figure 4. ROC curves with AUCs of 0.89 and 0.75 for Group 1 and Group 2,
respectively, after training with CatBoost. (In Group 1, the analysis was conducted
excluding the Fundus/Body data, while in Group 2, the Fundus/Body data was

classified as proximal gastric cancer for analysis.)
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Figure 5. Top 30 feature importance by CatBoost in Group 1 and Group 2.
(Group 1 excludes the Fundus/Body data in the analysis, whereas Group 2 classifies

the Fundus/Body data as proximal gastric cancer for analysis.)

Figure 6 shows the EnrichR analysis of the top 30 important features for
CatBoost's predictions based on P values in Group 1, for which performance is
indicated by an AUC of 0.89. These features are highly related to gastric cancers.
For instance, studies have shown that FGFR1l, FGFR2, and FGFR4 are
overexpressed in gastric cancer tissues and that the aberrant activation of FGFR
signaling is involved in the development and progression of gastric cancer.*?
Additionally, some preclinical studies have suggested that targeting FGFR signaling

may have therapeutic potential in treating gastric cancer.®®
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Figure 6. EnrichR analysis of the top 30 important features for CatBoost's
predictions based on P values in Group 1. (Group 1 excludes the Fundus/Body data
in the analysis.)

Discussion
This study utilized the ML-based classification of PGC and DGC through



the specific characteristics and location of the tumor, ultimately aiming to maximize
patient outcomes and preserve gastric function

Overall, the study highlights the importance of considering anatomical and
genetic differences when classifying gastric cancer and developing personalized
treatment strategies. By suggesting possible genetic characteristics associated with
PGC and DGC, the findings may contribute to more effective diagnosis, treatment,
and prognosis for gastric cancer patients.

The TCGA database grouped the fundus and body together. Based on the
Japanese classification of gastric carcinoma, the stomach can be divided into three
sections — the upper, middle, and lower parts — using lines that connect the
trisected points on the lesser and greater curvatures.* Even though mid-body cancer
and lower-body cancer of the stomach are anatomically part of the middle third of
the stomach, body cancer was grouped into the PGC group. This grouping may have
obscured the unique genetic characteristics of PGC and made it challenging to
differentiate between PGC and DGC, particularly for middle-third stomach body
cancer, which is classified as PGC. When analyzing the data with the exclusion of
the Fundus/Body, the performance of ML prediction increased from an AUC of 0.75
to 0.89. Future research should consider more detailed analyses using databases that
include comprehensive clinicopathologic and genetic information. Larger patient
cohorts and more homogeneous patient populations, such as Korean patients, could
provide a more accurate understanding of the molecular mechanisms driving these
subtypes of gastric cancer.

This study had some limitations related to the heterogeneous patient
population in the TCGA database, which comprises individuals of various racial
backgrounds. This may have introduced confounding factors when evaluating cancer
subtype differences across different ethnicities. As East Asian and Western gastric
cancer exhibit distinct characteristics, the genetic differences observed in this study
may not be wholly generalizable to all racial groups. Another limitation of this study
is the inability to compare normal and tumor data in the RNAseq data obtained from
the TCGA database. While RNAseq has shown remarkable performance in
accurately distinguishing PGC and DGC using ML, it may not be directly applicable

or specific to tumor samples.
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Conclusion
Through the utilization of ML and the TCGA-STAD database, the study
introduced possible genetic distinguishing points between PGC and DGC,

suggesting potential differences in their genetic profiles.
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