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Abstract 

Machine Learning-Based Classification 
of Proximal and Distal Gastric Cancer 
in The Cancer Genome Atlas Database 

Eunju Lee 

College of Medicine, Department of Surgery 

The Graduate School 

Seoul National University 
 

Background: Gastric cancer is a major global health concern, with different 

classifications based on its histological subtypes or anatomical location. Proximal 

gastric cancer (PGC) and distal gastric cancer (DGC) are two anatomically distinct 

subtypes with different risk factors, and understanding their clinicopathological and 

genetic characteristics is important for accurate diagnosis and treatment. This study 

investigated the genetic differences between PGC and DGC using machine learning 

(ML) approaches and data from The Cancer Genome Atlas (TCGA) program, and 

focused on identifying differences in DNA copy number variation and RNAseq.  

 

Methods: The TCGA-Stomach Adenocarcinoma (STAD) dataset was used to 

investigate genetic differences between PGC and DGC. The study conducted 

classical bioinformatic approaches to distinguish PGC and DGC using a volcano plot 

and heap map from the selected features. To apply ML algorithms, data 

preprocessing was conducted by utilizing statistical tests to select noteworthy 

features, and false discovery rate correction was used to address the multiple testing 

problem. The study used 10-fold cross-validation for the ML algorithms to predict 

the location of gastric cancers using the selected features. 

 

The validation was performed on subsets of the data, where different approaches 

were taken for handling the Fundus/Body data: In Group 1, the analysis excluded the 
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Fundus/Body data; in Group 2, the Fundus/Body data was classified as proximal 

gastric cancer for analysis; and in Group 3, the Fundus/Body data was classified and 

analyzed as a separate new group. The best algorithm was then chosen and used to 

interpret the results with the top 30 features of importance and EnrichR analysis. 

 

Results: The study utilized ML techniques to identify potential genetic features in 

copy number variation and RNAseq to classify PGC and DGC within the TCGA-

STAD dataset. Among the ML algorithms, gradient-boosting algorithms such as 

CatBoost and LightGBM consistently achieved high performances based on the Area 

Under the Curve (AUC), regardless of the differences in datasets. When classifying 

the Fundus/Body as PGC (Group 2), the AUC of the ROC curve was 0.75. However, 

when analyzing the data excluding the Fundus/Body as PGC (Group 1), the AUC of 

the ROC curve improved to 0.89. Furthermore, we identified the top 30 important 

features of CatBoost for classifying the tumor location, including LRRC8D and 

GULP1, and used them to perform EnrichR analysis, which provided information 

regarding their relationship with gastric cancer. 

 

Conclusion: By applying ML to the TCGA-STAD database, this study identified 

potential genetic distinguishing features between PGC and DGC, indicating potential 

differences in their genetic profiles. 

 
Keywords : Gastric cancer, TCGA, Genetics 
Student Number : 2021-20463 
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Introduction 

Gastric cancer is the fourth most commonly diagnosed cancer in Korea, and 

the fifth most commonly diagnosed cancer worldwide, according to the 2020 

GLOBOCAN data.1 The classification of gastric cancer can be based on that of The 

World Health Organization or Lauren's classification, which categorizes gastric 

cancer based on its histological subtypes.2,3 Alternatively, gastric cancer can be 

classified based on its anatomical location, as proximal gastric cancer (PGC) or distal 

gastric cancer (DGC).4 DGC commonly occurs in the antrum and pylorus, while 

PGC occurs in the cardia and fundus, with the latter being more common in Western 

countries.5,6 The risk factors for DGC include H. pylori infection, while 

gastroesophageal reflux disease and obesity are associated with PGC.7-9 

Many research studies have examined the different clinicopathologic 

characteristics between PGC and DGC.10 However, the molecular mechanisms 

behind these differences are still under investigation.11 Therefore, understanding the 

clinicopathological and genetic characteristics of PGC and DGC is crucial for the 

accurate understanding of gastric cancer and its treatment.12 Recently, machine 

learning (ML), a subset of artificial intelligence,13 has been increasingly adopted in 

various fields, including medicine, to advance research and enhance outcomes. ML 

automatically acquires knowledge from data to accomplish a given object, so it may 

capture important and complex patterns which are undetectable to humans. 

Therefore, this study aims to investigate the genetic differences between PGC and 

DGC using ML techniques and The Cancer Genome Atlas (TCGA) database. The 

study also aimed to assess whether there were differences in copy number variation 

and gene expression profiles, derived from RNAseq data, between the two groups. 

 

Methods 

1. Data Preprocessing   

The TCGA project is a collaboration between the National Cancer Institute 

(NCI) and the National Human Genome Research Institute (NHGRI), which began 

in 2005.14 Its objective is to better understand the genomic and epigenomic 

alterations that occur in different types of cancer by collecting tissue samples and 

subjecting them to various genomic and epigenomic analyses. The data generated 

from this project has been made publicly available for researchers worldwide to 
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develop new therapeutic targets, diagnostic tools, and improve cancer biology. The 

TCGA project has also served as a model for other large-scale genomic initiatives 

such as the Genotype-Tissue Expression project and the International Cancer 

Genome Consortium. 

The study utilized a subset of the TCGA database called TCGA-STAD, 

which focuses on STomach ADenocarcinoma, to analyze the genetic characteristics 

of proximal and distal gastric cancer. The formation of TCGA-STAD involved the 

collection of tumor samples from over 400 patients with stomach adenocarcinoma. 

These samples were subjected to various genomic and epigenomic analyses such as 

whole genome sequencing, RNAseq, methylation analysis, and proteomic analysis. 

In detail, the study uses three types of data. The first is the TCGA-STAD 

gene-level copy number variation (CNV), estimated (n=441 with 24,777 identifiers) 

using the GISTIC2 method.15 The GISTIC module identifies regions of the genome 

that are significantly amplified or deleted across a set of samples.16 Each aberration 

is assigned a G-score that considers the amplitude of the aberration as well as the 

frequency of its occurrence across samples. 

Several studies have identified specific CNVs that are associated with 

STAD.17 For example, amplification of the HER2 (ERBB2) gene, involved in cell 

growth and division, is commonly observed in STAD and is associated with a poorer 

prognosis.17 The copy number profile was measured experimentally using a whole 

genome microarray at a TCGA genome characterization center. Subsequently, the 

TCGA FIREHOSE pipeline applied the GISTIC2 method to produce segmented 

CNV data, mapped to genes to produce gene-level estimates. Genes are mapped onto 

the human genome coordinates using the University of California Santa Cruz(UCSC) 

Xena HUGO probe map.18 

The second type of data is TCGA-STAD gene expression by RNAseq 

(n=417 with 26,541 identifiers), which was mean-normalized (per gene) across all 

TCGA cohorts. Indeed, many studies have used RNAseq to investigate the molecular 

mechanisms underlying STAD and to identify potential biomarkers and therapeutic 

targets.19 For example, RNAseq analysis has identified genes that are differentially 

expressed in STAD compared to normal stomach tissue, including genes involved in 

cell cycle regulation, cell signaling, and immune function.20 In addition, RNAseq 

analysis has been used to identify gene expression signatures that can predict patient 
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outcomes and responses to therapy.21 For example, a gene expression signature that 

is associated with a better response to chemotherapy in patients with STAD. All 

RNAseq values are generated at UCSC by combining the "gene expression RNAseq" 

values of all TCGA cohorts. Values are mean-centered per gene, then the converted 

data from the cohort is extracted. The last data type is phenotypes (n=580 with 108 

identifiers), which includes gender, age, anatomic neoplasm subdivision, and so on.18 

To combine the above data types, we match the sample ids for each data and then 

concatenate it. As a result, 336 cases with 51,323 identifiers are available.  

Since one of the study objectives is to observe the difference in genetic 

characteristics between PGC and DGC, we index the category values in the anatomic 

neoplasm subdivisions, as shown in Table 1. Since TCGA does not separate the 

fundus and body, the study considered different groups for the dataset: the fundus 

and body category values are removed (Group 1), or are set as PGC (Group 2), or 

are regarded as a new classification class (Group 3), which should be predicted 

(Table 1). 

Category Number Index 

Gastroesophageal 

Junction 
37  0 (Proximal) 

Cardia/Proximal 45  0 (Proximal) 

Fundus/Body 124  

Group 1: Drop (Exclusion) 

Group 2: 0 (Proximal) 

Group 3: 2 (Fundus/Body) 

Antrum/Distal 130  1 (Distal) 

Other 3  

Drop (Exclusion) 
Stomach (Not otherwise 

specified) 
5  

Discrepancy 1  

Table 1. The distribution of the anatomic neoplasm subdivisions in gastric cancer. 

(In Group 1, the analysis was conducted excluding the Fundus/Body data, while in 

Group 2, the Fundus/Body data was classified as proximal gastric cancer for analysis, 

and in Group 3, it was classified and analyzed as a separate new group.) 

   

2. Statistical analysis   
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The study performed several statistical tests to identify the noteworthy 

features. A normality test for both distributions, by indexing the anatomic neoplasm 

subdivisions, was performed to determine if both distributions passed the normality 

test. If both distributions passed the normality test, an equality test was performed, 

and t-tests with or without equality were performed accordingly. In addition, if 

normality was not passed, the Mann-Whitney U test and the chi-square test were 

performed for continuous and categorical values, respectively. If there is a genetic 

difference between PGC and DGC, and the P value was less than 0.05, that was 

regarded as statistically significant.   

However, we remark that multiple testing correction is necessary because 

it provides a way to control the rate at which false positives occur when performing 

multiple statistical tests simultaneously.22 When conducting multiple tests, it is 

possible to obtain meaningful results by chance alone, even when there is no true 

effect present. This can lead to false positive results, which can lead to wrong 

conclusions. Some commonly used methods for addressing the multiple testing 

problem when conducting multiple statistical tests simultaneously, each with its 

advantages and disadvantages, include the Bonferroni correction, false discovery 

rate (FDR), Benjamini-Hochberg correction, and so on. This study used the FDR 

since it is less conservative with high statistical power, and it minimizes the risk of 

missing important results.23 The alpha parameter was set as 0.05, which is a threshold 

that controls the overall FDR. This value represents the significance level of the 

statistical test. The value is compared to the P value, which represents the probability 

of obtaining the observed results by chance alone. Using the P values obtained with 

the FDR, we finally chose 2,109 candidates from the 7,784 features whose P values 

are less than 0.05 among more than 50,000 identifiers, which may result in PGC or 

DGC.  For statistical analysis, the study utilized Python libraries including SciPy, 

which is an open-source software for mathematics, science, and engineering.  

 

3. Standard Approach 

Before utilizing ML, feature distributions were compared between PGC 

and DGC patients, where each feature has a P value smaller than 0.05. Next, volcano 

and heatmap plots were produced to check whether some of the RNA and DNA data 

are separable between PGC and DGC patients. 
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4. Machine Learning Approach 

 To apply ML algorithms, data was split after FDR into training and test 

datasets, where P values for each feature distribution are smaller than 0.05. Then, 

10-fold cross-validation was performed for various ML algorithms. The study 

validated various tree generation methods: from the vanilla decision tree method,24 

some methods generated new trees independently, which were used for voting to 

improve the performance (e.g., Random Forest25 and Extra Trees26). Gradient 

boosting classifiers are a type of machine learning algorithm, where the generation 

of a decision tree depends on the previous trees and focuses on their errors (e.g., 

vanilla Gradient Boosting,27 Light Gradient Boosting Machine,28 CatBoost,29 

Extreme Gradient Boosting,30 Ada Boost31). In addition, other standard methods 

were considered: logistic regression, linear discriminant,32 quadratic discriminant,33 

ridge,34 Naïve Bayes,35 support vector machine,36 the K-Nearest Neighbor 

algorithm,37 and Dummy Classifier, which ignore features and determine a class 

randomly. Among them, the best algorithm is selected to analyze which features are 

significant for predicting gastric cancer locations. 

Finally, the study conducted EnrichR analysis for the top 30 important 

features to confirm whether they are indeed related to gastric cancers or not.38-40 Note 

that the study objective is to determine which features are significant, so we do not 

consider an ensemble of ML models to improve performance (e.g., blending machine 

learning models). 

 

Results 

In the TCGA data, the location of the gastric cancer and the number of 

corresponding patients were 'Antrum/Distal': 130, 'Cardia/Proximal': 45, 

'Fundus/Body': 124, 'Gastroesophageal Junction': 37, 'Other': 3, 'Stomach (NOS)': 5, 

and 'Discrepancy': 1.  

The study first extracted the top 10 genes with respect to copy numbers and 

RNA seq, sorted by P values, as shown in Table 2 and Table 3. PTEN is a tumor 

suppressor gene that is involved in various cellular processes, including cell growth, 

differentiation, and survival.41 Loss of PTEN function has been implicated in the 

development and progression of several types of cancer, including gastric cancer. 
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Although there are some high-ranking genes, e.g., HMX3, to the best of our 

knowledge, there is little evidence linking these genes to gastric cancer. However, it 

is noteworthy that they have different distributions for proximal and distal cancers. 

1 shows the distribution of the DNAs which have the smallest P values. Figure 2 

shows that there are also some differences between the two different cancer positions. 

However, analyzing features independently is inefficient due to the large number of 

features, and some feature distributions between PGC and DGC are barely 

distinguishable (Figure 1). Therefore, it is unclear which combination of genes or 

samples are suitable for characterizing the gastric cancer position. Indeed, the study 

compared the copy number variation and expression of RNAseq. Among the genes 

that are commonly expressed, 62 showed significant differences in both copy 

number and expression of RNAseq. Furthermore, 1,659 genes showed significant 

differences in copy number but not in the expression of RNAseq, while there were 

no genes that showed significant expression differences in RNAseq but no 

differences in copy number. This result suggests that copy number may be a more 

important expression phenotype for determining the location of gastric 

cancer. However, as we observed, there are many features with high correlations 

(Figure 1), so it is naïve to conclude that the combination of low P value features is 

effective. Besides, even by using a heatmap (Figure 3), the study could not observe 

some differences between PGC and DGC. Accordingly, a new approach that can 

capture multiple features simultaneously is necessary. 
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Proximal dominant Distal dominant 

Feature P value Feature P value 

NKAP 0.005362 RTKN2   0.0000895   

FGF13 0.006486 ADO   0.000117   

KIAA1210 0.007785 EGR   0.000117   

LONRF3 0.007966 RN7SL591P   0.000145   

WDR44 0.0086 ZNF365   0.000145   

MIR1277 0.0086 JMJD1C   0.00017   

IL13RA1 0.009243 NRBF2   0.000186   

DOCK11 0.009243 MIR1296   0.000213   

ZCCHC12 0.009965 REEP3   0.000228   

SMIM10 0.010270047 PTEN   0.000466   

Table 2. Top 10 important copy numbers (gene level) with respect to the copy level 

sorted by P values. 

 
Proximal dominant Distal dominant 

Feature P value Feature P value 

MYBPH 0.000051  MPP3 0.000156 

ZAR1L 0.000066  IRX3 0.001313 

LOC100131257 0.000236  ARNT2 0.001515 

SNORA70D 0.000251  HOMER2 0.002174 

CACNA2D4 0.000536  RELA 0.00237 

GPR128 0.000546  EYA2 0.00256 

ALKBH1 0.000551  IRS4 0.002954 

SPAM1 0.000691  ADRB1 0.003034 

ZNF18 0.000853  WWTR1-AS1 0.00324 

DQ594410 0.000946  FAM102A 0.003635 

Table 3.  Top 10 important features with respect to RNAseq sorted by P values. 
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(a) ADO_DNA    (b) EGR2_DNA 

 
(c) RN7SL591P_DNA   (d) RTKN2_DNA 

Figure 1. Distribution of gene values across different types. The distributions of 

individual genes between distal gastric cancer (DGC) and proximal gastric cancer 

(PGC) are markedly different. However, the distributions for DNA features are 

almost identical between the two groups. 
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Figure 2. Volcano plot with respect to RNA and DNA features after false discovery 

rate correction. The blue and red points denote features having different distributions 

with a large fold change. 

 

 
Figure 3. Heatmap Plot. The x-axis represents patients, while the y-axis represents 

individual features, including RNA sequences and DNA copy numbers. 
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Since the determination of the ideal combinations of RNA and DNA 

features for gastric cancer positions is complex, the study utilized ML algorithms to 

predict the locations of gastric cancer because well-trained models can identify 

which features are crucial for determining the location of cancers. The various ML 

algorithms require validation, and it is then possible to choose the best algorithm. As 

illustrated in Table 1, the study considered three types of datasets (Group 1: the 

fundus and body category values are removed, Group 2: the fundus and body 

category values belong to PGC, and Group 3: the fundus and body category values 

are in a new class). To validate the methods, 10-fold cross-validations were used. To 

perform this, the training and test datasets were randomly split into 75% and 25% 

portions, respectively. 

  



 

 １１ 

Model Accuracy AUCa Recall Precision F1 score Kappa MCCb 

Gradient Boosting 

Classifier 

0.7571 0.905 0.85 0.787 0.8032 0.4789 0.5187 

Light Gradient Boosting 

Machine 

0.7929 0.889 0.8611 0.8188 0.8317 0.5593 0.5817 

CatBoost Classifier 0.7929 0.8758 0.8958 0.7968 0.8361 0.5508 0.5809 

Extreme Gradient 

Boosting 

0.7571 0.8568 0.8486 0.7809 0.8054 0.4784 0.5048 

Extra Trees Classifier 0.7786 0.8508 0.8722 0.7952 0.8235 0.5232 0.5536 

Random Forest 

Classifier 

0.7714 0.841 0.8611 0.7918 0.8182 0.5035 0.522 

Ada Boost Classifier 0.7786 0.8246 0.8264 0.8231 0.8174 0.5319 0.5499 

Logistic Regression 0.7786 0.8197 0.8597 0.7995 0.8241 0.5263 0.539 

Naive Bayes 0.7 0.7469 0.7486 0.7782 0.7506 0.3789 0.4022 

K-Nearest Neighbor 

algorithm 

0.7 0.7446 0.8236 0.7358 0.7703 0.3333 0.3504 

Decision Tree Classifier 0.6857 0.6668 0.7569 0.7417 0.7381 0.339 0.3581 

Linear Discriminant 

Analysis 

0.6857 0.6666 0.7542 0.7374 0.742 0.3328 0.3388 

Quadratic Discriminant 

Analysis 

0.4929 0.5032 0.5097 0.6249 0.5317 0.0036 0.0031 

Dummy Classifier 0.6143 0.5 1 0.6143 0.7605 0 0 

Ridge Classifier 0.7143 0 0.7806 0.7814 0.7685 0.3988 0.4144 

SVM -  

Linear Kernel 

0.6571 0 0.6417 0.7049 0.6218 0.3373 0.3885 

Table 4. Results of 10-fold cross-validation using various machine learning 

algorithms with Group 1. (In Group 1, the analysis was conducted excluding the 

Fundus/Body data.) 
a AUC : Area under curve 

b MCC : Matthews Correlation Coefficient 
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Model Accuracy AUCa Recall Precision F1 score Kappa MCCb 

Logistic Regression 0.7786 0.8136 0.8611 0.799 0.8248 0.5215 0.5374 

CatBoost Classifier 0.7643 0.8018 0.9069 0.7709 0.8276 0.455 0.4837 

Random Forest 

Classifier 

0.7571 0.7974 0.8611 0.7715 0.8076 0.4715 0.4977 

Gradient Boosting 

Classifier 

0.75 0.779 0.8625 0.7717 0.8083 0.4445 0.4668 

Extra Trees Classifier 0.7429 0.7812 0.825 0.779 0.7948 0.4427 0.4637 

Ridge Classifier 0.7357 0 0.85 0.7623 0.7983 0.4153 0.4381 

Ada Boost Classifier 0.7286 0.7614 0.8278 0.7678 0.7899 0.3995 0.4169 

K-Nearest Neighbor 

algorithm 

0.7214 0.7099 0.8708 0.7326 0.7924 0.3722 0.4014 

Light Gradient 

Boosting Machine 

0.7143 0.7939 0.8153 0.7561 0.7756 0.3689 0.3854 

SVM - Linear Kernel 0.7 0 0.7028 0.8051 0.7103 0.4102 0.4642 

Naive Bayes 0.6714 0.7033 0.725 0.7369 0.7251 0.303 0.3006 

Decision Tree 

Classifier 

0.6571 0.6483 0.7 0.7382 0.7142 0.2907 0.2945 

Dummy Classifier 0.6143 0.5 1 0.6143 0.7605 0 0 

Linear Discriminant 

Analysis 

0.5929 0.6189 0.6056 0.703 0.6363 0.1731 0.1875 

Quadratic 

Discriminant 

Analysis 

0.5571 0.5693 0.4986 0.7103 0.5607 0.1245 0.1428 

Table 5. Results of 10-fold cross-validation using various machine learning 

algorithms with Group 2. (In Group 2, the Fundus/Body data was classified as 

proximal gastric cancer for analysis.) 
a AUC : Area under curve 

b MCC : Matthews Correlation Coefficient 
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Model Accuracy AUCa Recall Precision F1 score Kappa MCCb 

CatBoost Classifier 0.7281 0.6853 0.1595 0.5333 0.2352 0.1441 0.1836 

Light Gradient Boosting 

Machine 

0.7235 0.6743 0.3167 0.4338 0.3575 0.2179 0.2201 

Random Forest Classifier 0.7233 0.65 0.1571 0.51 0.2203 0.1277 0.1645 

Gradient Boosting Classifier 0.7194 0.6485 0.3 0.4625 0.3421 0.2054 0.2227 

Dummy Classifier 0.7146 0.5 0 0 0 0 0 

Extra Trees Classifier 0.7142 0.6179 0.1238 0.5333 0.1952 0.0946 0.1373 

Ada Boost Classifier 0.7012 0.6774 0.3476 0.5079 0.3969 0.2113 0.226 

Logistic Regression 0.6885 0.6781 0.4714 0.469 0.4556 0.2432 0.2513 

K-Nearest Neighbor algorithm 0.6826 0.5348 0.1071 0.35 0.1583 0.0247 0.0368 

Linear Discriminant Analysis 0.6557 0.6208 0.481 0.4035 0.4323 0.1898 0.1963 

Ridge Classifier 0.652 0 0.4833 0.4016 0.4255 0.1838 0.1934 

Decision Tree Classifier 0.6344 0.5493 0.3548 0.3549 0.3421 0.0978 0.0994 

SVM - Linear Kernel 0.6338 0 0.4167 0.3224 0.3221 0.1186 0.1482 

Quadratic Discriminant 

Analysis 

0.5986 0.5375 0.4 0.3254 0.3507 0.0671 0.0702 

Naive Bayes 0.5937 0.5926 0.4881 0.3626 0.4111 0.1201 0.1191 

Table 6. Results of 10-fold cross-validation using various machine learning 

algorithms with Group 3. (In Group 3, the Fundus/Body data was classified and 

analyzed as a separate new group.) 
a AUC : Area under curve 

b MCC : Matthews Correlation Coefficient 

 

The results demonstrated that the gradient boosting methods were superior 

to the other methods. Especially, CatBoost belongs to the top three ML algorithms 

in each of Group 1, Group 2, and Group 3, based on the AUC (Table 4~6). The 

performance in Group 3 degrades significantly because there is a large gap between 

the binary classification and multiple classification with many features. 

Therefore, the study focused on Group 1 and Group 2, but not Group 3, and 

selected CatBoost to analyze the results, since it is known as one of the best gradient 

boosting methods due to its ability to handle large datasets with high-dimensional 

features and its efficient memory usage. It also has several built-in features to prevent 

overfitting, such as the ability to perform early stopping and to use a custom loss 
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function. Additionally, it has a robust implementation of feature importance 

calculation, which can help users understand which features are most important in 

their models. 

For Group 1, the study observed an AUC of the ROC curve of 0.89 when 

using the test dataset, as shown in Figure 4. (a). This demonstrates a remarkable 

performance. For Group 2, the study obtained an AUC of 0.75 for ROC curve when 

using the test dataset, which means that the prediction performance is fairly good, 

but there is a gap between Group 1 and Group 2, as shown in Figure 4. (b). 

Commonly, adding uncertain data for training and testing may degrade ML 

algorithms. Moreover, we computed the feature importance calculated by CatBoost. 

Figure 5. (a)-(b) shows which features are important in determining the position of 

gastric cancers for Group 1 and Group 2, respectively. 

 
(a) Group 1    (b) Group 2 

Figure 4. ROC curves with AUCs of 0.89 and 0.75 for Group 1 and Group 2, 

respectively, after training with CatBoost. (In Group 1, the analysis was conducted 

excluding the Fundus/Body data, while in Group 2, the Fundus/Body data was 

classified as proximal gastric cancer for analysis.) 
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(a) Group 1, in which the analysis was conducted excluding the Fundus/Body data 

 

 
(b) Group 2, in which the Fundus/Body data was classified as proximal gastric cancer 

for analysis 

 

Figure 5. Top 30 feature importance by CatBoost in Group 1 and Group 2. 

(Group 1 excludes the Fundus/Body data in the analysis, whereas Group 2 classifies 

the Fundus/Body data as proximal gastric cancer for analysis.) 

 

Figure 6 shows the EnrichR analysis of the top 30 important features for 

CatBoost's predictions based on P values in Group 1, for which performance is 

indicated by an AUC of 0.89. These features are highly related to gastric cancers. 

For instance, studies have shown that FGFR1, FGFR2, and FGFR4 are 

overexpressed in gastric cancer tissues and that the aberrant activation of FGFR 

signaling is involved in the development and progression of gastric cancer.42 

Additionally, some preclinical studies have suggested that targeting FGFR signaling 

may have therapeutic potential in treating gastric cancer.43  
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(a) Bioplanet_2019 

(b) GO_Biological_Process_2021 

 

(c) GO_Cellular_Component_2021 
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(d) GO_Molecular_Function_2021 

(e) KEGG_2021_Human 

 

(f) MGI_Mammalian_Phenotype_Level_4_2021 
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(g) Reactome_2022 

(h) WikiPathway_2021_Human_bar_graph 

 

Figure 6. EnrichR analysis of the top 30 important features for CatBoost's 

predictions based on P values in Group 1. (Group 1 excludes the Fundus/Body data 

in the analysis.) 

 

Discussion 

 This study utilized the ML-based classification of PGC and DGC through 

the TCGA database. The study findings offer valuable insights that could contribute 

to the development of personalized treatment strategies and targeted therapies. The 

clinical importance of differentiating between PGC and DGC is particularly 

emphasized when tumors are located in regions such as the mid to high body of the 

stomach. In these cases, function-preserving surgeries such as proximal gastrectomy 

or pylorus-preserving gastrectomy become viable surgical options in addition to total 

gastrectomy. This differentiation is crucial in order to tailor the surgical approach to 
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the specific characteristics and location of the tumor, ultimately aiming to maximize 

patient outcomes and preserve gastric function 

Overall, the study highlights the importance of considering anatomical and 

genetic differences when classifying gastric cancer and developing personalized 

treatment strategies. By suggesting possible genetic characteristics associated with 

PGC and DGC, the findings may contribute to more effective diagnosis, treatment, 

and prognosis for gastric cancer patients.  

The TCGA database grouped the fundus and body together. Based on the 

Japanese classification of gastric carcinoma, the stomach can be divided into three 

sections — the upper, middle, and lower parts — using lines that connect the 

trisected points on the lesser and greater curvatures.4 Even though mid-body cancer 

and lower-body cancer of the stomach are anatomically part of the middle third of 

the stomach, body cancer was grouped into the PGC group. This grouping may have 

obscured the unique genetic characteristics of PGC and made it challenging to 

differentiate between PGC and DGC, particularly for middle-third stomach body 

cancer, which is classified as PGC. When analyzing the data with the exclusion of 

the Fundus/Body, the performance of ML prediction increased from an AUC of 0.75 

to 0.89. Future research should consider more detailed analyses using databases that 

include comprehensive clinicopathologic and genetic information. Larger patient 

cohorts and more homogeneous patient populations, such as Korean patients, could 

provide a more accurate understanding of the molecular mechanisms driving these 

subtypes of gastric cancer. 

This study had some limitations related to the heterogeneous patient 

population in the TCGA database, which comprises individuals of various racial 

backgrounds. This may have introduced confounding factors when evaluating cancer 

subtype differences across different ethnicities. As East Asian and Western gastric 

cancer exhibit distinct characteristics, the genetic differences observed in this study 

may not be wholly generalizable to all racial groups. Another limitation of this study 

is the inability to compare normal and tumor data in the RNAseq data obtained from 

the TCGA database. While RNAseq has shown remarkable performance in 

accurately distinguishing PGC and DGC using ML, it may not be directly applicable 

or specific to tumor samples. 
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Conclusion 

Through the utilization of ML and the TCGA-STAD database, the study 

introduced possible genetic distinguishing points between PGC and DGC, 

suggesting potential differences in their genetic profiles. 
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초    록 

TCGA 데이터베이스를 활용한 

근위부 위암과 원위부 위암의 

기계학습 기반 분류 
이은주 

의학과 외과학 전공 

서울대학교 

 

서론: 위암의 위치에 따라 근위부 위암과 원위부 위암으로 분류할 수 

있으며, 서로 다른 위험 요인을 가지며, 임상병리학적 특성이 다르다는 

것이 알려져 있다. 본 연구에서는 기계학습 기반으로 The Cancer 

Genome Atlas (TCGA) 데이터베이스를 활용하여 근위부 위암과 

원위부 위암의 DNA copy number variation 및 RNAseq의 차이를 

비교해보고자 하였다. 

 

방법: TCGA-STAD 데이터셋을 전처리하여 근위부 위암과 원위부 

위암에서의 유전적 차이를 조사 및 분석하였다. 기계 학습 기반의 

Grandient Boosting 알고리즘을 이용하여 위암의 위치를 DNA copy 

number variation 및 RNAseq 정보를 이용하여 예측 및 예측에 쓰인 

인자를 확인하였다. 상위 30개 특성을 추출하여 EnrichR 분석을 

수행하였다. 

 

결과: 근위부 위암과 원위부 위암에 관련된 잠재적 유전자들을 

확인하였으며, 기계학습 알고리즘 중 하나인 CatBoost를 활용하여 

근위부 위암과 원위부 위암의 구분하는 특징에 대해서 확인하였다. 
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위저부/위체부 데이터를 근위부 위암으로 분류하여 분석시에 

CatBoost의 테스트 데이터에 대한 ROC 곡선의 AUC는 0.75였으나, 

제외하고 분석시에는 ROC 곡선의 AUC는 0.89로 향상되었다. 

 

결론: 본 연구에서는 기계학습 기반으로 TCGA-STAD 데이터베이스를 

활용하여 근위부 위암과 원위부 위암을 구분하는 가능성 있는 유전적 

차이에 대해 확인해보았다. 

 

주요어 : 위암, 유전학 

학   번 : 2021-20463 
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