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Abstract 

The cerebello-thalamic tract is the only efferent white matter (WM) bundle of the 

cerebellum that connects the cerebellum to the thalamus and has recently attracted 

much attention in obsessive-compulsive disorder (OCD) with its integral role in 

higher order cognitive functions commonly known to be impaired in OCD 

patients. Previous neuroimaging studies have shown that the cerebello-thalamic 

connection is functionally impaired in OCD patients, and that functional 

abnormalities in the cerebello-thalamic circuit has correlates with OCD symptom 

severity scores, highlighting the dysconnectivity between the cerebellum and the 

thalamus is associated with OCD pathophysiology. However, the WM integrity of 

the cerebello-thalamic tract in OCD, which may underly functional abnormalities 

of the cerebello-thalamic connection, is not yet sufficiently understood. Therefore, 

the current study aimed to elucidate whether compromised cerebello-thalamic 

WM integrity is observed in medication-free OCD patients. This study included 

106 medication-free OCD patients and 105 matched healthy controls (HCs). T1-

weighted imaging and diffusion tensor imaging was acquired from every 

participant. To reconstruct the bilateral cerebello-thalamic tract with accurate 

anatomical characteristics, probabilistic tractography was used in this study. Three 

diffusion indices (fractional anisotropy, FA; mean diffusivity, MD; radial 

diffusivity, RD) were measured from the reconstructed bilateral cerebello-

thalamic tract and then compared between groups. As a result of analysis, patients 

with OCD showed significantly increased MD and RD in the right cerebello-

thalamic tract compared to HCs, and there was no difference in FA between 

groups. In addition, MD and RD of the right cerebello-thalamic tract of patients 

with OCD showed significantly lateralized to the right, and there’s no structural 

asymmetry for FA. Overall, this study revealed compromised WM microstructure 
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of the right cerebello-thalamic tract in patients with OCD, which may indicate the 

underlying structural abnormalities in the dysfunctional cerebello-thalamic circuit 

in OCD patients, suggesting that compromised WM microstructure of the right 

cerebello-thalamic tract may underlie OCD pathophysiology, such as OC-like 

behavior or cognitive dysfunctions in patients with OCD. 

Keyword: Obsessive-compulsive disorder; Cerebello-thalamic tract; White 

matter; Diffusion tensor imaging; Probabilistic tractography 

Student ID: 2020-23561 
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1. Introduction 

1.1 Characteristics of obsessive-compulsive disorder 

Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by 

repetitive and intrusive thoughts, images, impulses or urges (obsession) and 

maladaptive compulsive behaviors or mental acts (compulsion) that interfere with 

an individual’s life (Robins et al., 1984; Stein, 2002). Major cognitive 

impairments found in patients with OCD include alterations to visuospatial 

memory, dysfunctions to executive function, and impairment of verbal memory 

or verbal fluency (Shin, Lee, Kim, & Kwon, 2014). Since patients with OCD are 

heterogeneous group, exhibiting various OC symptom dimensions such as 

aggressive/checking, contamination/cleaning, symmetry/ordering, and 

sexual/religious, the current symptom-based classification of OCD is difficult to 

reflect the pathophysiology of OCD (Rosario et al., 2006; van den Heuvel et al., 

2009), so biological evidence such as neurocircuitry model should be considered 

together to diagnose OCD (Lack et al., 2012). 

Although the exact pathophysiology of OCD has not yet been clearly 

identified, the most reported neurocircuitry model in many studies on OCD is the 

cortico-striato-thalamo-cortical (CSTC) circuitry model, which is composed of the 

cortex, striatum, and thalamus, and it has been reported that functional or structural 

abnormalities for CSTC circuitry are associated with major clinical symptoms or 

cognitive impairments in patients with OCD (Graybiel & Rauch, 2000; J. S. Kwon, 

Jang, Choi, & Kang, 2009; Milad & Rauch, 2012; Pauls, Abramovitch, Rauch, & 
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Geller, 2014). However, along with the CSTC circuitry, accumulating evidence 

has highlighted the cerebello-thalamic circuit, in that they contribute to various 

cognitive dysfunctions commonly found in OCD patients (De Smet, Paquier, 

Verhoeven, & Marien, 2013; J. S. Kwon et al., 2009; Stoodley, 2012; Strick, Dum, 

& Fiez, 2009). 

 

1.2 Characteristics of the cerebello-thalamic tract 

Through a study of transneuronal tracing technique using retroviruses on the 

cerebellum, it was revealed that the cerebellum is known to communicate with 

various brain areas through two afferent and one efferent white matter (WM) 

bundles (Bostan, Dum, & Strick, 2013). In particular, the cerebello-thalamic tract 

is the only efferent WM bundle of the cerebellum, known as a tract that directly 

connects the cerebellum and the thalamus, and is characterized by anatomical 

features that the left and right cerebello-thalamic tract intersect at the midbrain 

area (Mollink et al., 2016; van Baarsen et al., 2016). Conventionally, cerebello-

thalamic connection has been considered to mostly involved in motor function 

such as motor coordination or motor control. However, recently, it has been 

reported that the cerebello-thalamic connection modulates higher cognitive 

functions such as visuospatial cognition, executive function, and linguistic 

processing, which are consistently reported to be altered in patients with OCD 

(Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011; Eng, Sim, & Chen, 2015; 

Stoodley & Schmahmann, 2009). For example, Ide and Li reported that the 

connection between the cerebellum and the thalamus is related to error-related 
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cognitive control which is an executive function (Ide & Li, 2011), and Ward 

showed that in the case with infarction to the cerebello-thalamic tract, impulses to 

compulsive behavior have been observed (Ward, 1988). As such, the cerebello-

thalamic tract has recently attracted much attention in OCD in that it is related to 

cognitive and behavioral dysfunctions commonly found in OCD patients. 

 

1.3 Functional studies on the cerebello-thalamic connection in 

OCD 

Recent functional magnetic resonance imaging (fMRI) studies have reported 

increased (Li et al., 2019; Lv et al., 2021; Sha et al., 2020) or decreased cerebello-

thalamic functional connectivity or network patterns (Hou et al., 2014; Tikoo et 

al., 2021; Xu et al., 2019) in patients with OCD and some studies have reported a 

positive or negative correlation with OCD symptom severity score (Sha et al., 

2020; Xu et al., 2019). For example, Hou et al., reported that the cerebello-

thalamic functional connectivity is increased in OCD patients (Hou et al., 2014), 

whereas Xu et al., reported that the functional connectivity between the 

cerebellum and the thalamus were significantly decreased in OCD patients and is 

positively correlated with OCD symptom severity (Xu et al., 2019). Although the 

findings are inconsistent among studies, these findings not only confirmed that the 

cerebello-thalamic connection is functionally altered in patients with OCD, but 

also highlighted the functional dysconnectivity between the cerebellum and the 

thalamus on OCD pathophysiology such as OC symptoms or cognitive 

impairment, suggesting the possibility that the cerebello-thalamic connection may 
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reflect functional mechanism of the pathophysiology of OCD (Heinzel et al., 2018; 

Moreira et al., 2019; Niu et al., 2017; Yang et al., 2010). However, the exact 

pathogenesis is still poorly understood. Therefore, to better comprehend the 

pathophysiology of OCD, despite functional abnormalities in the cerebello-

thalamic circuit in OCD patients, an understanding of the compromised white 

matter (WM) structural connection between the cerebellum and the thalamus is 

necessary in that it may underlie the cerebello-thalamic functional dysconnectivity 

(Greicius, Supekar, Menon, & Dougherty, 2009; Toosy et al., 2004; van den 

Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009). 

 

1.4 Diffusion tensor imaging 

The most commonly used method for studying WM is diffusion tensor imaging 

(DTI) technique. The basic principle of DTI is to quantitatively measure the degree 

of diffusion of water molecules in tract. In gray matter or cerebrospinal fluid, water 

molecules diffuse equally in all directions, so the shape of the tensor has a 

spherical, but in contrast, water molecules in WM have anisotropy that spreads 

better in parallel direction than in the vertical direction of nerve fibers, resulting 

in a fan-shaped tensor structure (Blain et al., 2006). From these characteristics, 

DTI parameter, a quantitative indicators of DWI image, can be calculated using 

eigenvalue. Diffusion index can be largely divided into anisotropic parameter and 

diffusivity parameter. Fractional anisotropy (FA) is a parameter representing the 

degree of anisotropy, which indicates the direction of water molecules (Pierpaoli, 

Jezzard, Basser, Barnett, & Di Chiro, 1996). Since highly anisotropic nerve fibers 
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increase the efficiency of neural signaling, an increase in FA value is often 

considered an indicator of the healthy or maturity of white matter (Winston, 2012). 

In addition to FA, complementary information to infer the characteristics or causes 

of detailed changes in tract can be obtained through diffusivity parameters. 

Diffusivity parameters include mean diffusivity (MD) and radial diffusivity (RD). 

MD is an average of three eigenvectors, which indicates the average water 

molecule diffusivity in the voxel, and the higher the value, the higher the diffusion 

rate of water into the extracellular space (Bennett, Madden, Vaidya, Howard, & 

Howard, 2010). RD is a parameter that quantifies the direction of diffusion 

perpendicular to the main diffusion direction and is known as an indicator that 

reflects the myelination state of axon (Song et al., 2003; Song et al., 2002). 

Previous studies have presented FA and MD values representatively reflecting the 

integrity of white matter and have additionally presented RD that provides 

information on the direction of diffusion (Bennett et al., 2010). 

Conventionally, aberrant WM fiber shows decreased FA and increased 

MD and RD. In principle, when the organization of the tract is rigid and uniform 

and the water diffusion rate is faster along the parallel direction to the axons 

compared to the perpendicular direction to the tract, the WM structure becomes a 

fan-shaped, and at this time, the anisotropy and parallel diffusivity are said to be 

increased (Basser, 1995). On the contrary, at the same condition, water diffusion 

rate in the direction perpendicular to the tract decreases, thereby reducing 

perpendicular diffusivity (Song et al., 2003; Song et al., 2002). Thus, considering 

that anisotropy represents the degree of diffusion in the principal direction 



 

 
 

6 

compared to the two orthogonal perpendicular directions, the direction of the 

relationship between anisotropy and diffusivity perpendicular to the tract is often 

the opposite in WM fiber (Figley et al., 2021; Winklewski et al., 2018). However, 

there are several exceptions to this interpretation such as crossing fiber or low 

signal-to-noise ratio (Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007; 

Wheeler-Kingshott, Ciccarelli, Schneider, Alexander, & Cercignani, 2012). For 

example, if the increase in diffusivity due to brain damage or brain disease 

increases at the same proportion in WM tract, MD and RD increases since net 

magnitude of diffusivity increases, but the FA is still intact because the principal 

direction of diffusion is still constant (Figley et al., 2021; Schilling et al., 2017). 

Therefore, in order to confirm the abnormality of the WM structure, FA, which is 

a relative measurement, and MD and RD, which are absolute measurements, 

should be considered together in interpreting the change in diffusion indices. 

 

1.5 DTI studies on the cerebello-thalamic tract in OCD 

To date, the majority of previous DTI studies in OCD used hypothesis-free whole-

brain comparison analysis (i.e., tract-based spatial statistics [TBSS]) to identify 

specific regions of WM alterations across the whole brain, and there are two DTI 

studies reported aberrant integrity in several WM regions in OCD patients 

including the superior cerebellar peduncle (SCP) (Jayarajan et al., 2012; Tikoo et 

al., 2021). The SCP is known as the cerebello-thalamic tract, the tract connecting 

the dentate nucleus, one of the deep cerebellar nuclei, and the thalamus (H. G. 

Kwon et al., 2011; Mollink et al., 2016; Silk, Chen, Seal, & Vance, 2013). 
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Jayarajan et al., reported an increased RD in the right cerebello-thalamic tract but 

no difference in FA and MD in juvenile OCD patients with medication (Jayarajan 

et al., 2012). On the other hand, Tikoo et al., reported decreased FA and increased 

MD in the left cerebello-thalamic tract in drug-naïve child OCD patients (Tikoo 

et al., 2021). Although there are discrepancies between studies, these studies have 

shown that the WM structure of the cerebello-thalamic tract is impaired in OCD 

patients. However, those findings may not be sufficient to determine whether the 

WM integrity of the cerebello-thalamic tract is actually altered in OCD, as those 

findings are derived from hypothesis-free whole-brain comparison analysis such 

as TBSS, making it difficult to distinguish between the cerebello-thalamic tract 

and adjacent WM fibers such as the central tegmental tract or medial longitudinal 

fasciculus (Kuchling et al., 2018; Preti et al., 2012). In addition, TBSS method is 

less specific in that in investigates changes in the diffusion index in small areas of 

the corresponding WM skeleton, which is different from WM tract. Therefore, it 

is necessary to confirm whether the WM integrity of the cerebello-thalamic tract 

is actually compromised in OCD by using a method that can investigate the WM 

integrity of the entire tract reflecting accurate anatomical characteristics. 

 

1.6 Probabilistic tractography method 

Tractography can be classified into two classes: deterministic and probabilistic 

tractography. Since deterministic tractography has difficulty explaining 

uncertainty in estimates of fiber orientation, probabilistic tractography, which can 

account this limitation well, is generally considered a better method to reconstruct 
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and dissect individual WM fibers compared to other method (Sotiropoulos & 

Zalesky, 2019). Probabilistic tractography method is a fiber-tracking technique 

that allows specific tracing of anatomical connections between different brain 

regions depends on the probability density function (Basser, Pajevic, Pierpaoli, 

Duda, & Aldroubi, 2000; Catani & Thiebaut de Schotten, 2008) and is relatively 

appropriate for examining the WM integrity of the entire tract because it could 

reconstruct the fan-shaped WM structure (Kanaan et al., 2006; Mori, Crain, 

Chacko, & van Zijl, 1999). The Main advantage of using probabilistic 

tractography is that it covers a larger  proportion of the tract of interest than whole-

brain comparison analysis (Mukherjee, Berman, Chung, Hess, & Henry, 2008). 

Furthermore, probabilistic tractography method has another advantage of being 

able to reconstruct WM tract reflecting accurate anatomical features of the 

corresponding fiber, even if it is a WM tract with a crossing fiber (van Baarsen et 

al., 2016). Thus, using probabilistic tractography, structural fingerprints of the 

cerebello-thalamic tract can be more reliably and reproducibly reconstructed and 

quantified than existing hypothesis-free whole-brain analysis such as TBSS, in 

that probabilistic tractography examines changes in the diffusion index of the 

entire tract rather than measuring regional diffusion index changes, as in 

hypothesis-free whole-brain analysis (van Baarsen et al., 2016). Despite these 

advantages, however, there have been no studies to date examining the integrity 

of the cerebello-thalamic tract in patients with OCD by applying probabilistic 

tractography. 
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1.7 Purpose of research 

In accordance with the altered cerebello-thalamic circuitry observed in fMRI 

studies of patients with OCD, this dissertation aimed to elucidate whether aberrant 

WM integrity of the cerebello-thalamic tract is observed in medication-free OCD 

patients compared to that of healthy controls (HCs). In addition, in order to solve 

the limitations of the existing whole brain TBSS approach and confirm the WM 

integrity of the cerebello-thalamic tract, this study intend to use probabilistic 

tractography (van Baarsen et al., 2016). Based on findings from previous 

functional (Chen et al., 2016; Heinzel et al., 2018; Peng et al., 2014; Thorsen et 

al., 2018; Vaghi et al., 2017) and structural studies in OCD (Jayarajan et al., 2012; 

Tikoo et al., 2021), this study was hypothesized that the WM integrity of the 

cerebello-thalamic tract is compromised in medication-free OCD patients 

compared to HCs. Specifically, as generally observed in aberrant WM fibers, it 

was expected that decreased FA and increased MD and RD would be observed in 

the cerebello-thalamic tract of OCD patients in this study.  
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2. Methods 

2.1 Participants 

A total of 107 medication-free OCD patients (age range 13 ~ 48 years) and 110 

age-, sex-, handedness-, IQ and education years-matched HCs (age range 17 ~ 48 

years) participated in this study. OCD patients were recruited from the OCD clinic 

at Seoul National University Hospital (SNUH), of which 45 patients were drug-

naïve, and 62 had been unmedicated for more than four weeks prior to study 

participation (Berney et al., 2011). Since current study included only medication-

free or drug-naïve OCD patients, drug effects were considered to be controlled for, 

and therefore information about drug use was not included in this paper. Diagnosis 

of OCD and comorbid psychiatric disorders was assessed according to the 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) 

criteria by certified psychiatrists (Association, 1994). For OCD patients, OC 

symptom severity and accompanying depression and anxiety symptoms were 

assessed with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Hamilton 

Rating Scale for Depression (HAM-D), and Hamilton Rating Scale for Anxiety 

(HAM-A), respectively (Goodman et al., 1989; Hamilton, 1959, 1960). HCs were 

recruited from online advertisements and were screened using the Structural 

Clinical Interview for DSM-IV Nonpatient Edition (SCID-NP) (Spitzer, Williams, 

Gibbon, & First, 1992). HCs were excluded when they had any first- to third-

degree relatives with psychotic disorders. Exclusion criteria for all subjects were 

intellectual disability (IQ < 70), history of severe head injury accompanying loss 
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of consciousness, neurological disorder, substance abuse (except nicotine), and 

severe medical illness that could affect cognitive functioning. 

Written informed consent was obtained from all participants in 

accordance with the Declaration of Helsinki after they were given a thorough 

explanation of the study procedure (IRB nos. H-1201-008-392). For those who 

were less than 18 years old, written informed consent was obtained from both 

participants and their parents. This study was conducted in accordance with the 

Declaration of Helsinki and was approved by the Institutional Review Board of 

SNUH (IRB no. H-2201-054-1289). 

 

2.2 Image acquisition 

All subject data were acquired using a 3T MRI scanner (Magnetom Trio; Siemens, 

Erlangen, Germany). T1-weighted imaging (T1WI) and diffusion-weighted 

imaging (DWI) data were acquired. T1WI data were acquired in the sagittal 

section using a three-dimensional magnetization-prepared rapid acquisition echo 

(MPRAGE) sequence [voxel size = 1 × 0.98 × 0.98 mm3, repetition time (TR) = 

1670 ms, echo time (TE) = 1.89 ms, field of view (FOV) = 250 mm, flip angle = 

9°, 208 slices]. DWI images were acquired in the axial section using echo-planar 

imaging [voxel size = 1.9 × 1.9 × 3.5 mm3, TR = 11400 ms, TE = 88 ms, matrix 

= 128 × 128, FOV = 240 mm]. Diffusion-sensitizing gradient echo encoding was 

applied in 64 gradient directions (b-value = 1000 s/mm2). Non-DWI (B0) volume 

was acquired at the beginning of each scan. 
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2.3 Image processing 

T1WI data were preprocessed using FreeSurfer version 7.1.0 to extract brain tissue 

from the whole head image (https://surfer.nmr.mgh.harvard.edu/). All 

preprocessing steps were conducted according to the automated FreeSurfer 

pipeline. Using FLIRT with a mutual information cost function and FNIRT with 

transformation matrices that were obtained from the linear method, each T1WI 

data point was registered to the Montreal Neurological Institute (MNI) standard 

space (2 x 2 x 2 mm3) (Ashburner & Friston, 1999). 

DWI data was preprocessed using the Functional MRI of the Brain 

(FMRIB) Software Library (FSL version 6.0.5, https://www.fmrib.ox.ac.uk/fsl) to 

remove nonbrain tissue (Smith, 2002) and correct eddy-current induced distortions 

as well as head motion (Andersson & Sotiropoulos, 2016). All data was visually 

inspected for major artifacts. When registering the T1WI data to the diffusion-

weighted space, B0 images of each subject were used as references. Initially, 

affine matrices were created to transform T1WI data to diffusion-weighted space 

using FLIRT with a mutual information cost function. Then, these metrices were 

combined with transforms that were previously created from T1WI nonlinear 

registration to the MNI space (Ashburner & Friston, 1999). 

 

2.4 Probabilistic tractography and diffusion index calculation 

To evaluate WM integrity of the cerebello-thalamic tract, FSL probabilistic 

tractography (Behrens et al., 2007) for each side of the brain with default option 

of the probtrackx2 GPU (curvature threshold = 78°, streamlines per voxel = 5000, 
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maximal number of steps = 275, step length = 0.5 mm, loopcheck, one-way 

condition) was conducted using the ipsilateral dentate nucleus (Hernandez-

Fernandez et al., 2019), taken from the Probabilistic Atlas of the Cerebellum 

(Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009) at a 50% threshold, 

as a seed region (Figure 1A), and the contralateral thalamus, taken from the 

Oxford Thalamic Connectivity Atlas (Behrens et al., 2003) at a 50% threshold, as 

both target region and waypoint (Figure 1B) (van Baarsen et al., 2016). The 

criterion for determining the left and right cerebello-thalamic tract depends on 

which side of the dentate nucleus is the seed region. For example, in the case of 

the left cerebello-thalamic tract, the left dentate nucleus was selected as a seed 

region, and the right thalamus was selected as an end point. For the cerebello-

thalamic tract, to prevent interference with cerebellar regions other than the 

dentate nucleus, the cerebellar vermis was used as an exclusion mask. In addition, 

to increase the probability accuracy of the cerebello-thalamic tract, the 

contralateral thalamus and dentate nucleus were chosen as exclusion masks on 

each side of the cerebello-thalamic tract. For example, in the case of the left 

cerebello-thalamic tract, the right dentate nucleus and left thalamus were chosen 

as exclusion masks. 

Then, three diffusion indices (FA, MD, and RD) were extracted from both 

sides of the cerebello-thalamic tract. Current study applied a 15% probability 

threshold to estimate each cerebello-thalamic WM tract more accurately and to 

solve the limitation in resolution of our diffusion images and the problem of the 

crossing fibers caused by the low resolution of our images. 
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As a result of the tractography, there were subjects that were drawn only 

on one side or not on either side of the cerebello-thalamic tract. A total of 6 

subjects were drawn on one side or not on either side, including 1 OCD patient 

and 5 HCs, all of whom were excluded from the study. The numbers of 

participants included in the final analysis were 106 OCD patients (71 male and 35 

female, age range 13-48 years) and 105 HCs (66 male and 39 female, age range 

17-48 years). 

 

2.5 Statistical analysis 

All statistical analyses were conducted using R version 4.0.3 (https://www.r-

project.org). For demographics, independent sample t tests or chi-square tests 

were conducted to examine the difference between patients with OCD and HCs. 

A significance level of p < 0.05 was used for all statistical analyses. To test the 

significant group differences for diffusion indices of the cerebello-thalamic tract 

between patients with OCD and HCs, analysis of covariance (ANCOVA) with age 

and sex as covariates was conducted. The results were corrected for multiple 

comparisons of the 6 tests (3 diffusion indices × 2 sides of the cerebello-thalamic 

tract) using the Bonferroni correction. 

 

2.6 Exploring effects of comorbid depressive disorder on 

diffusion index 

To investigate the possible effects of comorbidity, we divided the OCD group into 

36 OCD patients with depressive disorder (OCD with depression, 34.0%) and 61 
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OCD patients without depressive disorder (OCD without depression, 57.5%). 

Then, to identify group effects, ANCOVA with age and sex as covariates was 

conducted to test the three diffusion indices, and the results were corrected for 

multiple comparisons of the 6 tests using the Bonferroni correction. 

 

2.7 DTI lateralization index calculation 

To examine the possible hemispheric dominance for the cerebello-thalamic tract, 

DTI lateralization index (LI) is calculated on FA, MD and RD as follows: LI = 

(Diffusion index of the Left cerebello-thalamic tract – Diffusion index of the Right 

cerebello-thalamic tract) / (Diffusion index of the Left cerebello-thalamic tract + 

Diffusion index of the Right cerebello-thalamic tract) (James et al., 2015). A 

positive LI value indicates a leftward lateralization, while a negative LI value 

indicates rightward lateralization (Banfi et al., 2019). To confirm the significance 

of the lateralization of the corresponding diffusion index, a one-sample t-tests 

against zero was conducted. 
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3. Results 

3.1 Demographic 

Demographic characteristics of the participants, including age, sex, handedness, 

intelligence quotient (IQ) and education year, were comparable between groups. 

There were no statistically significant group differences in demographic 

characteristics between patients with OCD and HCs. Details of demographic are 

presented in Table 1. 

 

3.2 Reconstructed cerebello-thalamic tract 

Results for the reconstructed cerebello-thalamic tract are presented in Figure 2. 

The bilateral cerebello-thalamic tracts were successfully reconstructed in 106 

patients with OCD and 105 HCs (Figure 2B and 2C). In line with previous studies, 

current study also shows that the bilateral cerebello-thalamic tracts intersect each 

other in the midbrain area (Figure 2A and 2D), which is an anatomical 

characteristic of the cerebello-thalamic tract (H. G. Kwon et al., 2011; Mollink et 

al., 2016; Nieuwenhuys, 2008; van Baarsen et al., 2016). 

 

3.3 Group differences of diffusion indices 

ANCOVA results of the three diffusion indices (FA, MD, and RD) from the 

reconstructed bilateral cerebello-thalamic tract between the participants with OCD 

and HCs revealed that MD (F value = 7.98, Bonferroni corrected p value = 0.016) 
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and RD (F value = 7.31, Bonferroni corrected p value = 0.031) value of the right 

cerebello-thalamic tract at a 15% threshold were significantly increased in 

participants with OCD compared with the HCs (Figure 3). However, there was 

no significant difference for FA in the bilateral cerebello-thalamic tract between 

groups (Bonferroni corrected p value > 0.999). The results of the ANCOVA 

comparing three diffusion indices between groups are summarized in Table 2. The 

p values were Bonferroni corrected for 6 tests in these analyses for multiple 

comparisons. 

For comorbid effects of depressive disorder in patients with OCD, there 

were no significant differences in the three diffusion indices of the bilateral 

cerebello-thalamic tract between OCD patients with depressive disorder and those 

without depressive disorder. Thus, current study conclude that compromised white 

matter integrity of the right cerebello-thalamic tract may not be affected by 

comorbidity in patients with OCD. Group comparison results of diffusion indices 

of the cerebello-thalamic tract between patients with OCD presenting with 

depressive disorder (OCD with depression) and those presenting without 

depressive disorder (OCD without depression) is presented in Table 3. 

 

3.4 DTI lateralization index 

This study calculated the LI values of the OCD patients and the HCs for the three 

diffusion indices of the cerebello-thalamic tract. As shown in Table 4, since the 

LI values for all FA, MD, and RD of HC approached zero, no structural asymmetry 

was found in HCs (mean LIs = 0.001, -0.001, and -0.002 in the FA, MD, and RD, 
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respectively). On the other hand, for patients with OCD, FA had a positive LI 

value (mean LI = +0.024), so FA tended to be lateralized to the left, and MD and 

RD had a negative LI value (mean LIs = -0.026 and -0.037 in the MD and RD, 

respectively), so MD and RD tended to be lateralized to the right. As a result of 

one-sample t-tests against zero, it was found that the LI of the MD (t = -2.76, 

Bonferroni corrected p = 0.042) and RD (t = -2.88, Bonferroni corrected p = 0.030) 

was significantly different from zero in patients with OCD, while the LI of the FA 

was not significantly different from zero in both OCD patients and HCs. The 

results are summarized in Table 4. 
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4. Discussion 

4.1 Summary 

Functional dysfunctions between the cerebellum and the thalamus are considered 

to associate with OC symptoms or cognitive impairment commonly found in OCD 

patient. Considering that aberrant WM fiber architecture may underlie the 

functional dysconnectivity, to identify compromised cerebello-thalamic WM 

integrity in patients with OCD more reliably, this study applied probabilistic 

tractography. Three diffusion indices (FA, MD, and RD) were evaluated as 

markers of aberrant WM integrity in the cerebello-thalamic tract and revealed that 

compromised WM integrity in the right cerebello-thalamic tract was associated 

with increased MD and RD in OCD patients, whereas FA in the left and right 

cerebello-thalamic tracts in OCD patients did not differ from that in HCs, 

suggesting that patients with OCD have immature or degenerative fiber 

architecture in the right cerebello-thalamic tract or along with deficits in 

myelination in the underlying WM tract. The results of this study also shown that 

the cerebello-thalamic tract in OCD patients had rightward structural asymmetry. 

Overall, current study confirmed aberrant WM integrity in the right cerebello-

thalamic tract of medication-free OCD patients, suggesting that these 

microstructural abnormalities in the right cerebello-thalamic tract may be 

associated with the pathophysiology of OCD such as OC-symptoms or cognitive 

dysfunctions. 
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4.2 Implications of changes in diffusion indices  

In current study, consistent with the hypothesis, OCD patients showed 

significantly higher MD and RD in the right cerebello-thalamic tract than HCs 

after controlling age and sex, whereas there was no significant group difference in 

FA between OCD patients and HCs. Conventionally, unchanged FA is regarded 

as equivalent to WM integrity (Jones, Knosche, & Turner, 2013; Silk et al., 2013). 

However, since FA is a relative measure of diffusivity, if the diffusion changes 

proportionally along the three eigenvectors, the sensitivity of FA may decrease, 

so FA alone is not enough to determine the WM integrity of the tract (Van Camp 

et al., 2012). In contrast, in the same condition, MD and RD increases because net 

diffusivity increases (Figley et al., 2021). Thus, considering that FA alone cannot 

account for the full tensor shape, MD and RD, which are absolute measures that 

can provide quantitative information about WM integrity changes, should be 

considered in addition to FA. Increased MD can be explained by expansion of the 

extracellular space and increased water diffusivity due to abnormal 

cytoarchitecture or neuroinflammation, suggesting immaturity or degeneration of 

the cerebello-thalamic tract in patients with OCD (Bennett et al., 2010; Blain et 

al., 2006; Lochner et al., 2012; Song et al., 2002). In addition, increased RD 

usually indicates damage to myelination of axons in WM, suggesting dys- or 

demyelination of axons or altered myelin integrity in OCD patients (Harsan et al., 

2006; Song et al., 2003). Therefore, although it is difficult to conclude that WM 

integrity of the cerebello-thalamic tract is aberrated in OCD patients with intact 

FA values, the results of this study, which showed an increase  in MD and RD in 
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the right cerebello-thalamic tract, may suggest increased overall water diffusivity 

due to abnormal cytoarchitecture or neuronal inflammation in the right cerebello-

thalamic tract, represented by increased MD, and dys- or demyelination of axons 

or altered myelin integrity, represented by increased RD, may affect cerebello-

thalamic WM architecture of patients with OCD. 

Furthermore, in this study, diffusion index changes were observed only in 

the right cerebello-thalamic tract, and no diffusion index changes were observed 

in the left cerebello-thalamic tract. To investigate possible lateralization in the 

cerebello-thalamic tract of patients with OCD, LI value for diffusion indices 

between left and right cerebello-thalamic tract was calculated (James et al., 2015). 

As a result of the analysis, MD and RD of the cerebello-thalamic tract tended to 

be significantly lateralized to the right in OCD patients, while no lateralization 

was found for FA. These results of this study confirmed that patients with OCD 

had rightward structural asymmetry of the cerebello-thalamic tract. Although 

functional and structural lateralization of the bilateral cerebello-thalamic tract in 

OCD patients is still poorly understood (Baillieux et al., 2010; Kim, Im, Kim, & 

Park, 2019), considering previous functional studies that alteration in the right 

cerebello-thalamic connection was associated with cognitive dysfunction 

associated with the left hemisphere such as language difficulties (Gottwald, Wilde, 

Mihajlovic, & Mehdorn, 2004; Hokkanen, Kauranen, Roine, Salonen, & Kotila, 

2006; Marien, Engelborghs, Fabbro, & De Deyn, 2001; Marien et al., 1996), the 

current findings suggest that compromised right cerebello-thalamic tract WM 

microstructure may underlie the cognitive dysfunction of OCD patients. 
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4.3 Implications of current findings compared to previous 

studies 

To date, two DTI studies using whole-brain TBSS have reported cerebello-

thalamic WM abnormalities in OCD patients (Jayarajan et al., 2012; Tikoo et al., 

2021). In line with the current findings, Jayarajan et al. reported that OCD patients 

showed increased RD in the WM region overlapping with the right cerebello-

thalamic tract compared to HCs, but no significant group differences were found 

in FA values (Jayarajan et al., 2012). On the other hand, Tikoo et al. reported 

significantly lower FA and higher MD in WM regions overlapping with the left 

cerebello-thalamic tract in OCD patients than in HCs (Tikoo et al., 2021). The 

discrepancy between this study and that by Tikoo et al. may be due to differences 

in imaging analysis technique (i.e., tractography vs. TBSS) and sample sizes (i.e., 

106 OCD patients in this study vs. 10 OCD patients in the study by Tikoo et al.). 

To address the issues, the probabilistic tractography approach was used in this 

study, since it allows better delineation of the WM tract than the whole brain TBSS 

approach; it reduces the partial volume effects and analyzes specific WM tracts as 

a whole rather than limiting it to small regions overlapping WM tracts. In addition, 

previous studies may have low statistical power in that they conducted research a 

relatively small number of subjects (Boedhoe et al., 2017; Lin, Weng, Xie, Wu, & 

Lei, 2011; Melicher et al., 2015; Piras et al., 2021). Thus, the results of the present 

study using probabilistic tractography in a relatively large number of OCD 
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patients may better describe cerebello-thalamic tract WM abnormalities in OCD 

patients. 

Furthermore, Previous functional MRI studies have consistently reported 

that altered cerebello-thalamic connectivity was related to cognitive impairments 

found in OCD patients (Buckner et al., 2011; Eng et al., 2015; Stoodley & 

Schmahmann, 2009). In addition, previous functional connectivity studies on 

patients with OCD have shown that functional networks, including cerebello-

thalamic circuits, were associated with OC symptom severity or OC-like behavior 

(Fan et al., 2017; Tikoo et al., 2021; Xia et al., 2019). These previous studies 

highlight the dysconnectivity between the cerebellum and the thalamus in OCD 

patients and the involvement of the cerebello-thalamic circuit to abnormal 

functioning in patients with OCD. The current study findings, which reported 

increased MD and RD values in the right cerebello-thalamic tract in OCD patients, 

are significant in that it may provide structural background for those functional 

studies. Furthermore, in line with the results of previous structural MRI studies 

(Jayarajan et al., 2012; Tikoo et al., 2021), current studies have shown that the 

cerebello-thalamic tract WM microstructure is aberrated in patients with OCD. 

Therefore, although future studies should focus on the direct association between 

OC symptomatology or cognition and compromised WM structural abnormalities 

of the cerebello-thalamic tract, considering that previous functional studies have 

shown that abnormal dysfunctions in the cerebello-thalamic connection are related 

to OC-like behavior and OC symptoms, current study suggest that microstructural 
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abnormalities in the right cerebello-thalamic tract may underlie OCD 

pathophysiology. 

 

4.4 Limitations 

This study has several limitations. First, the results of this study may be limited 

by MRI acquisition. A single B0 image and non-isotropic voxel shape might have 

had a slight influence on the process of WM tract reconstruction, such as fiber 

orientation or diffusivity mapping. During image acquisition, cardiac pulsation 

was not controlled, which could induce body movements. However, to solve this 

problem, the subjects with images with critical artifacts through the visual 

inspection of every participant’s DWI were excluded in this study. Second, current 

study did not perform correlation analysis between altered diffusion indices and 

OC symptom severity score or neurocognitive function test results. Thus, 

interpretation regarding the current study finding of an underlying structural 

abnormality of OCD pathophysiology, such as symptoms or cognitive dysfunction, 

should be further supported by correlation analysis in future study. 
 

4.5 Conclusion 

In conclusion, this study demonstrated that MD and RD of the right cerebello-

thalamic tract in patients with OCD were significantly higher than those of HCs. 

Although there was no change in FA representing WM integrity, the increases in 

other diffusivity measures could indicate that the microstructure of the right 

cerebello-thalamic WM connections is possibly impaired, such as through axonal 
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degeneration or demyelination. Furthermore, based on previous fMRI studies for 

OCD-related behaviors and cognitive functions, the impaired WM microstructure 

of the right cerebello-thalamic tract may underlie not only altered activity patterns 

between the cerebellum and the thalamus but also their cognitive function and 

behavioral dysfunction in OCD patients. Using probabilistic tractography, we 

reconstructed cerebello-thalamic WM connections more finely in individual 

subjects and subsequently measured diffusion indices. We only included 

medication-free patients with OCD to minimize confounding effects of 

psychotropic medications on WM structures as well as using relatively large 

sample (Benedetti et al., 2013). Therefore, this study confirmed that the WM 

integrity of the right cerebello-thalamic tract is significantly altered in OCD 

patients, and since aberrant WM structure between the cerebellum and the 

thalamus may reflect their neural dysfunction as well as functional dysfunction, 

thus suggesting an anatomical underpinning of behavioral impairments and 

cognitive dysfunctions in patients with OCD. 
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Tables 
 
Table 1. Demographic and clinical characteristics of the participants 

Variable  OCD (n = 106) HCs (n = 105) χ2/t p 

Age (year)   24.9 ± 6.9 25.3 ± 6.5 -0.35 0.729 

Sex (Male/Female)   71/35 66/39 0.63 0.533 

IQ   112.7 ± 12.5 109.7 ± 15.8 1.56 0.122 

Handedness (Left/Right) 7/99 1/104 -0.53 0.595 

Education (year)   14.2 ± 2.3 14.2 ± 2.1 -0.09 0.931 

Duration of illness (year) 6.8 ± 5.7    

Y-BOCS Total 26.6 ± 6.3    

  Obsession 14.0 ± 3.0    

  Compulsion 12.5 ± 4.3    

HAM-D   11.8 ± 6.2    

HAM-A   10.9 ± 6.0    

Comorbidity None 61 (57.5%)    
  Depressive disorder 36 (34.0%)    
  Bipolar disorder 6 (5.7%)    
  Personality disorder 3 (2.8%)    

The data are presented as mean ± standard deviation. 
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Y-BOCS Yale Brown obsessive-compulsive scale, HAM-D Hamilton rating scale for depression, HAM-A Hamilton rating scale for 

anxiety, OCD Obsessive-compulsive disorder patients, HCs Healthy controls (age-, sex-, and handedness-matched)  
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Table 2. Fractional anisotropy, mean diffusivity and radial diffusivity values of the bilateral cerebello-thalamic tract in patients 

with OCD and HCs 

Diffusion indices OCD (n = 106) HCs (n = 105) F p Bonferroni- 
corrected p 

FA 
Left 0.495 ± 0.051 0.487 ± 0.058 1.16 0.283 >0.999 

Right 0.474 ± 0.067 0.485 ± 0.055 1.75 0.188 >0.999 

MD 
(10-3 mm2/s) 

Left 0.913 ± 0.139 0.911 ± 0.117 0.00 0.952 >0.999 

Right 0.964 ± 0.156 0.911 ± 0.106 7.98 0.003 0.016* 

RD 
(10-3 mm2/s) 

Left 0.661 ± 0.139 0.664 ± 0.127 0.03 0.862 >0.999 

Right 0.718 ± 0.170 0.666 ± 0.116 7.31 0.005 0.031* 
The data are presented as mean ± standard deviation. * Bonferroni corrected p < 0.05. 

OCD obsessive-compulsive disorder patients, HCs healthy controls (age-, sex-, and handedness-matched), FA fractional anisotropy, 

MD mean diffusivity, RD radial diffusivity 

* Denotes significant group differences obtained via ANCOVA. Results are Bonferroni corrected at p < 0.05 for multiple comparisons 

for 6 tests. 
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Table 3. Comparison of diffusion indices of the cerebello-thalamic tract between patients with OCD presenting with depressive 

disorder and those presenting without depressive disorder 

Diffusion indices OCD with depression OCD without depression F p Bonferroni- 
corrected p 

FA 
Left 0.501 ± 0.041 0.492 ± 0.055 0.75 0.389 >0.999 

Right 0.478 ± 0.075 0.472 ± 0.064 0.21 0.652 >0.999 

MD 
(10-3 mm2/s) 

Left 0.891 ± 0.009 0.923 ± 0.158 1.22 0.272 >0.999 

Right 0.959 ± 0.181 0.966 ± 0.142 0.05 0.817 >0.999 

RD 
(10-3 mm2/s) 

Left 0.642 ± 0.010 0.671 ± 0.164 0.97 0.327 >0.999 

Right 0.713 ± 0.197 0.724 ± 0.153 0.10 0.753 >0.999 
The data are presented as the mean ± standard deviation. 

OCD obsessive-compulsive disorder patients, OCD with depression patients with OCD presenting with depressive disorder, OCD 

without depression patients with OCD without depressive disorder, FA fractional anisotropy, MD mean diffusivity, RD radial 

diffusivity 
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Table 4. Lateralization index value of the fractional anisotropy, mean diffusivity, and radial diffusivity in the patients with OCD 

and HCs 

The data are presented as the mean ± standard deviation. Negative LI value indicates right-hemispheric dominance. 

OCD obsessive-compulsive disorder patients, HCs healthy controls, (age-, sex-, and handedness-matched), LI lateralization index, FA 

fractional anisotropy, MD mean diffusivity, RD for radial diffusivity 

* Denotes significant group differences obtained via one-sample t-test against zero. Results are Bonferroni corrected at p < 0.05 for 

multiple comparisons for 6 tests. 

  

Lateralization index Mean Standard deviation t p Bonferroni-corrected p 

LI for FA 
OCD 0.024 0.095 2.60 0.011 0.066 

HCs 0.001 0.081 0.14 0.891 >0.999 

LI for MD 
OCD -0.026 0.096 -2.76 0.007 0.042* 

HCs -0.001 0.080 -0.09 0.930 >0.999 

LI for RD 
OCD -0.037 0.134 -2.88 0.005 0.030* 

HCs -0.002 0.113 -0.20 0.838 >0.999 
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Figures 
 

 
Figure 1. Regions of interest (ROIs) for reconstructing the bilateral cerebello-thalamic tract by using probabilistic tractography, overlaid 

on the 1 mm T1-weighted Montreal Neurological Institute (MNI) template. (A) The ipsilateral dentate nucleus, one of the deep cerebellar 

nuclei, depicted in yellow was used as seed masks. (B) The contralateral thalamus, taken from the Oxford Thalamic Connectivity Atlas, 
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pictured in blue, was chosen as waypoint as well as stop region. For the left cerebello-thalamic tract, the left dentate nucleus was chosen 

as seed region and right thalamus was chosen as waypoint as well as stop region. For the right cerebello-thalamic tract, the right dentate 

nucleus was used as seed region and left thalamus was chosen as waypoint and stop mask.  
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Figure 2. Tractography results of the bilateral cerebello-thalamic tract in both OCD patients and healthy controls (HCs). The left column 

depicted in yellow presents tractography results of the OCD patients and the right column shown in blue shows tractography results of 

the HCs. The left cerebello-thalamic tract is depicted in blue, and the right cerebello-thalamic tract is pictured in yellow. The bilateral 

cerebello-thalamic tracts were applied 15% probability threshold to estimate white matter tract more precisely. All tracts were overlaid 

on the 1 mm T1-weighted MNI template. (A) The left and right cerebello-thalamic tract of the OCD patients were described on axial 

planes. The anatomical feature of the cerebello-thalamic tract where the left and right cerebello-thalamic tract intersect in the mid-brain 

area was presented at Z = 27. (B) The bilateral cerebello-thalamic tract of patients with OCD were 3D-reconstructed on sagittal planes. 

(C) The 3D-reconstructed left and right cerebello-thalamic tract of HCs were presented on sagittal planes. (D) The bilateral cerebello-

thalamic tract of HCs was described on axial planes. The left and right cerebello-thalamic tract of HCs decussated in mid-brain at Z = 

28. 
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Figure 3. The results of statistical analysis of fractional anisotropy, mean diffusivity, and radial diffusivity of bilateral cerebello-

thalamic tract in patients with OCD and healthy controls (HCs). The left column, depicted in blue, shows the group effects on diffusion 

indices of the left cerebello-thalamic tract and the right column, shown in yellow, shows the group effects on the diffusion index of the 

right cerebello-thalamic tract. The analysis of covariance (ANCOVA) results with age and sex as covariates were corrected with the 

Bonferroni test for multiple comparisons and were presented as “*” (p < 0.05) on each box plot. Sagittal scenes of 3D-reconstructed 

cerebello-thalamic tracts in the left (blue) and right (yellow) hemispheres were presented at the top of each column. The axial view of 

the bilateral cerebello-thalamic tracts was shown in the center. As a result of ANCOVA, mean diffusivity and radial diffusivity of the 

right cerebello-thalamic tract in OCD patients were significantly higher than that of HCs, and there was no group difference in fractional 

anisotropy.  
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국문 초록 
 

소뇌-시상관은 소뇌와 시상을 연결하는 소뇌의 유일한 원심성 백질 다발로, 

강박 장애 환자에서 흔히 손상되었다고 알려진 고위 인지기능에  필수적인 

역할을 하는 것으로 알려져 최근 많은 관심을 받고 있다. 기존의 기능적 뇌 

영상 연구는 강박 장애 환자에서 소뇌와 시상 사이의 연결이 기능적으로 

손상되어 있으며, 이러한 소뇌-시상 회로의 기능 이상이 강박 장애 증상 

심각도와 관련이 있다는 것을 보이며 소뇌와 시상 사이의 비정상적인 

연결성이 강박 장애의 병태생리와 관련이 있음을 보였다. 그러나 강박 장애 

환자의 소뇌-시상 연결성의 기능적 이상에 대한 기저가 될 수 있는 소뇌-

시상관 백질 무결성에 대해서는 아직까지 충분한 이해되지 않았다. 따라서, 

본 연구는 약물 효과를 배제한 강박 장애 환자에서 소뇌-시상관의 백질 

무결성 손상 여부를 규명하는 것을 목표로 한다. 본 연구에는 106 명의 약물 

효과를 배제한 강박 장애 환자와 나이와 성별, 지능 지수, 손잡이, 교육 년 수가 

매칭된 105 명의 정상 대조군이 연구에 참여하였으며, 모든 참여자에서 확산 

텐서 이미지와 T1 이미지를 수집하였다. 그 후 정확한 해부학적 특징을 

반영한 소뇌-시상관을 재구성하기 위해 확률적 트랙토그래피를 적용하였고, 

재구성된 양쪽 소뇌-시상관에서 세 가지 확산 지수 (분위 이방성 [FA], 평균 

확산성 [MD], 방사형 확산성 [RD])를 측정한 후 강박 장애군과 정상 

대조군간 차이가 있는지 알아보기 위해 분산분석을 진행하였다. 분석 결과, 

강박 장애 환자들은 정상 대조군과 비교했을 때 우측 소뇌-시상관에서 평균 

확산성과 방사형 확산성이 유의하게 증가하였으며, 두 그룹 간 분위 

이방성에는 유의한 차이가 없었다. 또한, 강박 장애 환자의 오른쪽 소뇌-

시상관의 평균 확산성과 방사형 확산성은 유의하게 오른쪽으로 편측된 것을 

확인할 수 있었다. 본 연구의 결과는 강박 장애 환자의 소뇌-시상 회로의 
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기능적 이상에 대해 근본적인 구조적 이상이 있음을 보였다. 이러한 연구 

결과는 강박 장애 환자의 소뇌-시상 회로의 기능적 손상에 대해 보다 

근본적인 구조적 이상이 있음을 나타내며, 더 나아가 우측 소뇌-시상관의 

손상된 백질 미세 구조가 강박 장애 환자의 강박 유사 행동 또는 인지 기능 

장애와 같은 강박 장애 병태생리의 기초가 될 수 있음을 시사한다. 

주요어: 강박증; 소뇌-시상관; 백질; 확산 텐서 영상, 강박증, 확률적 

트랙토그래피 
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