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Abstract

The brain consists of the highly localized functions of several brain regions and the in-

tegration of these regions through neural connections. These brain neural connections

are constantly changing at the systemic and synaptic levels to effectively respond to

the ever-changing environment. One of the key factors enabling these dynamic inter-

actions is the structural plasticity of the human brain at the macro and micro scale.

Because the brain’s macro- and micro-structures convey different but complementary

information, considering both structures is critical to understanding the brain’s struc-

tural plasticity and connectivity during cognitive tasks. However, previous studies have

not effectively considered this issue.

In this study, a novel deep learning framework, Macro2Micro, is proposed to gen-

erate high-quality Diffusion Tensor Imaging (DTI) and tractography from structural

MRI (sMRI). The study is premised on the hypothesis that micro-scale structural in-

formation can be inferred from macro-scale structures, enabling the generation of dif-

ferent imaging modalities beneficial for disease diagnosis and research, even when

only one modality is initially obtained. This approach, unprecedented in the realm of

neuroimaging, leverages the benefits of cross-modality image translation, offering sig-

nificant time and cost savings. The Macro2Micro framework utilizes 3D T1 to gener-

ate 2D T1 slices as input, which are then processed through a Generative Adversarial

Network (GAN) to produce 2D DTI (FA) slices and subsequently 2D tractography.

The key element of this process is the use of Octave Convolutions, which facilitate

the analysis of connections between various scale MR modalities. The framework

was trained using the Adolescent Brain Cognitive Development (ABCD) dataset, with

training losses evaluated through Image Pixel loss, Perceptual loss, GAN loss, and
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brain-focused patch GAN loss.

The results not only showed superior performance compared to other algorithms

quantitatively and qualitatively but also have significant meaning in neuroscience in

that they learned not only the image distribution but also the biological characteristics

of the structural and microscopic structures of the brain. The potential application of

this image translation model as a data augmentation method could address issues of

data imbalance and scarcity. This research underscores the potential of multimodal

imaging, specifically the combined use of T1, DTI, and tractography, in advancing

disease modeling.

Keywords: Image-to-Image Translation, Generative Adversarial Networks, Deep Learn-

ing, Structural MRI, Diffusion MRI, Tractography

Student Number: 2021-22028
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Chapter 1

INTRODUCTION

The brain function is primarily determined by its connections. The brain consists of

highly localized functioning of several brain regions and integration of these regions

through neural connection [1]. The brain connections are constantly adjusted at both

systemic and synaptic levels to adapt to the ever-changing environment effectively. Re-

search studying the relationship between the brain’s connectivity and its interplay with

the environment has yielded novel understandings of adaptive human behavior. One

important factor that makes the dynamic interaction possible is structural plasticity at

the macro and micro scale of the human brain.

The macro-structure of the human brain refers to the architecture of cell bodies

and neurite arrangement within the gray matter or axonal properties (e.g., tissue orga-

nization, size distribution, density, and myelin content) in the white matter. The macro-

structure of the human brain has enormous potential in understanding the structure and

organization of the brain, providing unique insights for abnormalities that underpin dis-

ease states. The microstructure, on the other hand, refers to the microscopic structure

of brain tissue components such as myelin, axons, and dendrites or the quantification

of their properties. This microscopic structural architecture includes multiple prop-

erties such as cell size, the orientation of axonal fiber bundles, and packing density.

Several dysfunctions of the human brain result from pathological features such as de-

myelination, inflammation, and axonal loss [2]. As both macro- and micro-structure of
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the brain convey different yet complementary information of the human brain, consid-

ering both structures is extremely important for understanding the structural plasticity

of the human brain and connectivity during cognitive tasks.

Magnetic resonance imaging (MRI) has had an unprecedented contribution to our

understanding of the macro- and micro-structure of the human brain. The macrostruc-

ture of the brain could be captured by structural MRIs (sMRI), especially with T1-

weighted MRI. T1-weighted images are favorable for observing macro-scale struc-

tures such as the overall shape and size of brain tissues. On the contrary, diffusion MRI

(dMRI) can be used for studying brain tissue micro-structures [3]. Brownian motion of

water molecules in the brain is restricted by factors such as the micro-environment and

temperature [4] and this makes the properties of microscopic structural tissue can be

observed sensitively at the voxel scale [5]. Thus, dMRI is helpful in recognizing tissue

damage or abnormalities that depend on the cell density of the tissue. Unlike sMRI,

the contrast of the image in dMRI is determined by the difference in the diffusion

rate of water molecules, so neuroanatomy can be seen at the function and physiology

level [4]. Difussion-weighted Image (DWI), one of the most used in dMRI models

can sensitively detect the increase in parenchymal signal due to tissue damage caused

by cytotoxic edema for diagnosing hyperacute stroke. DWI is used in many advanced

dMRI models such as neurite orientation dispersion and density imaging (NODDI),

diffusion kurtosis imaging (DKI), and diffusion tensor imaging (DTI). In addition,

diffusion-derived scalar maps provide rich information about micro-structural charac-

terization [3].

While these modalities have made great strides in identifying changes at different

scale structures, they have generally proven to be very sensitive to tissue abnormalities,

albeit with low specificity [2]. The multiplicity of factors contributing to the overall

signal prevents a direct correlation between MRI biomarkers and biological substrate.
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To address the low specificity and embrace brain structures at different scales,

several studies have attempted to combine multiple MRI modalities. Diffusion ten-

sor imaging (DTI) and T1-weighted images provide different yet complementary in-

formation. For example, DTI is particularly sensitive in reflecting the structural state

of white matter, which has led to active research in white matter diseases such as

multiple sclerosis [6, 7], CADASIL [8, 9], amyotrophic lateral sclerosis [10, 11], and

Alzheimer’s disease [12, 13]. These studies have demonstrated that DTI can effec-

tively detect pathological alterations in white matter regions that appear normal in T1

and that changes in DTI measures correlate with pathological changes and clinical

findings.

Therefore, a multimodal approach that simultaneously utilizes DTI and T1 allows

for a more comprehensive understanding of brain information, as recent research sup-

ports. Recently, the fusion of diffusion indices and surface information through T1-

DTI fused images has shown improved detection power in distinguishing between

individuals with mild cognitive impairment (MCI) and healthy controls [14]. Further-

more, a multimodal approach incorporating feature selection from both T1 and DTI

data has demonstrated superior performance in age regression compared to the uni-

modal approach, which utilizes each data modality separately. [15].

Similarly, research to use tractography, which can capture brain connection infor-

mation, is also in the spotlight. Fractional anisotropy (FA) is the most widely used

quantitative index obtained through DTI. However, the FA image has a single scalar

value for each voxel. Thus it cannot represent the directionality of tissues in each

voxel. On the other hand, tractography utilizes DTI data to tract and reconstruct fiber

pathways, providing insights into the structural connections between different brain

regions. By tracing the trajectory of neural fibers, tractography can effectively capture

and visualize the connectivity patterns in the human brain, which FA alone cannot

achieve. Considering and analyzing these three MRI modalities all at once would be
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a milestone in neuroscience in that each of them provides distinct yet complementary

information.

There have been numerous attempts to integrate these modalities in a multimodal

fashion in neuroimaging studies. However, multimodal deep learning poses several

challenges.

The major bottleneck for multimodal studies is that obtaining different modalities

data is extremely costly and time-consuming. For example, Diffusion Tensor Imaging

(DTI) requires a much longer acquisition time compared to T1-weighted imaging. In

the ABCD (Adolescent Brain Cognitive Development) dataset we utilized, obtaining

the DWI (Diffusion Weighted Imaging) data, which serves as the foundation for DTI,

took 7 minutes and 30 seconds per single subject. Also in the ABCD study, to obtain a

single DTI (Diffusion Tensor Imaging) image, 96 DWI (Diffusion Weighted Imaging)

images are required [16]. Therefore, it would take approximately 720 minutes to ac-

quire DTI images for a single patient, while T1 imaging took 5 minutes and 38 seconds

using a Phillips scanner [17]. To obtain both T1 and DTI images simultaneously, pa-

tients need to remain inside the MRI scanner for an extended period. However, studies

have shown that the quality of MRI scans can be compromised in patients with panic

disorder or agoraphobia (PD/AG) due to the potentially stressful nature of the MRI

environment [18]. Additionally, MRI scans are highly sensitive to motion, leading to

the use of sedatives or anesthesia in infants with frequent movement. However, these

approaches are not recommended due to ethical concerns and potential long-term risks

[19]. Therefore, it is practically impossible to obtain high-quality images for lengthy

acquisitions like DWI in patients who cannot tolerate long periods inside the MRI

scanner or in infants with frequent motion.

Moreover, when it comes to obtaining tractography, generating 1 million tracks

using software such as MRtrix3[20] typically takes around 12 hours per subject. Such
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challenges significantly limit the clinical applicability of tractography despite its po-

tential value. Recently, research generating tractography from diffusion-weighted imag-

ing (DWI) has started to emerge, and even that remains rare [21].

In deep learning research where a large amount of data is crucial, only subjects

who have data for all modalities can be used for the analysis. As a result, the avail-

able data size is inevitably reduced. It can lead to decreased generalizability and an

increased risk of overfitting. Furthermore, effective integration of multimodal data re-

quires capturing their interactions accurately, which often necessitates complex model

architectures and, consequently, requires more computational resources. This study

seeks to propose a model that can generate FA and tractography from T1 without re-

quiring a significant amount of time and resources.

A recent study has shown that when structural brain imaging is divided into high-

frequency and low-frequency components, the performance in the image reconstruc-

tion task is better compared to the cases without frequency division [22]. Similarly,

encoding and decoding the brain based on its frequencies could significantly increase

the quality of synthesizing the target image. This study aims to develop a novel image-

to-image translation model, Macro2Micro, that can be applied to the brain, utilizing

octave convolution commonly used in computer vision.

Firstly, we compare and validate our proposed model rigorously against existing

studies in the T1 to FA image translation task. Furthermore, we extend our research

by generating tractography from the FA images, allowing us to explore the potential

of our model in capturing and representing the structural connectivity information of

the brain.

In summary, the main contributions of this research encompass:

• We propose a novel I2I translation framework, Macro2Micro for synthesizing
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diffusion MRI and tractography from structural MRI. Our model achieves the

highest quality compared to various I2I algorithms qualitatively and quantita-

tively.

• To effectively synthesize the brain MR images, we introduce several simple

yet effective modifications on the discriminator, yielding more satisfying out-

put with fine brain details. To further accelerate the networks’ capability to learn

subject-independent representation and the connectivity between the macro and

micro-structure, Octave Convolutions and prior knowledge from pre-trained con-

volutional neural networks are used. Comprehensive experimental results demon-

strate the validity of our design choice and its superiority to conventional I2I

translation techniques.

• To the best of our knowledge, this is the first attempt to translate tractography

from structural MR images in medical image modality translation scenarios.
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Chapter 2

RELATED WORK

Modalities in Neuroimaging. Magnetic Resonance Imaging (MRI) is a non-invasive

imaging technology that produces three-dimensional detailed anatomical images. It is

often used for disease detection, diagnosis, and treatment monitoring. It is based on

sophisticated technology that excites and detects the change in the direction of the

rotational axis of protons found in the water that makes up living tissues. Structural

MRI, in particular, provides high-resolution, three-dimensional images of the brain’s

anatomy. It is commonly used to visualize the brain’s structure and detect abnormali-

ties such as tumors, strokes, or developmental anomalies. T1-weighted imaging (T1) is

a specific type of MRI that uses the longitudinal relaxation time of tissues to produce

images. T1 is particularly useful for visualizing anatomy and pathology in high detail,

making it a valuable tool in neuroimaging.

Diffusion Tensor Imaging (DTI) is a type of MRI that measures the random mo-

tion of water molecules within a voxel of tissue. It is particularly useful for visualizing

white matter tracts in the brain, as the direction of water diffusion can provide infor-

mation about these fibers. Fractional Anisotropy (FA) is a scalar value between zero

and one that describes the degree of anisotropy of a diffusion process. A value of zero

means that diffusion is isotropic, i.e., it is unrestricted (or equally restricted) in all di-

rections. A value of one means that diffusion occurs only along one axis and is fully

restricted along all other directions. FA is a commonly used measure in DTI studies,
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as it can provide important information about the integrity of white matter tracts.

In addition to FA, another commonly used measure in DTI is Mean Diffusivity

(MD). MD represents the average magnitude of water diffusion within a voxel, regard-

less of direction. It is a scalar value that reflects the overall diffusion characteristics of

the tissue. Higher MD values indicate greater diffusion, suggesting less restriction or

damage to the tissue. Conversely, lower MD values indicate reduced diffusion, which

may indicate more restricted or compacted tissue. MD is often used in conjunction

with FA to provide a more comprehensive understanding of the microstructural prop-

erties of matter tracts. By combining information from both FA and MD, researchers

can gain insights into the structural integrity and health of the brain’s white matter

pathways.

Tractography is a 3D modeling technique used to visually represent neural tracts

using data collected by diffusion MRI. It uses special techniques to visualize, analyze,

and quantify the diffusion of water molecules in the white matter of the brain, which

can provide insights into the structure and connectivity of the brain’s neural pathways.

Tractography can be used to generate a detailed map of the brain’s white matter tracts,

which can be useful in neurosurgical planning, diagnosing various neurological con-

ditions, and understanding the brain’s connectivity. It can be performed in 2D slices

or as 3D reconstructions, providing a comprehensive view of the brain’s white matter

architecture.

Image-to-Image Translation. Image-to-image translation refers to the task of

converting an input image from one domain to another while preserving relevant visual

information. It aims to learn a mapping function to transform images from a source do-

main to a target domain, enabling various applications such as style transfer, coloriza-

tion, and modality conversion. Its goal is to generate realistic and visually coherent

output images that are indistinguishable from the target domain.
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Despite advancements in image-to-image translation, several challenges persist.

These challenges include:

• Paired Data Requirement: Many existing methods rely on paired training data,

where corresponding images from the source and target domains are required.

However, obtaining such paired data can be time-consuming and expensive in

certain domains.

• Mode Collapse: Some algorithms may suffer from mode collapse, where the

generator produces limited variations of the target domain, resulting in a lack of

diversity in the generated images.

• Preserving Fine Details: Preserving fine-grained details during the translation

process can be challenging, especially when the input and output domains have

significant differences in texture, shape, or resolution.

To address the above challenges, several image-to-image translation algorithms

have been proposed. Pix2Pix [23] is a conditional generative adversarial network (cGAN)

that learns a mapping from input images to output images using paired training data.

It combines a generator network with a discriminator network to optimize the image

translation process. It produces high-quality translations when trained with paired data

and can preserve fine details. However, it heavily relies on paired training data, which

can be a limitation in certain scenarios.

CycleGAN [24] is an unsupervised learning approach that utilizes cycle consis-

tency to learn mappings between two domains without paired data. It introduces cycle

consistency loss, which enforces the reconstructed image to be close to the original

input, ensuring consistency in both directions. It does not require paired training data,

making it more flexible for real-world applications. However, it may struggle with

preserving fine details and can be sensitive to hyperparameter settings.
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These algorithms represent significant advancements in image-to-image transla-

tion, each with its own strengths and limitations. Further research and exploration are

necessary to address the challenges and improve the performance of cross-modality

image-to-image translation techniques.

Structure MR Image to Diffusion Tensor Image Translation. Gu et al. [3]

explored the use of GANs, specifically CycleGAN, to generate synthetic diffusion

scalar measures from structural T1-weighted images. This approach aimed to address

the challenges of cost and time consumption in collecting high-quality diffusion data

and the complexity of diffusion data processing pipelines. The CycleGAN model was

trained to map a T1 image to FA or MD, and vice versa. The synthetic FA images were

then used as a target for non-linear registration to correct for geometric distortions

common in diffusion MRI. The results showed good to great visual similarity between

synthetic FA and MD images and their ground truth, with the trained CycleGAN per-

forming well across all test subjects. However, the authors noted that the training data

used could influence the GAN’s performance, potentially introducing bias.

Yang et al. [25] proposed a cross-modality generation framework that leverages

cGANs for Image Modality Translation (IMT) in MR images. The framework was de-

signed to exploit both low-level features (pixel-wise information) and high-level repre-

sentations (e.g. brain tumors, brain structure) between cross-modalities, addressing the

complexity of brain structures. The authors introduced an end-to-end IMT network for

cross-modality MRI generation and provided a comprehensive comparison with five

datasets representing real-world clinical applications.

The paper also presented two novel methods that utilize the IMT framework.

The first was a registration method that augments the fixed image space with trans-

lated modalities for atlas-based registration. The second was a segmentation approach,

called translated multichannel segmentation (TMS), which performs cross-modality
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image segmentation using fully convolutional networks (FCNs). Both methods lever-

age cross-modality information to improve performance without the need for addi-

tional data.

Despite achieving excellent performance, the authors acknowledged that the gen-

erated images may not accurately represent tiny structures as compared to real images.

Anctil-Robitaille et al. [26] proposed a novel approach to image-to-image trans-

lation for manifold-valued data, specifically in DTI, using a manifold-aware Cycle-

GAN. Traditional GANs have been limited in their application to DTI due to their non-

Euclidean nature. The authors addressed this by formulating the objective as a Wasser-

stein distance minimization problem of data distributions on a Riemannian manifold

of symmetric positive definite 3x3 matrices (SPD(3)), using adversarial and cycle-

consistency losses. They leveraged the Log-Euclidean metric and the structural infor-

mation of T1-weighted (T1w) images to generate realistic high-resolution DTI. The

generated diffusion tensors were ensured to lie on the SPD(3) manifold by exploiting

the theoretical properties of the exponential and logarithm maps of the Log-Euclidean

metric.

The proposed method outperformed both the manifold-aware GAN and the stan-

dard CycleGAN in terms of tensor principal orientation estimation, Log-Euclidean dis-

tance, and mean squared error (MSE) of derived FA. The results suggested that T1w

images may contain information on the high-level geometry of fiber tracts, which can

be learned by the network to estimate the diffusion properties and orientation. This

work represents a significant contribution to medical image computing, unlocking a

vast number of applications on manifold-valued data.

Liu et al. [27] developed a generative self-training (GST) framework for unsuper-

vised domain adaptive (UDA) medical image translation tasks. The framework incor-

porates a unified uncertainty quantification scheme for both epistemic and aleatoric

uncertainties, allowing for adaptive control of generative pseudo-label supervision
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based on the reliability of the pseudo-labels. This approach was applied to tagged-to-

cine and structure-to-diffusion (e.g., T1-to-FA) image translation tasks, marking the

first attempt at such UDA. The results demonstrated superior translation performance

compared to popular adversarial UDA methods. The framework also includes a self-

attention scheme to emphasize regions of interest and prevent the background region

from dominating the training process. The authors also noted that their framework

could be applied to other discriminative self-training UDA tasks and that different

backbones in the source and target domain could be used.

Anatomy of the Brain and the vmPFC. The human brain is divided into sev-

eral distinct regions with specific functions and responsibilities. Major divisions of

the brain include the cerebrum, cerebellum, and brainstem. The cerebrum, the largest

part, is further divided into two hemispheres and is responsible for higher brain func-

tions such as thinking, learning, and consciousness. Each hemisphere is divided into

four lobes: the frontal lobe (responsible for reasoning, problem-solving, and skills), the

parietal lobe (processing sensory information), the occipital lobe (vision), and the tem-

poral lobe (hearing and memory). Understanding the intricate structure and function

of the brain is essential for developing effective image-to-image translation techniques

in brain imaging.

The ventromedial prefrontal cortex (vmPFC) is a subregion of the prefrontal cor-

tex, located in the anterior part of the brain. It is situated where the two cerebral hemi-

spheres meet at the bottom (ventral) part of the frontal lobes, hence its name. The

vmPFC is bounded by the orbital prefrontal cortex (OFC) laterally, the anterior cingu-

late cortex (ACC) dorsally, and the subgenual cingulate cortex (sgACC) posteriorly.

The vmPFC is a complex and heterogeneous region with diverse cytoarchitectonic

features, indicating a variety of functions. The vmPFC has extensive connections with

other brain regions, including the amygdala, hippocampus, hypothalamus, and various
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sensory areas, which facilitate its role in integrating emotional, cognitive, and sensory

information.

The vmPFC is not only involved in decision-making and emotional processes but

also plays a role in self-referential thinking and theory of mind–the ability to under-

stand other’s mental states. It is also implicated in the regulation of autonomic and

endocrine responses to stress, and the formation and retrieval of personal memories.

In neuroimaging studies, the vmPFC is often challenging to image due to its loca-

tion and susceptibility to signal dropout. However, accurate imaging of the vmPFC is

crucial given its involvement in various cognitive processes and its implication in nu-

merous psychiatric and neurological disorders. Therefore, advanced image-to-image

translation techniques that can accurately capture the structure and function of the

vmPFC are of great importance in neuroscience research.

Frequency-based Brain Analysis. Data obtained from brain function measure-

ments, such as EEG (Electroencephalography) and fMRI (Functional Magnetic Reso-

nance Imaging), can be divided into multiple frequency bands. EEG data is character-

ized by electrical activity in the brain, and it can be divided into different frequency

bands to examine different aspects of brain function. The commonly recognized fre-

quency bands in EEG analysis are delta, theta, alpha, beta, and gamma. Delta (0.5-4

Hz) frequency is the lowest frequency range, primarily observed during deep sleep.

Theta (4-8 Hz) frequency is primarily observed during sleep but can also be associated

with altered states of consciousness. Alpha (8-13 Hz) frequency is typically observed

during relaxed states, such as when closing the eyes and resting. Beta (13-30 Hz) fre-

quency is predominantly observed during wakefulness and is associated with alertness.

Gamma (30-100 Hz) frequency is a higher frequency range associated with complex

brain activities related to cognition, attention, and memory [28, 29, 30]. These fre-

quency bands help us understand the characteristics of EEG signals and investigate
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various aspects of brain activity. Frequent band changes can be used to track changes

in brain function related to cognition, sleep, attention, and other processes.

On the other hand, fMRI measures changes in blood oxygenation levels to infer

brain activity. Although fMRI does not directly provide frequency information like

EEG, researchers can analyze fMRI data to study the functional connectivity and fluc-

tuations in different frequency ranges. Resting-state functional MRI research has un-

covered that the blood oxygen level-dependent (BOLD) signal in the brain shows slow

intrinsic fluctuations (less than 0.1 Hz) that are correlated over time. These fluctua-

tions indicate a relationship within hierarchically organized functional systems known

as resting state networks [31].

Furthermore, when applying a fast Fourier transform to fMRI data and examin-

ing it in the frequency domain, the scale-free activity demonstrates a division into

frequency bands based on the knee frequency of the Lorentzian function [32, 33].

The presence of a low-frequency band suggests that the system exhibits decreased

temporal redundancy and operates more efficiently in processing information in real

time. Conversely, the high-frequency band indicates a higher level of time-lagged auto-

correlation, indicating that past dynamics of the system have a greater impact on its

future dynamics, thereby indicating the presence of long-range memory effects [34].

Different frequency ranges in brain signals correspond to different functional sys-

tems within the brain. This means that different functions generate signals in differ-

ent frequency ranges. Therefore, analyzing brain research data by dividing it into fre-

quency bands can help to elucidate various brain functions more clearly.
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Chapter 3

METHOD

What is the ideal model for synthesizing the target brain modality while maintaining

image quality that is comparable to actual magnetic resonance (MR) imaging data?

We argue that the model should be able to synthesize the target brain modality effec-

tively and accurately. Simultaneously, it should learn the delicate representation that

describes subject-wise differences and the connectivity between the macro- and the

micro-structure of the brain.

In order to accomplish these objectives, the Macro2Micro model (shown in Fig-

ure 3.1) is trained with the following core goals: 1) effectively generating the desired

image by utilizing a patch discriminator that focuses on the brain and learns the statis-

tical relationships between image patches, 2) learning subject-independent representa-

tion and understanding the interconnections between the macro and micro-structures

through the utilization of Octave Convolution (OctConv), and 3) mitigating the risk of

mode-collapse in the model by incorporating prior knowledge from pre-trained con-

volutional neural networks like VGG-19 [35].

In this section, we will outline our methodology that effectively enhances the qual-

ity of synthetic MR images. The subsequent sections include an exhaustive analysis of

the proposed method and its underlying principles.
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Figure 3.1: The overall architecture of Macro2Micro.

3.1 Architecture Overview

As illustrated in Figure 3.1, the Macro2Micro architecture comprises four primary

components: an encoder E, a generator G, a discriminator D, and a brain-focused

patch discriminator DbrainPD. Specifically, the input images are encoded via an en-

coder E and decomposed into two feature maps containing distinct frequency com-

ponents. These frequency-decomposed features are subsequently fed to the generator.

In the terminal layer of the generator, the synthesized high and low-frequency images

are amalgamated to produce the final outputs. To summarize, the overarching pipeline

proceeds as follows:

1. Encode two decomposed features fH , fL (the high frequency and the low fre-

quency feature map each) from the input image I using the encoder E.

fH , fL := E(I)
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Figure 3.2: The structure of Octave Convolutions (OctConvs)

2. Synthesize the target output Iout in the generator G using the two decomposed

features fH , fL.

Iout := G(fH , fL)

3.2 Octave Convolution

One of the key elements of the Octave Convolution (OctConv) [36] operator is its ca-

pability to factorize mixed feature maps based on their frequencies, while also facilitat-

ing effective communication between high-frequency and low0frequency components.

The spatial resolution of low-frequency feature maps in OctConv is decreased by one

octave [37]. The term octave refers to a spatial dimension that has been divided by a

power of two. In this study, a value of 2 was chosen for simplicity, but this is a design

choice and can be arbitrarily large.

When the spatial resolution of the low-frequency branch is decreased, the receptive

field increases. This makes it possible for smooth, low-frequency maps to be stored in
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a lower-resolution tensor. The multi-frequency representation that OctConv provides

effectively isolates the input feature maps according to their frequencies, which helps

to reduce spatial redundancy. Given input and output of OctConv as X = {XH ,XL}

and Y = {YH ,YL}, the forward pass of OctConv is defined as:

YH = f (XH ;WH→H) + f (upsample(XL, 2);WL→H)

YL = f (XL;WL→L) + f (pool(XH , 2);WH→L),

where f (X ;W ), pool(X, 2) and upsample(X, 2) denote a convolution with parameters

W , an average pooling operation with kernel size 2 × 2 with stride of 2 and an up-

sampling operation by 2 using nearest interpolation, respectively.

Empirical findings indicate that employing OctConv with half the channels for

each frequency (α = 0.5) yields optimal performance. A comprehensive experiment

regarding this matter can be found in the section 4.4.

3.3 Networks

The Encoder and The Generator. Both the encoder and the generator improve upon

MobileNet [38] by replacing all the convolutions with Octave Convolution (OctConv)

to factorize feature maps by their frequency, thereby reducing network redundancy

while maintaining simplicity and efficiency. Active information exchange occurs be-

tween frequency components during training. The spatial reduction in the low-frequency

branch expands the receptive field, capturing more contextual information from distant

locations and improving performance. In contrast to the original OctConv [36], the up-

sampling order is modified to effectively address checkerboard artifacts [39].

The Discriminator and The Brain-focused Patch Discriminator. Macro2Micro

uses two discriminators: the discriminator and the brain-focused patch discriminator.

While using the discriminator solely seems sufficient for our model to synthesize the
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target modality, the results still suffer from the checkerboard artifacts [39] and unde-

sired artifacts (see the section 4.4 for the details).

To tackle this issue, we have adopted a patch co-occurrence discriminator from

the swapping autoencoder [40] and applied a simple yet effective pre-processing algo-

rithm. We dubbed this discriminator as the brain-focused patch discriminator DbrainPD.

Similar to [40], we encourage the cropped patch from the synthesized output to main-

tain the same representation and expressions in any cropped ground truth images. Con-

sequently, the generator aims to generate an output image such that any patch from the

output cannot be distinguished from a group of patches from the ground truth images.

Unlike computer vision tasks, the majority of MR brain images contained redun-

dant background regions. Cropping patches from such regions and feeding them to the

patch discriminator are inefficient and computationally expensive. Moreover, such re-

dundant background regions are mostly zero-values. This could lead to the degradation

of output image quality (e.g., blurring or dimmer images, pixelization) as the model

would learn the background zero values or the abrupt changes in pixels.

To effectively cope with this, we first calculate the valid brain regions in the train-

ing mini-batch, which are then used to crop the valid region from the given training

mini-batch. By doing so, our brain-focused patch discriminator serves to focus on the

effective regions of the brain and enforce that the joint statistics of a learned represen-

tation consistently followed the ground truth modality.

3.4 Training Losses

To effectively guide our model to learn subject-independent representation and the

connectivity between the macro and micro-structure of the human brain while synthe-

sizing the target image with desired image quality, we impose several constraints on

Macro2Micro. The following sections provide a detailed description of our training
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objectives.

The Image Pixel Loss. The image pixel loss is Mean Square Error (MSE) between

the synthesized output and the ground truth, which can be denoted as:

Lpix = ∥Iout − IGT∥1 (3.1)

The Perceptual Loss. To prevent the model from falling the mode-collapse and

generating skull-like artifacts (see the details in figure 4.4), we utilize prior knowledge

from a pre-trained convolutional neural network, such as VGG-19 [35]. The percep-

tual loss was originally proposed by [41], yet has not been actively addressed in the

Magnetic Resonance Imaging domain to cope with the mode collapse. Given Iout rep-

resenting the synthesized output and IGT denoting the ground truth image, the final

perceptual objective we used is as follows:

Lperct =
4∑

n=1

∥fn(Iout)− fn(IGT)∥2 (3.2)

where fn symbolizes the n-th layer in the VGG-19 model. The perceptual loss is

computed at the {conv1 1, conv2 1, conv3 1, conv4 1}.

Discriminator Losses. The discriminator loss follows that of Swap-AE [40], which

can be denoted as:

LGAN = E[−log(D(Iout))] (3.3)

For the brain-focused patch discriminator, we follow the loss of Swap-AE [40],

but with slight changes. The final GAN loss for the brain-focused patch discriminator

is as follows:

Lpatch = E[−log(Dpatch(crops(valid(Iout)), crops(valid(IGT))))] (3.4)
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where crops operator selects a random patch of size 1/2 to 1/3 of the full image

dimension on each side and valid operator calculate the valid brain regions in the given

training mini-batch and then crop according to them.

Total Loss. Considering all the aforementioned losses, the total loss is formalized

as:

Ltotal = λpixLpix + λperctLperct + λGANLGAN + λpatchLpatch (3.5)

where λpix, λperct, λGAN, and λpatch are the weighting hyper-parameters for each

loss.

3.5 Image Quality Metrics

We compared generated and ground truth FA images and tractography using the fol-

lowing metrics.

• Mean Absolute Error (MAE): MAE measures the average magnitude of the

errors in a set of predictions, without considering their direction [42]. It is the

average over the test sample of the absolute differences between prediction and

actual observation where all individual differences have equal weight. Given two

monochrome images I and K where they have the same dimensions of m × n

and one of the images is considered a noisy approximation of the other, the MAE

can be defined as:

MAE =
1

mn

m−1∑
i=0

n−1∑
j=0

|I(i, j)−K(i, j)| (3.6)

• Mean Squared Error (MSE): MSE measures the average of the squares of

the errors between the estimated values and the actual value [42]. Given two

monochrome images I and K where they have the same dimensions of m × n
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and one of the images is considered a noisy approximation of the other, the MSE

can be defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (3.7)

• Peak Signal-to-Noise Ratio (PSNR): PSNR is the ratio between the maximum

possible power of a signal and the power of corrupting noise that affects the

fidelity of its representation [43]. It is most easily defined using the MSE as

shown below:

PSNR = 10 · log10
(
MAX2

I

MSE

)
(3.8)

where MAXI is the maximum possible pixel value of the image

• Structural Similarity Index (SSIM): The SSIM index is a perception-based

model that considers image degradation as perceived change in structural in-

formation, while also incorporating important perceptual phenomena, including

both luminance masking and contrast masking terms [43]. The SSIM index is

calculated on various windows of an image. The measure between two windows

x and y of common size N ×N is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σy2 + c2)

(3.9)

where µx and µy are the average of x and y, σ2
x and σ2

y are the variance of x and

y each, σxy is the covariance of x and y and c1, c2 are variables to stabilize the

division with weak denominator respectively.
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3.6 Comparison of generated and real FA images
in low-dimensional representation

To assess the effectiveness of the transformation from original T1-weighted images to

FA images, we conducted principal component analysis (PCA) and T-SNE on three

types of images: T1-weighted images, real FA images, and FA images generated by

Macro2Micro. We analyzed and visualized 1499 subjects in the test dataset. After

flattening 65, 536 = 256 × 256 voxels from MRI slices, we removed the non-brain

background, leaving 26,891 voxels for each brain modality, PCA and T-SNE were

then applied to the 26,981 features. The incremental PCA and T-SNE were imple-

mented using Python’s ’scikit-learn’ package. A batch size of 200 was utilized for the

incremental PCA, and the visualization was performed using 2 principal components.

Furthermore, a learning rate of 100 and a perplexity of 30 were applied in the T-SNE

algorithm.

3.7 Prediction of biological and cognitive variables using pre-
dicted FA images

The image-to-image translation approach is powerful in terms of image transforma-

tion; however, there is a major concern about potential damage to biological charac-

teristics [44]. To ensure that biological information is preserved during the transfor-

mation process and that biological features are not lost during the T1 to FA image

conversion, we conducted a task of predicting the sex, intelligence, and Attention-

Deficit/Hyperactivity Disorder (ADHD) diagnosis of children using both predicted

and real FA images. The total intelligence score in the NIH toolbox was used for the

intelligence prediction task. The parent KSAD (Kiddie Schedule for Affective Dis-

orders and Schizophrenia) was employed as the diagnostic tool for assessing ADHD

in children. Children who did not receive a diagnosis of KSAD and obtained a total
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problem score below 65 on the Child Behavior Checklist (CBCL) were designated as

the healthy control group. We assessed the accuracy of classification tasks using FA

images generated by CycleGAN, Pix2Pix, and Macro2Micro. Additionally, we com-

pared the predictive performance of these generated FA images with real FA images or

T1 images. Logistic regression with L2 norm was employed for gender classification,

and PCA was used as the feature extraction method. PCA was applied to flattened,

background-removed brain features, and feature reduction was performed by selecting

the top 1,000 components (sex) and 500 components (Total intelligence, ADHD) that

accounted for more than 90% of the explained variance. The analysis was conducted

on the test dataset of the image generation task. Among these datasets, 20% were held

out as a test set, while the remaining 80% of the subjects were used for a training set

in a 5-fold cross-validation. The models trained on these five folds were used to eval-

uate the performance on the held-out test set, and the results were averaged. Accuracy

and AUROC were utilized for evaluating performances in classification tasks. Pearson

product-moment correlation coefficients and mean square error (MSE) were chosen

for evaluating the regression task.

3.8 Prediction of Tractography from FA images

We follow the model design and hyper-parameters of the section 3.3 to synthesize the

2D tractography of the vmPFC region from FA images. However, in most cases, the

regions of interest (ROI) from 2D tractography are very sparse. This makes our brain-

focused patch discriminator hard to train. As a result, we exclude the brain-focused

patch discriminator for this task.
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3.9 Experimental Settings

Data. We use the Adolescent Brain Cognitive Development (ABCD) dataset [17],

which consists of comprehensive developmental data including structural brain MRI

in children across various sites in the United States. The data utilized in this study

is obtained from ABCD, and the image acquisition protocol and minimal processing

pipeline can be found in previous studies [17, 16]. For image-to-image translation be-

tween T1-weighted images and DTI, the T1 image and fractional anisotropy (FA) for

DTI have dimensions of 256 × 256 × 256 and a voxel size of 1mm. We use quality

controlled 7,669 subjects. For image-to-image translation between FA and tractogra-

phy, the FA image has dimensions of 190 ×190×190 and a voxel size of 1.25mm. The

analysis includes a total of 6,365 subjects. Tractography is performed using 1 million

tracks derived from DTI data. Only the streamlines passing by vmPFC (ventromedial

prefrontal cortex) based on the aparc+aseg atlas [45] is extracted, and the shape is ad-

justed to match the FA image.

Implementation Details. During training, all images are loaded as 256x256 pixels

and scaled to [0, 1]. The model is trained using the Adam optimizer [46] with a learning

rate of 0.0002 and a batch size of 8 for 200 epochs. The encoder feature map has

dimensions of (128, 64, 64) for high and (128, 32, 32) for low-frequency components.

Baseline and our experiments are conducted using the PyTorch framework [47] on a

single NVIDIA RTX A5000(24G) GPU. All the experiments for the ablation study use

4 NVIDIA RTX A5000(24G) GPUs.
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Chapter 4

RESULTS

4.1 Qualitative Evaluation

Figure 4.1 shows the qualitative comparison between our model and other image-to-

image translation algorithms such as Pix2Pix [23] and CycleGAN [24]. Note that all

these results are generated from brain slices of different subjects. In terms of white

matter and overall brain structure, all models generate brain images with comparable

quality. However, Pix2Pix and CycleGAN could not recognize and generate intricate

micro-scale structures in many cases. For example, baseline models mostly neglected

and underexpressed the microscopic white matter at the boundaries of the brain (e.g.,

4th and 5th columns in Figure 4.1), whereas our model does not. The Macro2Micro

not only generates the most comparable images to the ground truths but also captures

structural details lost in the original and reconstructs parts that were previously dis-

connected or absent.

It is worth noting that our model learns both macro-structure from T1-weighted

images and micro-structure from FA images. As shown in Figure 4.1, our results learn

the presence of the white matter from the FA image while determining the morphology

of the white matter from the T1 image (see the second row of the figure). Similarly,

our results bend the straight white matter line in ground truth FA to its more specific

endpoint by referencing T1’s macro-structure (see the 8th row of the figure).
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Also, our model preserves the structure from T1 which is not present in FA. In

most cases, the structure is detected from the FA images whereas the T1 images reveal

the connection of the white matter. Generated FA image of our model connects the

white matters like the T1 scan, whereas the ground truth FA image does not (see the

upper left corner of the 4th row).

Moreover, as our model conserves the white matter which is not clearly visible in

most FA images (e.g., the middle of the 6th row), Macro2Micro has strong robustness

to noise and can generate high-resolution images compared to other image-to-image

translation methods.

Compared to actual ground truth FA images, results of Macro2Micro show out-

standing performance (Figure 4.2). To test whether our model has mode collapse is-

sues, we tested on the same slice of different subjects. It is shown that the results

demonstrate the absence of mode collapse and the successful generation of a wide

range of realistic FA images that accurately depict the subject’s diversity. We generate

not only the whole brain structure of actual FA images but also the microscopic as-

pect of white matter in the brain’s periphery without noise. The structural location and

FA value are both well-learned, and the isotropic or anisotropic movement of water

molecules is similar to reality.

4.2 Quantitative Evaluation

Baseline. Compared to the two baselines, Macro2Micro shows the best performance

quantitatively. As demonstrated in Table 4.1, our results achieve the best SSIM, PSNR,

MAE, and MSE among various image-to-image translation algorithms. In addition,

our results show the state-of-the-art performance even if we compared just the white

matter where the FA value is greater than 0.2 (Table 4.2).
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Table 4.1: Quantitative comparison with generated whole brain FA images. The best

outcomes are shown in bold. ↑: Higher is better. ↓: Lower is better.

Methods SSIM (↑) PSNR (↑) MAE (↓) MSE(↓)

Pix2Pix 0.8310 24.7738 0.1469 0.1292

Cycle GAN 0.8332 24.6660 0.1477 0.1299

Ours (Macro2Micro) 0.8600 25.7560 0.1383 0.1226

Table 4.2: Quantitative comparison with baseline models using only white matter

whose FA value is bigger than 0.2 from the generated FA images.

Methods SSIM (↑) PSNR (↑) MAE (↓) MSE(↓)

Pix2Pix 0.8354 24.8992 0.1374 0.1200

Cycle GAN 0.8369 24.7585 0.1383 0.1208

Ours (Macro2Micro) 0.8627 25.8493 0.1300 0.1146

PCA and T-SNE. In Figure 4.3, the application of PCA and T-SNE resulted in the

representation of T1, FA, and generated FA images within two principal components.

In the case of PCA, the two principal components individually accounted for 13.7 %

and 2.7 % of the variances. Our validation confirmed the distinctiveness of the original

T1 images from the real FA images. Notably, both PCA and T-SNE demonstrated that

the generated FA images exhibited significant dissimilarity compared to the original

T1 images while displaying an overlap with the real FA images in the low-dimensional

representation.
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Table 4.3: Sex classification performance of real T1, real FA, and generated FA images.

GT: Ground Truth.

Input AUROC (↑) ACC (↑)

T1 0.7820 0.7133

FA (GT) 0.7641 0.7066

Pix2Pix FA 0.7565 0.68

Cycle GAN FA 0.7534 0.6766

Ours (Macro2Micro FA) 0.7726 0.6866

4.3 Generated FA images by Macro2Micro can efficiently pre-
dict sex, ADHD and intelligence

We present the performance of the generalized linear model (GLM) on sex, intelli-

gence, and ADHD prediction tasks. In Table 4.3, The sex classification performance

of T1 images yielded an AUROC of 0.782, slightly higher than that of real FA images

(0.7641). The FA images generated by Pix2Pix and CycleGAN exhibited relatively

lower sex classification performance than real FA images. However, Macro2Micro

demonstrated relatively higher performance in AUROC (0.7726) and accuracy (0.6866)

than the other models, surpassing the AUROC of real FA images (0.7641). In Table 4.4,

the FA images generated by Macro2Micro exhibited comparable performance in pre-

dicting ADHD diagnosis (AUROC of 0.4926) to real FA images (AUROC of 0.4812).
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Table 4.4: ADHD classification performance of real T1, real FA, and generated FA

images.

Input AUROC (↑) ACC (↑)

T1 0.5034 0.5479

FA (GT) 0.4812 0.5342

Pix2Pix FA 0.5532 0.5821

Cycle GAN FA 0.4445 0.4794

Ours (Macro2Micro FA) 0.4926 0.5136

Pix2Pix showed the best performance in predicting ADHD diagnosis (0.5532), which

outperforms the performances of real T1 (AUROC of 0.5034) and FA images (AUROC

of 0.4812). In Table 4.5. though FA images generated by Pix2pix exhibited the best in-

telligence prediction performances (Correlation Coefficient of 0.187), predicted FA

images from Macro2Micro also showed better performances (Correlation Coefficient

of 0.166) than real T1 images (0.159) and FA images (0.124).

4.4 Ablation Studies

Octave Convolution. In this section, we will show how Octave Convolution influences

our suggested model. When Octave Convolution was utilized, both the SSIM and the

PSNR improved, as demonstrated in Table 4.6. The α value in Octave Convolution rep-

resents the percentage of low-frequency features relative to total features and verifies
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Table 4.5: Intelligence regression performance of real T1, real FA, and generated FA

images.

Input Corr. Coef. (↑) MSE (↓)

T1 0.159 0.777

FA (GT) 0.124 0.832

Pix2Pix FA 0.187 0.784

Cycle GAN FA 0.066 0.836

Ours (Macro2Micro FA) 0.166 0.797

Table 4.6: Ablation study Depending on whether Octave Convolution is applied and

the difference in α value.

Methods SSIM (↑) PSNR (↑) MAE (↓) MSE(↓) Time(↓)

No Octave 0.8598 25.8797 0.1280 0.1122 0.0056

Oct α = 0.25 0.8640 26.1565 0.1417 0.1264 0.0126

Oct α = 0.75 0.8597 25.9887 0.1414 0.1258 0.0129

Macro2Micro (α = 0.50) 0.8631 26.0478 0.1374 0.1221 0.0110

the difference. In Figure 4.4, at an α of 0.25, it is clear that the low-frequency image

has little information, while the high-frequency image contains a lot of information.

Low-frequency images reveal more information with an α of 0.75 than at values of 0.5

and 0.25. On the other hand, if α is set to 0.5, it’s clear that the image-based separation
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Table 4.7: Ablation study for brain-focused patch discriminator.

Methods SSIM (↑) PSNR (↑) MAE (↓) MSE(↓)

No brain PD 0.8663 26.2560 0.1440 0.1288

Macro2Micro 0.8631 26.0478 0.1374 0.1221

Table 4.8: Ablation study of perceptual loss using pre-trained VGG network.

Methods SSIM (↑) PSNR (↑) MAE (↓) MSE(↓)

No VGG loss 0.8565 25.7207 0.1407 0.1251

Macro2Micro 0.8631 26.0478 0.1374 0.1221

of high and low frequencies is optimal. The best results in terms of MAE, MSE, and

inference time were achieved with an α value of 0.5, while an α value of 0.25 yielded

the higher SSIM and PSNR but achieved similar image quality with an α value of 0.5

(Table 4.6).

Brain-focused Patch Discriminator. The brain-focused Patch Discriminator con-

tributes to sophisticated images. In Figure 4.5, generated images not using brain-

focused Patch Discriminator have checkerboard patterns (e.g., middle of the 2th row).

Also, they have artifacts like white dots along the borders of the brain. Our Macro2Micro

with the brain-focused Patch Discriminator outperforms the model without the brain-

focused patch discriminator and generates higher-resolution images without artifacts.
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Table 4.9: Ablation study for different normalization and activation functions.

Methods SSIM (↑) PSNR (↑) MAE (↓) MSE(↓)

Batch Norm 0.8521 25.4675 0.1425 0.1258

Instance Norm 0.8605 25.8663 0.1419 0.1260

ReLU 0.8575 25.8609 0.1399 0.1242

Macro2Micro 0.8631 26.0478 0.1374 0.1221

VGG Perceptual Loss. The ablation study of perceptual loss using a pre-trained

VGG network shows that Macro2Micro outperformed the model that did not use VGG

loss in every evaluation metric (Table 4.8.) Also, all of the results without VGG per-

ceptual loss have severe artifacts that look like a brain skull at the boundary of the

brain (Figure 4.6).

Normalization & Activation Function. Normalization and activation functions

affect the quality of the generated images. In Table 4.9, we found that the normaliza-

tion including batch normalization or instance normalization, and the ReLU activation

function don’t aid our Macro2Micro in synthesizing high-quality images. The com-

bination of not using normalization and using leaky ReLU as an activation function

performs the highest SSIM and PSNR scores and the lowest MAE and MSE scores.

Also, the results using normalization or ReLU function have artifacts like dotted lines

at the borders of the brain (Figure 4.7).
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Table 4.10: Quantitative Comparison of generated tractography images with baseline

models.

Methods SSIM (↑) PSNR (↑) MAE (↓) MSE(↓)

Pix2Pix 0.8206 15.0687 0.0654 0.0620

CycleGAN 0.8048 15.7659 0.1270 0.1236

Macro2Micro 0.8551 17.0572 0.0521 0.0474

4.5 Effectiveness of Macro2Micro along the distance from the
center of the brain

Although our method was trained using only the central slice of the brain, it works

well not only in the center but also in its periphery. Figure 4.8 depicts how each evalu-

ation metrics shift from the center to its periphery. As shown, our model demonstrates

relatively robust performance in both the peripheral and the center slice, demonstrat-

ing our model’s superior performance in generability and robustness. It is worth noting

that the score is higher towards the extreme end of the brain than in the center. I believe

this is because the size of the brain in the image itself is small in comparison to the

central slice, therefore the metric includes more backgrounds, resulting in improved

performance.

4.6 FA Image Translation to Tractography

Our model’s results were most comparable to the ground truth tractography. In Fig-

ure 4.9, the overall position of the fiber passing through the vmPFC region and the

dense region where many streamlines pass were well predicted. Compared to Pix2Pix
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and CycleGAN, which produce more noisy results around the target tractography, our

results have little noise and generate the target regions more accurately while showing

the state-of-the art performance in SSIM, PSNR, MAE and MSE score (Table 4.10).
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Figure 4.1: Qualitative Comparison of images made with Macro2Micro (our model),

and images made with Pix2Pix and CycleGAN. Note that Pix2Pix and CycleGAN are

the baselines.
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Figure 4.2: Generated realistic FA images from T1-weighted images using

Macro2Micro model.
37



Figure 4.3: PCA and T-SNE results for the T1, FA (Ground Truth), and generated FA

images from Micro2Macro. (a) PCA (b) T-SNE
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Figure 4.4: Ablation study Qualitative comparison of the effectiveness of Octave Con-

volution.
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Figure 4.5: Ablation study Generated FA images with and without the use of Brain-

focused Patch-wise Discriminator.

Figure 4.6: Ablation study Qualitative comparison of the effectiveness of pre-trained

VGG perceptual loss.
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Figure 4.7: Ablation study Qualitative comparison of the effectiveness of normaliza-

tion and activation function.

Figure 4.8: Graph depicting the performance with different distances from the middle

slice.

Figure 4.9: Qualitative comparison of generated 2D Tractography from FA images.
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Chapter 5

DISCUSSIONS AND CONCLUSIONS

In this study, we propose a new model called Macro2Micro to effectively predict

micro-structure based on the macro-structure of brain anatomy. We validate the ca-

pability of Macro2Micro to decode FA images containing micro-structure informa-

tion from T1-weighted MRI, which measures the macro-structure of the brain. Octave

Convolution, which separates the structural characteristics of different hierarchies in

the brain by frequency, is employed for this purpose. Various metrics that evaluate

the quality of generated images are utilized for quantitative assessment. Furthermore,

feature reduction methods such as PCA and T-SNE are applied to evaluate the sim-

ilarity between the FA images generated from T1 images in low-dimensional image

representations and real FA images.

The results reveal the superior quantitative performance of Macro2Micro over

widely used models such as CycleGAN and Pix2Pix. Additionally, qualitative analy-

sis confirms the similarity between the generated images and real FA images, surpass-

ing the quality of conventional T1 images. Moreover, through a sex, intelligence, and

ADHD prediction task, it is confirmed that the generated images perform modality

conversion without compromising biological characteristics. While previous studies

have been limited to the task of transforming T1 to DTI, our study demonstrates the

potential of Macro2Micro in predicting tractography from FA images. The effective

mapping of nonlinear relationships between brain structures from macro to micro us-
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ing generative models in deep learning offers a new perspective in understanding the

relationship between brain structure and behavior.

Our model preserves the structural information from T1 to generate FA, result-

ing in generated FA images that not only exhibit a high level of agreement with the

ground truth FA but often surpass it in terms of structural information at a high resolu-

tion. It accurately generates high-resolution white matter structures in locations where

the ground truth FA exhibits disconnected or distorted regions. This indicates that our

model learns the association between macro-scale and micro-scale structures, allow-

ing it to extract additional information from T1 that is missing in the ground truth

FA, resulting in a more accurate generation of microscopic white matter structures. It

demonstrates that macro-scale knowledge is useful for designing micro-structures, in

addition to micro-scale information.

Unlike images that can be easily encountered in the computer vision domain, brain

images focus more on structural information, contrast, and edges rather than color

information. Octave Convolution, which divides images into high-frequency and low-

frequency components, can be used to efficiently encode and generate brain images,

effectively maintaining high image qualities such as contrast or structure.

When dealing with brain images, it is common to train models from scratch rather

than relying on pre-trained models. However, the pre-trained VGG model with com-

puter vision data used for perceptual loss of images removes skull-shaped artifacts in

the FA images. This suggests that, on some level, generic image data and brain images

may share image features. This finding indicates the potential for extending pre-trained

models from general data to the brain domain, opening up possibilities for further ex-

ploration.

In most cases, the brain images include a significant portion of the redundant back-
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ground. Even if the loss values of background are small, the background potentially

impedes the learning of the brain region. A patch discriminator is employed to address

the problem by cropping the image around the brain. The patch discriminator extracts

patches from images and determines whether each patch belongs to the actual brain

data or not. This approach focused on the loss of only brain regions during training.

As a result, the quality of generated images gets higher in the detailed region, and

artifacts such as checkerboard patterns or dotted lines at the brain boundary could be

effectively solved. The brain boundary becomes more similar to the actual boundaries.

Background and overall image quality can be adequately learned using pixel loss and

VGG perceptual loss.

Microscopic quality and artifacts specific to brain images are improved by the

brain-focused Patch Discriminator. This approach helps to alleviate the challenges

posed by the background dominance and allows the model to better capture and gen-

erate high-quality brain images, with improved details, accuracy in brain region repre-

sentation, and reduced artifacts.

Through various quantitative and qualitative metrics, it is demonstrated that the FA

images generated from T1 images via the proposed model show high similarity with

actual FA images, exceeding the similarity with T1 images. However, even if the gen-

erated images show distributional resemblance to actual FA images in techniques such

as PCA or T-SNE, there exists a risk of compromising biological information from the

actual T1 images during the image-to-image translation process [44]. If the generated

FA images result in the loss of important individual differences, the clinical application

would be significantly limited. We demonstrated classification and regression perfor-

mance in the generated FA images, which is similar to that of actual FA images. These

similarities indicate that the fundamental individual biological information was con-

served or amplified during the image translation process. Macro2Micro exhibits higher

performance in predicting sex, intelligence and ADHD compared to actual FA, sug-
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gesting that it operated in a manner that preserved or enhanced biological information

during the transformation from T1 to FA. Given that real T1, images exhibit superior

predictive performance for sex, intelligence and ADHD compared to real FA images,

we propose that the structural information present in T1 images was preserved and pos-

itively influenced the generated FA images. Furthermore, the heightened performance

of generated FA images might be attributed to their resilience against scanner effects.

Training the model on multiple subjects can enhance its capacity to establish a consis-

tent mapping between macro-structure and micro-structure. This robustness to versa-

tile factors contributes to the emergence of more prominent biological characteristics

in the generated images. Evaluation of generated images using such approaches has

not been frequently conducted in previous generative research, emphasizing the high

value of utilizing the actual generated images. If future studies extend their research to

variables beyond sex, the utilization of generated images can provide researchers with

various valuable benefits.

Limitations. On the other hand, in the Macro2Micro, only a single slice positioned

in the middle along the z-axis was used for training. Consequently, it did not perform

well on slices located at the ends of the z-axis. In future research, incorporating all

slices of the brain and training the model could lead to generating high-quality 2D

slices and concatenating them to create realistic 3D images. Although the results of

predicting tractography from FA images outperformed other baseline models, there

were still noticeable differences compared to actual tractography images. However,

this study demonstrated the ability to generate tractography from macro structures us-

ing image-to-image translation. We anticipate that further research will enable us to

create more accurate and sophisticated images efficiently.

Future Impacts. This research successfully generated microscopic structures from
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macro-structures of the human brain, demonstrating the interrelation between brain

structures at different scales. Furthermore, it effectively learned subject-independent

structures by accommodating individual variations. In addition, when there is not

enough time to scan various modalities in clinical practice, this approach enables to

translate different microscopic modalities from structural MRI, which is more readily

obtainable. This significantly reduces the time required for diagnosis and decreases

financial costs. Additionally, this approach facilitates multi-modality research by gen-

erating data for individuals who only have access to structural MRI or for populations

where acquiring imaging data is challenging, such as pediatric patients.
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국문초록

뇌는 여러 뇌 영역의 고도로 국소화된 기능과 신경 연결을 통한 영역의 통합으로

구성된다. 이러한 뇌의 신경 연결은 끊임없이 변화하는 환경에 효과적으로 대응하

기위해시스템및시냅스수준에서지속적으로변화한다.이러한동적상호작용을

가능하게 하는 중요한 요소 중 하나는 인간 두뇌의 거시적 및 미시적 규모에서의

구조적가소성이다.뇌의거시적및미세적구조는서로다르지만보완적인정보를

전달하기때문에두구조를모두고려하는것은뇌의구조적가소성과인지작업중

연결성을 이해하는데 매우 중요하다. 하지만 기존의 연구는 이를 효과적으로 고려

하지못했다.

본연구에선인간뇌의거시적및미세적구조를통합하여기존에알지못했던인

간뇌의의미와새로운표현형을얻기위해구조MRI (sMRI)에서고품질확산텐서

이미징 (DTI) 및 트랙토그래피를 생성하도록 설계된 새로운 딥러닝 프레임워크인

Macro2Micro를제시한다.본연구는거시적구조로부터미시적구조정보를유추할

수있다는가설을전제로하여,초기에한가지영상기법만획득하더라도질병진단

및 연구에 유익한 추가적인 영상 기법을 생성한다. 신경 영상 영역에서 전례가 없

는이접근방식은멀티모달이미지번역의이점을활용하여상당한시간과비용을

절감한다. Macro2Micro는 3D T1을 입력으로 사용하여 2D T1 슬라이스를 생성한

다음적대적생성망(GAN)을통해처리되어 2D DTI (FA)슬라이스와 2D트랙토그

래피이미지를생성한다.이프로세스의핵심요소는이미지특성을주파수대역에

따라분리하는옥타브합성곱을사용하는것이다.이프레임워크는청소년뇌인지

발달(ABCD)데이터를사용하여훈련되었으며,이미지픽셀손실,지각손실, GAN

손실 및 뇌 중심 패치 GAN 손실을 통해 훈련 손실이 정의되었다. 본 연구의 결과

는 정량적 및 정성적으로 뛰어난 성능을 보였으며 단순히 이미지 분포만을 학습한

것이 아닌 뇌의 구조적 및 미시적 구조의 생물학적인 특성까지 학습했다는 점에서
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의의가있다.이미지변환모델을데이터증대방법으로잠재적으로적용하면데이

터 불균형 및 희소성 문제를 해결할 수 있다. 이 연구는 발전하는 질병 모델링에서

다중모드이미징,특히 T1, DTI및트랙토그래피의조합사용의잠재력을제시한다.

주요어:이미지변환,딥러닝,적대적생성네트워크,자기공명영상,뇌미세구조,뇌

거시구조

학번: 2021-22028

55


	Chapter 1. INTRODUCTION
	Chapter 2. RELATED WORK
	Chapter 3. METHOD
	3.1. Architecture
	3.2. Octave
	3.3.
	3.4. Training
	3.5. Image Quality
	3.6. Comparison of generated and real FA images in low-dimensional
	3.7. Prediction of biological and cognitive variables using predicted FA
	3.8. Prediction of Tractography from FA
	3.9. Experimental

	Chapter 4. RESULTS
	4.1. Qualitative
	4.2. Quantitative
	4.3. Generated FA images by Macro2Micro can efficiently predict sex, ADHD, and
	4.4 Ablation
	4.5. Effectiveness of Macro2Micro along the distance from the center of the
	4.6. FA Image Translation to

	Chapter 5. DISCUSSION AND CONCLUSIONS
	Bibliography
	국문초록


<startpage>10
Chapter 1. INTRODUCTION 1
Chapter 2. RELATED WORK 7
Chapter 3. METHOD 15
 3.1. Architecture Overview
 3.2. Octave Convolution
 3.3. Networks
 3.4. Training Losses
 3.5. Image Quality Metrics
 3.6. Comparison of generated and real FA images in low-dimensional representation
 3.7. Prediction of biological and cognitive variables using predicted FA images
 3.8. Prediction of Tractography from FA images
 3.9. Experimental Settings
Chapter 4. RESULTS 26
 4.1. Qualitative Evaluation
 4.2. Quantitative Evaluation
 4.3. Generated FA images by Macro2Micro can efficiently predict sex, ADHD, and intelligence
 4.4 Ablation Studies
 4.5. Effectiveness of Macro2Micro along the distance from the center of the brain
 4.6. FA Image Translation to Tractography
Chapter 5. DISCUSSION AND CONCLUSIONS 40
Bibliography 45
국문초록 52
</body>

