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Abstract

Jang, Dongjun
Department of Linguistics
The Graduate School

Seoul National University

This paper presents a comprehensive investigation into the linguistic
knowledge embedded within BERT, a pre-trained language model based on the
Transformer architecture. We reinforce and expand upon the methodology proposed
by Jang et al (2022) by introducing the ADTRAS algorithm (An Algorithm for
Decrypting Token Relationships within Attention Scores), which decrypts token
relationships within BERT's attention scores to analyze patterns at each layer. Our
experiments using ADTRAS algorithm demonstrate that BERT autonomously learns
part-of-speech information by leveraging lexical categories. We also provide insights
into the general tendencies of BERT's layers when processing content words and
function words. Additionally, we introduce the Classification of Sentence
Sequencing (CSS) as a Finetuning Strategy, enabling indirect learning from minimal
pairs, and leverage the Affinity Prober to examine syntactic linguistic phenomena
using the BLiMP dataset. By tracing patterns and clustering similar phenomena, we
enhance our understanding of BERT's interpretation of linguistic structures.
Furthermore, we establish in detail the attributes of BERT layers related to lexical

categories by connecting the general tendencies of the layers generalized by the



ADTRAS algorithm with the results obtained through the Affinity Prober. Our study
makes several contributions. First, we introduce the ADTRAS algorithm, which
enables a comprehensive analysis of BERT's linguistic knowledge. Second, we
provide experimental evidence demonstrating BERT's ability to learn part-of-speech
information. Third, we offer insights into the tendencies observed in different layers
of BERT. Fourth, we propose the CSS Finetuning Strategy, which allows for indirect
learning from minimal pairs. Fifth, we successfully cluster syntactic phenomena
using the Affinity Prober. Finally, we uncover the general attention tendency of

BERT towards lexical categories.

Keyword : Natural Language Processing, BERT, linguistic knowledge, ADTRAS
algorithm, part-of-speech, lexical categories, layer tendencies, content words,
function words, Classification of Sentence Sequencing (CSS), Finetuning Strategy,
Affinity Prober, syntactic linguistic phenomena, BLiMP dataset

Student Number : 2021-22754

il A =



Table of Contents

Chapter 1. INtroduction .........ccoeeeeiveicssnicssnnicssnnissssncsssnessssscsssssessssnssanns 1
Chapter 2. Related WOrK ........cueeieieiiiisricisnnicssnninssnncsssncsssncssssncssssncsnns 5
2.1. Unveiling Linguistic Insights: The Probing Classifier Framework 6
2.2. The Interplay of Syntactic Tree and Neural Networks.................... 7
2.3. BERT and LinGUiStiCS.......cccuteruieeiienieeiiesiieeieesiieeiee e evee e e 7

Chapter 3. Generalization of Layer-Wise Attention Using ADTRAS

W £e01) 911 11 1) O 10
3.1. Binary Categorization of Part-of-Speech in Sentences: Content

Words and Function Words...........coceeveriiniiiiinieninieneeeieseee e 10

3.2. ADTRAS AIZOTithim ...cceeeiiiiiiiiiieiieieeieee e 13
3.3. The General Language Understanding Evaluation (GLUE)

Benchmark ..........ooouoiiiiiiii e 16

3.3.1 The Corpus of Linguistic Acceptability (CoLA).................. 16

3.3.2 The Microsoft Research Paraphrase Corpus (MRPC).......... 17

3.3.3 The Stanford Sentiment Treebank 2.0 (SST-2).......cc.cccuu..... 17

3.3.4 The Quora Question Pairs (QQP) .......ccccvvvviiiieiriieciieeie, 18

3.3.5 The Multi-Genre Natural Language Inference (MNLI) ....... 18

3.3.6 The Words in Context (WiC).....cccccecveeeririieeiieeeeiie e 19

3.3.7 SUMIMATY ...eoeiiieiiiieiiieeeiiee ettt e eiteeeteeeeteeesaeeesbeeesibeesnareeens 19

3.4. Evaluating Attention Variations in Lexical Categories on NLU tasks

3.4.1 Intrinsic Learning of Lexical Categories in BERT for

DOWNSIIEAM TASKS ...ceeviieiiiiieiiieiiieeeieeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeeeeeeees 21
IMOAELS ..ottt et e e et e e ee et e e e e eeeeeeeeeeeeeeeeeeeeeees 23

iii o



Chapter 4. Probing Intrinsic Linguistic Knowledges of Deep Learning-

based Language Model using Affinity Prober ..........cceeneeiveecsnencnnnee 23
4.1.Jang et al (2022) .oovieeiieieeeeee e 24
4.2, ANty Prober......ccoovviiiiiiiiieiiececee e 26

4.2.1 Multi-Head Attention on Transformer Architecture.............. 26
4.2.2 Affinity Relationship ........ccoooieviiiiniiniiieieiieeeee 27
4.2.3 Probabilistic Distribution of Categorized Affinity Relationships
................................................................................................................... 28
4.2.4 The Algorithm of Affinity Prober on BERT ............c..c........ 29

Chapter 5. The Benchmark of Linguistic Minimal Pairs (BLiMP)....33

S.1Adjunct IsIand........oooveeiieiieeiiee e 34
5.2. Animate SUDJECT.......ccuiiiiiiiiieiieie e 35

5.2.1. Animate Subject Passive........cccoeveevieeiiienieeiieiieeie e 35

5.2.2. Animate Subject Trans........cccoeceeevieerieeciienieeieeie e 35
5.3. CAUSALIVE ..ottt 36
5.4. Complex NP Island..........cccceeoiieiiiiiieiiiiiieieceeee e 37
5.5. Coordinate Structure Constraint ...........ocevverereereeneesiereenennenn 38
5.5.1. Left Branch......cocvoiiiiiiiiniiieieeeeeeeeee e 38
5.5.2. Object EXraction.........ccccueeeiieriieiiiieniieeieeiie e eiee et eiee e 39
5.6. DIOP ATGUMENE ......eieiiiiieiiiieeiieeeiieeeite ettt e e e 40
5.7, EIIPSIS NDAT .....cciiiiiiiiieeiieeieeeiie ettt 41
5.8. INCROALIVE «...ouviiiiiiiiceieee e 42
5.9, INErANSIEIVE ..covveiieriieiieieeiteste ettt s 43
5.10. TEANSTEIVE w.cevviiiiiriieiieieeit ettt sttt et st 44
5.11. Left Branch Island ..........ccocoooiriiniiniiiineecceee 44

5.11.1. ECho QUEStION.....cccuvieiiiiiiiieeciie et e 44

5.11.2. Simple QUESHION......cc.eevieeiieiieeieeiieeieeee e 45
512, PASSIVE .ttt et 46
5.13. Sentential Subject Island ............cccceeviiiiiiniiiiiieeeee 47

v o



S04, WHISIANA ..o 48

5.15. Wh QUESHIONS ....uvvieeiiiieeiieeciie ettt e e 49
S5.15.1. ObJECt GAP .vvievvieiieeiieeiie ettt 49
5.15.2. SUDJECE GAP...oovvieiiieiieiieeieee ettt 50

Chapter 6. EXPeriment...........cceeeiveicssnicssnnccsssncssssecsssncssssncsssssssssscses 51

6.1. FINetuning Strate@y..........cccueevueerieeriieniieeieeiieceeesiee e eiee e e 51

6.2. Result: Clustering of Similar Linguistic Phenomena.................... 53
6.2.1. Group I: Passive and Ellipsis N-bar ...........ccccceevvercireneenen. 54
6.2.2. Group II: Island Effects ........ccccceevieriiiiiieniieiieieeeeeee, 58
6.2.3. Group III: Syntactic Constraints on Movement .................. 62

6.2.4. Group IV: Verbal Predicate Types and Argument Structures66

6.3, SUMMATY ....coiiiiiiiiiieiieeeeeeee et e e 72
L@ 1 F:1 0 7 SR ©71) 116 111 11) 1 N 73
| 23 ) () 1 [ 75
APPENAIX. coveriirvrricrsrnicsssnessssnessssncsssssessssssssssssssssssssssessssssssssssssssssssssssssssses 78
ADbStract (In Korean) .......ccccceeeiccsssnsicssssssscsssssssssssssasssssssssssssssssssssssssases 97



List of Figures

Figure 3.1. Changes in Attention Distribution Across Lexical Categories from

Pre-trained Model to Fine-tuned Model.............ccocoeiiiiiiiinininininee 21
Figure 4.1. The process of probing tokens that have Affinity Relationship
with Affinier t4 using Affinity Prober.........ccccooiniiiiniiniiiiiiceee 32

Figure 6.1. The Affinity Relationship (AR) in three language phenomena
associated with Group I: Passive, Animate Subject Passive, and Ellipsis N-
bar. The solid lines in the figure represent the AR(Con., Con.), while the

dotted lines depict the AR(Fun., Fun.) .......cccoccoeviiiiiininniiiieeeee, 54
Figure 6.2. Lexical Category-based Affinity Relationship in Language
Phenomena corresponding to Group L.........ccoecieveiieiiiniiiinieniieieeieeiens 57

Figure 6.3. The Affinity Relationship (AR) in three language phenomena
associated with Group II: Complex NP Island, Wh Island, Left Branch Island
Echo Question, Left Branch Island Simple Question, Sentential Subject
Island. The solid lines in the figure represent the AR(Con., Con.), while the

dotted lines depict the AR(Fun., Fun.). ......cccoccoeviiiiiiniiiieieceee 58
Figure 6.4. Lexical Category-based Affinity Relationship in Language
Phenomena corresponding to Group Il..........ccccoeveiieiiiniiiinieniieieeieeens 61

Figure 6.5. The Affinity Relationship (AR) in three language phenomena
associated with Group III: Adjunct Island, Coordinate Structure Object
Extraction, Wh Questions Subject Gap, Wh Questions Object Gap, Co-

ordinate Structure Left Branch. ..........cocooiiiniiiiniincee 62
Figure 6.6. Lexical Category-based Affinity Relationship in Language
Phenomenacorresponding to Group I .........cccoevviieiiiniiiinieiiiciecieee, 65

Figure 6.7. The Affinity Relationship (AR) in three language phenomena
associated with Group IV: Animate Subject Trans, Inchoative, Causative,

Drop Argument, Intransitive, Transitive. .......c.cccoceeverienenieniienenieneenens 66
Figure 6.8. Lexical Category-based Affinity Relationship in Language
Phenomena corresponding to Group IV ........cocoeevciiiiiiiiiiniieiiieieeeees 71

vi



List of Tables

Table 3.1. Description of NLTK Part-of-Speech Tags on function words 11
Table 3.2. Description of NLTK Part-of-Speech Tags on content words . 12
Table 3.3. Changes in Attention Distribution Across Lexical Categories from
Pre-trained Model to Fine-tuned Model ............ccocevvieviininiinieneniineee, 20
Table 3.4. Top 3 Layers which mostly attend on the content words and
function words on 6 downstream tasks.........c..coceeveveeiiiiiniinininnine 21
Table 8.1. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Adjunct Island Phenomenon............ccccoecvveiieniieniienieeniienene, 79
Table 8.2. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Animate Subject Passive Phenomenon..............cccceevveeirennnne. 80
Table 8.3. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Animate Subject Trans Phenomenon...........ccccoeeeeeiieiiennnnne. 81
Table 8.4. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Causative Phenomenon............ccoeeeeviieriieiienieenieecie e 82
Table 8.5. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Complex NP Island Phenomenon ............cccceveieeiienieeiiennnnnne. 83
Table 8.6. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Coordinate Structure Left Branch Phenomenon...................... 84
Table 8.7. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Coordinate Structure Object Extraction Phenomenon............. 85
Table 8.8. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Drop Argument Phenomenon .............cccceeevieviieniienieeniiennnne 86
Table 8.9. Top 10 Frequency of Affinity Relationship Categorized by Part-of-
Speech on Ellipsis N-bar Phenomenon ............cccccoecvveiieniienienieeniieeene, 87
Table 8.10. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Inchoative Phenomenon ...........c.ccceevviieniiniiieniencieeiieeee, 88

Table 8.11. Top 10 Frequency of Affinity Relationship Categorized by Part-

.. + ]
vii A



of-Speech on Intransitive Phenomenon............cccccoecveevieiciienienieeniieeene, 89
Table 8.12. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Transitive Phenomenon............cceeeevieenienciienieeieeiiee, 90
Table 8.13. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Left Branch Island Echo Question Phenomenon ................ 91
Table 8.14. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Left Branch Island Simple Question Phenomenon ............. 92
Table 8.15. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Passive Phenomenon ............ccocceeviiiiiienieniiieniecieeeee 93
Table 8.16. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Sentential Subject Island Phenomenon ..........c.ccccceeeenennen. 94
Table 8.17. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Wh Island Phenomenon............ccccceeviienienciienienieeiee, 95
Table 8.18. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Wh Questions Object Gap Phenomenon.............c.cccuen....... 96
Table 8.19. Top 10 Frequency of Affinity Relationship Categorized by Part-
of-Speech on Wh Questions Subject Gap Phenomenon............................ 97

viii



Chapter 1. Introduction

In recent years, Natural Language Processing (NLP) has seen remarkable progress
thanks to the introduction of deep learning-based pre-trained models. These models
have captured considerable interest, largely due to the revolutionary Transformer
architecture proposed by Vaswani et al. (2017). This groundbreaking architecture has
opened doors for the creation of advanced models that leverage the power of the
multi-layer Self Attention Mechanism. These models integrate various components,
including the Multi-head Attention Layer.

One prominent example of such models is BERT, which was introduced by
Devlin et al. (2019). BERT is a pre-trained language model based on the
Transformer's encoder structure and has been trained using a cloze test-based method.
This approach has positioned BERT as a specialized language model for Natural
Language Understanding (NLU), outperforming existing neural network models on
standard NLU benchmarks. BERT's performance is particularly noteworthy in
challenging tasks like CoLA, where traditional neural network models face
significant difficulties. The remarkable performance exhibited by BERT implies the
existence of latent linguistic knowledge within BERT.

The field of BERTology (Rogers et al., 2020) has emerged through ongoing
research, aiming to uncover the potential latent linguistic knowledge embedded
within BERT. BERTology primarily focuses on investigating the depths of BERT's
language processing capabilities and exploring the replication of language structures.
Research in this area ranges from examining the model's post-training performance

on language information (such as part-of-speech and named entities) to investigating



the operational processes of language models, such as the self-attention mechanism,
in order to reproduce syntactic structures or word dependencies. However, these
approaches have limitations in terms of directly injecting language knowledge into
the model to explore linguistic knowledge. The discussion of appropriately training
the model with directly injected language information is an engineering topic. This
means that it is not easy to investigate the inherent pure language knowledge within
the language model. Therefore, in order to comprehensively investigate the linguistic
knowledge embedded within BERT, it is essential to employ research methodologies
that involve analyzing the model's outputs, such as embeddings and attention scores,
generated during its computational process. These outputs should be interpreted from
a linguistic perspective to uncover the underlying linguistic patterns.

Jang et al (2022) proposed the Affinity Prober as a specialized probing
mechanism to investigate token relationships in self-attention-based language
models. Their research applied the Affinity Prober algorithm to analyze how the
BERT-base-cased model interprets well-formed and ill-formed sentences. According
to Jang et al (2022), the decoding of token relationships extracted from attention
scores, known as Lexical Categories, revealed noteworthy patterns in syntactic
linguistic phenomena across different layers in the BLIMP benchmark (Warstadt et
al., 2020). These patterns were observed in both well-formed and ill-formed
sentences, providing valuable insights into the nature of syntactic processing within
the model. Conversely, semantic linguistic phenomena displayed similar patterns.
Furthermore, upon closer examination of specific phenomena such as wh-questions
and negative polarity items (NPI) using the Affinity Prober, noteworthy distinctions
in token relationships became evident. These distinctions provide valuable insights

into the intricate workings of the model's syntactic processing when confronted with
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these linguistic constructs. Specifically, the study brought attention to distinct
discrepancies in token relationships between well-formed and ill-formed sentences,
particularly in the context of wh-questions.

This study aims to reinforce the methodology proposed by Jang et al (2022)
through additional experiments. We begin by providing an overview of the research
methodologies employed in related studies in Section 2, emphasizing the
distinctiveness and significance of our research approach. In Section 3, we present
experimental evidence to demonstrate that BERT autonomously learns linguistic
knowledge related to part-of-speech by leveraging lexical categories. To achieve this,
we introduce the ADTRAS algorithm (An Algorithm for Decrypting Token
Relationships within Attention Scores) and combine it with lexical categories to
analyze patterns at each layer of BERT. Our experiments focus on comparing the
patterns observed in BERT when it is fine-tuned on specific tasks in the GLUE and
SuperGLUE datasets and when it is not fine-tuned. We show the importance of
BERT's part-of-speech processing and report on the general tendencies of layers that
concentrate on content words and function words.

In Section 4, we shift our attention to the core of our study, introducing
experiments using the Affinity Prober to analyze patterns in syntactic linguistic
phenomena processed by BERT. We revisit Jang's (2022) research to explain our
decision to focus solely on syntactic linguistic phenomena. We redefine the
algorithm of the Affinity Prober, provide a clearer explanation of Affinity
Relationship and Affinity Ratio. We then introduce the BLIMP dataset consisting of
minimal pairs and the linguistic phenomena it covers. To facilitate comprehensive
analysis, we present the Classification of Sentence Sequencing (CSS) as a Finetuning

Strategy that indirectly learns from minimal pairs.
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In the results section, our focus shifts towards understanding how BERT

interprets linguistic phenomena in a fine-tuned setting, employing the Affinity Prober.

By closely analyzing the patterns exhibited by BERT during the processing of

sentences in various linguistic phenomena, we categorize similar patterns based on

this information. Additionally, by establishing connections between the observed

layer tendencies using the ADTRAS algorithm, we aim to generalize the behavior of

BERT layers when processing sentences with syntactic phenomena, following the

CSS approach as the fine-tuning strategy.

Finally, in Chapter 5, we provide a summary of our research contributions and

discuss the limitations of our study, offering insights into future directions for

research.

The key contributions of our study are as follows:

L.

Proposal of ADTRAS Algorithm: The ADTRAS algorithm is introduced to
analyze patterns at each layer of BERT, strengthening Jang's (2022)
methodology and enhancing the interpretability of token relationships
within BERT's attention scores. Our algorithm successfully captures
significant linguistic movements within attention scores. Can we observe
any explainable patterns in the activated neurons of continuous prompts
through layers?

Experimental Evidence on BERT's Part-of-Speech Learning: Through
empirical experiments, we demonstrate that BERT autonomously learns
language knowledge related to part-of-speech by utilizing lexical categories.
This finding supports the notion that BERT possesses an inherent
understanding of grammatical categories.

Insight into Layer Tendencies: We provide insights into the general
%



tendencies of BERT's layers when processing content words and function
words. By analyzing patterns at each layer, we uncover BERT's processing
characteristics associated with different word types.

4. Introduction of Classification of Sentence Sequencing (CSS): We introduce
CSS as a Finetuning Strategy, enabling indirect learning from minimal pairs.
CSS facilitates a more comprehensive analysis of the relationship between
minimal pairs and the underlying linguistic phenomena, leading to deeper
insights into BERT's interpretation of linguistic patterns.

5. Examination of Syntactic Linguistic Phenomena: Using the Affinity Prober,
we explore the patterns exhibited by BERT in processing syntactic linguistic
phenomena. The analysis focuses on specific phenomena using the BLiMP
dataset, highlighting the potential of the Affinity Prober in understanding
syntactic structures processed by BERT.

6. Clustering of Similar Linguistic Phenomena: Through the Affinity Prober's
analysis, we trace patterns exhibited by BERT layers and cluster similar
linguistic phenomena, enabling a better understanding of their

interrelationships.

Chapter 2. Related Works

This chapter offers a comprehensive review of significant research examining the
linguistic knowledge inherent in language models, with a specific emphasis on BERT.
The chapter is segmented into three sections: Section 2.1 elucidates the Probing

Classifier Framework and its role in syntactic analysis; Section 2.2 dives into the



exploration of syntactic tree generation in correlation with neural networks; and
finally, Section 2.3 reviews studies that delve into the intricate relationship between

BERT and linguistics.

2.1. Unveiling Linguistic Insights: The Probing Classifier

Framework

Before the emergence of Transformers, researchers extensively explored the
syntactic analysis in context-based representations. Among the analytical methods,
Probing Classifiers emerged as a viable means of studying the syntactic nuances of
neural network models in the natural language processing (NLP) realm. Noteworthy
contributions include those from Belinkov (2017), who examined how Neural
Machine Translation (NMT) architecture comprehends word structure and part-of-
speech (POS). Blevins et al. (2018) posited that RNN models trained on diverse NLP
tasks could induce syntactic hierarchy without explicit guidance. Furthering this
field, Conneau et al. (2018) put forward ten probing tasks for assessing linguistic
properties, while Hupkes et al. (2018) utilized Diagnostic Classifiers, a supervised
method, to investigate how RNN models interpret syntactic hierarchy. Hewitt and
Manning (2018), recognizing the limited explanatory capabilities of neural network
models in revealing parse trees within deeply learned contextual models, proposed a
structural probe. They asserted that ELMo and BERT exhibit robust syntax based on
minimum spanning trees. Yet, the Probing Classifier Framework is not without its
limitations; Belinkov (2022) highlighted the ambiguity in the choice of classifier for

diverse contexts.



2.2. The Interplay of Syntactic Tree and Neural Networks

One of the crucial research areas in extracting implicit linguistic knowledge within
neural networks revolves around the generation of syntactic tree structures. A long-
standing challenge in NLP has been to induce such structures in an unsupervised
manner. Pioneering contributions from Klein and Manning (2001; 2002; 2004)
implemented probabilistic part-of-speech tagging based on treebank sequences,
laying the foundation for unsupervised parsing utilizing phrase-structure grammar
and tree-based models. The emergence of deep learning, as emphasized by LeCun et
al. (2015), and the introduction of RNN models by Hochreiter and Schmidhuber
(1997), brought significant attention to the field and propelled extensive research
efforts in unsupervised syntactic structure induction based on RNN models. The
advent of the Transformer architecture directed the research on syntactic structures
beyond the design of neural network models strictly for inducing these structures.
Syntax-BERT (Bai et al., 2019) proposed syntactic attention layers by inducing
MASKSs based on constituency trees (Chen and Manning, 2014) and dependency
trees (Zhu et al., 2013). Li et al. (2020) further refined this process by devising a
Mask Matrix based on dependency parsing information, integrating it into BERT's

attention scores to enhance its performance.

2.3. BERT and Linguistics

The Bidirectional Encoder Representation from Transformers (BERT) model,

:l -I

=
|



introduced by Devlin et al. (2019), has made remarkable strides in the field of NLP.
BERT is a transformer-based language model that leverages the power of self-
attention mechanisms to encode bidirectional contextual information, allowing it to
achieve state-of-the-art performance on various NLP tasks.

BERT's architecture is rooted in the transformer model proposed by Vaswani et
al. (2017), which introduced the concept of self-attention mechanism, enabling
efficient parallel processing of tokens in a sequence. This mechanism allows BERT
to capture the contextual information for each token, making it inherently
bidirectional and resolving some of the limitations of previous unidirectional models.
Pre-training is a crucial aspect of BERT model. During pre-training, BERT is
exposed to large corpora and learns contextual representations by predicting masked
words in a sentence (Masked Language Modeling, MLM) and predicting whether
two sentences follow each other (Next Sentence Prediction, NSP). This pre-training
process enables BERT to develop a deep understanding of language structures and
relationships, which can be further fine-tuned for specific downstream tasks. By fine-
tuning BERT, it is adapted to various NLP tasks such as text classification, named
entity recognition, question-answering, etc. In this process, BERT's pre-trained
representations are combined with task-specific classifier layers and fine-tuned on
smaller specific datasets. This fine-tuning strategy allows BERT to transfer its
knowledge learned during pre-training to new tasks effectively.

BERT's remarkable performance across various NLP tasks, particularly
linguistic tasks, has generated significant interest, leading to extensive explorations
into its encoding and decoding mechanisms for linguistic information. Numerous
studies have probed the relationship between BERT and linguistics (Rogers et al.,

2021), with this section specifically concentrating on studies most relevant to our
%
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research. Jawahar et al. (2019) have explored BERT's capabilities in capturing
structural information in language. Their investigation reveals that different layers
of BERT are dedicated to encoding specific linguistic features. Lower layers tend to
focus on phrase-level information, middle layers concentrate on syntactic aspects,
while top layers emphasize semantic understanding. This demonstrates BERT's
ability to effectively represent different levels of linguistic structures.

Contrarily, Htut et al. (2019) conducted fine-tuning experiments on syntax-
oriented and semantics-oriented datasets to identify significant shifts in attention
weights and to extract dependency relations. They try to understand the changes in
BERT's attention weights following fine-tuning on two distinct datasets: one syntax-
oriented (CoLA) and the other semantics-oriented (MNLI). Although their findings
indicate attention heads tracking individual dependency types, the generalization of
such learned representations is limited, shedding light on the challenges in adapting
BERT's attention mechanisms to different tasks. Although they found BERT's
attention heads tracked individual dependency types, they noted this might not be a
universal trait.

Contrasting these findings, Kovaleva et al. (2019) reported an absence of
significant attention shifts in BERT, postulating that attention maps might be
influenced more by pre-training tasks than by task-specific linguistic reasoning.
Their research primarily investigated whether BERT's fine-tuning on a specific task

leads to self-attention patterns that emphasize particular linguistic features.



Chapter 3. Generalization of Layer-Wise Attention

Using ADTRAS Algorithm

In this chapter, we experimentally demonstrate that BERT learns linguistic
knowledge about lexical categories during the fine-tuning process and reveal that
this knowledge can be generalized to explain the properties of BERT layers in terms
of categories. To conduct our experiments, we propose the ADTRAS (An Algorithm
for Decrypting Token Relationships within Attention Scores) algorithm. We train the
BERT-base-cased model on six tasks from the GLUE benchmark and examine the
attention shift in BERT before and after fine-tuning using the ADTRAS algorithm.
Ultimately, we uncover the existence of distinct properties within each layer of
BERT and suggest the potential for layer generalization. Our findings offer valuable
insights into the possibility of generalizing the behavior and characteristics of BERT

layers.

3.1. Binary Categorization of Part-of-Speech in Sentences:

Content Words and Function Words

In this experiment and for further experiment in Section 4, following Carpenter
(1983), the part-of-speech information within sentences was binary-categorized as
content words and function words. The part-of-speech information needed for this

categorization was obtained through the NLTK (Natural Language Toolkit) module.'

'NLTK Module: https://github.com/nltk/nltk
10



- ful’lCtiOIl WOI'dS — {"CCH, HMD"’ HDT"’ HEXH’ HINH, HPDTH, HPOSH, "TO",

"WDT"’ "WP", "WP\$"’ HWRB", HRP"}

- content words = {"NN”, “NNS”, “NNP”, “NNPS”, “CD”, “FW”, “JJ”,

“JJR”, “JJS”, “PRP”, “PRP\$”, “RB”, “RBR”, “RBS”’ “VB”, “VBD”,

“VBG”, “VBP”, “VBZ”, “VBN”, “UH”}

The function words include coordinating conjunctions, modal verbs,

determiners, existential 'there', prepositions and subordinating conjunctions
b b

predeterminers, possessive endings, infinitive 'to', wh-determiners, wh-pronouns,

NLTK TAG Description
CC Coordinating Conjunction
MD Modal
DT Determiner
EX Existential There
IN Preposition, Subordinating Conjunction
PDT Pre-determiner
POS Possessive Ending
TO infinitive to
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive Wh-pronoun
WRB Wh-adverb
RP Particle

Table 3.1: Description of NLTK Part-of-Speech Tags on function words

11
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possessive wh-pronouns, wh-adverbs, and particles.

NLTK TAG

Description

NN
NNS
NNP

NNPS

CD

1
JJIR
JIS
PRP

VBD
VBG
VBP
VBZ
VBN
UH

Noun (singular)
Noun (plural)
Proper Noun (singular)
Proper Noun (plural)
Cardinal Digit
Foreign Word
Adjective
Adjective (comparative)
Adjective (superlative)
Personal Pronoun
Possessive Pronoun
Adverb
Adverb (comparative)
Adverb (superlative)
Verb (base form)

Verb (past form)

Verb (gerund, present participle)
Verb (singular, present, non 3rd person)

Verb (singular, present, 3rd person)

Verb (past participle)

Interjection

Table 3.2: Description of NLTK Part-of-Speech Tags on content words

In contrast, the content words include nouns, plural nouns, singular proper

nouns, plural proper nouns, cardinal numbers, foreign words, adjectives,

12
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comparative adjectives, superlative adjectives, personal pronouns, possessive
pronouns, adverbs, comparative adverbs, superlative adverbs, base form verbs, past
tense verbs, gerunds or present participle verbs, present tense verbs (non-3rd person

singular), present tense verbs (3rd person singular), past participles, and interjections.

3.2. ADTRAS Algorithm

Our primary objective in this chapter is to investigate the linguistic characteristics
and attention shift within the layers of BERT, with a specific emphasis on shifts in
probabilistic scores within BERT's attention matrix. To accomplish this, we
introduce the ADTRAS (An Algorithm for Decrypting Token Relationships within
Attention Scores) algorithm, which allows for the decryption of token relationships
while preserving the original attention values. ADTRAS is designed to work with
multi-layered models like BERT and aims to uncover the connections between
tokens that carry significant weights in the attention scores. Our main focus is to
comprehend the relational structure of tokens, particularly in terms of lexical
categories or Part-of-Speech. Additionally, the ADTRAS algorithm facilitates the
extraction and understanding of syntactic configurations, semantic relationships
between words, and causal correlations.

In the context of utilizing ADTRAS with BERT and analyzing lexical categories,
our procedure begins by tokenizing and formatting the input sentence using a BERT
model, represented as M. This step includes the incorporation of special tokens like
CLS and SEP to ensure compatibility with the BERT model. Subsequently, the

algorithm obtains the self-attention weights across all layers, denoted as 4, from M
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and calculates the mean across the heads in each layer, denoted as $\bar{A}$. Our
analysis primarily focuses on meaningful tokens, excluding special tokens such as

CLS and SEP. This process can be represented as:

A,, = ExcludeSpecialTokens(A)

If the words are segmented into sub-tokens during tokenization, the attention
weights are averaged by combining sub-tokens, denoted as

Agpg = AverageSubtokenWeights (Jm)

For each token, the algorithm identifies the token with the highest attention
score maxscore from the sequence of tokens Er which contains ¢ number of tokens
{El, ..., E;}. In cases where a token's attention is predominantly self-directed, the
algorithm selects the second-highest attention score. This selection process is
represented as maxiq. = argmax(Eg), and if Er = top; itself , then maxiqx = argmax(Er
\ top1), where Ep € /Ta,,g.

The selected tokens are then assigned to their corresponding pre-determined
lexical categories. Subsequently, the algorithm updates the frequency count for each
lexical category.

In conclusion, the relative attention ratio for each lexical category is computed
by normalizing the frequency count of each category by the total frequency count of
all the different lexical categories, thus alleviating biases. Mathematically, this can

be represented as
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R fillexcat]
7Y fillexcat]

By deriving the attention ratios R, which could explain the relationship between

tokens in a sentence across all layers, we can perform layer-wise analysis using the

ADTRAS algorithm. This enables us to examine the distribution patterns of attention

within each layer. The summarized steps are provided in Alg 1.

Algorithm 1 ADTRAS
function ADTRAS(z)

if pair of sentences {1, z2} € X then
Ep + Embedding(cls, sep, x1,x2)
else
Er <+ Embedding(cls, sep, 1)
end if
A « Attention(ET)
A — mean(A)
A,, + EzcludeSpecialTokens(A)
/ng <« AverageSubtokenW eights(A,,)
for [ in layers do
for Ep in Aavg do
maziq, « argmaz(Er)
if mazx;q, == Er then
maz;q; < argmaz(Ep\maz;q;)
end if
lezcat + MapCategory(maz;q, ), where {Con., Fun.} € lexcat
fillezcat] « fi[lezcat] + 1
end for
R; « fi[lexzcat]/ > (fi[lexcat])
return R
end for
Ei:l R’y

end function
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3.3 The General Language Understanding Evaluation (GLUE)

In this study, we conducted an experiment using the BERT-base-cased model and
focused on the tasks from the GLUE benchmark (Wang et al., 2018; Wang et al.,
2019). Our goal was to fine-tune the model on a diverse range of tasks that require
different types of semantic or syntactic information. Specifically, we selected six

tasks that cover a wide spectrum of linguistic aspects.

3.3.1. The Corpus of Linguistic Acceptability (CoLA)

The Corpus of Linguistic Acceptability (CoLLA) dataset, introduced by Warstadt et al
(2018), is a benchmark in Natural Language Processing (NLP) that assesses models'
ability to determine the grammatical acceptability of English sentences. Comprising
10,657 English sentences from various linguistic sources, the CoLA dataset is
annotated to distinguish between grammatically acceptable and unacceptable
instances. It focuses on making binary predictions about the grammatical
acceptability of input sentences. The dataset presents challenges due to the disparity
between grammatical acceptability and sentence meaning, which are often addressed
during pre-training of NLP models. CoLA is an essential component of the GLUE
benchmark, which evaluates the performance of different NLP models across various

natural language understanding tasks.

16



3.3.2. The Microsoft Research Paraphrase Corpus (MRPC)

The Microsoft Research Paraphrase Corpus (MRPC) is a crucial task in NLP that
assesses models' ability to determine the paraphrastic relationship between sentence
pairs. Introduced by Dolan and Brockett in 2005, the MRPC dataset contains
approximately 5800 sentence pairs sourced from web-based news content. Human
annotators labeled each pair to indicate whether they exhibit paraphrastic properties.
The MRPC task revolves around accurately categorizing sentence pairs as
paraphrases or non-paraphrases. It is commonly approached as a binary classification
problem, where models predict '1' for paraphrase pairs and '0' for non-paraphrase
pairs. MRPC is part of the GLUE benchmark and evaluates models' comprehension
of syntactic and semantic aspects, as well as their ability to recognize and generate

paraphrases.

3.3.3. The Stanford Sentiment Treebank 2.0 (SST-2)

The Stanford Sentiment Treebank 2.0 (SST-2) is a dataset designed for sentiment
analysis in NLP. Developed by Socher et al. in 2013, it builds upon the original
Stanford Sentiment Treebank. With 67,349 English sentences extracted from movie
review excerpts, the SST-2 dataset labels each sentence as positive or negative
sentiment. It focuses on binary sentiment classification, removing neutral instances
for simplicity and effective model training and evaluation. The SST-2 task aims to
accurately determine the sentiment expressed in a given sentence, providing a testing

ground for models' understanding of sentiment in text. SST-2 is part of the GLUE
17 4 STl
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benchmark and enables evaluation and benchmarking of NLP models' performance

across various natural language understanding tasks.

3.3.4. The Quora Question Pairs (QQP)

The Quora Question Pairs (QQP) dataset is a significant benchmark for evaluating
NLP models' ability to identify semantically equivalent questions. Created by Quora
to consolidate duplicate questions, the QQP dataset consists of over 400,000 question
pairs. The task involves determining whether a pair of questions are duplicates or
not, making it a binary classification problem. The QQP dataset presents challenges
due to the variation in expressions used to ask essentially the same question. Models
must understand the underlying semantic content of questions rather than relying

solely on lexical matches.

3.3.5. The Multi-Genre Natural Language Inference (MNLI)

The Multi-Genre Natural Language Inference (MNLI) task evaluates NLP models'
ability to identify semantic relationships between sentence pairs. Introduced by
Williams et al. in 2017, the MNLI dataset contains approximately 433,000 sentence
pairs, each labeled with textual entailment information. The pairs consist of a
premise and a hypothesis sentence, and the task is to determine whether the premise
entails, contradicts, or is neutral to the hypothesis. MNLI draws sentences from ten
genres of written and spoken English, providing a diverse range of linguistic styles

and lexical choices for evaluation. MNLI is included in the GLUE benchmark and
18 1 = TH
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serves as a rigorous evaluation of models' understanding of textual entailment and

semantic relationships between sentences.

3.3.6. The Words in Context (WiC)

The Words in Context (WiC) task, part of the SuperGLUE evaluation suite, focuses
on word sense disambiguation in NLP. Introduced by Wang et al. in 2019, the WiC
task tests models' ability to determine the correct sense of a target word in two
different contexts. The dataset provides pairs of sentences, each containing a target
word, and models must determine whether the word has the same sense in both
sentences. The WiC dataset consists of approximately 1,000 instances, labeled as
"True' if the target word retains the same sense and 'False' if the senses differ. This
binary classification task requires a deep understanding of language and context
beyond syntactic comprehension. The WiC task originated from the Word in Context

dataset and provides a challenging evaluation for NLP models.

3.3.7. Summary

For each task, we fine-tune the bert-base-cased model. Additionally, we employ the
ADTRAS algorithm to decode word attention relations, allowing us to identify
notable shifts when examining the data through the lens of lexical categories. To
classify and tag content words and function words, we utilize the NLTK (Natural
Language Toolkit) module, following the definition provided by Carpenter (1983).

By conducting experiments on these diverse tasks and analyzing_I attention
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relations with respect to lexical categories, we aim to gain insights into the model's

understanding and representation of semantic and syntactic information across

different linguistic phenomena.

3.4 Evaluating Attention Variations in Lexical Categories on

NLU tasks

In the results, we evaluate the six models on six distinct test datasets, both before

and after fine-tuning. Using the ADTRAS algorithm, we analyze the changes in

attention within the lexical category at each layer. This analysis allows us to examine

the variations in attention patterns for different models and layers.

Pretrained Finetuned

Con. Fun. Con. Fun.
CoLA 1.27 38 1.12 .73 (+.35)
MRPC 132 21 126 .37(+.16)
SST .13 70 115 .65(-.05)
QQpP .11 .79 115 .70(-.09)
MNLI 1.37 17 117 .61 (+.44)
WiC 1.33 .19 1.38 .08 (-.08)

Table 3.3: Changes in Attention Distribution Across Lexical Categories from Pre-trained

Model to Fine-tuned Model

20



3.4.1 Intrinsic Learning of Lexical Categories in BERT for

Downstream Task

-=-Con. ) - - -Con.
= = =Fun. - = = Fun.
1 1
0.5 0.5
EEEEEE s 255 3 ¢
= 4 > = =
3 g 48 g = 3 g 48 =
(a) Pretrained Model (b) Finetuned Model

Figure 3.1: Changes in Attention Distribution Across Lexical Categories from Pre-trained
Model to Fine-tuned Model

This section explores the impact of fine-tuning BERT on attention weights across
various downstream tasks, offering valuable insights into the learning capabilities of
self-attention in relation to lexical categories. Specifically, our analysis focuses on
the last layer of BERT, which previous studies (Liu et al., 2019; Kovaleva et al., 2019;
Hao et al., 2019) have identified as task-specific. The findings highlight significant
attention shifts dependent on the task type, as depicted in Figure 3.1 and summarized
in Table3.3.

For example, when fine-tuning BERT for the CoLA and MRPC tasks, which
emphasizes syntactic structures, we observe an increase in attention towards function
words and a decrease in attention towards content words. On the other hand, fine-
tuning for the WiC task, which focuses on relationships among content words, leads
to an increase in attention towards content words and a decrease for function words.

This shift is intriguing because the fine-tuned model exhibits even higher attention
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to content words, surpassing the significant attention already present in the
pretrained model. Moreover, tasks like SST-2 and QQP, prioritizing semantic aspects
over syntactic ones, demonstrate an escalation in attention towards content words.
In contrast, the MNLI task, which requires both syntactic and semantic
understanding, exhibits a substantial amplification in attention towards function
words. These observations indicate a strong connection between the MNLI task and
the utilization of syntactic information.

To summarize, tasks involving syntactic information (CoLA, MRPC, MNLI)
show increased attention weights on function words, while tasks emphasizing
semantic information (SST-2, QQP, WiC) exhibit heightened attention on content
words (refer to Table 3.3). These findings suggest that as language models undergo
fine-tuning for specific objectives, they acquire inherent linguistic knowledge related

to lexical categories.

Con. Fun.

top1 top2 tops topy topz tops

CoLA L12 L1 Li1 L2 L8 L4
MRPC L1l L12 L1 L8 L2 L9
SST L1 LIl L12 L8 L2 I4
QQP L1 LIl L12 L8 L9 L4
MNLI L12 L11 LI L8 L2 14
WiC L1l Li12 L10 L2 L8 L4

Table 3.4: Top 3 Layers which mostly attend on the content words and function words on 6
downstream tasks

. s A stm



3.4.2 Generalization of Layer-Wise Attention in Fine-Tuned

BERT Models

Table 3.4 provides a comprehensive summary of the top three layers in each fine-
tuned model, highlighting their highest attention to content words and function
words. Interestingly, despite the variations in the fine-tuning process for each model,
we can still observe consistent linguistic patterns in relation to lexical categories.
The results in Table 3.4 demonstrate that Layers 1, 10, 11, and 12 predominantly
focus on content words, while Layers 2, 4, 8, and 9 primarily focus on function words.
This finding challenges previous studies that suggested BERT layers cannot be
generalized (Htut et al., 2019; Kovaleva et al., 2019). Through the application of the
ADTRAS algorithm, we successfully generalize the linguistic characteristics of

BERT layers across six different downstream tasks.

Chapter 4. Probing Intrinsic Linguistic Knowledges
of Deep Learning-based Language Model using

Affinity Prober

In Section 3, we observed noteworthy changes in attention scores using the
ADTRAS algorithm during the fine-tuning of BERT. This algorithm, focused on the
Lexical Category, revealed a tendency to prioritize the relevant lexical categories
based on the specific task objectives. One intriguing finding was the identification

of layers within each of the six fine-tuned models that exhibited distinct attention
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patterns towards content and function words. This indicates the ability to fine-tune
BERT to pay closer attention to specific linguistic aspects, tailored to the objectives
of each experiment.

The purpose of this section is to explore the relationships between different
layers of BERT across various syntactic language phenomena, specifically focusing
on lexical categories. This investigation is motivated by the belief that BERT
possesses inherent linguistic knowledge in relation to lexical categories. Our focus
is specifically on syntactic language phenomena, based on the evidence presented in
Jang's 2022 study. This study revealed meaningful differences between well-formed
and ill-formed sentences in terms of syntactic language phenomena, as analyzed
from the perspective of lexical categories. Such distinctions were not observed in
semantic language phenomena.

In this chapter, we begin by presenting the findings from Jang's (2022) study.
We then proceed to refine and revisit the Affinity Prober algorithm. Additionally, we
provide a concise overview of the syntactic language phenomena that will be utilized

in our forthcoming experiment.

4.1 Jang et al (2022)

In Jang's (2022) study, a novel methodology called the Affinity Prober was
introduced to investigate the decision boundaries of deep learning-based pre-trained
language models when processing linguistic phenomena. The Affinity Prober
leverages the attention scores of the language model's self attention mechanism to

extract word affinity relationships, particularly focusing on the relationship between
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content and function words.

In the context of syntactic language phenomena, Jang discovered that the top
layers of the language model exhibited decision boundaries that could explain the
differences between well-formed and ill-formed sentences through lexical affinity.
He also observed a strong reinforcement of the relationship between function words
in syntactic language phenomena at the higher layers of BERT. Furthermore, Jang
successfully delineated the acceptance decision boundary through the examination
of wh-questions. However, he did not identify clear decision boundaries for
distinguishing between well-formed and ill-formed sentences in semantic language
phenomena. Ambiguity was commonly observed in the affinity relationship of
minimal pairs involving negative polarity items. He found that semantic language
phenomena prioritize relationships between content words, while little emphasis is
placed on relationships between function words at all levels of BERT.

The Affinity Prober sets itself apart from existing probing methods by
extracting universal language information from sentences in parallel. This distinction
is significant. Moreover, Jang's study demonstrated the validity of the Affinity Prober
by uncovering clear decision boundaries in the language model that revolve around
lexical categories in syntactic language phenomena. By calculating the affinity
relationship between content and function words, the study provided insights into
how the bert-base-cased model interprets specific grammatical phenomena,
particularly the distinction between declarative and non-declarative sentences. This
further validated the usefulness of the proposed probing method based on pre-

training-based language models.
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4.2 Affinity Prober

In this section, we deeply examine the workings of the Affinity Prober and provide
a more technical definition of its mathematical notation and Affinity Relationship.
The Affinity Prober is a distinctive algorithm that utilizes attention scores to
systematically extract and quantify the affinity relationships, represented as $<A,
F>§, among words within a given context, specifically in Transformer-based pre-
trained language models. The attention scores embed the semantic interconnections
between words and serve as a robust foundation for identifying and characterizing

these relationships.

4.2.1 Multi-Head Attention on Transformer Architecture

Self-attention, also known as scaled dot-product attention, forms the foundation. For
a given set of query Q, key K, and value V matrices, the self-attention score is
computed through a sequence of operations (Vaswani et al., 2017).

Firstly, the dot product of the query and key matrices is evaluated ($QK"),
subsequently scaling the output by the square root of the dimensionality of the key
vectors (\/d—k). Following this operation, a softmax function is applied to these scaled
scores, yielding a set of attention weights. These weights are multiplied with the

value matrix V to yield the output of the self-attention mechanism. In formal

mathematical terms, this sequence of operations is represented as:



Q T
Att(Q,K,V) = softmax (

Jax

W

Here, T signifies the transposition of a matrix, and softmax is the softmax function.

exp(x;)
i exp(x;)

softmax(x) =

Expanding on the self-attention mechanism, the multi-head attention paradigm
allows the model to concentrate on various positions in parallel. Instead of
implementing a singular attention function with one set of learned linear projections,
the model performs /4 parallel attention functions, each with a different set of learned
linear projections for the queries, keys, and values (Vaswani et al., 2017). Each
attention function or 'head' i yields an output value, which are concatenated and

linearly transformed to produce the final output. This can be formalized as:

MultiHead(Q,K,V) = Concat(hy,..., hy)Wy,
where each
h; = Att(Q - Woi, K - Wy, V - Wy;)
In the above equations, Wy;, Wy;, Wy;and W, denote the model parameters to be

learned, while Concat refers to the concatenation operation.
4.2.2 Affinity Relationship

Affinity Relationship (AR) represents a strong mutual correlation within a sentence,
particularly between an "Affiner" and an "Affinee". Mathematically, if we consider

W as the set of all words in a sentence and A#f(w) as the attention score assigned to a
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specific word $w$, we can define the "Affiner" denoted as 4 € W, and the "Affinee"
denoted as F' € W, as follows:

- Affiner 4: A word that maximizes the affinity score across the set of words.
A = argmax,,cy Att(w)

- Affinee F: The word which receives the maximum attention score from
the Affiner.

F = argmax,,eyw Att(4,w)

Here, A#t(4, w) signifies the attention score assigned by A4 to word w. Hence,
the "Affiner" is the word which assigns the highest attention score to another word
F in the sentence, and this mutual relationship, expressed as <4, F>, is termed the
Affinity Relationship. The Affinity Prober's approach to word interrelationships,
thereby, provides a robust mathematical framework for exploring the associations

within language models.

4.2.3 Probabilistic Distribution of Categorized Affinity

Relationships

In the work conducted with the Affinity Prober, we position linguistic concepts as a
foundation for word categorization, such as part-of-speech tagging. This paradigm
enables an examination of the efficacy of pre-established linguistic concepts through
their interactive behavior within the language model and facilitates the calculation

of the affinity ratio between categories to study their respective impact on the model.
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Take, for example, two categories X and Y, capable of serving as taxonomies for
natural language. We can derive information about affinity relationships such as <X,
X>, <X Y> <Y X>, and <Y Y>. Given that all words are binarized into their
respective categories, the <4, F> relationships for all words can be parsed into four
distinctive categories. This procedure leads us to the derivation of each affinity
relationship's probability distribution, an attribute we define as the Affinity Ratio in
equation below.

- Affinity Ratio: Suppose C denotes a categorization function mapping a
word to a category (either X or Y). If $N§ represents the total number of
words in a corpus and N(cj, ¢3) is the count of <4, F> pairs where Affiner
is categorized as c¢; and Affinee as c», the affinity ratio AR(c;, ¢3) is
formulated by:

AR(c1,¢2) = N(cy,¢2)/N, forey,c; € XY

This equation expresses the probability distribution of the affinity relationships

across categories X and Y.

4.2.4 The Algorithm of Affinity Prober on BERT

We represent a BERT model as M, which consists of L layers. Each layer / is
equipped with H self-attention heads, resulting in a total of L x H self-attention
operations. Specifically, the BERT-base model consists of 12 layers (L=12), with
each layer containing 12 attention heads (H=12). Therefore, any given input

sequence undergoes 144 (L x H) distinct self-attention operations.
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During each self-attention operation, an attention score matrix is generated,
capturing the semantic and syntactic correlations between tokens. Higher attention
scores indicate stronger relationships, indicating that the model places greater
emphasis on these token pairs when encoding the sequence.

The Affinity Prober algorithm is designed to interpret these attention scores as
a measure of word "Affinity". For a given input sentence s = {w;, wy, ..., wa}, the
algorithm leverages the self-attention mechanism of M to establish Affinity
Relationships for each word w;. It identifies the word w; that has the maximum
attention score in relation to w; across all layers and heads. This relationship, denoted

as (w;, wy, is referred to as AR (w;) and can be expressed mathematically as:
AR(W;)) = argmax Attt (w;, w;),

where Attl(w;, w;) is the attention score between w; and w; at layer / and head
h. By applying this process to all words in s, we obtain a collection of Affinity
Relationships that encompass the entire sentence, representing the word associations
as perceived by the BERT model.

To investigate the layer-wise characteristics of BERT, we adapt the Affinity
Prober to calculate the average attention head outputs for each layer. As a result, the

equation is modified as:

H
1
AvgAtt(w;, w;) = i 2 Attyp (Wi, wj),
h=1

which computes the average attention score across all heads in layer / between w;

and wj. Then, the Affinity Relationship, computed with averaged attention across
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all heads at each layer, is given by:
AR, (w;) = argmax,, AvgAtt, (wi, wj)

Here, AR;(w;)denotes w; that shares the maximum averaged attention score with
w; at layer $1$. Consequently, wj is recognized as the Affinee of wy; at layer /. This
reformulation enables layer-wise operation of the Affinity Prober, averaging
attention scores across all heads in a particular layer.

The Affinity Relationship extracted through the Affinity Prober focuses solely
on strong connections between tokens. Leveraging the Affinity Prober opens up
numerous research possibilities, such as precisely investigating the Dependency
Parsing of sentence structures by tracking the relationships between specific words
as they traverse through layers. Additionally, it is possible to map each token to
specific linguistic concepts, such as parts-of-speech, using the Affinity Prober. This
would enable tracking how the language model interprets parts-of-speech based on

the relationships between them.
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Chapter S. The Benchmark of Linguistic Minimal

Pairs (BLiMP)

The Benchmark of Linguistic Minimal Pairs (BLiMP), formulated by Warstadt et al
(2020), serves as a rigorous evaluation benchmark to assess the linguistic
understanding of language models. The dataset comprises 67 linguistic phenomena,
each meticulously examined using a curated collection of 1000 minimal pairs.

Minimal pairs consist of two sentences that are nearly identical, except for one

crucial difference. In these pairs, one sentence adheres to grammatical rules (well-
formed), while the other violates them (ill-formed).
The BLiMP dataset aims to test the ability of language models to distinguish
grammatically correct sentences from flawed ones, focusing on subtle differences
between them. It assumes that language models with strong linguistic knowledge
gained from their training data should be capable of discerning such nuanced
variations.

The dataset covers a wide range of linguistic phenomena, including agreement,
case marking, filler-gap dependencies, and island effects, among others. The
sentences in the dataset are intentionally kept simple, avoiding idiomatic or
ambiguous structures to ensure a clear focus on the specific phenomena under
examination.

Each phenomenon in the dataset is accompanied by a detailed description,

% i. a. well-formed sentence: The cat is sleeping on the bed.

b. ill-formed sentence. The cat is sleeps on the bed.
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example sentences, and a concise discussion that explains the grammatical errors in
the ill-formed sentences based on English grammar rules. This makes the dataset not
only a valuable tool for evaluation but also a valuable resource for understanding the
strengths and weaknesses of language models in acquiring different aspects of
linguistic knowledge.

Due to the complexity of the BLiIMP dataset as a benchmark, achieving a high
score is a challenging task. Despite the simplicity of the sentences, the distinctions
between well-formed and ill-formed sentences can be extremely subtle, requiring a

deep understanding of English grammar for accurate classification.

5.1 Adjunct Island

Adjunct Island constraints are a type of the family of syntactic rules known as
island constraints, which govern the circumstances under which a constituent can be
moved from one position to another in a sentence, or whether it can not be moved at
all. In general, an adjunct island refers to a syntactic configuration in which a word
or phrase (usually a wh-word) is moved out of an adjunct clause, and this movement
is typically considered to be unacceptable.

In the BLiMP dataset, the Adjunct Island tests would involve pairs of sentences

where one violates the adjunct island constraint, and one does not.

(D a. Who should Derek hug aftershocking Richard?

b. *Who should Derek hug Richard after shocking?
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5.2 Animate Subject

5.2.1 Animate Subject Passive

The "Animate Subject Passive" is a category of grammatical phenomena which
BLiMP includes for testing the capability of models to handle passive constructions
in sentences where the subject is animate (i.e., a living entity).

In English, passive sentences are those where the subject is acted upon by the
verb, and the agent of the action may be omitted or introduced by a prepositional
phrase. In passive constructions, animate subjects typically receive an action rather

than perform it. An example of such a sentence pair in BLiMP is following:

2) a. The cat was chased by the dog.

b. *The cat was chased by the table.

In this pair, (2a) is grammatically correct and makes sense, as "the cat" (an animate
entity) can logically be chased. (2b) is considered ungrammatical or nonsensical
because semantically a table (an inanimate object) cannot chase a cat. Models
successful on this task would need to understand the concept of animacy and its role

in grammatical sentence construction.

5.2.2 Animate Subject Trans

The "Animate Subject Trans" subset in the BLIMP (Benchmark of Linguistic

2]
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Minimal Pairs) dataset pertains to instances of transitive syntactic constructions with
animate subjects. A transitive construct necessitates the presence of both a subject
and one or more objects.

Within the scope of the "Animate Subject Trans" classification, the emphasis is
on the animate subject (a living entity) instigating an action that has a direct impact
on an object. The BLIMP dataset presents pairs of sentences: one conforming to

grammatical norms, and the other demonstrating an error. For example:

3) a. The dog pursued the ball.

b. The dog pursued.

In the provided example, the first sentence (3a) abides by grammatical rules
with "the dog" (an animate subject) executing the action (pursued) that directly
involves an object ("the ball"). (3b) is grammatically incorrect due to the absence of
an object for the transitive verb "pursued."

Models proficient in this specific task would be expected to grasp the concept
of transitivity, as well as the requirement for animate subjects to be associated with

an object in instances involving a transitive verb.

5.3 Causative

Causation entails a situation in which a specific action or event is instigated or
facilitated by a causer. Within this context, the "causee" (the entity on which the

action is performed) experiences a state change or action due to the actions of the
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"causer" (the agent initiating the action). We refer to instances extracted from the

BLiMP dataset to elucidate this:

@) a. Aaron breaks the glass.

b. *Aaron appeared the glass.

In the context of (4a), "Aaron" functions as the causer, effectuating the action of
breaking, while "the glass" is the causee, undergoing the action. However, (4b)
deviates from conventional causative use. Here, the verb "appeared" does not fit the
traditional causative framework, leading to an ill-formed construction. In this setting,
the verb "appeared" takes "Aaron" as a causer, which doesn't typically take. This
example serves to underline the model's capability to distinguish well-formed and
ill-formed causative sentences, thereby evaluating its understanding of causative

phenomena.

5.4 Complex NP Island

The Complex Noun Phrase (NP) Island Constraint, also known as the Complex NP
Constraint, is a syntactic rule that disallows extraction out of certain complex noun
phrases.

In other words, it refers to a phenomenon where certain elements (such as a
relative clause) within a complex noun phrase create a 'syntactic island'—an area of
a sentence from which constituents cannot be moved or extracted, especially in

questions and relative clauses. Consider the examples from the BLiMP dataset:
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5) a. Who aren't most hospitals that hadn't talked about most waitresses alarming?
p g

b. *Who aren't most waitresses alarming most hospitals that hadn't talked about?
g p

In this case, the NP "most hospitals" forms an island, which restricts the movement
of constituents out of that island. The NP "most waitresses" is base-generated within
the relative clause, and in (5a), it could not move out of the island created by "most
hospitals." However, in (5b), "most waitresses" attempts to move across the island,

which violates the island constraint and makes the sentence ungrammatical.

5.5 Coordinate Structure Constraint

The Coordinate Structure Constraint (CSC), an established axiom within linguistics,
asserts that constituents such as words or phrases cannot be isolated from a single
clause within coordinate structures (those combined by conjunctions such as "and"

or "or"

5.5.1 Left Branch

An extrapolation of the principle above, known as the Coordinate Structure
Constraint Complex Left Branch (CSC Complex Left Branch), stipulates a
prohibition on extracting a constituent from the left (or initial) aspect of a coordinate
structure that possesses complexity, such as subordination or embedding. To

illustrate, consider a pair of exemplars from the BLiMP corpus:
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(6) a. What senators was Alicia approaching and some teachers scaring?

b. What was Alicia approaching senators and some teachers scaring?

In (6a), "What senators" is the constituent extracted from the left branch of each
clause in the coordinate structure: "Alicia was approaching [what senators]" and
"some teachers scaring [what senators]". Each of these sentences could
independently ask about the identity of the senators, and when combined with the
conjunction "and", the sentence remains grammatically sound. Therefore, this
sentence respects the CSC Complex Left Branch constraint.

Contrarily, in the case of (6b), "What" is extracted, and it is unclear to which
part of the sentence it applies: "Alicia was approaching [what] senators" or " [what]
some teachers scaring". Here, "what" is not tied to a specific constituent and its
relation to the rest of the sentence is ambiguous. This ambiguity breaches the CSC

Complex Left Branch constraint, rendering the sentence ungrammatical.

5.5.2 Object Extraction

The Coordinate Structure Constraint (CSC) "Object Extraction" paradigm entails the
displacement of an object from one of the conjuncts in a coordinated structure to the
sentence-initial position.

Extraction in linguistic parlance constitutes a mechanism wherein a lexical item,
a phrase, or a clause is translocated from a larger structure, engendering a gap. This
operation is most commonly associated with question formation, but it also surfaces

in the creation of relative clauses and other syntactic constructions. Let us consider



a pair of sentences from the BLiMP corpus:

@) a. Who were all men and Eric leaving?

b. *Who were all men leaving and Eric?

In (7a), the pronoun "who" operates as the object of the action executed by the
coordinated unit "all men and Eric". This sentence conforms to standard English
grammar and is deemed well-formed as "who" serves as the object of the action
carried out by the entire coordinated entity.

In constrast, in (7b), "who" is conceived as the object of the action executed
solely by "all men". However, the Coordinate Structure Constraint forbids the
extraction of "who" from a single conjunct ("all men") while leaving the remaining
conjunct ("Eric") unrelated to the extracted object. Consequently, this sentence

contravenes English syntactic norms, resulting in an ill-formed construction.

5.6 Drop Argument

"Drop Argument” in linguistics refers to a phenomenon where certain verbs allow
for their arguments (subjects, objects, etc.) to be omitted or "dropped" without refers
to the sentence ungrammatical.

Specifically, certain verbs, often called 'unergative verbs' such as 'run’, 'sing’,
'tour', are often found in contexts where the verb takes an agent as its subject without
the complements as its object. For example, in the sentence "John is running", the

verb 'run' does not require a direct object for the sentence to be grammatical.
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However, not all verbs allow for their arguments to be dropped. These are often
called 'transitive verbs', like 'reveal’, 'find', 'hit', etc., which typically require a direct
object. If the direct object is dropped, the sentence usually becomes ungrammatical.

Let's consider the examples from the BLIMP dataset:

(®) a. Travis is touring.

b. *Travis is revealing.

In (8a), 'touring' is an unergative verb that doesn't require a direct object, so the
sentence is grammatical even when the object is dropped. In contrast, in (8b),
'revealing' is a transitive verb which requires a direct object, so when the object is

dropped, the sentence becomes ungrammatical.

5.7 Ellipsis N-bar

The syntactic phenomena of "N-bar Ellipsis" pertains to the construct wherein a
fragment of an N-bar (a syntactic constituent typically encompassing an adjective
and a noun) is subject to omission given its inferability from context.

The underlying principle of N-bar Ellipsis stipulates that constituents such as
adjectives and nouns established in an antecedent portion of a sentence can be
strategically omitted in a subsequent part, provided their contextual inference is
preserved. Importantly, this presupposes a correspondence in syntactic structure and
semantic content between the elided and the inferred elements. Consider the

following instances derived from the BLiMP dataset:
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C) a. Dawn's ex-husband wasn't going to one rough grocery store and Becca
wasn't going to many.
b. *Dawn's ex-husband wasn't going to one grocery store and Becca wasn't

going to many rough.

In (9a), the phrase "rough grocery store" qualifies as an N-bar, with the term
"rough grocery store" being validly elided in the second clause, given its implicit
presence in the initial part of the sentence, thus referring the sentence syntactically
well-formed.

Conversely, in (9b), the ellipsis of "grocery store" is syntactically flawed. This
discrepancy stems from a structural mismatch between the elided component "many
rough" and its antecedent in the sentence's initial clause, namely "grocery store". As

such, the sentence contravenes English syntactic norms, and is deemed ill-formed.

5.8 Inchoative

Inchoative verbs represent a distinct class of verbs that manifest a transition in state.
These verbs, rather than indicating an action instigated by the subject, instead signify
a change being undergone by the subject. Consider the ensuing examples curated

from the BLiMP corpus:

(10)  a. Patricia had changed.

b. *Patricia had forgotten.
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In instance (10a), the sentence "Patricia had changed" conforms to the grammatical
rules, as "changed" is an inchoative verb that encapsulates a state transformation
within the subject "Patricia".

On the other hand, sentence (10b) "*Patricia had forgotten.", employs the verb
"forgotten" which does not conform to the inchoative verb schema as it fails to
signify a change in state. Consequently, this sentence is deemed ill-formed within

the context of inchoative verbs.

5.9 Intransitive

Intransitive predicates are those that do not necessitate a direct object to complete
their semantic proposition, contrasting with transitive predicates that demand one or
more object complements. Exemplary instances from the BLiMP corpus illustrate

this phenomenon:

(11) a. Anna's grandmothers aren't benefiting.

b. *Anna's grandmothers aren't arguing about.

In instance (11a), the verb "benefiting" appropriately operates in an intransitive
capacity, not necessitating an object for semantic completeness, yielding a well-
structured statement.

Contrarily, (11b) constructs an ill-formed utterance in English syntax as the
predicate "arguing about" inherently demands an object to convey a comprehensive

semantic intent, thereby violating the premise of intransitive predicates.
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5.10 Transitive

The phenomenon of transitivity pertains to the ability of a verb to necessitate an
object for the completion of its meaning. In the English language, specific verbs like
"buy" or "consume" are identified as transitive due to their syntactic and semantic
demand for an object - the recipient of the action. Inspect the ensuing instances

derived from the BLiMP dataset:

(12) a. This cousin of Theodore buys some mushroom.

b. *This cousin of Theodore wept some mushroom.

In (12a), the verb "buys" is employed transitively, encompassing "some
mushroom" as its object, which results in a well-formed grammatical construction.

Conversely, in (12b), the verb "wept" is generally recognized as intransitive,
hence it does not customarily admit an object. Consequently, the presence of "some
mushroom" following "wept" engenders a syntactically ill-formed sentence,

breaching the grammatical conventions of English.

5.11 Left Branch Island

5.11.1 Echo Question

"Left Branch Island Echo Question" pertains to a constraint in which wh-words,
when serving as the leftmost branch of a constituent, cannot be extracted to form an

echo question. Echo questions, in essence, are a type of interrogative wherein the
% - i
£ ]
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speaker replicates part of a previous statement to request additional clarification.

Consider the examples provided from the BLiMP dataset:

(13)  a. Edward has returned to which customers?

b. *Which has Edward returned to customers?

In (13a), the wh-word "which" serves as the leftmost branch of the complement
of the prepositional phrase "to which customers" and its placement adheres to the
grammatical rules, resulting in a well-formed echo question.

However, in (13b), an attempt is made to extract "which" from the prepositional
phrase and move it to the beginning of the sentence. This violates the Left Branch
Island constraint, resulting in a sentence that is not syntactically well-formed in
English. The structure of the sentence indicates an echo question, but it does not

adhere to the acceptable syntactic pattern, leading to an ill-formed construct.

5.11.2 Simple Question

"Left Branch Island Simple Question" phenomenon refers to a syntactic constraint
that prohibits the extraction of a determiner (like 'whose', 'which', 'what', etc.) from
a noun phrase (NP) in wh-questions. This constraint refers to such extraction
ungrammatical, marking the structure as a syntactic island -- a part of a sentence
from which certain constituents cannot be moved or extracted. Take the provided

examples from the BLiMP dataset:
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(14)  a. Whose museums had Dana alarmed?

b. *Whose had Dana alarmed museums?

In (14a), the wh-word "whose" correctly precedes and modifies the noun
"museums". This sentence represents a grammatically well-formed English question,
adhering to the accepted rules of English syntax.

On the other hand, in (14b), an attempt is made to extract the determiner
"whose" from the noun phrase and place it at the sentence's beginning. This violates
the Left Branch Island constraint and thus refers to the sentence ungrammatical. The
ill-formed structure indicates that "whose" does not correctly modify the noun

"museums", resulting in a syntactically flawed English question.

5.12 Passive

"Passive" phenomenon pertains to a syntactic structure where the subject of the
sentence is the entity that the action is performed upon rather than the entity
performing the action. This contrasts with active sentences, where the subject
performs the action denoted by the verb. Consider the provided examples from the

BLiMP dataset:

(15) a. Lucille's sisters are confused by Amy.

b. *Lucille's sisters are communicated by Amy.
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In sentence (15a), "Lucille's sisters" are the subject and the entity upon which
the action (confusing) is performed. "Amy," in this context, is the agent performing
the action. The verb "confused" is correctly used in the passive voice, leading to a
grammatically well-formed English sentence.

Distinctively, in sentence (15b), "communicated" is not typically used in the
passive voice in English, particularly without an indirect object or a prepositional
phrase to complete its meaning. Thus, the sentence is considered ill-formed
according to standard English syntax. In other words, "Amy" cannot passively
"communicate" Lucille's sisters, making this sentence a violation of the rules

governing passive structures in English.

5.13 Sentential Subject Island

"Sentential Subject Island" phenomenon in linguistics pertains to the restrictions on
the movement of constituents out of sentential subjects, a scenario often referred to
as an 'island' for movement. That is, sentential subjects are syntactic constituents
from which movement is generally prohibited, forming an 'island'. Consider the

following examples from the BLiMP dataset:

(16)  a. Who has the waitress's observing Christine bothered?

b. *Who has the waitress's observing bothered Christine?

In sentence (16a), the question word "who" is intended to be the object of the

action "bothering". This sentence is grammatically correct and well-formed because
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"who" is not extracted from the sentential subject "the waitress's observing
Christine".

However, in sentence (16b), "who" is intended to be the object of the action
"observing by the waitress". This sentence is ungrammatical because extraction from
a sentential subject is generally disallowed in English. Thus, attempting to extract
"who" from "the waitress's observing" results in a violation of the Sentential Subject
Island Constraint, and the sentence is considered ill-formed according to standard

English syntax.

5.14 Wh Island

Wh-Island phenomenon in linguistics refers to a situation where a wh-word (like
"who", "what", "when", "where", "why", etc.) cannot be extracted from a clause that
is already introduced by another wh-word. This is considered an 'island' constraint

and movement out of this 'island' is generally restricted. Consider the following

examples drawn from the BLiMP dataset:

17) a. Who have those men revealed they helped?

b. *Who have those men revealed who helped?

In sentence (17a), the wh-word "who" is appropriately extracted from a clause
that is not introduced by another wh-word. Therefore, this sentence adheres to the
grammatical rules and is well-formed.

However, in sentence (17b), an attempt is made to extract "who" from a clause
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that has been introduced by another wh-word ("who helped"). The clause "who
helped who" creates an island, and the lower "who" cannot be extracted. This
extraction violates the WH-Island Constraint, and thus, the sentence is considered
ill-formed or ungrammatical according to the rules of English syntax. In accordance
with the restrictions stipulated by the WH-Island phenomenon, a wh-word cannot be

extracted from a clause that is already introduced by another wh-word.

5.15 Wh Questions

5.15.1 Object Gap

Wh-Question Object Gap phenomenon in linguistics relates to the positional
constraint of WH-words, typically interrogative words, in object positions. A WH-
word as an object in a sentence can create a 'gap', its original place before syntactic

derivations. Consider the following examples from the BLiMP dataset:

(18) a. Joel discovered the vase that Patricia might take.

b. *Joel discovered what Patricia might take the vase.

In the well-formed sentence (18a), "the vase" is the object that Patricia might
take. However, in sentence (18b), an attempt is made to transform the sentence into
a WH-question by moving "the vase" to the front, replacing it with "what". The
resulting sentence is not grammatically correct in English due to the absence of the
'gap' created in the object position of "take". This sentence violates the rule that, in

WH-question formation, the Wh-word should correspond to the gap it leaves behind,
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which is not the case here. Thus, sentence (18b) provides an instance of an ill-formed

WH-Question Object Gap phenomenon.

5.15.2 Subject Gap

The Wh-Question Subject Gap phenomenon in linguistics concerns the positional
constraint of WH-words, typically interrogative words, in subject positions. A Wh-
word used as a subject can create a 'gap' in the position where it would ordinarily be
located before it is moved to the front of the sentence or clause during the question

formation process. Consider the following examples from the BLiMP dataset:

(19) a. Brian had questioned an association that can astound Diana.

b.*Brian had questioned who an association can astound Diana.

In the grammatically correct sentence (19a), "an association" is the subject that
can astound Diana. However, in sentence (19b), an attempt is made to convert the
sentence into a WH-question by moving "an association" to the front and replacing
it with "who". The resulting sentence is not grammatically acceptable in English due
to the absence of the 'gap' created in the subject position. This sentence violates the
rule that in WH-question formation, the WH-word must correspond to the gap it
leaves behind, which is not the case in this context. Therefore, sentence (19b) serves

as an instance of the ill-formed WH-Question Subject Gap phenomenon.
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Chapter 6. Experiment

This paper's objective is to analyze layer-wise outcomes using the bert-base-cased
language model. Our focus is on the syntactic linguistic aspects of the BLiMP
benchmark. To achieve this, we utilize the Affinity Prober to obtain Affinity
Relationships. Initially, we investigate the Affinity Ratio for each layer, specifically
centered on the part-of-speech within each linguistic phenomenon. We analyze this
at the lexical category level, which represents a higher category of the part-of-speech.
Subsequently, we extract the Affinity Relationship from both correct and incorrect
sentences across all layers and compare the disparities. Lastly, we extract the Affinity
Relationship centered around the trigger token Wyiggr, Which is responsible for the
incorrect sentences. Our goal is to assess whether there are distinctions in
distinguishing between correct and incorrect sentences for each linguistic
phenomenon. Building upon Jang's (2022) research findings, we anticipate
significant variations in AR(A, Wiiger) between [F and WF sentences in terms of

syntactic linguistic phenomena.

6.1 Finetuning Strategy

In our research, we propose a novel methodology called Classification of Sentence
Sequencing (CSS) as an alternative to traditional binary classification approaches for
grammaticality judgment. CSS enables the bert-base-cased model to distinguish
between grammatically well-formed and ill-formed sentences by providing it with

data from minimal pairs of sentences. Following the example of benchmarks such as
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Question Answering, Natural Language Inference, and Word-in-Context, where
pairs of sentences (S; and S) are inputted into the model, CSS introduces a
combination of grammatically correct and incorrect sentences to improve the model's
understanding.

The task of CSS involves determining the correct sequence of a well-formed
(WF) and an ill-formed (/F) sentence within a minimal pair. For example, if the WF
sentence is labeled as S; and the /F sentence as s, it corresponds to a boolean value
of 'True'. Conversely, if the /F sentence is labeled as S; and the WF sentence as S>, it
returns a boolean value of 'False'. The model is trained using cross-entropy loss
between the predicted labels (L,rs) and the actual labels (L), similar to a Logistic
Regression model.

The CSS approach provides a significant advantage by enabling the model to
effectively distinguish between two sentences with grammaticality determined by
minimal pair tokens. If the model successfully accomplishes this task, it suggests
that the language model has independently incorporated intrinsic linguistic
knowledge. During training, we combined all datasets labeled in the syntactic
domain within the BLIMP Benchmark. After randomly assembling the dataset, it was
divided into training and testing sets in an 80:20 ratio, resulting in a model fine-tuned
with syntactic knowledge.

For training, we utilized the 7anh activation function and the cross-entropy loss
function, along with the AdamW optimizer and a batch size of 16. The model
underwent a total of 3 epochs of training. The training dataset consisted of 10,402
instances for the positive class (well-formed) and 10,398 instances for the negative
class (ill-formed), while the test dataset included 2,095 positive instances and 2,065

negative instances which are extracted from the syntactic phenomena in BLiMP
%
7
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datasets. Impressively, our model achieved remarkable results, with a training
performance of 99.9% accuracy and a loss value of 0.127. Equally impressive, the
test performance mirrored these results with 99.9% accuracy and a loss value of
0.129. These findings support the effectiveness of our approach and its potential for
high-impact applications.

The motivation behind adopting this specific training approach is to indirectly
teach the model to discern the sequencing between well-formed and ill-formed
sentences. However, it is important to note that the performance achieved through
CSS training alone does not guarantee a complete distinction between the two

categories.

6.2 Result: Clustering of Similar Linguistic Phenomena

In this section, we demonstrate how the Affinity Prober allows us to interpret the
patterns obtained from the Affinity Relationship AR(c;, c3) of each layer in BERT,
where ¢ belongs to the lexical category C defined in Section 3.1, based on different
linguistic phenomena. We show that not all linguistic phenomena exhibit distinct
patterns across layers in AR(c;, ¢;). Instead, there are cases where similar patterns
emerge, and these patterns can be grouped together. Through our observations, we
are able to cluster these patterns into a total of four groups. This finding shows the
interplay between linguistic phenomena and layer-wise patterns in the AR, ultimately

enriching our understanding of language processing in BERT.
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6.2.1 Group I: Passive and Ellipsis N-bar
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(a) well-formed sentences (b) ill-formed sentences

Figure 6.1: The Affinity Relationship (4R) in three language phenomena associated with
Group I: Passive, Animate Subject Passive, and Ellipsis N-bar. The solid lines in the figure
represent the AR(Con., Con.), while the dotted lines depict the AR(Fun., Fun.).

The AR(Con., Con) results in Figure 6.1(a) demonstrate a consistent pattern across
three datasets. All three exhibit a similar fluctuation range, marked by varying
affinity ratio that fluctuate throughout the layers. An interesting commonality
observed in all three datasets is an initial drop from the first to the second layer,
indicating a uniform trend at the onset of the layers. If we interpret this drop in
connection with the tendency of layers defined in section 3.4.2, the sharp drop of
AR(Con., Con.) between Layer 1 and Layer 2 can be attributed to Layer 1's tendency
to give high attention to content words, while Layer 2 shows a tendency to give high
attention to function words. In other words, as the attention on function words
increases in Layer 2, the relationship between content words relatively weakens.
Similarly, we can observe that the fluctuation in the middle layers and the
maintenance of relationships between content words in the final layer align partially
with the results presented in section 3.4.2. In the middle layers, which tend to focus

on function words, the relationships between content words weaken again, only to
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be strengthened again around the final layer, where high attention is given to content
words. An interesting point is that the relationship with function words also
experiences a sudden drop in the final layer. This strengthening of function words in
the final layer looks like a common phenomenon observed across all syntactic
phenomena. This can be interpreted as a tendency that arises from the BERT model
being fine-tuned in a CSS manner, where the task-specific considerations for
distinguishing syntactic differences between two sentences are given to function
words near the final layer.

When analyzing the linguistic phenomena of passive, animate subject passive,
and ellipsis N-bar, there are some findings (Figure 6.2).

Passive The overall values of AR(Con., Fun.) are slightly lower for ill-formed
sentences compared to well-formed sentences, indicating a slightly weaker feature
in the context of ill-formed sentences. Although specific layers show small
differences, such as lower values in the first and second layers for ill-formed
sentences, the variations are not significant. However, there is a notable difference
in layer 12, where the value of AR(Fun., Con.) is higher for ill-formed sentences,
suggesting a slightly stronger feature in that layer for ill-formed sentences.

Animate Subject Passive Both well-formed and ill-formed sentences follow a
similar data shape in AR(Con., Fun.) patterns. However, differences arise, such as a
significantly higher value in the 9™ layer of ill-formed sentences. Well-formed
sentences display stability and a gradual decrease, while ill-formed sentences exhibit
fluctuations and peaks. The 12th layer value is also higher for ill-formed sentences.
In the AR(Fun., Con.) patterns, both types of sentences have a similar trend but
diverge towards the end, with well-formed sentences declining more steeply. Ill-

formed sentences fluctuate within a narrower range compared to well-formed
%
7
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sentences.

Ellipsis N-bar Both well-formed and ill-formed sentences show relatively high
values in certain layers, indicating the presence of AR(Con., Fun.) in both cases.
However, the values are slightly higher for well-formed sentences, suggesting a
potentially stronger feature. Differences exist in specific layers, with some showing
similar values while others exhibit notable differences. Similarly, in AR(Fun., Con.),
both types of sentences exhibit moderate values, but the overall values and specific
layers differ. Ill-formed sentences have slightly higher values, indicating a

potentially stronger feature in that context.
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6.2.2 Group II: Island Effects
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Figure 6.3: The Affinity Relationship (4R) in five language phenomena associated with
Group II: Complex NP Island, Wh Island, Left Branch Island Echo Question, Left Branch
Island Simple Question, Sentential Subject Island. The solid lines in the figure represent the
AR(Con., Con.), while the dotted lines depict the AR(Fun., Fun.).

The Affinity Prober successfully extracts distinct patterns specific to the Island
Effect. Group II comprises five language phenomena: Complex NP Island, Wh
Island, Left Branch Island Echo Question, Left Branch Island Simple Question, and
Sentential Subject Island. Notably, AR(Con., Con.) exhibits different patterns
between well-formed sentences and ill-formed sentences. In well-formed sentences,
the Affinity Ratio in AR(Con., Con.) remains stable compared to ill-formed sentences,
maintaining consistently high relationships. Similar to Group I, the relationship
patterns between lexical categories within well-formed sentences are quite similar.
We observe a sharp decline from Layer 1 to Layer 2 in AR(Con., Con.), indicating a
stronger focus on function words in the middle layers as the relationships between
content words weaken. Analyzing AR(Fun., Fun.), we find that the relationship
between function words strengthens towards the final layer, indicating an effort to
capture syntactic information. The patterns in AR(Con., Con.) for ill-formed

sentences in Group II are particularly interesting. Layer 10 and 11 show a significant
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decline, with a strong emphasis on function words. Conversely, attention towards
function words rapidly increases in the same layers, resulting in a cross pattern
between the two graphs. Interpreting this in line with section 3.4.2, we understand
that the language model struggles with structures differing from those observed and
indirectly learned during forward propagation of ill-formed sentences. The sudden
decline in layers 10 and 11 reflects this behavior, which can be attributed to the
violation of NP island constraints and the complete disruption of sentence structure
often seen in the Island Effect language phenomena.

When analyzing the linguistic phenomena of Complex NP Island, Wh Island,
Left Branch Island Echo Question, Left Branch Island Simple Question, and
Sentential Subject Island, there are some findings (Figure 6.4).

Complex NP Island Both well-formed and ill-formed sentences show
fluctuations in the AR(Con., Fun.) patterns, starting low and decreasing towards the
end. ill-formed sentences generally exhibit higher values and a broader range of
fluctuations, suggesting a potentially stronger interaction. Specific layers, like layer
10, demonstrate distinct interactions in ill-formed sentences. The AR(Fun., Con.)
patterns also exhibit fluctuations, with ill-formed sentences showing slightly higher
values overall and specific layers of note.

Wh Island The strength and direction of AR(Con., Fun.) can vary between the
relationships. ill-formed sentences tend to have higher overall values, indicating a
stronger interaction. Significant differences exist in specific layers, such as layer 10,
where ill-formed sentences display much higher values. In AR(Fun., Con.), ill-
formed sentences generally have higher values, suggesting a stronger association.

Left Branch Island Echo Question Both well-formed and ill-formed sentences

exhibit higher values in AR(Con., Fun.) for specific layers, indicating a relatively
¥ b



stronger relationship. ill-formed sentences generally have higher overall values,
especially in layer 8. In AR(Fun., Con.), ill-formed sentences also tend to have higher
values overall, with notable differences in specific layers.

Left Branch Island Simple Question There is a presence of positive values
across all layers in AR(Con., Fun.) for both well-formed and ill-formed sentences.
ill-formed sentences have higher overall values, particularly in layers 1 to 9, while
well-formed sentences show stronger association in layers 10 to 12. In AR(Fun.,
Con.), ill-formed sentences again have higher values overall, with variations in
specific layers.

Sentential Subject Island There are differences in overall values and specific
layers between the patterns. ill-formed sentences tend to have higher values in
AR(Con., Fun.), particularly in layer 10. In AR(Fun., Con.), there is no significant
difference in overall values, but layer 10 shows higher values in well-formed

sentences.
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6.2.3 Group III: Syntactic Constraints on Movement

1
o Adjunct Island o Adjunct Island
-B8- Coordinate Structure Object Extraction -8 Coordinate Structure Object Extraction
—— Wh Que ubject Gap 0.8 —— Wh Q: Subject Gap
- yns Object Gap - Wh Questions Object Gap
—A—  Coordinate Structure Left Branch 0.6 —&—  Coordinate Structure Left Branch
0.4
0.2
N 12
(a) well-formed sentences (b) ill-formed sentences

Figure 6.5: The Affinity Relationship (4R) in five language phenomena associated with
Group III: Adjunct Island, Coordinate Structure Object Extraction, Wh Questions Subject
Gap, Wh Questions Object Gap, Coordinate Structure Left Branch. The solid lines in the

figure represent the AR(Con., Con.), while the dotted lines depict the AR(Fun., Fun.).

Group III is composed of linguistic phenomena with constraints on movement.
Among them, Adjunct Island is also included. The first difference from Group II is
that the ratio of AR(Con., Con) relationships is lower in Group III compared to Group
II. Secondly, there is activation of AR(Fun., Fun.) at the 8" layer. According to
section 3.4.2, the 8™ layer showed a tendency to give high attention to function words.
Except for previous Ellipsis N-bar, in well-formed sentences, there is no significant
increase in the reinforcement of function words at the 8" layer. In contrast, Group III
exhibits patterns that most closely match the tendencies observed in the layer
analysis of section 3.4.2. The AR(Con., Con.) relationship undergoes a sharp drop
from the 1st layer to the 2" layer, while the AR(Fun., Fun.) relationship increases
simultaneously. As mentioned earlier, there is a drastic rise in function words at the
8™ layer, indicating a decrease in attention to content words. Near the last layer,
which shows a high tendency towards content words, the AR(Con., Con.)

relationship remains stable. Similar to other groups, there is a significant rise in
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AR(Fun., Fun.) near the last layer, and the gap difference between AR(Con., Con.) is
not significant. In contrast, in ill-formed sentences, there is an increase in function
words at the 8" layer, but the relationship between AR(Con., Con.) is highly irregular,
and there is significant fluctuation. This phenomenon, similar to Group II, reflects
the difficulty of BERT in correctly interpreting syntactic dependency when
processing sentences that violate constraints in movement, making it challenging to
focus on which lexical category. This is clearly demonstrated in AR(Con., Con.). Our
result analysis is stronger and more reliable based on the findings of section 3.4.2.

When analyzing the linguistic phenomena of Adjunct Island, Coordinate
Structure Object Extraction, Wh Questions Subject Gap, Wh Questions Object Gap,
and Coordinate Structure Left Branch, several findings emerge (Figure 6.6).

Adjunct Island The AR(Con., Fun.) patterns show fluctuations and non-linear
trends. ill-formed sentences have a larger range of AR values, with higher maximum
values, compared to well-formed sentences. Additionally, there is a spike at layer 9
in ill-formed sentences. The final AR value at layer 12 is notably higher for ill-
formed sentences compared to well-formed sentences. In AR(Fun., Con.), both
patterns exhibit fluctuating trends, but there are differences in the lowest values and
the final AR(Fun., Con.) at layer 12, with ill-formed sentences having lower values
at specific layers and at the end of the series. There is also a significant decline at
layer 9 in ill-formed sentences.

Coordinate Structure Object Extraction Both well-formed and ill-formed
sentences show decreasing values in AR(Con., Fun.) and AR(Fun., Con.) patterns
from layer 1 to layer 12. ill-formed sentences tend to have slightly higher values,
with distinct AR patterns at certain layers. The range of fluctuations is similar, but

ill-formed sentences exhibit higher peaks and more pronounced decreases compared
%
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to well-formed sentences.

Wh Questions Subject Gap The AR(Con., Fun.) patterns show higher overall
values in ill-formed sentences compared to well-formed sentences. Specific layers,
like layer 10, exhibit significantly higher values in ill-formed sentences, indicating a
stronger AR(Con., Fun.) in ill-formed sentences at those points. In AR(Fun., Con.),
while the overall values are relatively similar, there are differences in specific layers,
such as layer 2, where well-formed sentences have significantly higher values. This
suggests a stronger AR(Fun., Con.) in well-formed sentences, particularly in layer 2.

Wh Questions Object Gap Ill-formed sentences have higher overall values in
AR(Con., Fun.) compared to well-formed sentences, indicating a stronger
relationship in ill-formed sentences. Significant differences are observed in specific
layers, such as layer 10, where ill-formed sentences have considerably higher values.
In AR(Fun., Con.), ill-formed sentences also tend to have slightly higher overall
values, with slight variations in specific layers, such as layer 8. This suggests a
weaker AR(Fun., Con.) in ill-formed sentences for that specific layer.

Coordinate Structure Left Branch Both well-formed and ill-formed sentences
exhibit fluctuating values in the AR(Con., Fun.) patterns. ill-formed sentences
generally have higher values, particularly in certain layers like layer 6 and 8. The
overall trend in AR(Con., Fun.) for ill-formed sentences shows higher peaks and
more pronounced variations compared to well-formed sentences. In AR(Fun., Con.),
ill-formed sentences also tend to have higher values, with distinct patterns in specific
layers, indicating a potentially stronger relationship between AR(Con., Fun.) in ill-

formed sentences.
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6.2.4 Group IV: Verbal Predicate Types and Argument

Structure

—o— Animate Subject Trans —o— Animate Subject Trans
8- Inchoative = Inchoative
0.8 . Causative 0.8 - Causative
-8~  Drop Argument -8~  Drop Argument
0.6 e Intransitive 0.6 e Intransitive
-o- Transitive - Transitive
0.4 0.4
0.2 X 0.2
# ‘%
_ ,‘d’.f. ) ,’." “7".
TP FPIPRrIPY Y P EP PP
0 2 4 6 8 10 12 0 2 H b 5 10 12
(a) well-formed sentences (b) ill-formed sentences

Figure 6.7: The Affinity Relationship (4R) in six language phenomena associated with
Group I1I: Animate Subject Trans, Inchoative, Causative, Drop Argument, Intransitive,
Transitive. The solid lines in the figure represent the AR(Con., Con.), while the dotted lines
depict the AR(Fun., Fun.).

Group IV typically focuses on different types of verbal predicates and their argument
structures. Their patterns exhibit a very consistent form, unlike other groups. The
reason for this can be observed when examining example sentences of each linguistic
phenomenon. In many cases, minimal pair sentences do not disrupt the sentence
structure on the surface level. It is often in the lexical dimension where non-clauses
are formed, with issues such as problems with the number of arguments taken by the
predicate or semantically incorrect thematic roles. Therefore, BERT, in the process
of learning information about minimal pairs through the CSS approach, compared
sentences that do not have significant structural differences. Hence, the overall
patterns of well-formed sentences and ill-formed sentences appear to be similar.
However, there are also common patterns that emerge in Group IV. These include
the initial downward trend of AR(Con., Con), subtle reinforcement of the AR(Fun.,

Fun.) relationship at the 8" layer, and a rapid rise in the relationship between function _
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words near the last layer. Similarly, there is a slight weakening of the relationship
between content words at intermediate layers. A characteristic of Group IV is that
there is not a significant difference in patterns between well-formed sentences and
ill-formed sentences, unlike other groups. As mentioned above, Group IV discusses
the grammaticality in the relationship between predicates and arguments, and the
information about this is likely to be better represented in Word Embedding rather
than Attention.

When examining the linguistic phenomena of Animate Subject Trans,
Inchoative, and Causative, interesting patterns emerge in the AR(Con., Fun.) and
AR(Fun., Con.) relationships between well-formed sentence and ill-formed sentence
(Figure 6.8).

Animate Subject Trans The AR(Con., Fun.) patterns show similar variability
but diverge in specific layers. ill-formed sentences generally have higher values from
the 4™ layer, indicating a stronger AR(Con., Fun.) relationship. Significant
differences are observed at the 12" layer, where well-formed sentences drop to 0
while ill-formed sentences remain higher. Fluctuations at the 6, 8", and 10™ layers
are seen in ill-formed sentences, not mirrored in well-formed sentences. In terms of
AR(Fun., Con.), both patterns start with high values and gradually decrease, but ill-
formed sentences consistently have higher values across all layers, suggesting a
stronger AR(Fun., Con.) relationship. The rate of decrease also varies, with ill-
formed sentences showing a more notable decline, especially after the 10™ layer.
Notably, at the 12" layer, well-formed sentences have a significantly lower value
compared to ill-formed sentences. The drop at the 10™ layer is also more significant
in ill-formed sentences.

Inchoative Both well-formed and ill-formed sentences exhibit a weak AR(Con.,
5



Fun.) with low values. well-formed sentences tend to have slightly higher values,
suggesting a potentially stronger AR(Con., Fun.) in well-formed sentences. In terms
of AR(Fun., Con.), both patterns show a similar overall trend, but specific values
may vary slightly, indicating potential differences based on sentence grammaticality.

Causative Both well-formed and ill-formed sentences display similar dynamics
in the AR(Con., Fun.) patterns, but differences arise in overall values, specific points,
ending values, and peak values. ill-formed sentences generally have slightly higher
values, indicating a stronger AR(Con., Fun.) interaction. Notably, ill-formed
sentences end with a non-zero value at layer 12, suggesting continued AR(Con., Fun.)
interaction. The peak value for ill-formed sentences occurs later compared to well-
formed sentences, indicating intensification of the AR(Con., Fun.) interaction in ill-
formed sentences. In terms of AR(Fun., Con.), both patterns show a similar trend but
differ in overall value, drop-off point, intermediate fluctuations, and initial values.
well-formed sentences generally have slightly higher values, suggesting a stronger
AR(Fun., Con.) interaction. The drop towards the end is more dramatic for well-
formed sentences.

Drop Argument Both grammatical and ill-formed sentences exhibit a weak
AR(Con., Fun.) with low and consistent values across most layers. However,
differences arise in the overall values and specific layers. ill-formed sentences tend
to have slightly higher values, suggesting a potentially stronger AR(Con., Fun.) in
ill-formed sentences. Specific layers, such as 2, 3, and 4, show lower values in well-
formed sentences compared to ill-formed sentences, indicating a weaker AR(Con.,
Fun.) in well-formed sentences for these layers. In terms of AR(Fun., Con.), both
patterns show a moderate AR(Fun., Con.) with relatively close values across most

layers. well-formed sentences generally have slightly higher values, suggesting a
= -
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potentially stronger AR(Fun., Con.) in well-formed sentences. However, the
differences are minor, indicating a similar overall trend in the AR(Fun., Con.)
relationship between the two sentence types.

Intransitive Both grammatical and ill-formed sentences exhibit a positive
AR(Con., Fun.) with relatively consistent positive values across most layers.
However, there are differences in magnitude between the patterns. ill-formed
sentences tend to have higher values, indicating a stronger AR(Con., Fun.) in ill-
formed sentences. Specific layers show variations, with some layers having higher
values in the ungrammatical pattern and others in the grammatical pattern. Notably,
the last layer has a lower value in the grammatical pattern compared to the
ungrammatical pattern, suggesting a weaker AR(Con., Fun.) in well-formed
sentences for this specific layer. In terms of AR(Fun., Con.), both patterns exhibit a
positive AR(Fun., Con.) with relatively close values across most layers. well-formed
sentences generally have slightly higher values, indicating a potentially stronger
AR(Fun., Con.) in well-formed sentences. However, there are slight variations in
specific layers, such as at layer 12, where the value in the AR(Fun., Con.) on well-
formed sentences is lower than in the AR(Fun., Con.) on ill-formed sentences,
implying a weaker AR(Fun., Con.) in well-formed sentences for this specific layer.

Transitive Both well-formed and ill-formed sentences show a moderate
AR(Con., Fun.) with relatively higher values in specific layers compared to other
layers. The overall values are similar in magnitude, but there are differences in
specific layers. Certain layers have higher values in the grammatical pattern,
indicating a relatively stronger AR(Con., Fun.) in well-formed sentences for those
layers, while other layers have higher values in the ungrammatical pattern,

suggesting a relatively stronger AR(Con., Fun.) in ill-formed sentences for those
%
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layers. Notably, the last layer has a lower value in the grammatical pattern compared
to the ungrammatical pattern, indicating a weaker AR(Con., Fun.) in well-formed
sentences for this specific layer. In terms of AR(Fun., Con.), both patterns exhibit a
general trend of decreasing values as the layer increases. The overall values are
relatively similar, but there are differences in specific layers. Some layers have
slightly higher values in the grammatical pattern, indicating a relatively stronger
AR(Fun., Con.) in well-formed sentences for those layers, while other layers have
slightly higher values in the ungrammatical pattern, suggesting a relatively stronger

AR(Fun., Con.).
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6.3 Summary

In this chapter, we apply the Affinity Prober to interpret patterns obtained from the
Affinity Relationship, AR(c;, ¢z), in each layer of the BERT model, considering
different linguistic phenomena. It is found that not all linguistic phenomena have
distinct patterns across layers; some phenomena show similar patterns that can be
clustered together. Four distinct groups were identified, demonstrating the
interaction between linguistic phenomena and layer-wise patterns in the AR, which
helps deepen our understanding of language processing in BERT.

We observed common patterns in the layers of the BERT model across four
groups. These patterns indicate a shift in attention from content words to function
words during BERT's layer-wise processing. This finding aligns perfectly with the
Layer tendency identified by the advanced ADTRAS algorithms. As a result, we can
generalize that the First layer is content word-friendly, while the second layer is
function word-friendly. Furthermore, we noticed a consistent trend in all groups
where the attention ratio once again favors content words in the final layer. This
observation corresponds well with the valuable insights provided by the ADTRAS
algorithm, which identifies layers 10, 11, and 12 as content word-friendly layers. The
middle layers of Groups 1, 2, and 3 particularly emphasize function words,
suggesting a heightened focus on the functional aspects of sentences, such as
grammar and syntactic relationships. This correlation supports the significance of
layer 8 as a function word-friendly layer, as indicated by the output of the ADTRAS
algorithm. Importantly, the final layers, known for their content word-friendly
attributes, effectively address the interplay among function words. This intriguing

phenomenon can be attributed to the indirect assimilation of the relevance of
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function words through fine-tuning on the CSS approach. The final layers are
specialized for task-specific objectives, which contributes to their ability to rectify
the role of function words.

We have successfully utilized the insightful patterns extracted from the Affinity
Prober to cluster and explain various linguistic phenomena. These clusters exhibit
fascinating interconnections, including the Island effect, movement constraint, Verb
and Argument. Furthermore, we have established a strong link between the output of
the ADTRAS algorithm and the layer tendencies discovered through the Affinity

Prober, demonstrating the coherence and robustness of our analysis.

Chapter 7. Conclusion

In this study, we aimed to enhance the methodology proposed by Jang et al (2022)
through additional experiments and analysis. We introduced the ADTRAS algorithm,
which analyzes patterns at each layer of the BERT model and improves the
interpretability of token relationships within attention scores. Through empirical
experiments, we provided evidence that BERT autonomously learns linguistic
knowledge related to lexical categories. We also investigated the general tendencies
of BERT's layers when processing content words and function words, highlighting
its processing characteristics associated with different word types.

Furthermore, we examined patterns in syntactic linguistic phenomena
processed by BERT, focusing on specific phenomena within the BLiMP dataset. Our
analysis revealed the potential of the Affinity Prober in understanding syntactic
structures processed by BERT and facilitated clustering of similar linguistic

phenomena. While this study offers valuable insights, it is important to acknowledge
¥ b



its limitations.

® First, our analysis focuses primarily on syntactic linguistic phenomena,
neglecting other aspects of phenomena such as semantic, morphology, or
discourses. Future research should aim to incorporate a broader range of
linguistic phenomena to provide a more comprehensive understanding of
BERT's capabilities.

® Seccond, our study relies on the use of the BERT model and the specific datasets
employed, namely GLUE, SuperGLUE, and BLiMP. The findings may not
necessarily generalize to other language models or datasets. Therefore, caution
should be exercised when extrapolating the results beyond the scope of this
study.

® Third, while the ADTRAS algorithm improves interpretability, it still relies on
part-of-speech, which have inherent limitations in capturing complex linguistic
relationships. Future research could explore alternative approaches or combine
Affinity Prober with other linguistic features to gain deeper insights into BERT's
processing mechanisms.

® [Lastly, the Affinity Prober clusters linguistic phenomena based on patterns
observed in BERT's layers. While this approach provides valuable information,
it is important to note that clustering alone does not imply causal relationships
or deeper understanding of linguistic phenomena. Further investigations and
complementary analysis are needed to validate and interpret the observed

patterns more thoroughly.

By addressing these limitations, researchers can further refine our understanding of

BERT and its applications in natural language processing.
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Appendix

Table 8.1: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Adjunct Island Phenomenon

(a) well-formed

(b) ill-formed

Affinity Relationship | Count Affinity Relationship | Count
AR(NNP,NNP) 8744 AR(NN,NN) 12423
AR(NN,NN) 6775 AR(IN,NN) 8910
AR(IN,VBG) 6135 AR(WP,WP) 3226
AR(VBG,VBG) 5280 AR(WP,NN) 2986
AR(VBG, IN) 4593 AR(NNP,NNP) 2963
AR(IN,IN) 3714 AR(VBD,WP) 2951
AR(DT,NN) 3490 AR(NNP,WP) 2700
AR(VBG,NNP) 2099 AR(DT,NN) 2294
AR(WP,NN) 1852 AR(IN,IN) 2061
AR(IN,NN) 1802 AR(NN,WP) 1856
AR(WP,NNP) 1646 AR(VBZ,WP) 1808
AR(WP,VBD) 1613 AR(WP,VBD) 1733
AR(NNS,NNS) 1596 AR(DT,W P) 1575
AR(WP,WP) 1425 AR(VBD,NN) 1552
AR(VBG,NN) 1349 AR(VBG,NN) 1552
AR(DT,DT) 1247 AR(MD,W P) 1475
AR(VBD,VBD) 1231 AR(VBG,VBG) 1409
AR(IN,VBN) 1189 AR(NNS,NNS) 1352
AR(VBN,VBN) 1167 AR(IN,WP) 1339
AR(WP,VBZ) 1120 AR(NNP,VBGQ) 1308
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Table 8.2: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Animate Subject Passive Phenomenon

(a) well-formed (b) ill-formed
Affinity Relationship | Count Affinity Relationship | Count
AR(NN,NN) 16533 AR(NN,NN) 16640
AR(DT,NN) 13006 AR(DT,NN) 12600
AR(IN,NN) 6255 AR(IN,NN) 6631
AR(IN,VBN) 4130 AR(VBN,IN) 4131
AR(VBN,NN) 3056 AR(IN,VBN) 3697
AR(VBN,IN) 2910 AR(VBN,NN) 3044
AR(NNP,NN) 2510 AR(NNP,NN) 2499
AR(DT, DT) 1952 AR(IN,IN) 1999
AR(VBN,VBN) 1890 AR(DT,DT) 1737
AR(IN,IN) 1813 AR(VBD,VBN) 1566
AR(VBD,VBN) 1666 AR(VBN,VBN) 1504
AR(NNS,NNS) 1259 AR(DT,IN) 1347
AR(NN,DT) 1234 AR(NNS,NNS) 1187
AR(NNP,NNP) 1202 AR(NNP,NNP) 1121
AR(VBZ,VBN) 1140 AR(VBD,NN) 1095
AR(VBP,VBP) 1096 AR(VBZ,VBN) 1031
AR(VBD,NN) 1053 AR(IN,DT) 1000
AR(NN,VBN) 911 AR(NN, DT) 959
AR(IN,DT) 885 AR(VBP,VBP) 955
AR(DT,NNS) 716 AR(NN,IN) 839
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Table 8.3: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Animate Subject Trans Phenomenon

(a) well-formed (b) ill-formed
Affinity Relationship | Count Affinity Relationship | Count
AR(NN,NN) 8428 AR(NN,NN) 12132
AR(NNP,NNP) 8079 AR(DT,NN) 8178
AR(DT,NN) 3729 AR(NNP,NNP) 4290
AR(NNP,NN) 2446 AR(NN,DT) 2784
AR(NNS,NNS) 1483 AR(DT, DT) 2453
AR(VBD,NN) 1341 AR(VBD,NN) 1653
AR(NNP,VBD) 1189 AR(NNS,NNS) 1547
AR(NNP,VBZ) 1182 AR(NN,VBD) 1151
AR(VBD,NNP) 1167 AR(DT,NNP) 1149
AR(VBD,VBD) 1070 AR(DT,NNS) 1036
AR(IN,NN) 1001 AR(VBD,VBD) 1016
AR(VBZ,VBZ) 961 AR(IN,NN) 881
AR(DT, DT) 836 AR(VBG,NN) 814
AR(VBG,NN) 815 AR(NN,VBZ) 799
AR(DT,NNS) 765 AR(VBZ,VBZ) 751
AR(VB,VB) 682 AR(VBZ,NN) 732
AR(VBZ,NNP) 620 AR(VB,VB) 706
AR(VBZ,NN) 566 AR(DT,VBD) 684
AR(NNP,NNS) 564 AR(VBG,VBG) 654
AR(NN,NNP) 552 AR(VBD,NNP) 638
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Table 8.4: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Causative Phenomenon

(a) well-formed (b) ill-formed

Affinity Relationship | Count Affinity Relationship | Count
AR(NN,NN) 11341 AR(NN,NN) 10184
AR(DT,NN) 5883 AR(DT,NN) 5577

AR(NNP,NNP) 4320 AR(NNP,NNP) 3736
AR(NNP,NN) 2811 AR(NNP,NN) 2445
AR(NNS,NNS) 2271 AR(NNS,NNS) 2055
AR(VBD,NN) 1744 AR(VBD,NN) 1969
AR(DT, DT) 1378 AR(NNP,VBD) 1392
AR(DT,NNS) 1364 AR(DT,NNS) 1250
AR(VBD,VBD) 1183 AR(IN,NN) 1091
AR(IN,NN) 1131 AR(DT, DT) 1073
AR(NNP,VBD) 1030 AR(VBD,VBD) 995
AR(NNP,VBZ) 995 AR(DT,VBD) 888
AR(VBZ,VBZ) 959 AR(NNP,VBZ) 884
AR(VBP,VBP) 947 AR(NN,VBD) 832
AR(VBZ,NN) 811 AR(NN, DT) 724
AR(VBG,NN) 780 AR(VBG,NN) 701
AR(VBG,VBG) 733 AR(VBD,NNP) 631
AR(VBP,NN) 620 AR(VBP,VBP) 628
AR(NN,DT) 576 AR(VBZ,VBZ) 605
AR(NNS,VBP) 545 AR(VBZ,NN) 594
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(a) well-formed

Complex NP Island Phenomenon

Affinity Relationship | Count
AR(NN,NN) 13484
AR(NNP,NNP) 9925
AR(VBP,VBP) 6088
AR(WP,NN) 5656
AR(NNS,NNS) 4283
AR(W P,V BP) 3789
AR(VBD,VBD) 2965
AR(DT,NN) 2838
AR(WP,VBD) 2441
AR(VBD,NN) 2178
AR(NNP,NN) 2053
AR(VBZ,VBZ) 2035
AR(NN,NNP) 1835
AR(WP,WP) 1806
AR(IN,NN) 1768
AR(NNS,NNP) 1433
AR(WP,VBZ) 1350
AR(VBD,W P) 1295
AR(DT,DT) 1264
AR(IN,NNS) 1220
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(b) ill-formed

Table 8.5: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Affinity Relationship | Count

AR(NNP,NNP) 8521
AR(NN,NN) 8253
AR(VBP,VBP) 4495
AR(NNS,NNS) 4409
AR(WP,WP) 3923
AR(WP,VBP) 3803
AR(VB,VB) 3371
AR(VBD,WP) 2787
AR(WP,VBD) 2682
AR(VBD,VBD) 2610
AR(NN,WP) 2188
AR(VBP,WP) 2107
AR(WP,NN) 2091
AR(IN,NN) 2059
AR(DT,NN) 1995
AR(NNP,WP) 1937
AR(NNS,WP) 1832
AR(NN,NNP) 1805
AR(DT,WP) 1731
AR(WP,VB) 1428




Table 8.6: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Coordinate Structure Left Branch Phenomenon

(a) well-formed

Affinity Relationship | Count
AR(NN,NN) 13256
AR(NNP,NNP) 6441
AR(CC,NN) 5385
AR(NNP,NN) 4072
AR(NNS,NNS) 4008
AR(VBZ,VBZ) 2588
AR(VBP,VBP) 2309
AR(CC,CC) 2084
AR(JJ,JJ) 2075
AR(WP,NN) 1935
AR(DT,NN) 1926
AR(VBD,NN) 1865
AR(JJ,NN) 1860
AR(NNP,CC) 1697
AR(NNS,JJ) 1463
AR(JJ,NNS) 1430
AR(VBD,VBD) 1355
AR(NN,CC) 1321
AR(VBZ,NN) 1310
AR(CC,VBP) 1074
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(b) ill-formed
Affinity Relationship | Count
AR(NN,NN) 10912
AR(NNP,NNP) 6419
AR(CC,NN) 4901
AR(NNP,NN) 3543
AR(NNS,NNS) 3430
AR(NNS,CC) 2901
AR(VBP,VBP) 1996
AR(DT,NN) 1879
AR(NNP,CC) 1784
AR(VBD,WDT) 1452
AR(CC,CC) 1443
AR(VBD,NN) 1400
AR(CC,NNS) 1347
AR(WDT,WDT) 1309
AR(NNS,NN) 1250
AR(WP,WP) 1225
AR(NNP,VBD) 1111
AR(CC,NNP) 1088
AR(NNS,VBG) 1059
AR(VBG,VBG) 1051
A2
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(a) well-formed

Coordinate Structure Object Extraction Phenomenon

Table 8.7: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Affinity Relationship | Count
AR(NN,NN) 10652
AR(NNP,CC) 7422
AR(WP,NN) 6554
AR(NNP,NNP) 5647
AR(CC,NN) 4064
AR(VBP,VBP) 3039
AR(CC,CC) 2891
AR(VBD,NN) 2739
AR(VBP,NN) 2544
AR(WP,VBP) 2312
AR(NNP,NN) 2268
AR(CC,NNP) 2255
AR(DT,NN) 1894
AR(MD,NN) 1887
AR(NNS,NNS) 1164
AR(DT,CC) 1083
AR(NNS,CC) 1074
AR(WP,W P) 1053
AR(NN,CC) 973
AR(CC,VBP) 887

(b) ill-formed
Affinity Relationship | Count

AR(NNP,NNP) 7219
AR(CC,NNP) 4691
AR(NN,NN) 3808
AR(WP,WP) 2943
AR(NNP,WP) 2821
AR(CC,WP) 2696
AR(VBD,WP) 2259
AR(DT,NN) 2093
AR(NN,CCQC) 1955
AR(WP,NNP) 1880
AR(VBZ,WP) 1718
AR(NNP,CC) 1706
AR(CC,NN) 1617
AR(WP,VBD) 1496
AR(MD,WP) 1433
AR(WP,VBZ) 1372
AR(VBN,CC) 1366
AR(NN,WP) 1209
AR(WP,MD) 1118
AR(DT,WP) 1111




Table 8.8: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Drop Argument Phenomenon

(a) well-formed (b) ill-formed
Affinity Relationship | Count Affinity Relationship | Count
AR(NN,NN) 10232 AR(NN,NN) 11699
AR(NNP,NN) 3860 AR(NNP,NN) 3686
AR(NNP,NNP) 2766 AR(NNP,NNP) 2798
AR(VBP,VBP) 1738 AR(VBD,NN) 2217
AR(VB,VB) 1512 AR(NNS,NNS) 1858
AR(NNS,NNS) 1489 AR(DT,NN) 1589
AR(JJ,JJ) 1314 AR(VBP,VBP) 1320
AR(DT,NN) 1248 AR(VB,VB) 1045
AR(NNS,VBP) 975 AR(JJ,JJ) 853
AR(MD,VB) 677 AR(NNS,VBP) 828
AR(VBD,NN) 660 AR(NNS,NN) 736
AR(DT,VBP) 507 AR(VBG,NN) 715
AR(NN,NNP) 453 AR(VBZ,NN) 561
AR(IN,NN) 438 AR(VBP,NN) 555
AR(VBN,VBN) 435 AR(VB,NN) 510
AR(NNP,VB) 363 AR(IN,NN) 498
AR(VBD, JJ) 335 AR(NN,NNP) 470
AR(NNS,NNP) 327 AR(NNP,NNS) 435
AR(VBZ,VBZ) 319 AR(RP, RP) 418
AR(NNP,JJ) 314 AR(MD,VB) 406
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Ellipsis N-bar Phenomenon

(a) well-formed

(b) ill-formed

Table 8.9: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech on

Affinity Relationship | Count
AR(NN,NN) 17969
AR(NNP,NNP) 9348
AR(NNS,NNS) 6782
AR(DT,NN) 4701
AR(JJ,JJ) 4336
AR(CC,NN) 3750
AR(IN,NN) 3685
AR(JJ,NNS) 3262
AR(JJ,NN) 2884
AR(CC,CC) 2759
AR(VBP,VBP) 2594
AR(VBD,NN) 2227
AR(CD, JJ) 1952
AR(IN,IN) 1913
AR(NNS,JJ) 1829
AR(NN, JJ) 1807
AR(NNP,CC) 1802
AR(VBD,VBD) 1772
AR(CC,NNP) 1766
AR(DT,DT) 1744

Affinity Relationship | Count
AR(NN,NN) 16859
AR(NNS,NNS) 9352
AR(NNP,NNP) 8451
AR(DT,NN) 5556
AR(CD,NN) 4639
AR(JJ,NN) 3506
AR(CC,NN) 3315
AR(IN,NN) 3197
AR(JJ,NNS) 3053
AR(CC,CC) 2563
AR(CD,NNS) 2369
AR(VBD,NN) 2358
AR(IN,NNS) 2202
AR(JJ,JJ) 2050
AR(VBP,VBP) 1984
AR(CC,NNS) 1945
AR(NNP,NN) 1906
AR(NNS,NN) 1890
AR(CC,NNP) 1842
AR(DT,NNS) 1814




on Inchoative Phenomenon

(a) well-formed

(b) ill-formed

Table 8.10: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

Affinity Relationship | Count
AR(NN,NN) 10643
AR(DT,NN) 3721

AR(VBP,VBP) 2796
AR(NNS,NNS) 2445
AR(VB,VB) 1758
AR(NNS,VBP) 1589
AR(NNP,NNP) 1049
AR(NNP,NN) 1046
AR(JJ,JJ) 1021
AR(DT,VBP) 1009
AR(DT,NNS) 842
AR(DT, DT) 696
AR(DT,V B) 624
AR(MD,VB) 590
AR(NN,DT) 575
AR(VBD,NN) 545
AR(NNS,VB) 518
AR(NNS,NN) 460
AR(DT, JJ) 456
AR(VBN,VBN) 374

Affinity Relationship | Count
AR(NN,NN) 11052
AR(DT,NN) 3877

AR(VBP,VBP) 2497
AR(NNS,NNS) 2200
AR(VB,VB) 1802
AR(NNS,VBP) 1616
AR(NNP,NN) 1140
AR(JJ,JJ) 1073
AR(DT,VBP) 995
AR(VBD,NN) 989
AR(NNP,NNP) 940
AR(DT,NNS) 751
AR(DT,VB) 684
AR(NNS,NN) 627
AR(NNS,VB) 613
AR(MD,VB) 559
AR(DT, DT) 530
AR(DT,JJ) 526
AR(VBP,VB) 422
AR(VBP,NN) 395




on Intransitive Phenomenon

(a) well-formed

Affinity Relationship | Count
AR(NN,NN) 9261
AR(DT,NN) 2683

AR(VBP,VBP) 2661
AR(NNS,NNS) 2333
AR(NNP,NNP) 2005
AR(NNP,NN) 1908
AR(VB,VB) 1819
AR(NNS,VBP) 1545
AR(JJ,JJ) 1449
AR(DT,VBP) 946
AR(MD,VB) 782
AR(DT,NNS) 712
AR(VBD,NN) 656
AR(DT, DT) 570
AR(NNS,NN) 518
AR(DT,V B) 511
AR(NNS,VB) 447
AR(IN,NNS) 445
AR(NN,DT) 428
AR(VBN,VBN) 397
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(b) ill-formed
Affinity Relationship | Count
AR(NN,NN) 10890
AR(DT,NN) 3056
AR(NNS,NNS) 2206
AR(NNP,NN) 2061
AR(NNP,NNP) 1929
AR(VBP,VBP) 1855
AR(VBD,NN) 1709
AR(VB,VB) 1383
AR(JJ,JJ) 1348
AR(NNS,VBP) 1229
AR(NNS,NN) 992
AR(VBG,NN) 918
AR(VBP,NN) 811
AR(DT,V BP) 664
AR(DT,NNS) 609
AR(MD,VB) 584
AR(DT, JJ) 547
AR(DT,V B) 498
AR(JJ,NN) 457
AR(VBZ,NN) 444

Table 8.11: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech



Table 8.12: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

on Transitive Phenomenon

(a) well-formed (b) ill-formed
Affinity Relationship | Count Affinity Relationship | Count
AR(NN,NN) 10184 AR(NN,NN) 9023
AR(NNP,NNP) 9080 AR(NNP,NNP) 8160
AR(DT,NN) 4342 AR(DT,NN) 3818
AR(NNS,NNS) 2658 AR(NNS,NNS) 2330
AR(NNP,NN) 1880 AR(NNP,NN) 1673
AR(IN,NN) 1415 AR(NNP,VBD) 1400
AR(DT,DT) 1200 AR(VBD,VBD) 1309
AR(VBD,VBD) 1156 AR(VBD,NNP) 1171
AR(VBD,NN) 1119 AR(VBD,NN) 1059
AR(VBP,VBP) 1070 AR(IN,NN) 1029
AR(DT,NNS) 1065 AR(NN,VBD) 1013
AR(VBD,NNP) 916 AR(DT, DT) 976
AR(NNP,VBD) 888 AR(DT,NNS) 915
AR(IN,NNP) 888 AR(VBP,VBP) 871
AR(VBZ,VBZ) 845 AR(NN,DT) 825
AR(NN,NNP) 844 AR(NNS,NNP) 797
AR(NN,DT) 804 AR(NN,NNP) 749
AR(NNS, NNP) 802 AR(DT,VBD) 732
AR(JJ,JJ) 784 AR(VBZ,VBZ) 721
AR(IN,NNS) 775 AR(NNP,VBZ) 696
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Table 8.13: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

on Left Branch Island Echo Question Phenomenon

(a) well-formed (b) ill-formed
Affinity Relationship | Count Affinity Relationship | Count
AR(NN,NN) 12664 AR(NN,NN) 9977
AR(WP,NN) 3837 AR(NNP,NNP) 3630
AR(WDT,NN) 3581 AR(VBD,NN) 2227
AR(NNP,NNP) 2337 AR(VBG,NN) 1447
AR(NNP,NN) 2129 AR(VB,NN) 1332
AR(WP,NN) 2016 AR(IN,NN) 1314
AR(DT,NN) 1546 AR(NN,WDT) 1280
AR(VB,VB) 1490 AR(WP,WP) 1265
AR(VBD,NN) 1362 AR(WDT ,WDT) 1250
AR(VBN,NN) 1336 AR(WP,NN) 1243
AR(MD,NN) 1272 AR(VBD,WDT) 1219
AR(VB,NN) 1216 AR(WDT,NN) 1170
AR(MD,VB) 1198 AR(VB,VB) 1151
AR(VBG,VBG) 1148 AR(NNP,NN) 1101
AR(VBZ,NN) 1113 AR(NN,WP) 1057
AR(NNP,VBZ) 1106 AR(VBD,WP) 999
AR(NNP,VBD) 971 AR(MD,NN) 955
AR(VBG,NN) 896 AR(VBZ,NN) 954
AR(VBD,VBN) 861 AR(NNP,VBD) 917
AR(VBN,VBN) 806 AR(DT,NN) 874
90 A—T T
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Table 8.14: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

on Left Branch Island Simple Question Phenomenon

(a) well-formed (b) ill-formed

Affinity Relationship | Count Affinity Relationship | Count
AR(NN,NN) 13375 AR(NN,NN) 9762
AR(NNP,NN) 3672 AR(NNP,NNP) 3311
AR(NNP,NNP) 3288 AR(VBD,NN) 2534
AR(VBD,NN) 3088 AR(VBG,NN) 1534
AR(WP,NN) 2943 AR(WDT,WDT) 1377
AR(VBZ,NN) 2626 AR(NN,WDT) 1345
AR(JJ,NN) 2449 AR(VBD,WDT) 1330
AR(NNS,NNS) 2126 AR(WDT,NN) 1243
AR(VB,VB) 1714 AR(IN,NN) 1241
AR(JJ,JJ) 1569 AR(WP,WP) 1228
AR(VBZ,VBZ) 1486 AR(WP,NN) 1204
AR(VBP,VBP) 1468 AR(VB,NN) 1102
AR(DT,NN) 1080 AR(NNP,NN) 1077
AR(MD,NN) 1015 AR(VBD,WP) 1063
AR(NNS,NN) 999 AR(VBZ,WDT) 1026
AR(NNS,VBP) 842 AR(NN,WP) 1019
AR(VBD,VBD) 802 AR(VBZ,NN) 1015
AR(MD,VB) 796 AR(NNP,VBD) 977
AR(VB,NN) 793 AR(VB,VB) 921
AR(NNP,VB) 785 AR(VBN,NN) 899
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on Passive Phenomenon

(a) well-formed

Affinity Relationship | Count
AR(NNP,NNP) 11996
AR(NN,NN) 8767
AR(IN,NNP) 4559
AR(IN,VBN) 4078
AR(VBN,IN) 3900
AR(DT,NN) 3423
AR(NNS,NNS) 3408
AR(IN,NN) 2760
AR(VBN,NN) 2218
AR(NNP,NN) 2105
AR(VBN,VBN) 2080
AR(IN,IN) 2062
AR(VBD,VBN) 1623
AR(VBP,VBP) 1490
AR(DT,NNS) 1323
AR(IN,NNS) 1139
AR(DT,DT) 1091
AR(NN,NNP) 1067
AR(VBN,VBP) 959
AR(VBP,VBN) 945
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(b) ill-formed

Affinity Relationship | Count
AR(NNP,NNP) 10149
AR(NN,NN) 8553
AR(IN,VBN) 4688
AR(IN,NNP) 3620
AR(VBN,IN) 3154
AR(DT,NN) 3118
AR(NNS,NNS) 2743
AR(IN,NN) 2591
AR(VBN,VBN) 2549
AR(NNP,NN) 2419
AR(VBN,NN) 2158

AR(VBD,VBN) 2099
AR(VBP,VBP) 1434
AR(NN,VBN) 1351
AR(VBP,VBN) 1318
AR(IN,IN) 1144
AR(NNP,IN) 1125
AR(DT,NNS) 1118
AR(VBZ,VBN) 1097
AR(IN,NNS) 1011

A=
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Table 8.15: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech



(a) well-formed

Affinity Relationship | Count
AR(NN,NN) 15739
AR(WP,NN) 6288
AR(DT,NN) 4930

AR(NNP,NN) 3944
AR(VBG,NN) 3931
AR(JJ,JJ) 3632
AR(VBG,VBG) 2618
AR(VBP,VBP) 2492
AR(NNS,NNS) 2210
AR(NNP,NNP) 2040
AR(WP,VBP) 1841
AR(VBD,NN) 1836
AR(DT, JJ) 1764
AR(DT,DT) 1581
AR(IN,NN) 1551
AR(VB,VB) 1508
AR(NNP,VBG) 1377
AR(DT,NNS) 1362
AR(VBG, JJ) 1197
AR(VBP,WP) 1138

on Sentential Subject Island Phenomenon
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(b) ill-formed

Table 8.16: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

Affinity Relationship | Count
AR(NN,NN) 7816
AR(NNP,NNP) 4985
AR(DT,NN) 4350
AR(VBG,VBGQ) 3893
AR(JJ,JJ) 3406
AR(VBD,WP) 3060
AR(WP,WP) 2959
AR(DT, W P) 2729
AR(VBG,NN) 2572
AR(NN,WP) 2294
AR(VBP,WP) 2110
AR(NNP,WP) 1950
AR(WP,VBD) 1884
AR(VBG,WP) 1858
AR(NNS,NNS) 1821
AR(MD,WP) 1666
AR(VBG, JJ) 1646
AR(DT,JJ) 1605
AR(IN,NN) 1447
AR(VB,VB) 1436




on Wh Island Phenomenon

(a) well-formed

(b) ill-formed

Table 8.17: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

Affinity Relationship | Count
AR(NN,NN) 5581
AR(VB,VB) 5407

AR(VBD,VBD) 5269
AR(NNP,NNP) 2555
AR(WP,NN) 2489
AR(WP,VBD) 2467
AR(PRP,VB) 2420
AR(VBZ,VBZ) 2373
AR(WP,VB) 2049
AR(VBP,VBP) 1976
AR(PRP,VBD) 1892
AR(VBD,NN) 1831
AR(PRP,PRP) 1723
AR(NNP,VBD) 1692
AR(PRP,NN) 1506
AR(VBZ,NN) 1363
AR(MD,VB) 1339
AR(JJ,JJ) 1267
AR(WP,VBZ) 1163
AR(WP,WP) 1123

Affinity Relationship | Count
AR(WP,WP) 5037
AR(NN,NN) 4921

AR(WP,VBP) 4912
AR(VBP,VBP) 4801
AR(WP,NN) 3800
AR(VBD,WP) 3080
AR(VB,VB) 3042
AR(WP,VBD) 2984
AR(NN,WP) 2573
AR(VBD,VBD) 2319
AR(WP,VB) 2186
AR(WP,VBZ) 1962
AR(VB,WP) 1880
AR(VBZ,WP) 1855
AR(VBG,WP) 1835
AR(NNP,WP) 1823
AR(VBP,WP) 1799
AR(NNP,NNP) 1749
AR(VBN,WP) 1570
AR(VBD,NN) 1349




(a) well-formed

Affinity Relationship | Count
AR(NN,NN) 12620
AR(DT,NN) 5125

AR(NNP,NNP) 4957
AR(NNS,NNS) 4420
AR(NNP,NN) 3197
AR(IN,NN) 2857
AR(VBP,VBP) 2741
AR(VB,VB) 2596
AR(DT,NNS) 2571
AR(DT,DT) 2326
AR(WDT,NN) 2265
AR(NN,DT) 2047
AR(VBD,VBD) 1834
AR(NNP,VBD) 1635
AR(VBD,NN) 1609
AR(VBZ,VBZ) 1604
AR(NNS,VBP) 1582
AR(DT,VBP) 1433
AR(NNP,VBZ) 1389
AR(IN,VBP) 1354

on Wh Questions Object Gap Phenomenon
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Table 8.18: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

(b) ill-formed
Affinity Relationship | Count
AR(NN,NN) 12034
AR(DT,NN) 6799
AR(NNP,NNP) 4020
AR(WP,WP) 3712
AR(DT,W P) 3701
AR(NN,WP) 3698
AR(NNP,WP) 3443
AR(NNS,NNS) 3020
AR(VBD,WP) 2912
AR(NNP,NN) 2601
AR(DT,NNS) 1997
AR(VBP,WP) 1925
AR(NNS,WP) 1739
AR(IN,WP) 1712
AR(VBD,NN) 1682
AR(NNP,VBD) 1534
AR(IN,NN) 1501
AR(VBZ,WP) 1487
AR(VB,WP) 1359
AR(DT,DT) 1287




Table 8.19: Top 10 Frequency of Affinity Relationship Categorized by Part-of-Speech

on Wh Questions Subject Gap Phenomenon

(a) well-formed

Affinity Relationship | Count
AR(NNP,NNP) 9576
AR(NN,NN) 8610
AR(DT,NN) 5452
AR(NNS,NNS) 4128
AR(VBP,VBP) 2569
AR(DT, DT) 2487
AR(VBZ,VBZ) 2464
AR(DT,NNS) 2363
AR(VBD,VBD) 2046
AR(NN,DT) 1851
AR(WDT,VBD) 1632
AR(WDT,VBP) 1585
AR(WDT,WDT) 1574
AR(IN,NN) 1416
AR(VB,VB) 1412
AR(VBD,NNP) 1392
AR(WDT,VBZ) 1325
AR(NNS,WDT) 1277
AR(DT,VBD) 1230
AR(NNP,VBD) 1224
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(b) ill-formed
Affinity Relationship | Count

AR(NN,NN) 8245
AR(NNP,NNP) 7784
AR(DT,WP) 5760
AR(DT,NN) 4721
AR(NN,WP) 3748
AR(WP,WP) 3639
AR(NNS,NNS) 3340
AR(VBD,WP) 2609
AR(NNS,WP) 2344
AR(DT,NNS) 2067
AR(WP,DT) 2040
AR(NNP,WP) 1982
AR(NN,DT) 1880
AR(VBP,WP) 1875
AR(VBP,VBP) 1873
AR(IN,WP) 1704
AR(NNP,NN) 1330
AR(VBN,WP) 1295
AR(VB,WP) 1213
AR(VBD,NN) 1147
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