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Abstract 

 
One crucial structure of sensory objects is the relative scale, which 

can be expressed throughd relative adjectives such as ‘large.’ 

Linguists and cognitive scientist have assumed that determining the 

appropriate relative adjective of objects requires a boundary value 

that separates the stimulus values of ‘small’ from those of 

‘large.’  

However, the existence of a boundary for relative adjectives 

has been a hypothetical factor, and its neural evidence remains 

uncertain. Thus, I delved into investigating the neural evidence of 

boundary for relative adjectives that describe the size of a ring, like 

‘large’ or ‘small.’ To accomplish this, I leveraged a unique 

property of boundaries known as boundary updating. Linguists and 

cognitive scientists have assumed that boundaries assimilate to 

previous objects on each trial and thus bias current choices repelled 

from previous stimuli. I analyzed brain signals from human fMRI data 

to identify the neural signal that reflects boundary updating. The 

results demonstrated the presence of brain signals associated with 

boundary updating in the parietal and temporal cortices, providing 

neural evidence that supports the existence of boundary updating as 

a source of the repulsive bias. 

On another note, while the impact of boundary updating on 

choices has been extensively studied, its effect on decision 

uncertainty has not been previously reported. Therefore, I expanded 

the exploration of boundary updating to decision uncertainty. By 

using the three correlates of decision uncertainty - response time, 

pupil size, and the neural signal of dorsal anterior cingulate cortex - 

the findings revealed that boundary updating systematically biases 
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the current level of decision uncertainty based on previous stimuli. 

This discovery highlights that boundary updating is a fundamental 

cognitive process that influences both history effects of choice and 

decision uncertainty. 

The findings of this thesis may have several implications for 

our understanding of how the brain perceives the relative scale of 

objects. One notable implication is that the brain may process the 

relative scale of objects by rescaling the one-dimensional magnitude 

representation in the parietal cortex using a preceding neural signal 

of the boundary while also engaging the language-related circuits of 

the superior temporal cortex. 

 

주요어 : Boundary updating, History effect, Repulsive bias, Decision-

making, Decision uncertainty 
학   번 : 2017-38129 
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Chapter 1 

 

Introduction 
 

 

1.1. From the Structure of Thoughts to the Structure 

of Sensory Perception 

 
The understanding that our thoughts have a structured nature has a 

longstanding history in Western philosophy, tracing back to Aristotle 

(Chase 2019). This structure of thought, commonly known as logic, 

was further developed by Immanuel Kant, who argued that our 

thoughts are inherently tied to a specific logical framework (Smith 

2011). Kant’s ideas have had a significant influence on modern 

linguistics, which posits that although languages vary across 

cultures, a universally shared underlying structure exists due to the 

presence of a genetically pre-programmed universal grammar 

(Chomsky 2014). 

This perspective, highlighting the constraints on both thought 

and language by structures, raises questions about perceptual 

decision-making (PDM). PDM refers to making categorical judgments 

based on presented stimuli (Gold and Shadlen 2007). Suppose a 

particular perceptual decision corresponds to a specific proposition, 

which can be expressed as a sentence in a language. Then, our 

interpretation of the structure of sensory objects is also constrained 

by the structures that shape our thoughts. Consequently, how the 

brain generates propositions about the structure of sensory objects 

is closely connected to how the brain represents the structure of 

abstract concepts, which are essentially thoughts. 

In laboratory experiments, perceptual processing is more 

manageable compared to the complex processing involved in abstract 

concepts, as brain signals related to sensory stimuli directly relate to 

the physical features of the stimuli. On the other hand, it remains 

unclear what brain signals are equivalent to abstract concepts. 
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Therefore, exploring how the brain processes the structure of 

sensory objects serves as a promising initial area of research to 

investigate how the brain processes the structure of concepts. 

 

1.2 The Significance of Reference in the Structure of 
Objects 

 

The understanding that objects have a minimum set of principles 

governing their structure originated nearly a century ago with the 

Gestalt psychologists (Wertheimer 1912, Wagemans, Elder et al. 

2012). Among the fundamental relationships between objects, the 

relative scale holds significant importance. Numerous studies have 

examined how we perceive and process relative scale, with linguists 

particularly intrigued by its unique properties (Huttenlocher, Higgins 

et al. 1971, Tribushinina 2011). Linguists refer to adjectives that 

describe relative relationships between objects as relative 

adjectives, such as ‘big’ and ‘old’ (Kennedy 2007). 

A relative adjective like ‘tall’ can have various meanings. 

Consider the following examples: 

 

(1) There are many tall mountains in the Himalayas. 

(2) She is young, beautiful, tall, and intelligent. 

(3) He wanted to lie down in this tall grass. 

 

The scale of ‘tall’ differs in each example. In (1), tall mountains 

would be over a thousand meters high, while in (2), a tall girl might 

be around 170 centimeters tall. The tallness of grass in (3) would be 

more than five centimeters. However, individuals have no difficulty 

adjusting the interpretation of ‘tall’ based on the context (Kamp and 

Partee 1995, Partee 2007). Linguists have been investigating this 

intriguing property of relative adjectives for several decades. 

Semanticists have argued that interpreting relative adjectives 

involves locating a property on a gradual scale relative to a context-

specific reference point (Tribushinina 2011). This reference point 

has been referred to as a norm (Apresjan 1974, Lehrer and Lehrer 
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1982, Bierwisch 1989), standard (Rotstein and Winter 2004, Maat 

2006), or relative standard of comparison (Kennedy 2007). In this 

text, it will be referred to as a reference. 

The central hypothesis regarding a reference is that it 

represents the average value of objects described by relative 

adjectives (Katz 1972, Klein 1980, Bierwisch 1989, Tribushinina 

2011). This assumption implies that a reference is inherently 

subjective. For example, a person from Western Europe would likely 

have different expectations regarding average winter temperatures 

compared to a resident of Siberia and thus assign a different value to 

the adjective ‘warm’ in a sentence like ‘This winter is surprisingly 

warm’ (Tribushinina 2011). Additionally, the hypothesis suggests that 

a reference is updated with each new experience of the object 

denoted by the relative adjectives. If a person from Western Europe 

moves to Siberia, their average winter temperature expectation will 

align with that of Siberia. As a result, they will assign a temperature 

to ‘warm’ based on their experience in Siberia. 

In summary, linguists have significantly contributed to our 

understanding of the relative scale, a fundamental structure between 

objects, by investigating relative adjectives. Their primary 

conclusion is that the interpretation of the relative adjectives is 

determined by a reference, which represents a context-specific 

average value of objects described by relative adjectives. This 

conclusion suggests that a reference is updated through new 

experiences as they may introduce new object samples and modify 

the belief regarding the expected value of objects. 

 

1.3 Reference Updating as a Source of the Repulsive 

Bias 
 

As previously mentioned, linguists’ conclusion that our internal 

reference for relative adjectives is updated with new instances has 

piqued the interest of cognitive scientists, prompting them to 

investigate reference updating through laboratory experiments. 

Cognitive scientists have developed computational models to 
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understand the process of reference setting (Treisman and Williams 

1984, Lages and Treisman 1998, Lages and Treisman 2010, Dyjas, 

Bausenhart et al. 2012, Raviv, Lieder et al. 2014, Norton, Fleming et 

al. 2017, Hachen, Reinartz et al. 2021). These computational models, 

similar to the hypothesis proposed by linguists, suggest that the 

reference boundary assimilates to previous stimulus quantities. 

However, unlike the linguists’ hypothesis, these computational 

models make a quantifiable prediction about boundary updating. 

This prediction is known as the repulsive bias, which 

indicates that current choices tend to be biased away from previous 

stimulus values. For instance, after seeing a short tree, we are more 

likely to classify a tree of intermediate height as ‘tall.’ The repulsive 

bias has been observed in laboratory experiments involving both 

humans and non-human animals (Lages and Treisman 1998, Lages 

and Treisman 2010, Nakashima and Sugita 2017, Bosch, Fritsche et 

al. 2020, Fritsche, Spaak et al. 2020, Hachen, Reinartz et al. 2021). 

Thus, empirical evidence of the repulsive bias appears to support the 

concept of boundary updating. 

However, it is important to note that the repulsive bias can 

also be attributed to a bias in current stimulus perception rather than 

a bias of the boundary itself. Sensory adaptation, a phenomenon in 

which previous stimulus values influence the perception of the 

current stimulus, has been considered a potential cause of the 

repulsive bias (Gibson and Radner 1937, Stocker and Simoncelli 

2006, Knapen, Rolfs et al. 2010, Fritsche, Mostert et al. 2017, 

Nakashima and Sugita 2017, Fritsche, Spaak et al. 2020, Collins 

2021, Fritsche, Solomon et al. 2022). Therefore, the mere existence 

of the repulsive bias does not definitively establish the empirical 

basis for boundary updating. 

Traditionally, the neural mechanism underlying sensory 

adaptation has been attributed to fatigued neural populations in the 

sensory cortex becoming less responsive to previous stimuli 

(Webster and Mollon 1997, Clifford, Webster et al. 2007, Kohn 2007). 

This reduced neural response to previous stimuli leads to the biased 

perception of the current stimulus being repelled away from previous 



 

 5 

stimuli. More recent theories propose other neural mechanisms, such 

as normalization, which increase the sensitivity of sensory neurons 

(Stocker and Simoncelli 2006, Solomon and Kohn 2014, Weber, 

Krishnamurthy et al. 2019, Fritsche, Spaak et al. 2020). Despite 

these diverse theories, a common hypothesis is that the neural 

mechanism of sensory adaptation involves biased neural responses in 

the sensory cortex. 

On the other hand, the cortical region involved in boundary 

updating may be the associative area of the brain, as the boundary is 

not determined by present stimuli but is maintained by the memory 

system. Therefore, some researchers suggest that distinct cortical 

involvements in boundary updating and sensory adaptation can be 

useful for uncovering the true source of the repulsive bias (Hachen, 

Reinartz et al. 2021).  

 This thesis aims to provide insights to the implementation of 

boundary updating in the human brain and its influence on current 

behavior and neural responses. To address this question, I 

collaborated with my colleagues and conducted a series of 

investigations. 

 

1.4 Structure of the Thesis 
 

In Chapter 2, I aimed to investigate the origin of the repulsive bias by 

analyzing whole-brain imaging data, specifically focusing on the 

sensory and associative areas. I investigated using functional 

magnetic resonance imaging (fMRI) to analyze the primary visual 

cortex (V1) signal, as well as the whole-brain fMRI signal of human 

subjects. The findings revealed that the adaptation signal in V1 did 

not have an impact on the repulsive bias in decision-making. 

However, the boundary updating signal in the parietal and temporal 

cortices influenced the repulsive bias in decision-making. This 

suggests that the boundary updating process serves as the source of 

the repulsive bias. Importantly, the presence of neural signals related 

to boundary updating demonstrates the neural basis of the boundary, 

which plays a fundamental role in perceiving the structure of objects. 
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In Chapter 3, building upon the confirmation of the role of 

boundary updating in inducing the repulsive bias, I further explored 

the implications of boundary updating on decision uncertainty. While 

previous research primarily focused on the effect of boundary updating 

on choice behavior, I investigated how it also affects the variability of 

decision uncertainty. To assess this, I examined well-established 

correlates of decision uncertainty, including response time (RT) (Urai, 

Braun et al. 2017, Braun, Urai et al. 2018), pupil size (Urai, Braun et 

al. 2017), and the brain signal of the dorsal anterior cingulate cortex 

(dACC) (Grinband, Hirsch et al. 2006, Shenhav, Straccia et al. 2014). 

The results indicated that all three correlates of decision uncertainty 

exhibited systematic biases induced by boundary updating. This 

highlights the crucial role of boundaries in processing the structure of 

objects, which is to influence not only decision-making but also 

decision uncertainty. 

In Chapter 4, I presented how my findings can modify 

previous perspectives on how the brain generates the representation 

of the structure of visual objects, with a specific focus on the 

structure of the relative scale.
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Chapter 2 

 

Neural evidence for boundary updating as the 

source of the repulsive bias in classification 
 

 

Binary classification, an act of sorting items into two classes by 

setting a boundary, is biased by recent history. One common form of 

such bias is repulsive bias, a tendency to sort an item into the class 

opposite to its preceding items. Sensory-adaptation and boundary-

updating are considered as two contending sources of the repulsive 

bias, yet no neural support has been provided for either source. Here 

we explored human brains of both men and women, using fMRI, to 

find such support by relating the brain signals of sensory-adaptation 

and boundary-updating to human classification behavior. We found 

that the stimulus-encoding signal in the early visual cortex adapted 

to previous stimuli, yet its adaptation-related changes were 

dissociated from current choices. Contrastingly, the boundary-

representing signals in the inferior-parietal and superior-temporal 

cortices shifted to previous stimuli and covaried with current 

choices. Our exploration points to boundary-updating, rather than 

sensory-adaptation, as the origin of the repulsive bias in binary 

classification. 

 

2.1 Introduction 

 
We commit to a proposition about a specific world state when making 

a perceptual decision. One basic form of such commitment is binary 

classification. It is to decide whether an item’s magnitude lies on 

the smaller or larger side of the magnitude distribution across items 

of interest (Fig. 1A). For example, when uttering “this tree is tall” 

while walking in a wood, we are implicitly judging the height of that 

tree to be taller than the typical height of the trees in the wood 

(Klein 1980, Bierwisch 2009), where ‘typical height’ works as the  
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Figure 1. Two contending hypotheses on the origin of the repulsive bias in binary 

classification. A, Task structure (left) and statistical knowledge (right) for binary 

classification. For any given item, its class is determined by its position relative to 

the class boundary in the distribution of feature magnitudes relevant to a given task 

(e.g., a tree is classified as ‘tall’ if its height is in the side greater than the typical 

height of the trees in the wood of interest). This relativity of binary classification 

makes the ‘biased sensory encoding’ and the ‘biased knowledge about boundary 

position’ due to previous stimuli, in principle, have equal footings in inducing the 

repulsive bias. B, Sensory-adaptation hypothesis. It points to the adaptation of a 

low-level stimulus-encoding signal to past stimuli (arrow 1) as the origin of the 

repulsive bias (arrow 2). In the case of visual classification tasks, the task-relevant 

sensory signals in the early visual cortex (blue patch), which are subject to 

adaptation, have been hypothesized to mediate the repulsive bias. C, Boundary-

updating hypothesis. It points to the attractive shift of a classifier’s internal class 

boundary toward previous stimuli (arrow 3) as the origin of the repulsive bias (arrow 

4). Such boundary-representing signals are expected to reside not in the early 

sensory cortex but in the high-tier associative cortices (red patch). 

 

boundary dividing the ‘short’ and ‘tall’ classes. Like this, binary 

classification is exercised in our daily language use—whenever 

modifying a subject with relative adjectives (Rips and Turnbull 1980, 

Tribushinina 2011, Solt 2015, Lassiter and Goodman 2017)—and has 

been adopted as an essential paradigm for studying perceptual 

decision-making (Lages and Treisman 1998, Grinband, Hirsch et al. 
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2006, Kepecs, Uchida et al. 2008, Nahum, Daikhin et al. 2010, Lak, 

Costa et al. 2014, Bosch, Fritsche et al. 2020, Hachen, Reinartz et al. 

2021). 

Humans and non-human animals show various forms of 

history bias in binary classification. One frequent form of such 

history biases is a tendency to classify an item as the class opposite 

to its preceding items, dubbed repulsive bias (Lages and Treisman 

1998, Lages and Treisman 2010, Bosch, Fritsche et al. 2020, 

Hachen, Reinartz et al. 2021). For instance, we tend to classify a tree 

of intermediate height as ‘tall’ after seeing a short tree. Currently, 

it remains unclear why and how repulsive bias occurs. 

As one most straightforward scenario for repulsive bias, the 

previous stimuli may repel away our perception of the current 

stimulus from themselves because the sensory system adapts to 

earlier stimuli (Gibson and Radner 1937, Stocker and Simoncelli 

2006, Clifford, Webster et al. 2007, Knapen, Rolfs et al. 2010, Pavan, 

Marotti et al. 2012, Morgan 2014, Nakashima and Sugita 2017) (Fig. 

1B). According to this ‘sensory-adaptation’ hypothesis, the 

current tree is biasedly classified as ‘tall’ since the sensory 

system’s adaptation to the previous short tree makes the current 

tree appear taller than its physical height. However, there is an 

alternative scenario, which considers the possibility that the internal 

class boundary adaptively shifts toward recent samples of property 

magnitude (Treisman and Williams 1984, Lages and Treisman 1998, 

Lages and Treisman 2010, Dyjas, Bausenhart et al. 2012, Raviv, 

Lieder et al. 2014, Norton, Fleming et al. 2017, Hachen, Reinartz et 

al. 2021) (Fig. 1C). According to this ‘boundary-updating’ 

hypothesis, the current tree is biasedly classified as ‘tall’ since 

the shift of the class boundary toward the previous short tree makes 

the current tree be positioned in the taller side of the boundary. 

As discussed previously (Hachen, Reinartz et al. 2021), it is 

hard to assess which hypothesis is more viable based on behavioral 

data. This difficulty arises because binary classification is a matter of 

the relativity between the perceived stimulus and the class boundary: 

the identical bias in classification can be caused either by sensory-
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adaptation or boundary-updating. However, the two hypotheses 

involve distinct neural routes through which repulsive bias 

transpires. The sensory-adaptation hypothesis predicts that the 

sensory brain signals subject to adaptation—such as those in the early 

sensory cortex with substantive adaptation to earlier stimuli—

contribute to the choice variability. By contrast, the boundary-

updating hypothesis predicts that the brain signals of the shifting 

boundary—such as those in the high-tier cortices involved in the 

working memory of previous stimuli—contribute to the choice 

variability.  

Here, we tested these two predictions by analyzing functional 

magnetic resonance imaging (fMRI) data. We found that the stimulus-

encoding signal in V1 exhibited adaptation, but its bias induced by 

adaptation was dissociated from current choices. By contrast, the 

boundary-representing signals in the posterior-superior-temporal 

gyrus and the inferior-parietal lobe not only shift to previous stimuli 

but also covaried with current choices. Our findings contribute to the 

resolution of the competing ideas regarding the source of repulsive 

bias by providing the first neural evidence supporting the boundary-

updating scenario. 

 

2.2 Materials and Methods 

 
The data of Experiment 1 (Exp1) and Experiment 2 (Exp2) were 

acquired from 19 (9 females, aged 20–30 years) and 18 (9 females, 

aged 20–30 years) participants, respectively. Among the participants, 

17 of them participated in both experiments. The Research Ethics 

Committee of Seoul National University approved the experimental 

procedures. All participants gave informed consent and were naïve 

to the purpose of the experiments. High-spatial-resolution images 

were acquired only from the early visual cortex in Exp1 while the 

images in Exp2 were acquired from the entire brain with a 

conventional spatial resolution. The 17 people who provided the data 

for both experiments participated in three to six behavior-only  
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Figure 2. Binary classification task on ring size. A, Within-trial procedure. With the 

eyes fixed, human participants were pre-warned (2.2s), with the increase of the 

fixation dot, to get ready for the upcoming trial after a long inter-trial interval 

(9.5s), briefly viewed the ring stimulus (0.3s), and judged its size as large or small 

in respect to the medium size ring within a limited window of time (1.5s). B, Ring 

stimuli with threshold-level differences in size. On each trial, a participant viewed 

one of the three rings—small (S), medium (M), large (L), the size contrast (Δ) of 

which was optimized to ensure threshold-level classification performance on a 

participant-to-participant basis in a separate calibration run inside the MR scanner, 

right before the main session of fMRI scan runs. The order of ring sizes over trials 

was constrained with an m-sequence to preclude the temporal correlation among 

stimuli. Here, the luminance of the rings is inverted here for an illustrative purpose. 

 

sessions for training and stimulus calibration, one fMRI session for 

retinotopy, and two experimental fMRI sessions (one for each 

experiment). The remaining people also completed the behavioral 

and retinotopy fMRI sessions with the same protocols but 

participated in only one of the two experiments.  

The data from Exp1 had been used for our previous work 

(Choe, Blake et al. 2014). The data of Exp2 has never been used in 

any previous publication. In the current paper, we describe some 

basic procedures of Exp1. For more details on Exp1, please refer to 

the original work (Choe, Blake et al. 2014).  

 

Experimental setup 
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MRI data were collected using a 3 Tesla Siemens Tim Trio scanner 

equipped with a 12-channel Head Matrix coil at the Seoul National 

University Brain Imaging Center. Stimuli were generated using 

MATLAB (MathWorks) in conjunction with MGL 

(http://justingardner.net/mgl) on a Macintosh computer. Observers 

looked through an angled mirror attached to the head coil to view the 

stimuli displayed via an LCD projector (Canon XEED SX60) onto a 

back-projection screen at the end of the magnet bore at a viewing 

distance of 87 cm, yielding a field of view of 22×17°. 

 

Behavioral data acquisition 

Figure 2 illustrates the experimental procedures. On each trial, the 

observer initially viewed a small fixation dot (diameter in visual 

angle, 0.12°; luminance, 321cd/m2) appearing at the center of a dark 

(luminance, 38cd/m2) screen. A slight increase in the size of the 

fixation dot (from 0.12° to 0.18° in diameter), which was readily 

detected with foveal vision, forewarned the observer of an upcoming 

presentation of a test stimulus. The test stimulus was a brief (0.3s) 

presentation of a thin (full-width at half-maximum of a Gaussian 

envelope, 0.17°), white (321cd/m2), dashed (radial frequency, 

32cycles/360°) ring that counter-phase-flickered at 10Hz. After 

each presentation, participants classified the ring size into small or 

large using a left-hand or right-hand key, respectively, within 1.5s 

from stimulus onset. They were instructed to maintain strict fixation 

on the fixation dot throughout experimental runs. This behavioral 

task was performed in three different environments: i) the training 

sessions, ii) the practice runs of trials inside the MR scanner, and iii) 

the main scan runs inside the MR scanner, in the following order.  

In the training sessions, participants practiced the task 

intensively over several (3 to 6) sessions (about 1,000 trials per 

session) in a dim room outside the scanner until they reached an 

asymptotic level of accuracy. Note that we opted to train observers 

with the stimuli that were much larger than those for the main 

experiments (mean radius of 9°) to avoid any unwanted perceptual 

learning effects at low sensory levels and to train participants to 
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learn the task structure of classification. 

In the practice runs of trials inside the MR scanner, 

participants performed 54 practice trials and then 180 threshold-

calibration trials while lying in the magnet bore. On each of the 

threshold-estimation trials in which consecutive trials were apart 

from one another by 2.7s., one of 20 different-sized rings was 

presented according to a multiple random staircase procedure (four 

randomly interleaved 1-up-2-down staircases, two starting from the 

easiest stimulus and the other two starting from the hardest one) 

with trial-to-trial feedback based on the class boundary with the 

radius of 2.84°. A Weibull function was fit to the psychometric 

curves obtained from the threshold-calibration trials using a 

maximum-likelihood procedure. From the fitted Weibull function, the 

threshold difference in size (Δ in Fig. 2B) associated with a 70.7% 

correct proportion of responses was estimated. By finding this 

threshold for each participant, three threshold-level ring sizes were 

individually tailored as 2.84−Δ° (S-ring), 2.84° (M-ring), 2.84+Δ° 

(L-ring). 

In the main scan runs, one of these rings with threshold-level 

differences was presented in the order defined by an m-sequence 

(base = 3, power = 3; nine S and L-rings and eight M-rings were 

presented; all scan runs started with two M-rings) (Buracas and 

Boynton 2002) to null the autocorrelation between stimuli. 

Participants were not informed of the existence of medium-ring. 

Importantly, participants did not receive trial-to-trial feedback. 

Instead, only their run-averaged percent correct based on the trials 

of S-ring and L-ring was shown during a break after each run, to 

prevent trial-to-trial feedback from evoking any unwanted brain 

responses associated with rewards (Marco-Pallarés, Müller et al. 

2007, Carlson, Foti et al. 2011) or errors (Carter, Braver et al. 1998, 

Holroyd, Nieuwenhuis et al. 2004, Cavanagh and Frank 2014). 

Consecutive trials were apart from one another by 13.2s. In the main 

scan runs of Exp1 and Exp2, observers performed 156 (6 runs X 26 

trials) and 208 (8 runs X 26 trials) trials in total, respectively. 
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MRI equipment and acquisition 

We acquired three types of MRI images. (1) 3D, T1-weighted, 

whole-brain images were acquired at the beginning of each 

functional session: MPRAGE; resolution, 1×1×1mm; field of view 

(FOV), 256mm; repetition time (TR), 1.9s; time for inversion, 700ms; 

time to echo (TE), 2.36ms; and flip angle (FA), 9°.  

(2) 2D, T1-weighted, in-plane images were acquired at the 

beginning of each functional session. The parameters for the 

retinotopy-mapping, the V1 mapping, and the whole brain mapping 

differed slightly as follows (retinotopy, followed by the V1 mapping, 

and then by the whole brain mapping): MPRAGE; resolution, 

1.078x1.078x2.0 mm, 1.083x1.083x2.3 mm 1.08×1.08×3.3 mm; TR, 

1.5s; T1, 700ms; TE, 2.79ms; and FA, 9°).  

(3) 2D, T2*-weighted, functional images were acquired 

during each functional session: gradient EPI; TR, 2.7s, 2.2s, 2.2s; TE, 

40ms; FA, 77°, 73°, 73°; FOV, 208mm, 207mm, 208mm; image 

matrix, 104x104, 90x90, 90×90; slice thickness, 1.8mm with 11% 

gap, 2mm with 15% slice gap, 3mm with 10% space gap; slice, 30, 

22, 32 oblique transfers slices; bandwidth, 858Hz/px, 750Hz/px, 

790Hz/px; and effective voxel size, 2.0x2.0x1.998mm, 

2.3x2.3x2.3mm, 3.25×3.25×3.3mm).  

 

Retinotopy-mapping protocol 

Standard traveling wave methods (Engel, Rumelhart et al. 1994, 

Sereno, Dale et al. 1995) were used to define V1, to estimate each 

participant’s hemodynamic impulse response function (HIRF) of V1, 

and to estimate V1 voxels’ receptive field center and width. High-

contrast and flickering (1.33Hz) dartboard patterns were presented 

either as 0.89°-thick expanding or contracting rings in two scan 

runs, as 40°-width clockwise or counterclockwise rotating wedges 

in four runs or in one run as four stationary, 15°-wide wedges 

forming two bowties centered on the vertical and horizontal 

meridians. Each scanning run consisted of 9 repetitions of 27s period 

of stimulation. The fixation behavior during the scans was assured by 

monitoring participants’ performance on a fixation task, in which 
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they had to detect any reversal in direction of a small dot rotating 

around the fixation.  

 

Data preprocessing of V1 images in the retinotopy-mapping session 

and the main session of Exp1 

All functional EPI images were motion-corrected using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm) (Friston, Williams et al. 1996, 

Jenkinson, Bannister et al. 2002) and then co-registered to the high-

resolution reference anatomical volume of the same participant’s 

brain via the high-resolution inplane image (Nestares and Heeger 

2000). After co-registration, the images of the retinotopy-mapping 

scan were resliced, but not spatially smoothed, to the spatial 

dimensions of the main experimental scans. The area V1 was 

manually defined on the flattened gray matter cortical surface mainly 

based on the meridian representations, resulting in 825.4±140.7 

(mean±SD across observers) voxels. The individual voxels’ time 

series were divided by their means to convert them from arbitrary 

intensity units to percentage modulations and were linearly 

detrended and high-pass filtered (Smith, Lewis et al. 1999) using 

custom scripts in MATLAB (MathWorks). The cutoff frequency was 

0.0185Hz for the retinotopy-mapping session and 0.0076Hz for the 

main session. The first 10 (of 90; a length of a cycle) and 6 (of 156; 

a length of a trial) frames of each run of the retinotopy-mapping 

session and main session, respectively, were discarded to minimize 

the effect of transient magnetic saturation and allow the 

hemodynamic response to reach a steady state. The ‘blood-vessel-

clamping’ voxels, which show unusually high variances of fMRI 

responses, were discarded (Olman, Inati et al. 2007, Shmuel, Yacoub 

et al. 2007); a voxel was classified as ‘blood-vessel-clamping’ if 

its variance exceeds 10 times of the median variance value of the 

entire voxels. As the final step of data preprocessing, we removed a 

stimulus-nonspecific (untuned) component from the detrended BOLD 

time series by subtracting the across-eccentricity-bin average from 

the individual bins’ time series at each time frame 𝑡, which resulted 

in the tuned responses (𝑇𝑅!): 
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𝑇𝑅!(𝑡) = 𝑅𝑅!(𝑡) − ∑ 𝑅𝑅!(𝑡)/𝑛"
#!
!$% , 

where 𝑅𝑅! is the 𝑖-th bin’s BOLD time series, and 𝑛" is the 

number of eccentricity bins (21). This subtraction procedure is 

exactly the same as we did in our previous work (Choe, Blake et al. 

2014). We used 𝑇𝑅!(𝑡) to extract the size-encoding signal in V1.  

 

Data preprocessing of whole-brain images in the main session of 

Exp2 

The whole-brain images of the participants in Exp2 were normalized 

to the MNI template in the following steps: motion correction, co-

registration to whole-brain anatomical images via the in-plane 

images (Nestares and Heeger 2000), spike elimination, slice timing 

correction, resampling to 3×3×3mm voxel size with the SPM 

DARTEL Toolbox (Ashburner 2007). Spatial smoothing was not 

applied to avoid the blurring of the patterns of activity. All the 

procedures were implemented using SPM8 and SPM12 

(http://www.fil.ion.ucl.ac.uk.spm) (Friston, Williams et al. 1996, 

Jenkinson, Bannister et al. 2002), except for spike elimination, for 

which we used the AFNI toolbox (Cox 1996). The first 6 frames of 

each functional scan, which correspond to the first trial of each run, 

were discarded to allow the hemodynamic responses to reach a 

steady state. Then, the normalized BOLD time series at each voxel, 

each run, and each brain underwent linear detrending, high-pass 

filtering (0.0076Hz cut-off frequency with a Butterworth filter), 

conversion into percent-change signals, and correction for non-

neural nuisance signals, which was done by regressing out the mean 

BOLD activity of cerebrospinal fluid (CSF). 

The anatomical masks of CSF, white matter, and gray matter 

were defined by generating the probability tissue maps for individual 

participants from T1-weighted images, by smoothing those maps to 

the normalized MNI space using SPM12, and then by averaging them 

across participants. Finally, the masks were defined as respective 

groups of voxels whose probabilities exceed 0.5.  

Unfortunately, in a few of the sessions, functional images did 

not cover the entire brain. Especially, the lost part was much larger 
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in one participant’s session than the others including the 

orbitofrontal cortice and posterior cerebellum. Thus, not to lose too 

many of voxels for analysis due to this single session, we relaxed the 

criterion of voxel selection a bit by including the voxels that were 

shared by more than 16 brains in the normalized MNI space. As a 

result, some voxels in the temporal pole, ventral orbitofrontal, and 

posterior cerebellum were excluded from data analysis.   

 

Estimation of the eccentricities in retinotopic space for V1 voxels 

For each V1 voxel in Exp1, its eccentricity (𝑒) was defined by fitting 

a one-dimensional Gaussian function simultaneously to the time-

series of fMRI responses to the expanding and contracting ring 

stimuli in the retinotopy session, which were also used for the 

definition of V1. The essence of this procedure is as follows 

(additional details can be found in the original paper (Choe, Blake et 

al. 2014)). 

First, the time series of fMRI were extracted only from a 

relevant group of voxels with SNR>3 in both of the ring scan runs. 

Second, an eccentricity-tuning curve (gain over eccentricity, in other 

words) of a single voxel, 𝑔(𝜀), was modeled by a Gaussian as a 

function of the eccentricity in a visuotopic space, 𝜀, and it was 

parameterized by a peak eccentricity, 𝑒, and a tuning width, 𝜎:  

𝑔"(𝜀) = 𝑒𝑥𝑝	&'
(#$!)&

&'& (
. 

Third, the collective responses of visual neurons within that voxel 

with a particular 𝑔(𝜀) at a given time frame 𝑡, 𝑛(𝑡), were predicted 

by multiplying 𝑔(𝜀) by spatial layout of stimulus input at that time 

frame, 𝑠(𝜀, 𝑡):  
𝑛(𝑡) = ∑ 𝑠(𝜀, 𝑡)𝑔(𝜀)) . 

Fourth, the predicted time-series of fMRI responses of that voxel, 

𝑓𝑀𝑅𝐼*(𝑡), were generated by convoluting 𝑛(𝑡) with a scaled (by 𝛽) 

copy of the HIRF acquired from the meridian scans, ℎ(𝑡)𝛽, and plus a 

baseline response, 𝑏:  
𝑓𝑀𝑅𝐼*(𝑡) = 𝑛(𝑡) ∗ ℎ(𝑡)𝛽 + 𝑏. 

Fifth, the eccentricity 𝑒 and the other model parameters (𝜎, 𝛽, 𝑏) 
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were found by fitting 𝑓𝑀𝑅𝐼*(𝑡) to the predicted time-series of fMRI 

responses to the actual stimulation, 𝑓𝑀𝑅𝐼+(𝑡), by minimizing the 

residual sum of squared errors between 𝑓𝑀𝑅𝐼*(𝑡)and 𝑓𝑀𝑅𝐼+(𝑡) over 

all time frames, 𝑅𝑆𝑆:  

𝑅𝑆𝑆 =@ A𝑓𝑀𝑅𝐼+(𝑡) − 𝑓𝑀𝑅𝐼*(𝑡)B
,

-
. 

 

Extraction of the size-encoding signal from V1 voxels 

The three different weighting profiles, each representing the 

contributions of the individual eccentricity bins assessed by the three 

different schemes (the uniform, the discriminability, and the log-

likelihood ratio schemes), were defined as follows. The uniform 

scheme (blue in Fig. 4B) assigned three discrete values to the 

eccentricity bins depending on which flanking side of the M-ring (𝑟.) 

their preferred eccentricities (𝑒) belonged to:  

𝑤(𝑒) = F
−1, for	𝑒 < 𝑟.
0, for	𝑒 = 𝑟.
1, for	𝑒 > 𝑟.

. 

The discriminability scheme (red in Fig. 4B) defined the weights in 

proportion to the differential responses of given eccentricity bins to 

the L (𝑟/) and the S-rings (𝑟0), which were derived from the 

eccentricity-tuning curves defined from the retinotopy-mapping 

session:  

𝑤(𝑒) = 𝑔"(𝑟/) − 𝑔"(𝑟0) − 𝛿, 
where 𝑔" is the eccentricity-tuning curve of the eccentricity bin 

with preferred eccentricity, 𝑒, and the baseline offset, 𝛿, is as 

follows:  

∑ [𝑔"(𝑟/) − 𝑔"(𝑟0)]/𝑛"" . 

The log-likelihood ratio scheme (yellow in Fig. 4B) defined the 

weights by taking the differences between the log-likelihoods of 

obtaining a given response if the stimulus were the L-ring, log𝐿/, and 

if the stimulus were the S-ring, log 𝐿0. Because the eccentricity-

tuning curves were assumed to be described by a Gaussian function, 

the log-likelihood ratio weights at preferred eccentricity, 𝑒, can be 

simplified to the following formula:  
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𝑤(𝑒) = log𝐿/ − log 𝐿0 = −
1
2𝜎/,

(𝑒 − 𝑟/), +
1
2𝜎0,

(𝑒 − 𝑟0), − 𝛿, 

where 𝜎/ and 𝜎0 are the tuning widths with 𝑟/ and 𝑟0, and the 

baseline offset, 𝛿, is as follows:  

@ U−
1
2𝜎/,

(𝑒 − 𝑟/), +
1
2𝜎0,

(𝑒 − 𝑟0),V /𝑛"
"

. 

 

A Bayesian model of boundary-updating (BMBU) 

The generative model. The generative model is the observers’ 

causal account for noisy sensory measurements, where the true ring 

size, 𝑆, causes a noisy sensory measurement on a current trial, 𝑚(-), 

which becomes noisier as 𝑖 trials elapse, thus turning into a noisy 

retrieved measurement of the value of 𝑆	on trial 𝑡 − 𝑖, 𝑟(-&!) (Fig. 

5D). Hence, the generative model can be specified with the following 

three probabilistic terms: a prior of 𝑆, 𝑝(𝑆), a likelihood of 𝑆 given 

𝑚(-), 𝑝X𝑚(-)Y𝑆Z, and a likelihood of 𝑆 given 𝑟(-&!), 𝑝X𝑟(-&!)Y𝑆Z. These 

three terms were all modeled as normal distribution functions, the 

shape of which is specified with mean and standard deviation 

parameters, 𝜇 and 𝜎: 𝜇3 and 𝜎3 for the prior, 𝜇4(() and 𝜎4(() for the 

likelihood for 𝑚(-), and 𝜇5(($)) and 𝜎5(($)) for the likelihood for 𝑟(-&!)	. 

The mean parameters of the two likelihoods, 𝜇4(() and 𝜇5(($)), are 

identical to 𝑚(-) and 𝑟(-&!); therefore, the parameters that must be 

learned are reduced to 𝜇3, 𝜎3, 𝜎4((), and 𝜎5(($)).  

𝜎4(() is assumed to be invariant across different values of 

𝑚(-), as well as across trials. Therefore, 𝜎4(() is reduced to a 

constant 𝜎4. Finally, because 𝜎5(($)) is assumed to originate from 𝜎4 

and to increase as trials elapse (Gorgoraptis, Catalao et al. 2011, 

Zokaei, Burnett Heyes et al. 2015), 𝜎5(($)) is also reduced to the 

following parametric function: 𝜎5(($)) = 𝜎4(1 + 𝜅)!, where 𝜅 > 0. As a 

result, the generative model is completely specified by the four 

parameters, Θ = {𝜇3, 𝜎3, 𝜎4, 𝜅}.  
The primary purpose of BMBU is to build a generative 

Bayesian model which allows us to estimate the trial-to-trial latent 

states of the class boundary variable that are likely to be used by 
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human observers whose class boundary is continually attracted to 

previous stimuli as posited by the boundary-updating hypothesis on 

‘repulsive bias.’ In doing so, we intended to build a parsimonious 

model with minimal free parameters as long as the model implements 

the strategy essential to the boundary-updating hypothesis. For this 

reason, we had to introduce several arbitrary assumptions in building 

BMBU. For example, although we assumed that memory precision 

decays exponentially, other forms of decay function are also 

possible, such as hyperbolic, power, and logarithmic ones. We also 

assumed that the noisy sensory measurement on a current trial, 𝑚(-), 

becomes the noisy retrieved measurement of the value of 𝑆 as trials 

elapse. However, it is equally possible that the memory 

measurements of 𝑆 in the elapsed trials can be retrieved 

independently from the sensory measurement used for decision-

making. Whether or not these assumptions are valid might be an 

interesting research question but is beyond the scope of the current 

work, especially in that the alternative assumptions about such 

detailed modeling aspects are unlikely to affect the way BMBU shifts 

the class boundary toward previous stimuli. 

 

Stimulus inference (𝑠). A Bayesian estimate of the value of 𝑆 on a 

current trial, 𝑠(-), was distributed as a posterior function of a given 

sensory measurement 𝑚(-): 

𝑝X𝑠(-)Z = 𝑝X𝑆Y𝑚(-)Z	
∝ 𝑝X𝑚(-)Y𝑆Z𝑝(𝑆) 

The posterior 𝑝X𝑆Y𝑚(-)Z is a conjugate normal distribution of 

the prior and likelihood of 𝑆 given the evidence 𝑚(-) whose mean 

𝜇7(() and standard deviation 𝜎7(() were calculated as follows (Fig. 5D): 

 𝜇7(() =
8*&4(()98+& :*

8*&98+&
; 𝜎7(() =

8*8+

;8*&98+&
. 

 

Class boundary inference (𝑏). The Bayesian observer infers the value 

of class boundary on a current trial, 𝑏(-), by inferring the posterior 

function of a given set of retrieved sensory measurements  �⃗�(-) =
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b𝑟(-&%),𝑟(-&,),…𝑟(-&#)d:  

𝑏(-) = 𝑆e = argmax
0
𝑝X𝑆Y𝑟(-)Z 

, where the maximum number of measurements that can be 

retrieved,	𝑛, was set to 7. We set 7 because it is much longer than 

the effective trial lags of the previous stimulus effect (Fig. 5C). Here, 

𝑝X𝑆Y𝑟(-)Z is a conjugate normal distribution of the prior and 

likelihoods of 𝑆 given the evidence �⃗�(-):  

𝑝X𝑆Y𝑟(-)Z ∝ 𝑝X𝑟(-)Y𝑆Z𝑝(𝑆)	
= 	𝑝X𝑟(-&%)Y𝑆Z𝑝X𝑟(-&,)Y𝑆Z…𝑝X𝑟(-&=)Y𝑆Z𝑝(𝑆) 

, whose mean and standard deviation were calculated (Bromiley 

2003) based on the knowledge of how the retrieved stimulus 

becomes noisier as trials elapse:  

𝜇>(() = 𝛽3𝜇3 + ∑ 𝛽!𝑟(-&!)=
!$% ; 𝜎>(() = i𝛽3,𝜎3, +∑ 𝛽!,𝜎5(($))

,=
!$%  

, where 𝛽3 =
8*$&

8*$&9∑ 8,(($))
$&-

)./
 and 𝛽! =

8,(($))
$& 	

8*$&9∑ 8,(($))
$&-

)./
. We postulated that 

the uncertainty of 𝑏(-) is equivalent to 𝜎>(() (Fig. 5G). 

 

Deduction of decision variable (𝑣), decision (𝑑) and decision 

uncertainty (𝑢). On each trial, the Bayesian observer makes a binary 

decision 𝑑(-) by calculating the probability of 𝑠(-) is larger than 𝑏(-), 
which is called the decision variable, 𝑣(-)	, defined as 

𝑣(-) = 𝑝X𝑠(-) > 𝑏(-)Z = Φn 7(()&>(()

;80(()
& 981(()

&
o. 

Then, if 𝑣(-) is larger than 0.5, 𝑑(-) is large. Otherwise, 𝑑(-) 

is small. Also, we defined the decision uncertainty, 𝑢(-), which 

represents the odds that the current decision will be incorrect 

(Sanders, Hangya et al. 2016), as follows:  

𝑢(-) = Φn &
@7(()&>(()@

;80(()
& 981(()

&
o. 

 

Fitting the parameters of BMBU 

For each human participant, the parameters of the generative model, 
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Θ = {𝜇3, 𝜎3, 𝜎4, 𝜅}, were estimated as those maximizing the sum of log-

likelihoods for 𝑇 individual choices made by the observer, 𝐷qq⃗ (A) =

[𝐷(%), 𝐷(,), … , 𝐷(A)]: 

Θr = argmax
B

∑ log 𝑝(𝐷(-)|Θ)A
-$% . 

For each participant, estimation was carried out in the 

following steps. First, we found local minima of parameters using a 

MATLAB function, fminsearchbnd.m, with the iterative evaluation 

number set to 50. We repeated this step by choosing 1,000 different 

initial parameter sets, that were randomly sampled within uniform 

prior bounds, and acquired 1,000 candidate sets of parameter 

estimates. Second, from these candidate sets of parameters, we 

selected the top 20 in terms of goodness-of-fit (sum of log-

likelihoods) and searched the minima using each of those 20 sets as 

initial parameters by increasing the iterative evaluation number to 

100,000 and setting tolerances of function and parameters to 10-7 for 

reliable estimation. Finally, using the parameters fitted via the 

second step, we repeated the second step one more time. Then, we 

selected the parameter set that showed the largest sum of 

likelihoods as the final parameter estimates. We discarded i) the first 

trial of each run and ii) the trials in which RTs were too short (less 

than 0.3s) for parameter estimation for any further analyses because 

i) the first trial of each run does not have its previous trial, which is 

necessary for investigating the repulsive bias, and ii) the response 

made during the stimulus is shown (0~0.3s) can be considered too 

hasty to reflect a normal cognitive decision-making process.  

 

A constant-boundary model 

The constant-boundary model has two parameters, bias of class 

boundary 𝜇3 and measurement noise 𝜎4. Stimulus estimates, 𝑠(-), 

were assumed to be sampled from a normal distribution, 𝒩(𝑆(-), 𝜎4). 
Each stimulus sample has uncertainty 𝜎7(() = 𝜎4. Class boundary 𝑏(-) 

was assumed to be a constant, 𝜇3; so 𝜎*(>(()) = 𝜎>(() = 0.  

 

Estimation of the latent states of the variables of BMBU 
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Fitting the model parameters separately for each human participant 

(Θr = {�̂�3, 𝜎v3, 𝜎v4, �̂�}) allowed us to create the same number of Bayesian 

observers, each tailored to each human individual. We repeated the 

experiment on these Bayesian observers using the stimulus 

sequences identical to those presented to their human partners for 

the following two purposes. First, we wanted to examine whether 

BMBU’s choice (𝑑(-)) can reproduce the human partners’ repulsive 

bias. Second, we need to estimate the trial-to-trial latent states of 

the model variables (𝑠(-), 𝑏(-), 𝑣(-), 𝑢(-)) that were used by the human 

partners—thus represented in their brains engaged in the binary 

classification task. We acquired a sufficient number (106 repetitions) 

of simulated choices, 𝑑(-), and decision uncertainty values, 𝑢(-), 

which were determined by the corresponding number of the stimulus 

estimates, 𝑠(-), and the boundary estimates, 𝑏(-), for each Bayesian 

observer. Then, the averages across those 106 simulations were 

taken as the final outcomes. When estimating 𝑠(-), 𝑏(-), 𝑣(-), and 𝑢(C) 

for the observed choice 𝐷(-), we only included the simulation 

outcomes in which the simulated choice 𝑑(-) matched the observed 

choice 𝐷(-). 

 

Recovery of the true states of the model variables 

To ascertain the validity of our procedure of estimating the latent 

variables of BMBU described above, we checked how accurately it 

recovers the true states of the variables. This recovery test was 

carried out in the following procedure.  

First, we created 256 different sets of parameter values by 

taking the possible combinations of the four different values of each 

of the four model parameters, where the four different values 

corresponded to the 20, 40, 60, and 80 percentiles of the parameter 

values fitted to the observers’ choices. Second, we acquired the 

synthetic choices and the true model variables 𝑏, 𝑠, 𝑣, and 𝑢 by 

plugging one parameter set into BMBU and simulating it on the actual 

stimulus sequence presented to the observers. Third, we fitted the 

parameters of BMBU to the synthetic choices in the same procedure 
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conducted for fitting BMBU to the observed choices. Fourth, we 

simulated a set of the recovered states of the model variables using 

the fitted model parameters. Fifth, we calculated the R-squared 

between the true and the recovered variables to assess how reliably 

our model fitting procedure can recover the true states of the model 

variables. Finally, we repeated the above procedure for all the 

remained parameter sets and used the R-squared averaged across 

the 256 parameter sets as the performance measure of the recovery 

test.  

 

The multiple logistic regression model for capturing the repulsive 

bias 

To capture the repulsive bias in human classification, we logistically 

regressed the current choice onto stimuli and choices using the 

following regression model to obtain regression coefficients 𝑝 =
b𝑝(%), ⋯ , 𝑝(%%)d for each observer: 

𝐷(-) =
𝑒D(()

1 + 𝑒D(()
 

, where 𝐾(-) = 𝑝(3) + 𝑝(%)𝑆(-) + ∑ (𝑝(%9!)𝑆(-&!) + 𝑝(E9!)𝐷(-&!))F
!$% , the 

independent variables were each standardized to z-scores for each 

participant. 𝑆(-) and 𝐷(-) are the stimulus and the observed choice 

values at trial 𝑡. 𝑆(-&!) and 𝐷(-&!) are the stimulus and the observed 

choice at the 𝑖th trial lags from trial 𝑡.  
To capture the repulsive bias of the Bayesian observers, the 

Bayesian observers’ choices were also regressed with the logistic 

regression model by substituting 𝑑(-) and 𝑑(-&!), the simulated 

choices, for 𝐷(-) and 𝐷(-&!), the observed choices. The regression 

was repeatedly carried out for each simulation, and the regression 

coefficients that were averaged across simulations were taken as 

final outcomes. The simulation was repeated 105 times. We 

confirmed that the simulation number was sufficiently large to 

produce stable simulation outcomes.  

 

The average marginal effect analysis 

Average marginal effect (AME) was calculated by using the R-
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package ‘margins’ (Leeper, Arnold et al. 2018). AME quantifies 

the average marginal effect between an ordinal dependent variable 

(i.e., binary choice) and an independent variable of a multiple logistic 

(or probit) regression model (Williams and Jorgensen 2023). To 

calculate the AMEs of any given variable on the current choice (𝐷(-)) 

without controlling the previous (𝑆(-&%)) and current stimuli (𝑆(-)) (i.e., 

the baseline AME), we implemented a logistic regression model with 

two regressors –the variable of interest 𝑋 (i.e., V1, 𝑏, 𝑠, or 𝑣) and 

the previous choice (𝐷(-&%)): 

𝐷(-)~𝑙𝑜𝑔𝑖𝑡X𝛽3 + 𝛽G𝑋 + 𝛽H/𝐷(-&%)Z. 

We always included 𝐷(-&%) as a regressor because the effect of 

𝐷(-&%) would confound the effect of 𝑆(-&%), if 𝐷(-&%) is not included in 

the regression model. Specifically, because 𝑆(-&%) and 𝐷(-&%) are 

highly correlated, it would be unclear whether the AME difference 

before and after controlling 𝑆(-&%) is ascribed to the effect of 𝑆(-&%) 

or that of 𝐷(-&%), if 𝐷(-&%) is not controlled. The effect of 𝐷(-&%) was 

controlled in all regression models. 

 To test whether the AME of 𝑋 decreased after controlling 

𝑆(-&%) (or S(-)), we calculated the AME of 𝑋 from the logistic 

regression model including 𝑆(-&%) (or 𝑆(-)) as an additional regressor, 

as follows: 

𝐷(-)~𝑙𝑜𝑔𝑖𝑡 A𝛽3 + 𝛽G𝑋 + 𝛽I(($/)𝐷(-&%) + 𝛽0(($/)	(+5	0(())𝑆(-&%)	(𝑜𝑟	𝑆(-))B, 

and subtracted the new AME from the baseline AME to see whether 

the baseline AME significantly changed after controlling previous or 

current stimuli. 

 

Searching for the multivoxel patterns of activity representing the 

latent variables of BMBU 

We assumed that i) activity patterns of neural population for 

representing the latent variables are different between participants, 

but ii) locations and iii) timings of the activity patterns overlap across 

participants. Therefore, to identify the brain signals of the latent 

variables of BMBU in fMRI responses, the support vector regression 

(SVR) decoding was carried out for each human participant within 
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specific spatial and temporal windows.  

As for the spatial window, we implemented a searchlight 

technique (Kahnt, Heinzle et al. 2011, Haynes 2015). A searchlight 

has a radius of 9mm (= 3 voxels) (Soon, Brass et al. 2008) and thus 

can contain 123 voxels at most. Of the 123 voxels, we excluded the 

voxels located in CSF or white matter because they reflect non-

neural signals. Thus, the effective number of voxels in a searchlight 

used for the analysis can vary searchlight by searchlight.   

As for the temporal windows, we implemented the time-

resolved decoding technique in which a target variable is decoded 

from the BOLD responses at each of the within-trial time points (Fig. 

6B). We used the first four time points (out of six in total) because 

the BOLD responses associated with the action of button press—the 

last process of the sensory-to-motor decision-making stream— is 

maximized at the fourth time point (the result is not shown here). In 

sum, SVR is trained for each participant, each time point, and each 

searchlight.  

Before training SVR, the BOLD responses in a searchlight and 

a target latent variable were z-scored across trials. Then, the z-

scored variable was decoded for each searchlight using the cross-

validation method of leave-one-run-out (8-fold cross-validation). 

As a result, for each searchlight and at each time point, we acquired 

a set of decoded latent variables in all trials. In other words, on each 

time point, we acquired the 4-dimensional map of the decoded 

variable (i.e., 3 spatial dimensions and 1 trial dimension). The 3D 

spatial dimensions of the decoded variables were smoothed with a 

5mm FWHM Gaussian kernel on each trial.  

After this subject-wise decoding analysis, we conducted the 

across-subject analysis to test whether the decoded variables are 

significantly informative. To do so, for each searchlight locus and 

each time point, we regressed the smoothed decoded variable onto 

the regression conditions of the target variable by using a 

generalized linear mixed effect regression model (GLMM) with a 

random effect of subjects. The number of regression conditions was 

14, 14, and 17 for 𝑏(-), 𝑠(-), and 𝑣(-), respectively (Table 1). Those 
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regression models were deduced from the causal structure between 

the variables of BMBU (see the next section). We accepted a given 

cluster as the brain signals of 𝑏(-), 𝑠(-), or 𝑣(-) only when they 

satisfied those regression models over more than 12 contiguous 

searchlights. For the ROI analysis, the decoded variables were 

averaged over all searchlights within each ROI.  

SVR was conducted using LIBSVM 

(http://www.csie.ntu.edu.tx/~sjlin/libsvm) with a linear kernel and 

constant regularization parameter of 1 (Soon, Brass et al. 2008, 

Kahnt, Heinzle et al. 2011). The brain imaging results were 

visualized using Connectome Workbench (Marcus, Harwell et al. 

2011) and xjview. 

 

The regression-model test for verifying the brain signals of 𝒃(𝒕), 𝒔(𝒕), 

and 𝒗(𝒕)  

To identify the brain signals of 𝑏(-), 𝑠(-), and 𝑣(-), we defined three 

respective lists of regressions that must be satisfied by the brain 

signals. We stress that each of these lists consists of the necessary 

conditions to be satisfied because the conditions are deduced from 

the causal structure of the variables in BMBU (Fig. 5G). Below, we 

specify the specific regression tests for 𝑠(-) and 𝑣(-) that constitute 

these lists. For the tests for 𝑏(-), see Results. 

The 14 regressions for the brain signal of 𝑠(-) (Table 1): (#1-

4), 𝑦7, 𝑠 decoded from brain signals, must be regressed positively 

onto 𝑠—the variable it represents—even when the false discovery rate 

is controlled (Benjamini and Hochberg 1995), and 𝑠 orthogonalized 

to 𝑣 or 𝑑 because it should reflect the variance irreducible to the 

offspring variables of 𝑠; (#5), 𝑦7 must not be regressed onto 𝑏 
because 𝑠 and 𝑏 are independent of each other (𝑏 ↮ 𝑠 Fig. 5G); 

(#6,7), 𝑦7 must be positively regressed onto 𝑣 (𝑠 → 𝑣 Fig. 5G) but 

not when 𝑣 is orthogonalized to 𝑠 because the influence of 𝑠 on 𝑣 
is removed; (#8,9) 𝑦7 must be positively regressed onto 𝑑 (𝑠 → 𝑣 → 𝑑 

Fig. 5G) but not onto 𝑢 because 𝑢 cannot be linearly correlated with 

𝑠 (𝑠 → 𝑣 → 𝑢 is blocked by the interaction between 𝑢 and 𝑣 Fig. 5G);  
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test 

index 

𝑏(")  𝑠(")  𝑣(") 

regressor 
threshold 

p-value 
tail  regressor 

threshold 

p-value 
tail  regressor 

threshold 

p-value 
tail 

1  𝑏  0.001 ↓ right   𝑠  0.001 ↓ right   𝑣  0.001 ↓ right 

2  𝑏 
0.05 ↓ 

(fdr) 
right   𝑠 

0.05 ↓ 

(fdr) 
right   𝑣 

0.05 ↓ 

(fdr) 
right 

3  𝑏$%  0.05 ↓ right   𝑠$%  0.05 ↓ right   𝑣$&  0.05 ↓ right 

4  	𝑏$'  0.05 ↓ right 	 	 𝑠$'  0.05 ↓ right   𝑣$(  0.05 ↓ right 

5  𝑠  0.05 ↑ both   𝑏  0.05 ↑ both   𝑣$'  0.05 ↓ right 

6  𝑣  0.05 ↓ left   𝑣  0.05 ↓ right   𝑏  0.05 ↓ left 

7  𝑣$&  0.05 ↑ left   𝑣$(  0.05 ↑ right   𝑏$%  0.05 ↑ left 

8  𝑑  0.05 ↓ left   𝑑  0.05 ↓ right   𝑠  0.05 ↓ right 

9  𝑢  0.05 ↑ both   𝑢  0.05 ↑ both   𝑠$%  0.05 ↑ right 

10  𝑆(")  0.05 ↑ both   𝑆(")  0.05 ↓ right   𝑑  0.05 ↓ right 

11  𝑆(")*)  0.05 ↓ right   𝑆(")*)  0.05 ↑ both   𝑢  0.05 ↑ both 

12  𝑆(")+)  0.05 ↑ left   𝑆(")+)  0.05 ↑ both   𝑆(")  0.05 ↓ right 

13  𝐷(")*)  0.05 ↑ both   𝐷(")*)  0.05 ↑ both   	𝑆(")*)  0.05 ↓ left 

14  𝐷(")+)  0.05 ↑ both   𝐷(")+)  0.05 ↑ both   𝑆(")+)  0.05 ↑ right 

15          𝐷(")  0.05 ↓ right 

16          𝐷(")*)  0.05 ↑ both 

17          𝐷(")+)  0.05 ↑ both 

 

Table 1. The sets of regressions that BMBU requires the brain signals of its latent 

variables to satisfy. The regressions required for the brain signal of the inferred 

class boundary (𝑏(2); left sector), the inferred stimulus (𝑠(2); middle sector), and the 

decision variable (𝑣(2); right sector). The top sector (#1~#9 for 𝑏(2); ; #1~#9 for 

𝑠(2); #1~#11 for 𝑣(2)) specifies the individual, simple regression models in which the 

brain signal of interest is regressed on a single regressor (second column). Any 

regressor subscripted with another variable with the perpendicular symbol (e.g., 

𝑏34) means that the residuals of the left-side variable (e.g., 𝑏) from the regression 

of the right-side variable with the perpendicular symbol (e.g., 𝑣) were used as the 

regressor. This regression with the residual regressor was created to check 

whether the brain variable of interest has a unique covariation with the original 
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regressor by withholding the influence of the perpendiculared variable (e.g., pSTGb5 

must be positively correlated with 𝑏  even when the part of 𝑏’s variability 

associated with 𝑣 is withheld). The bottom sector of each table (#10~#14 for 𝑏(2); 

#10~#14 for 𝑠(2); #12~#17 for 𝑣(2)) specifies the multiple-regression model in 

which the brain signal of interest is regressed concurrently on the current and 

previous stimuli and the past or current choices. The third and fourth column of 

each table specify the statistical criteria used for significance test, where fdr 

indicates a multiple comparison test controlling the false discovery rate.  

 

(#10-12), 𝑦7 must be positively regressed onto the current stimuli 

and not the past stimuli because 𝑠 is inferred solely from the current 

stimulus measurement; (#13,14), 𝑦7 must not be regressed onto 

previous decisions because 𝑠 is inferred solely from the current 

stimulus measurement. #10-14 were investigated by a multiple 

regression with regressors �𝑆(-), 𝑆(-&%), 𝑆(-&,), 𝐷(-&%), 𝐷(-&,)�. We did not 

include 𝐷(-) as a regressor because 𝐷(-) may induce a spurious 

correlation between 𝑏 and 𝑠 by controlling the collider 𝑣	(Elwert 

and Winship 2014) (𝑏 → 𝑣 ← 𝑠 and 𝑣 → 𝑑 Fig. 5G). 

The 17 regressions for the brain signal of 𝑣(-) (Table 1). 

(#1-5), 𝑦K, 𝑣 decoded from brain signals, must be positively 

regressed onto 𝑣—the variable it represents—even when the false 

discovery rate is controlled (Benjamini and Hochberg 1995), and 𝑣 
orthogonalized to 𝑏, 𝑠, or 𝑑, because it should reflect the variance 

irreducible to the offspring variables of 𝑣; (#6,7), 𝑦K must be 

negatively regressed onto one of its parents 𝑏 (𝑏 → 𝑣 Fig. 5G), but 

not when 𝑏 is orthogonalized to 𝑣, because the influence of 𝑏 on 𝑣 
is removed; (#8,9), 𝑦K must be positively regressed onto one of 

another parent 𝑠 (𝑠 → 𝑣 Fig. 5G), but not when 𝑠 is orthogonalized to 

𝑣, because the influence of 𝑠 on 𝑣 is removed; (#10,11), 𝑦K must be 

regressed onto 𝑑 but not onto 𝑢 because 𝑢’s correlation with its 

parent 𝑣 cannot be revealed without holding the variability of 𝑑 (the 

interaction between 𝑢 and 𝑣); (#12-14), 𝑦K must be positively 

regressed onto the current stimulus because the influence of the 

current stimulus on 𝑣 is propagated via 𝑠 (𝑆(-) → 𝑠 → 𝑣), and 

negatively regressed onto the past stimuli because the influence of 

the past stimuli on 𝑣 is propagated via 𝑏 (𝑆(-&%) → 𝑏 → 𝑣) —strongly 
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onto the 1-back stimulus and more weakly onto the 2-back stimulus 

(thus, non-significant regression with one-tailed regression in the 

opposite sign is modeled moderately); (#15-17), 𝑦K must be 

regressed onto the current decision and not the past decisions 

because the current decision is a dichotomous translation of 𝑣 (𝑣 → 𝑑 

Fig. 5G), whereas past decisions have nothing to do with the current 

state of 𝑣. #12-17 were investigated by a multiple regression with 

regressors �𝑆(-), 𝑆(-&%), 𝑆(-&,), 𝐷(-), 𝐷(-&%), 𝐷(-&,)�.  𝐷(-) was included as a 

regressor because 𝑣 does not suffer from a spurious correlation that 

arises by controlling a collider variable which is absent in this case. 

 

Bayesian network analysis 

To investigate whether the relationship between decoded 𝑏, 𝑠, and 𝑣 
is consistent with the causal structure postulated by BMBU, we 

calculated the BIC values for all the three-node networks consisting 

of the time series of three brain signals {𝑦>, 𝑦7, 𝑦K} (Scutari 2009) 

and determined the causal graph whose likelihood is maximal. The 

three-node network has 162 possible structures, as follows. A total 

of 27 edge structures can be created out of three nodes since three 

types of edges are possible for any given pair of nodes (i.e., 𝑥 → 𝑦, 
𝑥 ← 𝑦 or 𝑥 ↮ 𝑦) and there are three pairs (i.e., {𝑏, 𝑣}, {𝑣, 𝑠}, {𝑠, 𝑏}; 
3L). Also, a total of 6 combinations of three nodes exist for {𝑦M, 𝑦7, 
𝑦K} since we have three (IPLb1, pSTGb3, pSTGb5), two (DLPFCs3, 

Cerebs5), and single (aSTGv5) brain signals of 𝑏, 𝑠, and 𝑣, 
respectively (3 × 2 × 1). Thus, because each of the 6 possible node 

combinations can have 27 edge structures, there are 162 possible 

three-node causal networks.  

We opted to apply this Bayesian network analysis to the 

three-node networks instead of the six-node network consisting of 

all the six brain signals identified by the searchlight analysis because 

the number of possible six-node networks (𝑁 = 3EN, = 3%F =
14,348,907) was unrealistically large so that the statistical results are 

likely to suffer from type I errors. In addition, guided by BMBU, we 

were interested in identifying the causal structure of the three brain 

signals, each corresponding to one of the three model variables (𝑏, 𝑠, 
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and 𝑣). In other words, we were not interested in the causal 

relationship between the brain signals representing the same model 

variable (e.g., between pSTGb3, pSTGb5). 

 

Statistics 

We used the searchlight technique to look for brain signals related to 

the latent variables of the BMBU. To make the searchlight analysis 

statistically powerful by reducing the noise effect in the BOLD 

signals, we applied a generalized linear mixed-effect model (GLMM) 

with the random effect of observers to calculate the association 

between the true and the decoded model variables. We applied the 

mixed effect model only to the searchlight analysis (Fig. 6, Table 1). 

For the other regression analyses, we conducted the analysis for 

each individual, respectively, because the mixed effect model was 

too computationally demanding to be applied to all other analyses. 

For instance, applying GLMM to the model simulation depicted in Fig. 

5C requires 10F	repetitions of regression analysis. The significance 

tests were two-tailed except for the searchlight analysis as specified 

in Table 1. Also, for the time-resolved searchlight analysis, we 

implemented the multiple-comparison test (the fdr correction) 

(Benjamini and Hochberg 1995) for each of the fMRI time frames. In 

the figures summarizing statistical results, all confidence intervals 

are the 95% confidence intervals of the mean across individual 

observers.  

 

2.3 Results 

 

Experimental paradigm 

Over consecutive trials, participants sorted ring sizes into two 

classes, small and large, under moderate time pressure (Fig. 2A). To 

ensure decision-makings with uncertainty, we presented three rings 

(small, medium, and large) differing by a threshold size (Δ), which 

was tailored for individuals (Fig. 2B; see Materials and Methods). 

The ring sizes were presented in m-sequence to rule out any 
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correlation between consecutive stimulus sizes (Buracas and 

Boynton 2002). We provided participants with feedback after each 

scan run by summarizing their performance with the proportion of 

correct trials.  

To verify the sensory-adaptation hypothesis, we conducted 

Experiment 1, where 19 participants performed the classification 

task while BOLD measurements with a high spatial resolution were 

acquired only from their early visual cortices. To verify the 

boundary-updating hypothesis, we conducted Experiment 2, where 

18 participants performed the same task while their whole brains 

were imaged. The data of Experiment 1 had been used in our 

published work (Choe, Blake et al. 2014). 

 

Repulsive bias in Experiment 1 

The participants in Experiment 1 displayed a substantive amount of 

repulsive bias. As anticipated, the proportion of large choices (PL) 

increased as the ring size on the current trial (𝑆(-)) increased. 

Importantly, when the psychometric curves were conditioned on the 

previous stimulus (𝑆(-&%)), they shifted upward as the ring size in the 

previous trial decreased (the contrasts between the solid, dotted, and 

dashed lines in Fig. 3A), which indicates the presence of repulsive 

bias. By contrast, the psychometric curves were not affected much 

by the previous choice (the contrasts between the gray and black 

lines in Fig. 3A). To quantify the impact of the previous stimulus on 

the current choice, we subtracted the PLs acquired when the 

previous ring size was S from those when L separately for each of 

the six combinatorial conditions of the current stimulus (three sizes) 

and previous choice (two alternatives) and then averaged those six 

PL differences. The averaged PL difference (−0.20) was significantly 

smaller than zero (𝑡(%O) = −8.9, 𝑝 = 5.1 × 10&O) (Fig. 3B, left). We also 

quantified the impact of the previous choice on the current choice 

similarly: the PL differences of previous large from small choices 

were calculated separately for the nine combinatorial conditions of 

the current and previous stimulus and then averaged. The averaged  
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Figure 3. Influences of previous and current stimuli on classification behavior and 

V1 activity in Experiment 1. A-C, Repulsive bias in psychometric curves (A,B) 

and regression analysis (C). The psychometric curves, where the fractions of 

large choices are plotted against the current stimulus, are shown separately for 

the six possible combinations defined by the previous stimulus and choice (A). As 

the summary of the effects of the previous stimulus on the current choice, the 

differences in the fractions of large choices between the previous stimuli were L-

ring and S-ring (𝑝&𝐷(2) = 𝑙𝑎𝑟𝑔𝑒.𝑆(256) = 11 − 𝑝&𝐷(2) = 𝑙𝑎𝑟𝑔𝑒.𝑆(256) = −11) are 

computed separately for the six combinations of the current stimulus and previous 

choice and then averaged (B, left). As the summary of the effects of the previous 

choice on the current choice, the differences in the fractions of large choices 

between the previous choices were large and small 

(𝑝&𝐷(2) = 𝑙𝑎𝑟𝑔𝑒.𝐷(256) = 𝑙𝑎𝑟𝑔𝑒1 − 𝑝&𝐷(2) = 𝑙𝑎𝑟𝑔𝑒.𝐷(256) = 𝑠𝑚𝑎𝑙𝑙1) are computed 

separately for the nine combinations of the current and previous stimuli and then 

averaged (B, right). The small gray circles represent the individual observers. 

The multiple logistic regression coefficients of the current choice are plotted 

against trial lags (C). In the inset, the regression coefficients for the previous-

stimulus (𝑆(256)) regressor are plotted against those for the previous-choice 

(𝐷(256)) regressor for individual observers, where the red error bars demarcate 

the 95% CIs of the means. D, Eccentricity map of V1 on the flattened left occipital 

cortex of a representative brain, S08. The dot, curves, and colors correspond to 
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those in the inset depicting the visual field. The image is borrowed from our 

previous work (Choe, Blake et al. 2014). E,H, Spatiotemporal BOLD V1 responses 

to L-ring (left) and S-ring (middle), and their differentials (right), presented on 

the current (E) and previous (H) trials. The color bars indicate BOLD changes in 

the unit of % signal, averaged across all participants. The vertical dashed line 

marks the time point for stimulus onset. The horizontal dashed line corresponds to 

the eccentricity of M-ring, splitting the voxels into ‘L-prefer’ and ‘S-prefer’ 
groups based on their preferred ring size. F, The differential of BOLD responses 

at peak between the small and large ring on the current trial. The vertical dashed 

line marks the eccentricity of M-ring. The horizontal red and blue lines mark the 

average BOLD signals of the L-prefer and S-prefer voxels, respectively. The 

vertical orange line quantifies the stimulus-driven gain of V1 responses. G,I, Time 

courses of the stimulus-driven gain of V1 responses to the current (G) and 

previous (I) stimuli. The stimulus duration and response window are demarcated 

by the light and dark gray bars demarcate (G,I). The 95% CIs of the mean across 

observers are indicated by the shaded areas (F) or by the vertical error bars 

(B,C,G,I). Asterisks indicate the statistical significance (*, 𝑃 < 0.05; **, 𝑃 < 1057; 
***, 𝑃 < 1058; B,C,G,I). The orange boxes and arrows are drawn to help the 

relationships between the panels (E,F,G). 

 

PL difference (−0.018 ) did not significantly differ from zero (𝑡(%O) =

−0.68, 𝑝 = 0.50) (Fig. 3B, right). 

To ensure this repulsive effect of the previous stimulus on 

the current choice, we logistically regressed each participant's 

current choice (𝐷(-)) simultaneously onto the previous stimulus and 

choice. The regression coefficients for the previous stimuli were 

significant up to two trial lags across participants (𝑆(-&%), 𝛽 = −0.39, 

𝑡(%O) = −9.6, 𝑝 = 1.6 × 10&O; 𝑆(-&,), 𝛽 = −0.11, 𝑡(%O) = −2.4, 𝑝 = 0.026; 

𝐷(-&%), 𝛽 = −0.17, 𝑡(%O) = −2.8, 𝑝 = 0.012), which confirms the robust 

presence of repulsive bias in Experiment 1 (Fig. 3C). 

 

Sensory adaptation in V1 

As a first step toward the verification of the sensory-adaptation 

hypothesis, we defined the size-encoding signal in V1. As our group 

showed previously (Choe, Blake et al. 2014), the eccentricity-tuned 

BOLD responses in V1 (Fig. 3D) readily resolved the threshold-level 

differences in ring size, as anticipated by the retinotopic organization 

of the V1 architecture (Fig. 3E). Thus, the subtraction of the BOLD 
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responses at the voxels preferring S-ring to L-ring from those at the 

voxels preferring L-ring to S-ring (Fig. 3F) was significantly greater 

when 𝑆(-) was large than when small (the third and the fourth time 

points, 𝛽 = 0.11, 𝑡(%O) = 4.8, 𝑝 = 1.5 × 10&P	and 𝛽 = 0.13, 𝑡(%O) = 6.6, 

𝑝 = 3.7 × 10&E; Fig. 3G). 

 Next, having defined the size-encoding signal in V1, which 

will be referred to as ‘𝑉1’, we sought evidence of sensory-adaptation 

in that signal. According to the previous work on sensory-adaptation 

(Clifford, Webster et al. 2007, Kohn 2007, Solomon and Kohn 2014, 

Weber, Krishnamurthy et al. 2019), we expected 𝑉1 to decrease 

following the large size and to increase following the small size due 

to the selective gain reduction at the sensory neurons tuned to 

previous stimuli. In line with this expectation, 𝑉1 indeed significantly 

decreased when preceded by L-ring than when preceded by S-ring 

(the fourth time point, 𝛽 = −0.45, 𝑡(%O) = −2.2, 𝑝 = 0.040; Fig. 3H,I). 

Although we rendered ineffective the autocorrelation between 

consecutive stimuli using an m-sequence (see Materials and 

Methods), we additionally checked the possibility that the observed 

adaptation of 𝑉1 might have spuriously occurred due to any 

imbalance in the ring size of the current stimuli. To do so, we first 

calculated the differences in 𝑉1 between the previous S- and L-

rings separately for the three current stimuli and then averaged 

those three differences. We confirmed that the averaged 𝑉1 
differences were smaller when preceded by L-ring than when 

preceded by S-ring (the fourth time point, 𝛽 = −0.44, 𝑡(%O) = −2.1, 

𝑝 = 0.049). 
In sum, the V1 population activity reliably encoded the ring 

size and exhibited sensory adaptation. 

 

The variability of 𝑽𝟏 associated with previous stimuli fails to 

contribute to the choice variability  

Next, we verified the critical prediction of the sensory-adaptation 

hypothesis on repulsive bias. Below, we will define what this crucial 

prediction is and how we empirically examine that prediction. 

 Above, we confirmed that the ring size, not only on the  
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Figure 4. Origin of the covariation between the stimulus-encoding signal of V1 

and the current choice. A, The causal structure of the variables implied by the 

sensory-adaptation hypothesis. The stimulus-encoding signal of V1 (𝑉1) is 

influenced by the current stimulus (𝑆(2)), the previous stimulus (𝑆(256)), and the 

unknown sources (𝑈96). In turn, 𝑉1 influences the current choice (𝐷(2)). If the 

sensory-adaptation hypothesis is true, part of the causal influence of 𝑉1 on 𝐷(2) 

must originate from 𝑆(256), as indicated by the connected chain of the dotted 

arrows. B, Extraction of the stimulus-encoding signal of V1. For any given run 

from any participant, the matrix of spatiotemporal BOLD responses in V1 (top left) 

was multiplied by one of the three weighting vectors (right; blue, red, and yellow 

lines represent the uniform, discriminability, and log-likelihood ratio readout 

schemes, respectively) to result in the vector of stimulus-encoding signal (𝑉1) in 

the same trial length (bottom left). The positive and negative values of 𝑉1 
indicate the larger and smaller sizes of the ring, respectively. C, Multiple linear 

regression of the stimulus-encoding signal of V1 on 𝑆(2), 𝑆(256), and 𝐷(256). The 

colors correspond to the three different readout schemes in B. D-F The average 

marginal effects (AMEs) of 𝑉1 on 𝐷(2), with 𝑉1 extracted by the uniform (D), 

discriminability (E), and log-likelihood ratio (F) readout schemes. In each panel, 

the influence of 𝑉1 on 𝐷(2) that can be ascribed to 𝑆(256) and 𝑆(2) were assessed 

by checking i) whether the AME of 𝑉1 on 𝐷(2) (left) significantly decreased or not 

after controlling the influence of 𝑆(256) (second from the left) and 𝑆(2) (second 

from the right), respectively, or ii) whether the AME of 𝑉1 on 𝐷(2) controlling the 

influence of both 𝑆(256) and 𝑆(2) (right) significantly increased or not after only 

controlling the influence of 𝑆(2) (second from the right) and 𝑆(256) (second from 
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current trial (𝑆(-)) but also on the previous trial (𝑆(-&%)), affects 𝑉1 on 

the current trial (𝑆(-&%) → 𝑉1 ← 𝑆(-) in Fig. 4A). What we do not know 

yet is whether the variabilities of 𝑉1 that originate from 𝑆(-) and 

𝑆(-&%), respectively, flow all the way into the observer’s current 

choice (𝑆(-) → 𝑉1 → 𝐷(-) and 𝑆(-&%) → 𝑉1 → 𝐷(-) in Fig. 4A). Critically, if 

the sensory-adaptation hypothesis is true, the variability of 𝑉1 
associated with 𝑆(-&%) must contribute to the current choice (𝐷(-)) 

(𝑆(-&%) → 𝑉1 → 𝐷(-)), just as that associated with 𝑆(-) must do so (𝑆(-) →

𝑉1 → 𝐷(-)). Here, it is important to realize that the mere association 

between 𝑆(-) and 𝑉1 (𝑆(-) → 𝑉1) does not warrant their contribution 

to 𝐷(-) (𝑆(-) → 𝑉1 → 𝐷(-)). Likewise, the association between 𝑆(-&%) 

and 𝑉1 (𝑆(-&%) → 𝑉1) does not warrant their contribution to 𝐷(-) 

(𝑆(-&%) → 𝑉1 → 𝐷(-)).  

We can test the critical implication of the sensory-adaptation 

hypothesis by comparing the average marginal effect (AME) 

(Williams and Jorgensen 2023) of 𝑉1 on 𝐷(-) (𝑉1 → 𝐷(-)) to that of 𝑉1 

on 𝐷(-) with 𝑆(-&%) controlled (𝑆(-&%) ↛ 𝑉1 → 𝐷(-)). The rationale 

behind this comparison is that the contribution of 𝑉1 to 𝐷(-) must be 

substantially smaller when 𝑆(-&%) was controlled than when not if the 

contribution of 𝑆(-&%) to 𝐷(-) via 𝑉1 (i.e., 𝑆(-&%) → 𝑉1 → 𝐷(-)) is 

substantial. In addition, the critical implication can also be tested by 

comparing the AME of 𝑉1 on 𝐷(-) with 𝑆(-) only controlled (𝑆(-) ↛
𝑉1 → 𝐷(-)) to that of 𝑉1 on 𝐷(-) with 𝑆(-&%) and 𝑆(-) both controlled 

(𝑆(-&%)	&	𝑆(-) ↛ 𝑉1 → 𝐷(-)). In this case, the contribution of 𝑉1 to 𝐷(-) 

must be greater when only 𝑆(-) is controlled than when both 𝑆(-&%) 

and 𝑆(-) are controlled if the contribution of 𝑆(-&%) to 𝐷(-) via 𝑉1 is 

substantial. AME was adopted instead of comparing regression 

coefficients because it does not suffer from the scale problem, unlike 

logistic and probit regression coefficients (Mize, Doan et al. 2019).   

In doing so, the trial-to-trial measures of 𝑉1 were acquired by 

the left), respectively. Asterisks indicate the statistical significance (*, 𝑃 < 0.05; 
**, 𝑃 < 0.01; ***, 𝑃 < 0.001), and “n.s.” stands for the non-significance of the test 

(C-F). The 95% CIs of the mean across participants are indicated by the vertical 

error bars (C-F).  
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taking the sum of BOLDs across the eccentricity bins with the same 

readout weights used in the previous section (Fig. 4B). At first, we 

confirmed that 𝑉1 contains both current stimuli and adaptation 

signals by regressing 𝑉1 on to 𝑆(-), 𝑆(-&%), and 𝐷(-&%) concurrently 

for each participant (Fig. 4C). This multiple regression analysis 

indicates that the previously observed adaptation to 𝑆(-&%) (Fig. 3H,I) 

was still significant across participants (𝛽 = −0.047, 𝑡(%O) = −2.2, 𝑝 =
0.039), even when we controlled the variability of 𝐷(-&%) (𝛽 = 0.021, 

𝑡(%O) = 0.82, 𝑝 = 0.42), a potential confounding variable. 

 The AME of 𝑉1 on 𝐷(-) was significant across participants 

(𝛽 = 0.020, 𝑡(%O) = 2.3, 𝑝 = 0.031; Fig. 4D, the first bar). Importantly, it 

did not significantly decrease across participants when the influence 

of 𝑆(-&%) was controlled (𝑡(%O) = −1.6, 𝑝 = 0.13; Fig. 4D, the change of 

the first to second bars). Given the significant repulsive bias 

associated with 𝑆(-&%) presented on the 2-back trial, we also 

controlled 𝑆(-&,) in addition to 𝑆(-&%). Despite this additional control, 

the AME of 𝑉1 on 𝐷(-) did not significantly decrease (𝑡(%O) = −1.5, 

𝑝 = 0.15). By contrast, the AME of 𝑉1 on 𝐷(-) substantially 

decreased across participants, almost to none, when the influence of 

𝑆(-) was controlled (𝑡(%O) = −6.0, 𝑝 = 1.1 × 10&F; Fig. 4D, the change of 

the first to third bars). Likewise, the AME of 𝑉1 on 𝐷(-) with 𝑆(-) 
only controlled did not differ from that of 𝑉1 on 𝐷(-) with 𝑆(-&%) and 

𝑆(-) both controlled (𝑡(%O) = 1.4, 𝑝 = 0.17; Fig. 4D, the change of the 

fourth to third bars), whereas the AME of 𝑉1 on 𝐷(-) with 𝑆(-&%) 
controlled was greater than that of 𝑉1 on 𝐷(-) with 𝑆(-&%) and 𝑆(-) 

both controlled (𝑡(%O) = 6.02, 𝑝 = 1.1 × 10&F; Fig. 4D, the change of the 

fourth to second bars). These results coherently indicate that the 

contribution of the previous stimuli to 𝐷(-) via 𝑉1 is absent or 

negligible, which is at odds with the sensory-adaptation hypothesis. 

The analyses above were carried out for 𝑉1 acquired at the fourth 

time point, where sensory adaptation was significant. However, an 

insignificant but substantial amount of sensory adaption occurred 

also at the preceding (third) time point (Fig. 3I). To check the 

possibility that the contribution of 𝑆(-&%) to 𝐷(-) via 𝑉1 might be 
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present if 𝑉1 is alternatively defined, we redefined 𝑉1 by averaging 

those acquired at the third and fourth points and repeated the same 

AME analyses as above. However, the contribution of the previous 

stimuli to 𝐷(-) via 𝑉1 is still absent or negligible: the AME of 𝑉1 on 

𝐷(-) did not differ from that of 𝑉1 on 𝐷(-) with 𝑆(-&%) controlled 

(𝑡(%O) = −1.4, 𝑝 = 0.19); the AME of 𝑉1 on 𝐷(-) with 𝑆(-) only 

controlled did not differ from that of 𝑉1 on 𝐷(-) with 𝑆(-&%) and 𝑆(-) 

both controlled (𝑡(%O) = 1.03, 𝑝 = 0.32). 

 Furthermore, the same pattern of AMEs was observed when 

we used two alternative readout schemes for extracting 𝑉1. The 

AME of 𝑉1 on 𝐷(-) decreased after 𝑆(-) was controlled (the 

discriminability scheme: 𝑡(%O) = −5.4, 𝑝 = 4.3 × 10&F; the log likelihood 

scheme: 𝑡(%O) = −6.0, 𝑝 = 1.1 × 10&F; Fig. 4E,F, the change of the first 

to third bars) but not after 𝑆(-&%) was controlled (the discriminability 

scheme: 𝑡(%O) = −1.4, 𝑝 = 0.19; the log likelihood scheme: 𝑡(%O) =
𝑡(%O) = −1.5, 𝑝 = 0.14; Fig. 4E,F, the change of the first to second 

bars). Likewise, the AME of 𝑉1 on 𝐷(-) with  𝑆(-&%) only controlled 

was larger than that of 𝑉1 on 𝐷(-) with 𝑆(-&%) and 𝑆(-) both 

controlled (the discriminability scheme: 𝑡(%O) = 5.4, 𝑝 = 4.0 × 10&F; the 

log likelihood scheme: 𝑡(%O) = 6.0, 𝑝 = 1.2 × 10&F; Fig. 4E,F, the 

change of the fourth to second bars), while that with 𝑆(-) only 

controlled did not differ from that of 𝑉1 on 𝐷(-) with 𝑆(-&%) and 𝑆(-) 
both controlled (the discriminability scheme: 𝑡(%O) = 1.3, 𝑝 = 0.22; the 

log likelihood scheme: 𝑡(%O) = 1.4, 𝑝 = 0.18; Fig. 4E,F, the change of 

the fourth to third bars). Put together, the AME analyses suggest that 

the contribution of 𝑉1 to the current choice is ascribed mostly to the 

current stimulus but hardly to the previous stimuli, which is 

inconsistent with the sensory-adaptation hypothesis. 

 

Repulsive bias in Experiment 2 

Having failed to find the evidence supporting the sensory-adaptation 

hypothesis in Experiment 1, we conducted Experiment 2 to search 

the whole brain for the signal representing the class boundary and to 

test whether that signal relates to the previous stimuli and the 



 

 40 

current choice in a manner consistent with the boundary-updating 

hypothesis. As mentioned earlier (see the first Results subsection), 

the experimental procedure in Experiment 2 was the same as in 

Experiment 1, except for the fMRI protocol.  

The behavioral performance in Experiment 2 closely matched 

that in Experiment 1 (Fig. 3A-C) in many aspects. The PL difference 

induced by the previous stimulus (−0.25) substantially differed from 

zero (𝑡(%=) = −7.3, 𝑝 = 1.3 × 10&E) indicating the existence of repulsive 

bias, whereas that by the previous choice (0.027) did not significantly 

differ from zero (𝑡(%=) = 1.3, 𝑝 = 0.19) (Fig. 5A,B). The logistic 

regression analysis confirmed the significant presence of repulsive 

bias across participants (𝑆(-&%), 𝛽 = −0.54, 𝑡(%=) = −7.9, 𝑝 = 4.6 × 10&=; 

𝑆(-&,), 𝛽 = −0.24, 𝑡(%=) = −4.7, 𝑝 = 2.3 × 10&P; 𝐷(-&%), 𝛽 = 0.0055, 𝑡(%=) =

0.13, 𝑝 = 0.90) (Fig. 5C).    

  

Bayesian model of boundary-updating (BMBU) 

As we identified 𝑉1 in Experiment 1, we first need to identify the 

brain signal that reliably represents the class boundary. However, it 

is challenging to identify such signals in two aspects. First, unlike in 

Experiment 1, where V1 was the obvious cortical region to bear the 

size-encoding signal susceptible to adaptation given a large volume 

of previous work (Kohn 2007, Patterson, Wissig et al. 2013, Morgan 

2014, Solomon and Kohn 2014, Weber, Krishnamurthy et al. 2019, 

Fritsche, Solomon et al. 2022) and our own work (Choe, Blake et al. 

2014), we have no such a priori region where the boundary-

representing signal resides. This aspect requires us to explore the 

whole brain. Second, unlike in Experiment 1, where the size variable 

was physically prescribed by the experimental design, we need to 

infer the trial-to-trial states (i.e., sizes) of the class boundary, which 

is an unobservable—thus latent—variable. This aspect requires us to 

build a model. To address these challenges, we inferred the latent 

state of the class boundary using a Bayesian model of boundary-

updating (BMBU) and searched the whole brain for the boundary- 



 

 41 

 
Figure 5. Repulsive bias in Experiment 2 and a Bayesian model of boundary 

updating (BMBU). A-C, Repulsive bias in psychometric curves (A,B) and 

regression analysis (C). The formats were identical to those in the corresponding 

figure panels for Experiment 1 (Fig. 3A-C), except that the ex post model 

simulation results (green lines and symbols) are added.  In the bottom insets of B, 

the observed (x-axis) and simulated (y-axis) average differences in the fractions 

of large choices between the trials in which the previous stimulus was L-ring and 

those in which it was S-ring are plotted against one another, where the red 

diagonal demarcates the identity line. In the bottom insets of C, the observed (x-

axis) and simulated (y-axis) regression coefficients for the previous stimulus 

(𝑆(256)) regressor are plotted against one another for individual observers, where 

the red diagonal demarcates the identity line. D-G, The measurement generation 

(C), stimulus inference (D), class-boundary inference (E), and decision-variable 

deduction (F) processes of BMBU. BMBU posits that the Bayesian decision-maker 

has an internal causal model of how a physical stimulus size (𝑆) engenders a 

current sensory measurement (𝑚(2)) and a retrieved memory measurement from 

𝑖th preceding trial (𝑟(25:)) (D, top), which specifies the probability distribution of 

𝑚(2) and 𝑟(25:) conditioned on 𝑆, respectively (D, bottom). In turn, 𝑝&𝑚(2).𝑆1 
allows the Bayesian decision-maker to infer 𝑆 upon observing 𝑚(2) by combining 
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representing signal using a searchlight multivariate pattern analysis 

technique. 

We developed BMBU by formalizing the binary classification 

task in terms of Bayesian decision theory (Knill and Richards 1996), 

a powerful framework for modeling human decision-making behavior 

under uncertainty. Binary classification is to judge whether the ‘ring 

size on the current trial 𝑡 (𝑆(-))’ is larger or smaller than the ‘the 

typical size of rings appearing across the entire trials (𝑆e).’ Therefore, 

a classifier must infer them based on the measurements of stimulus 

size in the sensory and memory systems.  

The generative model. On trial 𝑡, 𝑆(-) is randomly sampled 

from a probability distribution 𝑝(𝑆) and engenders a measurement in 

the sensory system 𝑚(-), which is a random sample from a 

probability distribution 𝑝(𝑚(-)|𝑆(-)) (black dotted curve of Fig. 5D, 

bottom). Critically, as 𝑖 trials elapse, 𝑚(-) is re-encoded into a 

mnemonic measurement in the working-memory system 𝑟(-&!), which 

is a random sample from a probability distribution 𝑝(𝑟(-&!)|𝑆(-)) (light-

gray dotted curve in Fig. 5D, bottom). Here, we assumed that the 

width of 𝑝(𝑟(-&!)|𝑆(-)) increases as 𝑖 increases reflecting the working 

memory decay (Gorgoraptis, Catalao et al. 2011, Zokaei, Burnett 

it with the prior knowledge about 𝑆, 𝑝(𝑆), to compute the posterior probability of 

𝑆 given 𝑚(2), 𝑝&𝑆.𝑚(2)1 (E). Similarly, 𝑝&𝑟(25:).𝑆1 allows for inferring the class 

boundary (𝑏(2)) upon retrieving the memory of previous sensory measurements 

(�⃗�(2) = ?𝑟(256), 𝑟(25;), … B	) by combining it with 𝑝(𝑆) to compute the posterior 

probability of 𝑆 given 𝑟(2), 𝑝&𝑆.𝑟(2)1 (F). In D-F, black dotted curves, 𝑝&𝑚(2).𝑆1; 
gray dotted curves, 𝑝&𝑟(25:).𝑆1—the darker the dotted curve is, the more recent 

the memory is; gray dashed curves, 𝑝(𝑆); black solid curve, 𝑝&𝑆.𝑚(2)1; red solid 

curve, 𝑝&𝑆.𝑟(2)1. Finally, the inferred stimulus, 𝑠(2), and the inferred class 

boundary, 𝑏(2), allow for deducing the decision variable, 𝑣(2), the choice variable, 

𝑑(2), and the uncertainty variable, 𝑢(2) (G, top), as illustrated in an example 

bivariate distribution of 𝑠(2) and 𝑏(2), from which 𝑣(2), 𝑑(2) and 𝑢(2) are derived (G, 

bottom). H, An example temporal trajectory of the class boundary inferred by 

BMBU in a single scan run. The black and red lines indicate the sizes of physical 

stimulus and the boundary inferred by BMBU, respectively. I,J, Ex post simulation 

results of the constant-boundary model. The formats are identical to those of A 

and B.  
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Heyes et al. 2015). 

 Inferring the current stimulus size. On trial 𝑡, the Bayesian 

classifier infers 𝑆(-) by inversely propagating 𝑚(-) in the generative 

model (Fig. 5E, top). As a result, the inferred size (𝑠(-)) is defined as 

the value of 𝑆 given 𝑚(-), as captured by the following equation:  

𝑝X𝑠(-)Z = 𝑝X𝑆Y𝑚(-)Z   (Equation 1) 

, where the width of 𝑝X𝑆Y𝑚(-)Z reflects the precision of 𝑠(-) (Fig. 5E, 

bottom).  

Inferring the class boundary. On trial 𝑡, the Bayesian 

classifier infers the class boundary (𝑏(-)) —i.e., the inferred value of 

𝑆e—by inversely propagating a set of retrieved measurements in the 

working memory system 𝑟(-) = {𝑟(-&%),𝑟(-&,),𝑟(-&L),… , 𝑟(-&#)} (Fig. 5F, 

top). 𝑏(-) is defined as the most probable value of 𝑆 given 𝑟(-), as 

captured by the following equation: 

𝑏(-) = argmax
0
𝑝X𝑆Y�⃗�(-)Z    (Equation 2) 

, where the width of 𝑝X𝑆Y�⃗�(-)Z reflects the precision of 𝑏(-). Notably, 

Equation 2 implies that 𝑏(-) must be attracted more to recent stimuli 

than to old ones because (i) the precision of working memory 

evidence decreases as trials elapse (dotted curves of Fig. 5F, 

bottom) and (ii) the more uncertain the evidence is, the less weighed 

the evidence is for class-boundary inference. 

 Making a decision with the inferred current stimulus size and 

the inferred class boundary. Having estimated 𝑠(-) and 𝑏(-), the 

Bayesian classifier deduces a decision variable (𝑣(-)) from 𝑠(-) and 

𝑏(-) and translating it into a binary decision (𝑑(-)) with a degree of 

uncertainty (𝑢(-)) (Fig. 5G). Here, 𝑣(-) is the probability that 𝑠(-) will 

be greater than 𝑏(-) (𝑣(-) = 𝑝X𝑠(-) > 𝑏(-)Z); 𝑑(-) is large or small if 𝑣(-) 

is greater or smaller than 0.5, respectively; 𝑢(-) is the probability 

that 𝑑(-) will be incorrect (𝑢(-) = 𝑝X𝑠(-) < 𝑏(-)Y𝑑(-) = 𝑙𝑎𝑟𝑔𝑒Z or 

𝑝X𝑠(-) > 𝑏(-)Y𝑑(-) = 𝑠𝑚𝑎𝑙𝑙Z) (Sanders, Hangya et al. 2016).  

In sum, BMBU models a human decision-maker as the 

Bayesian classifier who, over consecutive trials, continuously infers 

the class boundary (𝑏) and the current stimulus size (𝑠), deduces the 

decision variable (𝑣) from 𝑠 and 𝑏, and makes a decision (𝑑) with a 
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varying degree of uncertainty (𝑢). As shown below, BMBU well 

predicts human participants’ choices and reproduces their repulsive 

bias.  

 

The prediction and simulation of human choices and repulsive bias by 

BMBU  

We assessed BMBU’s accountability for human behavior in the binary 

classification task in two aspects, comparing its (i) predictability of 

the choices and (ii) reproducibility of repulsive bias to those of the 

control model which does not update the class boundary (‘constant-

boundary model’; see Materials and Methods). 

 We assessed the predictability of BMBU and the constant-

boundary model by fitting them to human choices using the maximum 

likelihood rule (see Materials and Methods). BMBU excels over the 

constant-boundary model in goodness-of-fit. The average AIC 

difference across participants is −10.48 and was significantly less 

than the conventional threshold (−4) (Anderson and Burnham 2004) 

(𝑡(%=) = −2.6, 𝑝 = 0.020). The variance explained by BMBU, measured 

by the Nagelkerke R-squared, is equal to 132% of that by the 

constant-boundary model. 

 After equipping the models with their best-fit parameters, we 

assessed their reproducibility by making them simulate the decisions 

over the same sequence of ring sizes presented to the human 

participants (see Materials and Methods). From this simulation, we 

can also vividly appreciate how BMBU updates its class boundary 

(𝑏(-)) depending on the ring sizes encountered over a sequence of 

classification trials (Fig. 5H). As implied by Equation 2, BMBU 

continuously shifts 𝑏(-) toward the ring sizes shown in previous 

trials. Such attractive shifts are pronounced especially when streaks 

of S-ring (the solid arrow in Fig. 5H) or L-ring (the dashed arrow in 

Fig. 5H) appeared over trials. Importantly, we confirmed that such 

boundary-updating of BMBU reproduces the repulsive bias displayed 

by the human participants with a remarkable level of resemblance 

across participants, both for the psychometric curves (the R-squared 

of the effect of previous stimulus on PL between humans and BMBU 
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was 0.89; Fig. 5A,B) and for the coefficients of the stimulus and 

choice regressors (the R-squared of coefficients of the immediately 

preceding stimulus between humans and BMBU was 0.94; Fig. 5C). 

None of the simulated PLs and coefficients—a total of 17 points—fell 

outside the 95% confidence intervals of the corresponding human 

PLs and coefficients. Not surprisingly, the constant-boundary model 

failed to show any slightest hint of repulsive bias (Fig. 5I,J). Although 

we used m-sequences to prevent any auto-correlation among ring 

sizes, the failure of the constant-boundary model in reproducing 

repulsive bias reassures that the actual stimulus sequences used in 

the experiment do not contain any unwanted statistics that might 

induce spurious kinds of repulsive bias. 

In sum, BMBU’s inferences of the class boundary based on 

past stimuli accounted for a substantive fraction of the choice 

variability of human classifiers and successfully captured their 

repulsive bias. 

 

Brain signals of the class boundary and the other latent variables  

In the previous section, we demonstrated that BMBU accounted well 

for the variability of human choices and successfully reproduced the 

observed repulsive bias. However, such correspondences between 

the humans’ and the models’ choices do not necessarily warrant the 

validity of our procedure of estimating the latent states of the model 

variables (𝑏, 𝑠, and 𝑣), which is crucial in testing the boundary-

updating hypothesis. To validate our estimation procedure, we tested 

whether it could accurately recover the true states of the model 

variables based on the synthetic data sets simulated with 256 

ground-truth model parameter sets (see the Materials and Methods). 

The recovered states of the model variables well matched the 

corresponding true states (R squared = 0.98 ± 0.0044, 0.96 ± 0.0073, 
and 0.96 ± 0.0040 for 𝑏, 𝑠, and 𝑣, respectively; mean±95% 

confidence interval), which ascertains the validity of our procedure 

of estimating the latent states of the model variables. 

Then, with the trial-to-trial states of the simulated latent 

variables, we identified the brain signals of those variables with the 
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following rationale and procedure. On any given trial 𝑡, a classifier 

makes a decision in the manner constrained by the causal structure 

of BMBU (Fig. 5G). This causal structure implies two important 

points to be considered when identifying the neural representations 

of 𝑏, 𝑠 and 𝑣. First, for any cortical activity, its significant 

correlation with the variable of interest does not necessarily imply 

that it represents that variable per se but is open to the possibility 

that it may represent the other variables that are associated with the 

variable of interest. Second, if any given cortical activity represents 

the variable of interest, that activity must not violate any of its 

relationships with the other variables that are implied by the causal 

structure (Table 1; see Materials and Methods).  

We incorporated these two points in our search of the brain 

signals of 𝑏, 𝑠 and 𝑣, as follows. Initially, we identified the candidate 

brain signals of 𝑏, 𝑠, and 𝑣 by localizing the patterns of activities 

that closely reflect the trial-to-trial states of 𝑏, 𝑠, and 𝑣. For 

localization, we used the support vector regressor decoding with the 

searchlight technique (Kahnt, Grueschow et al. 2011, Hebart, 

Schriever et al. 2014), which is highly effective in detecting the local 

patterns of population fMRI responses associated with the latent 

variables of computational models (Kriegeskorte, Goebel et al. 2006). 

Next, we put those candidate brain signals to a strong test of 

whether their trial-to-trial states satisfy the causal relationships 

with the other variables. Specifically, we converted those causal 

relationships into the empirically testable sets of regression models 

(Table 1), respectively for 𝑏 (14 regressions), 𝑠 (14 regressions) 

and 𝑣 (17 regressions) and checked whether all the regressors’ 
coefficients derived from the brain signals were consistent with the 

regression models (see Materials and Methods). In what follows, we 

will describe how the regression tests for the brain signal of 𝑏 (𝑦>) 
were derived from the causal structure of the variables defined by 

BMBU (see Materials and Methods for those for the two remaining 

variables 𝑠 and 𝑣). 
According to the causal relationship of 𝑏 with the latent  
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variables,  𝑦> must satisfy the following single linear regression 

models: 𝑦> must be positively regressed onto 𝑏 (#1) and be so even 

when the false discovery rate (Benjamini and Hochberg 1995) is 

applied (#2); 𝑦> must be positively regressed onto 𝑏 even when 𝑏 is 

orthogonalized to 𝑣 (#3) or 𝑑 (#4) because 𝑦> should reflect the 

variance irreducible to the offspring variables of 𝑏; 𝑦> must not be 

regressed onto 𝑠 because 𝑏 and 𝑠 are independent of one another  

name 
cortical 

area 

decoded 

variable 

detected 

time 

from 

stimulus 

onset (s) 

contiguous 

searchlights 

number 

peak searchlight 

MNI 

coordinate 

GLMM 

p-

value 

(right-

tailed) 

IPLb1 

left inferior 

parietal 

lobe 

 𝑏(")  1.1 
 15 
 (10) 

 [−54, −27, 48] 
 

([−54, −27,48]) 

 8.8 ×
10$% 
 (7.4 ×
10$&) 

pSTGb3 

left 

posterior 

superior 

temporal 

gyrus 

 𝑏(")  3.3 
 13 
 (7) 

 [−45, −30, 9] 
 

([−54, −27,12]) 

 5.8 ×
10$& 
 (8.6 ×
10$%) 

pSTGb5 

left 

posterior 

superior 

temporal 

gyrus 

 𝑏(")  5.5 
 18 
 (14) 

 [−66, −21, 9] 
 ([−66, −21, 9]) 

 2.3 ×
10$& 
 (2.6 ×
10$&) 

DLPFCs3 

left 

dorsolateral 

prefrontal 

cortex 

 𝑠(")  3.3 
 33 
 (37) 

 [−51, 27, 24] 
 ([−51, 27, 24]) 

 1.9 ×
10$& 
 (7.7 ×
10$') 

Cerebs5 
right 

cerebellum 
 𝑠(")  5.5 

 36 
 (19) 

 [36, −63, −21] 
 

([36, −69, −18]) 

 1.4 ×
10$' 
 (5.0 ×
10$&) 

aSTGv5 

left anterior 

superior 

temporal 

gyrus 

 𝑣(")  5.5 
 15 
 (4) 

 [−60, −9, 15] 
 ([−60, −9, 15]) 

 4.9 ×
10$% 
 (3.7 ×
10$&) 

 

Table 2. Specification of the brain signals of the latent variables of BMBU. The 

results outside of the parentheses indicate the main result obtained by using the 

searchlight composed of 123 voxels. The values inside of the parentheses are the 

results calculated by using different size of searchlight (87 voxels).  
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(𝑏 ↮ 𝑠 Fig. 5G; #5); 𝑦> must be negatively regressed onto 𝑣 (𝑏 → 𝑣 
Fig. 5G; #6) but not when 𝑣 is orthogonalized to 𝑏 because such 

 
Figure 6. Brain signals of the latent variables of BMBU. A, Loci of the brain 

signals. The brain regions where BOLD activity patterns satisfied all the 

regressions implied by the causal structure of the variables in BMBU are overlaid 

on the inflated cortex and the axial view of the cerebellum of the template brain. 

B, Within-trial time courses of the satisfied regressions in number. The within-

trial task phases are displayed (top panel) to help appreciate when the brain 

signals become pronounced, with the hemodynamic delay (4~5 s) in BOLD 

(bottom three panels). C, The coefficients and the 95% CIs of the generalized 

linear mixed effect model (GLMM) of the decoded variable averaged across the 

searchlights of each ROI on the time points on which each ROI was detected. The 

regression index indicates the index specified in Table 1. (B,C) The colors of the 

symbols and lines correspond to those of the brain regions shown in A.  
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orthogonalization removes the influence of 𝑏 on 𝑣 (#7); 𝑦> must be 

negatively regressed onto 𝑑 (𝑏 → 𝑣 → 𝑑 Fig. 5G; #8) but not onto 𝑢 

because 𝑢 is not linearly correlated with 𝑏 (𝑏 → 𝑣 → 𝑢 is blocked by 

the non-linear relationship between 𝑢 and 𝑣 Fig. 5G; #9). In 

addition, according to the causal relationship of the latent variables 

with the stimuli and choices (Fig. 5D-G),  𝑦> must satisfy the 

following multiple linear regression model defined by the observable 

variables �𝑆(-), 𝑆(-&%), 𝑆(-&,), 𝐷(-&%), 𝐷(-&,)�:  𝑦> must not be regressed 

onto the current stimulus (#10) because 𝑏 is independent of 𝑆(-); 𝑦> 

must be positively regressed onto the 1-back stimulus for sure (#11) 

because 𝑏 firmly shifts toward 𝑆(-&%); the regression of 𝑦> onto the 

2-back stimulus must be weaker than that onto the 1-back stimulus 

(#12) due to memory decay (Fig. 5D) (accordingly, the sign of the 

regression coefficient of 𝑆(-&,) was defined as the complementary 

part of that of 𝑆(-&%)); 𝑦> must not be regressed onto previous 

decisions because previous decisions do not have any influence on 𝑏 
(#13,14). We did not include 𝐷(-) as a regressor in the multiple 

regression because 𝐷(-) may induce a spurious correlation between 

𝑏 and 𝑠 by controlling the collider (common offspring) variable 𝑣 
(Elwert and Winship 2014) (𝑏 → 𝑣 ← 𝑠 Fig. 5G) via its relationship 

with 𝑣 (𝑣 → 𝑑 Fig. 5G). 

As a result, the brain signals that survived the exhaustive 

regression tests clustered in six separate regions (Fig. 6; Table 2). 

The signal of 𝑏 appeared in three separate regions at different time 

points relative to stimulus onset, a region in the left inferior parietal 

lobe at 1.1s (IPLb1) and two regions in the left posterior superior 

temporal gyrus at 3.3 and 5.5s (pSTGb3, pSTGb5). The signal of 𝑠 
appeared in the left dorsolateral prefrontal cortex at 3.3s (DLPFCs3) 

and in the right cerebellum at 5.5s (Cerebs5). The signal of 𝑣 
appeared in the left anterior superior temporal gyrus at 5.5s 

(aSTGv5). To ascertain the robustness of the neural representations 

of the latent variables in these six areas, we repeated the searchlight 

decoding analysis using a different searchlight size (87 voxels, which 

is smaller than the original one, 123 voxels). Despite the change in  
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searchlight size, we could detect the clusters that survived all 

regression tests around the six regions (Table 2).  

Lastly, we investigated whether the probable causal 

structures between the brain signals of 𝑏, 𝑠, and 𝑣 are consistent 

with BMBU in the following two critical aspects. First, the brain 

signal of 𝑣 should be concurrently affected by the brain signals of 𝑏  
and 𝑠: 𝑏 → 𝑣 ← 𝑠. Second, there should be no causal connection 

between 𝑏 and 𝑠 because BMBU is built upon the assumption that 𝑏 
and 𝑠 are independent of one another (i.e., 𝑏 and 𝑠 are biased by 

previous and current stimuli, respectively): 𝑏 ↮ 𝑠 (Fig. 5G). To 

examine these aspects, we investigated all of the three-node 

networks (N=162) composed of the brain signals of 𝑏, 𝑠, and 𝑣, and 

calculated their Bayesian Information Criterion (BIC) (see Materials 

and Methods). 

The outcomes of BIC evaluation were consistent with BMBU. 

First, out of the 162 possible causal graphs, the smallest (best) BIC 

value was found for ‘pSTGb5→aSTGv5 ←Cerebs5’ (Fig. 7). Second, We 

found that any graph with the causal arrows between 𝑏(-) and 𝑠(-) is 

significantly less likely than the best causal graph (BIC>2; shown at 

the bottom of Fig. 7) (Kass and Raftery 1995). The results indicate 

that the relationship between the identified brain signals faithfully  

 
Figure 7. The probable causal structures between the brain signals of the latent 

variables in BMBU. For each row, the value in the left indicates the relative BIC 

scores of the causal structures in reference to the most probable one at the top.  
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Figure 8. Origin of the covariation between the current choice and the brain 

signals of the latent variables in BMBU. A, The causal structure of the variables 

implied by the boundary-updating hypothesis. The brain signal of the decision 

variable (𝑣(2)) is influenced by the brain signal of the inferred class criterion (𝑏(2)), 

brain signal of the inferred stimulus (𝑠(2)), and the unknown sources (𝑈4). In turn, 

𝑏(2) is influenced by the previous stimulus (𝑆(256)) and the unknown sources (𝑈<) 

whereas 𝑠(2) is influenced by the current stimulus (𝑆(2)) and the unknown sources 

(𝑈=). Lastly, 𝑣(2) influences the current choice (𝐷(2)). If the boundary-updating 

hypothesis is true, part of the causal influence of 𝑏(2) on 𝐷(2) must originate from 

𝑆(256), as indicated by the connected chain of the dotted arrows. B-G, The average 

marginal effects (AMEs) of the brain signals on 𝐷(2), with the brain signals of 𝑏(2) 

from pSTGb5 (B), IPLb1 (C), and pSTGb3 (D), 𝑠(2) from DLPFCs3 (E), and Cerebs5 

(F), and 𝑣(2) from aSTGv5 (G). In each panel, the influences of the given brain 

signal on 𝐷(2) that can be ascribed to 𝑆(256) and 𝑆(2) were assessed by checking i) 

whether the AME of the given brain signal on 𝐷(2) (left) is significantly reduced or 
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not after controlling the influence of 𝑆(256) (second from the left) and 𝑆(2) (second 

from the right), respectively, or ii) whether the AME of 𝑉1 on 𝐷(2) controlling the 

influence of both 𝑆(256) and 𝑆(2) (right) significantly increased or not after only 

controlling the influence of 𝑆(2) (second from the right) and 𝑆(256) (second from 

the left), respectively. The colors of the bars correspond to those of the brain 

regions shown in Fig. 6A. Asterisks indicate the statistical significance (*, 𝑃 <
0.05; **, 𝑃 < 0.01; ***, 𝑃 < 0.001), and “n.s.” stands for the non-significance of the 

test. The 95% CIs of the mean across participants are indicated by the vertical 

error bars.  

 

reflects the causal relationship of the latent variables implied by 

BMBU. 

 

The variability of the class-boundary brain signals associated with 

previous stimuli contributes to the variability of choice  

Finally, with the brain signals that represent the class boundary 

(IPLb1, pSTGb3, and pSTGb5) in our hands, we verified the boundary-

updating hypothesis with the rationale and analysis identical to those 

for the verification of the sensory-adaptation hypothesis. 

 We stress that the respective associations of the brain signal 

of 𝑏 with the previous stimulus (𝑆(-&%); the eleventh row of Table 1) 

and with the variable 𝑑 (the eighth row of Table 1) do not 

necessarily imply that the variability of the brain signal of 𝑏 that is 

associated with 𝑆(-&%) contributes to the choice variability (as implied 

by the causal information flows through 𝑏 depicted in Fig. 8A), for 

the same reasons mentioned when verifying the sensory-adaptation 

hypothesis. To verify such contribution, we need to compare the 

AME of the brain signals of 𝑏 on the current choice (𝐷(-)) (pSTGb5→

𝐷(-)) to the AME of the brain signals of 𝑏 on 𝐷(-) with 𝑆(-&%) 

controlled (𝑆(-&%) ↛pSTGb5→ 𝐷(-)).   

As anticipated, the AME of pSTGb5 on 𝐷(-) was negatively 

significant across participants (𝑡(%=) = −4.8, 𝑝 = 1.7 × 10&P;  Fig. 8B, 

the first bar). Importantly, unlike the size-encoding signal in V1, the 

negative AME significantly weakened across participants when the 

contribution of 𝑆(-&%) was controlled (𝑡(%=) = 2.8, 𝑝 = 0.012; Fig. 8B, 

the change of the first to second bars). On the other hand, controlling 
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𝑆(-) did not affect the AME of pSTGb5 on 𝐷(-) at all (𝑡(%=) = 0.29, 𝑝 =

0.77; Fig. 8B, the change of the first to third bars), which is 

consistent with the absence of the contribution of 𝑆(-) on 𝑏 in the 

causal relationship defined by BMBU (Fig. 5G). Likewise, the null 

effect of 𝑆(-) on the AMEs of pSTGb5 on 𝐷(-) was confirmed by the 

insignificant difference between the AME with 𝑆(-&%) controlled and 

that with 𝑆(-) and 𝑆(-&%) both controlled (𝑡(%=) = −0.31, 𝑝 = 0.77; Fig. 

8B, the change of the fourth to second bars). Also, the effect of 

𝑆(-&%) on the AMEs of pSTGb5 on 𝐷(-) was confirmed by the 

significant difference between the AME with 𝑆(-&%) controlled and 

that with 𝑆(-) and 𝑆(-&%) both controlled (𝑡(%=) = −2.7, 𝑝 = 0.014; Fig. 

8B, the change of the fourth to third bars).  

The same patterns were also observed for IPLb1 and pSTGb3 

(Fig. 8C,D). Especially, the AMEs of pSTGb3 and IPLb1 on 𝐷(-) both 

weakened after controlling 𝑆(-&%) (pSTGb3: 𝑡(%=) = 2.2, 𝑝 = 0.046, Fig. 

8D, the change of the first to second bars; IPLb1: 𝑡(%=) = 2.1, 𝑝 =

0.0503, Fig. 8C, the change of the first to second bars), but not after 

controlling 𝑆(-) (pSTGb3: 𝑡(%=) = −0.57, 𝑝 = 0.58, Fig. 8D, the change of 

the first to third bars; IPLb1: 𝑡(%=) = 0.22, 𝑝 = 0.83, Fig. 8C, the change 

of the first to third bars). The null effect of 𝑆(-) was confirmed by 

the insignificance difference between the AME with 𝑆(-&%) controlled 

and that with 𝑆(-) and 𝑆(-&%) both controlled (pSTGb3: 𝑡(%=) = 0.43, 𝑝 =

0.67, Fig. 8D; IPLb1: 𝑡(%=) = −0.41, 𝑝 = 0.69, Fig. 8C, the change of the 

fourth to second bars). Also, the effect of 𝑆(-&%) was confirmed by 

the significant or marginally significant differences between the AME 

with 𝑆(-&%) controlled and that with 𝑆(-) and 𝑆(-&%) both controlled 

(pSTGb3: 𝑡(%=) = −1.9, 𝑝 = 0.081, Fig. 8D, the change of the fourth to 

third bars; IPLb1: 𝑡(%=) = −2.2, 𝑝 = 0.045, Fig. 8C, the change of the 

fourth to third bars). Put together, the AME analyses suggest that the 

contribution of the class boundary to the current choice is 

significantly ascribed to the previous stimuli supporting the 

boundary-updating hypothesis on repulsive bias.  

Having found the evidence supporting the boundary-updating 

hypothesis in the brain signals of 𝑏, we also carried out the same 
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AME analysis on the signals of 𝑠 and 𝑣 below. Given the causal 

structure of 𝑏, 𝑠, and 𝑣, the validity of the boundary-updating 

hypothesis will be reinforced if the brain signals of 𝑠 and 𝑣 also turn 

out acting as fulfilling their causal roles defined by BMBU. According 

to BMBU, the contribution of 𝑠 to 𝐷(-) must originate not from 𝑆(-&%) 

but from the 𝑆(-) (the causal route indicated by the solid arrows in 

Fig. 8A). In line with this implication, the AMEs of DLPFCs3 and 

Cerebs5 on 𝐷(-) were both significant across participants (𝑡(%=) = 3.8, 

𝑝 = 0.0014 for DLPFCs3; 𝑡(%=) = 3.3, 𝑝 = 0.0041 for Cerebs5; Fig. 8E,F, 

the first bars) and significantly decreased after controlling 𝑆(-) 

(𝑡(%=) = −4.4, 𝑝 = 4.1 × 10&P for DLPFCs3; 𝑡(%=) = −3.7, 𝑝 = 0.0019	for 

Cerebs5; Fig. 8E,F, the change of the first to third bars) but not after 

controlling 𝑆(-&%) (𝑡(%=) = 1.2, 𝑝 = 0.26 for DLPFCs3; 𝑡(%=) = 0.69, 𝑝 =

0.50	for Cerebs5; Fig. 8E,F, the change of the first to second bars). 

Likewise, the AMEs of DLPFCs3 and Cerebs5 on 𝐷(-) with 𝑆(-&%) 

controlled were both larger than those with both 𝑆(-) and 𝑆(-&%) 

controlled (𝑡(%=) = 4.3, 𝑝 = 0.0050 for DLPFCs3; 𝑡(%=) = 3.8, 𝑝 =

0.0016	for Cerebs5; Fig. 8E,F, the change of the fourth to second 

bars), whereas the AMEs of DLPFCs3 and Cerebs5 on 𝐷(-) with 𝑆(-) 

controlled did not differ from those with both 𝑆(-) and 𝑆(-&%) 

controlled (𝑡(%=) = −0.92, 𝑝 = 0.37 for DLPFCs3; 𝑡(%=) =	−0.057, 𝑝 =

0.96	for Cerebs5; Fig. 8E,F, the change of the fourth to third bars). Put 

together, the AME analyses suggest that the contribution of the 

inferred stimulus to the current choice is significantly ascribed to the 

current but not to the previous stimuli supporting the boundary-

updating hypothesis. 

On the contrary, the contribution of 𝑣 to 𝐷(-) must originate 

not only from 𝑆(-&%) but also from 𝑆(-) (Fig. 8A). In line with this 

implication, the AME of aSTGv5 on 𝐷(-) was significant (𝑡(%=) = 5.1, 𝑝 =

9.7 × 10&F; Fig. 8G, the first bar) and significantly decreased both 

after controlling 𝑆(-&%) (𝑡(%=) = −2.8, 𝑝 = 0.012; Fig. 8G, the change of 

the first to second bars) and after controlling 𝑆(-) (𝑡(%=) = −4.1, 𝑝 =

7.5 × 10&P) (Fig. 8G, the change of the first to third bars). Likewise, 

the AME of aSTGv5 on 𝐷(-) with controlled both 𝑆(-) and 𝑆(-&%) 
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significantly increased both after controlling 𝑆(-&%) (𝑡(%=) = 4.1, 𝑝 =

6.7 × 10&P; Fig. 8G, the change of the fourth to second bars) and after 

controlling 𝑆(-) (𝑡(%=) = 2.8, 𝑝 = 0.012; Fig. 8G, the change of the fourth 

to third bars). Put together, the AME analyses suggest that the 

contribution of the decision variable to the current choice is 

significantly ascribed to both current and the previous stimuli 

supporting the boundary-updating hypothesis. 

On a separate note, the six loci of the brain signals of 𝑏,	𝑠, 
and 𝑑 were defined by applying the conservative criterion that any 

given cluster satisfying all the regression tests (Table 1) should be 

the same or larger than 12. We note that there was a focal region in 

the right-hemisphere medial visual cortex that survived the 

regression tests for 𝑠(-) on the 3 seconds after stimulus onset (VCs3) 

but failed to reach the threshold size (N voxels = 6).  

To examine the neural loci of the inferred stimulus further, 

we checked the possibility that VCs3 might carry the signal via which 

the current stimulus (𝑆(-)) contributes to the current choice (𝐷(-)). 

The AME of VCs3 on 𝐷(-) was significant (𝑡(%=) = 3.0, 𝑝 = 0.0074), but 

no longer when 𝑆(-) was controlled (𝑡(%=) = 1.6, 𝑝 = 0.14), which 

indicates that the noise variability of VCs3 is not tightly linked to the 

variability of the current choice. However, the AME of DLPFCs3 on 

𝐷(-) with 𝑆(-) controlled was significant (𝑡(%=) = 2.5, 𝑝 = 0.023; Fig. 8E, 

the third bar) and that of Cerebs5 was marginally significant (𝑡(%=) =

2.0, 𝑝 = 0.063; Fig. 8F, the third bar). The results indicate that 

DLPFCs3 and Cerebs5 carry the signal via which the current stimulus 

(𝑆(-)) contributes to the current choice (𝐷(-)), whereas such 

contribution is not evident for VCs3. 

Furthermore, to test the sensory-adaptation hypothesis, we 

examined whether VCs3 carries the stimulus signal via which the 

previous stimulus (𝑆(-&%)) contributes to the current choice (𝐷(-)). 

However, the AME of VCs3 on 𝐷(-) did not decrease when the 

contribution of 𝑆(-&%) was controlled (𝑡(%=) = 0.28, 𝑝 = 0.78). Likewise, 

the AME of VCs3 on 𝐷(-) with 𝑆(-) controlled did not differ from that 

with both 𝑆(-&%) and 𝑆(-) controlled (𝑡(%=) = 0.70, 𝑝 = 0.49). These 
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results corroborate the AME analyses on 𝑉1 in Experiment 1 (Fig. 

4D-F), confirming that the previous stimulus is unlikely to contribute 

to the current choice via the stimulus-related signals in the early 

visual cortex.  

 In sum, the results suggest that neural signals of 𝑏 and 𝑠 
transferred previous and current stimuli to current decisions, 

respectively, and the neural signal of 𝑣 transferred both previous 

and current stimuli to current decisions as BMBU implies, which is 

consistent with the boundary-updating hypothesis. 

 

2.4 Discussion 
 

Here, we explored the two possible origins of repulsive bias, 

sensory-adaptation vs boundary-updating, in binary classification 

tasks. Although 𝑉1 adapted to the previous stimulus, its variability 

associated with the previous stimulus failed to contribute to the 

choice variability. By contrast, the variability associated with the 

previous stimulus in the boundary-representing signals in IPL and 

pSTG contributed to the choice variability. These results suggest 

that the repulsive bias in binary classification is likely to arise as the 

internal class boundary continuously shifts toward the previous 

stimulus.  

 

Dissociation between sensory-adaptation in V1 and repulsive bias 

What makes sensory-adaptation a viable origin of repulsive bias is 

not its mere presence but its contribution to repulsive bias. The 

presence of sensory-adaptation in V1 has been firmly established 

(Clifford, Webster et al. 2007, Kohn 2007, Solomon and Kohn 2014, 

Weber, Krishnamurthy et al. 2019) and is the necessary premise for 

the sensory-adaptation hypothesis to work. What matters is whether 

the trial-to-trial variability of V1 due to such adaptation exerts its 

influence on the current choice. Such an influence was not observed 

in our data. 

 From a general perspective, our findings demonstrate a 

dissociation between the impact of previous decision-making 
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episodes on the sensory-cortical activity and the contribution of that 

sensory-cortical activity to decision-making behavior. In this regard, 

V1 in the current work acts like the binocular-disparity-encoding 

signal of V2 neurons in a recent single-cell study on monkeys 

(Lueckmann, Macke et al. 2018), where, despite the impact of the 

history on V2 activity, the variability of V2 activity associated with 

the history failed to contribute to the history effects on decision-

making behavior. Similarly, our findings also echo the failure of the 

sensory-adaptation of V1 in influencing the visual orientation 

estimation in an fMRI study on human participants (Sheehan and 

Serences 2022). There, while sensory-adaptation was evident along 

the hierarchy of visual areas including V1, V2, V3, V4 and IPS, the 

history effect of the previous stimulus on the current estimation 

behavior was opposite to that expected from sensory-adaptation, 

which suggests that a downstream mechanism compensates for 

sensory-adaptation. Such a mechanism was also called for when the 

single-cell-recording work on monkeys tried to explain their 

intriguing adaptation effects found along the visual processing 

hierarchy (McLelland, Ahmed et al. 2009). For instance, static visual 

stimuli engendered prolonged—on the order of tens of seconds—
adaptation in the lateral geniculate nucleus but the adaptation in V1 

was paradoxically short-lived —on the order of hundred 

milliseconds. 

 

The representations of the class boundary in IPL and pSTG 

To account for the repulsive bias in binary classification, previous 

studies proposed descriptive models based on the common idea that 

the internal boundary continuously shifts towards the previous 

stimuli (Treisman and Williams 1984, Lages and Treisman 1998, 

Lages and Treisman 2010, Dyjas, Bausenhart et al. 2012, Raviv, 

Lieder et al. 2014, Norton, Fleming et al. 2017, Hachen, Reinartz et 

al. 2021). However, the neural concomitant of class-boundary 

updating has rarely been demonstrated. 

To our best knowledge, this issue has so far been addressed 

by one fMRI work (White, Mumford et al. 2012), which reported the 
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class-boundary signal in the left inferior temporal pole. However, 

several aspects of this work make it hard to consider the reported 

brain signal to represent the class boundary inducing repulsive bias. 

First, they experimentally manipulated the class boundary in a block-

by-block manner. Thus, it is unclear whether the reportedly 

boundary-representing signal was updated by previous stimuli trial-

to-trial, which is required to induce repulsive bias. Second, the class 

boundary size correlated with the average stimulus size block-by-

block in their experiments. Due to this confounding factor, one 

cannot rule out the possibility that the reported brain signal reflects 

the sensory signal associated with the average stimulus size induced 

by the current stimulus. By contrast, the brain signal of the class 

boundary in our work is free from these methodological limitations, 

because it is updated on a trial-to-trial basis and survived the 

rigorous set of tests, including those addressing possible 

confounding variables (Table 1). In this sense, the current work can 

be considered the first demonstration of the brain signals 

representing the class boundary that is dynamically updated in such a 

way that it can account for repulsive bias. 

We emphasize that we developed BMBU to infer the trial-to-

trial latent states of the class boundary used by human observers for 

the purpose of verifying the boundary-updating hypothesis on 

repulsive bias. In this sense, BMBU should not be taken as a unified 

account of the history effects reported by previous studies. For 

example, BMBU does not account for the influence of previous 

decisions on subsequent decision-making, another significant 

contributor to the history effects (Akaishi, Umeda et al. 2014, Urai 

and Donner 2022). To be sure, we are open to the possibility that 

there might be a unified mechanism relating the previous—and 

current, as well—stimuli and previous decisions to the current 

decision in an integrative manner. To incorporate the previous 

decisions into such a unified mechanism, it is important to distinguish 

the influence of the previous choice from that of the previous motor 

response, which we could not do in the current work because 

choices and motor responses covaried. In this regard, the weak or 
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significant negative regression coefficient of the previous decision in 

Experiment 1 (Fig. 3C, 5A) could have been reflective of the negative 

influence of the previous motor response, as previously suggested 

(Zhang and Alais 2020). 

 

The representations of inferred stimuli in DLPFC and cerebellum 

The brain signals of the inferred ring size (𝑠(-)) in DLPFC and 

cerebellum share many features with	𝑉1 in that their covariation with 

the current choice did not decrease after controlling the previous 

stimulus but decreased after controlling the current stimulus (Fig. 

4D-F; Fig. 8E,F). This commonality suggests that DLPFC, 

cerebellum, and 𝑉1 alike route the flow of information originating 

from the current stimulus. Then, what made 𝑉1 ineligible for the 

brain signal of 𝑠(-)?  
 It is notable that BMBU treats 𝑠(-) as the random variable 

that has the noise variability in addition to being influenced by the 

physical stimulus (Fig. 8A). This means that the brain signal of 𝑠(-) is 

supposed to be associated with the choice even when the current 

stimulus was controlled because the noise variability can also 

influence the current choice, as captured by the concept of ‘choice 

probability’ (Macke and Nienborg 2019). However, unlike DLPFC and 

cerebellum, the AME of 𝑉1 on the current choice disappeared after 

controlling the current stimuli, which disqualifies 𝑉1 as the brain 

signal of 𝑠(-). In line with this, the AME of VCs3 on 𝐷(-) also 

disappeared after 𝑆(-) was controlled in Experiment 2, which again 

disqualifies VCs3 as the valid brain signal of 𝑠(-).  

 The residence of the inferred—i.e., subjective or perceived—
stimulus representation in DLPFC and cerebellum, instead of the 

visual cortex, seems consistent with previous reports. DLPFC and 

cerebellum have been well known for their critical involvement in 

visual awareness (Gao, Parsons et al. 1996, Rees, Kreiman et al. 

2002, Dehaene and Changeux 2011, Lau and Rosenthal 2011, 

Baumann, Borra et al. 2015). By contrast, the visual cortex is likely 

to be involved more in a faithful representation of physical input than 
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its subjective representation (Renart and Machens 2014), consistent 

with the previous findings of our group (Lee, Blake et al. 2007, Choe, 

Blake et al. 2014). 

 

The representation of the decision variable in aSTG 

Whereas previous single-cell studies have reported that the decision 

variable is represented in the prefrontal cortex (Kim and Shadlen 

1999, Hebart, Schriever et al. 2014, Hanks, Kopec et al. 2015), we 

identified the brain signal of 𝑣 only in aSTG but not in PFC. This 

inconsistency may reflect the poor spatial and temporal resolution of 

fMRI measurements. For example, if any given signal of interest is 

encoded in the sequential or dynamical activity patterns across a 

neural population, as recently demonstrated theoretically (Orhan and 

Ma 2019) or empirically (Wutz, Loonis et al. 2018), such signals 

cannot be decoded from fMRI responses. Alternatively, the 

inconsistency may have been a result of the previous studies not 

taking into account the history effect in defining the decision 

variable, in contrast to our study which did, given the prevalence of 

diverse history effects in various decision-making tasks (Fründ, 

Wichmann et al. 2014, Lak, Hueske et al. 2020). In this scenario, the 

brain signal of the inferred stimulus in DLPFC in our study hints at 

the possibility that the previously reported decision variable signal in 

PFC could have reflected the inferred stimulus, which is closely 

associated with the decision variable when the decision boundary is 

assumed to be fixed (Gold and Shadlen 2007). Understanding the 

functional role of DLPFC in perceptual decision-making seems to 

require further future studies, especially those in which the history 

effects are considered in decision variable definition while neural 

responses are probed at a sufficiently high spatiotemporal resolution. 

  



 

 61 

Chapter 3 

 

Boundary updating as a source of history effect 

on decision uncertainty 

 

 

Boundary updating, a process of adapting the decision boundary to 

previous stimuli, can exert a historical influence on binary choices. 

However, its influence on decision uncertainty as a historical source 

has been overlooked. Here, we show that boundary updating also 

confers a history effect on decision uncertainty, elevating decision 

uncertainty as current choices become increasingly congruent with 

previous stimuli, as evidenced by changes in its behavioral, neural, 

and physiological correlates. 

 

3.1 Introduction 
 

Stimulus and boundary are the two pillars of binary decision-making, 

both affecting observers’ choices (Treisman and Williams 1984, 

Lages and Treisman 1998, Morgan, Watamaniuk et al. 2000, 

Benjamin, Diaz et al. 2009, Lages and Treisman 2010, Raviv, Lieder 

et al. 2014, Norton, Fleming et al. 2017, Hachen, Reinartz et al. 2021, 

Lee, Lee et al. 2023). One pillar, the boundary, is seldom presented 

explicitly at the time of decision and, thus, needs to be internally 

formed by observers (Treisman and Williams 1984, Lages and 

Treisman 1998, Raviv, Lieder et al. 2014, Hachen, Reinartz et al. 

2021, Lee, Lee et al. 2023). This internal boundary tends to be 

continually updated to shift toward previous stimuli (Treisman and 

Williams 1984, Lages and Treisman 1998, Raviv, Lieder et al. 2014, 

Hachen, Reinartz et al. 2021, Lee, Lee et al. 2023) (Fig. 9A-1), 

making binary choices dependent on what has come before. This 

boundary updating accounts for a history effect on choice called 

‘repulsive bias,’ where the current choice is biased away from  
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Figure 9. The pre-congruence effect on decision uncertainty. A, Schematic 

illustration of boundary updating (A-1), decision uncertainty (A-2), and the pre-

congruence effect in decision uncertainty (A-3). According to the boundary 

updating account, the boundary (solid vertical black bars) is drawn towards 

previous stimuli (dotted vertical black bars) (A-1). Making a decision is more 

difficult as the boundary and the stimulus is closer (A-2). The boundary attraction 

to previous stimuli brings the pre-congruence effect to decision uncertainty (A-

3). The horizontal baseline bar indicates the stimulus ranges that are smaller 

(blue) or larger (orange) than the boundary. The dotted blue and orange vertical 

bars indicate the average stimulus sizes smaller and larger than the boundary, 

respectively. The boundary is initially unbiased on the trial 𝑡 − 1 (A-3, top). As a 

result, distances from the boundary to the average stimulus sizes of ‘large’ and 

‘small’ choices are equivalent. However, if a large stimulus was sampled on the 
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trial 𝑡 − 1 (A-3, middle), then the boundary is biased to the large side at the trial 

𝑡 (A-3, bottom). As a result, the distance between the boundary and the average 

‘large’ stimulus gets shorter, while the distance to the average ‘small’ stimulus 

becomes longer. This leads to an increase in decision uncertainty for 'large' 

choices and a decrease in decision uncertainty for 'small' choices after seeing a 

large stimulus in previous trials. B, Task structure. C,D, The repulsive bias 

demonstrated in psychometric curves (C) and logistic regressions (D). The 

proportion of ‘large’ choices are plotted against previous stimuli (𝑆256) conditioned 

on current stimuli (𝑆2) in black lines for humans and in gray for BMBU (C). The 

negative slopes of the curves indicate the repulsive bias. The coefficients in the 

multiple logistic regression of current choices (𝐶2) onto current and previous 

stimuli (𝑆25:) and previous choices (𝐶25:) are plotted in circles and bars for humans 

and BMBU, respectively (D). The significant coefficients of previous stimuli, not 

previous choices, indicate the repulsive bias. E,F, The pre- and the current-

congruence effects in decision uncertainty that are simulated by BMBM, shown in 

psychometric curves (E) and linear regressions (F) based on simulated choices. 

The simulated decision uncertainty increases with the congruence between 

current choices and previous stimuli (𝑆256 ∗ 𝐶2) but decreases with the congruence 

between current choices and current stimuli (𝑆2 ∗ 𝐶2), the former and latter 

implying the pre- and the current-congruence effects on decision uncertainty, 

respectively (E). The coefficients in the multiple linear regression of the 

simulated decision uncertainty onto the congruences of current choices with 

previous stimuli (𝑆25: ∗ 𝐶2) and with previous choices (𝐶25: ∗ 𝐶2) (F). The 

pronounced coefficients of the congruence between current choices and past 

stimuli (purple bars) implies the pre-congruence effect. Here and thereafter, error 

bars indicate 95% confidence interval of the means, and asterisks indicate P 

values of two-sided Student’s t-test: ∗< 0.05, ∗∗< 0.01, ∗∗∗< 0.001. 

 

previous stimuli on a trial-to-trial basis (Treisman and Williams 

1984, Lages and Treisman 1998, Bosch, Fritsche et al. 2020, 

Hachen, Reinartz et al. 2021, Lee, Lee et al. 2023) (Fig. 9A-3). 

Critically, this boundary updating is supposed to confer a 

history effect also on ‘decision uncertainty,’ a cognitive quantity that 

increases as the stimulus and the boundary come nearer (Grinband, 

Hirsch et al. 2006, Kepecs, Uchida et al. 2008, White, Mumford et al. 

2012, Hebart, Schriever et al. 2014) (Fig. 9A-2). It should be noted 

that decision uncertainty differs from ‘sensory uncertainty,’ which is 

influenced solely by the noise present in stimuli (Pouget, 

Drugowitsch et al. 2016). Suppose the boundary was neutral, and a 

large stimulus was presented in the last trial (Fig. 9A-3, top and 
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middle). The boundary would then be reset on the large side 

according to the boundary updating (Treisman and Williams 1984, 

Lages and Treisman 1998, Raviv, Lieder et al. 2014, Hachen, 

Reinartz et al. 2021, Lee, Lee et al. 2023), bringing itself nearer to 

the stimuli associated with the ‘large’ choice but farther from those 

associated with the ‘small’ choice (Fig. 9A-3, bottom). Consequently, 

having previously viewed large stimuli, observers’ ‘large’ choices 

will be accompanied by high uncertainty, whereas their ‘small’ 
choices by low uncertainty. Generally put, the more congruent the 

current choice is with previous stimuli, the more uncertain it is. We 

shall call this boundary-induced history effect on decision 

uncertainty ‘pre-congruence effect.’ 
The pre-congruence effect is straightforward but has not 

been established empirically. The neglect of this obvious source of 

the variability in decision variability is odd, given the fundamental 

roles of decision uncertainty in adaptive human behavior such as 

volatility monitoring (Behrens, Woolrich et al. 2007), learning from 

errors(Drugowitsch, Mendonça et al. 2019), and executive control 

(Shenhav, Cohen et al. 2016), and its wide-ranging associations with 

behavioral (response time (Grinband, Hirsch et al. 2006, Urai, Braun 

et al. 2017, Braun, Urai et al. 2018, Fietz, Pöhlchen et al. 2022)), 

physiological (pupil-size (Urai, Braun et al. 2017, Fietz, Pöhlchen et 

al. 2022)), and neural (salience network (Brown and Braver 2005, 

Grinband, Hirsch et al. 2006, Behrens, Woolrich et al. 2007, Urai, 

Braun et al. 2017, Fietz, Pöhlchen et al. 2022)) measures. Here, we 

probed human response time (RT), pupil size, and neural activity to 

ascertain the presence of the pre-congruence effect and assess its 

contribution to the variability in decision uncertainty.   

 

3.2 Materials and Methods 
 

Behavior data acquisition 

In the main results, we utilized two previously published datasets 

from our lab (Choe, Blake et al. 2014, Choe, Blake et al. 2016, Lee, 

Lee et al. 2023)The fMRI dataset (Lee, Lee et al. 2023) consisted of 
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18 participants (9 females) aged 20-30 years, while the eye tracking 

dataset (Choe, Blake et al. 2014, Choe, Blake et al. 2016) comprised 

23 participants (11 females) aged 18-36 years. For the 

supplementary results, we used another dataset from our lab (Lee, 

Lee et al. 2023) that included 30 participants (13 females) aged 18-

30 years. The experimental procedures were approved by the 

Research Ethics Committee of Seoul National University, and all 

participants provided informed consent and were unaware of the 

study's objectives. 

 

Task procedure 

The main data set used the following task procedure (Fig. 9B): 

Participants were instructed to fixate at the center of the screen and 

classify a brief (0.3s) ring-shaped stimulus as either ‘small’ or 

‘large’ within 1.5s after stimulus onset by pressing the left or right 

key, respectively. The timing and identity of each key press were 

recorded. Trials were separated by 13.2s and participants were 

given feedback on their performance after each run of 26 trials.  

Before the main runs, participants completed 54 practice trials 

followed by 180 threshold-calibration trials. During the threshold-

calibration trials, which were separated by 2.7s, participants 

received trial-to-trial feedback based on the boundary with a radius 

of 2.84°. A Weibull function was fit to the psychometric curves 

obtained from the threshold-calibration trials using a maximum-

likelihood procedure. The size threshold ∆° (i.e., the size difference 

between medium ring and large or small ring) associated with a 

70.7% correct proportion was estimated from the fitted Weibull 

function. The mean and standard deviation of the estimated size 

threshold were 0.023 and 0.0078, respectively. One of three 

estimated ring sizes (2.84 − ∆°, 2.84°, 2.84 + ∆°) was shown on each 

trial. Participants had extensive training on the task before 

participating in the main experiments. 

Two of the three supplementary datasets were collected from 

58 participants, who performed pitch and ring-size classification 

tasks on separate sessions, respectively, with 315 trials using fine-
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grained stimuli randomly sampled from normal distributions with an 

inter-trial interval of 2s and without trial-to-trial feedback for each 

task. The other dataset was collected from 30 participants, who 

performed the same classification task over 5 daily sessions with 

1,700 trials using ring stimuli of 5 discrete sizes 

(3.84°, 3.92°, 4.00°, 4.08°, 4.16°), with trial-to-trial feedback and an 

inter-trial interval of 2.5s. 

 

Estimation of decision uncertainty 

By fitting the model parameters of BMBU (Θ = {𝜇3, 𝜎3, 𝜎4, 𝜅}) 
separately for each human participant, we were able to create a 

Bayesian observer tailored to each individual. By conducting the 

experiment again with these Bayesian observers using the same 

stimulus sequences presented to their human counterparts, we 

obtained a sufficient number (106 repetitions) of simulated choices, 

𝑐-, and decision uncertainty values, 𝑢-. These values were 

determined based on the corresponding number of stimulus 

estimates, 𝑠-, and boundary estimates, 𝑏-, for each Bayesian 

observer. Finally, we took the averages across those 106 simulations 

as the final outcomes. When estimating 𝑢- for the observed choice 

𝐶-, we only included simulation outcomes where the simulated choice 

𝑐- matched the observed choice 𝐶-.  
 

Definition of congruence 

The term 'congruence' refers to the product of the variable of 

interest and the current choice, where choices were represented as 

1 for 'large' and -1 for 'small' and stimuli were represented as 1, 0, 

and -1 for large, medium, and small sizes, respectively. For instance, 

if the current choice was 'large (1)' and the previous stimulus was a 

'small' size (-1), then the congruence would be -1 (1 * -1). In the 

supplementary data where there were five stimuli, the stimuli were 

encoded as [-2, -1, 0, 1, 2]. 

 

Definition of the signed R-squared 

The signed R-squared is a measure that takes into account the 
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direction of the relationship between a variable of interest and other 

variables in a multiple regression model. It is calculated by 

multiplying the sign of the regression coefficient with the uniquely 

explained variance of the variable. The uniquely explained variance 

is obtained through variance partitioning analysis(Borcard, Legendre 

et al. 1992, Perquin, Heed et al. 2022), which involves comparing the 

R-squared values of the full regression model that includes all 

variables and the reduced regression model that excludes the 

variable of interest. For instance, to calculate the signed R-squared 

of variable 𝑥, we first calculate the R-squared of the full model 

(𝑅cde, ) that includes variables 𝑥, 𝑦, and 𝑧. Next, we compute the R-

squared of the reduced model (𝑅de, ) that includes variables 𝑦 and 𝑧 

only. The uniquely explained variance of 𝑥 (𝑅c,de, ) is obtained by 

subtracting 𝑅de,  from 𝑅cde, . Finally, the signed R-squared of 𝑥 is 

defined as 𝑠𝑖𝑔𝑛(𝛽c)𝑅c,de, , where 𝑠𝑖𝑔𝑛(𝛽c) is the sign of the regression 

coefficient 𝛽c of the multiple regression model with variables 𝑥, 𝑦, 
and 𝑧 as regressors. 

 

BOLD signal  

MRI data were preprocessed as the previous section except that the 

spatial smoothing is additionally applied with 8×8×8mm full-width 

half-maximum Gaussian kernel after normalizing the image.  

To explore the brain regions that showed a correlation between 

BOLD signals and 𝑢-, we conducted a regression analysis for each 

participant and voxel. The response variable for the regression 

model was the preprocessed BOLD signals concatenated across runs. 

We used three explanatory vectors in the regression model. The first 

vector was created by convolving the canonical hemodynamic 

function with 𝑢- for each trial. The second vector was created by 

convolving the canonical hemodynamic function with a constant value 

of 1, and both vectors were standardized. The third vector contained 

only a single value of 1. The first regression coefficient indicated 

how well 𝑢- predicted the BOLD signal for each voxel, and by 

calculating this coefficient for every voxel, we generated a map of 
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regression coefficients for each participant and the entire brain. 

To determine whether the average coefficient of 𝑢- across 

participants significant, we performed a two-sided Student t-test on 

each voxel. We then corrected the P values of the entire brain for 

false discovery rate (FDR) (Benjamini and Hochberg 1995). The total 

number of voxels in the entire brain was 90,481, and we defined the 

brain areas significantly correlated with 𝑢- as the voxel clusters 

covering a region larger than 15 contiguous voxels and having FDR-

corrected P values less than 0.05. For the ROI analysis, we averaged 

the preprocessed BOLD signals across individual voxels within an 

ROI. 

 

Pupillometry 

Stimuli were presented in a dimly lit room on a gamma-linearized 

22-inch CRT monitor (Totoku CV921X CRT monitor) operating at 

vertical refresh rate of 180Hz and a spatial resolution of 800×600 

pixels. Stimuli were generated using MATLAB (MathWorks) in 

conjunction with MGL (http://justingardner.net/mgl) on a Macintosh 

computer. Observers viewed the monitor at a distance of 90cm while 

their binocular eye positions were sampled at 500Hz by an infrared 

eye tracker (EyeLink 1000 Desktop Mount, SR Research; instrument 

noise, 0.01° RMS). The LED illuminator and camera were positioned 

side by side, at a distance of 65cm from the observer, and angled 

toward the observer’s face to ensure that infrared light illuminated 

both eyes and was being reflected from both eyes and imaged on the 

camera sensor.  

When measuring gaze position using video-based methods, 

eye blinks can interfere with the accuracy of the data, as pupil and 

gaze information are not available during these periods. We identified 

eye blinks based on three criteria: (i) missing pupil data for either 

eye, (ii) pupil-size measurements with unrealistically large 

fluctuations (>50 units per sample), or (iii) substantial deviation 

(>20°) of gaze position from the screen center. Data collected 

immediately before and after an eye blink (±200 ms) were likely 

contaminated and therefore we linearly interpolated the pupil-sizes 
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and the three gaze positions (𝑥, 𝑦, and 𝑑 (= �𝑥, + 𝑦,)) before and 

after the blink events.   

To minimize confounding effects from gaze position on pupil-

size measurements, we processed the blink-free samples of pupil-

size and three gaze positions time series by linear detrending, band-

pass filtering (0.01Hz to 4Hz cut-off frequency with a Butterworth 

filter), and resampling to 10Hz. The resampled time series of pupil-

size was then orthogonalized from the three resampled gaze 

positions up to their fourth powers (total 12 regressors) to extract 

any confounding in the pupil-size originating from the gaze 

position(Choe, Blake et al. 2016). The orthogonalized pupil-size time 

series was then standardized by subtracting the mean and dividing 

the standard deviation of the time series. The pupil-sizes of the eyes 

were averaged, and trials were epoched and baseline corrected by 

subtracting the baseline pupil-size averaged across 0ms to 500ms 

from the stimulus onset. We chose this baseline time window 

because we assumed that the decision-related pupil signal would be 

initiated between -200ms to 300ms from the stimulus onset and 

because the latency of the empirical responses was around 

200ms(Korn and Bach 2016). Finally, the baseline corrected pupil-

sizes were aligned by the stimulus onset or the choice following 

previous studies(de Gee, Knapen et al. 2014, Urai, Braun et al. 2017). 

 

3.3 Results 

 

We recruited 41 human participants and asked them to perform a 

binary classification task. The task involved classifying a series of 

rings presented in a pseudo-randomized order (Buracas and Boynton 

2002) as either ‘small’ or ‘large,’ one at a time, under moderate time 

pressure (Fig. 9B). As previously reported (Treisman and Williams 

1984, Lages and Treisman 1998, Raviv, Lieder et al. 2014, Hachen,  
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Figure 10. The pre- and the current-congruence effects on RT, cortical activity, 

and pupil-size. A, The pre- and the current-congruence effects captured in 

chronometric (1), neurometric (2,3), and pupillometric (4) curves. Normalized 

measures of RT (1), dACC (2) and insula (3) BOLD signals acquired at the fourth 

time frame within a trial, and pupil-size (4) taken at 0.5 sec after button press are 

plotted against the congruences between current choices and immediately 

preceding stimuli (S>-6*C>) and the congruences between current choices and 

current stimuli (S>*C>). In each panel, the asterisks on top and side indicate the 

significant contributions of the pre-congruence effect (S>-6*C>) and the current-

congruence effect (S>*C>) to the measures of interest, respectively. Their 

significant contributions are ascertained by the multiple regressions of the 

measures of interest onto S>-6*C>, S>*C>, and C>-6*C>. The presence of the asterisks 

on top and side indicate that the RT, dACC activity, and pupil-size are under the 

influences of both the pre- and the current-congruence effects, whereas the 

insula activity is under the influence of only the current-congruence effect. B, 

Variances uniquely explained by the congruences of current choices with current 

stimuli (yellow), with immediately preceding stimuli (purple), and with immediately 

preceding choices (green). The percentages quantify the ratio of the explained 

variance sizes between the yellow bar and each of the others. C, The pre- and 

the current-congruence effects and the effect of previous choices captured in 

multiple regression analyses. The coefficients in the multiple linear regression of 
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the measures onto the congruences of current choices with current stimuli 

(yellow), past stimuli (purple), and past choices (green) are plotted in bars. The 

asterisks indicate the significant contributions of a given regressor to the 

variability of the measures. Note that the significant influence of the pre-

congruence effect (S>-@*C>) for the RT (1), dACC activity (2), and pupil-size (4), but 

not for the insula activity (3). D, Time courses of the coefficients in the multiple 

regression of the dACC (2) and insula activity (3), and pupil-size (4) onto the 

congruences of current choices with current stimuli (yellow; S>*C>), with 

immediately preceding stimuli (purple; S>-6*C>), and with immediately preceding 

choices (green; C>-6*C>). The colored horizontal bars indicate P values of two-

sided Student’s t-test of the coefficients (purple and yellow: * < 0.05; red: ** <
0.01) (4). The emergence of the pre-congruence effect is aligned with the time 

frames associated with decision-making for both dACC and pupil-size. E, t-

statistics of voxel clusters whose BOLD signals significantly predict the simulated 

decision uncertainty (two-sided Student’s t-test P < 0.05 after controlling the 

false discovery rate; the minimum number of contiguous voxels is 15). 

 

Reinartz et al. 2021, Lee, Lee et al. 2023), the participants displayed 

the repulsive bias, making less of the ‘large (small)’ choice following 

the large (small) stimulus in the previous trial (Fig. 9C; 𝛽0($/ = −0.57 

(𝑃 = 2.87 × 10&%P), 𝛽0( = 1.30 (𝑃 = 4.9 × 10&,,), 𝛽f($/ = 0.12 (𝑃 =

0.036), where 𝑆-&!, stimulus on 𝑖-th preceding trial; 𝐶-&!, choice on 

𝑖-th preceding trial). Also, the repulsive bias was not constrained to 

the immediately preceding stimulus but extended to the stimulus at 

the lag of three trials (Fig. 9D). 

To simulate how the boundary updating relates to the pre-

congruence effect, we employed a Bayesian model for boundary 

updating (BMBU). Before proceeding, we ensured that BMBU's 

choices readily captured the repulsive bias in the current data set, 

which is evident in the close correspondence of human and BMBU’s 

psychometric functions (Fig. 9C) and regression coefficients (Fig. 

9D). This implies that the participants update their internal boundary 

by shifting it toward previous stimuli as BMBU does. Then, we 

turned to the simulated decision uncertainty to see whether the 

boundary updating induces the pre-congruence effect. As we intuited 

early on (Fig. 9A-3), the more congruent BMBU’s current choice was 

with previous stimuli, the more uncertain it was (Fig. 9E). BMBU also  
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lets us foresee that the pre-congruence effect gradually diminishes 

as trials further lag (the purple bars in Fig. 9F). In addition to 

capturing this newly recognized history effect, BMBU also accounts 

for the well-established ‘current-congruence effect’—a phenomenon 

where decision uncertainty decreases as the current choice becomes 

congruent with current stimuli (Kepecs, Uchida et al. 2008, Sanders, 

Hangya et al. 2016, Urai, Braun et al. 2017) (as indicated by the 

progressive elevation of the lines in Fig. 9E and the yellow bar in 

Fig. 9F). 

Moving on, as a first step to establish the empirical presence 

of the pre-congruence effect, we probed RT (N=41), a well-known 

behavioral correlate of decision uncertainty (Grinband, Hirsch et al. 

2006, Urai, Braun et al. 2017, Fietz, Pöhlchen et al. 2022). As 

predicted, participants’ RTs displayed both the pre-congruence 

effect (𝛽0($/∗f( = 0.11 (𝑃 = 9.2 × 10&h)) and the current-congruence 

effect (𝛽0(∗f( = −0.21, (𝑃 = 2.7 × 10&%O)) (Fig. 10A-1). Notably, the size 

of the pre-congruence effect was substantial and tantamount to 31% 

of that of the current-congruence effect (Fig. 10B-1). The pre-

congruence effect on decision uncertainty could be traced back to 

three trials (Fig. 10C-1), which is consistent with the history effect 

on choice—the repulsive bias (Fig. 9D).  

We further confirmed the robustness of the pre-congruence 

and current-congruence effects using the RTs collected under 

different conditions, where fine-grained auditory (Fig. 11-1, 

𝛽0($/∗f( = 0.12 (𝑃 = 2.0 × 10&%%), 𝛽0(∗f( = −0.35, (𝑃 = 4.5 × 10&LP)) or 

ring (Fig. 11-2, 𝛽0($/∗f( = 0.16 (𝑃 = 3.1 × 10&%O), 𝛽0(∗f( = −0.27, (𝑃 =

2.0 × 10&,O)) stimuli were classified with a short inter-trial interval (2 

sec; N=58) and where five ring stimuli were used with trial-to-trial 

feedback and a shorter inter-trial interval (2.5 sec, N=30) (Fig. 11-3, 

𝛽0($/∗f( = 0.050 (𝑃 = 7.6 × 10&P), 𝛽0(∗f( = −0.11, (𝑃 = 1.1 × 10&E)). These 

findings demonstrate that the effects of pre- and current-

congruence are applicable to various sensory modalities, feedback 

conditions, and inter-trial intervals. 
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Figure 11. The pre- and current-congruence effects on reaction time (RT) in 

other task conditions. The pre- and current-congruence effects captured in 

chronometric curves for fine-grained pitch (1) or ring (2) stimuli and five ring 

stimuli with trial-to-trial feedback (3). (1,2) To better illustrate the data, 

continuous stimuli were discretized into nine bins. The lowest two current-

congruence trials (error trials on extremely small and large rings or low and high 

pitches) were not shown because the trials were so rare that the data points are 

unreliable. A, RT is plotted against the congruences between current choices and 

the immediately preceding stimuli (𝑆256 ∗ 𝐶2) and the congruences between current 

choices and current stimuli (𝑆2 ∗ 𝐶2). The significance of the multiple regression 

coefficients for predicting RT by 𝑆256 ∗ 𝐶2, 𝑆2 ∗ 𝐶2, and 𝐶256 ∗ 𝐶2 are indicated by 

asterisks. The horizontal and vertical lines indicate the significance of the 

regression coefficients of 𝑆256 ∗ 𝐶2 and 𝑆2 ∗ 𝐶2, respectively. The pre-congruence 

effect is statistically significant in RT. B, the proportions of variance that are 

uniquely explained by the congruences of current choices to current stimuli 

(yellow), to immediately preceding stimuli (purple), and to immediately preceding 

choices (green). The percentages indicate the ratio between the sizes of the 

uniquely explained variances. C, the multiple regression coefficients of the 

congruences of current choices to current stimuli (yellow), previous stimuli 
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(purple), and previous choices (green) for predicting RT. 

 

cortical area 
contiguous 

voxel (N) 

peak voxel 

MNI coordinate 𝑃 

dorsal anterior 

cingulate cortex 
64  [6, 27, 36]  8.2 × 105A 

left insula 27  [−30, 21, 9]  5.7 × 105A 
right insula 66  [36, 18, 6]  7.5 × 105B 

 

Table 3. The brain regions where there was a significant correlation between 

BOLD signals and simulated decision uncertainty. We defined these regions based 

on two conditions: (1) the regression coefficient between the simulated decision 

uncertainty and the BOLD signal was significant (two-sided Student’s t-test 𝑃 <
0.05, after controlling the false discovery rate), and (2) there were at least 15 

contiguous voxels that met the first condition. 

 

Next, by regressing the fMRI data (N=18) onto BMBU's decision 

uncertainty, we identified the neural correlates of decision 

uncertainty in the dorsal anterior cingulate cortex (dACC) and insula 

(Fig. 10E; Table. 3), consistent with previous studies (Grinband, 

Hirsch et al. 2006, Shenhav, Straccia et al. 2014, Fietz, Pöhlchen et 

al. 2022). At the time point with their highest correlation with 

BMBU’s decision uncertainty (Fig. 12-1), the dACC’s responses 

showed the pre-congruence and current-congruence effects (Fig. 

10A-2;  𝛽0($/∗f( = 0.053, (𝑃 = 0.0037), 𝛽0(∗f( = −0.076 (𝑃 = 0.0016)). 

The pre-congruence effect in the dACC was equivalent in size to 

46% of that of the current-congruence effect (Fig. 10B-2), traced 

back to two trials (Fig. 10C-2), and pronounced at the time points 

aligned with decision-making (Fig. 10D-2). In contrast, the insula 

exhibited only the current-congruence effect (Fig. 10A3-D3, 12-2;  

𝛽0($/∗f( = 0.028 (𝑃 = 0.083), 𝛽0(∗f( = −0.079 (𝑃 = 1.4 × 10&F)). 

Finally, the pupil-size data (N=23) also confirmed the pre-

congruence effect. At the time point with its highest correlation with 

BMBU’s decision uncertainty (Fig. 12-3), the pupil size displayed 

both pre-congruence and current-congruence effects (Fig. 10A-4; 

𝛽0($/∗f( = 0.053 (𝑃 = 0.0037), 𝛽0(∗f( = −0.076 (𝑃 = 0.0016)). The pre-

congruence effect in pupil size was equivalent in size to 35% of that 

of the current-congruence effect (Fig. 10B-4), traced back to the  
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Figure 12. The time courses of dACC, insula, and pupil-size and their linear 

regressions to decision uncertainty. A, the time courses of (1) dACC, (2) insula, 

and (3) pupil-size, which were conditioned by the simulated decision uncertainty 

into lower (blue) and higher (red) decision uncertainty conditions. B, the linear 

regression coefficient of the simulated decision uncertainty to predict dACC, 

insula or pupil-size for each time frame. The P values of two-sided Student’s t-

test of the coefficients are indicated by the horizontal bar (gray: ∗< 0.05; black: ∗∗
< 0.01). C, the BOLD signals and pupil-sizes are shown for the time frame with 

the most significant coefficient, which is indicated by the circles in the time 

courses (panels A and B). Each dot pair and line represent a single participant. 

 

immediately preceding trial (Fig. 10C-4), and pronounced at the time 

points aligned with decision-making (Fig. 10D-4). 

 

3.4 Discussion 

 

The pre-congruence effect demonstrated here differs considerably 

from earlier discoveries of the history effects on decision  
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uncertainty. First, it differs from the history effect on RTs in tasks 

with an autocorrelated stimulus sequence (Cho, Nystrom et al. 2002) 

because the stimuli were independent across trials in our task 

(Buracas and Boynton 2002). Second, it differs from the ‘priming 

effect (Kristjánsson and Campana 2010, Galluzzi, Benedetto et al. 

2022),’ where RTs become faster as current stimuli become 

congruent with previous stimuli, an effect opposite to the pre-

congruence effect, where RTs become slower under an identical 

situation. Third, it differs from the phenomenon where the 

congruence between subsequent choices biases RT (Urai, De Gee et 

al. 2019) because the pre-congruence effect is founded on the 

congruence between previous stimuli and current choices, not 

between previous and current choices. Fourth, it differs from the so-

called ‘confidence leak (Rahnev, Koizumi et al. 2015),’ where 

confidence reports are correlated across trials, because the 

confidence leak does not entail any historical effect on choices at all, 

whereas the pre-congruence effect entails the history effect on 

choice, the repulsive bias. Fifth, it differs from the so-called ‘post-

error slowing (Jentzsch and Dudschig 2009),’ a tendency to slow 

down after committing an error on previous trials, because the pre- 

 
Figure 13. The regression coefficient between consecutive decision uncertainties. 

The circles represent the linear regression coefficients of the decision 

uncertainty of the previous trial used to predict the decision uncertainty of the 

current trial. The decision uncertainty was simulated using BMBU. Only a single 

participant showed a significantly positive correlation between consecutive 

decision uncertainties 
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congruence effect does not entail error feedback. Furthermore, the 

simulated decision uncertainty of BMBU does not show positive 

dependences between consecutive trials (Fig. 13), which must be 

present both in the confidence leak and the post-error slowing. 

Lastly, our work should not be confused with the history effects on 

choices (Urai, Braun et al. 2017, Braun, Urai et al. 2018) which were 

investigated using RT, pupil size, and confidence reports because 

they were not about decision uncertainty modulation but about choice 

bias. 

Our work has important implications for the cognitive 

neuroscience of decision uncertainty and history effects. We could 

explain more of the trial-to-trial variability of decision uncertainty 

by discovering its historical source—boundary updating. This will 

significantly facilitate discerning the ‘genuine’ neural substrate of 

decision uncertainty. For example, the dACC and the insula appeared 

similarly involved in signaling task difficulty in previous studies 

(Seeley 2019). However, we could point to the dACC as a more 

genuine locus of decision uncertainty by demonstrating both the pre-

congruence and current-congruence effects in the dACC but only the 

current-congruence effect in the insula. In the same vein, we could 

 
Figure 14. Controlling the false discovery rate (FDR) of the 𝑃 values of the 

whole-brain analysis. A,B, The lowest P values of each voxel in the whole brain 

for predicting decision uncertainty in BMBU (A) and the constant-boundary model 

(B), respectively, plotted against the FDR threshold P values. The critical P value, 

which is the maximum P value lower than the FDR threshold (indicated by the 

horizontal dashed line), determines the significant voxels after controlling for 

FDR. For BMBU, 177 voxels were significant, whereas no voxel was significant 

for the constant-boundary model. 
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no longer find the significant neural correlate of decision uncertainty 

without incorporating the boundary updating into the definition of 

decision uncertainty (Fig. 14). Our discovery of the historical source 

of decision uncertainty also calls for a need to reinterpret previous 

findings. For example, in metacognition research, the presence of 

history effects in confidence reports has been considered a source of 

metacognitive inefficiency (Shekhar and Rahnev 2021). According to 

the boundary updating, however, the absence, not the presence, of 

history effects in confidence reports may indicate metacognitive 

inefficiency. 

Recent studies have been reporting diverse history effects on 

choice (Fründ, Wichmann et al. 2014, Fritsche, Mostert et al. 2017, 

Braun, Urai et al. 2018, Bosch, Fritsche et al. 2020, Lak, Hueske et 

al. 2020) but largely neglected the history effects on decision 

uncertainty. Decision uncertainty is considered one of the core 

cognitive quantities that enable human intelligence (Behrens, 

Woolrich et al. 2007, McGuire, Nassar et al. 2014, Shenhav, Cohen et 

al. 2016, Drugowitsch, Mendonça et al. 2019). Our work points to a 

need to extend the current scope of studying the history effects on 

choice further, including decision uncertainty, to understand the 

nature of human intelligence better. 
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Chapter 4 
 

General Discussion 

 

 

4.1 A review of history effects of previous stimuli and 

previous choices 

 

In perceptual decision-making tasks where trial-to-trial feedback is 

absent, researchers have explored how previous stimuli and previous 

choices contribute to the history effects on current choices. By 

studying the influence of these factors, we gain insights into the 

complex dynamics of decision-making. 

 

The effect of previous stimuli 

Numerous studies have delved into the effects of previous stimuli on 

current decision-making processes. These investigations have 

focused on three main paradigms: serial dependence, boundary-

updating, and sensory adaptation. 

In the realm of serial dependence, researchers (Fischer and 

Whitney 2014, Liberman, Fischer et al. 2014, Bliss, Sun et al. 2017, 

Cicchini, Mikellidou et al. 2018, Pascucci, Mancuso et al. 2019, 

Fritsche, Spaak et al. 2020, Ceylan, Herzog et al. 2021, Murai and 

Whitney 2021, Sheehan and Serences 2022) have commonly 

employed a reproduction task paradigm. During this task, participants 

are briefly presented with a stimulus, followed by a reproduction cue. 

Their goal is to adjust the cue to replicate a specific feature of the 

original stimulus, such as its orientation. The observed trend in this 

paradigm is an attractive bias, where current reproductions tend to 

be drawn towards previous stimuli. 

In contrast, the boundary-updating studies (Norton, Fleming 

et al. 2017, Hachen, Reinartz et al. 2021) typically employ a two-

alternative forced choice task (2AFC) with a single stimulus per trial. 
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Participants are asked to determine whether a particular feature of 

the stimulus is greater or smaller than a specific decision boundary 

in a one-dimensional feature space. The outcome here shows a 

repulsive bias, wherein current choices tend to move away from 

previous stimuli. 

Additionally, the sensory adaptation paradigm (Kohn 2007, 

Nakashima and Sugita 2017, Weber, Krishnamurthy et al. 2019, 

Fritsche, Solomon et al. 2022) involves a comparison task where 

subjects must choose the larger of two stimuli. However, one of 

these stimuli has been previously adapted by a long-term adaptor 

within the same trial. The perception of the adapted stimulus in this 

paradigm shows a repulsion effect, causing it to be perceived as 

different from the quantity of the adaptor. 

In summary, the effects of previous stimuli on current choices 

can be either attractive, as observed in serial dependence studies, or 

repulsive, as seen in boundary-updating and sensory adaptation 

studies. These insights shed light on the intricate dynamics of 

decision-making processes influenced by stimulus history. 

 

The effect of previous choices 

Furthermore, researchers have examined the effects of previous 

choices on decision-making processes, focusing on the phenomenon 

known as choice repetition or alternation bias (Akaishi, Umeda et al. 

2014, Urai, Braun et al. 2017, Braun, Urai et al. 2018, Urai and 

Donner 2022). These investigations typically employ a two-

alternative forced choice (2AFC) task with a single stimulus within 

each trial. Participants are tasked with determining whether the 

stimulus is located on one side or the other of a decision boundary. 

 Previous studies have explored the relationship between 

current choices and the choices made in preceding trials, yielding 

varied results. Some studies have identified a prominent choice 

repetition bias across subjects (Akaishi, Umeda et al. 2014, Urai, 

Braun et al. 2017), indicating a tendency to choose the same option 

as in the previous trial. However, other studies have shown 

inconsistent choice biases across subjects, with no clear pattern of 
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choice repetition (Braun, Urai et al. 2018, Urai and Donner 2022). 

 In summary, the effects of previous choices on current 

decision-making processes have been investigated through the 

examination of choice repetition or alternation bias. The findings 

from these studies reveal a diverse range of outcomes, with some 

studies highlighting a significant bias towards choice repetition 

across subjects, while others demonstrate no consistent bias. These 

investigations shed light on the intricate relationship between 

previous choices and current decision-making in 2AFC tasks. 

 

Disentangling the effects of previous stimuli and previous choices  

As I mentioned earlier, the effects of previous stimuli and previous 

choices have been extensively studied over the past decade. 

However, the results from these studies are not consistent with each 

other. The association between previous stimuli, previous choices, 

and current choices can be either positive or negative depending on 

the specific task conditions. This lack of coherence in findings may 

stem from methodological issues in previous studies, as they often 

failed to disentangle the effects of previous stimuli and previous 

choices. Instead, they focused on investigating one factor while 

neglecting the influence of the other. This oversight can lead to 

confusion in interpreting the results, as stimuli and choices are 

strongly correlated, making it easy to attribute the effects of one to 

the other without proper consideration. 

  Recent studies have addressed this methodological issue by 

concurrently examining the effects of previous stimuli and previous 

choices while disentangling their individual impacts (Fornaciai and 

Park 2019, Pascucci, Mancuso et al. 2019, Bosch, Fritsche et al. 

2020, Moon and Kwon 2022, Sheehan and Serences 2022). Strikingly, 

regardless of the specific task paradigm used (2AFC, reproduction, 

or comparison tasks), these recent studies have reported a 

consistent finding. They have found that current choices are repelled 

from previous stimuli and attracted towards previous choices. 

 This observed pattern of stimulus repulsion and choice 

attraction contradicts the findings of serial dependence studies, 
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where current choices are attracted towards previous stimuli. 

However, in the reproduction task, Moon and Kwon successfully 

disentangled the effects of previous stimuli and previous choices. 

Their study revealed that all 32 subjects exhibited consistent history 

effects, wherein the current reproduction was repelled from previous 

stimuli but attracted towards previous choices. Consequently, the 

assimilative effect of previous stimuli, as reported in previous serial 

dependence studies, was actually attributed to the assimilative effect 

of previous choices. 

 These recent investigations shed light on the interplay 

between previous stimuli and previous choices, providing a more 

comprehensive understanding of their respective influences on 

current decision-making processes. 

 

Unresolved question 

However, the origin of the repulsive bias associated with previous 

stimuli during the reproduction task remains unclear. While my study 

showed that the repulsive bias during classification tasks can be 

explained by boundary-updating rather than sensory adaptation, it 

becomes challenging to explain the repulsive bias in the reproduction 

task (Pascucci, Mancuso et al. 2019, Moon and Kwon 2022). This is 

because the reproduction task does not require the presence of a 

decision boundaryTherefore, the existence of the repulsive bias in 

the reproduction task seems to suggest the involvement of sensory 

adaptation as the underlying mechanism. 

However, both our study and another brain imaging study do 

not fully support sensory adaptation as the origin of the repulsive 

bias (Sheehan and Serences 2022). While we found sensory 

adaptation effects in visual cortices, we were unable to establish a 

direct causal link between sensory adaptation and behavior. Sheehan 

and Serences (2022) conducted a modeling approach and proposed 

that the bias induced by sensory adaptation might be compensated 

for by downstream areas. Consequently, the findings from 

neuroimaging studies cast doubt on the notion that the repulsive bias 

during the reproduction task can be solely attributed to sensory 
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adaptation. 

Interestingly, the boundary-updating explanation still holds 

promise as a potential reason for the repulsive bias in the 

reproduction task. It is possible that individuals may update natural 

boundaries, such as cardinal orientations in space, which could 

induce a repulsive bias (Gibson and Radner 1937). Therefore, future 

studies are needed to further investigate and clarify the true origin of 

the repulsive bias during the reproduction task. 

In summary, the origin of the repulsive bias associated with 

previous stimuli during the reproduction task remains uncertain. 

While the boundary-updating explanation may not fully account for it, 

findings from neuroimaging studies challenge the idea that sensory 

adaptation is the sole underlying mechanism. The possibility of 

natural boundary updating influencing the repulsive bias warrants 

further exploration. Future research endeavors are necessary to 

shed light on the underlying mechanisms and provide a 

comprehensive understanding of the repulsive bias during the 

reproduction task. 

 

4.2 A new perspective on the system-level neural 

processing of perceptual decision-making of the 

relative structure 

 

I developed a formal framework for classification inferring the 

boundary and examined its implications for choices and decision 

uncertainty, particularly in relation to the history effect. Through my 

research, I discovered that the neural signals related to the boundary 

are represented in the inferior parietal lobule (IPL) and superior 

temporal gyrus (STG), while the decision variable signal is 

represented in the STG. In this concluding section, I will present a 

fresh perspective on PDM and elaborate on how this perspective 

enhances our understanding of previous viewpoints on PDM. 

Imagine yourself as a hunter living in prehistoric times who 

encounters a wild horse in the woods (Fig. 15). Here, you are  
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Figure 15. A schematic overview of the visual processing for decision-making. 

The visual processing is composed of five stages. The left and the middle columns 

indicate the descriptions of the stages. The right column indicate the modification 

of the proposed perspective from previous ones. 

 

presented with a decision: Should you approach and capture the 

horse or conserve your energy by not doing so? This scenario 

exemplifies perceptual decision-making, where the outcome of your 

decision directly influences subsequent actions. The question arises: 

how does the human brain carry out such decision-making 

processes? 

 

The ventral stream: entangling raw sensory signals into separable 

categorical signals 

V1 is the first cortical region external visual stimuli activate 

(DiCarlo, Zoccolan et al. 2012). V1 responds to basic features of 

visual objects, such as orientation (Hubel and Wiesel 1962) and 

spatial frequency (Tootell, Silverman et al. 1981). The neural 

responses in V1 are then transmitted to the next cortical region 

called V2, where the dorsal and ventral visual streams begin to 

differentiate (Kravitz, Saleem et al. 2011). 
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Representations of object identity emerge within the ventral 

visual stream (DiCarlo, Zoccolan et al. 2012). Specifically, in both 

humans and monkeys, object identity representations are found in the 

inferior temporal cortex (IT), a region in the ventral visual stream 

(Kriegeskorte, Mur et al. 2008). The crucial evidence supporting the 

role of IT in representing object identities is that the population 

neural responses in IT maintain object identities regardless of 

changes in viewing conditions (Hung, Kreiman et al. 2005, Quiroga, 

Reddy et al. 2005). 

The question of how IT represents object identities has been 

a longstanding challenge (DiCarlo and Cox 2007). The neural 

mechanism responsible for object recognition must disentangle the 

overlapping neural response patterns associated with different 

objects. Recent studies have shown that this disentanglement can be 

achieved through the use of deep convolutional neural networks 

(CNNs), non-linear, multi-layered, feedforward neural networks 

(Yamins, Hong et al. 2014). The success of CNNs suggests that the 

complex task of disentangling neural population responses can be 

accomplished by combining feedforward and non-linear computations 

without the need for extensive recurrent communication, attention 

mechanisms, or complex coding schemes involving precise spike 

timing or synchrony (DiCarlo, Zoccolan et al. 2012). 

In summary, the ventral visual circuit seems dedicated to 

disentangling the complex neural population responses to visual 

stimuli by separating them into distinct neural population responses 

based on object identities using multi-layered non-linear 

computations. 

  

The default mode network: to confer the meaning on the untangled 

population responses 

The ventral visual stream plays a crucial role in transforming the 

compound representation of orientations and spatial frequencies, as 

encoded by neurons in V1, into a categorical identity representation 

by neurons in the inferior temporal cortex (IT). While the ventral 

stream effectively separates neural responses based on object 
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identities, it is important to consider the relationship between 

different identities when representing identity (Behrens, Muller et al. 

2018). In other words, we expect that the neural representation of 

the semantic meaning of a car is more similar to that of a bicycle 

than that of a tree, reflecting the similarity in semantic meaning. 

Research suggests that the neural responses of the default mode 

network (DMN) construct a highly structured concept space that 

resembles the one constructed by the grid-cell organization found in 

the hippocampus (Constantinescu, O’Reilly et al. 2016, Garvert, Dolan 

et al. 2017). Based on this, it is conjectured that the categorical 

signal in IT may induce a population neural response in the concept 

space of the DMN, thereby conferring reliable semantic meaning to 

objects irrespective of the observer's viewing perspective. 

However, although the ventral information processing is 

useful for recognizing object identities, it imposes a fundamental 

constraint when estimating specific features of an object. For 

instance, the ventral processing would yield a similar representation 

for a horse regardless of its size (Fig. 15). An accurate estimation of 

the horse's size is required to effectively determine whether the 

horse is capturable for a hunter. Therefore, an additional neural 

mechanism, located in the parietal cortex, is needed to estimate the 

magnitude of specific features of an object. 

 

The parietal cortex: to project the external world into the one-

dimensional reference-centered space  

The parietal cortex, which occupies a significant portion of the dorsal 

stream, serves two major functions: 1) representing visual objects in 

a one-dimensional space (Ganguli, Bisley et al. 2008, Fitzgerald, 

Freedman et al. 2013, Summerfield, Luyckx et al. 2020) and 2) 

representing the relationships between objects (Chafee, Averbeck et 

al. 2007, Bottini and Doeller 2020, Summerfield, Luyckx et al. 2020). 

The one-dimensional space representation refers to the fact 

that neurons in the parietal cortex have similar preferences for visual 

stimuli. For example, when neurons learn associations between 

visual stimuli in the lateral intra-parietal cortex (LIP), their 
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preferences become nearly identical (Fitzgerald, Freedman et al. 

2013). The parietal cortex is also known for its proportional 

responses to the magnitude of stimuli such as space, time, and size 

(Walsh 2003, Luyckx, Nili et al. 2019). This suggests that the parietal 

cortex reduces external environments to a one-dimensional 

magnitude space. 

Additionally, the parietal cortex encodes the relationships 

between objects. Patients with parietal cortex damage struggle to 

accurately reproduce the spatial relationships of stimuli (Black and 

Strub 1976). Parietal neurons represent the relative position of an 

object to a reference rather than the absolute position of the object 

(Chafee, Averbeck et al. 2007, Sheahan, Luyckx et al. 2021). 

Furthermore, for spatial navigation, the parietal cortex represents 

the location of objects relative to the self (Colby and Goldberg 1999, 

Schindler and Bartels 2013). 

However, I propose that these two properties reflect different 

facets of a unified process: the parietal cortex represents the one-

dimensional magnitude of a target feature relative to a reference 

(Fig. 15). The magnitude representation function reflects a specific 

condition when the reference point is fixed to a stable point, while 

the relational representation function reflects a specific condition 

when one of the objects serves as the reference. 

One important question is how the brain represents the 

reference. My work partially addresses this question by showing that 

the reference is explicitly represented in the parietal cortex before 

stimulus presentation (Fig. 15). I speculate that this preceding 

reference signal updates the prior reference point in the one-

dimensional space within the parietal cortex. Subsequently, the 

stimulus is projected onto this modified one-dimensional space. 

In summary, I suppose that after identifying the identity of the 

target object through the ventral circuit and DMN, the brain 

constructs a one-dimensional feature space centered on a reference 

within the parietal cortex. The target object is then projected onto 

this space to extract the magnitude of the feature of interest. For 

example, after a hunter recognizes a horse in the woods through the 
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ventral and DMN circuits, the relative size of the horse compared to 

the hunter is estimated by projecting the sensory signal of the horse 

onto the one-dimensional size space in the parietal cortex, which is 

normalized based on the size of the hunter. If the horse is smaller 

than the hunter, the hunter will approach to capture it. 

Is the parietal cortex the region where the final decision 

output, determining whether the horse is larger than the hunter, is 

generated? The parietal cortex appears to possess all the necessary 

elements for making the decision, as it represents the relative size of 

the horse. Single-cell studies in non-human primates have indeed 

found the parietal cortex to be the locus for representing the 

decision variable (Roitman and Shadlen 2002, Gold and Shadlen 2007, 

Zhou and Freedman 2019). Surprisingly, there are few reports on the 

decision variable in the human parietal cortex (Kahnt, Grueschow et 

al. 2011, Hebart, Schriever et al. 2014). I actually found the decision 

variable outside of the parietal cortex, specifically in the superior 

temporal gyrus (STG). I will discuss the implications of why I found 

the decision variable in the STG of the human brain. 

 

STG: to generate a language-based decision  

I propose that the discrepancy between humans and non-human 

primates in representing the decision variable arises from humans’ 
language-based decision-making processes (Fodor 1975, Frankland 

and Greene 2020). Specifically, I suggest that human perceptual 

decision-making involves a commitment to linguistic propositions 

about the stimulus, whereas non-human primates’ decision-making 

does not involve a linguistic process. Non-human primates are 

trained in the task by learning the stimulus-decision contingency 

through reward-based reinforcement learning. In contrast, humans 

can learn the task through language-based instructions even when 

no rewards are involved. As a result, I expect humans to rely heavily 

on language-based processing for performing the task, while non-

human primates would rely solely on the reinforced stimulus-choice 

contingency. 

Interestingly, the superior temporal gyrus (STG), where I 
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found the decision variable, is well-known for its contribution to 

language processing (Willems, Özyürek et al. 2009). In language-

based tasks, STG not only specifies the semantic meaning of 

individual words but also specifies the relational meaning between 

words by representing the target object (e.g., patient) and the 

reference object (e.g., agent) in a sentence (Frankland and Greene 

2015, Frankland and Greene 2020). Therefore, even in a perceptual 

decision-making task, I speculate that STG represents not only the 

magnitudes of the target and reference objects separately but also 

their relational meaning. Thus, I propose that STG may be the region 

where decisions are generated in the human brain. 

Non-human primate studies have not reported the presence 

of the decision variable in STG. Thus, further research is needed to 

examine the involvement of the STG in decision-making among non-

human primates. 

In summary, I propose a system-level, five-stage mechanism 

for making a perceptual decision (Fig. 15). First, a complex visual 

scene consisting of an entangled manifold of objects is untangled 

based on object identities through the ventral visual stream. Second, 

the identities of the untangled visual signals are recognized through 

interaction with the cognitive map in DMN. Third, the target feature 

of the identified object is projected onto the reference-centered 

one-dimensional space in the parietal cortex. Fourth, a decision is 

generated as a linguistic proposition in STG. Finally, the decision is 

put into action via the motor execution system. 

 

Modifications 

In this section, I will clarify the modifications I made to the previous 

perspectives on perceptual decision-making.  

First, I propose that the ventral and dorsal visual circuits are 

not parallel but interact serially. Conventionally, the ventral and 

dorsal pathways have been considered parallel circuits, with the 

ventral pathway dedicated to object identity recognition and the 

dorsal pathway involved in representing the structure between 

objects. This view suggests that the two pathways operate 



 

 90 

independently (Kravitz, Saleem et al. 2013, Bottini and Doeller 2020, 

Summerfield, Luyckx et al. 2020). However, I suggest that these two 

pathways work together through a sequential process to serve a 

single purpose. I believe that the ventral stream identifies the 

external world and provides the parietal cortex with a relevant 

context for the current condition. Using this context identified by the 

ventral stream, the parietal cortex constructs a one-dimensional 

reference-centered space. 

Second, I propose that the signal of an internal reference that 

is present before a stimulus may play a crucial role in constructing 

the one-dimensional reference-centered space in the parietal cortex. 

Previous studies have reported that the parietal cortex represents 

the position of a stimulus in the one-dimensional space relative to a 

reference point, but it remains unclear how the reference-centered 

space is constructed in the parietal cortex (Colby and Goldberg 1999, 

Chafee, Averbeck et al. 2007, Schindler and Bartels 2013, Sheahan, 

Luyckx et al. 2021). Therefore, I believe that the preceding 

reference signal is a crucial factor in flexibly reconstructing the 

subspaces of the parietal cortex based on the current context. 

Third, I propose that the decision-making processes in the 

human brain differ from those in non-human primates’ brains 

because humans rely on language-based processes to make 

decisions. This conjecture is supported by previous findings that the 

brain signals representing the decision variable are not well detected 

in the parietal cortex of humans but are readily detected in that of 

non-human primates (Kahnt, Grueschow et al. 2011, Hebart, 

Schriever et al. 2014). Additionally, I found that the decision variable 

is detected in the superior temporal gyrus (STG), a region involved 

in the language processing (Frankland and Greene 2015, Frankland 

and Greene 2020). 

However, I must note that all three modifications mentioned 

above require further empirical evidence. It is my hope that future 

research will thoroughly investigate and refine the hypotheses 

proposed in my thesis. 
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4.3 Limitations 

 

However, I must note that all three modifications mentioned above 

require further empirical evidence.  

 

Generalizability of the identified brain regions 

It remains uncertain whether the identified network is also observed 

in other stimulus domains and modalities. It is possible that a similar 

network can be identified in perceptual classification tasks, as the 

identified regions are not specific to a particular modality. In 

particular, the parietal cortex has been known to encode the 

magnitude of stimuli, regardless of whether it is related to time, 

space, numerosity, or reward (Walsh 2003, Luyckx, Nili et al. 2019). 

However, it is unclear whether the same network is involved in 

decision-making processes related to factors other than perceptual 

quantity, such as value, as the brain region responsible for encoding 

value is distinct from that involved in processing perceptual 

quantities (Padoa-Schioppa and Assad 2006). 

 

The role of ventral stream 

Furthermore, the role of ventral stream should also be more 

examined. In a study conducted by Milner, Harvey, and Pritchard in 

1998, a patient who had experienced a right hemisphere stroke 

primarily affecting the occipito-temporal area was found to exhibit 

under-perception of object size. However, this abnormality did not 

extend to the processing of size for visuomotor control (Milner, 

Harvey et al. 1998). The findings suggest that size estimation 

impairments can occur as a result of damage to the ventral stream 

without significant disruption of the dorsal stream. In other words, 

the results indicate the critical role of the ventral stream in size 

estimation. 

While it is widely accepted that the parietal lobe plays a 

crucial role in visuospatial neglect symptoms, as noted by Milner and 

colleagues (Milner, Harvey et al. 1998), it would be simplistic to 
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attribute magnitude estimation solely to the parietal cortex. Further 

research is needed to investigate the involvement of the ventral 

stream in processing visual magnitude. 

 

Validation of the decoding results by using other methods 

I employed the searchlight approach to detect the brain signals 

associated with the latent variables of BMBU. The searchlight 

approach operates under the assumption that local patterns of brain 

activity encode the target representations (Haynes 2015). However, 

it is important to acknowledge that the searchlight approach relies on 

several assumptions. If the brain representation of the target 

variables violates these assumptions, it may lead to potentially 

misleading results (Etzel, Zacks et al. 2013). Consequently, it is 

necessary to validate the findings using alternative methodological 

approaches. 

One promising alternative approach is predictive modeling 

(Woo, Chang et al. 2017). In contrast to the searchlight approach, 

predictive modeling utilizes all available brain data to generate the 

best possible prediction of the target variable. This approach avoids 

multiple comparisons and increases statistical power (Reddan, 

Lindquist et al. 2017). Consequently, predictive modeling provides a 

comprehensive weight map of the entire brain, indicating the 

contribution of each voxel in predicting the latent variable (Woo et 

al., 2017). 

However, the effectiveness of applying predictive models to 

cognitive science studies remains uncertain. Predictive models were 

originally developed for clinical purposes, where they are trained 

using leave-one-subject-out cross-validation and subsequently 

tested by evaluating their performance on new, out-of-sample 

subjects (Chang, Gianaros et al. 2015, Woo, Chang et al. 2017). This 

procedure implies that predictive models have typically been 

developed with the assumption that a shared pattern across subjects 

underlies clinical symptoms. This assumption may not align with the 

goals of cognitive science studies, which aim to identify brain regions 

encoding target variables regardless of the presence of shared 
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patterns across subjects. 

 

A distinction between the similarity-based and the boundary-based 

decision-making scenarios 

I propose a distinction should be made between two distinct 

decision-making scenarios. The first scenario involves conventional 

decision-making based on similarity-based identity (Gold and 

Shadlen 2007). In this scenario, observers must acquire knowledge 

of the distribution of items within specific categories (Rosch 1973, 

Kamp and Partee 1995, Seger and Miller 2010, Nosofsky 2011, 

Douven, Decock et al. 2013). For instance, when determining 

whether an animal is a cat or a dog, it is necessary to develop an 

understanding of the typical visual characteristics exhibited by 

samples from each category and make a judgment about the extent of 

similarity between the present animal and cats or dogs (Fig. 16A). In 

this particular scenario, it is possible to describe the visual attributes 

of cats and dogs without explicitly establishing a boundary 

appearance that demarcates the two categories. 

On the other hand, the second scenario involves decision-

making based on boundary-based identity. In this context, observers 

are required to acquire knowledge about the specific location of 

category boundaries within a one-dimensional magnitude space that 

is relevant to the task at hand (Rips and Turnbull 1980, Kennedy 

2007, Tribushinina 2011, Sheahan, Luyckx et al. 2021). For example, 

when deciding whether a dog is small or large, individuals need to 

possess knowledge of the typical size range associated with dogs 

and then determine whether the size of the given animal falls below 

or exceeds that range (Fig. 16B). In this particular scenario, the 

distinction between small and large dogs cannot be defined without 

the establishment of a size boundary. 

Interestingly, this semantic distinction between similarity-

based and boundary-based identities, which has long been  
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Figure 16. The two decision-making scenarios. A, A similarity-based 

decision-making scenario. The distributions of cat and dogs are 

maintained, respectively. B, A boundary-based decision-making scenario. 

The class criterion divides the single distribution of dogs into small and 

large dogs. 

 

appreciated by linguists (Solt 2015), has often been overlooked 

within decision-making research, where similarity-based models 

have predominantly prevailed. For instance, signal detection theory 

(SDT), a widely accepted model of binary perceptual decision-

making (Green and Swets 1966, Gold and Shadlen 2007, Rahnev and 

Denison 2018), frames binary decision-making as an assessment of 

the degree of similarity between two category items and the present 

stimulus. However, SDT, by its very nature, may not be ideally suited 

for capturing the intricacies of boundary-based identification, as it 

does not explicitly incorporate the concept of category boundaries 

into its framework. 

 While the differentiation between the boundary-based and 

similarity-based decision-making models appears intuitive, the 

necessity of the boundary-based model in explaining the observed 

repulsive bias in my research remains uncertain. It is plausible that 

the similarity-based model alone could sufficiently account for the 

repulsive bias. Notably, a prior modeling study indicated that the 

similarity-based model appeared capable of explaining the repulsive 

bias (Norton, Fleming et al. 2017). Consequently, further 

investigations are warranted to ascertain whether the boundary-

based model is indispensable or if the similarity-based model alone 

is satisfactory for elucidating the repulsive bias. 
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It is my hope that future research will thoroughly investigate and 

refine the hypotheses proposed in my thesis. 
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국문 초록 

 

판단 경계의 업데이트가 선택과 

선택 불확실성의 역사 효과에 

미치는 영향 

 

서울대학교 대학원 

자연과학대학 뇌인지과학과 

이 희 승 

 

사람이 대상을 인식할 때 독특한 특징은 대상이 지닌 속성의 크기를 

‘크다/작다’와 같이 상대적인 범주로 단순하게 인식한다는 것이다. 

언어학자와 인지과학자들은 사람이 이렇게 대상을 상대적인 범주로 

인식할 때 어떻게 대상을 양쪽 두 범주 중 어떤 한 범주로 인식하는 

것인지 그 작동 방식을 연구해 왔다. 그들은 사람은 판단의 기준이 되는 

경계 값을 기억에 지니고 있으며 그 판단경계보다 대상이 큰지 작은지에 

따라 대상의 범주가 정해지는 것이라고 분석하였다.  

 그러나 사람이 실제로 판단경계를 활용하여 대상의 범주를 

판단한다는 설명은 현재까지 명확이 입증된 것이 아니다. 특히 뇌가 

실제로 판단경계를 표상하는지가 보여진 적이 없다. 따라서 본 

연구에서는 사람이 링의 크기를 ‘크다’ 혹은 ‘작다’로 판단할 때 
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사람의 뇌에서 판단기준이 실제로 표상되는지 알아보았다.  

이 목적을 위해 이 연구에서는 판단기준의 특징으로 여겨지는 

‘기준 업데이트’라는 현상을 이용하였다. 기준 업데이트란 판단 

기준이 최근에 본 대상의 크기와 비슷해진다는 가설을 말한다. 즉 큰 

자극을 보면 판단 기준은 큰 자극과 비슷한 크기로 커진다는 것이다. 이 

가설은 결국 다음에 내리는 대상에 대한 범주 판단이 이전에 본 대상의 

크기와 반대 쪽으로 편향된다는 밀침편향 예측한다. 본 연구는 뇌에서 

판단 기준이 표상된다면 그 판단 기준은 실제로 최근에 본 대상의 

크기와 비슷해져야 한다고 전제하고 이 전제를 만족하는 뇌 

자기공명영상 신호가 존재하는지 조사해 보았다. 그리고 실제로 왼쪽 

두정엽과 측두엽에서 관찰된 판단기준의 신호가 이전에 본 자극과 

비슷해 진다는 것을 확인 하였다. 

 아울러 기준업데이트가 선택 행위 영향을 준다는 것은 알려져 

왔지만 판단불확실성에 주는 영향은 이제껏 연구되지 않았다. 따라서 본 

연구는 기준업데이트가 판단불확실성에는 어떤 영향을 끼치는지도 

조사하였다. 본 연구는 판단불확실성과 관련 깊다고 알려진 판단시간, 

전방대상피질의 활동, 동공크기의 변화를 조사하였고 이 세 가지 모두 

기준업데이트에 따라 체계적으로 영향을 받는다는 것을 밝혀 냈다. 이 

발견은 기준업데이트가 선택 행위 뿐만 아니라 판단불확실성에도 영향을 

주는 요소라는 것을 보여준다.  

 이 학위논문에서 이뤄진 발견은 사람의 뇌가 어떻게 대상을 

상대적인 범주로 인식하는지 그 작동 방식에 대한 이해를 확장하였다. 

그것은 사람의 뇌는 두정엽이란 부분에서 이전에 봤던 자극들을 

이용해서 현재 자극이 나타나기 전에 판단 기준을 표상하며 그 표상된 

판단 기준을 이용해 사람의 언어처리를 담당한다고 알려진 측두엽에서 

대상에 대한 판단이 이뤄진다는 것이다.  

 

주요어 : 기준업데이트, 역사효과, 밀침편향, 의사결정, 판단불확실성 

학   번 : 2017-38129 
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