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Abstract 
 

 

Ryu, Hyungshin 

Department of Linguistics 

Graduate School 

Seoul National University 

 

 

Empirical studies report a strong correlation between pronunciation scores and 

mispronunciations in non-native speech assessments of human evaluators. However, 

the existing system of computer-assisted pronunciation training (CAPT) regards 

automatic pronunciation assessment (APA) and mispronunciation detection and 

diagnosis (MDD) as independent and focuses on individual performance 

improvement. Motivated by the correlation between two tasks, this study proposes a 

novel architecture that jointly tackles APA and MDD with a multi-task learning 

scheme to benefit both tasks. Specifically, APA loss is examined between cross-

entropy and root mean square error (RMSE) criteria, and MDD loss is fixed to 

Connectionist Temporal Classification (CTC) criteria. For the backbone acoustic 

model, self-supervised model is used with an auxiliary fine-tuning on phone 

recognition before multi-task learning to leverage extra knowledge transfer. 

Goodness-of-Pronunciation (GOP) measure is given as an additional input along 

with the acoustic model. 

The joint model significantly outperformed single-task learning 

counterparts, with a mean of 0.041 PCC increase for APA task on four multi-aspect 
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scores and 0.003 F1 increase for MDD task on Speechocean762 dataset. For the joint 

model architecture, multi-task learning with RMSE and CTC criteria with raw 

Robust Wav2vec2.0 and GOP measure achieved the best performance. Analysis 

indicates that the joint model learned to distinguish scores with low distribution, and 

to better recognize mispronunciations as mispronunciations compared to single-task 

learning models. 

Interestingly, the degree of the performance increase in each subtask for the 

joint model was proportional to the strength of the correlation between respective 

pronunciation score and mispronunciation labels, and the strength of the correlation 

between the model predictions also increased as the joint model achieved higher 

performances. The findings reveal that the joint model leveraged the linguistic 

correlation between pronunciation scores and mispronunciations to improve 

performances for APA and MDD tasks, and to show behaviors that follow the 

assessments of human experts. 

 

 

Keyword: computer-assisted pronunciation training, multi-task learning, self-

supervised learning, Goodness-of-Pronunciation, automatic pronunciation 

assessment, mispronunciation detection and diagnosis 
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Chapter 1. Introduction 

 

The incorporation of speech technology into education has consistently grown and 

has brought meaningful results (Eskenazi 2009; Litman, Strik, and Lim 2018). The 

field of computer-assisted pronunciation training (CAPT) has similarly made rapid 

progress, with the spread of internet-based applications and the significant 

development of automatic speech recognition technology. The CAPT system serves 

as a powerful tool for non-native learners, as it provides customized feedback at a 

low cost. Minimized time and place constraints typical in traditional instructor-based 

learning bring another advantage to CAPT (Rogerson-Revell 2021). 

The CAPT system generally consists of two major tasks, automatic 

pronunciation assessment (APA) and mispronunciation detection and diagnosis 

(MDD). APA task can be seen as a speech classification or regression task, which 

aims to provide pronunciation scores that are highly correlated with those of human 

evaluators (Gong et al. 2022; Naijo, Ito, and Nose 2021). The task models various 

types of scores, as the labeled scores reflect different aspects of scoring standards 

(phoneme, rhythm, intonation) as in ERJ dataset (Minematsu et al. 2004) or different 

granularities (phones, words, sentences) as in Speechocean762 (Zhang et al. 2021). 

MDD task on the other hand is a non-native phone recognition task. It aims to 

correctly classify and diagnose the recognized phones into correct pronunciations 

and mispronunciations, by comparing the recognized phones with the annotated 

phone transcriptions of human experts and the canonical phone sequences (Leung, 

Liu, and Meng 2019; Peng et al. 2021). The detected mispronunciations are classified 

into substitution, insertion, and deletion, and are further diagnosed into discrete 
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phones. 

As APA and MDD both assess non-native (L2) speech, the two tasks 

inevitably share similar methodologies in acoustic models and acoustic features. 

Studies propose acoustic models that better reflect the general characteristics of non-

native speech. Recently with the advance of deep learning, self-supervised learning 

(SSL) models are frequently adopted in MDD tasks after its first exploration in Xu 

et al. (2021) and Peng et al. (2021), followed by APA tasks in Chao et al. (2022) and 

Kim et al. (2022) for their robust acoustic representation. Acoustic features on the 

other hand capture a specific quality of speech. Goodness-of-Pronunciation (GOP) 

measure, a duration normalized posterior phone probability, is a representative 

acoustic feature proposed by Witt and Young (2000) to provide phone scores. The 

measure is used both in APA task (Sudhakara, Ramanathi, Yarra, and Ghosh 2019; 

Tong et al. 2014) and MDD task (Hu, Qian, and Soong 2015) for their high 

correlation with human experts. 

Indeed, empirical studies report that there exists a distinct correlation 

between pronunciation scores and mispronunciations that are annotated by human 

evaluators for non-native speech assessments (Chen et al. 2016; Munro and Derwing 

1995; O’Brien 2014; Yang and Chung 2017). Mispronunciations showed a strong 

correlation with not only overall assessment such as comprehensibility scores of L2 

German (O’Brien 2014) and holistic scores of L2 Korean (Yang and Chung 2017), 

but also prosodic assessment such as fluency scores of L2 Mandarin (Chen et al. 

2016), and accent scores of L2 English (Munro and Derwing 1995). This applied to 

both cases where mispronunciation annotators and score annotators were different 

(Chen et al. 2016; Munro and Derwing 1995; Yang and Chung 2017) or the same 
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(Yang and Chung 2017). This provides strong linguistic motivation to leverage the 

correlation between APA and MDD tasks to benefit each other. 

However, current CAPT studies have treated the two tasks as independent 

and separate. One reason lies in the proposals focusing on improving the model 

performance on different benchmark datasets for the respective task. L2-ARCTIC 

(Zhao et al. 2018) is often used to test MDD performance, while Speechocean762 

(Zhang et al. 2021) is used to measure APA performance. Other studies use 

Speechocean762 only as an MDD benchmark (Wadud, Alatiyyah, and Mridha 2023; 

Zhang et al. 2022). A few studies that mention both tasks still regard one as an 

auxiliary task to support the other (Lin et al. 2020; Lin and Wang 2023) or a task that 

can be separately achieved with a change in input or task-specific layers (Fan et al. 

2023; Zheng et al. 2022). However, given the significant linguistic correlation, an 

integrated model of the two tasks is expected to improve performances on both tasks. 

This work presents for the first time an integrated architecture that jointly 

trains pronunciation assessment task and mispronunciation detection and diagnosis 

task via a multi-task learning perspective, to leverage their correlation. Three 

architectures are experimented for the joint model. To further enhance the acoustic 

representation of the model, self-supervised learning model is used with additional 

phone recognition fine-tuning before multi-task learning. Four types of self-

supervised learning model and three types of phonetically labeled datasets are 

experimented. This work contributes by verifying that the joint model shows distinct 

improvement on both APA and MDD tasks, compared to the respective single-task 

learning on Speechocean762 dataset. Analyses reveal that the performance 

improvements of the joint model with respect to single-task learning model are 
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proportional to the strength of the correlation between the labels, and that the 

correlation between model predictions also increases as the joint model achieves 

improved performances, which prove the importance of this study. 

The remaining chapters are organized as follows: Chapter 2 provides an 

overview of the approaches in APA and MDD studies that are related to this work. 

Chapter 3 demonstrates the model architecture and experiment settings. Chapter 4 

presents the experiment results of three different architectures for the joint model, 

and compares the results with respective APA and MDD model. Effects of leveraging 

different backbone models are also presented. The experiment results are analyzed 

for the model that had the best performance. Chapter 5 discusses how the joint model 

was able to leverage the correlation between pronunciation scores and 

mispronunciations to achieve performance improvements, using correlation analysis 

and experiment results of different multi-task learning loss weight. Chapter 6 

summarizes the findings of the paper and their importance. 
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Chapter 2. Related work 

 

Automatic pronunciation assessment task and mispronunciation assessment tasks 

share the main goal of assessing non-native speech using machine learning 

techniques. As the two tasks are primarily interested in building models that can 

exactly identify the differences in pronunciation, they inevitably share similar 

methodologies.  

 

2.1. Acoustic models 

Acoustic modeling is a major research subject in APA and MDD studies as it is 

directly related to extracting acoustic representations from utterances. The goal of 

acoustic modeling is to adopt robust models that can correctly reflect the 

characteristics of non-native speech. It takes advantage of the development in 

automatic speech recognition (ASR) system. The backbone acoustic models used in 

APA and MDD studies leverage the ASR architectures that are proven to show lower 

word error rates and robustness in other downstream speech tasks. 

Traditional acoustic models include Hidden Markov Model (HMM) and 

Gaussian Mixture Model (GMM)-based GMM-HMM. With the advance of deep 

neural networks (DNN), deep networks have shown to give significantly lower word 

error rates than the Gaussian networks (Hinton et al. 2012). Thus, the GMM module 

was substituted to the DNN module as to build DNN-HMM acoustic models. APA 

studies use these traditional acoustic models to obtain recognized non-native speech, 

which the machine learning or deep learning-based scoring module use as inputs to 
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output final scores (Lin and Wang 2021b; Metallinou and Cheng 2014). Similarly 

MDD studies use these acoustic model to get recognized phone predictions (Harrison 

et al. 2009; Tsubota, Dantsuji, and Kawahara 2004). However, GMM-HMM and 

DNN-HMM acoustic models in APA and MDD studies commonly have the burden 

of forced alignment for senone labels (Metallinou and Cheng 2014), pre-defined 

mispronunciation patterns (Harrison et al. 2009; Tsubota et al. 2004), and 

pronunciation dictionary (Tsubota et al. 2004). 

Recent models have shifted to end-to-end (E2E) deep learning methods. 

One big advantage of E2E models is that it does not require forced alignment, 

pronunciation dictionary, or language models, which simplifies the complex process 

of traditional acoustic models. As the individual modules are integrated in a single 

network, the potential errors that were previously accumulated between the 

processes of building the ASR system are minimized as well. Most importantly, E2E 

models provide improved performances compared to the traditional acoustic models. 

In the APA domain, three different end-to-end architectures are experimented in 

Chen et al. (2018) to automatically learn acoustic and lexical cues. In Kyriakopoulos 

et al. (2018), an end-to-end Siamese network is used to compute phone distances. 

Leung et al. (2019) is the first study in the MDD domain to adopt E2E architecture, 

in particular CNN-RNN-CTC model. Lo et al. (2020) and Zhang et al. (2020) 

proposes a hybrid CTC/ATT, a hybrid usage of CTC and attention mechanism to 

detect and diagnose mispronunciations. These CNN-RNN-CTC and Hybrid 

CTC/ATT models are frequently compared in MDD studies as baselines (Algabri et 

al. 2022; Lin and Wang 2022; Peng et al. 2021; Wang et al. 2022). 

With more large and high-end architectures proposed in various artificial 
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intelligence domains, the backbone acoustic models used in the CAPT systems are 

shifting rapidly to Transfomer and pre-trained self-supervised learning models as 

they show robustness in data scarce non-native assessments. Transformer (Vaswani 

et al. 2017) is a multi-head self-attention based encoder-decoder model that have 

shown the state-of-the-art performances in machine translation task and have since 

been the norm in natural language processing. In the APA task, Gong et al. (2022) 

have proposed Goodness-of-Pronunciation Transformer (GOPT) that takes the GOP 

measure as input to a Transformer-based architecture to assess multi-granular, multi-

aspect scores. Developed versions of Transformer are also frequently introduced. 

Conformer (Gulati et al. 2020), a convolution augmented Transformer, was adopted 

in Fan et al. (2023) as the backbone architecture in individual APA and MDD models 

with separate task-specific layers and multi-width band. Squeezeformer (S. Kim et 

al. 2022), an optimized Conformer, is used as an encoder along with Transformer-

based decoder in Guo et al. (2023) for MDD task. 

 

2.1.1. Self-supervised learning model 

Self-supervised learning (SSL) is a method in which a model learns general 

representations from unlabeled data. After the pre-training stage, the model is then 

fine-tuned with labeled data to meet the objective of each downstream task. Pre-

trained with a vast amount of unlabeled audio data, SSL models have shown the 

state-of-the-art performances in various speech tasks including speech recognition 

and language identification with only a little amount of labeled data. 

The pre-trained self-supervised learning models provide rich acoustic 

representation which can alleviate the data scarcity problem inherent in the CAPT 
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system and lead to better model performances. In the MDD task, Xu et al. (2021) 

and Peng et al. (2021) utilizes Wav2vec2.0 (Baevski et al. 2020) to fine-tune on CTC 

(Connectionist Temporal Classification) criteria. In the APA task, Chao et al. (2022) 

uses a mix of Wav2vec2.0, HuBERT, and WavLM to assess multi-granular, multi-

aspect scores. Kim et al. (2022) compares different configurations of Wav2vec2.0 

(Baevski et al. 2020; Hsu, Sriram, et al. 2021) and HuBERT (Hsu, Bolte, et al. 2021) 

to validate their usefulness. 

 

2.1.1.1. Robust Wav2vec2.0 

Wav2vec2.0 (Baevski et al. 2020) is the most representative model to utilize self-

supervised learning scheme. As in Figure 1, the model consists of a multi-layer 

convolutional feature encoder, a quantization module, and a Transformer-based 

context network which is trained end-to-end. The output of the feature encoder 𝑧 is 

separately fed into the quantization module and the context network, to respectively 

discretize the representation using Gumbel softmax objective, and learn the 

contextual information of the speech. A portion of latent speech representation is 

masked before being used as input for the context network. For each masked time 

step, the goal is to predict the correct quantized representation 𝑞 for the context 

representation 𝑐  among other quantized representation distractors using the 

contrastive loss 𝐿𝑚 and the diversity loss 𝐿𝑑. 

The pre-trained Wav2vec2.0 comes with two model sizes; BASE with 95m 

(approximated to 100m) parameters and LARGE with 317m (approximated to 300m) 

parameters. Both models are trained with recorded English audiobook dataset 

LibriSpeech (960 hrs.), and LARGE  offers an additional version trained with 
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LibriVox (53.2k hrs.).  

 

Figure 1 Illustration of the original Wav2vec2.0 from Baevski et al. (2020) 

 

Robust Wav2vec2.0 (Hsu, Sriram, et al. 2021) BASE and LARGE share 

the same architecture from the original Wav2vec2.0, but are pre-trained with larger 

amount of unlabeled datasets from multiple domains to explore domain mismatch. 

To be specific, the LARGE model is pre-trained with 63k hours of English datasets 

from three domains, 60k hours of audiobook recordings (Libri-light), 2.3k hours of 

telephone conversation (Switchboard, Fisher), and 700 hours of Wikipedia 

recordings (Common Voice). Hsu et al. (2021) reveals that increasing the pre-trained 

data and domain variety helps models to achieve better speech recognition 

performances even for out-of-domain data, hence the name robust. 

 

2.1.1.2. Wav2vec2.0 XLS-R 

XLSR (Conneau et al. 2021) and the updated XLS-R (Babu et al. 2022) are 

multilingual versions of Wav2vec2.0 that were proposed to test cross-lingual 

performances for unsupervised pre-training. As illustrated in Figure 2, the models 
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are pre-trained on multiple languages at the same time, with the expectation that they 

will learn the discrete speech representations that are shared across languages. The 

training batches are sampled from multiple languages that form a multinominal 

distribution, with a parameter given to upsample low resource languages. 

 

 

Figure 2 Illustration of XLSR from Conneau et al. (2021)  

 

XLSR comes with BASE  and LARGE  models similar to Wav2vec2.0, 

whereas XLS-R comes with 300m, 1B, and 2B parameter sizes, making XLSR 

LARGE  and XLS-R 300m to have the same architecture and size. The main 

difference between XLSR LARGE and XLS-R 300m lies in the amount of the data 

used for pre-training. The former is pre-trained with Common Voice, BABEL, and 

Multilingual Librispeech which consists a total 56k hours of 53 languages, whereas 

the latter is additionally pre-trained with VoxPopuli and VoxLingua107 datasets 

making up to 436k hours of 128 languages. Similar to the comparison for 

monolingual settings between Wav2vec2.0 and Robust Wav2vec2.0, Babu et al. 

(2022) reveal that the model with larger pre-training datasets show more robustness 

for out-of-domain datasets. 
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2.1.1.3. HuBERT 

 

Figure 3 Illustration of HuBERT from Hsu, Bolte, et al. (2021) 

 

HuBERT (Hsu, Bolte, et al. 2021) is another model to have shown state-of-the-art 

performances by utilizing self-supervised learning paradigm. As illustrated in Figure 

3, the architecture extends Wav2vec2.0 with a convolution encoder and a 

Transformer network, and with inputs of the Transformer network being selectively 

masked. Unlike Wav2vec2.0 that adopts quantization module and a mix of 

contrastive loss and diversity loss, HuBERT (Hidden-Unit BERT) separates the 

quantization step and the masked prediction step and discovers the hidden acoustic 

units by iterative K-means clustering. Specifically, cross-entropy loss between the 

clustered units and outputs of the BERT network is computed to learn the discrete 

acoustic representation. 

HuBERT is publicly available with three sizes, BASE , LARGE , and 

XLARGE , with BASE  and LARGE  having similar configurations to Wav2vec2.0 

and XLARGE having 1B parameters. LARGE model is trained with 60k hours of 
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Libri-light dataset. BASE  and LARGE /XLARGE  models have different iteration 

methods. Whereas BASE starts from MFCC features clustering and then uses latent 

features of Transformer layer to subsequently cluster for a total of two clustering 

iterations, LARGE/XLARGE iterates only once, by leveraging the second iteration 

latent features of the BASE model.  

 

2.1.1.4. WavLM 

 

Figure 4 Illustration of WavLM from S. Chen et al. (2022)  

 

WavLM (Chen et al. 2022) extends HuBERT and Wav2vec2.0. WavLM was 

proposed with the purpose of integrating various speech tasks other than ASR tasks 

to the usage of self-supervised learning speech models, as Wav2vec2.0 and HuBERT 

were tested with speech recognition and phone recognition tasks in their original 

work. To tackle this problem, WavLM implements masked speech denoising and 

prediction, and gated relative position bias as in Figure 4.  WavLM comes with 
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three models, namely BASE  and BASE +  with 100m parameters and LARGE 

with 300m parameters similar to Wav2vec2.0 and HuBERT. 

 

2.2. Acoustic features 

Developing and selecting the appropriate acoustic features that embed non-native 

acoustic characteristics is another important research in APA and MDD literatures. 

If the acoustic models were to capture the generalized acoustic representation of 

speech, the acoustic features capture a specific quality of speech. The features can 

be extracted directly from speech using respective formula, such as fundamental 

frequency and energy (van Dalen, Knill, and Gales 2015). Other features depend on 

speech recognized from acoustic models, as in the case of silence duration, number 

of words per second, and articulation rate (Ryu et al. 2016; Zechner et al. 2009). 

 

2.2.1. Goodness-of-Pronunciation measure 

The Goodness-of-Pronunciation (GOP) measure also belongs to the traditional 

feature-based methods, and is one of the most representative features used for 

pronunciation assessments and mispronunciation detection and diagnosis for its high 

correlation with human experts. GOP measure is a duration normalized log posterior 

probability of phone 𝑝, as defined below from the original paper of Witt and Young 

(2000): 

𝐺𝑂𝑃(p) =  
|log(𝑃(𝑝|𝑂𝑝))|

𝑁𝐹(𝑝)
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=  

|log (
𝑃(𝑂𝑝|𝑝)𝑃(𝑝)

∑ 𝑝(𝑂𝑝|𝑞)𝑃(𝑞)𝑞∈𝑄
)|

𝑁𝐹(𝑝)
 

=  

|log (
𝑃(𝑂𝑝|𝑝)

max
𝑞∈𝑄

𝑝(𝑂𝑝|𝑞)
)|

𝑁𝐹(𝑝)
 

 

where 𝑃(𝑝|𝑂𝑝) is the posterior probability of a speaker to have uttered 

phone 𝑝 given the corresponding audio segment 𝑂𝑝, and 𝑁𝐹(𝑝) is the number of 

the frames in the segment 𝑂𝑝. The posterior probability 𝑃(𝑝|𝑂𝑝) can be expressed 

using (1) the likelihood 𝑝(𝑂𝑝|𝑞) for each phone 𝑞 to match the audio segment 

𝑂𝑝 , (2) and the prior probabilities 𝑃(𝑝)  and 𝑃(𝑞) , where 𝑄  is the set of all 

possible phones corresponding to pronunciation 𝑂𝑝. This is under the assumption 

that all phones have equal probability, 𝑃(𝑝) = 𝑃(𝑞) and that the sum of all possible 

phones can be approximated to maximum. 

Similar to other acoustic model-based features, the GOP formula needs 

acoustic model to compute probabilities. Thus on one side, studies worked on 

adopting better acoustic models that conform well to GOP. In APA domain, the 

original paper Witt and Young (2000) extract GOP from GMM-HMM for phone-

level scoring. Tong et al. (2014) use Subspace GMM (SGMM) for fluency scoring. 

In the MDD domain, Hu et al. (2015) also extend GMM-HMM to DNN-HMM for 

better acoustic model on GOP measure. On the other side, studies have attempted to 

develop the GOP measure itself to achieve higher performances for the target task. 

In the APA domain, Sudhakara et al. (2019) and Lin and Wang (2021a) each present 

noise-robust GOP to cope with assessments in practical education settings. 
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Sudhakara, Ramanathi, Yarra, and Ghosh (2019) derive a GOP formula that 

considers senone posterior probability and HMM state transition probability. In the 

MDD domain, Ryu and Chung (2017) applies articulatory features to GOP (aGOP) 

to provide more sophisticated corrective feedback. Shi et al. (2020) similarly propose 

a context-aware GOP (CaGOP) that uses transition factor and duration factor to 

account for frame-level phone transition in mispronunciation detection. 

Although recent MDD works have seen transitions to end-to-end speech 

recognition-based models, GOP still remains as baseline (E. Kim et al. 2022; Lin and 

Wang 2021b, 2022) and as strong input in state-of-the-art models (Chao et al. 2022; 

Gong et al. 2022) in APA task. 

 

2.3. The limitation of APA and MDD works 

However, few studies have attempted to integrate the two tasks regardless of their 

similarities in methodology. One reason lies in the limited annotations provided in 

the datasets frequently used for CAPT studies. L2-ARCTIC (Zhao et al. 2018), a 

dataset frequently used to measure MDD performance, only provides canonical 

phone sequences and the realized phone sequences with no pronunciation score 

labels. Speechocean762 (Zhang et al. 2021) is a dataset that covers both APA and 

MDD tasks, with detailed scores of multi-aspect, multi-granularity and 

mispronunciation annotations. However, as the dataset was made with the aim of 

assessing pronunciations, most literatures focus on APA task for Speechocean762 

(Gong et al. 2022; E. Kim et al. 2022). Few studies use Speechocean762 as an MDD 

benchmark. D. Zhang et al. (2022) show their data augmentation method improves 

MDD performance on out-of-domain Speechocean762 test set, and Wadud et al. 
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(2023) adopt a non-autoregressive framework for MDD. Nonetheless, they also 

focus only on the MDD task and do not give clear details on how the data was 

preprocessed for the task. 

A few studies that mention both tasks still regard one as auxiliary or 

separate. Lin et al. (2020) cover mispronunciation detection as an auxiliary, binary 

phone-level scoring in multi-granular APA. Lin & Wang (2023) utilize native(-like) 

data and the matching canonical phones for auxiliary CTC training to assist 

holistic/accuracy APA. Zheng et al. (2022) perform phone-level pronunciation 

assessment along with MDD, but as two separate tasks that can be achieved with 

respective APA and MDD datasets for fine-tuning. In a similar sense, Fan et al. (2023) 

adopt Conformer to evaluate on APA and MDD datasets, but with separate models 

of different task-specific layers. 

Given the methodological similarity and the high linguistic correlation 

between automatic pronunciation assessment and mispronunciation detection and 

diagnosis task, this study proposes to integrate the two tasks in a joint model. 
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Chapter 3. Methodology 

 

3.1. Proposed method 

The training process of the proposed joint model for pronunciation assessment and 

mispronunciation detection and diagnosis is illustrated in Figure 5. First, pre-

trained self-supervised learning model is employed as the backbone model for the 

joint model. Second, the SSL model is additionally fine-tuned to make phone 

recognition model. This is to test which of the two backbone models transfer well 

to bring better assessment performances for the joint model. Lastly, joint model of 

APA and MDD is trained using multi-task learning. 

 

 

Figure 5 The training process of the proposed method 

 

Thus the three steps can be categorized into (1) transfer learning with an 

auxiliary fine-tuning on phone recognition, and the main (2) multi-task learning of 

APA and MDD. Chapter 3.1.1, Chapter 3.1.2, and Chapter 3.1.3 explains in detail 

the architecture of each steps. 
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3.1.1. Pre-trained self-supervised learning model 

Transfer learning (TL) takes a resource-rich, huge model from another domain to 

adapt to the target domain. As non-native speech suffers from the inherent problem 

of data scarcity, the usage of SSL as backbone architecture has been a frequent 

practice in the CAPT domain as mentioned in Chapter 2.1.1. Following previous 

studies, this work uses SSL model as backbone acoustic model to transfer its robust 

speech representation. In this paper, four different SSL models are explored, Robust 

Wav2vec2.0 (Hsu, Sriram, et al. 2021), Wav2vec2.0 XLS-R (Babu et al. 2021), 

HuBERT (Hsu, Bolte, et al. 2021), and WavLM (Chen et al. 2022).  

Wav2vec2.0 (Baevski et al. 2020) and its multi-lingual version XLSR 

(Conneau et al. 2021) have shown competitive performances in CAPT literatures of 

APA and MDD tasks. This work uses Robust Wav2vec2.0 and XLS-R with bigger 

amount of pre-training dataset as the original works showed the models to have more 

robustness. HuBERT and WavLM are also experimented as they have been relatively 

underexplored in the CAPT domain. To see the effect of different datasets and 

learning schemes, the size of all the models was controlled to 300 million parameters, 

which is the biggest size provided for Wav2vec2.0. Accordingly, LARGE  robust 

model, XLS-R 300m model, LARGE HuBERT model, and LARGE WavLM model 

were used. 

 

3.1.2. Phone recognition model 

This work additionally fine-tunes the SSL model on phone recognition with different 

speech characteristics before multi-task learning: a native dataset, a non-native 
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dataset, and a sum of the two datasets. This is to see if the extra fine-tuning can 

enhance the model with better acoustic representation compared to raw self-

supervised learning model, and if so, to see what types of speech data help when 

transferred on the joint model. For fine-tuning, a fully-connected layer (language 

model head) is added on top of the Transformer network of the SSL model to train 

on Connectionist Temporal Classification (CTC) loss. 

 

3.1.3. Joint model 

Multi-task learning (MTL) simultaneously trains tasks with different objective 

functions using a shared model. With the increased information, downstream speech 

tasks including emotion recognition (Cai et al. 2021) or dysarthria assessment (Yeo 

et al. 2023) have leveraged the framework to gain more generalized models. 

Motivated by its effectiveness in various speech domains, this work utilizes multi-

task learning to jointly train APA and MDD. With the joint optimization, the model 

is expected to learn the correlation between the output pronunciation scores and 

phone sequences to gain performance increases than respective single-task learning 

(STL). 

Three architectures are suggested for the joint model, shown in Figure 6 

and 7. The difference of each architecture lies in the APA training. All architectures 

utilize the SSL encoder and its weights. For the raw audio input 𝑥 ∈ ℝ𝐿 with length 

𝐿 , the SSL encoder outputs 𝑇  sequences of 𝐷  dimensional latent speech 

representation ℎ ∈ ℝ𝑇×𝐷 . For the MDD task, the latent speech representation ℎ 

passes the same fully connected layer used in phone recognition fine-tuning to 

leverage the fine-tuned weights. The output logit 𝑧̂ ∈ ℝ𝑇×𝑉 is optimized using CTC 
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loss ( 𝐿𝑀𝐷𝐷 ) with the ground-truth realized phone annotations after a softmax 

operation, where 𝑉 is the size of the vocabulary. 

 

SSL-based joint model 

 

 

Figure 6 The architecture of the joint model (CE/RMSE) 

 

The first and second architecture are entirely based on SSL acoustic model 

as shown in Figure 6. For the APA task, the latent speech representation goes through 

an additional bidirectional long short-term memory (BLSTM) layer shared among 

four pronunciation assessment tasks to capture the information shared between 

assessments. The model yields ℎ̅ ∈ ℝ𝑇×𝐻 where 𝐻 is the size of the output hidden 

dimension. The output representation is then passed to each assessment head which 

consists of a fully connected layer and an average pooling over time dimension. 

The difference between the first and the second architecture lies in the APA 

loss. The first architecture uses cross-entropy loss (CE), thus the output makes 

𝑦̂{acc, flu, pros, tot} ∈ ℝ𝐶, which are logits of accuracy, fluency, prosodic, and total 
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score, respectively where C is the number of labels. Logits of each aspect are stacked 

to make final APA logits 𝑦̂ ∈ ℝ𝐶×4  to be optimized using cross-entropy criteria 

(𝐿𝐴𝑃𝐴 ) with the ground-truth score labels after a softmax operation. The second 

architecture uses root mean square error loss (RMSE), thus the output makes 

𝑦̂{acc, flu, pros, tot} ∈ ℝ1, which are logits of accuracy, fluency, prosodic, and total 

score. Logits of each aspect are concatenated to make final APA logits 𝑦̂ ∈ ℝ4 to 

be optimized using RMSE criteria (𝐿𝐴𝑃𝐴) with the ground-truth score labels. 

 

SSL-based joint model with additional GOP input 

As demonstrated in Chapter 2.2.1, Goodness-of-Pronunciation measure 

remains competitive in APA task. Thus the usefulness of GOP on the joint model is 

tested by giving GOP measure as additional input for the third architecture. The APA 

loss is fixed to RMSE (RMSE+GOP). GOP measure is extracted following the 

formulae from Zhang et al. (2021) and Gong et al. (2022). To extract the feature, the 

audio and the matching canonical phone transcription of the target dataset with a set 

of 42 phones is given as input to a trained acoustic model. The acoustic model is a 

publicly available model that is based on the factorized time-delay neural network 

(TDNN-F) and trained using the Kaldi Librispeech S5 recipe (Povey et al., 2011). 

Force-aligned at the phone-level, the output consists of 84-dimensional GOP 

measure. 

Figure 7 shows its architectural difference from the first two architectures. 

For the APA task, the latent speech representation goes through an additional 

bidirectional long short-term memory (BLSTM) layer shared among four 

pronunciation assessment tasks to capture the information shared between 



 

 ２２ 

assessments, followed by a pooling over time dimension. On the other side, the 

extracted GOP measure also goes through a BLSTM layer to be pooled over time 

dimension. The two pooled features are then added, to yield ℎ̅ ∈ ℝ𝐻 where 𝐻 is 

the size of the output hidden dimension. The output representation is then passed to 

each assessment head, a fully connected layer, to make logits of accuracy, fluency, 

prosodic, and total score. The logits are concatenated to make final APA logits 𝑦̂ ∈

ℝ4 to be optimized using RMSE loss (𝐿𝐴𝑃𝐴) with the ground-truth score labels. 

 

 

Figure 7 The architecture of the joint model (RMSE+GOP) 

 

The classification heads and the language model head are then optimized 

using the joint loss 𝐿𝐶𝐴𝑃𝑇  for all three architectures, which is a combination of 

𝐿𝐴𝑃𝐴 and 𝐿𝑀𝐷𝐷: 

𝐿𝐶𝐴𝑃𝑇  =  𝛼𝐿𝐴𝑃𝐴  +  𝛽𝐿𝑀𝐷𝐷 

where 𝛼 and 𝛽 are used to balance the two losses. α is chosen from the set of 𝛼 ∈
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{0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0} and 𝛽 is fixed to 1.0. This is to adjust the weights 

on 𝐿𝐴𝑃𝐴 as 𝐿𝑀𝐷𝐷 optimizes faster when given auxiliary fine-tuning. This enables 

fair comparison between models using raw SSL acoustic models and fine-tuned 

models.  

 

3.2. Experiment settings 

3.2.1. Datasets 

Experiments are conducted using three public datasets. For the auxiliary fine-tuning 

on phone recognition, TIMIT (Garofolo et al. 1993) and L2-ARCTIC (Zhao et al. 

2018) are used, with each dataset representing phonetically labeled data of native 

(L1) and non-native (L2) speech. For the main task of joint APA and MDD, 

Speechocean762 (Zhang et al. 2021) is used. The summary of each dataset is 

represented in Table 1. 

 

Table 1 Summary of the datasets used for experiments 

 TIMIT L2-ARCTIC Speechocean762 

Split Train Train Train Test 

Hours 3.94 2.79 2.88 2.69 

Utterances 4620 2699 2500 2500 

Data Type 

(L1) 

Native 

(English) 

Non-native 

(Hindi, Korean, Mandarin, 

Spanish, Arabic, Vietnamese) 

Non-native 

(Mandarin) 

 

TIMIT is a native speech dataset that contains recordings of 8 US English 

dialects and is phonetically transcribed with 61 phone set. The original TIMIT train 
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split is used for the fine-tuning. L2-ARCTIC version 5.0 is a non-native speech 

dataset that contains English of six L1 backgrounds, including Hindi, Korean, 

Mandarin, Spanish, Arabic, and Vietnamese, and is transcribed with 40 phone set. 

For fine-tuning, the suggested L2-ARCTIC train split from Feng et al. (2020) and 

Zheng et al. (2022). 

Speechocean762 is another non-native speech dataset that contains English 

read speech of Mandarin speakers. Designed to support pronunciation assessment 

studies, the dataset provides rich labels of multi-granular, multi-aspect scores for 

each utterance. Five experts independently assessed the scores independently. For 

phone-level score, accuracy score is provided with a range of 0-2. For word-level 

scores, accuracy, stress, and total scores are provided and for sentence-level scores, 

accuracy, completeness, fluency, prosodic, and total scores are provided with a range 

of 0-10 for both granularities. Accuracy scores are used to detect mispronunciations 

or heavy-accents in each granularity. Completeness score reflects the amount of 

words that are realized. Fluency score is used to assess the amount of pauses, 

repetition, or stammering in the utterance. Prosodic score measures intonation, speed, 

and rhythm. Stress score is used to indicate correct stress position or mono-syllabic 

word (and is measured into binary scores of 5 or 10). The scores of higher granularity 

does not mean a simple average of lower granularity and are individually measured, 

such as in accuracy and total scores in word-level and sentence-level. However, if 

the gap between the scores of different granularities seemed unreasonable, the 

labelling platform gave a warning to the experts. 

Speechocean762 provides a canonical phone transcription for the text script, 

along with an extra mispronunciation transcription for inaccurate phones. The 
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canonical phones are transcribed using 39 phones following CMUDict (Carnegie 

Mellon University, 2000). The mispronounced phones are transcribed using 46 

phone set, the same 39 phones from CMUDict, <unk> for unknown phones, and six 

L2 phones ‘AR’, ‘DR’, ‘DZ’, ‘IR’, ‘TR’, ‘TS’. Mispronunciations take up to 4% of 

the train set and 3% of the test set in the phone transcriptions. Out of the 

mispronunciations, <unk> takes up to 26% and 25%, respectively. 

In this work, the original train and test split with the unified labels between 

the experts was used. For APA task, four aspects of sentence scores were used, 

namely accuracy, fluency, prosodic, and total. For MDD task, realized phone 

transcription is used which was created by replacing the canonical phone 

transcription with mispronunciation transcription for inaccurate phones. Thus the 

final phone set equals to a total of 46 phones. The same phone set was applied to the 

auxiliary phone recognition fine-tuning. The phone sets of TIMIT and L2-ARCTIC 

were mapped into CMUDict to be combined with Speechocean762 phone set and 

this 46 phone set was used. 

 

3.2.2. Evaluation metrics 

The APA performance is measured using Pearson Correlation Coefficient (PCC) 

between model prediction scores and human annotated scores. For MDD 

performance, Precision, Recall, and F1 scores are computed according to the metrics 

used in Li et al. (2017) and Leung et al. (2019) for both correct pronunciations and 

mispronunciations following Wadud et al. (2023). True Acceptance (TA) refers to 

predicting correct pronunciation as correct pronunciations, False Acceptance refers 

to predicting mispronunciations as correct pronunciations, True Rejection (TR) 
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refers to predicting mispronunciations as mispronunciations, and False Rejection 

(FR) refers to predicting correct pronunciations as mispronunciations. As metrics are 

reported for both correct pronunciations and mispronunciations, classes used for 

metrics contradict each other. True Positive (TP) corresponds to True Acceptance for 

correct pronunciations and True Rejection for mispronunciations. False Positive (FP) 

corresponds to False Acceptance for correct pronunciations and False Rejection for 

mispronunciations. True Negative (TN) corresponds to True Rejection for correct 

pronunciations and True Acceptance for mispronunciations. False Negative (FN) 

corresponds to False Rejection for correct pronunciations and False Acceptance for 

mispronunciations. Using the definitions, Precision, Recall and F1 metric each 

follows the following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

3.2.3. Implementation and experiment details 

For all architectures, models had the feature encoder frozen and were trained with 8 

batch sizes, an AdamW optimizer, a training epoch of 100, and a linear scheduler 

with a learning rate of 1e-4 and a warm-up ratio of 0.1. Batches for CE models were 

sampled by audio length. Batches for RMSE and RMSE+GOP models were sampled 

by giving more weights to imbalanced labels of accuracy score. Pre-trained SSL 

models were implemented using HuggingFace (Wolf et al. 2020). All the 
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experiments were repeated for 3 trials with different random seeds and are reported 

with the mean and standard deviation value. BLSTM layers were fixed to 128 hidden 

dimensions. 

For the experiment results of shown in Chapter 4, Robust Wav2vec2.0 is 

used as the base backbone model, 𝛼 is set to 0.25 for the base multi-task learning 

loss weight. The performance of the joint model will be first compared to respective 

APA and MDD models, for the three suggested architectures (CE, RMSE, 

RMSE+GOP). Results will be presented for both raw self-supervised learning 

model (SSL) and models fine-tuned with native dataset TIMIT (L1), for leveraging 

TIMIT as additional train dataset or transfer learning is a common practice in CAPT 

studies. Then for the best architecture, the effects of using fine-tuned model on phone 

recognition for the backbone model are more deeply explored (L2-ARCTIC (L2), a 

sum of TIMIT/L2-ARCTIC (MIX)). In a similar sense, the effects of using different 

backbone SSL models (XLS-R, HuBERT, WavLM) are also compared. 
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Chapter 4. Results 

 

Chapter 4 demonstrates the experiment results with regard to transfer learning, and 

multi-task learning of automatic pronunciation assessment and mispronunciation 

detection and diagnosis tasks. In Chapter 4.1, the results of the three architectures 

(CE, RMSE, RMSE+GOP) for the proposed joint model (Joint-CAPT [α = 0.25, 

β = 1.0]) are presented. They are each compared to respective single-task learning 

(APA [α = 1.0, β = 0.0], MDD [α = 0.0, β = 1.0]), for the baseline raw Robust 

Wav2vec2.0 (SSL) and its fine-tuned model with native dataset (L1). Chapter 4.2 

and Chapter 4.3 compare the effects of auxiliary phone recognition fine-tuning (SSL, 

L1, L2, MIX) and the backbone self-supervised learning model (Robust, XLS-R, 

HuBERT, WavLM) on the joint model for the architecture that showed the best 

performance. The results are presented in separate tables for APA and MDD, 

although the joint models simultaneously learn and infer the results. 

 

4.1. Comparison of results on APA, MDD, and joint models of 

different architectures 

Table 2, Table 3, and Table 4 present the APA results for the proposed Joint-CAPT 

with cross-entropy APA loss, root mean square error APA loss, and additional 

Goodness-of-Pronunciation measure input. The results are compared to those of 

respective single-task APA model. 

 

Table 2 Experiment results for APA task with regard to multi-task learning for the 
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architecture CE 

Model 
Pronunciation Scores (PCC) 

Accuracy Fluency Prosodic Total 

CE 

APA-SSL 
0.609 

±0.036 

0.652 

±0.026 

0.650 

±0.034 

0.633 

±0.024 

Joint-CAPT-SSL 
0.714 

±0.003 

0.763 

±0.006 

0.767 

±0.004 

0.732 

±0.005 

APA-L1 
0.629 

±0.065 

0.738 

±0.029 

0.733 

±0.036 

0.680 

±0.041 

Joint-CAPT-L1 
0.719 

±0.005 

0.775 

±0.000 

0.773 

±0.006 

0.743 

±0.010 

 

Table 2 shows that multi-task learning greatly improves pronunciation 

assessment performance for the architecture with cross-entropy criteria chosen as 

APA loss. Joint-CAPT-SSL and Joint-CAPT-L1 both have higher PCC for all scores 

than the respective APA-SSL and APA-L1, with an average of 0.108 and 0.057 

increase. The average PCC of Joint-CAPT-SSL is even higher than APA-L1 which 

leverages the extra knowledge by a mean of 0.049. Auxiliary phone recognition fine-

tuning also improves APA performance, with an average increase of 0.059 between 

APA-SSL and APA-L1, and an average increase of 0.008 between Joint-CAPT-SSL 

and Joint-CAPT-L1. 

 

Table 3 Experiment results for APA task with regard to multi-task learning for the 

architecture RMSE 

Model 
Pronunciation Scores (PCC) 

Accuracy Fluency Prosodic Total 

RMSE 
APA-SSL 

0.687 

±0.003 

0.763 

±0.006 

0.770 

±0.003 

0.713 

±0.003 

Joint-CAPT-SSL 0.722 0.797 0.795 0.740 
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±0.008 ±0.002 ±0.003 ±0.006 

APA-L1 
0.680 

±0.007 

0.769 

±0.013 

0.771 

±0.003 

0.714 

±0.005 

Joint-CAPT-L1 
0.730 

±0.001 

0.797 

±0.003 

0.792 

±0.003 

0.746 

±0.001 

 

Table 3 shows that multi-task learning also greatly improves pronunciation 

assessment performance for the architecture that uses RMSE as the APA loss 

function, with Joint-CAPT-SSL and Joint-CAPT-L1 having higher PCC for all scores 

than the counterpart APA-SSL and APA-L1. The respective pairs showed an average 

gap of 0.031 and 0.032. However unlike with cross-entropy loss, auxiliary phone 

recognition fine-tuning showed conflicting results for APA performance. Although 

Joint-CAPT-L1 showed a slight performance improvement of 0.002 from Joint-

CAPT-SSL on average, the joint model which used raw Robust Wav2vec2.0 as 

backbone model showed better correlation with human evaluators for prosodic 

evaluation. This was the same for APA-L1 that had lower correlation with human 

evaluations for accuracy score than APA-SSL. 

 

Table 4 Experiment results for APA task with regard to multi-task learning for the 

architecture RMSE+GOP 

Model 
Pronunciation Scores (PCC) 

Accuracy Fluency Prosodic Total 

RMSE+GOP 

APA-SSL 
0.698 

±0.002 

0.778 

±0.005 

0.778 

±0.005 

0.724 

±0.003 

Joint-CAPT-SSL 
0.751 

±0.004 

0.815 

±0.002 

0.810 

±0.002 

0.768 

±0.002 

APA-L1 
0.705 

±0.001 

0.784 

±0.001 

0.782 

±0.002 

0.729 

±0.009 

Joint-CAPT-L1 0.741 0.805 0.803 0.756 
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±0.004 ±0.004 ±0.001 ±0.004 

 

Table 4 shows the APA results for the architecture with RMSE loss and 

additional GOP input. Similar to the previous two architectures, multi-task learning 

greatly improves pronunciation assessment performance. Joint-CAPT-SSL and 

Joint-CAPT-L1 respectively showed an average correlation of 0.786 and 0.776, 

which was higher than the average correlation of the respective models APA-SSL 

and APA-L1 that each showed 0.745 and 0.750. This not only applied to the average 

but to all four scores as well. However, auxiliary phone recognition fine-tuning 

worsened the APA performance for the joint model with Joint-CAPT-SSL achieving 

higher correlations than Joint-CAPT-L1 on all aspects. However, for single-task 

learning APA model, leveraging the extra speech representation of native speakers 

was useful as shown in the comparison between APA-SSL and APA-L1. 

To sum up, multi-task learning improved the APA performance on four 

aspects for all three architectures. This also applied to both cases where the backbone 

model was either raw Robust Wav2vec2.0 or its fine-tuned model with labeled native 

dataset. However unlike multi-task learning, the auxiliary phone recognition fine-

tuning showed conflicting results, with joint model of RMSE+GOP showing worse 

performance with fine-tuned backbone model. Between the different joint model 

architectures presented in Table 2, 3, and 4, the APA performance was the highest 

for the architecture with RMSE loss and additional GOP measure, followed by the 

architecture with RMSE loss, and the architecture with cross-entropy loss, for all 

four aspects. Again, this tendency was the same for both cases of SSL and L1 

backbone model. In total, the correlation of the Joint-CAPT-SSL with RMSE loss 
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and GOP measure showed the best performance for all four scores, as marked bold 

in Table 4. 

Table 5, Table 6, and Table 7 each presents the MDD results for the proposed 

Joint-CAPT with cross-entropy APA loss, root mean square error APA loss, and 

additional Goodness-of-Pronunciation measure input. The results are compared to 

respective single-task MDD models. As the architecture difference lies in APA task, 

single-task MDD models (MDD-SSL, MDD-L1) have the same architecture for all 

CE, RMSE, and RMSE+GOP and thus should show similar results. However, due to 

the different sampling methods between CE and RMSE/RMSE+GOP, there are result 

differences between the two groups. 

 

Table 5 Experiment results for MDD task with regard to multi-task learning for the 

architecture CE 

Model 
PER 

(%) 

Correct Pronunciations Mispronunciations 

Prec. Recall F1 Prec. Recall F1 

CE 

MDD-SSL 
9.89 

±0.024 

0.997 

±0.000 

0.928 

±0.000 

0.961 

±0.000 

0.267 

±0.001 

0.914 

±0.005 

0.413 

±0.002 

Joint-

CAPT-SSL 

9.91 

±0.030 

0.997 

±0.000 

0.929 

±0.001 

0.962 

±0.000 

0.268 

±0.003 

0.914 

±0.002 

0.415 

±0.003 

MDD-L1 
9.90 

±0.041 

0.997 

±0.000 

0.927 

±0.001 

0.961 

±0.000 

0.265 

±0.002 

0.916 

±0.003 

0.410 

±0.003 

Joint-

CAPT-L1 

9.93 

±0.068 

0.997 

±0.000 

0.928 

±0.001 

0.962 

±0.000 

0.267 

±0.002 

0.914 

±0.004 

0.414 

±0.003 

 

Table 5 shows that although more subtle than APA performance increase, 

multi-task learning also improves MDD performance. For both correct 

pronunciations and mispronunciations, Joint-CAPT-SSL (0.962, 0.415) and Joint-

CAPT-L1 (0.962, 0.414) had higher F1 scores of than the respective MDD-SSL and 

MDD-L1. The performance gain was achieved from higher recall for correct 
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pronunciations, and higher precision for mispronunciations. However, auxiliary 

phone recognition slightly reduces MDD performance as F1 scores were reduced for 

both MDD-L1 and Joint-CAPT-L1, caused by lower precision of mispronunciations. 

 

Table 6 Experiment results for MDD task with regard to multi-task learning for the 

architecture RMSE 

Model 
PER 

(%) 

Correct Pronunciations Mispronunciations 

Prec. Recall F1 Prec. Recall F1 

RMSE 

MDD-SSL 
10.16 

±0.001 

0.997 

±0.000 

0.927 

±0.000 

0.961 

±0.000 

0.264 

±0.001 

0.915 

±0.003 

0.410 

±0.002 

Joint-

CAPT-SSL 

10.24 

±0.001 

0.997 

±0.000 

0.927 

±0.000 

0.961 

±0.000 

0.265 

±0.000 

0.917 

±0.006 

0.411 

±0.001 

MDD-L1 
10.36 

±0.001 

0.997 

±0.000 

0.924 

±0.001 

0.959 

±0.000 

0.256 

±0.003 

0.915 

±0.006 

0.400 

±0.004 

Joint-

CAPT-L1 

10.34 

±0.001 

0.998 

±0.000 

0.925 

±0.000 

0.960 

±0.000 

0.261 

±0.001 

0.923 

±0.004 

0.406 

±0.002 

 

Table 6 shows that multi-task learning is also valid when used with RMSE 

loss. Joint-CAPT-SSL and Joint-CAPT-L1 had higher F1 scores than the respective 

MDD-SSL and MDD-L1. In the same manner, auxiliary phone recognition reduces 

MDD performance for mispronunciations, with F1 scores reduced for both MDD-

L1 and Joint-CAPT-L1. 

 

Table 7 Experiment results for MDD task with regard to multi-task learning for the 

architecture RMSE+GOP 

Model 
PER 

(%) 

Correct Pronunciations Mispronunciations 

Prec. Recall F1 Prec. Recall F1 

RMSE 

+ 

MDD-SSL 
10.16 

±0.001 

0.997 

±0.000 

0.927 

±0.000 

0.961 

±0.000 

0.264 

±0.001 

0.915 

±0.003 

0.410 

±0.002 

Joint- 10.19 0.997 0.928 0.961 0.267 0.918 0.414 
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GOP1 CAPT-SSL ±0.001 ±0.000 ±0.000 ±0.000 ±0.001 ±0.002 ±0.002 

MDD-L1 
10.36 

±0.001 

0.997 

±0.000 

0.924 

±0.001 

0.959 

±0.000 

0.256 

±0.003 

0.915 

±0.006 

0.400 

±0.004 

Joint-

CAPT-L1 

10.38 

±0.000 

0.998 

±0.000 

0.925 

±0.000 

0.960 

±0.000 

0.259 

±0.000 

0.922 

±0.004 

0.405 

±0.000 

 

In line with the results from Table 5 and 6, Table 7 shows that multi-task 

learning also improves mispronunciation detection and diagnosis performance when 

used with additional GOP measure. Again, this applied to both SSL and L1 models. 

Joint-CAPT-SSL showed F1 scores of 0.414 for mispronunciations which was higher 

than 0.411 of MDD-SSL, and Joint-CAPT-L1 showed F1 scores of 0.405 which was 

higher than the scores of MDD-L1 of 0.400. The precision and recall was improved 

in general for both correct pronunciations and mispronunciations. However, MDD-

SSL and Joint-CAPT-SSL showed decreased F1 scores on mispronunciations when 

transferred from models with additional native knowledge. This is in accordance 

with the results for APA task which showed that additional phone recognition fine-

tuning does not help when using additional GOP features. 

To sum up, multi-task learning improved the MDD performance for either 

raw Robust Wav2vec2.0 backbone model or its fine-tuned model on labeled native 

dataset. Unlike multi-task learning, the auxiliary phone recognition deteriorated the 

MDD performance on both single-task and joint models for all CE, RMSE, 

RMSE+GOP architectures. Between the different architectures presented in Table 5, 

6, and 7, models with RMSE loss and weighted sampling showed an increase of PER 

and also a slight decrease in MDD performances compared to the models with cross-

                                                      
1 The results from Table 6 are shown for MDD-SSL and MDD-L1 as they have the same 

architecture and configuration. 
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entropy loss. 

Altogether, the joint model showed the highest performance in both 

pronunciation assessment and mispronunciation detection and diagnosis tasks for all 

experimented architectures. This proves the effectiveness of jointly training APA and 

MDD tasks. In particular, Joint-CAPT-SSL model with RMSE loss and additional 

GOP features showed the best results for APA task and competitive results for MDD 

task. Thus for the following chapters, Joint-CAPT-SSL of RMSE+GOP is used as 

the baseline for backbone model comparison and results analysis. 

 

4.2. Comparison of results on auxiliary phone recognition 

 
Table 8 Experiment results APA task with regard to using a fine-tuned model as backbone 

architecture for the joint model (RMSE+GOP) 

 

Auxiliary fine-tuning 
Pronunciation Scores (PCC) 

Accuracy Fluency Prosodic Total 

SSL 

(baseline) 

0.751 

±0.004 

0.815 

±0.002 

0.810 

±0.002 

0.768 

±0.002 

L1 
0.741 

±0.004 

0.805 

±0.004 

0.803 

±0.001 

0.756 

±0.004 

L2 
0.735 

±0.002 

0.808 

±0.004 

0.801 

±0.002 

0.755 

±0.005 

MIX 
0.732 

±0.002 

0.809 

±0.006 

0.803 

±0.005 

0.752 

±0.003 

 

The effects of using a fine-tuned model as backbone architecture is presented in 

Table 8 and 9. The raw Robust Wav2vec2.0 is the baseline. For APA task, transferring 

knowledge from models with auxiliary phone recognition fine-tuning did not help 

the joint model to achieve better correlations. Joint-CAPT-SSL achieved higher 
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correlations than Joint-CAPT-L1, Joint-CAPT-L2 and Joint-CAPT-MIX. Between 

the models that leverage auxiliary fine-tuning, although the average correlation of 

Joint-CAPT-L1 is slightly higher than Joint-CAPT-L2 and Joint-CAPT-MIX, each 

individual score shows conflicting results. This is an interesting finding given that 

L2 has more similar acoustic characteristics to the target Speechocean762 data, and 

the mix of the two has a larger amount of data. 

 

Table 9 Experiment results for MDD task with regard to using a fine-tuned model as 

backbone architecture for the joint model (RMSE+GOP) 

Auxiliary 

fine-tuning 

PER 

(%) 

Correct Pronunciations Mispronunciations 

Prec. Recall F1 Prec. Recall F1 

SSL 

(baseline) 

10.19 

±0.001 

0.997 

±0.000 

0.928 

±0.000 

0.961 

±0.000 

0.267 

±0.001 

0.918 

±0.002 

0.414 

±0.002 

L1 
10.38 

±0.000 

0.998 

±0.000 

0.925 

±0.000 

0.960 

±0.000 

0.259 

±0.000 

0.922 

±0.004 

0.405 

±0.000 

L2 
10.46 

±0.000 

0.997 

±0.000 

0.924 

±0.001 

0.959 

±0.000 

0.257 

±0.002 

0.918 

±0.003 

0.401 

±0.003 

MIX 
10.37 

±0.000 

0.998 

±0.000 

0.924 

±0.000 

0.960 

±0.000 

0.259 

±0.000 

0.921 

±0.003 

0.404 

±0.000 

 

Auxiliary phone recognition fine-tuning did not aid MDD task as well. Joint-

CAPT-SSL showed the highest F1 scores on correct pronunciations and 

mispronunciations when compared to Joint-CAPT-L1, Joint-CAPT-L2, and Joint-

CAPT-MIX that transferred from models with additional native and non-native 

knowledge. The latter three models had lower recall for correct pronunciations, and 

lower precision for mispronunciations. 

In all, transfer learning from auxiliary phone recognition fine-tuning did not 

help, with Joint-CAPT-SSL showing the highest performance in both pronunciation 
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assessment and mispronunciation detection and diagnosis tasks. 

 

4.3. Comparison of results on self-supervised learning model 

The effect of using different SSL models as backbone architecture is presented in 

Table 10 and 11. Robust Wav2vec2.0 is the baseline, and all the experiments use raw 

SSL models. XLS-R consistently showed the weakest performance in both APA and 

MDD tasks. The correlation with human experts was the lowest for all four scores, 

with an average of 0.761. The F1 scores of correct pronunciations and 

mispronunciations were also visibly lower than other three models. Although XLS-

R has been pre-trained with the biggest amount of audio, the multi-lingual 

characteristics of the acoustic embeddings may not have been fit for the scope as the 

target dataset is fixed to English. This is similar to the results of models that were 

transferred from phone recognition models trained with L2 and MIX datasets. As to 

how the transferring L2 dataset did not help non-native speech assessment, multi-

lingual pre-training did not aid model performances although they contain diverse 

phonetic patterns including the speech of native Mandarin and thus may share more 

similar acoustic characteristics to the target Speechocean762 data. 

HuBERT showed similar performances to the baseline Robust Wav2vec2.0, 

with higher correlation for total score in APA task and higher F1 score for correct 

pronunciations in MDD task than Robust Wav2vec2.0. However on average, 

HuBERT showed an average correlation of 0.783 which was slightly lower than the 

average correlation of 0.786 of Robust Wav2vec2.0. The F1 score was also lower 

than Robust Wav2vec2.0. WavLM had the highest F1 scores for correct 

pronunciations and mispronunciations with 0.963 and 0.419 respectively. However, 
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the correlation of pronunciation scores was much lower than Robust Wav2vec2.0 

and HuBERT with an average of 0.772. 

To compare the three SSL models that were pre-trained only with English 

data, Robust Wav2vec2.0 had the best average performance for APA task, followed 

by HuBERT and WavLM. For MDD task, WavLM had the best performance 

followed by Robust Wav2vec2.0 and HuBERT. As these orders differ from the order 

in the amount of datasets used for pre-training, WavLM followed by Robust 

Wav2vec2.0 and HuBERT, the performance difference between these three SSL 

models may lie in their learning scheme. 

 

Table 10 Experiment results for APA task with regard to using different backbone self-

supervised learning model for the joint model (RMSE+GOP) 

SSL 

model 

Pronunciation Scores (PCC) 

Accuracy Fluency Prosodic Total 

Robust 

(Baseline) 

0.751 

±0.004 

0.815 

±0.002 

0.810 

±0.002 

0.768 

±0.002 

XLS-R 
0.716 

±0.010 

0.799 

±0.009 

0.787 

±0.007 

0.742 

±0.010 

HuBERT 
0.745 

±0.004 

0.813 

±0.002 

0.805 

±0.007 

0.769 

±0.005 

WavLM 
0.732 

±0.008 

0.806 

±0.003 

0.794 

±0.002 

0.755 

±0.008 

 

Table 11 Experiment results for MDD task with regard to using different backbone self-

supervised learning model for the joint model (RMSE+GOP) 

SSL 

model 

PER 

(%) 

Correct Pronunciations Mispronunciations 

Prec. Recall F1 Prec. Recall F1 

Robust 10.19 0.997 0.928 0.961 0.267 0.918 0.414 
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(Baseline) ±0.001 ±0.000 ±0.000 ±0.000 ±0.001 ±0.002 ±0.002 

XLS-R 
13.77 

±0.011 

0.998 

±0.000 

0.894 

±0.010 

0.943 

±0.006 

0.204 

±0.013 

0.946 

±0.011 

0.336 

±0.017 

HuBERT 
10.36 

±0.002 

0.997 

±0.000 

0.928 

±0.002 

0.962 

±0.001 

0.267 

±0.004 

0.914 

±0.008 

0.414 

±0.004 

WavLM 
9.65 

±0.002 

0.997 

±0.000 

0.931 

±0.001 

0.963 

±0.001 

0.273 

±0.004 

0.903 

±0.004 

0.419 

±0.005 

 

 

4.4. Results Analysis 

The experiment results are analyzed by looking at the accuracy of discrete scores for 

APA and discrete phones for MDD tasks, to see how the joint model showed 

performance improvement compared to single-task APA and MDD models. Joint-

CAPT-SSL with RMSE loss and GOP features based on raw Robust Wav2vec2.0 is 

used for the analysis and is compared with its APA/MDD counterparts.  

 

4.4.1. Analysis on model pronunciation assessment 

Analysis on the performance of pronunciation assessment task is done with 

confusion matrices to see how the model prediction has improved for the joint model 

over single-task APA model. The confusion matrices were created using the trial that 

had the best average correlation performance among the three experiments, for each 

model. As the model predictions include decimal points, the predictions were 
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rounded to integer to form confusion matrix values. 

 

 

Figure 8 Confusion matrices of APA-SSL (RMSE+GOP) 

 

Figure 8 and 9 show that the predicted scores of Joint-CAPT-SSL have 

overall better correlations than APA-SSL. The improvement is especially noticeable 

for the annotated label scores with low frequency (0-6, 10). This implies that the 

additional information of mispronunciations from joint learning assists the model to 

distinguish L2 pronunciations better, even for data with high class imbalance. The 
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confusion matrices of other models, APA-L1 and Joint-CAPT-L1, for RMSE+GOP 

architecture are provided in the Appendix. 

 

 

Figure 9 Confusion matrices of Joint-CAPT-SSL (RMSE+GOP) 

 

4.4.2. Analysis on model mispronunciation detection and 
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diagnosis 

 

 

Figure 10 False Rejection rate of each consonant on correct pronunciations for Joint-

CAPT-SSL (RMSE+GOP) 

 

Analysis on the performance of mispronunciation detection and diagnosis task is 

done by looking at the error rate of each phones in the realized non-native speech 

labels to see the model’s ability in distinguishing discrete phones. Error rates are 

counted with the trial of Joint-CAPT-SSL (RMSE+GOP) that showed the highest F1 

scores for both correct pronunciations and mispronunciations. Thus, the False 

Negative rate is computed for all phones of correct pronunciations and 

mispronunciations, corresponding to False Rejection rate and False Acceptance rate, 

respectively. The phones are divided into consonants and vowels to be presented with 

its error rate above the bar graph as in Figure 10, 11, 12, and 13. The same figures 

for MDD-SSL (RMSE+GOP) are provided in the Appedix. <unk> is marked as ERR 
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for mispronunciations and is included with vowels. 

 

 

Figure 11 False Rejection rate of each vowel on correct pronunciations for Joint-CAPT-

SSL (RMSE+GOP) 

 

First for correct pronunciations, consonants showed lower False Rejection 

rate than vowels as shown in Figure 10 and 11, with an average rate of 7.83% and 

9.66% normalized by phone occurrence. For consonants, ZH (50.00%), TH 

(13.07%), R (11.65%), Z (9.57%), L (8.40%), and CH (8.00%) had false rejection 

rate above the average error rate of consonants, meaning that models had more 

difficulty in distinguishing these consonants verbalized by non-native speakers. 

Interestingly, the frequency of occurrence was not the major cause of the result. 

Although ZH, TH, and CH are some of the labels with the lowest occurrence, R, Z, 

and L are labels with high frequency. This implies that the acoustic characteristics 

may be the underlying cause in the error rates. The model had difficulty in 
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recognizing fricatives (ZH, TH, Z), liquids (R, L) and affricates (CH). For vowels, 

the model showed higher False Rejection rate for ER (24.96%), AA (18.20%), EH 

(14.52%), EY (13.79%), AO (12.85%), AH (10.34%), and AW (9.75%) than the 

average error rate for vowels. Again, the frequency of occurrence for each vowel did 

not contribute in the error rates, with ER, AA, EY, AO, and AW showing low 

occurrence but EH and AH showing high occurrence. The model overall had 

difficulty in distinguishing mid, open vowels. 

 

 

Figure 12 False Acceptance rate of each consonant on mispronunciations for Joint-CAPT-

SSL (RMSE+GOP) 

 

Second, mispronunciations also showed a similar tendency, with 

consonants showing lower False Acceptance rates than vowels as shown in Figure 

12 and 13, with an average rate of 10.56% and 12.47% normalized by phone 

occurrence. For consonants, ZH (66.67%), TH (50.00%), DZ (50.00%), L (30.77%), 
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HH (25.00%), and S (18.18%) showed False Acceptance rate above the average error 

rate of consonants, meaning that models predicted these annotated 

mispronunciations to correct canonical pronunciations. As with correct 

pronunciations, the frequency of occurrence did not influence False Acceptance rates, 

with L and S having high occurrences. The model again showed weak performances 

in recognizing fricatives (ZH, TH, DZ, HH, S) and liquids (L). However, with the 

total mispronounced consonant annotations summing up to only 182, more 

mispronunciation annotations would be necessary to confirm this. For vowels, the 

model showed higher False Acceptance rate for Y (50.00%), OW (30.30%), UW 

(28.57%), UH (25.00%), AY (18.15%), AO (18.18%), AA (17.86%), and ER 

(14.81%) than the average for vowels, with the occurrence frequency mixed between 

low (Y, UW, UH, AY, AO) and high (OW, AA, ER). Similar to correct pronunciations, 

the model was weak at mid, open vowels but with only a total of 743 mispronounced 

vowel annotations, more mispronunciation annotated datasets would be necessary to 

verify this along with consonant mispronunciations. 

Overall, phone error rates were not significantly high, with 7.74% for 

correct pronunciations and 9.99% for mispronunciations. These are lower than the 

phone error rates of MDD-SSL (RMSE+GOP) which showed an average error rate 

of 7.83% for correct pronunciations and 11.98% for mispronunciations. The results 

show that Joint-CAPT-SSL (RMSE+GOP) showed improvements in distinguishing 

discrete phones, especially for mispronunciations, which led to higher Precision for 

mispronunciations as in Table 7. However, due to the extreme imbalance between 

two ground-truth annotations, the overall Precision for mispronunciations remains 

low as the absolute value of False Rejection (the dark blue part for correct 
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pronunciation) is much bigger than True Rejection (the light blue part for 

mispronunciations) that together consist the formula of Precision for 

mispronunciations. 

 

 

Figure 13 False Acceptance rate of each vowel on mispronunciations for Joint-CAPT-SSL 

(RMSE+GOP) 

 

 

  



 

 ４７ 

Chapter 5. Discussion 

 

5.1. Correlation analysis on human assessments and model 

assessments 

To explore how the joint model leverages the correlation between pronunciation 

scores and mispronunciations to improve APA and MDD performances, correlation 

analysis was conducted using Pearson correlation coefficients for both human 

evaluators and predictions of the proposed Joint-CAPT-SSL (RMSE+GOP). The test 

set of Speechocean762 was used for analysis. The results are plotted using linear 

regression in Figure 14. For both plots, accuracy, fluency, prosodic, and total score 

all showed a correlation with mispronunciations and were statistically significant 

(p<.001). 

Specifically, for human evaluators, the total score had the highest negative 

correlation with mispronunciations (r=-0.656), followed by accuracy (r=-0.624), 

fluency (r=-0.606), and prosodic (r=-0.593). This suggests that the human assessors 

of Speechocean762 were influenced by phone errors when grading the scores for all 

aspects, which complies with the findings of previous linguistic findings. 

 Interestingly, model predictions also showed a similar pattern where 

accuracy (r=-0.535) and total score (r=-0.535) had the highest negative correlation 

with mispronunciation, followed by fluency (r=-0.520) and prosodic (r=-0.519). This 

also corresponds to the performance results of the model on Table 4, where accuracy 

and total score gained the most performance increase compared to APA-SSL. 

Furthermore, the strength of the correlation between the predicted 



 

 ４８ 

pronunciation scores and mispronunciations increased as the APA performance 

improved for the joint model. To compare the correlation results between joint model 

architectures, Joint-CAPT-L1 (CE), Joint-CAPT-SSL (RMSE+GOP), the model 

predictions became more negatively correlated for fluency (-0.461, -0.520), prosodic 

(-0.476, -0.519), and total (-0.534, -0.535) as the PCC increased for the latter model. 

This proves that the joint model has learned the behavior of human evaluators in 

non-native assessments while improving the performance. The linear regression plot 

for Joint-CAPT-L1 (CE) is provided in the Appendix. 

Altogether, the statistical analysis provides evidence that the integrated model 

leveraged the correlation between APA and MDD tasks to gain performance 

improvement. 

 

 

Figure 14 Correlation between pronunciation scores of four aspects and the number of 

mispronunciations predicted by Joint-CAPT-SSL (RMSE+GOP) 
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5.2. Analysis on multi-task learning loss weight 

The effect of giving different weights on pronunciation assessment task is presented 

in Table 12 and 13 by controlling the size of α  on the loss 𝐿𝐴𝑃𝐴  for the Joint-

CAPT-SSL (RMSE+GOP). The results show that decreasing the weight on 𝐿𝐴𝑃𝐴 

(0.1, 0.25, 0.5) helps the model achieve better results on fluency and prosodic 

correlation, with better MDD performances as well. Specifically, fluency and 

prosodic scores achieved the highest correlation with 0.818 and 0.812 when 𝛼 was 

set to 0.1. F1 score for correct pronunciations was the highest when α = 0.05, 0.1, 

0.25, 0.5, and F1 score for mispronunciations was the highest when α  = 0.25. 

However as the weight on pronunciation assessment gets smaller from 0.25 to 0.1, 

there exists a steep decrease in the performance on accuracy and total scores. 

Increasing the weight on 𝐿𝐴𝑃𝐴 (0.25, 0.5, 1.0) results in better accuracy 

and total scores. Accuracy score was the highest when α = 0.25 and total score had 

the best correlation with human experts when the weight was α  = 0.25, 0.5. 

However, similar to how smaller weights caused a fall in accuracy and total scores, 

higher weight leads to a decrease in fluency, prosodic scores and F1 scores, as in the 

comparison between α = 0.25 and α = 1.0 

Yet, a simple decrease or increase in weights do not necessarily guarantee 

higher fluency, prosodic scores, and F1 score or higher accuracy and total scores. 

The performance for fluency, prosodic scores and F1 score for mispronunciations 

decreased when the weights were too low (0.05), and the performance for accuracy 

and total scores decreased as the weight became too big. (1.5, 2.0) Overall, α = 0.25 

achieved the most decent performance for both APA and MDD. 

This is in line with the results from the correlation analysis. The correlation 
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between mispronunciations and accuracy (𝑟 =-0.624) and total (𝑟 =-0.656) scores 

were relatively higher than fluency (𝑟=-0.606) and prosodic (𝑟=-0.593) for human 

experts. This is reflected in the results with bigger weights on pronunciation 

assessment task leading to better APA results for accuracy and total scores. The 

results on different multi-task learning loss weights imply that the joint model not 

only learned to leverage the relationship between mispronunciations and 

pronunciation scores to gain performance increases for APA and MDD tasks 

compared to respective single-task models as shown in the correlation analysis, but 

also learned the different degree of the correlation between the individual scores and 

mispronunciations while training. 

 

Table 12 Experiment results for APA task with regard to different multi-task learning loss 

weight for Joint-CAPT-SSL (RMSE+GOP) 

MTL loss weight 
Pronunciation Scores (PCC) 

Accuracy Fluency Prosodic Total 

0.05 
0.730 

±0.001 

0.797 

±0.002 

0.792 

±0.003 

0.747 

±0.002 

0.1 
0.744 

±0.004 

0.818 

±0.003 

0.812 

±0.004 

0.762 

±0.005 

0.25 

(Baseline) 

0.751 

±0.004 

0.815 

±0.002 

0.810 

±0.002 

0.768 

±0.002 

0.5 
0.750 

±0.003 

0.816 

±0.002 

0.811 

±0.003 

0.768 

±0.003 

1.0 
0.750 

±0.002 

0.809 

±0.002 

0.806 

±0.003 

0.766 

±0.005 

1.5 
0.747 

±0.006 

0.809 

±0.002 

0.807 

±0.003 

0.767 

±0.003 

2.0 
0.742 

±0.006 

0.809 

±0.004 

0.807 

±0.002 

0.761 

±0.004 
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Table 13 Experiment results for MDD task with regard to different multi-task learning loss 

weight for Joint-CAPT-SSL (RMSE+GOP) 

MTL loss 

weight 

PER 

(%) 

Correct Pronunciations Mispronunciations 

Precision Recall F1 Precision Recall F1 

0.05 
10.30 

0.000 

0.997 

±0.000 

0.927 

±0.001 

0.961 

±0.000 

0.265 

±0.002 

0.916 

±0.001 

0.411 

±0.003 

0.1 
10.18 

±0.001 

0.997 

±0.000 

0.928 

±0.001 

0.961 

±0.001 

0.267 

±0.004 

0.917 

±0.002 

0.413 

±0.004 

0.25 

(Baseline) 

10.19 

±0.001 

0.997 

±0.000 

0.928 

±0.000 

0.961 

±0.000 

0.267 

±0.001 

0.918 

±0.002 

0.414 

±0.002 

0.5 
10.25 

±0.001 

0.998 

±0.000 

0.927 

±0.001 

0.961 

±0.001 

0.266 

±0.003 

0.925 

±0.004 

0.413 

±0.005 

1.0 
10.42 

±0.001 

0.998 

±0.000 

0.926 

±0.001 

0.960 

±0.005 

0.262 

±0.003 

0.921 

±0.005 

0.408 

±0.003 

1.5 
10.77 

±0.001 

0.998 

±0.000 

0.922 

±0.002 

0.959 

±0.001 

0.255 

±0.006 

0.925 

±0.005 

0.400 

±0.008 

2.0 
11.00 

±0.001 

0.998 

±0.000 

0.920 

±0.001 

0.957 

±0.001 

0.251 

±0.002 

0.931 

±0.004 

0.395 

±0.002 
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Chapter 6. Conclusion 

 

This study presents a novel architecture that jointly trains automatic pronunciation 

assessment and mispronunciation detection and diagnosis with a multi-task learning 

perspective, motivated by the high linguistic correlation between pronunciation 

scores and mispronunciations. The proposed joint model shows significant 

performance improvement over single-task APA and MDD on Speechocean762, by 

learning to better distinguish pronunciation scores with low distribution and to better 

recognize mispronunciations. This proves that the correlation between two tasks can 

benefit each other, which is supported by the correlation analysis and the multi-task 

learning loss weight analysis. The proposed model not only conforms to the 

linguistic mechanism of non-native speech assessment, but shows its usefulness in 

practical assessment scenarios where learners are graded in various aspects with a 

single utterance. 
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Appendix 

 

 

Figure 15 Confusion matrices of APA-L1 (RMSE+GOP) 
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Figure 16 Confusion matrices of Joint-CAPT-L1 (RMSE+GOP) 
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Figure 17 False Rejection rate of each consonant on correct pronunciations for MDD-SSL 

(RMSE+GOP) 

 

 

Figure 18 False Rejection rate of each vowel on correct pronunciations for MDD-SSL 
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(RMSE+GOP) 

 

Figure 19 False Acceptance rate of each consonant on mispronunciations for MDD-SSL 

(RMSE+GOP) 

 

 

Figure 20 False Acceptance rate of each vowel on mispronunciations for MDD-SSL 
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(RMSE+GOP) 

 

 

Figure 21 Correlation between pronunciation scores of four aspects and the number of 

mispronunciations predicted by Joint-CAPT-L1 (CE) 
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국문 초록 

 

실증 연구에 의하면 비원어민 발음 평가에 있어 전문 평가자가 채점하는 

발음 점수와 음소 오류 사이의 상관관계는 매우 높다. 그러나 기존의 

컴퓨터기반발음훈련 (Computer-assisted Pronunciation Training; 

CAPT) 시스템은 자동발음평가 (Automatic Pronunciation 

Assessment; APA) 과제 및 발음오류검출 (Mispronunciation 

Detection and Diagnosis; MDD) 과제를 독립적인 과제로 취급하며 각 

모델의 성능을 개별적으로 향상시키는 것에만 초점을 두었다. 본 

연구에서는 두 과제 사이의 높은 상관관계에 주목, 다중작업학습 기법을 

활용하여 자동발음평가와 발음오류검출 과제를 동시에 훈련하는 새로운 

아키텍처를 제안한다. 구체적으로는 APA 과제를 위해 교차 엔트로피 

손실함수 및 RMSE 손실함수를 실험하며, MDD 손실함수는 CTC 

손실함수로 고정된다. 근간 음향 모델은 사전훈련된 자기지도학습기반 

모델로 하며, 이때 더욱 풍부한 음향 정보를 위해 다중작업학습을 

거치기 전에 부수적으로 음소인식에 대하여 미세조정되기도 한다. 음향 

모델과 함께 발음적합점수(Goodness-of-Pronunciation; GOP)가 

추가적인 입력으로 사용된다. 

실험 결과, 통합 모델이 단일 자동발음평가 및 발음오류검출 

모델보다 매우 높은 성능을 보였다. 구체적으로는 Speechocean762 

데이터셋에서 자동발음평가 과제에 사용된 네 항목의 점수들의 평균 

피어슨상관계수가 0.041 증가하였으며, 발음오류검출 과제에 대해 F1 

점수가 0.003 증가하였다. 통합 모델에 대해 시도된 아키텍처 중에서는, 

Robust Wav2vec2.0 음향모델과 발음적합점수를 활용하여 RMSE/CTC 

손실함수로 훈련한 모델의 성능이 가장 좋았다. 모델을 분석한 결과, 

통합 모델이 개별 모델에 비해 분포가 낮은 점수 및 발음오류를 더 

정확하게 구분하였음을 확인할 수 있었다. 



 

 ６６ 

흥미롭게도 통합 모델에 있어 각 하위 과제들의 성능 향상 

정도는 각 발음 점수와 발음 오류 레이블 사이의 상관계수 크기에 

비례하였다. 또 통합 모델의 성능이 개선될수록 모델의 예측 발음점수, 

그리고 모델의 예측 발음오류에 대한 상관성이 높아졌다. 본 연구 

결과는 통합 모델이 발음 점수 및 음소 오류 사이의 언어학적 상관성을 

활용하여 자동발음평가 및 발음오류검출 과제의 성능을 향상시켰으며, 

그 결과 통합 모델이 전문 평가자들의 실제 비원어민 평가와 비슷한 

양상을 띤다는 것을 보여준다. 
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