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Abstract 

Quantum phase transitions, which are phase transitions that take place 

at absolute zero temperature, have been an important phenomenon in the 

condensed matter physics community for more than a century. This rare 

phenomenon occurs near the phase space where the second-order thermal 

phase transition temperature reaches 0 K upon varying a nonthermal tuning 

parameter g. In this phase space, the correlation time of the ordered phase is 

governed by the equation ξτ ∝1/[ g - gc]υz, where 𝝂 is the correlation length 

component and 𝒛 is the dynamical exponent, and gc is the critical point of the 

tuning parameter. Near the phase space of g = gc, the correlation time ξτ 

diverges and becomes larger than the thermal time scale Lτ. In this special case, 

the ground state of the material is defined as a fluctuating state where the 

wavefunctions of the ordered state and the disordered state are superposed. As 

a result, the physical properties are determined by the quantum fluctuation 

related to Heisenberg's uncertainty principle and can give rise to exotic 

physical properties such as superconductivity. This thesis focuses mainly on 

the quantum critical point of various orders and the superconducting state that 

emerges in proximity to their respective quantum phase transitions. 

Firstly, the relation between charge bond order, electronic nematicity, 

and superconductivity in a kagome metal Cs(V1-xTix)3Sb5 is investigated. In 

this study, high-quality single crystals of Cs(V1-xTix)3Sb5 (0 ≤ x ≤ 0.06) have 

been successfully grown, with the accurate doping ratio and systematic lattice 
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variation confirmed by wavelength-dispersive X-ray spectroscopy (WDS) and 

X-ray diffraction (XRD) measurements, respectively. Elastoresistance 

measurements are employed in relation to the Ti ratio x to probe the interplay 

between nematic order and superconductivity. A careful examination of Cs(V1-

xTix)3Sb5 single crystals reveals a systematic suppression of the Curie-Weiss 

temperature θnem upon Ti doping, which changes its sign to become negative at 

x ~ 0.009, close to the critical doping of xc = 0.01, where the Curie constant 

and nematic susceptibility are found to reach their maximum values. This 

constitutes strong evidence of a nematic quantum critical point (NQCP) near xc. 

Remarkably, the superconducting transition temperature and Meissner volume 

fraction exhibit an unusual double-dome feature as a function of x, with the 

center of the first dome located in the vicinity of the NQCP. These 

observations raise the intriguing possibility that fluctuations in the nematic 

order play an important role in the pairing interaction to optimize 

superconductivity in the first superconducting dome of Cs(V1-xTix)3Sb5. 

Secondly, the relation between strong coupling charge density wave 

order and superconductivity in a transition metal dichalcogenide 2H-

Pd0.05TaSe2 is investigated. High pressure is used as a nonthermal tuning 

parameter to investigate electrical transport and vibrational properties in a 2H-

Pd0.05TaSe2 single crystal, with a CDW transition temperature TCDW = 115 K 

and a superconducting transition temperature Tc = 2.6 K. Upon applied 

pressure, the TCDW, indicated by a shoulder in the in-plane resistivity and a 

drop in the Hall coefficient, shifts towards lower temperature to 0 K near a 



 

 

critical pressure of Pc ~ 22.1 GPa. Furthermore, analysis of low-temperature 

resistivity measured at a constant magnetic field of μ0H = 9 T reveals a five-

fold enhancement of the quadratic power-law coefficient with pressure, 

indicating a significent increase in the electronic density of states. Additionally, 

the intensity of a two-phonon Raman mode exhibits systematic suppression at 

~ 21.8 GPa, suggesting the disappearance of the phonon Kohn anomaly near 

this pressure. These observations strongly corroborate the presence of a 

pressure-induced CDW quantum critical point (QCP) at Pc, induced by a 

tunable Kohn anomaly in 2H-Pd0.05TaSe2. Our findings lay the foundation for 

understanding the relationship between various electronic orders and 

superconductivity in quasi-two-dimensional systems, by presenting two vital 

experimental platforms that exhibit quantum critical points and providing 

insights for the enhancement of superconductivity near their quantum critical 

regimes. 

Keyword: quantum critical point, single crystal growth, quasi-2D materials, 

superconductivity, charge density wave, nematicity, doping, pressure, strain. 

Student Number: 2015-20330 
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Chapter 1   Introduction 

1.1   A brief overview of superconductivity 

Ever since superconductivity was first discovered in 1911 at pure 

mercury (Hg) with a superconducting transition temperature of 4.2 K [1], 

superconductivity has been one of the most intriguing phenomena within the 

condensed matter physics community. Superconductivity is characterized by 

two unique features: perfect electrical conductivity and perfect diamagnetism 

(Figure 1.1). While perfect electrical conductivity can be easily determined by 

measuring the zero resistivity of a sample, a superconductor can be clearly 

distinguished from a simple perfect conductor, since a superconductor exhibits 

another feature called perfect diamagnetism. Perfect diamagnetism, also called 

the Meissner effect, refers to the expulsion of a magnetic field from a 

superconductor during its transition to the superconducting state. For some 

superconductors, this effect has been demonstrated to show magnetic forces 

large enough to levitate trains from metallic rails, leading to the elimination of 

friction between the wheels and the rails [2]. 

In order to understand the exotic properties of superconductivity, 

researchers have been searching for new superconductors and their underlying 

mechanisms for more than one century. At 1935, Fritz and Heinz London (the 

London brothers) focused on the combination of the Ohm’s law and the 

Maxwell’s equations, and established the London equations of 

superconductivity [3]. From these London equations, the idea of penetration 
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depth has been adopted, which could successfully explain the Meissner effect 

using the concept of supercurrents flowing inside a superconductor. 

 

Figure 1.1 Two unique features of superconductivity: (a) perfect electrical 

conductivity and (b) perfect diamagnetism. 

In 1950, Ginzburg and Landau introduced the Ginzburg-Landau (G-L) 

theory [4] that focuses on the second-order nature of the superconducting 

transition. The G-L theory was triumphant in two main features of 

superconductivity. Firstly, the G-L theory can successfully derive the London 

penetration depth which was predicted by the London brothers in the earlier 

studies. Secondly, the G-L theory derived another length scale, the Ginzburg-

Landau coherence length, which is connected to the distance between the 

electrons that participate in superconducting pairing. By comparing these two 

length scales, namely the London penetration depth and the Ginzburg-Landau 

coherence length, the type of superconductivity can be determined, i.e. type-Ⅰ 

superconductivity and type-Ⅱ superconductivity. In a type-Ⅰ superconductor, 
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flux vortices cannot penetrate the superconductor, leading to a single critical 

field (Hc), which is the magnetic field required to break the superconductinc 

order. In constract, in a type-Ⅱ superconductor, the flux vortices can penetrate 

inside the superconductor at a certain range of magnetic fields between the 

lower critical field (Hc1) and the upper critical field (Hc2), leading to a more 

complex nature of superconductivity. 

However, the most striking and important theory of superconductivity 

has been the famous Bardeen-Cooper-Schrieffer (BCS) theory, which was 

reported in the year of 1957. The BCS theory, named after its founders J. 

Bardeen, L. N. Cooper, and J. R. Schrieffer, is currently regarded as the first 

successful microscopic theory to explain the pairing mechanism of 

superconductivity [5]. The BCS theory postulates that an attractive interaction 

between electrons exists, which leads to the formation of correlated pairs of 

electrons called Cooper pairs. In this theory, as the temperature is cooled down, 

the Cooper pairs condense into a bosonic state and opens a superconducting 

energy gap in the Fermi surface. This superconducting energy gap 

paradoxically leads to the perfect electrical conduction in the superconductor, 

despite the depletion of electron density of states due to the energy gap 

opening. This striking theory has been shown to be highly effective in 

reproducing and explaining many experimental phenomena, including the 

Meissner effect, the energy gap at the Fermi energy level, and the isotope 

effect on the superconducting transition temperature. The isotope effect, which 

supports that heavier atoms lead to lower superconducting transition 

temperatures, has evidenced that the superconducting pairing of electrons is 
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mediated by lattice vibrations, or in other words, the phonon modes. It was 

eventually revealed that in most superconductors, the attractive interaction 

causing the pairing of electrons is indeed mediated by the phonons. 

While the BCS theory has successfully explained superconductivity and 

related phenomena in traditional superconductors such as mercury (Hg), it has 

not been able to fully account for several newly discovered superconductors. 

One example is MgB2, which is a conventional phonon-mediated 

superconductor that exhibits an exceptionally high transition temperature of 39 

K. This exotic superconductivity exceeds the scope of the BCS theory, which 

assumes that all electrons behave in the same way. Indeed, subsequent 

researches revealed that multiple superconducting gaps of varying sizes exist, 

which eventually leads to the unexpected high transition temperature of 39 K 

[6]. Another example of great importance is the high-Tc cuprate 

superconductors. These Cu-based superconductors exhibit the Cu-O 

superconducting layer, and exhibits superconductivity at exceptionally high 

transition temperatures as high as 133-138 K (HgBa2Ca2Cu3O1+x) at ambient 

pressure [7]. In-depth studies of these cuprates with high transition 

temperatures have revealed that spin fluctuations in the compounds act as the 

pairing glue of the Cooper pair, substituting for the role of phonons in the 

conventional BCS superconductors. This spin-fluctuation-mediated 

superconductivity has been shown to be the underlying nature of the high 

transition temperature as well as other exotic superconducting properties in the 

cuprate superconductors, such as the anisotropic d-wave gap symmetry. Hence, 

this new type of superconductivity mediated by spin fluctuations is now 
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referred to as unconventional, while the phonon-mediated superconductivity is 

considered to be the conventional superconductivity. As the unconventional 

superconductors require more theoretical development beyond the 

conventional BCS theory, extended theories such as the multi-gap model [8] 

and the unconventional pairing mechanisms [9] have been developed and are 

being utilized up to now. 

Apart from the Cu-based superconductors, the Fe-based 

superconductors represent another family of unconventional superconductors, 

which exhibit superconductivity up to approximately 50 K [10]. These 

superconductors all share a common structural component consisting of the 

Fe-As tetrahedral layer, which is reminiscent of the superconducting Cu-O 

layer in the high-Tc cuprate superconductors. Another commonality between 

the Fe-based and cuprate superconductors is their phase diagrams, which have 

been constructed by the temperature dependence of these superconductors 

studied via nonthermal tuning parameters such as chemical doping or external 

pressure. In detail, both superconducting systems in their pristine state exhbit a 

parent order i. e. spin density wave order for cuprates and nematic order for 

iron-based superconductors. With nonthermal tuning parameters such as 

pressure or doping, these parent orders can be suppressed, leading to the phase 

space where unconventional superconductivity is emerged [10, 11]. While the 

quantum fluctuations of the spin density wave order is thought to mediate 

superconductivity in the high-Tc cuprates, for the iron-based superconductors, 

quantum fluctuations of the nematic order is thought to mediate the 

superconducting pairing [12]. 
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1.2 Kagome metals and kagome superconductors 

In constrast to the Fe- and Cu- based superconductors which exhibit a 

superconducting Fe-As or Cu-O layer, superconductors that possess kagome 

structures have recently garnered considerable attention due to their potential 

realization of unconventional superconductivity. Due to their geometrical 

frusturation in real space, the materials with the kagome lattice hosts various 

peculiar features in their crystal momentum space, such as Dirac points, flat 

bands, and saddle points [13]. Recent theoretical calculations have indeed 

found that these electronic properties can lead to instabilities associated with 

the divergence in the density of states near the Fermi level (Figure 1.2) [13-16]. 

As such, several emergent orders, including charge bond order (CBO) [13-14], 

charge density order (CDO) [13], nematic order [15], and superconductivity 

(SC) [13-14, 16], have been theoretically predicted. For example, a functional 

renormalization group study on the kagome-Hubbard model predicted that 

CDW order and unconventional d-wave superconductivity can arise near a van 

Hove singularity at an electron filling of 5/4 per band [13]. 

The V-based kagome metals KV3Sb5, RbV3Sb5, and CsV3Sb5, which 

had been discovered in 2019, represent the experimental realizations of the 

various theoretical predictions, in the sense that the multiple van- Hove 

singularities exhibiting the divergent density of states are located very close to 

the Fermi level [17]. Moreover, these V-based kagome metals feature various 

orders predicted through theory, such as the charge order and 

superconductivity. Within this material class, the CsV3Sb5 stands as the most 
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extensively studied compound due to its highest superconducting transition 

temperature and the presence of additional orders. For example, below the 

charge order at TCDW ~ 98 K, a nematic order is found at Tnem ~ 35 K which 

reduces the in-plane electronic rotational symmetry from C6 symmetry to C2 

symmetry. At ~ 3.2 K, this sample exhibits a superconducting transition [18]. 

 

Figure 1.2 (a) The calculated electronic band for a theoretical kagome lattice in the 

kagome-Hubbard model. (b) The calculated electron density of states for the 

theoretical kagome lattice. 

Currently, the charge and nematic orders are theoretically understood as 

the two types of charge bond orders (CBOs) [15]. Namely, the charge ordering 

at TCDW is understood as a triple-q CBO with isotropic phase parameters, while 

the nematic ordering at Tnem is understood as a triple-q CBO with anisotropic 

phase parameters. Moreover, near the suppression of these CBOs, it has been 

predicted that quantum fluctuations of the charge bond order can mediate 
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sizable pairing glue for superconductivity, possibly resulting in 

superconductivity of various symmetries, including singlet s-wave, triplet p-

wave, or d-wave superconductivity [13, 19]. Therefore, studying the nature of 

the superconducting order in CsV3Sb5, along with its relation with other 

emergent orders, has become an interesting puzzle in the condensed matter 

physics community. 

1.3 Phase transitions and the quantum phase transition 

 

Figure 1.3 A cartoon figure of a phenomenological temperature (T)-tuning 

parameter (g) phase diagram. The green color indicates the ordered phase while the 

light blue color indicates the disordered phase. Near the thermal phase boundary 

between the ordered phase and the disordered phase, the coherence time ξτ is 
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always smaller than the thermal time scale Lτ. The white color indicates the 

quantum critical regime where ξτ is larger than Lτ. Near the zero temperature limit 

of the quantum critical regime, exotic phenomena can be exhibited, such as 

superconductivity. 

Phase transitions, which can be distinguished into thermal and quantum 

phase transitions, has been an important phenomena in the condensed matter 

physics community for more than a century. Figure 1.3 illustrates a typical 

phase diagram of a material, with the horizontal axis representing the 

nonthermal control parameter g (such as pressure, doping, etc.) and the vertical 

axis representing temperature (T). When the material enters the ordered phase 

by lowering the temperature, a thermal phase transition can occur. In a thermal 

phase transition that takes place at a finite temperature, the correlation time of 

the ordered phase ξτ is always smaller than the thermal time scale Lτ = ℏ/kBT. 

In this thermal phase transition case, the ground state wavefunction of the 

ordered phase is always well-defined. However, near the phase space where 

the 2nd order thermal phase transtion temperature reaches 0 K, the material 

undergoes a quantum phase transition at g = gc, in which a phase transition 

takes place at absolute zero temperature. In this case, the correlation time of 

the ordered phase is governed by the equation ξτ ∝1/[ g - gc]υz , where 𝝂 is the 

correlation length component and 𝒛 is the dynamical exponent [20]. Near the 

phase space of g = gc, the correlation time ξτ diverges and becomes larger than 

the thermal time scale Lτ, as illustrated in Figure 1.3. 

In this special case, the ground state of the material is defined as a 
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fluctuating state where the wavefunctions of the ordered and disordered states 

are superposed. In this regime, the physical properties are determined by the 

quantum fluctuation related to the Heisenberg's uncertainty principle and can 

give rise to exotic physical properties such as superconductivity [20]. The 

following chapters of this thesis mainly focus on the quantum critical point of 

various orders and the superconducting state that emerges in proximity to the 

their quantum phase transitions. 
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Chapter 2   Experimental methods 

2.1   Single crystal growth of intermetallic materials 

To ensure the synthesis of high-quality single crystals and the 

stabilization of optimal growth conditions for various doping ratios, it is 

crucial to have a good understanding of the growth mechanism before 

exploring the physical properties of a system. In this chapter, we will introduce 

two different growth methods for intermetallic compounds: the flux growth 

method and the chemical vapor transport growth method. 

2.1.1  Cs-Sb eutectic flux growth of CsV3Sb5 
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Figure 2.1 (a) A photograph of a conventional glove box in Prof. Kee Hoon Kim’s 

lab. An atmosphere of inert Ar gas with O2 and H2O content below 1 parts per 

million is maintained to prevent unwanted reaction between air and the elemental 

compounds. (b) A photograph of a double-sealed quartz tube containing mixtures 

of the elemental Cs, V, Sb compounds covered in Al2O3 crucibles. The 

stoichiometric ratios of Cs, V, and Sb is controlled to be 2: 1: 3 in order to utilize 

the Cs-Sb mixture (CsSb1.5) as a eutectic flux material. (c) The furnace sequence of 

the optimal growth condition of CsV3Sb5 flux growth. (d) A photograph of a well-

grown CsV3Sb5 single crystal. A red scale bar indicates 1 mm length. 

Since the Cs element required for the growth of CsV3Sb5 is highly air-

sensitive, the sample preparation of the CsV3Sb5 was done in an Ar glove box, 

as shown in the optical image of Figure 2.1a. In the glove box filled with inert 

Ar gas, stochiometric amounts of Cs: V: Sb = 2: 1: 3 were weighed and placed 

between the alumina crucible as shown in Figure 2.1b. The alumina crucible 

was then inserted inside a double-sealed quartz tube with vaccuum conditions 

of P ~ 10-5 Torr. The sealed quartz tubes were then treated in a furnace 

sequence as shown in Figure 2.1c. It is noted that the quartz ample was soaked 

in 400°C for 24 hours before the actual flux growth at ~ 1000°C. This 

procedure is required to stabilize the formation of the liquid phase of the 

CsSb1.5 eutectic flux in advance. If this sequence is omitted, the Cs liquid can 

vaporize at 670°C and exhibit a high partial pressure at 1000°C, resulting in 

the breakage of the quartz tube. After this sequence, the melting process was 

carried out at 1000°C. The growth was performed while slowly lowering the 

temperature at a rate of 2°C/hr. Centrifuging the resulting material at 600°C 

results in a clean separation of the hexagonal-shaped CsV3Sb5 single crystal 
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from the molten flux, as can be seen in Figure 2.1d. The synthesized crystals 

exhibit shiny plate-like morphologies, with a typical lateral area of 3 × 2 mm2. 

 

Figure 2.2 (a) Photographs of the vanadium starting materials of the initial batch 

and the improved batch. The photographs were taken inside the globe box. (b) 

Temperature dependence of the in-plane resistivity ρab of CsV3Sb5 grown by 

different starting materials. The blue curve represents the data obtained from the 

powder-grown CsV3Sb5, while the red curve represents the data obtained from the 

slug-grown CsV3Sb5. (c) Temperature dependence of the derivative in the in-plane 

resistivity dρab/dT of CsV3Sb5 grown by different starting materials. (d) 

Temperature dependence of the in-plane resistivity ρab of CsV3Sb5 magnified near 

the low temperature region. 

In order to improve the sample quality of the obtained CsV3Sb5 single 

crystals, several trial and error processes were carried out. Through multiple 

attempts, it was found that controlling the oxidation of the vanadium source 
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material is crucial in determining the sample quality of this material. As shown 

in Figure 2.2a, the initial trial of CsV3Sb5 growth was performed with the 

powder form of V, while the improved trial of CsV3Sb5 growth was performed 

with the slug form of V. Figure 2.2b-d shows the in-plane resistivity (Figure 

2.2b), derivative of resistivity (Figure 2.2c), and low-temperature resistivity 

(Figure 2.2d) of the CsV3Sb5 samples grown by the initial method and the 

improved method. It can be seen that the low-temperature resistivity ρab, 0 

shows a large variation between the two samples. As a lower ρab, 0 indicating 

lower impurity scattering is generally viewed as an indication of sample 

quality, this indicated that the slug-grown CsV3Sb5 single crystals exhibit 

better sample quality than the powder-grown CsV3Sb5 single crystals. This can 

be additionally confirmed by the comparision of the residual-resistivity-ratio 

(RRR), which is the ratio of the ρab measured at 300 K and the ρab, 0. It can be 

immediately seem that the slug-grown CsV3Sb5 exhibits a high RRR of 129. 

RRR ρab,0 (μΩ cm) TCDW (K) Reference 

16 3.8 92.2 [21] 

33 3.8 94 [22] 

118 1 95.4 [23] 

129 0.65 98 This work (improved trial) 

Table 2.1 A comparison between RRR, ρab,0, and TCDW between this work and 

other groups in the literature. 
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Achieving high-quality single crystals is essential for measuring 

intrinsic physical quantities, as it can be immediately seen by the difference of 

the charge ordering temperatures TCDW of the CsV3Sb5 samples grown by the 

two different starting materials(Figure 2.2c). The charge ordering temperature 

of the powder-grown sample exhibits a low TCDW = 93.4 K, while the slug-

grown sample exhibits a relatively high TCDW = 98 K. This same trend seems 

to hold in comparision with other group’s data also, as seen in the Table 2.1. 

As compared with other group’s data, the CsV3Sb5 crystals obtained in this 

work exhibits the highest RRR = 129, as well as the lowest ρab, 0 = 0.65 μΩ cm 

and the highest TCDW = 98 K. 

2.1.2  Chemical vapor transport growth of 2H-PdxTaSe2 

Chemical vapor transport (CVT) is a growth method for single crystals 

that utilizes chemical transport agents such as chlorine (Cl2), bromine (Br2), 

and iodine (I2). This technique is often employed when flux growth is not 

feasible due to complex elemental phase diagrams and/or incongruent melting 

conditions. As compared to the flux method, the CVT method has advantages 

for single crystal growth since this method does not involve any melting 

process and only requires polycrystalline samples and a transport agent to 

grow the single crystals. The detailed growth process, as illustrated in Figure 

2.3a, involves placing the target polycrystalline powder material and transport 

agent in a quartz tube and sealing the tube at a vacuum level of approximately 

P = 10-5 Torr. For the single crystal growth, a finite temperature gradient is set 
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in a tube furnace or two-zone furnace, where the transport agent relocates the 

target material slowly from the hot zone to the cold zone and the resulting 

single crystals are grown within a time scale of several weeks. 

 

Figure 2.3 (a) A schematic picture of a CVT growth apparatus. A finite 

temperature gradient is set in a tube furnace, in which the hot zone temperature is 

set to Thot = 820°C and a cold zone temperature is set to Tcold = 720°C. A sealed 

quartz tube is placed between the hot zone and the cold zones, in which the target 

material 2H-Pd0.05TaSe2 and the transport agent SeCl4 is placed at the hot zone. 

After the growth time of ~ few weeks, single crystals of the target material are 

grown in the cold zone, which can be well visualized in the photograph of a 2H-

Pd0.05TaSe2 single crystal in (b). 

In the case of 2H-Pd0.05TaSe2, the hot zone temperature was set to 

820°C, and the cold zone temperature was set to 720°C to induce the growth 

of the 2H-phase. To promote rapid growth, solid selenium tetrachloride 

(SeCl4) was added, which produces the chlorine (Cl2) transport agent as the Se 

and Cl2 are separated at high temperatures. It is worth noting that as the 

molecular weight of the agent decreases in the order of Br2 -> I2 -> Cl2, faster 

growth of the target single crystal occurs. While the Cl2 is, in principle, 

favorable for the transport growth, Cl2 in its gaseous form is toxic, which 
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makes it challenging to use in its gaseous state in laboratory settings. 

Therefore, I2 is more commonly used due to safety issues. In order to 

overcome this experimental hurdle, in this study, the solid form of SeCl4 was 

added at room temperature, which is safe to use at room temperature 

conditions, and is separated to Se and Cl2 to provide the Cl2 gas at higher 

temperatures. By utilizing this method, large single crystals of mm sizes could 

be successfully grown. The molecular amount of SeCl4 per quartz tube was 

determined by calculating the ideal gas law at the maximum temperature, to 

make sure that the pressure of Cl2 would not exceed one atmosphere at the 

maximum temperature of 820°C. The resulting single crystals grown using this 

method were formed in the cold zone, and their images can be seen on Figure 

2.3b. 

2.2 Capillary XRD measurement 

Whenever a single crystal is grown, it is mandatory to check the sample 

quality before measurements of the physical properties can be performed. In 

this sense, X-ray diffraction measurements offer information of the grown 

crystals, as the lattice symmetry as well as the lattice parameters can be 

determined using the Bragg’s law of nλ = 2d sinθ. For XRD measurements of 

the single crystals, the utilization of the capillary tube is recommended since 

this method has powerful advantages as compared to power diffraction 

measurements. First, measurements performed using a spinning capillary 

exhibit minimized preferred orientation, which enables better fitting results to 
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the theoretical predictions. Secondly, capillary measurements require only a 

small fraction of the powder of the ground single crystals, which can minimize 

the consumption of the valuable single crystal. Thirdly, the entire loading and 

sealing process in the capillary tube can be done inside the glove box, which 

can protect the powder from exposure to air or moisture if necessary. 

There are two methods for implementing the capillary technique. The 

first is the Bragg-Brentano geometry, also known as the reflection geometry. 

This method is commonly used with standard sample holders and can be easily 

employed without modifying the instrument settings. The second is the Debye-

Scherrer geometry, which is commonly reffered to as the transmission 

geometry. These two methods are complementary to each other, and several 

factors must be considered before choosing the appropriate geometry to use. 

Firstly, samples with high absorption coefficients are unsuitable for 

transmission geometry, as the sample itself becomes an efficient beam stopper. 

Secondly, the sample quantity must be carefully calculated for the 

transmission geometry. A relatively small sample cross section reduces the 

measured intensity, but increasing the sample size does not necessarily 

enhance the intensity. This is because transmission through the sample and 

capillary is accompanied by diffraction, and larger samples result in longer 

transmission paths, ultimately reducing the signal intensity. 

For successful sample loading, the single crystals must be grinded to 

fine powders. If the powder is too coarse, the capillary will be blocked, and 

will result in an insufficient amount of powder loaded in the capillary tube. 
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However, over-grinding of the single crystal can induce strain effects, which 

leads to broadened sample signals in the XRD measurements. Therefore, it is 

crucial to carefully grind the powder to an intermediate level. 

Loading and aligning the capillary tube on the goniometer are the 

primary challenges of this measurement. For successful loading, it is 

recommended to secure the capillary tube to the holder using a sufficient 

amount of paraffin wax. After melting the wax with a gas lighter, the liquid is 

inserted into the capillary tube, which solidifies after a few seconds, sealing 

the powders inside the tube. After sealing the tube, additional treatment of the 

paraffin wax is required to firmly attach the tube to the holder. Aligning the 

capillary tube is difficult to perform with the naked eye. In this case, it is 

recommended to align the tube under a CCD-attached optical microscope, as 

the CCD pixels can provide an excellent guideline for the center axis of the 

capillary tube rotation. 

 

Figure 2.4 (a) A photograph of the spinning capillary tube loaded in the 

HRXRD apparatus (PANalytical Empyrean) in Prof. Kee Hoon Kim’s lab. 

Photographs of (b) wrenches for adjusting the goniometer, (c) paraffin wax for 

sealing the capillary tube, (d) a glass capillary tube for XRD measurement, (d) 
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and a switch which enables the spinning option in the HRXRD apparatus. 

In order to find the optimal condition, several options have to be 

considered. A thinner capillary with very fine powder filled as much as 

possible is better for most of the cases. Proper alignment of the spinning stage 

and a combination of appropriate slits are also crucial. The typical process for 

preparing a capillary involves the following steps: 

First, prepare the sample by ensuring that the crystal pieces or powder 

have a very small or fine particle size, enabling them to fit into the capillary. 

Next, remove the capillary tube from its carrier and place it in a lab-made 

holder, such as a paper cup with a hole at the bottom, while taking care not to 

break the capillary. Slowly pour the sample into the capillary, utilizing a 

sharpened wooden stick if necessary to insert the samples through the narrow 

entrance. A weighing paper folded along the diagonal direction is good to use. 

Position the sample at the very end of the capillary, using shaking or tapping 

motions if required. After loading the sample, carefully seal or cut the 

capillary to an appropriate length of 5-7 cm, bearing in mind that sealing is 

preferred above cutting to prevent the sample from spilling out. 

Then, place the prepared capillary into an adapter, aligning it with the 

grooved side of the Cu adapter. Apply paraffin to the adapter's empty hole and 

melt it with a soldering iron or gas lighter; carefully insert the capillary into 

the hole and ensure it is straight before the paraffin solidifies. Properly mount 

the adapter and capillary on the spinning stage, and align the stage so that the 

capillary is perfectly straight, using the two linear stages and two angular 
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alignment goniometers on the stage. Rotate the stage manually during the 

alignment to check the status. 

 

Figure 2.5 An XRD pattern of a capillary measurement of the ground crystal 

of 2H-Pd0.08TaSe2 (black dot), the Rietveld refinement result (red line) with 

Rwp = 29.1 and χ2 = 7.97, and their subtracted patterns (blue line) along with 

the expected XRD peak positions (green ticks). Rietveld refinement of the 

XRD spectra shows lattice parameters of a = 3.4401 Å , c = 12.7435 Å , 

respectively. 

If all these preparations are completed, mount the stage on the 

diffractometer, connect the motor supply cable to the stage, and turn on the 

switch to spin the capillary, noting that the switch is a manual one and cannot 

be controlled externally by the computer. Measure the diffraction in a 

minimized angle sweep around the main XRD peak to check the signal-to-
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noise ratio, and adjust the slit combination to find the optimal condition. 

Finally, carefully measure the diffraction pattern, performing numerous 

repetitions with the appropriate time per step to accumulate sufficient intensity. 

Figure 2.5 shows a typical measurement data using the capillary XRD 

method (2H-Pd0.08TaSe2). Even though the XRD measurement was performed 

in grinded single crystals, polycrystalline-like XRD data are achieved, which 

is due to the minimization of the preferred orientation in the spinning capillary 

tube. 

2.3 Elastoresistance measurement  

For materials exhibiting nematic order, studying the electronic 

anisotropy resulting from applied strain can provide valuable insights into the 

characteristics of the nematic order parameter. Specifically, analyzing 

variations in electrical anisotropy as a function of strain changes enables the 

determination of nematic susceptibility [24]. The nematic susceptibility, as 

denoted by the symbol ñ, can be determined by measuring the anisotropic 

change in resistance induced by anisotropic strain 𝜀. 

Figure 2.6a shows a schematic figure for the elastoresistance 

measurement. To measure the elastoresistance, a device called the piezo stack 

is used, which is capable of extending the length in one direction while 

contracting the length in a perpendicular direction. As illustrated in the figure, 

when a positive voltage is applied to the piezo stack, its length expands in the 
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x-direction when a positive voltage is applied. By gluing two single crystals 

with the a-axis parallel to the Cartesian x-axis on this deformable device, we 

can measure the change in resistance in response to the voltage applied to the 

piezo stack. Here, Rxx refers to the resistivity measured with the current and 

voltage applied on the x direction, while the Ryy refers to the resistivity 

measured with the current and voltage applied on the y direction. 

 

Figure 2.6 (a) A schematic figure of the elastoresistance measurement 

apparatus. (b) A schematic figure of a strain gauge and its working principle. 

The applied directional strains induced by the piezo stack are precisely 

measured by the strain gauges glued on the back side of the piezo stack. Figure 

2.6b shows a schematic figure of a strain gauge. As εxx and εyy is defined by the 

length change in the x and y directions, εxx = ΔLx/Lx and εyy = ΔLy/Ly, the 

applied strain for each direction can be measured by measuring the length 

change in the strain gauges. The length changes, which is equal to strain, can 

be directly measured by the resistance change in the strain gauge, in which an 

increase in the resistance corresponds to the tension while a decrease in the 
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resistance corresponds to the compression on the specific direction. It is 

known that the nematic susceptibility can be obtained by measuring the 

anisotropic change in the resistance N ≡ (ΔR/R)xx - (ΔR/R)yy in response to the 

anisotropic strain (εxx–εyy), ñ = dN/d(εxx–εyy). This measurement technique 

enables the acquisition of information about the electronic anisoptopy (1D 

modulation) in the single crystal. 

 

Figure 2.7 (a) Piezo voltage vs. strain plot for the xx and yy directions 

measured using the strain gauges at 90 K. (b) Piezo voltage vs. relative 

resistivity change plot for the xx and yy directions measured in CsV3Sb5 at 90 

K. (c) N = (ΔR/R)xx - (ΔR/R)yy vs. (εxx–εyy) plot for various temperatures. (d) ñ = 

dN/d(εxx – εyy) vs. T plot for CsV3Sb5. 

Figure 2.7a shows the relationship between piezo voltage and strain εxx 

and εyy. Here, the piezoelectric voltage is applied in a range of Vpiezo = -50 V to 

150V, which represents the maximum voltage range that can be applied in the 

piezo stack without causing damage. Owing to the inherent properties of 

piezoelectric materials, the piezoelectric stack typically generates hysteresis 
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loops in the induced strain, which are clearly illustrated in both the εxx and εyy 

plots. Figure 2.7b shows the relationship between the voltage applied to the 

piezoelectric stack and the relative resistivity change (ΔR/R)xx and (ΔR/R)yy for 

a CsV3Sb5 single crystal. A prominent hysteresis loop can be observed in the 

(ΔR/R)xx-Vpiezo and (ΔR/R)yy-Vpiezo graphs, which closely resembles the 

hysteresis loops in the strain signals. 

Figure 2.7c represents the N vs. (εxx–εyy) plot for a CsV3Sb5 single 

crystal. It can be seen that the N signal is linear to (εxx–εyy) across the entire 

strain range studied, as demonstrated in the representative temperature plots of 

36 K, 60 K, 90 K, 94 K, and 100 K. The linear response of N to the (εxx–εyy) 

signals enables the determination of ñ = dN/d(εxx–εyy) in the zero strain limit 

for various tempertatures in CsV3Sb5. Figure 2.7d represents the 

corresponding nematic susceptibility ñ = dN/d(εxx–εyy) vs. T plot for CsV3Sb5. 

A more detailed analysis of the the nematic susceptibility in CsV3Sb5 will be 

discussed in Chapter 3. 

In general, nematic susceptibility is defined by measuring the dN/d(εxx–

εyy) value in the zero strain limit of (εxx–εyy) → 0. However, in realistic 

conditions, differential thermal contraction of the piezo stack and the sample 

can in principle lead to a nonzero applied strain (εxx–εyy) ≠ 0 even when zero 

voltage is applied to the stack. Therefore, it needs to be experimentally 

verified whether the ‘actual zero strain point’ for each measured temperature is 

within the dynamic measurement range of the piezo stack. 
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Figure 2.8 (a) N = (ΔR/R)xx - (ΔR/R)yy vs. (εxx–εyy) plot of CsV3Sb5 at 100 K. A 

black solid line represents the best fitting result for the linear dependence of N 

= α  (εxx – εyy). The yellow star indicates N0, which is the zero strain value for 

N. The blue octagon and the green cross indicates the strained N values N(Vpiezo 

= -50V) and N(Vpiezo = 150V), respectively. (b)-(e) N vs. (εxx–εyy) plots of 

CsV3Sb5 at 94 K, 90 K, 60 K, 36 K, respectively. The yellow stars indicate the 

N0 values for each temperature. 

In order to determine the ‘actual zero strain point’ for each temperature, 

the temperature dependence of the zero strain resistance R0(T) has been 

experimentally obtained by measuring the resistance of a free-standing crystal, 

unstrained and unattached to any substrate. As this R0 represents the resistance 

value of the ‘actual zero strain point’ for each temperature, comparing the R0 

to the strained R values, namely R(V =150V) and R(V = -50V), would provide 

information of whether the ‘zero strain point’ is within the dynamic piezo 

stack range. 

To investigate this feature, Figure 2.7c is replotted in Figure 2.8, which 

shows the anisotropic resistivity response upon applied anisotropic strain for 

various temperatures. Here, we note that experimental values of (ΔR/R) has 

been obtained by (ΔR/R) = {(R(V) – R(V=0))/R0}, following the approach of H. 
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–H. Kuo et al. [24]. It could be seen in Figure 2.8 that the zero strain N value 

N0 ={(Rxx,0– Rxx(V=0))/Rxx,0 – (Ryy,0– Ryy(V=0))/ Ryy,0}, indicated by the yellow 

stars is within the dynamic range between N(V=-50V) and N(150V) for the 

representative temperatures of 100 K, 94 K, 90 K, 60 K, and 36 K. These 

results confirm that ‘actual zero strain point’ of CsV3Sb5 is indeed within the 

dynamic measurement range of the piezo stack for all temperatures studied. 

2.4 Diamond anvil cell measurement 

The application of pressure has recently emerged as a popular method 

for introducing non-thermal tuning parameters to materials without causing 

disorder. Diamond anvil cells (DACs), which utilize diamonds, the hardest 

known material on Earth, as pressure anvils, are at the forefront of this 

research. These cells function by placing a sample between two diamonds and 

applying pressure. As indicated by the general formula Pressure = Force/Area, 

a small area is crucial for achieving high pressure. Thus, when the surface of 

the diamond anvil is compressed to a diameter of approximately 50 

micrometers, it can apply around 400 GPa [25]. Considering that the Earth's 

core pressure is about 350 GPa, this signifies that an impressively high level of 

pressure can be applied at a laboratory scale using this technique. 

Furthermore, the diamond anvils are optically transparent over a wide 

range of wavelengths, covering various wavelengths such as visible light, 

ultraviolet, and infrared light. This feature enables the diamond anvil cell for 

various spectroscopic and optical measurements techniques at high pressure, 
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such as X-ray diffraction, Raman, and photoluminescence measurements. This 

allows for the investigation of both structural and vibrational properties under 

high pressure. 

Figure 2.9a shows a photograph of a diamond anvil cell along with a 

schematic illustration of a typical resistivity measurement scheme. The sample 

is placed between the diamond anvils, with the precise in-situ pressure 

determined by a ruby manometer located near the sample (indicated by the red 

dot). The in-situ calibration of pressure within a diamond anvil cell is 

ascertained through the peak shift of the ruby photoluminescence signal [26]. 

 

Figure 2.9 (a) A photograph of a diamond anvil cell in Prof. Kee Hoon Kim’s 

lab. The inset in red is a cartoon figure of a typical resistivity measurement 

scheme. The brown metal plate indicates the pressure gasket, while the inner 

white square represents the sample. The yellow line represents the platinum 

contact leads and the red dot represents the ruby pressure manometer. (b) The 

normalized intensity-wavelength graph of ruby photoluminescence signals at 

various pressures using a Daphne 7373 oil as a pressure medium. 
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Figure 2.9b displays a graph of the normalized intensity-wavelength for 

ruby photoluminescence signals at various pressures. At ambient pressure, the 

photoluminescence of ruby exhibits two peaks, peak 1 near 693.2 nm and peak 

2 near 694.22 nm. As pressure is applied to the ruby, these two peaks shift to 

higher wavelengths at a known rate relative to the pressure. The pressure is 

calibrated using the peak position of the peak 2, employing the formula 

P(GPa) = A/B[{1+Δλ/λ0}
B-1], where A = 19.04 MPa, B = 7.665, λ0 = 694.22 

nm, and Δλ represents the shift in wavelength [26]. Figure 2.9b illustrates the 

measured normalized intensity-wavelength graphs of ruby at various pressures. 

A clear wavelength shift of the ruby photoluminescence peak can be observed 

with increased pressure, demonstrating the role of ruby as an excellent 

pressure manometer. 

2.4.1  Diamond anvil cell Raman measurement 

Raman spectroscopy is a powerful tool to study the vibrational modes 

of the various atoms in the crystal lattice. A Raman scattering involves two 

photons, one in and one out. In the Raman effect, a photon is scattered 

inelastically by a crystal, with either the creation or an annihilation of a 

phonon or a magnon. If a phonon or a magnon is created with the interaction 

with light, this effect is called the Stokes effect. Inversely, if a phonon is 

annihilated with the interaction with light, this effect is called the anti-Stokes 

effect [27]. As diamond is transparent to light near the visible wavelength 

range, a Raman measurement using a visible light as a laser source can be an 
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excellect probe to investigate the vibrational properties of a crystal lattice at 

high pressure. 

Figure 2.10a presents a photograph of a Raman spectrometer measuring 

a Raman spectrum in a lab-made diamond anvil cell in Prof. Kee Hoon Kim’s 

lab. Light is illuminated through the upper diamond and reflected on the 

sample surface, resulting in a combined Raman spectrum of the upper 

diamond and the sample under investigation. Figure 2.10b shows the Raman 

spectra of the upper diamond, which has been custom-made with low impurity 

standards to faciliate Raman measurements. It can be seen that the diamond 

exhibits only one sharp Raman peak in the range of 0-1400 cm-1, providing a 

large transparent Raman window of 0-1300 cm-1 available for the sample. 

 

Figure 2.10 (a) A photograph of a Raman spectrometer (Nanobase, 

XperRam200TM) measuring a Raman spectrum NiCrAl-based diamond anvil 

cell in Prof. Kee Hoon Kim’s lab. The inset in red shows the sample space 

illuminated from the top through the upper diamond. The sample and the ruby 

are clearly visible inside a stainless steel gasket. Here, NaCl is used as a 

pressure-transmitting medium. The black scale bar indicates a 300 μm length. 
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(b) The intensity-Raman shift graph for a diamond. (c)-(d) The 300 K Raman 

spectra for a 2H-Pd0.05TaSe2 single crystal measured at (c) ambient pressure 

and at (d) 18.4 GPa pressure under a diamond anvil. 

Figure 2.10c-d shows the 300 K Raman spectra for a 2H-Pd0.05TaSe2 

single crystal measured at ambient pressure (Figure 2.10c) and at 18.4 GPa 

pressure (Figure 2.10d). It can be seen that the three Raman peaks visible in 

the measured Raman spectra shifts to higher values with applied pressure. This 

behavior can be understood by the hardening of the phonon modes as the 

lattice is compressed under pressure, and supports that the Raman 

measurements can probe the in-situ phonon vibrations of the crystal under 

pressure. 

2.4.2  Diamond anvil cell transport measurement 

Pressure is a clean tuning parameter to manipulate the electronic 

properties of the crystal by shortening bond distances and modifying the 

electronic bandwidth. This effect can affect the electronic correlations as well 

as the superconducting pairing strengths for superconducting materials. These 

changes in the electronic properties can be probed by measuring transport 

measurements at high pressure, which can offer useful information on the 

underlying mechanisms of various emergent orders [28]. In this chapter, the 

experimental details for measuring resistance and Hall effect using the van der 

Pauw method at high pressures will be introduced. In particular, a transport 

measurement scheme using a liquid pressure transmitting medium inside the 

diamond anvil cell will be discussed. 



Experimental methods 

 

32 

 

Figure 2.11 (a) A schematic figure of a resistivity measurement scheme in the 

van der Pauw configuration. The resistivity ρ can be calculated by the sheet 

resistance Rs and the thickness t, while Rs can be calculated by the two 

independent resistance measurements Rxx and Ryy. (b) A schematic figure of a 

Hall effect measurement scheme in the van der Pauw configuration. 

The van der Pauw method is a method to measure the resistivity and the 

Hall coefficient of a sample that is approximately two-dimensional and solid 

with no holes, with the electrodes are placed on its edges. This method allows 

the determination of the average resistivity value of a sample, whereas a 

conventional four-probe method detects the resistivity in the current direction. 

Figure 2.11a shows a schematic figure of a resistivity measurement scheme in 

the van der Pauw configuration. The average resistivity of a sample can be 

calculated by multiplying the sheet resistance Rs and the thickness t, while Rs 
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can be calculated by measuring Rxx and Ryy and applying the equation e-πRxx/Rs + 

e-πRyy/Rs = 1 [29]. The Hall resistance in the van der Pauw scheme can be 

obtained by calculating the voltage-to-curent ratio, where the voltage is 

measured in the diagonal direction and the current is applied perpendicular to 

the voltage, as illustrated in Figure 2.11b. 

 

Figure 2.12 (a) A photograph of a razor-slices Pt foil line supported by Kapton 

tape. (b) An image of a room-temperature curable conductive silver epoxy set 

(Circuitworks CW2400). (c)-(f) Photographs of a lead-fabrication process for 

creating van der Pauw contacts. 

For successful measurements using van der Pauw method on the 300 

µm culet diamonds, it is necessary to create small contacts of approximately 

100 µm in size. Figure 2.12 shows the experimental method to make small van 

der Pauw contacts on a crystal with the size of ~100 µm. The following steps 

describe the process of creating such contacts: 

Begin by cutting the sample into a square shape, with a diagonal 
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distance of 100 µm. To move the sample, touch it with a very sharp wooden 

toothpick, allowing it to adhere to the toothpick due to van der Waals forces. 

Prepare a 5 µm thick Pt foil and cut it to a width of 10 µm. Use Kapton tape to 

attach the Pt foil to a glass slide, as illustrated in Figure 2.12a. Mix conducting 

epoxy (Circuitworks CW2400, Figure 2.12b) in a 1:1 mass ratio. Apply the 

epoxy onto the Pt foil using a sharpened toothpick. Attach the sample to the 

epoxy-coated Pt foil (Figure 2.12c). Cure the slide glass on a hot plate for 30 

minutes at 100°C to ensure conductivity and adhesion between the Pt foil and 

the sample. Trim the Pt foil to a length of 100 µm and repeat the process for all 

four sides, as shown in Figure 2.12d-f. 

After creating the sample contacts, the sample should be loaded inside a 

prepared metal gasket for actual resistivity measurements. For target pressures 

of approximately 60 GPa, a stainless steel (SUS 304) gasket should be 

prepared. The following steps describe the process of making such a gasket: 

To make a gasket, we require a piece of stainless steel with a thickness 

of 180 μm. Initially, to prepare the sample space, we must pre-indent the steel 

gasket with 300 μm culet diamonds by hand, resulting in applied pressure of 

approximately 1 GPa. Since a thin sample space of ~ 40 μm is required for 

actual sample measurement, preindenting the gasket to ~ 20 GPa pressure is 

necessary to reduce the gasket thickness before drilling a hole for the sample 

space. To calibrate the 20 GPa pressure, we insert a small ruby powder in the 

center of the hand-indented sus gasket. Using the photoluminescence signal of 

the ruby, we can pre-indent the gasket until 20 GPa pressure is reached. It is 
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crucial not to exceed 30 GPa, as doing so can make the gasket thickness below 

40 μm, causing the diamond to touch each other and break. 

Once the desired pressure is reached, we must wait for the pressure to 

stabilize for 30 minutes. Next, we should align the gasket on the gasket 

drilling machine and cut 280 μm of the 300 μm to make a hole for the sample 

space and the insulating c-BN material. Then, we mix the c-BN with insulating 

A, B epoxy, and cut a small amount of c-BN for use. We put the c-BN 

between the diamonds and inside the drilled hole, squeezing it inside firmly. 

Adding some ruby powder and pressing again up to 20GPa is necessary. After 

pressurization, we wait for another 30 minutes. We then drill a 120 µm hole on 

the c-BN and measure the gasket thickness using a conventional Vernier 

caliper. 

If the thickness is more than 40 µm, we must repeat the process. To do 

so, we pressurize the gasket again, put the ruby in the center, and pressurize up 

to 20 GPa, waiting for another 30 minutes. The optimal thickness should be 

between 30 μm and 40 μm. If the thickness is too thick, the gasket will 

collapse into the sample space during actual measurements. Finally, we need 

to make a Pt foil of less than 40 μm using a Pt foil of thickness 5 μm and load 

the wires on the gasket with silver paste (Dupont 4929N), assuming all the 

procedures are done correctly. 

After preparing the gasket, the sample should be carefully loaded into 

the prepared gasket. Place the sample inside, beneath the Pt wire. Once the 

sample wires are positioned beneath the Pt, press the piston/cylinder to prevent 
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the wires from moving. Finally, apply silicon oil and ruby powder before 

clamping the cell. Figure 2.13a-b shows the sample before loading (Figure 

2.13a) and after loading in the diamond anvil cell (Figure 2.13b). Figure 2.13c 

shows a cartoon figure of a typical van der Pauw measurement scheme inside a 

diamond anvil cell. Figure 2.13d shows A photo of a diamond anvil cell with 

the wires loaded in a puck, prepared for measurement in a Physical Property 

Measurement System (PPMSTM) in Prof. Kee Hoon Kim’s lab. 

 

Figure 2.13 (a) A photograph of a crystal with van der Pauw contacts attached 

to the edges. (b) A photograph of a contacted sample loaded inside a prepared 

stainless steel gasket. (c) An illustrated representation of a typical van der 

Pauw measurement setup inside a diamond anvil cell. (d) A photograph of a 

diamond anvil cell with the wires loaded in a puck, prepared for measurement 

in a Physical Property Measurement System (PPMSTM) in Prof. Kee Hoon 

Kim’s lab. 
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Chapter 3  Optimized superconductivity in the 

vicinity of a nematic quantum critical point in 

the kagome superconductor Cs(V1-xTix)3Sb5 

3.1   Overview 

In recent years, metals featuring kagome lattice structures have attracted 

considerable attention due to their distinct electronic structure, which hosts 

Dirac points, flat bands, and saddle points in their crystal momentum space 

[13]. Specifically, the diverging density of states near the saddle points and flat 

bands have enabled the realization of intriguing many-body ground states, 

such as superconductivity [13-14], and chiral charge density wave order [13]. 

Among these materials, the recently discovered vanadium-based kagome 

metals AV3Sb5 (A = K, Rb, and Cs) have been most actively studied due to 

various electronic instabilities arising from van Hove singularities near the 

Fermi level. For example, each member of this family exhibits 2 × 2 charge 

order below their charge ordering temperatures (TCDW’s = 80–104 K) and the 

coexistence of superconductivity [17]. Notably, the Cs variant of this 

compound has been found to host additional electronic orders, such as 2 × 2 × 

2 and 2 × 2 × 4 out-of-plane direction CDW modulations [17], and electronic 

nematic order [18]. 

However, despite intense experimental efforts, the superconducting 

properties of CsV3Sb5 are still far from fully understood. One significant 
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puzzle, related to the present study, concerns the origin of an elusive double-

domed superconductivity found in the studies of Sn-doped polycrystals [30] 

and pressurized single crystals of CsV3Sb5 [31-32], whereas the KV3Sb5 and 

RbV3Sb5 counterparts only exhibit a single superconducting dome with 

external control parameters [33]. Closely related to the puzzle, a very recent 

study identified the presence of an electronic nematic phase in CsV3Sb5 [18], 

suggesting a possibility of interplay between nematic order and 

superconductivity. Elastoresistance measurements, which can directly probe 

nematic susceptibility, have been found to be quite useful in uncovering the 

pivotal role of nematic fluctuation in mediating Cooper pairing, particularly in 

several Fe-based superconductors [34-38]. Therefore, to understand the role of 

nematic order on superconductivity in CsV3Sb5, elastoresistance studies in 

high-quality single crystals as a function of doping are highly desirable. 

In the current investigation, high-quality single crystals of Cs(V1-

xTix)3Sb5 (0 ≤ x ≤ 0.06) have been successfully grown, with the accurate 

doping ratio and systematic lattice variation confirmed by wavelength-

dispersive X-ray spectroscopy (WDS) and X-ray diffraction (XRD) 

measurements, respectively. Elastoresistance measurements are employed in 

relation to the Ti ratio x to probe the interplay between nematic order and 

superconductivity. A careful examination of Cs(V1-xTix)3Sb5 single crystals 

reveals a systematic suppression of the Curie-Weiss temperature θnem upon Ti 

doping, which changes its sign to become negative at x ~ 0.009, close to the 

critical doping of xc = 0.01, where the Curie constant and nematic 
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susceptibility are found to reach their maximum values. This constitutes strong 

evidence of a nematic quantum critical point (NQCP) near xc. Remarkably, the 

superconducting transition temperature and Meissner volume fraction exhibit 

an unusual double-dome feature as a function of x, with the center of the first 

dome located in the vicinity of the NQCP. These observations raise the 

intriguing possibility that fluctuations in the nematic order play an important 

role in the pairing interaction to optimize superconductivity in the first 

superconducting dome of Cs(V1-xTix)3Sb5. The findings will be discussed one 

by one in the following chapters. 

3.2 Introduction 

CsV3Sb5, one prominent member of the vanadium-based kagome metal, 

has been found to exhibit multiple electronic and structural orders which has 

been theoretically predicted in the kagome Hubbard model [17]. This 

compound is known to exhibit at least three phase transitions to various orders 

as the temperature is lowered: a charge order at TCDW ~ 98 K [17], a nematic 

order at Tnem ~ 35 K [18], and a superconducting state at Tc ~ 3.2 K [17]. 

Figure 3.1a depicts the evolution of the vanadium kagome net in CsV3Sb5 as 

the phase transitions are exhibited upon lowering the temperautre. At room 

temperature (300 K), the vanadium atoms form a kagome structure. However, 

below the charge ordering temperature TCDW, the structure is transformed into 

a tri-hexagonal arrangement, with distinctly shaped hexagons and triangles 

[39]. As the temperature is further reduced to 35 K, it exhibits an electronic 
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nematic state, characterized by a one-directional modulation in the electronic 

structure. 

 

Figure 3.1 (a) A schematic figure of the temperature dependent evolutions due 

to the known phase transitions in the vanadium kagome net of CsV3Sb5. (b) 

The temperature dependence of the in-plane resistivity ρab of CsV3Sb5. (inset) 

A low temperature plot of the temperature dependent in-plane resistivity ρab 

(b) The temperature dependence of the derivative of the in-plane resistivity 

dρab/dT of CsV3Sb5. 

Figure 3.1b depicts the temperature dependence of the in-plane 

resistivity ρab of CsV3Sb5. As temperature is lowered, an upturn in resistivity is 

observed indicating at the charge ordering temperature TCDW of ~ 98 K. At low 

temperatures, the superconducting phenomenon of zero resistivity can also be 

observed near Tc ~ 3.2 K, as shown in the inset of Figure 3.1b. Figure 3.1c 
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shows the derivative of the in-plane resistivity dρab/dT of CsV3Sb5. The precise 

charge ordering temperature TCDW can be defined using the upturn in the 

dρab/dT data. 

 

Figure 3.2 Schematic figures depicting the 3q charge loop currents of CsV3Sb5 

(a) in the charge bond order state at Tnem< T <TCDW and (b) in the nematic 

charge bond order state at T < Tnem. 

Interestingly, due to the extensive theoretical calculations available for 

this material, it is possible to achieve a deeper understanding of the observed 

charge order and nematic order [15, 40]. In this material, geometrical 

frustration due to the kagome structure is believed to generate small orbital 

currents, named the chiral loop currents. Theoretically, these chiral loop 
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currents exist in three different q vector directions with a 120 degree angle 

with respect to each other. Figure 3.2a shows a schematic figure of the 3q 

charge loop currents of the CsV3Sb5 at Tnem< T <TCDW. At this temperature 

regime, the 3q charge loop currents exhibit the same amplitude as well as the 

same phase order parameters, which result in a chiral loop in one direction 

inside the hexagon structure and a chiral loop in the opposite direction in the 

triangular structures. This in turn preserves the intrinsic 6-fold rotational 

symmetry (C6) as exhibited by the structure. 

However, when one or two phases of the chiral loop current is changed, 

namely becomes the chiral loop current with anisotropic phase, the chiral loop 

translates a specific vector a along the lattice structure, resulting in a new 

phase with electronic rotational symmetry lowerring from sixfold (C6) to 

twofold (C2) with one-dimensional modulation. According to various theories 

[15, 40], these phenomena account for the charge order and nematic order in 

CsV3Sb5 and are referred to as charge bond order and nematic charge bond 

order in theoretical terms. 

In this interesting system of CsV3Sb5, recent experiments have 

demonstrated that, with various control parameters such as applying pressure 

in the single crystal [31-32], or doping Sb with Sn in the polycrystals [30], the 

superconducting transition temperature exhibits a double-dome shape. This 

occurrence of the double-dome feature is exceptionally rare and not yet fully 

understood. Therefore, in this chapter, the superconducting properties, as well 

as the relation between superconductivity and other emergent orders in 
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CsV3Sb5 have been investigated. Specifically, I investigated the physical 

phenomena associated with doping the V site with Ti atoms, which can 

directly alter the kagome lattice and also provide hole doping. 

3.3 Characterization of the Ti content in Cs(V1-xTix)3Sb5 

To determine the elemental composition ratio in a sample, a wavelength 

dispersive spectroscopy (WDS) measurements can be performed, which 

enables the characterication of the elemental compositions in a non-destructive 

method. In order to determine the Cs, V, Ti, and Sb content in the lab-grown 

Cs(V1-xTix)3Sb5 single crystals, wavelength dispersive X-ray spectroscopy 

(WDS) was conducted using a field emission electron probe microanalyzer 

(JEOL Ltd., JXA-8530F), with V (99.99%), Ti (99.9%), and Sb (99.99%) 

metals as standard specimens. Due to the high air sensitivity of elemental Cs 

metal, the standard specimen data for Cs was obtained from the JEOL database. 

 Figure 3.3a shows a measured WDS raw data image of a 

Cs1.01(V0.973Ti0.027)3Sb5 single crystal, where the x-axis represents X-ray energy 

and the y-axis represents the X-ray intensity. It can be seen from the raw data 

that the X-ray signals from each of the Cs, V, Ti, and Sb elements are detected 

in the WDS spectra. Figure 3.3b displays a scanning electron microscope 

(SEM) image of a Cs1.01(V0.973Ti0.027)3Sb5 single crystal (top) and the the 

relative molar ratio of Cs, V, Ti, and Sb content of the same crystal (bottom). 

It is immediately apparent that the atomic ratio of V (~2.919) is lower than 3, 

while the sum of the atomic ratios of Ti and V is approximately equal to a 
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value of ~3. This indicates that upon doping, Ti atoms replace V atoms rather 

than occupying Cs or Sb sites. 

 

Figure 3.3 (a) The X-ray intensity vs. energy graph of a Cs1.01(V0.973Ti0.027)3Sb5 

single crystal as measured in the field emission electron probe microanalyzer 

in NCIRF, Seoul National University. (b) (top) The scanning electron 

microscope image of a Cs1.01(V0.973Ti0.027)3Sb5 single crystal and (bottom) the 

relative molar ratio of Cs, V, Ti, and Sb content of Cs1.01(V0.973Ti0.027)3Sb5. (c) 

The actual Ti content x vs. nominal Ti content x of the grown Cs(V1-xTix)3Sb5 

single crystals. 

Figure 3.3c shows a plot of the actual V:Ti ratio (xnominal) vs. the 

nominal V:Ti ratio (xWDS) obtained from the WDS analysis. It can be observed 

that the actual V:Ti ratio closely follows the nominal V:Ti ratio, at least up to 

xnominal = 0.05. For xnominal = 0.06, the xWDS exhibits a slight upward deviation 

from the linear guideline, indicating a higher doping ratio compared to the 

nominal value. It was confirmed that the actual Ti doping ratio closely follows 

the nominal value in the lab-grown Cs(V1-xTix)3Sb5 single crystals, at least up 
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to 5% Ti content. 

 

Figure 3.4 (a) Capillary x-ray diffraction patterns (black dots) and the 

corresponding Rietveld refinement result (red line) with Rwp = 28.1 and χ2 = 

1.67 of a Cs(V0.98Ti0.02)3Sb5 single crystal. The subtracted patterns are shown 

as blue lines and the expected peak positions are shown as the green ticks. 

Inset shows a photograph of a Cs(V0.98Ti0.02)3Sb5 single crystal placed on top 

of a graph paper with one unit of 1 mm (red scale bar). (b) and (c) show the 

evolution of a and c lattice parameters, respectively, with Ti doping ratio x. 

To investigate the relationship between doping and lattice constants, the 

lab-grown Cs(V1-xTix)3Sb5 single crystals were ground and placed inside a 

quartz capillary tube with a 0.5 mm inner diameter. X-ray diffraction (XRD) 

θ-2θ scans were performed using a high-resolution X-ray diffractometer 

(PANalytical Empyrean). Figure 3.4a shows the XRD pattern for ground 

single crystals of Cs(V0.98Ti0.02)3Sb5 (black dots) alongside the calculated 

Rietveld refinement result (red line) obtained using FullProf software. The 

refinement, which accounted the preferential orientation along the c-axis, 
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could successfully reproduced the XRD pattern, yielding an Rwp = 28.1 and χ2 

= 1.67. Similar analyses were also conducted for other doping values, resulting 

in Rwp values below 30 and χ2 values below 2. Consequently, the refined a and 

c values were obtained, which is shown in Figures 3.4b-c. It could be seen that 

both a and c lattice parameters exhibit a decreasing trend as the Ti doping ratio 

x is increased. This effect can be attributed to the smaller ionic radii of Ti4+ 

ions (60.5 pm) as compared to V3+ ions (64 pm) and supports that Ti atoms 

substitute the V site upon doping. 

3.4 Evolution of the CDW transition temperature 

Figure 3.5a shows the in-plane resistivity ρab of Cs(V1-xTix)3Sb5 

normalized by the resistivity at 300 K (ρab/ρab,300 K). The resistivity of the 

undoped CsV3Sb5 exhibits an upturn behavior near TCDW ~ 98 K due to the 

development of the charge order. With increased Ti doping concentration x, 

the residual resistivity ratio (RRR) of Cs(V1-xTix)3Sb5 is systematically 

decreased. The RRR is a measure of the ratio of resistivity at low temperature 

to that at high temperature and is a key parameter for characterizing the quality 

of a material. A decrease in RRR indicates an increase in impurity scattering 

within the kagome plane, which can be attributed to the presence of Ti dopants. 

This result suggests that Ti doping introduces impurity states in the kagome 

lattice, leading to increased scattering of electrons and a reduction in electronic 

conductivity.  
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Figure 3.5 (a) Temperature dependence of the in-plane resistivity ρab 

normalized by the resistivity value of Cs(V1-xTix)3Sb5 single crystals at 300 K 

for 0 ≤ x ≤ 0.06. (b) dρab/dT curves of Cs(V1-xTix)3Sb5 single crystals. The 

curves have been vertically shifted down for clarity. The colored arrows 

indicate the charge ordering temperature TCDW. 

Along with the decreased RRR value, Cs(V1-xTix)3Sb5 exhibits 

increasingly broadened CDW transitions with increasing x, which are well 

visualized in the dρab/dT curves in Figure 3.5b. This suggests that the Ti 

dopants introduce disorder into the electronic structure of the kagome lattice, 

leading to a broadened formation of the CDW order. Furthermore, the 

anomalies in dρab/dT shift to lower temperatures, indicating the development 

of a lower TCDW at higher x, for example, ~ 59 K at x = 0.04. This indicates the 

weakening of CDW order as the vanadium kagome net is altered with Ti 

doping.  
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Figure 3.6 Temperature dependence of the M/H of the Cs(V1-xTix)3Sb5 single 

crystals measured at a constant external field of μ0H = 1 T after zero-field 

cooling (ZFC). Here, M indicates the magnetization and H indicates the 

magnetic field. The inset represents the temperature dependence of the 

d(M/H)dT of Cs(V0.95Ti0.05)3Sb5 near the charge ordering temperature TCDW. 

The trend of decreasing TCDW is further supported by the dc magnetic 

susceptibility (M/H) data shown in Figure 3.6. According to the equation of 

Pauli Paramagnetism, M/H = μ0 μB g(EF), where μ0 is the vaccuum permeability, 

μB is the Bohr magneton, and g(EF) is the electron density of states [27]. The 

drop in the M/H curve observed in pristine CsV3Sb5, which is known as a Pauli 
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paramagnet, signifies a depletion of the density of states due to the CDW gap 

opening at TCDW = 98 K. Consistent with the behavior observed in ρab, 

increasing the Ti doping concentration results in a shift in TCDW to lower 

temperatures. Furthermore, the charge ordering transition becomes decreased 

and broadened with increasing Ti doping concentration. This suggests that the 

Ti dopants systematically reduce the depletion of electronic density of states at 

the long-range CDW transition, leading to a decrease in the averaged TCDW and 

an increase in the TCDW distribution. 

3.5 Evolution of the superconducting properties 

As the systematic suppression of TCDW has been established through Ti 

doping, we now shift our attention to the evolution of superconductivity and 

its interplay with the pre-existing CDW order. Figure 3.7 shows the 

temperature dependence of the in-plane resistivity ρab and the temperature 

dependence of 4πχ data of Cs(V1-xTix)3Sb5 single crystals. The 

superconducting transition temperature (Tc) is determined by the 50% criteria 

of the normal-state resistivity in the in-plane resistivity ρab data. 

Notably, it is found that the superconducting transition temperature Tc 

exhibits a non-monotonic behavior with increased Ti doping concentration. At 

x = 0.0075, a maximum value of Tc is found at 4.1 K, which is ~ 1K higher 

than the Tc = 3.2 K of the pristine CsV3Sb5. Moreover, in the doping range of x 

= 0.0-0.01, a full Meissner shielding of -4πχ ≈ 1 is exhibited, which can be 

seen in Figure 3.7c. However, with a further increase in Ti doping 
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concentration towards x = 0.02, Tc is progressively suppressed to ~1.9 K 

(Figure 3.7a-b), followed by a decreased Meissner shielding fraction of -4πχ ~ 

0.3 at x = 0.015 and -4πχ ~ 0 around x = 0.02. Above x > 0.02, Tc increases 

again to exhibit a second maximum value of 3.8 K at x = 0.05 and recovers the 

full Meissner shielding of -4πχ ~ 1. Therefore, the evolution of the 

superconducting properties, the superconducting transition temperature Tc and 

the Meissner shielding -4πχ is found to reveal a double-dome feature upon Ti 

doping x. 

 

Figure 3.7 Low-temperature behaviour of the in-plane resistivity ρab in Cs(V1-

xTix)3Sb5 for (a) 0 ≤ x ≤ 0.015 and (b) 0.02 ≤ x ≤ 0.06. Temperature 

dependence of 4πχ (χ: magnetic susceptibility) measured at μ0H = 10 Oe after 
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zero field cooling (ZFC) for (c) 0 ≤ x ≤ 0.015 and (d) 0.02 ≤ x ≤ 0.06. 

 

Figure 3.8 A temperature(T)-doping(x) phase diagram of Cs(V1-xTix)3Sb5, 

indicating the charge ordering temperatures TCDW and the superconducting 

transition temperatures Tc. The orange circles and the yellow octagons indicate 

the TCDW obtained by the ρab and M/H measurements. The green triangles 

indicate the superconducting transition temperature Tc defined by the 50% 

criteria of the normal-state resistivity values. The green color contour indicates 

the Meissner volume fraction (-4πχ).  

Figure 3.8 represents the temperature-doping phase diagram of Cs(V1-

xTix)3Sb5, obtained by analysis of the charge ordering temperatures TCDWs and 

the superconducting transition temperatures Tcs. It can be seen that a double 

superconducting dome is clearly exhibited, with the whole first 
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superconducting region (SC1) found within the charge order and the second 

superconducting region (SC2) found near the suppression point of the charge 

ordering temperature TCDW. While the SC2 can be understood as a 

superconductivity dome stabilized at a putative CDW quantum critical point 

(QCP) [41], the emergence of another superconducting dome within the CDW 

order is indeed a rare finding within the CDW bearing materials. This strongly 

suggests that additional fluctuating orders could be present to enhance the 

superconducting pairing interaction near the first superconducting region 

(SC1). 

3.6 Evolution of the nematic order: elastoresistance 

To investigate the origin of the unusual trend in Tc, the elastoresistance in 

Cs(V1-xTix)3Sb5 was investigated. Figure 3.9a illustrates the experimental 

configuration for the elastoresistance measurements. It is known that the nematic 

susceptibility  can be obtained by measuring the electronic anisotropy induced 

by anisotropic strain. In other words, ñ becomes linearly proportional to the 

anisotropic change in the resistance N ≡ (ΔR/R)xx - (ΔR/R)yy in response to 

anisotropic strain (εxx–εyy), which results in ñ = dN/d(εxx–εyy). 

Before analysing the nematic susceptibility signals, it is essential to 

comprehend two fundamental properties related to the crystal under study. The first 

property concerns the allowed symmetry channels in nematic susceptibility that the 

sample can exhibit, while the second is related to the exact symmetry channel that 
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ñ = dN/d(εxx–εyy) measures. This information depends on the specific space group 

of the crystal being studied and the definition of the x-cartesian axis in respect to 

the crystal axis.  

Particularly, for a crystal in the D6h point group such as CsV3Sb5 with x 

along the [100] axis, the elastoresistance tensor mij in the absence of magnetic field 

can be expressed as 

, 

according to the general definition of elastoresistance coefficients (ΔR/R)i ≡ Σ6
j=1

 

mijεj [18]. Here, εj represents the engineering strain mij represents the 

elastoresistance tensor components, and the subscripts i and j represent the Voigt 

notation (1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = zx, 6 = xy). According to this definition, 

ñ = dN/d(εxx–εyy) can be expressed in terms of mij. By substituting  into the 

definition of the elastoresistance coefficient, one can obtain the following two 

equations, 

  

. 

The subtraction of these two equations results in the following expression (m11–

m12) = {(ΔR/R)xx - (ΔR/R)yy }/(εxx–εyy), which becomes dN/d(εxx–εyy) in the small 

strain limit of (εxx–εyy) → 0. 
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Moreover, according to the irreducible representations of the D6h point group, 

any arbitrary strain in the hexagonal lattice can be divided into the three strain 

components [18], εA1g = (1/2(εxx+εyy), εzz), εE1g = (εxz, εyz), and εE2g = (1/2(εxx–εyy), εxy). 

As the elastoresistance (m11–m12) represents the nematic susceptibility induced by 

(εxx–εyy) strain, (m11–m12) represents the nematic susceptibility along the E2g 

symmetry channel. In conclusion, the elastoresistance coefficient (m11–m12) which 

represents the nematic susceptibility along the E2g symmetry channel can be 

obtained by measuring the strain-dependent resistivity anisotropy along two 

perpendicular crystallographic directions, with x axis along the [100] crystal axis. 

 

Figure 3.9 (a) Schematic illustration of the elastoresistance measurement setup. (b) 

N vs. (εxx–εyy) plot of CsV3Sb5 at several representative temperatures. (c)-(i) (top 

panel) Temperature dependence of ñ  in Cs(V1-xTix)3Sb5 for 0 ≤ x ≤ 0.02. A sharp 

jump in ñ is observed near TCDW. Below and above this jump, the data can be 

clearly fitted to the Curie‒Weiss formula (Eq. (1)) (red and orange solid lines, 
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respectively). The black dotted line indicates the deviation temperature from a 

Curie‒Weiss fit, while the blue arrow indicates the peak temperature of ñ , Tñ, peak. 

(c)-(i) (bottom panel) Temperature dependence of (ñ-ñ0)-1 and (ñ-ñ0)(T-θnem) below 

TCDW, represented by the pink and green open circles, respectively. The black 

dashed line refers to a linear guide line. 

Figure 3.9b depicts the response of N to (εxx–εyy) for CsV3Sb5 at selected 

temperatures. N  shows a linear relationship with (εxx–εyy). The resulting (T) 

curve for CsV3Sb5 is presented in the top panel of Figure 3.9c. A sharp jump in  

is found at TCDW = 98 K, implying that the first-order structural transition due to the 

charge order results in an abrupt offset change in the elastoresistance anisotropy. It 

is found that at temperatures above 36 K and below the sharp jump near TCDW,  

is well fitted by the Curie‒Weiss-type temperature dependence, 

 =   .                                                        

Here,  describes the intrinsic anisotropy in the piezoresistivity effect, 

unrelated to electronic nematicity, θnem is the mean-field nematic transition 

temperature, and C is the Curie constant of the corresponding nematic 

susceptibility. A good agreement of the experimental data to Eq. (1) can be 

confirmed by a fitted red solid line with = 30 K,  = 14.7, and C = 39 K. A 

good fit to Eq. (1) can also be verified by the plots of  and 

at the bottom panel of Fig. 3c, which exhibit linear (pink 

open circles) and constant (green open circles) behaviours with temperature, 

respectively. The nearly constant value of  should directly 

correspond to the C value.  
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Similar measurements and analyses were performed for Cs(V1-xTix)3Sb5 

up to x = 0.06 (Figures 3.9d-i). It is noted that the jump in  at TCDW 

systematically decreases with increasing x, indicating weakened elastoresistance 

anisotropy at the CDW ordering. More importantly, we find that all the samples up 

to x = 0.03 exhibit the Curie‒Weiss temperature dependence of  in broad 

temperature ranges above deviation temperatures represented by black dotted lines. 

For x = 0-0.0075,  data clearly develop a peak at Tñ, peak. In a previous work on 

the pristine sample14, Tnem identified by NMR and Tñ, peak determined by the   

measurements were indeed nearly same as ~35 K. Therefore, Tñ, peak can be used as 

a good estimate of Tnem for each doping. In our case, the resultant Tñ, peak = 34 K for 

x = 0 is indeed close to the known value of Tnem = ~35 K [18]. For other x, Tñ, peak 

shows a monotonous decrease; Tñ, peak = 18 K (x = 0.005) and 14 K (x = 0.0075). 

For x = 0.01, however, we did not identify any peak feature at least down to 6 K, 

except finding the deviation temperature from the Curie-Weiss behaviour at ~12 K. 

This observation indicates that for x = 0.01, the true long-range nematic ordering is 

located well below 6 K or might not even exist at a finite temperature. For x = 

0.0125 and 0.015, (T) doesn’t show any peak feature either, and only the 

deviation from the Curie-Weiss behaviour is identified around ~8 K. This indicates 

that in x = 0.0125 and 0.015, only nematic correlation exists without development 

of true long-range order at a finite temperature. 

In order to understand quantitatively the evolution of  over the broad 

doping ranges, we have tried to fit the experimental (T) of all the samples by Eq. 

(1) below TCDW. (see, SM Table S2 for detailed fit parameters). Firstly, we discuss 

the evolution of C for each doping. In contrast to the monotonic decrease in the 
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jump of (T) and Tñ, peak with x, C is found to exhibit non-monotonic behaviour, i.e. 

increasing trend with x for x = 0.0-0.01 and decreasing trend for x ≥ 0.0125; C, as 

indicated by the slope of  or the value of , 

increases with x from C = 39 K (x = 0) to 124 K (x = 0.0075), and exhibits a 

maximum value of C = ~157 K at a critical doping of xc = 0.01. As a result, the 

highest value of (T = 6 K) ~ 23.8 can be found at xc. For x ≥ 0.0125, C decreases 

with x to exhibit C = 2 K at x = 0.03, resulting in a flattening of the (T) curve at 

higher doping ratios. For x ≥ 0.04, Eq. (1) cannot be fitted very well to the (T) 

curves due to almost temperature-independent behaviour below and above the 

TCDW. 

The fit to Eq. (1) strikingly reveals that θnem is systematically suppressed 

from 30.0 K (x = 0) to 3.6 K (x = 0.0075), and to eventually exhibit a sign change 

(x = ~0.009). At higher x, θnem is suppressed further, resulting in θnem = -42 K at x = 

0.03. In general, a nematic quantum critical point (NQCP) is often located at the 

phase space where θnem goes to zero temperature and strongly enhanced nematic 

susceptibility exists. The systematic suppression of θnem to zero temperature at x = 

~0.009, combined with the sharp maximum of the C value and the disappearance of 

Tñ, peak near xc, strongly suggests the presence of a NQCP near the doping level 

close to x ~ 0.009-0.01. Indeed, similar phenomena have been observed in 

numerous Fe-based systems having the NQCP [34-38]. 
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Figure 3.10 (a) A temperature(T)-doping(x) phase diagram of Cs(V1-xTix)3Sb5, 

indicating the charge ordering temperatures TCDW, the nematic transition 

temperature Tnem, the peak temperature of the elastoresistance data Tñ, peak, and 

the Curie-Weiss temperature θnem. The orange circles, yellow octagons, and the 

brown crosses indicate the TCDW obtained by the ρab, M/H, and elastoresistance 

measurements. The pink cross, blue squares, and purple stars represents the 

nematic transition temperature obtained from ref. [18], the Tñ, peak, and the θnem 

respectively. A color contour of ñ is plotted on top of the phase diagram. (b) 

Doping dependence of the Curie constant C obtained from the elastoresistance 

measurements. (c) Doping dependence of the superconducting transition 

temperatures Tc (green triangles). The green color contour indicates the 
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Meissner volume fraction (-4πχ).  

Figure 4a-b summarises the phase diagram of Cs(V1-xTix)3Sb5 plotted on top 

of the colour contour of ; TCDW as derived from the data of ρab (orange circles), 

M/H (yellow octagons), and  (brown crosses) are plotted for each x. Moreover, 

Tñ, peak (blue squares) and θnem (purple stars) obtained from  in Fig. 3 are plotted 

with the Tnem (pink cross) of x = 0 determined in a previous work [18]. At x = 0, a 

jump in (T) near TCDW can be clearly identified by the abrupt change of colour in 

 from blue at T > TCDW to green at T < TCDW. Near Tnem, the contour exhibits a 

yellow colour, indicating a local maximum of  at Tñ, peak. With increase in doping, 

the Tñ, peak shifts to low temperatures, resulting in the most intensified  (6 K) 

indicated by the red colour near x = 0.0075-0.01. This behaviour is also confirmed 

by the maximum of the C value, indicated by the red diamonds. 

The superconducting phase diagram of Cs(V1-xTix)3Sb5 is also plotted in Fig. 

4c. Here, the green triangles indicate the Tc obtained from transport measurements, 

while the Meissner volume fraction (-4πχ) is represented below the trace of Tc as a 

green colour contour. Surprisingly, it is found that Tc is optimized to 4.1 K (3.7 K) 

near this doping range of x = 0.0075 (0.01), when the nematic correlations 

indicated by the  and C values are sharply enhanced near the NQCP. Our 

observation thus raises an intriguing possibility that fluctuation of the nematic 

order plays an important role in the pairing interaction to optimize 

superconductivity in the first superconducting dome of Cs(V1-xTix)3Sb5. At higher 

doping ratios of 0.01 ≤ x ≤ 0.02, Tc is monotonically suppressed with doping, 

which could be related to the reduced nematic fluctuations as indicated by the 

decreased  and C values. 
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Based on our experimental findings and implications, the nematic 

fluctuations may be important in understanding the superconductivity in the 

AV3Sb5 family. In support of this scenario, it should be noted that the Tc values in 

KV3Sb5 (Tc = 0.93 K) and in RbV3Sb5 (Tc = 0.92 K) are lower than that in CsV3Sb5 

(Tc = 3.2 K) [17].  In addition, unlike the Cs variant, a recent study of Sn doping 

in polycrystalline KV3Sb5 and RbV3Sb5 revealed single superconducting domes 

near the suppression of the CDW orders [33]. All these results, if interpreted 

correctly, potentially indicate that nematic order and its fluctuations might be 

absent in both compounds, motivating similar experiments for these materials. 

Furthermore, our scenario supports that nematic fluctuations should be also 

considered as an important factor to understand the double superconducting domes 

reported in pressurized CsV3Sb5
 [31-32] and in CsV3Sb5-xSnx polycrystals [30]. 

It should be pointed out that the experimental results found here well 

resemble those found in the Fe-based superconductors, where unconventional 

superconductivity is optimized near the NQCP [34-38].  However, in contrast to 

the iron-based superconductors where the spin density wave order is closely 

coupled to the nematic order [42], the nematic order in CsV3Sb5 are intertwined 

with the unconventional CDW order, possibly in a form of charge bond order [15, 

40]. Recent theoretical studies considering the kagome-Hubbard model have indeed 

shown that a triple-q charge bond order is stabilized below TCDW, described by 

three complex CDW order parameters. Furthermore, those theories suggest that 

these CDW order parameters can undergo a continuous variation of their phases at 

Tnem from a triply-degenerate, isotropic phase of π/2 into two different values, 

without the change of the isotropic amplitude, thereby resulting in one dimensional 
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nematic modulation. Therefore, the enhanced nematic correlation might be linked 

to the quantum phase transition involving a continuous variation of the phases of 

the triple-q CDW order parameters, at which the charge bond order with 

anisotropic phases, thus called nematic charge bond order, develops from the one 

with a homogenous phase. 

3.7 Conclusion 

In conclusion, our experimental findings coherently suggest that a NQCP is 

located near x = ~0.009-0.01. Moreover, a maximum Tc = ~4.1 K with full 

Meissner shielding is realized at x = ~0.0075-0.01, forming the first 

superconducting dome near the NQCP. This not only points out the vital role of 

nematic fluctuation in enhancing superconductivity but also provides important 

insights into understanding the link between the multiple orders and 

superconductivity in CsV3Sb5 and related kagome superconductors.  
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Chapter 4   Pressure-induced quantum critical 

point of a strong coupling charge density wave 

order in 2H-Pd0.05TaSe2 

4.1 Introduction to charge density waves and its origin 

In this chapter, the discovery of the pressure-induced quantum critical 

point of a strong-coupling charge density wave order in 2H-Pd0.05TaSe2 will be 

introduced. However, before addressing the details, the basic concepts of the 

two different origin of the charge density waves, weak-coupling and the 

strong-coupling charge density waves should be discussed first. 

4.1.1  Weak-coupling origin of charge density wave order 

A charge density wave state indicates an ordered state in which the 

electrons within a material are periodically arranged with respect to each other. 

These electrons in a charge density wave order can either form a standing 

wave pattern or in rare cases collectively carry an electron current. In the 

simple one-dimensional case, the charge density wave order can be explained 

as the Peierls instability caused by Fermi surface nesting [43]. The top figure 

of Figure 4.1a illustrates a one-dimensional atomic chain model, in which each 

atom site has one occupied electron above the charge density wave transition 

temperature TCDW. Figure 4.1b shows the representative Fermi surface for 
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materials that possess similar structures reminescent to this one-dimensional 

chain. In this case, Most of the Fermi surface is located near the Fermi wave 

number q = ± kF, and they overlap completely when a translation of q = 2kF is 

applied. This condition where two Fermi surfaces of different electron bands 

have similar shapes, and some parts of two Fermi surfaces are arranged almost 

parallel to each other is called the Fermi surface nesting condition. In 1936, 

Peierls discovered that the 1D system is unstable under this Fermi surface 

nesting condition [43]. 

In order to overcome this condition and achieve a stable state, a gap at 

the position of q = ± kF should open, forming the zone boundary of a new unit 

cell. For the case of kF = π/a, a new periodicity will be formed with the real 

space periodicity of 2a and the wavevector of q = 2kF. The bottom figure of 

Figure 4.1a shows the rearranged atoms and the corresponding charge density 

of the one-dimensional atomic chain model below the charge density wave 

transition temperautre TCDW. This phenomenon is called the Peierls transition, 

and the charge density wave formed by this origin of Fermi surface nesting is 

called the weak-coupling charge density wave order. 
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Figure 4.1 (a) (top) The atomic positions and the charge density ρ(r) of a one-

dimensional atomic chain model. The atoms are equally spaced at a distance a 

and the charge distribution ρ(r) is shown in the green line. (bottom) a 

rearranged atomic chain in the charge density wave phase at temperatures 

below the charge density wave transition temperautre TCDW. (b) Representative 

figure of a two-dimensional Fermi surface for typical quasi-one dimensional 

material system that exhibits Fermi surface nesting. Here, kF represents the 

Fermi wave number, and qCDW represents the Fermi wave vector of the charge 

density wave. These Fermi surfaces are realized in typical quasi-1D materials 

such as TTF-TCNQ (Tetrathiafulvalene-Tetracyanoquinodimethane) [44] and 

ZrTe3 [45]. (d) A graph of the momentum (q) dependent Lindhard response 

function χ(q) for the 1D, 2D, and 3D ideal free electron gas cases, respectively. 

(d) A schematic figure of the phonon energy ω(q) in the theoretical 1D atomic 

chain model for various temperatures relative to the charge density wave 

transition temperature TCDW. 
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In order to better understand the Peierls mechanism, one needs to 

understand the Lindhard response function χ(q), which represents the 

electronic stability of the material system. The complex Lindhard response 

function is defined as below 

, 

where ε represents the energy of the electron, and f represents the 

electron's Fermi distribution function [46]. For the static charge density wave 

case, in which the imaginary term can be neglected, the Lindhard response 

function becomes 

. 

For the theoretical cases in 1D, 2D, and 3D free electron gases, 

respectively, the equations for the Lindhard response function becomes the 

equations below.  

1D case :  

2D case :  
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3D case :  

These equations for each dimension is plotted in Figure 4.1c, which 

shows the momentum (q) dependent Lindhard response function χ(q) for the 

1D, 2D, and 3D ideal free electron gas cases. As illustrated in the picture, the 

χ(q) for the 2D and 3D systems do not exhibit a divergence in respect to q, 

indicating that the systems are electronically stable for all q. However, for the 

1D system, it is found that the χ(q) is unstable around a certain q vector, q = 

2kF. 

In 1959, Kohn discovered that due the phonon energy near this q = 2kF 

is reduced in order to prevent this divergence in the χ(q) value [47]. This 

reduced value of the phonon energy is called the renormalized phonon energy 

ωren(q), and this phenomena of phonon energy renormalization is referred to as 

the Kohn anomaly. Interestingly, ωren(q) has been found to be a highly 

temperature dependent functions, and as the temperature is lowered, the value 

of ωren(q) at q = 2kF reaches to zero at a certain temperature of T = TCDW. At 

this temperatuare, phonons with energy of q = 2kF freeze out, and a charge 

density wave order is exhibited. This criteria for the charge density wave 

formation can be mathematically expressed as below 

. 
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Here, ω(q) represents the original phonon energy, and g(q) represents 

the momentum dependent electron-phonon coupling constant. As displayed in 

Figure 4.1d, it can be seen that ωren(q =2kF) in the 1D theoretical model 

reaches to zero value when T = TCDW, leading to the formation of charge 

density wave order. In the case of T > TCDW, the phonon renormalization is still 

exhibited, but the ωren(q =2kF) value is a finite positive value. In this case, the 

charge density wave transition is not exhibited in the system. 

4.1.2  Strong-coupling origin of charge density wave order 

Unlike the 1D cases where the Fermi surface nesting can naturally arise, 

in the 2D and 3D cases, it is not possible for all the Fermi surfaces to exhibit 

the Fermi surface nesting. Therefore, in 2D and 3D cases, only a small portion 

of the Fermi surfaces typically participate in nesting and the χ(q) value cannot 

diverge at any q vector (Figure 4.1d). Figure 4.2a shows the graph of the 

momentum dependent phonon energy ω(q) in the theoretical free electron gas 

model in 1D, 2D, and 3D cases, which assume the momentum dependent 

electron-phonon coupling parameter g(q) to be constant. It can be seen that 

ω(q) does not become zero for any q value in the 2D and 3D case. 

However, several experimental measurements have shown that a 

sufficient amount of Kohn anomaly and the resulting charge density wave 

order is still exhibited in some 2D materials (e. g. 2H-NbSe2 [46] and 2H-

TaSe2 [48]), even though there is no divergence in χ(q) (Figure 4.2b). Later, it 

has been found that this unusual behavior of the Kohn anomaly is due to the 
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large value of the momentum dependent electron-phonon coupling parameter 

g(q) near q =2kF [46]. This new origin of the charge density wave formed by 

the increase in g(q), rather than the divergence of χ(q), is called the strong 

coupling charge density wave order. Interestingly, in the strong coupling 

charge density wave cases, a broad Kohn anomaly as large as Δq = 0.2 is 

exhibited [48], while the Kohn anomaly in the weak coupling charge density 

wave cases are found to be narrow with Δq ~ 0.04 or less [45]. 

 

Figure 4.2 (a) A graph of the momentum dependent phonon energy ω(q) in the 

theoretical free electron gas model in 1D, 2D, and 3D cases, respectively. The 

calculation was performed assuming constant g(q) values for each cases. (b) A 

schematic figure of the experimentally obtained momentum dependent phonon 

energy w(q) for the quasi-1D case (e. g. ZrTe3 [45], TTF-TCNQ [44], etc.) and 

the quasi-2D case (e. g. 2H-NbSe2 [46], 2H-TaSe2 [47]). 

4.1.3 Quantum critical points of charge density wave orders 

It is widely documented that superconductivity (SC) can emerge near 
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the quantum critical point (QCP) of various symmetry-broken phases [11, 49-50, 

41, 35]. Defined as a continuous phase transition occurring at absolute zero 

temperature (T = 0 K), the QCP and its corresponding fluctuations are currently 

believed to promote superconductivity in various materials in condensed matter 

physics [11, 49-50, 41, 35]. For example, QCPs of antiferromagnetic orders have 

been found near the superconducting phase in various cuprates [11] and Mn-

based superconductors [49-50]. Similarly, it is well established that fluctuations 

arising from nematic QCPs are responsible for the superconductivity of iron 

based superconductors [35, 12]. A charge density wave state, which is an 

ordering of charge carriers, has also been found alongside superconductivity in 

many systems so far, ranging from cuprates [11] and Heusler compounds [41] to 

the recently investigated topological kagome systems [17]. Therefore, similar to 

other neighboring orders, it is natural to speculate that low-energy fluctuations of 

a CDW order could also pair the electrons and induce superconductivity. 

However, contrary to other orders, the emergence of SC near CDW 

orders is far from complete understandings. While a competing relation between 

CDW and SC has been well established since the early 1970s [51], the 

mechanism for stabilizing superconductivity, as well as the origin of a dome 

shaped behavior in the superconducting properties, is still not fully understood 

[52-53]. One of the major laybacks is the scarcity of the material family that 

exhibits a CDW QCP. While materials that exhibit CDW are not rare, most 

CDW systems have been found to exhibit a 1st order quenching of the CDW 

order by external tuning parameters, leading to the avoidance of the CDW QCP 

and an extended region of superconductivity after the CDW order has been 
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suppresed [54-56]. Therefore, it is highly desirable to search for systems in 

which the CDW order exhibits a continuous phase transition at zero temperature. 

One promising approach of inducing such a CDW QCP is to tune a 

temperature dependent 2nd order CDW transition to 0 K, which has been 

successful in provoking CDW / structural QCPs in Lu(Pt1−xPdx)2In [41] and 

(CaxSr1−x)3Rh4Sn13 [57-58]. In this aspect, the 2H-polymorph of tantalum 

diselenide 2H-TaSe2, which exhibits a 2nd order CDW transition at TCDW = 122 K 

[59] and a superconducting transition at a superconducting transition temperature 

Tc = 0.14 K [60], can be another good candidate for observing the QCP by 

applying an external tuning parameter. However, instigation of the CDW QCP in 

2H-TaSe2 has not been available due to the strong persistence of TCDW under 

tuning parameters, such as intercalation or doping. For instance, TCDW is reduced 

by only ~16 K with Pd intercalation between the TaSe2 layers [61], and by ~ 42 

K by S doping in the Se site [62] before the CDW order is destabilized by 

disorder. 

In this regard, pressure (P), which is a clean method that does not 

introduce disorder, can be a suitable tuning parameter to fully suppress the CDW 

energy scale down to zero temperature. Here, we employ high pressures to study 

the electrical transport and vibrational properties in a Pd 5% intercalated 2H-

TaSe2 single crystal with a reduced CDW transition temperature of TCDW = 115 

K. The combined measurements of resistivity and Hall effect indicates that a full 

suppression of the CDW order is exhibited near a critical pressure Pc = 22.1 GPa. 

In order to study the phonon dispersions related to the CDW order, the two-
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phonon Raman modes were performed as a function of pressure. Furthermore, 

the low-temperature resistivity measured at a magnetic field of μ0H = 9 T is 

analyzed to investigate the variation of the electronic density of states near the 

QCP. Our observations point to a rare example of a CDW QCP at Pc ~ 22.1 GPa, 

induced by a pressure-tuned Kohn anomaly in 2H-Pd0.05TaSe2. 

4.2 Crystal structure and electronic properties of 2H-

Pd0.05TaSe2 

Figure 4.3a displays the crystal structure of 2H-Pd0.05TaSe2. This 

compound consists of two layers of 1H-TaSe2, stacked with a relative angle of 180° 

to each other. Intercalated Pd ions are situated between the van der Waals layers, as 

denoted by a red shaded area. Figure 4.3b presents the X-ray diffraction (XRD) 

pattern of a ground single crystal of 2H-Pd0.05TaSe2, synthesized using the 

chemical vapor transport method. The lattice parameters acquired through Rietveld 

refinement are a = 3.440 ± 0.0005 Å  and c = 12.739 ± 0.0005 Å . These values 

closely resemble the a and c parameters observed in polycrystalline 2H-Pd0.05TaSe2 

[61], indicating successful intercalation of Pd ions between the 1H-TaSe2 layers. 

The temperature (T) dependence of in-plane resistivity ρab(T) reveals a 

variety of electronic phase transitions in 2H-Pd0.05TaSe2 (Figures 4.3c-d). The 

T-linear behavior at high temperatures suggests an unconventional metallic 

state associated with pseudogap behavior [61]. As the temperature decreases, a 

hump near TCDW = 115 K is characterized by the formation of a charge density 
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wave (CDW) phase, followed by a superconducting (SC) transition near Tc = 

2.6 K (Figure 4.3c, inset). It is important to note that the intercalation of Pd 

ions moderately suppresses the CDW phase while significantly enhancing the 

SC phase, as evidenced by the changes in TCDW and Tc compared to pristine 

2H-TaSe2 (TCDW = 122 K, Tc = 0.15 K). The suppression of TCDW can be 

attributed to the reduced dimensionality due to Pd intercalation, as confirmed 

by the decreased c/a ratio obtained in our previous work [61]. 

 

Figure 4.3 (a) The crystal structure of 2H-Pd0.05TaSe2. The area in red indicates the 

Pd position. (b) An X-ray diffraction pattern of 2H-Pd0.05TaSe2. A picture of a 2H-

Pd0.05TaSe2 single crystal is shown in the inset. (c) Temperature-dependent in-plane 

resistivity of 2H-Pd0.05TaSe2. The inset shows a magnified figure of the 
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temperature-dependent in-plane resistivity near the low temperature region. (d) 

dρab/dT of 2H-Pd0.05TaSe2. A dip in the dρab/dT plot indicates the CDW transition 

temperature. 

To investigate the effect of pressure on the CDW order, the temperature 

dependence of the in-plane resistivity ρab(T) is measured at various pressures, 

as shown in Figure 4.4a-b. The resistivity value at 200 K decreases to almost 

50% at 0.075 mΩ cm at P = 34.7 GPa, from the ambient pressure value of 0.13 

mΩ cm, indicating that pressure contributes to increasing the electrical 

conductivity of the system. Additionally, the hump feature in the resistivity is 

weakens, and TCDW decreases monotonically to lower temperatures with 

pressure, signifying the gradual suppression of the CDW order. TCDW is 

identified with the dρab/dT curve corresponding to a dip that shifts to lower 

temperatures, down to ~45 K at 20.4 GPa (Figure 4.4c). This dip fades at 

higher pressures, suggesting the disappearance of the CDW order due to a 

quantum phase transition near a pressure of 21.5 GPa. 

The Hall effect measurement at various pressures offers further insight 

into the electronic structure evolution with pressure. At ambient pressure, the 

Hall coefficient RH is positive and exhibits weak T-dependence above TCDW 

(Figure 4.4d). Near the onset of the CDW transition, RH sharply decreases, 

which is attributed to the opening of the CDW gap located near the K-barrel of 

the Fermi surface [63]. It is worth noting that the abrupt change in RH near the 

CDW transition becomes broader and shifts toward lower temperatures with 

increasing pressure. The extrapolation of this change to zero Kelvin yields a 
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critical pressure Pc = ~22.1 GPa, which is close to the pressure of the quantum 

phase transition determined by the resistivity measurements. The nearly T-

independent RH at Pc confirms the complete suppression of the CDW order, a 

behavior that persists up to pressures as high as 31.8 GPa. 

 

Figure 4.4 Temperature dependence of ρab (a) for 0 ≤ P ≤ 21.5 GPa and (b) for 

22.8 ≤ P ≤ 34.7 GPa. The black arrow marks the charge density wave (CDW) 

transition temperature TCDW. (c) Temperature dependence of dρab(T)/dT for 0 ≤ 

P ≤ 21.5 GPa. Plots are shifted downwards by a constant value for clarity. The 

colored arrows indicate dips in the dρab(T)/dT data corresponding to TCDW. (d) 

Temperature dependence of the Hall coefficient RH measured at various 

pressures between 0 ≤ P ≤ 31.8 GPa. The RH is obtained from a linear fit to the 
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Hall resistivity measured between -4 T and 4 T. The colored arrows mark the 

negative drop in the RH curve. 

4.3 Fermi liquid fits to the low-temperature resistivity 

As the suppresion of the CDW order has been confirmed by both in-

plane resistivity ρab(T) and Hall coefficient RH, one interesting question to ask 

is whether the CDW order is suppressed in a 1st order quantum transition [54-

56], or in a 2nd order quantum transition indicative of a quantum critical point 

(QCP) [57-58]. To explore this possibility, we have performed low-

temperature resistivity measurements with a constant magnetic field of μ0H = 

9 T applied parallel to the c-axis (Figure 4.5a-b). A constant magnetic field of 

μ0H = 9 T was applied to suppress superconductivity, enabling the 

investigation of normal state transport properties inside the superconducting 

dome. 

At ambient pressure, ρab can be described by a quadratic power law fit 

ρab(T) = ρ0 + AT2 (red solid lines), at least up to a Fermi liquid temperature TFL 

~ 10 K where the data deviates upward at higher temperatures. This suggests 

that Fermi liquid properties dominate the low temperature transport for 2H-

Pd0.05TaSe2 at ambient pressure below TFL. By following the Rice-Kadowaki-

Woods relation, we could associate the A value to the Sommerfeld coefficient 

γ0 using the equation A = αKW γ0
2, where αKW is the Kadowaki-Woods ratio 

[64]. Combined with the γ0 value of 10.14 mJ/mol K2 obtained from heat 

capacity measurements in polycrystalline 2H-Pd0.05TaSe2 at 9 T field and 
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temperatures down to 160 mK (see, Figure 4.6), a αKW value of 1.06 x 10-5 (μΩ 

cm mol2 K2 /mJ2) could be extracted, which is comparable to the values of 

cuprate [65] and iron based superconductors [66]. 

 

Figure 4.5 Temperature (T) dependence of ρab measured at an applied field of 

μ0H = 9 T in the out-of plane direction (a) for 0 ≤ P ≤ 20.4 GPa and (b) for 

21.5 GPa ≤ P ≤ 34.7 GPa. The red solid lines show the fitting results to a 

quadratic power law plot of ρab(T) = ρ0 + AT2. Here, ρ0 is the residual 

resistivity while A refers to the quadratic power law coefficient. The red arrow 

marks the Fermi liquid temperature TFL obtained by the deviation temperature 

of the power law fitting. T2 dependence of (ρab - ρ0) with an applied field of 

μ0H = 9 T (c) for 0 ≤ P ≤ 20.4 GPa and (d) for 21.5 GPa ≤ P ≤ 34.7 GPa. The 

red solid curves indicate linear guide lines. 
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Figure 4.6 The Cp/T vs. T2 curve of polycrystalline 2H-Pd0.05TaSe2 measured at 

an applied field of μ0H = 9 T. The solid red line represents the linear fit to the 

data at temperatures between 160 mK and 5 K. The deviation from the linear 

fit below 0.9 K may be due to the Schottkey anomaly. The extracted values 

from the linear fits are β = 7.64 mJ/mol K4 and γ0 = 10.14 mJ/mol K2. 

With the application of pressure, it is shown that TFL does not change up 

to 19.5 GPa, indicating a negligible pressure dependence of the Fermi surface 

properties up to this pressure. However, at 20.4 GPa, TFL exhibits a sudden 

increase to exhibit TFL ~15 K near P = 21.5 GPa. Moreover, ρ0 indicated by the 

extrapolation point to ρab(T) at 0 K seem to exhibit a drop near 19.5 GPa, 

which indicates an enhanced electrical conductivity possibly due to the closure 
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of the CDW gap near this pressure. If this is true, the sudden enhancement of 

TFL can be understood by the increase in the overall Fermi surface size, as the 

fragmented Fermi surface due to the CDW gap formation should recover to its 

original size with the suppression of the CDW order near Pc. 

In addition to the abrupt changes in ρ0 and TFL, the quadratic power law 

coefficient A also shows a striking change with pressure. This behavior can be 

well visualized in the (ρab-ρ0) vs. T2 plot (Figure 4.5c-d), in which the residual 

resistivity ρ0 is subtracted to better visualize the validity of the quadratic power 

law fit. It can be seen that the A value gradually increases up to 19.5 GPa. 

However, A is then quickly enhanced near Pc, exhibiting a sharp peak at P = 

21.5 GPa. At higher pressures, the A value is quickly suppressed to exhibit 

lower values at 34.7 GPa. Assuming that the Kadowaki-Woods relation holds 

in 2H-Pd0.05TaSe2, it could be seen that γ0 exhibits a factor 2.3 increase with 

pressure. As γ0 is regarded to be proportional to the effective mass by the 

Sommerfeld equation, this experimental result suggests that there a sharp 

increase of effective mass is exhibited in a small pressure range of ~ 5 GPa. 

This result suggests that a quantum critical point (QCP) is exhibited in 2H-

Pd0.05TaSe2 with pressure. 

4.4 Raman spectra 

To better understand the evolution of the phonon dispersions and the 

stability of the CDW phase under pressure, Raman spectra were employed at 
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room temperature up to 35.2 GPa. Figure 4.7a presents the Raman response of 

2H-Pd0.05TaSe2 at ambient pressure, where three phonon modes are observed; 

a two-phonon mode at 141.5 cm-1, an in-plane E2g
1 vibrational mode at 206.0 

cm-1, and an out-of-plane A1g mode at 232.3 cm-1, These values agree well with 

the reported studies of 2H-TaSe2 [67]. Here, we focus on the evolution of the 

two-phonon mode, which is known to be originated from the presence of a 

substantially softened acoustic phonon near the CDW q-vector at temperatures 

as high as 300 K [48]. Recently, it has been shown that this phonon softening 

is driven by a progressive shortening of the Ta-Ta bonding distance, termed as 

local lattice distortions [68]. 
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Figure 4.7 (a) The room temperature Raman spectrum of 2H-Pd0.05TaSe2 at 

ambient pressure. (b) Room temperature Raman spectra of 2H-Pd0.05TaSe2 at 

various pressures. (c) The Raman peak positions of 2H-Pd0.05TaSe2. The 

orange circles, yellow squares, and the pink diamonds indicate the peak 

positions of the A1g, E2g
1, two-phonon Raman modes, respectively. (d) The 

pressure-dependent integrated intensity of the two-phonon Raman mode. 

Figure 4.7b shows the pressure evolution of the Raman spectra. Upon 

application of pressure, all Raman modes show blue-shifts in energy, 

accompanied by progressive widening of the peak signals. The positions of the 

three peaks vs. pressure are shown in Figure 4.7c. The pressure dependence of 

the A1g and E2g
1 does not exhibit any anomalies up to 26 GPa, indicating that a 

structural phase transition does not occur up to this pressure. Therefore, we 

conclude that the suppression of the CDW order at Pc = 22.1 GPa is not driven 

by any pressure-induced structural phase transition. This observation is indeed 

consistent with the recent XRD measurements in 2H-TaSe2 under pressure up 

to 20 GPa [69]. 

In contrast to the one-phonon modes, the two-phonon Raman mode 

shows a non-monotonic evolution under pressure. While the frequency of the 

two-phonon mode does not change significantly, the intensity of this mode 

progressively decreases with applied pressure (Figure 4.7d). Following the 

theory presented by Klein et al. [70], the intensity of the two-phonon 

scattering I in 2H-TaSe2 is related to the renormalized phonon energy of the 

acoustic phonon by ,
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where .

 

Here, ω(q) represents the original phonon energy, ωren(q) represents the 

renormalized phonon energy, χ(q) indicates the momentum-dependent 

electronic susceptibility, and g(q) represents the momentum dependent 

electron-phonon coupling constant. Therefore, the intensity of the two-phonon 

Raman mode can effectively scale the phonon renormalization. It could be 

seen in Figure 4.7d that the intensity of the two-phonon Raman mode leads to 

a complete disappearance at 21.8 GPa. As these Raman modes are closely 

linked to the short-range local lattice distortions of the CDW order above TCDW, 

it could be concluded that local lattice distortions at high temperature are also 

suppressed near Pc, closely following the suppression of the long-ranged CDW 

order at low temperatures. Recalling that the local lattice distortions are 

regarded as a precursor phase to the CDW order, this observation suggests that 

the suppression of the CDW order is driven by the suppression of the Kohn 

anomaly and the short range local lattice distortions above TCDW, which are 

continuously tuned by the application of pressure. 

Figure 4.8a shows a summary of the pressure-temperature phase 

diagram of 2H-Pd0.05TaSe2; TCDW as derived from the data of ρab and RH are 

plotted for each P. Moreover, the Tc obtained from ρab are plotted as green 

triangles. The shade of orange indicates the presence of local lattice distortions 

obtained from the analysis of Figure 4.7, while the yellow and green shaded 

regions indicate the CDW and SC phases, respectively. Figure 4.8b depicts the 
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pressure dependence of RH measured at 10K, measured just above the 

superconducting transition temperature Tc. Figure 4.8c-e shows the pressure 

dependence of the Fermi liquid temperature TFL, residual resistivity ρ0, and the 

quadratic power law coefficient A obtained from the analysis in Figure 4.5. 

 

Figure 4.8 (a) Electronic phase diagram of 2H-Pd0.05TaSe2 with pressure. The 

filled blue circles represent TCDW obtained from the ρab measurement in the 1st 

run, while the unfilled blue circles and the unfilled purple triangles represent 

the TCDW from the ρab and RH measurements in the 2nd run. A dashed black 

curve is shown for a guide to the eye. The filled (unfilled) green triangles 

represent the Tc obtained from ρab measurements in the 1st (2nd) runs, 

respectively. The Tc is multiplied by a factor of 3 for clarity. (b) Pressure 

dependence of the Hall coefficient RH (purple diamonds) measured at 10K. 

Pressure dependence of (c) the Fermi liquid temperature TFL, the fitting 

parameters (d) ρ0, and (e) A determined by quadratic power law plots of ρ = ρ0 

+ AT 2 from Fig. 4.5. A vertical dotted line indicates the critical pressure Pc ~ 

21.5 GPa. 



Chapter 4 

 

83 

As the TCDW is suppressed to result in a quantum critical point, Tc 

increases systematically. Intriguingly, our experimental observations clearly 

point out that the optimal Tc is manifested at the CDW quantum critical point, 

corroborating a strong correlation between the CDW order and the underlying 

superconductivity. The dome-shape of the superconducting properties can be 

further confirmed by the pressure evolution of the upper critical fields μ0Hc2(0), 

which is shown in the main manuscript of this paper [71]. 

At present, the generic origin for the increase of A near the quantum 

critical point of Pc in pressurized 2H-Pd0.05TaSe2 remains as an open question. 

One scenario is that the increase of the electronic density of states N(EF) due to 

the proximity of the system to the quantum critical point may increase the A 

value. If this scenario is true, it is expected that the collapse of multiple Fermi 

surface in the CDW phase across the quantum critical point could cause the 

increase of N(EF), and eventually A. Another scenario is that the fluctuations of 

the CDW amplitudons in the vicinity of the CCDW QCP provides the 

additional interaction for superconducting pairing [53]. It might be worthwhile 

to check the feasibility of both scenarios in future studies. 

4.5 Conclusion 

In conclusion, we report the electrical transport and vibrational 

properties in a Pd 5% intercalated 2H-TaSe2 single crystal with a reduced 

CDW transition temperature of TCDW = 115 K. The combined measurements of 

resistivity and Hall effect indicates that a full suppression of the CDW order is 
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exhibited near a critical pressure Pc = 22.1 GPa. In order to study the phonon 

dispersions related to the CDW order, the two-phonon Raman modes were 

performed as a function of pressure. Furthermore, the low-temperature 

resistivity measured at a magnetic field of μ0H = 9 T is analyzed to investigate 

the variation of the electronic density of states near the QCP. Our observations 

point to a rare example of a CDW QCP at Pc ~ 22.1 GPa, induced by a 

pressure-tuned Kohn anomaly in 2H-Pd0.05TaSe2.
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Appendix A Operation of the cubic anvil cell 

apparatus and the characterization of pressure-

induced superconductivity in TaIrTe4 

A.1 Introduction 

The cubic anvil cell apparatus is a multi-anvil press specifically 

designed to generate hydrostatic pressure conditions, in constrast to the double 

anvil press methods that are utilized in the piston cylinder cell and the 

diamond anvil cell. Due to the presence of six anvils, which pressurize the 

sample in all three x- y- and z- directions, this apparatus can generate 

hydrostatic pressures in a large sample space exceeding 1 mm3 in length. 

Moreover, the cubic anvil cell apparatus can provide constant pressure 

feedback even during measurement, which enables the maintenance of 

constact pressure conditions in both the cooling and warming runs. This, in 

turn, allows the measurement of intrinsic temperature dependence of the 

sample, measured under various pressure conditions. 

In this chapter, The basic operational sequence of the cubic anvil cell 

apparatus is introduced. Furthermore, a new discovery of the pressure-induced 

superconductivity in a type Ⅱ Weyl semimetal TaIrTe4 is presented, along with 

the experimental progress related to this finding. 
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A.2 Experimental details 

To conduct a cubic anvil cell measurement, several items must be 

prepared in advance. One crucial item is the pyrophyllite gasket, which is used 

to encapsulate the sample. The following paragraph provides the step-by-step 

instructions for engraving the pyrophyllite gasket from a pyrophyllite plate. 

 

Figure A.1 (a) a photograph is provided of a pyrophyllite plate with a thickness of 

7mm. (b) Engraved pyrophyllite gaskets with dimensions of 6mm in length and 

3mm in height, which were made using the pyrophyllite plate in figure A1a. (c) A 

photo of an engraved gasket before additional preparation. (d) A pyrophyllite 

gasket with an inner section that was manually drilled to make room for the 100 

μm Φ gold wires.  (e) The same gasket as in figure A1d, with gold wires placed in 

the engraved hole. (f) The prepared pyrophyllite gasket with gold wires attached to 

the engraved hole using silver paste (Dupont 4929N). 

 To prepare pyrophyllite gaskets for a cubic anvil cell measurement, a 

large block of pyrophyllite is first cut to a depth of 7mm and affixed to a 
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gasket engraver with Loctite glue. Using a 3.18mm blade, the pyrophyllite 

plate is reduced to a depth of 3mm and cut into 6mm gaskets, which include 

2∅ holes for the Teflon cup and 0.25mm lines for the gold foil. These gaskets 

go through annealing at 700ºC, causing their dimensions to change from 

6.03mm to 6.10mm. For the upper gasket, holes are drilled for 0.25mm gold 

wire by a hand drill, and the wires are loaded and attached using silver paste. 

Various stages in the preparation of pyrophyllite gaskets are shown in Figure 

A1, including a photograph of the pyrophyllite plate, engraved pyrophyllite 

gaskets, an engraved gasket before additional preparation, a pyrophyllite 

gasket with an inner section drilled to make room for 100 μm Φ gold wires, 

the same gasket with gold wires placed in the engraved hole, and the final 

prepared pyrophyllite gasket with gold wires attached to the engraved hole 

using silver paste (Dupont 4929N). 

 

Figure A.2 (a) A metallic sample of length 0.8 mm which has been prepared using 

the four-probe contact configuration. Various stages in the preparation of 

pyrophyllite gaskets. (b) a photograph of a prepared pair of the pyrophyllite 

gaskets, with the sample loaded inside the teflon cup. 
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After the gasket is prepared, a sample of size no more than 1.5 mm 

should be prepared using the four-probe contact configuration. However, as 

the cubic anvil cell requires the contacts to be facing at four different 

directions, one of the voltage contacts should be attached upside down, as seen 

in Figure A2a. The gaskets should be then prepared in two separate pieces, the 

lower gasket and the upper gasket. For the lower gasket, a teflon cup is placed 

in the center, and a gold foil is attached with Loctite to the gasket to surround 

the teflon cup, as visualized in Figure A2b. The end of the gold foil should be 

placed above the teflon cup. Next, the sample is inserted into the Teflon cup. 

The four contact wires of the sample should be carefully placed beneath the 

gold foil. The teflon cup is then sealed, and the upper gasket is fitted on top the 

lower gasket and the sealed teflon cup. The unified gasket is then ready for the 

measurement. 

 

Figure A.3 (a) A photograph of a unified gasket ready for the cubic anvil cell 

measurement. (b) A photograph of the unified gasket loaded onto the four anvils in 

the xy-plane. The additional anvils in the up and bottom consist the six anvils 

required for the cubic anvil cell. (c) A schematic figure of the six anvils of the 

cubic anvil cell, with the unified gasket inside. (d) A photograph of a cubic anvil 

cryostat capable of cooling down to a temperature of 3.0 K. (e) A photograph of 
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the entire cubic anvil press along with the necessary electronics. 

Figure A3a depicts the unified gasket with the sample loaded inside. 

This gasket is then inserted between the six anvils of the cubic anvil apparatus, 

as shown in Figures A3b-c. The six anvils are then clamped to the cryostat 

displayed in in Figure A3d, which is finally loaded into the cubic anvil system 

shown in Figure A3e. The cubic anvil cell is capable of applying pressures up 

to 8.5 GPa and reaching temperatures as low as 3.0 K, with a magnetic field 

capability of 5 T. 

A.3 Liquid Helium cool down and warmup process 

In the cubic anvil cell, both the sample and the anvil itself must be 

cooled. To conserve the costly liquid helium used for cooling, the cryostat is 

first cooled to 77 K using liquid nitrogen before the liquid helium is 

introduced. Below, I outline the five procedures for the daily transfer process: 

1. Anvil press: Stabilize the cryostat at 280 K. Upon reaching 280 K, 

adjust the oil pump rate to 0.5 ml/min to slowly increase the pressure. Set the 

"target tons" to the desired pressure. Once the target pressure is attained, 

change the pump oil rate to 7.0 ml/min to maintain the current pressure 

through rapid feedback. 

2. Nitrogen cooling: Confirm that the pump oil rate is 7.0 ml/min. 

Figure A4 shows a photograph of the different transfer lines within the cubic 
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anvil cell cryostat. Open the cryostat bottom-end valve and slightly open the 

LN2 dewar valve. As the cryostat pressure starts to rise, open the cryostat top-

end valve. Monitor the cryostat pressure to keep the gauge value within the 

green range. (Excessive flow may disrupt measurements). Be careful not to 

step on the cables, as the wires are sensitive to touch. 

3. Nitrogen blowout: Once the cryostat temperature reaches 77 K, wait 

about 5 minutes for stabilization. Then, stop the nitrogen transfer by closing 

both the dewar and cryostat bottom-end valves. Connect the cryostat bottom-

end and N2 jacket bottom-end, ensuring the N2 top-end is open. (Liquid 

nitrogen will be blown from the cryostat to the N2 jacket.) Inject gaseous 

nitrogen into the cryostat top-end, making sure the cryostat pressure value 

stays within the green range. After the cryostat is emptied of LN2 and its 

pressure drops to 0, close the cryostat bottom-end valve and stop the nitrogen 

gas injection. Close the N2 jacket bottom-end and top-end valves (a relief 

valve is present on the N2 jacket, allowing both to be closed). Disconnect the 

rotary output from the recovery port and connect it to the hose leading outside 

the room. Vacuum the cryostat using the bottom-end valve and ensure the 

pressure gauge reaches the lowest value. (If it does not, there may still be LN2 

in the cryostat.) Purge and vacuum three times using helium gas. 

4. Helium cooling: Connect the cryostat top-end to the recovery line 

and transfer liquid helium. As the temperature drops to 4 K and the cryostat 

contains sufficient helium (approximately 40%), remove the transfer tube and 

start pumping with the large rotary pump located below. (A heat gun must be 
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used to defrost the line leading to the rotary pump to prevent damage.) Switch 

the LabVIEW program to the heating file and initiate the measurement. 

5. Heating: Do not intervene until the temperature reaches 20 K, as the 

anvil's low heat capacity in this range allows for automatic heating. After 

reaching 20 K, use the heater to apply voltage very slowly (0.5 V per minute) 

and wait approximately 14 hours for the sample and the cryostat system to 

reach room temperature. 

 

Figure A.4 A photograph displays the different transfer lines within the cubic 

anvil cell cryostat. The area enclosed by red boundaries denotes the liquid 

helium transfer lines, while the area enclosed by green boundaries signifies the 

liquid nitrogen transfer lines. 

A.4 Investigation of the high-pressure resistivity in 
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TaIrTe4 

In this chapter, the in-plane resistivity data of TaIrTe4 under high 

pressures up to 8.5 GPa will be discussed. TaIrTe4 is a recently discovered 

compound, which was identified by a former alumnus of Prof. Kee Hoon 

Kim's research group, Dr. Seunghyun Kim [1, 2]. This compound constitutes 

the third member of type Ⅱ Weyl semimetals, with WTe2 and MoTe2 being the 

first and second members, respectively. In Weyl semimetals such as WTe2 and 

MoTe2, large magnetoresistance values stemming from the Weyl points 

typically show suppression under pressure, and exhibit the presence of 

superconductivity near the magnetoresistance suppression point [3, 4]. Given 

that TaIrTe4 is also a Weyl semimetal, there is a high possibility of pressure-

induced superconductivity in this compound, reminiscent to those observed in 

WTe2 and MoTe2. Therefore, to investigate the possibility of 

superconductivity in TaIrTe4 under high pressure, we have measured the 

temperature dependence of in-plane resistivity of TaIrTe4 under high pressures 

up to 8.5 GPa. 
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Figure A.5 In-plane resistivity vs. temperature plot of TaIrTe4 at various 

pressures in the first pressure run. The applied current is set to 5 mA. (inset 1) 

A magnefied plot of low temperature in-plane resistivity vs. temperature of 

TaIrTe4. (inset 2) A magnefied plot of low temperature in-plane resistivity vs. 

temperature of TaIrTe4 for P = 8.0 GPa. A small downturn in the resistivity 

near 3 K indicates the onset of the superconducting transition. 

Figure A5 illustrates the in-plane resistivity versus temperature plot for 

TaIrTe4 at various pressures during the initial pressure run inside a cubic anvil 

cell. It is evident that resistivity measured at room temperature decreases with 

increased pressure, while resistivity at low temperatures rises with higher 

pressure. This suggests that the residual resistivity ratio (RRR) diminishes 

under pressure. In addition to this feature, an enlarged plot of low-temperature 

resistivity in the inset of Figure A5 reveals a downturn in resistivity at specific 
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pressures of 6 GPa and 8 GPa. This behavior is reminiscent of the 

superconductivity potentially expected in type II Weyl semimetals under high 

pressure. However, the zero resistivity characteristic of superconductivity was 

not observed down to the low-temperature limit of approximately 2.8 K, 

indicating that further measurements are necessary to ascertain the nature of 

this decrease in in-plane resistivity. 

 

Figure A.6 A magnefied plot of the in-plane resistivity vs. temperature plot of 

TaIrTe4 at 8.5 GPa in the first pressure run. The in-plane resistivity is 

measured under various applied current values, in order to characterize the 

nature of the resistivity downturn. 

In order to investigate the nature of the decrease in in-plane resistivity 

near 3 K at high pressures, the in-plane resistivity of TaIrTe4 at 8.5 GPa is 
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measured with various applied current. As shown in Figure A6, the resistivity 

downturn is highly dependent on the applied current, suggesting that the 

decrease in resistivity likely originates from superconductivity. Nevertheless, 

further measurements are undoubtedly necessary to attribute this feature to 

superconductivity, as neither of the two hallmarks of superconductivity—zero 

resistance nor perfect diamagnetism—has been observed in this system. If, 

however, this assertion proves to be accurate, our measurements indicate that 

the critical current for superconductivity at this pressure would lie between 2 

mA and 10 mA. 

 

Figure A.7 In-plane resistivity vs. temperature plot of TaIrTe4 at various 

pressures in the second pressure run. The applied current is set to 0.4 mA. 

(inset) A magnefied plot of low temperature in-plane resistivity vs. 
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temperature of TaIrTe4. 

To further confirm the existence of superconductivity in TaIrTe4 at high 

pressures, an additional high-pressure experiment was conducted on the 

material. Figure A7 presents the in-plane resistivity versus temperature plot for 

TaIrTe4 under various pressures during the second pressure run inside a cubic 

anvil cell. It is important to note that the applied current was reduced to 0.4 

mA to better detect potential signatures of superconductivity in this second run. 

However, contrary to expectations, the resistivity measurements in this 

additional run did not reveal any signs of superconductivity, which is in stark 

contrast to the initial run. This trend can be clearly seen in the inset of Figure 

A7, which displays a magnified plot of low-temperature in-plane resistivity 

versus temperature for TaIrTe4. In this inset, no downturn in resistivity is 

observed, suggesting the absence of superconductivity in the second run. 

 

Figure A.8 The temperature dependence of the in-plane resistivity divided by 

room temperature resistivity of TaIrTe4 at various pressures in the initial 
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pressure run (left) and the second pressure run (right). The residual resistivity 

ratio (RRR) of the samples measured at 2 GPa is shown for comparion.  

The discrepancy between the two runs within the same compound is 

indeed challenging to comprehend. To understand this behavior and 

investigate the intrinsic properties of TaIrTe4 under pressure, the temperature 

dependence of the in-plane resistivity divided by room temperature resistivity 

of TaIrTe4 at various pressures in both the initial and second pressure runs has 

been plotted. By analyzing the residual resistivity ratio (RRR) of the two 

samples measured at 2 GPa, it can be concluded that the sample from the 

second run exhibits a higher RRR value of 26.5, compared to the RRR value 

of 18.6 in the first pressure run. A high RRR value is indicative of low 

impurity scattering and suggests a higher sample quality. This implies that the 

sample measured in the second run is of superior quality and more 

representative of the intrinsic properties. As a result, the absence of 

superconductivity can be considered the more intrinsic behavior of TaIrTe4 

under pressure. The pressure-induced superconductivity observed in the first 

pressure run of TaIrTe4 may be attributed to a slight tellurium deficiency in the 

initial run, as such deficiency can sometimes promote superconductivity by 

acting as an electron donor and affecting the Fermi surface [5]. 
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국문 초록 

절대 영도에서 발현되는 상전이를 의미하는 양자 상전이 현상은, 100년 

이상 동안 응집물질물리학 분야에서 중요한 현상으로 간주되어 왔다. 물

리학적으로 매우 드물게 일어나는 이 양자 상전이 현상은, 어떠한 물질

의 온도에 따른 이차 상전이 온도가, 온도와 관련없는 매개 변수 g에 의

해 T = 0 K 에 도달하는 현상으로 정의된다. 이러한 현상이 일어나는 상 

공간 근방에서는, 정렬된 상의 상관 시간 (correlation time) ξτ이 ξτ ∝1/[ g - 

gc]υz의 공식을 따르게 되며, 여기서 𝝂 는 상관 길이, 𝒛는 동적 지수이고 

gc 는 매개 변수가 양자 임계점에 도달하는 지점이다. 특이하게도, g = gc

인 상 공간 근처에서는 상관 시간 ξτ이 발산하여 열적 시간 척도 Lτ 보다 

커지게 되고, 물질의 기본 상태는 정렬된 상과 무질서한 상의 파동 함수

가 중첩된 요동 (fluctuation) 상태로 정의된다. 이 근방의 물리적 특성은 

하이젠베르크의 불확실성 원리와 관련된 양자 요동 (fluctuation)에 의해 

결정되기 때문에, 초전도와 같은 독특한 물리적 특성이 형성될 수 있다. 

본 논문에서는 다양한 상의 양자 임계점과 그 근방에서 나타나는 초전도 

상에 대하여 연구를 진행하였다. 

첫째로, 카고메 금속 Cs(V1-xTix)3Sb5에서 전하밀도파, 네마틱 상, 그리고 

초전도 상 간의 상관관계가 연구되었다. 이 연구에서는 고품질의 Cs(V1-

xTix)3Sb5 (0≤x≤0.06) 단결정을 성공적으로 합성하여, 파장 분산 X선 분

광법 (wavelength-dispersive X-ray spectroscopy, WDS) 과 X선 회절(X-ray 

diffraction, XRD) 측정을 통해 정확한 도핑 비율과 체계적인 격자 상수의 

변화를 측정하였다. Ti 도핑에 따른 네마틱 상과 초전도 상의 상관 관계

를 탐구하기 위하여, 네마틱 감수율 측정을 진행하였으며, 그 결과 

Cs(V1-xTix)3Sb5 단결정의 Curie-Weiss 온도 θnem이 Ti 도핑에 따라 억제되

며, x ~ 0.009에서 음수가 됨을 발견하였다. 또한, 임계 도핑 xc = 0.01 근방

에서 Curie 상수 C와 네마틱 감수율 ñ이 최대값을 보이는 것을 통해, xc 
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근방에서 네마틱 양자 임계점 (nematic quantum critical point, NQCP)이 존

재한다는 강한 증거를 발견하였다. 추가로, 이 NQCP 근방에서 초전도 

성질을 탐구한 결과, 초전도 전이온도와 초전도 부피비가 Ti 도핑에 따

라 이례적인 이중 초전도 돔 모양을 띰을 관측하였으며, 첫번째 돔이 

NQCP 인근에 위치함을 발견하였다. 이러한 관측 결과는, Cs(V1-xTix)3Sb5 

물질의 첫 번째 초전도 돔 근방에서 네마틱 양자 요동 (quantum 

fluctuation)이 초전도 전이 온도를 상승시키는 역할을 할 가능성을 시사

하는 결과로서 학술적 의미가 크다. 

둘째로, 전이 금속 찰코겐화합물 2H-Pd0.05TaSe2에서 강한-결합전하밀도

파 상과 초전도 상 간의 상관 관계가 연구되었다. 구체적으로는, 전하밀

도파 상전이 온도 TCDW = 115 K 및 초전도 상전이 온도 Tc = 2.6 K를 띄는 

2H-Pd0.05TaSe2 단결정에서 압력에 따른 전기 수송 및 포논 진동 측성을 

탐색하였다. 이를 통해, 압력이 인가되었을 때, 저항과 홀 계수 측정을 

통해 전하밀도파 상전이 온도 TCDW가 점차적으로 감소하여 임계 압력 Pc 

~ 22.1 GPa에서 0K 근방에 도달함을 실험적으로 확인하였다. 추가적으로, 

μ0H = 9 T의 일정한 자기장을 인가한 상태에서 측정된 저항을 ρ = ρ0 + AT 

2 피팅을 이용하여 분석한 결과, 이차항의 계수값 A가 Pc 근방에서 약 5

배 증가함을 발견하여 이 근방에서 전자 상태 밀도가 크게 증가함을 관

측하였다. 이에 더해, 라만 측정을 통하여 약 21.8 GPa 근방에서 이 물질

의 전하밀도파 형성의 원인이 되는 Kohn anomaly가 사라지는 현상을 발

견하였다. 이러한 결과들은, 2H-Pd0.05TaSe2에서 압력을 통한 전하밀도파 

양자임계점이 존재한다는 강력한 실험적 증거로서 의미가 크다. 

주요어 : 양자 임계점, 단결정 성장, 준2차원 물질, 초전도, 전하밀도파, 

네마틱 상, 도핑,압력, 응력 

학번 : 2015-20330 
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