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Abstract

Prediction and control of epidemics and
avalanche dynamics in complex networks

Bukyoung Jhun
Department of Physics and Astronomy

The Graduate School
Seoul National University

In past decades, extensive research has been done on emerging phenomena in com-

plex systems. An important issue for such emerging phenomena is their prediction and

control. Complex networks represented by graphs enable researchers to study such is-

sues successfully. In complex systems, however, interactions among constituents can

be more complex than pairwise. For instance, more than two people can collaborate

on a team. Contagion through an edge in a network is called simple contagion. There

are contagion processes that cannot be reduced to simple contagions. Examples are

hypergraph epidemic processes, quantum spreading processes, and cascading failures

in infrastructure networks.

In this dissertation, we study the prediction and control of these complex conta-

gion processes. We study the phase transition and control strategy of the simplicial

SIS model, which is an epidemic model in hypergraphs. We then study the transition

of vaccination strategy in a population with heterogeneous fatality rates. Moreover,

we study the phase transition of quantum spreading processes in homogeneous and

heterogeneous networks. Lastly, we employ machine learning for the prediction and

control of epidemic spreading and cascading failures in infrastructure networks.
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at which herd immunity is achieved is depicted as a dot. When the

contagion rate is low, the contact-based strategy is more effective re-

gardless of the vaccination rate. When the contagion rate is high, the

fatality-based strategy is more effective at a low vaccination rate; how-

ever, the contact-based strategy outperforms the fatality-based strategy

when the vaccine supply is sufficiently high, achieving herd immunity

at a lower vaccination rate. (c) The difference between the mortality

rates resulting from fatality-based and contact-based strategies. The

fatality-based strategy reduces more deaths compared to the contact-

based strategy when the contagion rate is high and the vaccination rate

is low. However, as the vaccination rate becomes higher, the contact-

based strategy outperforms the fatality-based strategy. . . . . . . . . 57
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4.1 Computation time of ML model as a function of network size. The

Schultz–Heitzig–Kurths (SHK) random power grid model was used.

The computation time is proportional to N3.3; thus, if the network
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5.1 (a) Phase diagram of the QCP model on a fully connected graph in

the parameter space (κ, ω), determined by direct numerical enumer-

ation of the Liouville equation based on the PI states. Discontinuous

(dashed curve) and continuous transitions (dotted and solid lines) oc-

cur, and they meet at a tricritical point (TP). On the dotted critical line

in ω ∈ [ω∗, 1], the critical exponent α varies continuously, whereas
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5.3 FSS analysis for the transverse Ising model on fully connected graphs.
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with ν̄ = 1.5 and β = 0.5. (b) Plot of the susceptibility as a function

of ∆c −∆ for different system sizes. χ = N1+z̄
(〈

(σ̂z)2
〉
− ⟨σ̂z⟩2

)
,

where z̄ = z/dc = 1/3. The black dashed line is a guide line indicat-

ing χ ∼ (∆c −∆)−1. Inset: Scaling plot of the susceptibility χN−γ/ν̄

versus (∆c −∆)N1/ν̄ . The critical exponents ν̄ = 1.5 and γ = 1.0

are used for the FSS analysis. (c) Plot of χ versus N at ∆c. The slope

represents the value of the critical exponent γ/ν̄. . . . . . . . . . . . 117
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m. (b) The density of the order parameter in the steady state as a func-

tion of Γ at ∆ = 0.1. System size is taken as N = 128. The brightness
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Chapter 1

Introduction

1.1 Complex Network

The SIS model is the most extensively studied epidemic model along with the SIR

model. These models simplify the actual mechanism of the spread of epidemic disease;

however, they can qualitatively explain the essential properties of epidemics. For this

reason, among others, these models have been studied in depth. In the SIS model, each

node in the network is in S (susceptible) state or I (infected) state. If a node is in S

state and is connected to a node in the I state, then the S node turns into the I state at a

constant rate (contagion). A node in the I state turns into the S state at a constant rate.

A stationary state where a finite fraction of nodes is in the I state can exist in the SIS

model.

In the traditional epidemic model, the constituents of the system homogeneously

interact. However, it was discovered that the number of interactions between individ-

uals follows a highly heterogeneous distribution. The number of links connected to a

node is called the degree of the node, and many real-world networks have a degree

distribution that has a power-law tail (P (d) ∼ d−γ). Networks with such power-law

tail are called scale-free networks.

Nodes with extremely high degrees appear in such heterogeneous networks, in

contrast to homogeneous networks, these nodes work as a superspreader. Due to the

existence of these superspreaders, when the degree exponent of a scale-free network is

between 2 and 3, even when the average degree of the network is finite, the expected
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degree of a randomly selected neighbor of a randomly selected node diverges. This

property has a significant impact on the epidemic spreading in complex networks. For

instance, in a system with heterogeneous interaction, if the contagion rate is below

a certain finite threshold, the epidemics cannot perpetuate. In contrast, in a scale-free

network with a degree exponent between 2 and 3, the threshold vanishes. This suggests

that a worldwide pandemic can occur repeatedly despite efforts to reduce the contagion

rate.

1.2 Complex contagion

A link in a network always connects two nodes. However, in the real world, more

than two agents can interact simultaneously. To overcome this limitation of networks,

the hypergraph has been introduced. A hypergraph consists of nodes and hyperedges,

and hyperedges can connect an arbitrary number of nodes at once. For instance, if

three people, A, B, and C, wrote a three-author paper, it is represented as a network

where nodes A and B are connected, B and C are connected, and C and A are con-

nected. Because of this, the situation is indistinguishable from the case where A and B

coauthored a two-author paper, B and C coauthored, and C and A coauthored. In a hy-

pergraph representation, however, the first situation is represented as a hyperedge that

simultaneously connects A, B, and C, hence the two situations are distinguished. The

research community is showing great interest in hypergraphs due to their capability to

encode higher-order interactions.

The contagion that occurs through the links is called the simple contagion model.

Simple contagion models have been used to describe the spread of epidemic diseases,

dissemination of innovations, and opinion formation; however, social phenomena that

cannot be reduced to simple contagion processes have been observed. Examples are

the spread of bizarre urban legends, adoption of unproven new technologies, willing-

ness to participate in risky migrations, and the appeal of avant-garde fashion, and they

depend on contact with multiple early adopters. Hypergraph contagion models have
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been introduced to describe such phenomena. Examples of other complex contagions

include quantum spreading process and nonlocal cascading failures in electrical grids.

1.3 Overview of dissertation

In this dissertation, we study the prediction and control of complex spreading pro-

cesses. In Chapter 2, we investigate the phase transition and critical phenomena of

the epidemic process in hypergraphs [149]. We find that the type of the phase transi-

tion is controlled by the degree exponent of the hypergraph. If the degree exponent is

lower than a certain threshold, the epidemic threshold vanishes, while the system un-

dergoes a hybrid phase transition when the degree exponent is higher than the thresh-

old. When the exponent is exactly the critical value, the system undergoes a continu-

ous phase transition at a finite contagion rate. We also studied containment strategies

for hypergraph epidemic processes [143]. We extended the individual- and pair-based

mean-field theory to higher-order epidemic dynamics to formulate effective contagion

strategies.

In Chapter 3, we study the efficient vaccination strategy to minimize epidemic

mortality in a population with a heterogeneous fatality rate [146]. We discovered that

when the vaccine supply is low, it is more effective to primarily vaccinate the popu-

lation with a high fatality, and when there is a high vaccine supply, it is advantageous

to vaccinate the population with a high contagion rate in priority. We also showed that

there is a discontinuous transition between the two types of strategies.

In Chapter 4, we employed graph neural network to calculate effective control

schemes for cascading failures [147]. First, we proposed an avalanche centrality of

each node, a measure related to avalanche size, based on the Motter-Lai model. Then,

we train a graph neural network with the avalanche centrality in small networks. Then,

the trained GNN predicts the avalanche centrality ranking in much larger networks and

real-world electrical grids. This result can be used effectively for avalanche mitigation.

The framework we develop can be implemented in other complex processes that are
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computationally costly to simulate in large networks. We also employ graph neural

network ansatz to formulate effective epidemic containment strategy in complex net-

works [144].

In Chapter 5, we implemented an effective numerical simulation for several dissi-

pative quantum systems [157]. The results are consistent with those predicted by the

fluctuationless mean-field approach; however, inconsistent with those by the Keldysh

method. We remark that for the quantum contact process, we discover that there ex-

ists a crossover region between the directed percolation class and the tricritical DP

class. Finally, based on our numerical results, we discuss the strong and weak points

of each analytic mean-field approach. We also studied the quantum contact process

in scale-free networks [150]. We performed numerical simulations to corroborate the

analytical predictions. We discovered that the types of phase transitions in this system

are controlled by the degree exponent of the underlying network.

In Chapter 6, the conclusions of this dissertation are presented. The results of our

other publications that are out of scope are not covered in this dissertation [145, 148,

151].
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Chapter 2

Higher-order epidemics

2.1 Phase transition and critical phenomena of the simplicial

susceptible-infected-susceptible (s-SIS) model

In past decades, extensive research has been done on emerging phenomena in complex

networks, including the spread of epidemic diseases and innovations [164, 282, 283,

349], opinion formation [3,113,342], and many other topics [27,30,132,248,277]. An

important issue for such emerging phenomena is to understand the origin and proper-

ties of phase transitions. Complex networks represented by graphs enable researchers

to study such issues successfully. A graph is a collection of vertices and edges, where

an edge represents a pairwise interaction between two vertices. In complex systems,

however, interactions among constituents can be more complex than pairwise. For in-

stance, more than two people can collaborate on a team.

A hypergraph is a generalization of a graph whose hyperedge connects two or

more vertices. Consequently, it can be used to encode complicated social interactions

that the graph representation cannot. In this hypergraph representation, a hyperedge

of size n connects n researchers who collaborate on one task, for instance, d authors

of a d-author paper in coauthorship networks [347]. This hypergraph representation

successfully accounts for various types of collaborations [28,29,99,176,317,327,357,

361]. In particular, a uniform hypergraph is one in which all the hyperedges have the

same size. If the size of these hyperedges is d, the structure is called a d-uniform

hypergraph, or d-hypergraph. Uniform hypergraphs can describe systems in which a
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uniform number of agents interact at the same time. Trivially, a 2-uniform hypergraph

reduces to a graph. Owing to its simplicity, the uniform hypergraph enables succinct

expression of diverse static and dynamic problems in terms of linear algebra using the

adjacency tensor [69].

A simplicial complex is a particular hypergraph with an additional constraint: If

a hyperedge is in a simplicial complex, any non-empty subset of vertices in the hy-

peredge is also a hyperedge of the simplicial complex. This requirement makes the

simplicial complex an appropriate tool for studying systems with high-order interac-

tions, i.e., interactions that involve a large number of agents, which also include lower-

order interactions. A hyperedge in a simplicial complex is often called a simplex. The

simplicial complex has been a topic of extensive research. Examples include the col-

laboration network [61,269], semantic network [310], cellular network [85], and brain

network [196, 275].

A simplicial contagion model was recently introduced [137] to describe a com-

plex contagion process on simplicial complexes; however, as pointed out in the paper,

the model itself was defined for general hypergraphs. The model can also be easily

applied to general hypergraphs. Here, we consider this simplicial contagion process

on d-uniform hypergraphs with hyperedges of the same size. Specifically, we consider

the case that infection spreads only when all but one of the nodes in the hyperedge are

infected. Even though this is a simple case with a maximally conservative contagion

process, it provides an essential factor that leads to a hybrid epidemic transition on

hypergraphs. Here, we consider a simplicial susceptible-infected-susceptible (s-SIS)

model, where infection spreads by a simplicial contagion process. Each node is in ei-

ther the susceptible (S) or infected (I) state. A susceptible node becomes infected at

a rate β when all the other nodes in the same hyperedge are infected. If a node is in-

fected, it changes spontaneously to the susceptible state S at a rate µ. This recovery

process (I → S) is defined as in the SIS model of a network because the recovery

process occurs on each node independently, making it irrelevant to the structural type
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of the contagion process.

Here we explore the s-SIS model on scale-free (SF) uniform hypergraphs. We use

the annealed approximation for the static model of the uniform hypergraph, which is

extended from the static model of the complex graph [107]. We find analytically that

there exists a characteristic degree λc = 2 + 1/(d − 1) such that when the exponent

λ of the degree distribution is 2 < λ ≤ λc, a continuous transition occurs; however,

when λ > λc, a hybrid phase transition occurs. In this hybrid phase transition, the

order parameter jumps at a macroscopic scale and then increases continuously with

criticality as a control parameter, η ≡ β/µ, is increased.

2.2 Static model of uniform hypergraph

The static model of a complex network [107,198] has been widely used to generate SF

networks owing to its simplicity and analytical tractability. The model has been used

to study the q-state Potts model [190], sandpile model [108], spin glasses [168], and

many other topics [98, 138, 167, 200, 201, 203, 204, 311, 351, 354] involving complex

networks.

A static model of a uniform hypergraph is a generalization of the static model of a

complex graph. The static model of a d-uniform hypergraph is generated as follows:

i) Set the number of nodes in the system, N .

ii) Assign each node a weight pi as

pi =
i−µ

ζN (µ)
≃ 1− µ

N1−µ
i−µ, (2.1)

where ζN (µ) =
∑N

j=1 j
−µ, and 0 < µ < 1. The normalization condition∑N

i=1 pi = 1 is satisfied.

iii) Select d distinct nodes with probabilities pi1 · · · pid . If the hypergraph does not

already contain a hyperedge of the chosen d nodes, then add the hyperedge to

7



Figure 2.1: Degree distribution of the static model of (a) 2-uniform (graph) and (b)
3-uniform hypergraph generated with the fitness exponent 1/µ = 1.3. The system
size N is given as N = 105, 106, and 107. As the system size is increased, the tail
part of the degree distribution is extended, and power-law behavior with exponent
λ = 1 + 1/µ = 2.3 is confirmed.

the hypergraph.

iv) Repeat step iii) NK times.

Then, each node i has average degree ⟨ki⟩. These average degrees have a power-law

distribution Pd(k) ∼ k−λ with λ = 1 + 1/µ, where the brackets of ⟨ki⟩ are omit-

ted. The details are presented in 2.7. The minimum degree is obtained as kmin =

N1−µ⟨k⟩/∑N
j=1 j

−µ, which converges to a finite value, λ−2
λ−1⟨k⟩, where ⟨k⟩ denotes the

mean degree
∑

k kPd(k). The maximum degree is obtained as kmax = N⟨k⟩/∑N
j=1 j

−µ,

which behaves as λ−2
λ−1⟨k⟩N1/(λ−1) ∼ N1/(λ−1). Thus, it diverges as N → ∞. Here-

after, the minimum degree is denoted as km. Throughout this algorithm, NK hyper-

edges are generated.

The probability that a hyperedge composed of d distinct nodes {i1 · · · id} is present

is given by

fi1···id = 1− (1− d!pi1 · · · pid)NK ≃ 1− e−d!NKpi1 ···pid , (2.2)
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and the probability that a hypergraph G is generated is

P (G) =
∏

ai1···id∈G

(
1− e−d!NKpi1 ···pid

) ∏
ai1···id /∈G

e−d!NKpi1 ···pid . (2.3)

Because d!NKpi1 · · · pid ∼ Ndµ−d+1/ (i1 · · · id)µ, for 0 < µ < d−1
d , which is equiv-

alent to λ > 2 + 1
d−1 ,

fi1···id ≃ d!NKpi1 · · · pid , (2.4)

and for 2 < λ < 2 + 1
d−1 ,

fi1···id ≃


1 (i1 · · · id)µ ≪ Ndµ−d+1

d!NKpi1 · · · pid (i1 · · · id)µ ≫ Ndµ−d+1

. (2.5)

We note that λ = 2 + 1/(d − 1) is a characteristic degree and is denoted as λc,

which reduces to λc = 3 for an SF graph (d = 2) and λc < 3 for an SF hypergraph

(d > 2). The fraction of nodes that satisfies the second case of Eq. (2.5) is proportional

to 1−ANdµ−d, whereA is a constant, which converges to one asN → ∞. For d = 2,

the static model of the hypergraph reduces to the static model of the graph. For µ = 0,

i.e., λ = ∞, the expected degree of all the nodes is identical, and the model reduces to

an Erdős–Renyi-like hypergraph.

2.3 Simplicial SIS model

A contagion process through an edge on a graph is called a simple contagion pro-

cess. Simple contagion processes on complex graphs have been extensively studied

to describe the spread of disease [251, 321], adoption of innovation [283, 325], and

opinion formation [3,113,342]. However, social phenomena that cannot be reduced to

simple contagion processes have been observed, for instance, belief in bizarre urban

legends [125], adoption of unproven new technologies [64], willingness to participate
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(a) (c)

3

4

Susceptible

Infected

(b) (d)

Figure 2.2: Schematic illustration of the simplicial contagion process through hyper-
edges of size 3 in (a) and (b), and 4 in (c) and (d). The susceptible and infected nodes
are depicted as white open circles and red filled circles, respectively. When d− 1 of d
nodes in a hyperedge are infected, the infection spreads to the remaining susceptible
node through the hyperedge at a rate βd.

in risky migrations [219], and the appeal of avant-garde fashion [70], and they depend

on contact with multiple early adopters. Adoption of behaviors that are costly, risky, or

controversial often requires affirmation or reinforcement from an independent source.

More complicated models of contagion, namely, a complex contagion process, have

been proposed to describe such social phenomena. Examples include the threshold

model [114, 341] and a generalized epidemic model [58, 141].

A recently introduced simplicial contagion model [137] represents a complex con-

tagion process on a hypergraph. It applies a maximally conservative contagion process

on the hypergraph, in which contagion through a hyperedge of size d occurs only when

all but one of the nodes in the hyperedge are infected. When this condition is met, the

remaining susceptible node is infected at a rate βd per unit time. For instance, when

nodes j and k are infected in the hyperedge {i, j, k}, node i is infected with proba-

bility β3δt in duration δt. If only node j is infected and the other node, k, is not, the

infection does not spread to node i through the hyperedge.

The complex contagion process in a d-uniform hypergraph is described by an ad-

jacency tensor of dimension d. The rate equation is written as follows:

d

dt
qi1 = −µqi1 +

1

(d− 1)!
(1− qi1)βd

∑
i2···id

ai1···idqi2 · · · qid , (2.6)

where qi1 is the probability that a node i1 is infected, and ai1···id is the adjacency tensor,
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where ai1···id = 1 if nodes {i1 · · · id} are fully connected, and otherwise, it is zero.

2.4 Heterogeneous mean-field theory (annealed approxima-

tion)

We use the heterogeneous mean-field theory to study the stationary states of the SIS

model on SF d-uniform hypergraphs. This theoretical approach has been successful

for examining the SIS [264, 266] and susceptible-infected-recovered [235] models on

SF graphs. It represents well the significant effect of a small portion of nodes with

large degrees. Here, we consider the SIS model on SF d-dimensional uniform hyper-

graphs. We set up a differential equation for the density of infected nodes of degree

k and then obtain the self-consistency equation for the stationary solution. We solve

a self-consistency equation to calculate the density of infected nodes as a function of

infection rate. We investigate the properties of the epidemic transition.

2.4.1 Self-consistency equation

The density of infected nodes with degree k, denoted as ρk, evolves with time as fol-

lows:
d

dt
ρk = −µρk + β (1− ρk) kΘ

d−1. (2.7)

The first term on the r.h.s. of the above equation is a loss term associated with the

recovery process I → S. The second term is a gain term associated with the contagion

process (d − 1)I + S → dI . That is, a given node i in state S is changed to state I

by contagion from d − 1 infected nodes in a hyperedge of size d at a rate β, which is

equivalent to βd in the previous notation, in which node i is included. Θ is given by

Θ =

∑∞
k=km

kPh(k)ρk(t)

⟨k⟩ , (2.8)
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where kPh(k)ρk/⟨k⟩ is the probability that a node connected to a randomly chosen

hyperedge has degree k and is infected at time t. We are interested in the behavior of

ρk in the stationary state, in which dρk/dt = 0, and we set η ≡ β/µ for convenience.

The stationary solution of ρk is obtained as

ρk =
ηkΘd−1

1 + ηkΘd−1
. (2.9)

This solution implies that the infection probability ρk always increases and approaches

one as k → ∞ for η > 0, and that it is controlled by a single factor, ηΘd−1. The density

of infected nodes becomes ρ ≡ ∑
k Ph(k)ρk, which serves as the order parameter of

the epidemic transition.

To obtain ρ, we set up a self-consistency equation for Θ in the stationary state as

follows:

Θ =
1

⟨k⟩
∑
k

kPh(k)ρk =
1

⟨k⟩
∑
k

kPh(k)
ηkΘd−1

1 + ηkΘd−1
. (2.10)

We define the self-consistency function G(Θ) as

G(Θ) =
1

⟨k⟩
∑
k

kPh(k)
ηkΘd−1

1 + ηkΘd−1
−Θ (2.11)

and then obtain a solution Θ0 of G(Θ0) = 0.

For the power-law degree distribution, Ph(k) = (λ− 1)kλ−1
m k−λ for k ≥ km, and

the mean degree ⟨k⟩ = λ−1
λ−2km,

G(Θ) = (λ− 2)kλ−2
m

∑
k

k1−λ ηkΘd−1

1 + ηkΘd−1
−Θ. (2.12)

We treat k as a continuous variable and recast the summation
∑∞

k=km
· · · as the inte-
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gration
∫∞
km
dk · · · .

G(Θ) = (λ− 2)kλ−2
m

∫ ∞

km

dkk−λ+1
(
1 +

1

ηkΘd−1

)−1 −Θ (2.13)

= (λ− 2)

∫ 1

0
dzzλ−3

(
1 +

z

ηkmΘd−1

)−1 −Θ (2.14)

= 2F1

(
λ− 2, 1;λ− 1;− 1

ηkmΘd−1

)
−Θ, (2.15)

where we changed the variable k to z as z = km/k in Eq. (2.14), and 2F1(a, b; c, d) in

Eq. (2.15) is the Gauss hypergeometric function, which is defined as [1]

2F1(a, b; c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dzzb−1(1− z)c−b−1(1− tz)−a. (2.16)

To obtain a solution Θ0 of G(Θ0) = 0, we first note that the self-consistency

function has the following properties: G(0) = 0, and G(1) < 0. Second, we examine

the derivative with respect to Θ, which can be written as

G′(Θ) =
(d− 1)(λ− 2)

kmηΘd(λ− 1)
2F1

(
λ− 1, 2;λ;− 1

kmηΘd−1

)
− 1. (2.17)

If limΘ→0G
′(Θ) > 0, there exists at least one nonzero solution Θ0. Using the asymp-

totic properties of the hypergeometric function, we find that there exists a characteristic

degree exponent λc = 2 + 1/(d− 1) such that

lim
Θ→0

G′(Θ) =


+∞ for λ < λc

π/(d−1)
sin(π/(d−1)) (kmη)

1/(d−1) − 1 for λ = λc

−1 for λ > λc

. (2.18)

See 2.8 for details.

After we obtain Θ0, the density of infection ρ, which serves as the order parameter
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for the epidemic transition, is calculated as follows:

ρ =

∫ ∞

km

dkPh(k)
ηkΘd−1

0

1 + ηkΘd−1
0

= 2F1

(
λ− 1, 1;λ;− 1

kmηΘ
d−1
0

)
. (2.19)

We will determine the solution Θ0 and ρ for each case in Eq. (2.18) in the next section.

2.5 Phase transition and critical behavior

The type of phase transition and the epidemic threshold are determined by the behavior

ofG(Θ), which in turn is determined by limΘ→0G
′(Θ). Accordingly, we consider the

epidemic transition separately for each case in Eq. (2.18).

2.5.1 Order parameter

To solve Eqs. (2.15) and (2.19), we use a Taylor expansion of the hypergeometric

function

2F1

(
λ− 2, 1;λ− 1;− 1

kmηΘd−1

)
=

(λ− 2)π

sin(πλ)
(kmηΘ

d−1)λ−2

+ (λ− 2)

∞∑
n=1

(−1)n
(kmηΘ

d−1)n

n− (λ− 2)
. (2.20)

i) For λ < λc, limΘ→0G
′(Θ) = ∞. Because G(0) = 0 and G(1) < 0, there

exists at least one solution Θ0 > 0 for η > 0. Here, we find one such nontrivial stable

solution Θ > 0, leading to ρ > 0. Therefore, a transition occurs at ηc = 0. As η is

increased, both ρ and Θ increase, and the transition is continuous. Analytically, we

find that as η → 0,

G(Θ0; kmη) ≃
(λ− 2)π

sin (πλ)

(
kmηΘ

d−1
0

)λ−2
−Θ0 = 0, (2.21)

Θ0 ∼ η
λ−2

1−(d−1)(λ−2) . (2.22)
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Figure 2.3: Self-consistency function G(Θ) of SF 3-uniform hypergraphs with degree
exponent (a) λ = 2.2, (b) 2.5, and (c) 2.8, corresponding to cases i) λ < λc, ii) λ = λc,
and iii) λ > λc in the main text. The derivative of the function with respect to Θ at
Θ = 0 (a) diverges, (b) is positive, and (c) is negative as Θ approaches zero.
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Figure 2.4: Density of infected nodes versus control parameter λ for various degree
exponent values λ for (a) d = 3 and (c) d = 4. Susceptibility versus control parameter
λ for various λ values for (b) d = 3 and (d) d = 4. For λ = 2.2 and λ = 2.4, the
transition point is λc = 0, and for λ = 2.5, 2.6, and 2.8, λc is finite. For λ = 2.2, 2.4,
and 2.8, the transition is second-order, and for λ = 2.6 and 2.8, the transition is hybrid.
For λ ≤ λc, the susceptibility converges to a finite value 1+ d(d− 2). For λ > λc, the
susceptibility diverges as λ→ λ+c .
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The density of infection ρ can also be calculated from Eq. (2.19):

ρ ∼ ηΘd−1
0 ∼ η

1
1−(d−1)(λ−2) . (2.23)

Thus, the exponent β = 1/[1 − (d − 1)(λ − 2)]. In particular, when d = 2, ρ ∼
η1/(3−λ) [264].

ii) For λ = λc, the epidemic threshold is finite as ηc = 1
km

[
sin(π/(d−1))

π/(d−1)

]d−1
.

Above ηc, G′(Θ) > 0, and thus there exists a finite Θ0 satisfying G(Θ0) = 0. As

η → η+c , both ρ and Θ0 decrease to zero. Thus, a second-order transition occurs at ηc.

Specifically, the self-consistency function G(Θ) is written in Eq. (2.21). In this case,

we need to consider higher-order terms of G(Θ) as

G(Θ; kmη) ≃
[
(
η

ηc
)1/(d−1) − 1

]
Θ− kmηΘ

d−1

d− 2
(2.24)

≃ 1

d− 1

(
η − ηc
ηc

)
Θ− kmηΘ

d−1

d− 2
.

Therefore,

Θ0 ∼ (η − ηc)
1

d−2 , (2.25)

ρ ∼ (η − ηc)
d−1
d−2 . (2.26)

Consequently, the critical exponent β = (d − 1)/(d − 2) for d > 2. When d = 2,

ρ ∼ e−1/kmη was obtained [264].

iii) For λ > λc, limΘ→0G
′(Θ) < 0, and thus ηc is finite. In this case, Θ0 and ρ do

not decrease to zero but are finite as η → η+c . We calculate the asymptotic behaviors

of Θ0(η) − Θ0(ηc) and ρ(η) − ρ(ηc). At the transition point, G = 0 and ∂ΘG = 0;
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thus, near this point,

G(Θ; kmη) =
1

2

∂2G

∂Θ2
(∆Θ)2 +

∂G

∂η
∆η + · · · , (2.27)

Θ0(η)−Θ0(ηc) ∼ (η − ηc)
1/2 , (2.28)

ρ(η)− ρ(ηc) ∼ (η − ηc)
1/2 , (2.29)

where Θ0(ηc) and ρ(ηc) are calculated using Eqs. (2.15) and (2.19), respectively.

Therefore, the transition is hybrid with the exponent β = 1/2.

2.5.2 Susceptibility

The susceptibility is defined as the response of the order parameter, that is, the density

of infection, to a conjugated field h:

d

dt
ρ = −ρ+ η⟨k⟩ (1− ρ)Θd−1 + (1− ρ)h . (2.30)

The conjugated field h is implemented using the rate of spontaneous infection S → I ,

i.e., the rate at which a susceptible node is changed to an infected state independently

of the contagion process. The susceptibility is defined as the sensitivity of the density

of infection to the conjugated field:

χ1 =
∂ρ

∂h
. (2.31)

The differential equation for ρk is written as

dρk
dt

= −ρk + ηk (1− ρk)Θ
d−1 + (1− ρk)h . (2.32)

The steady-state solution is obtained as

ρk =
h+ ηkΘd−1

1 + h+ ηkΘd−1
. (2.33)
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The self-consistency equation is modified as follows:

G(Θ, h) = 2F1

(
λ− 2, 1;λ− 1;− 1 + h

kmηΘd−1

)
(2.34)

+ h
λ− 2

λ− 1

1

kmηΘd−1 2
F1

(
λ− 1, 1;λ;− 1 + h

kmηΘd−1

)
−Θ .

The susceptibility is obtained using the following relation:

χ1 =
∂ρ

∂h

∣∣∣
η,Θ0

− ∂ρ

∂Θ

∣∣∣
η,h

∂G

∂h

∣∣∣
η,Θ0

(
∂G

∂Θ

∣∣∣
η,h

)−1

. (2.35)

Detailed calculations of the susceptibility are presented in 2.9.

The results are as follows: i) For λ ≤ λc, the susceptibility converges to a finite

value near the critical point, and therefore the critical exponent γ1 = 0.

ii) For λ > λc, the susceptibility diverges as (η − ηc)
−γ1 with γ1 = 1/2.

2.5.3 Correlation size

In the static model, the maximum degree diverges as kmax ∼ N1/(λ−1), which is

called the natural cut-off [198]. We assign a weight pi to each node using Eq. (2.1).

The exponent of the hyperedge degree distribution is λ = 1 + 1/µ.

The self-consistency equation for finite systems reduces to

GN (Θ) =
1

N ⟨k⟩
N∑
i=1

ηΘd−1k2i
1 + ηΘd−1ki

−Θ, (2.36)

where ki = Ni−µ∑
j j

−µ . Further,

1

N

N∑
i=1

ηΘd−1k2i
1 + ηΘd−1ki

P (ki)dki ≃
∫ kmax

kmin

ηΘd−1k2i
1 + ηΘd−1ki

P (ki)dki, (2.37)
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where

kmin =

 1

N

N∑
j=1

(
j

N

)−µ
−1

≃
∫ 1

0
x−µdx−

∫ 1/N

0
x−µdx (2.38)

=
λ− 2

λ− 1
⟨k⟩
(
1−N−λ−2

λ−1

)
, (2.39)

kmax = kminN
1

λ−1 . (2.40)

Therefore,

GN (Θ) ≃ λ− 2

k−λ+2
m

∫ kmax

kmin

dk
ηk−λ+2Θd−1

1 + ηkΘd−1
−Θ (2.41)

≃ G(Θ) + kmN
−λ−2

λ−1
ηk−λ+2

m Θd−1

1 + ηkmΘd−1

−N−λ−2
λ−1 2F1

(
λ− 2, 1;λ− 1;− 1

kmN1/(λ−1)ηΘd−1

)
, (2.42)

whereG(Θ) is the self-consistency function of the infinite system provided in Eq. (2.15).

The solution ofGN (Θ) = 0 yields the density of infected nodes in finite systems. This

function is illustrated in Fig. 2.5(a) for a 3-uniform hypergraph with λ = 2.8.

By expanding the finite-size self-consistency function in Eq. (2.42) for large N ,

we can calculate the critical exponent of the correlation size, ν̄, which is defined by

the relation ηc(N)− ηc(∞) ∼ N−1/ν̄ .

i) For λ < λc, λc = 0, and thus λc(N) is expected to be close to zero for large N .

Therefore, for large N ,

N−(λ−2)/(λ−1)
2F1

(
λ− 2, 1;λ− 1;− 1

kmN1/(λ−1)λΘd−1

)
≃ N−(λ−2)/(λ−1),

(2.43)

because the hypergeometric function converges rapidly to 1. The finite-size epidemic

threshold is obtained when the maximum value of the function given by Eq. (2.21) is
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equal to that given by Eq. (2.43). Therefore,

ηc(N) ∼ N−[1−(d−1)(λ−2)]/(λ−1). (2.44)

The inverse of the correlation size exponent is 1/ν̄ = [1− (d− 1)(λ− 2)] /(λ − 1),

which approaches zero as λ→ λc = 2 + 1/(d− 1).

ii) For λ = λc, (λ − λc) → 0, and Θ → 0 with λc > 0. The self-consistency

function near the critical point is

GN (Θ) = A (λ− λc)Θ−BΘd−1 −N−(λ−2)/(λ−1), (2.45)

where A and B are positive constants. Therefore,

(η − ηc) ∼ N
− d−2

(d−1)2(λ−1) . (2.46)

The inverse of the correlation size exponent becomes 1/ν̄ = (d−2)/[(d−1)2(λ−1)].

iii) For λ > λc, the self-consistency function in finite systems becomes

GN (Θ) = G(Θ) +
∂G

∂λ
(λ− λc)−N−(λ−2)/(λ−1). (2.47)

Therefore,

(η − ηc) ∼ N
− λ−2

(λ−1) . (2.48)

The inverse of the correlation size exponent is 1/ν̄ = (λ− 2)/(λ− 1).

In this section, we obtained the critical exponents thorough the heterogeneous

mean-field theory. The results are summarized in Tab. 5.2. Continuous (Discontin-

uous) transition occurs for λ ≤ λc (λ > λc). At λ = λc, this is the boundary point

where transition type and universality class are changed. Thus, λ = λc can be regarded

as the tricritical point.
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Figure 2.5: (a) Self-consistency function GN (Θ) in finite systems versus Θ for 3-
uniform hypergraphs with λ = 2.8. (b) Deviation λc(N)− λc(∞) versus system size
N for various degree exponents λ. Red dotted lines denote λ < λc = 2.5; black solid
lines denote λ = λc; and blue dashed lines do λ > λc.

λ ηc ρc β γ1 1/ν̄

λ < λc 0 0 1
1−(d−1)(λ−2) 0 1−(d−1)(λ−2)

λ−1

λ = λc finite 0 d−1
d−2 0 d−2

(d−1)2(λ−1)

λ > λc finite finite 1
2

1
2

λ−2
λ−1

Table 2.1: Analytic solutions of the critical exponents for the s-SIS model.

2.6 Numerical simulations

2.6.1 Numerical methods

We perform numerical simulations using the sequential updating algorithm. The s-SIS

model is simulated on an SF uniform hypergraph with N nodes. Initially, all the nodes

are assigned to fully infected states. At each time step t, the following processes are

applied:

i) With probability κ ≡ η/(1 + η), we attempt the contagion process. We select a

random hyperedge, and if the hyperedge satisfies the contagion condition, i.e.,

if all but one node of the hyperedge is in the infected state, the susceptible node

in the hyperedge enters the infected state.
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ii) With the remaining probability 1− κ = 1/(1 + η), by contrast, we attempt the

recovery process. A node is chosen at random, and if the chosen node is in the

infected state, we change it to the susceptible state.

iii) If the number of active sites is zero, the simulation ends. Otherwise, the time t

is updated as t → t + 1/N in each step. Hereafter, we use the rescaled control

parameter κ instead of η.

A Markov process with an absorbing state in a finite-size system will ultimately

reach the absorbing state. If the system has a nonzero probability of reaching the ab-

sorbing state after some time, the probability that the system remains active decreases

exponentially and therefore converges to zero. To investigate the stationary state in

a finite-size system in an absorbing state, samples surviving after a sufficiently long

time are often taken as averages [226]. This method is not computationally efficient,

because the samples that have reached the absorbing state cannot be used to calculate

the statistical properties of the stationary state. An alternative method is the quasis-

tationary method [90, 91]. In this method, if the system reaches an absorbing state, it

reverts to an active configuration selected randomly from the history of the simula-

tion. After a sufficiently long time, the system and the history simultaneously reach

the stationary ensemble. In simulations, a list of 100 previously visited configurations,

is tracked and updated at each time step.

We performed the simulations in annealed hypergraphs. An annealed hypergraph

is a mean-field theoretical treatment of an ensemble of hypergraphs. We replaced the

adjacency tensor with its ensemble average:

aα = āα = fi1···id . (2.49)

The probability of a particular hyperedge fi1···id in the static model of a uniform hy-

pergraph was introduced in Sec. 2.2. For the probability of a hyperedge, we used

NKpi1 · · · pid , which is a valid approximation, even in the thermodynamic limit, as
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long as it is finite. This is a generalization of an annealed network. The annealed

network, which was introduced as a randomly selected neighboring network [47],

has been widely used to study dynamical processes because heterogeneous mean-

field theory and other mean-field theoretical approaches are exact in annealed net-

works [91, 202, 262, 335].

2.6.2 Numerical results

Static exponents

From Sec. 2.5, the order parameter behaves as

ρ(κ) =

 0 for κ < κc,

ρc + r(κ− κc)
β for κ ≥ κc,

(2.50)

where ρc is zero (finite) for λ ≤ λc (> λc) and κc is zero (finite) for λ < λc (≥ λc)

in the thermodynamic limit. Moreover, two types of susceptibilities are defined as

follows: χ1 ≡ ∂ρ/∂h ∼ (κ− κc)
−γ1 and χ2 = N (⟨ρ2⟩ − ⟨ρ⟩2)/⟨ρ⟩ ∼ (κ− κc)

−γ2 .

The correlation size exponent ν̄ is defined as κc(N)− κc(∞) ∼ N−1/ν̄ .

We performed simulations on a hypergraph with d = 3 and the characteristic

degree λc = 2.5. Because the simulation results should be sensitive near λc, we chose

λ ∈ {2.1, 2.9, 3.5}. We note that for the static model, a degree-degree correlation

exists for 2 < λ < 3. Thus, the exponent ν̄ is expected to be different for λ = 2.9 and

3.5, whereas the other critical exponents, β and γ, would be similar. Using finite-size

scaling (FSS) analysis, we obtain the following:

i) For λ = 2.1 < λc, we plot ρNβ/ν̄ versus κN1/ν̄ for different system sizes

but a fixed d = 3 in Fig. 5.6(a). We find that the data points for different system

sizes collapse onto a single curve for β = 1.25 ± 0.02 and ν̄ = 1.59 ± 0.01. β

corresponds to the analytical result of Eq. (2.23), but ν̄ is different with the analytical
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Figure 2.6: Finite-size scaling analysis of the s-SIS model on SF 3-uniform hyper-
graphs with three degree exponents: λ = 2.1 < λc (a) and (b), λ = 2.9 > λc (c) and
(d), and λ = 3.5 > λc (e) and (f). Scaling plots of (ρ− ρc)N

β/ν̄ versus (κ− κc)N
1/ν̄

are drawn, with (a) β = 1.25 and ν̄ = 1.59, (c) β = 0.52 and ν̄ = 2.11, and (e)
β = 0.5 and ν̄ = 1.63. Scaling plots of χ2N

−γ2/ν̄ versus (κ − κc)N
1/ν̄ are drawn,

with (b) γ2 = 0.15 and ν̄ = 1.59, (d) γ2 = 0.62 and ν̄ = 2.11, and (f) γ2 = 0.62 and
ν̄ = 1.63.
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Figure 2.7: Scaling plots of χ1N
−γ1/ν̄ versus (κ − κc)N

1/ν̄ with degree exponents
(a) λ = 2.9 and (b) λ = 3.5, with (a) γ1 = 0.48 and ν̄ = 2.11, (b) γ1 = 0.50 and
ν̄ = 1.63.

Figure 2.8: Plots of κc(N) − κc(∞) versus N on double-logarithmic scale for (a)
λ = 2.1, (b) λ = 2.9, and (c) λ = 3.5. Slope of each plot represents −1/ν̄.
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result of Eq. (2.44). This discrepancy will be discussed in Sec. 3.4. For χ2(κ), we plot

χ2N
−γ2/ν̄ versus (κ − κc)N

1/ν̄ for γ2 = 0.15 ± 0.01 and ν̄ = 1.59 in Fig. 5.6(b).

Data points for systems of different sizes collapse well onto a single curve.

ii) For λ = 2.9 > λc, the transition point κc and ρc are numerically estimated to

be ≈ 0.49462 and ≈ 0.53877, respectively, by solving the self-consistency equation

[Eq. (2.15)] and using Eq. (2.19). On the basis of these values, we plot (ρ− ρc)N
β/ν̄

versus (κ−κc)N1/ν̄ for β = 0.52±0.02 and ν̄ ≈ 2.11±0.01 for different system sizes

N in Fig. 5.6(c). Thus, we confirm that the numerically estimated values are marginally

consistent with the theoretical values from Eqs. (2.29) and (2.48). In Fig. 5.6(d), we

plot the rescaled quantity χ2N
−γ2/ν̄ versus (κ − κc)N

1/ν̄ for different system sizes.

We estimated γ2 = 0.62 ± 0.01 and ν̄ = 2.11 using FSS analysis. Using the plot of

χ1N
−γ1/ν̄ versus (κ − κc)N

1/ν̄ for different system sizes in Fig. 5.7, we estimated

γ1 = 0.48± 0.02.

iii) For λ = 3.5, we plot (ρ − ρc)N
β/ν̄ versus (κ − κc)N

1/ν̄ for different system

sizes N for β = 0.50 ± 0.01 and ν̄ = 1.63 ± 0.01 in Fig. 5.6(e). For χ2(κ), we

plot χ2N
−γ2/ν̄ versus (κ − κc)N

1/ν̄ for γ2 = 0.62 ± 0.01 and ν̄ = 1.63. The data

collapse well onto a single curve, as shown in Fig. 5.6(f). We plot χ1N
−γ1/ν̄ versus

(κ − κc)N
1/ν̄ in Fig. 5.7. We estimated γ1 = 0.50 ± 0.02. The obtained values,

β = 0.5 ± 0.01, γ2 = 0.62 ± 0.01, and ν̄ = 1.63 ± 0.01, marginally satisfy the

hyperscaling relation ν̄ = 2β + γ2.

The correlation size exponent is measured directly as κc(N) − κc(∞) ∼ N−1/ν̄

with 1/ν̄ = 0.63, 0.47, and 0.61 in Fig. 5.8, which correspond to ν̄ ≃ 1.59, 2.13,

and 1.64 for λ = 2.1, 2.9, and 3.5, respectively. These values are in reasonably good

agreement with the values ν̄ = 1, 59± 0.01, 2.11± 0.01, and 1.63± 0.01 obtained by

FSS analysis in Fig. 5.6. We summarize the numerical values in Table 2.2.
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Figure 2.9: Scaling plots of the density of infection ρ(t) starting from the fully infected
state versus tN−z̄ (a) and (c) and t(κ − κc)

ν∥ (b) and (d) for λ = 2.9 (a) and (b) and
λ = 3.5 (c) and (d). The dynamical critical exponents δ = 0.89, z̄ = 0.26, and
ν∥ = 0.56 are obtained from (a) and (b), and δ = 0.86, z̄ = 0.32, and ν∥ = 0.53 are
obtained from (c) and (d).
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λ κc ρc β γ1 γ2 ν̄

2.1
0 0 1.25± 0.02 0 0.15± 0.01 1.59± 0.01

(1.25) (0) (1.35)

2.9
0.49462 0.268306 0.52± 0.02 0.48± 0.02 0.62± 0.01 2.11± 0.01

(0.50) (0.50) (2.11)

3.5
0.53877 0.395602 0.50± 0.01 0.50± 0.02 0.62± 0.01 1.63± 0.01

(0.50) (0.50) (1.67)

Table 2.2: Numerical list of critical exponents of the s-SIS model obtained by the FSS
method. Theoretical values calculated in Sec. 2.5 are presented in parentheses.

Dynamic exponents

Next, we also performed dynamical FSS analysis to obtain the dynamic exponents.

We consider the temporal dynamics of the density of infection starting from a fully

infected state. The average density of infection at time t over many realizations, ρ(t),

shows critical behavior when the contagion rate is equal to the critical value κc. We

choose λ ∈ {2.9, 3.5} because for λ < λc, the critical point κc becomes zero, and

only a decay process remains. In this section, we change the notation of ν̄ to ν̄⊥ as a

counterpart of the mean survival time exponent ν∥.

i) For λ = 2.9, we plot (ρ − ρc)t
δ versus tN−z̄ for different system sizes N

in Fig. 2.9(a). Here, the dynamical critical exponents are defined conventionally as

δ = β/ν∥ and z̄ ≡ ν∥/ν̄ = ν∥/dν⊥. In Fig. 2.9(b), we plot the rescaled quantity

(ρ−ρc)tδ versus t(κ−κc)Nν∥ . ν∥ is the mean survival time exponent associated with

the relaxation time. We estimated the dynamical critical exponents as δ = 0.89±0.02,

z̄ = 0.26± 0.01, and ν∥ = 0.56± 0.01.

ii) For λ = 3.5, we used a method similar to that used in i). We estimated the

dynamical critical exponents as δ = 0.93±0.02, z̄ = 0.32±0.01, and ν∥ = 0.53±0.01.

The critical exponents {δ, z̄, ν∥} obtained using dynamical FSS and the {β, ν̄, γ2}
values obtained using steady-state FSS are comparable.
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λ δ z̄ ν∥

2.9 0.89± 0.02 0.26± 0.01 0.56± 0.01

3.5 0.93± 0.02 0.32± 0.01 0.53± 0.01

Table 2.3: Dynamic critical exponents of s-SIS model obtained using the dynamical
FSS method.

2.7 Degree distribution of static model

Throughout this construction algorithm, a node is selected with probability 1−(1− pi)
d ≃

dpi. Therefore, the probability that a node i has degree k follows the Poisson distribu-

tion: P (R)
i (k) = ⟨ki⟩k exp (−⟨ki⟩) /k!. The degree distribution is then

P (R)(k) = 1
N

∑
Pi(k) ≃

∫ kmax

kmin
d⟨ki⟩P (⟨ki⟩) ⟨ki⟩k exp(−⟨ki⟩)

k! (2.51)

= (λ−1)

⟨ki⟩−λ+1
min −⟨ki⟩−λ+1

max

1
k!

∫ ⟨ki⟩max

⟨ki⟩min
d ⟨ki⟩ ⟨ki⟩−λ+k exp (−⟨ki⟩) . (2.52)

In the thermodynamic limit, ⟨ki⟩max → ∞ and ⟨ki⟩min → λ−2
λ−1 ⟨k⟩. Further,

lim
N→∞

P (R)(k) = (λ− 1) kλ−1
m

Γ (−λ+ k + 1, km)

Γ(k + 1)
∼ k−λ (2.53)

for sufficiently large k. Therefore, the tail of the degree distribution of a static model

of a uniform hypergraph follows a power law.

2.8 Asymptotic behavior of G′(Θ)

Using the identity

2F1 (a, b; c;−z) =
z−aΓ(c)Γ(b− a)2F1

(
a, a− c+ 1; a− b+ 1;−1

z

)
Γ(b)Γ(c− a)

(2.54)

+
z−bΓ(c)Γ(a− b)2F1

(
b, b− c+ 1;−a+ b+ 1;−1

z

)
Γ(a)Γ(c− b)

,
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we can obtain the asymptotic behavior of the hypergeometric function 2F1 (a, b; c;−z)
as z → ∞:

2F1 (a, b; c;−z) ∼


Γ(c)Γ(b−a)
Γ(b)Γ(c−a)z

−a a < b

Γ(c)Γ(a−b)
Γ(a)Γ(c−b)z

−b a > b

. (2.55)

The formula also allows us to calculate the next dominant terms proportional to z−a−1,

z−a−2, · · · and z−b−1, z−b−2, · · · . As Θ → 0,

G′(Θ) ∼


π(d−1)(λ−2)2

sin(πλ) (kmλ)
λ−2Θ(d−1)λ−(d−1)−d − 1 λ < 3

(d−1)(λ−2)
(λ−3) kmλΘ

d−2 − 1 λ > 3

. (2.56)

Then we obtain Eq. (2.18).

2.9 Susceptibility

To calculate Eq. (2.35), we first take the derivatives and then set h = 0 and Θ = Θ0:

∂ρ

∂h

∣∣∣
η,Θ

= 1− 2F1

(
λ− 1, 1;λ;− 1

kmηΘ
d−1
0

)
(2.57)

− λ− 1

λ

1

kmηΘ
d−1
0

2F1

(
λ, 2;λ+ 1;− 1

kmηΘ
d−1
0

)
,

∂ρ

∂Θ

∣∣∣
η,h

=
(d− 1)(λ− 1)

λ

1

kmηΘd
0
2F1

(
λ, 2;λ+ 1;− 1

kmηΘ
d−1
0

)
, (2.58)

∂G

∂h

∣∣∣
η,Θ

=
λ− 2

λ− 1

1

kmηΘ
d−1
0

[
2F1

(
λ− 1, 1;λ;− 1

kmηΘ
d−1
0

)
(2.59)

− 2F1

(
λ− 1, 2;λ;− 1

kmηΘ
d−1
0

)]
,

∂G

∂Θ

∣∣∣
η,h

=
(d− 1)(λ− 2)

λ− 1

1

kmηΘd
0
2F1

(
λ− 1, 2;λ;− 1

kmηΘ
d−1
0

)
− 1 . (2.60)

Using Eq. (2.20), we obtain the following:

i) For λ < λc, Eq. (2.57) becomes 1, and all other terms vanish in the limit Θ0 → 0
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and η → 0. Therefore, χ1 = 1 near the critical point, and the critical exponent of the

susceptibility, γ1, is zero.

ii) For λ = λc, Eqs. (2.57)–(2.60) in the limit Θ0 → 0 and η → ηc are given as

∂ρ

∂h

∣∣∣
η,Θ0

= 1 ,
∂ρ

∂Θ

∣∣∣
η,h

∼ d(d− 2)
η − ηc
ηc

, (2.61)

∂G

∂h

∣∣∣
η,Θ0

∼ 1 ,
∂G

∂Θ

∣∣∣
η,h

∼ −d− 2

d− 1

η − ηc
ηc

. (2.62)

The susceptibility is given by χ1 ∼ 1 + d(d− 1).

iii) For λ > λc, Eq. (2.60) exhibits singular behavior, and Eqs. (2.57)–(2.59) are

finite. Hence, the susceptibility diverges near the critical point. Eq. (2.60) is calculated

as

∂G

∂Θ
∼ ∂2G

∂Θ2
(∆Θ0) . (2.63)

Inserting Eq. (2.28) into Eq. (2.63) yields χ1 ∼ (η− ηc)
−1/2, and therefore γ1 = 1/2.

2.10 Containment strategy for simplicial SIS model

In the past two decades, extensive research has been devoted to spreading processes

in complex networks [80, 81, 177, 244, 360] to model the spread of epidemic dis-

eases [263] and innovations [164, 282], opinion formation [3, 50, 113, 342], and many

other physical and social phenomena [27,132,142,247,329]. Researchers now have ac-

cess to large-scale datasets of interactions, such as mobility, collaborations, and tempo-

ral contacts that were unavailable in the past [95,153,205], and complex network repre-

sentations of interactions enable the researchers to effectively study various dynamical

processes. The large body of research devoted to spreading processes on complex net-

works provided quantitative analysis for policy-making especially in the public-health

domain. Furthermore, the epidemic processes provide deeper understanding of critical

phenomena and phase transition behaviors, such as the effect of structural heterogene-
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ity on the transition point [236, 267] and discontinuous phase transitions induced by

cascade dynamics [11, 59, 192].

A hypergraph is a generalization of network that can describe higher-order inter-

actions between more than two agents, which widely appear in both natural and social

systems, that networks cannot [16, 24, 129, 187]. A hypergraph consists of nodes and

hyperedges, and a hyperedge of size d connects d nodes simultaneously. The hyper-

edges of a hypergraph can have various sizes, but if all the hyperedges in a hyper-

graph have the same size d, it is called a d-uniform hypergraph. In a collaboration

hypergraph [21, 269], for instance, a hyperedge of size d encodes a d-author paper,

and the nodes of the hyperedge encodes the authors of the paper. Hypergraphs have

been used to describe neural and biological interactions [179, 275], evolutionary dy-

namics [7, 35], and other dynamical processes [38, 89, 204, 315]. Recently, the simpli-

cial susceptible-infected-susceptible (s-SIS) model [137] was introduced to describe

higher-order epidemic process in hypergraphs. The model has attracted extensive in-

terest from the research community due to its simplicity and novel phase transition

behavior [60, 149, 188, 232, 337].

An important topic in epidemiology is immunization, and it has been studied for

various epidemic models in complex networks [52,63,68,220,227,230,268,304,326].

If a node in the network is immunized, the node cannot turn into the infected state, and

if an edge is immunized, the infection does not spread through the immunized edge.

Edge immunization models epidemic containment measures such as travel regulation

and social distancing. If a node or edge is immunized, it does not only prevent nodes

directly connected to them from being infected. If a portion of nodes or edges greater

than a threshold pc is immunized, the epidemic state in the network vanishes. This

effect is called herd immunity, and the threshold is called the herd immunity threshold

(HIT). The objective of an efficient immunization strategy is to achieve herd immunity

by immunizing a minimal portion of nodes or edges, i.e. minimizing HIT pc. Such

strategies can be used to vaccinate people with limited resources or prevent a pandemic
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by minimally regulating air traffic or social gatherings. The same theory can be used

to promote spreading processes. If the spreading process models information flow, for

instance, the objective is usually to optimize the spreading of information in a system.

In such cases, we buttress the nodes or edges targeted by the efficient immunization

strategies instead of immunizing them. Alternatively, in a reverse point of view, an

adversarial attack can be made on such nodes/edges to hamper the information flow

in the system. However, the efficient immunization strategy for epidemic processes

in hypergraph has not been studied, despite the topic’s importance in mathematical

epidemiology.

Here, we propose an immunization strategy that targets hyperedges with high si-

multaneous infection probability (SIP), which is the probability that all the nodes in

a hyperedge are in the infected state. This probability is calculated by the individual-

based mean-field (IBMF) theory [110, 353]. This strategy can be implemented to con-

tain epidemics of s-SIS model in general hypergraphs. We also show that immunizing

hyperedges with the highest H-eigenscores, which is defined as the product of the el-

ements of the H-eigenvector of the adjacency tensor with the largest H-eigenvalue of

all the nodes in the hyperedge, effectively achieves herd immunity in uniform hyper-

graphs. This method generalizes the edge eigenscore in a complex network and can

be implemented to contain epidemics in uniform hypergraphs. However, this method

cannot be implemented in arbitrary hypergraphs with various hyperedge sizes. We

also generalize the EI-based method [230], which is the state-of-the-art immunization

strategy for complex networks. However, we find that this method does not perform as

efficiently as H-eigenscore and SIP-based strategies for hypergraphs despite its higher

computational cost. If a hyperedge has a high SIP, it suggests that the hyperedge is a

’hotspot’ of the epidemic process. Therefore, SIP can be used as a centrality measure

to quantify a hyperedge’s influence on higher-order dynamics in general hypergraphs.

The effectiveness of the immunization strategies suggests the necessity of quantitative

and systematic policies for epidemic containment measures.
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Figure 2.10: (a) The degree distribution of the 3-uniform hypergraph popularity-
similarity optimization (h-PSO) model. The mean degree ⟨k⟩ = 6, temperature
T = 0.5, and the parameter γ = 3. The tail of the distribution follows a power law
with an exponent of 3. (b) The clustering coefficient of 3-uniform h-PSO as a function
of the scale parameter R. The number of nodes N = 2000, mean degree ⟨k⟩ = 6, and
the temperature T = 0.5.

2.10.1 Hypergraph popularity-similarity optimization (h-PSO) model

In addition to a highly heterogeneous degree distribution, agents in many real-world

systems have a higher chance of being connected if they are similar. The similarity of

two nodes is characterized by their closeness in their latent coordinates. The objective

of graph node embedding algorithms [116, 259, 274] is to discover the latent coor-

dinates of a network. For instance, hub airports are connected to a disproportionately

large number of airports around the world (heterogeneous degree distribution), but two

small airports can be connected by an airline if they are geographically close. Also, two

researchers who are not particularly prolific can coauthor a paper if they are close. This

effect is called homophily and results in non-vanishing clustering coefficients in both

networks and hypergraphs. To account for such phenomena, a hypergraph model with

a scale-free degree distribution and tunable non-vanishing clustering coefficient needs

to be introduced. Furthermore, the immunization strategies need to be tested in clus-

tered hypergraphs because it is known that epidemic dynamics and the performance of

immunization strategies differ in clustered and unclustered networks [230].
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The clustering coefficient C(H) of a hypergraph H is defined as follows [84]:

C(H) =
3× number of hypertriangles

number of undirected 2-paths
, (2.64)

where a hypertriangle is a set of three distinct nodes v1, v2, v3 and three distinct hy-

peredges E12, E23, E31 that satisfies v1, v2 ∈ E12, v2, v3 ∈ E23, and v3, v1 ∈ E31. A

undirected 2-path is a set of three distinct nodes v1, v2, v3 and two distinct hyperedges

E12, E23 that satisfies v1, v2 ∈ E12 and v2, v3 ∈ E23. The clustering coefficient can

be greater than 1 in hypergraphs because a undirected 2-path can have multiple clo-

sures. If there are only size-2 hyperedges in the hypergraph (i.e., if the hypergraph is a

network), C2 becomes the transitivity coefficient [122], which is widely used in social

network analysis. Note that there is another definition of the clustering coefficient C(i)
d

that generalizes the local clustering coefficient of graphs [35].

To generate a scale-free hypergraph with a non-vanishing clustering coefficient, we

introduce the hypergraph popularity-similarity optimization model (h-PSO), which is a

hypergraph version of the popularity-similarity optimization (PSO) model in complex

networks [258, 259]. The d-uniform h-PSO model is generated as follows:

(i) Popularity parameter pi is assigned to each node in the hypergraph. If a node

has a high pi, the node tends to have a high degree.

(ii) Latent coordinate xi is assigned to each node in the hypergraph. If two nodes i

and j are close in the latent coordinate (i.e., |xj − xi| is small) two nodes will

likely be connected by hyperedges.

(iii) Pick a node i with probability pi.

(iv) Pick d−1 nodes j1, · · · , jd−1, each with probability
[
1 + (|xjℓ − xi|/Rpipjℓ)1/T

]−1

. If a hyperedge {i, j1 · · · , jd−1} is not already present in the hypergraph, add it

to the hypergraph.

(v) Repeat steps (iii)–(iv) until the number of hyperedges reaches NK.
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Here, we choose the latent coordinates on a ring; the latent coordinates are randomly

chosen without replacement from θ ∈ {1, 2, · · · , N}, and the distance between two

nodes i and j is defined as min (|θj − θi| , N − |θj − θi|). If we set pi = Ni−α/ζN (α) ≃
(1− α)i−α/N−α, the resulting hypergraph is a scale-free hypergraph with degree ex-

ponent γ = 1+1/α. The clustering coefficient can be controlled by the scale parameter

R and the temperature T ; if R and T are large, the clustering coefficient is small. The

degree distribution and the clustering coefficient of the h-PSO model with hyperedge

size 3 are illustrated in Fig. 2.10. The degree distribution has a power-law tail with

exponent γ, and the clustering coefficient can be controlled by adjusting R.

2.10.2 Individual- and pair-based mean-field theories

In this section, we explain the individual-based mean-field (IBMF) theory and pair-

based mean-field [230] (PBMF) theory for hypergraphs, which are used in immu-

nization strategies. IBMF tracks the probability of infection pi of each node in the

network. By ignoring the statistical correlation of the probability between two nodes

[P (Xi, Xj) = P (Xi)P (Xj), where Xi, Xj ∈ {S, I}], the IBMF equation for the SIS

model can be expressed as

pi(t+ 1) = [1− pi(t)]

1− ∏
j∈N (i)

(1− βpj(t))

+ (1− µ)pi(t) , (2.65)

where N (i) is the set of nodes connected to node i (nearest-neighbors of i). For con-

tinuous phase transitions, where pi vanishes in the vicinity of the phase transition, the

equation can be linearized as pi(t+1) =
∑

j (βaij + (1− µ)δij) pj and the epidemic

threshold β
µ is the inverse of the largest eigenvalue of the adjacency matrix aij . Be-

cause IBMF ignores the positive correlations of the state (neighbors of infected node

have greater chance of being in the infected state) in the actual system, it tends to over-

estimate the density of infection. The theory can be straightforwardly extended to the
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s-SIS model:

pi(t+ 1) = [1− pi(t)]
∏

{j1,··· ,jd−1}∈N̄ (i)

(
1− βdpj1(t) · · · pjd−1

(t)
)

+ (1− µ)pi(t) , (2.66)

where N̄ (i) is the set of ’hyperneighbors’ of i; if a hyperedge {i, j1, · · · , jd−1} is

in the hypergraph, {j1, · · · , jd−1} ∈ N̄ (i). IBMF is often employed to describe the

dynamics and phase transitions in classical stochastic processes [110, 353], as well as

driven-dissipative quantum dynamics [271]. The method predicts the properties of the

epidemic states more accurately than homogeneous mean-field theory or degree-based

mean-field theory [267], which is often referred to as heterogeneous mean-field theory.

PBMF, often referred to as an epidemic-link equation, is known to predict the

properties of the epidemic states more precisely than IBMF. In PBMF, we track the

probability of the infection pi(t) of each node the same as for IBMF, and for pairs

of nodes (i, j) that are connected in the network we set the differential equations for

the probability that both of the nodes are infected as ψij(t) = P (Xi = I,Xj = I).

Probabilities for other cases for a node pair P (Xi = S,Xj = S), P (Xi = S,Xj = I),

and P (Xi = I,Xj = S) can be expressed in terms of the pi and ψij :

P (Xi = S,Xj = S) = 1− pi(t)− pj(t) + ψij(t) , (2.67)

P (Xi = S,Xj = I) = pj(t)− ψij(t) , (2.68)

P (Xi = I,Xj = S) = pi(t)− ψij(t) . (2.69)

This method exploits the sparsity of the network (the number of variables and the

equations in this method is proportional to the number of the nodes in the system);

hence, it is scalable to large networks.
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Then, the equations for the nodes are expressed as

pi(t+ 1) = (1− qi(t)) (1− pi(t)) + (1− µ)pi(t) , (2.70)

and the equations for the pairs are expressed as

ψij(t+ 1) = (1− qij(t)) (1− qji(t)) (1− pi(t)− pj(t) + ψij(t))

+ (1− (1− β)qij(t)) (1− µ) (pj(t)− ψij(t))

+ (1− (1− β)qji(t)) (1− µ) (pi(t)− ψij(t)) + (1− µ)2ψij(t) , (2.71)

where

qi(t) =
∏

j∈N (i)

(
1− β

pj(t)− ψij(t)

1− pi(t)

)
, (2.72)

qij(t) =
∏

r∈N (i)
r ̸=j

(
1− β

pj(t)− ψij(t)

1− pi(t)

)
. (2.73)

qi(t) is the probability that node i is not infected during time step t → t + 1 given

that the node i is not infected at time t; qij(t) is the probability that the node i is not

infected by a neighbor other than j during the time step t→ t+ 1 given that the node

i is not infected at time t.

Stationary states of the s-SIS model have been studied using both IBMF and PBMF

in hypergraphs with hyperedges with sizes less than or equal to 3 [232]. Implementing

the PBMF on general hypergraphs with arbitrary hyperedge sizes, the equations for

the nodes are, again,

pi(t+ 1) = (1− qi(t)) (1− pi(t)) + (1− µ)pi(t) , (2.74)
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and the equations for the pairs that are connected by hyperedges are

ψij(t) = (1− qij(t)) (1− qji(t)) (1− pi(t)− pj(t) + ψij(t))

+ (1− qij(t)uij(t)) (1− µ) (pj(t)− ψij(t))

+ (1− qji(t)uji(t)) (1− µ) (pi(t)− ψij(t)) + (1− µ)2ψij(t) , (2.75)

where

qi(t) =
∏

{r1,··· ,rd−1}∈N̄ (i)

(
1− βd

PSI···I
ir1···rd−1

(t)

PS
i (t)

)

=
∏

{r1,··· ,rd−1}∈N̄ (i)

1− βd

∏d−1
ℓ=1 (prℓ(t)− ψirℓ(t))

∏
ℓ ̸=m ψrℓrm(t)

(1− pi(t))
d−1

(∏d−1
ℓ=1 prℓ(t)

)d−2

 ,

(2.76)

qij(t) =
∏

{r1,··· ,rd−1}∈N̄ (i)
r1,··· ,rd−1 ̸=j

(
1− βd

PSI···I
ir1···rd−1

PS
i

)

=
∏

{r1,··· ,rd−1}∈N̄ (i)
r1,··· ,rd−1 ̸=j

1− βd

∏d−1
ℓ=1 (prℓ(t)− ψirℓ(t))

∏
ℓ ̸=m ψrℓrm(t)

(1− pi(t))
d−1

(∏d−2
ℓ=1 prℓ(t)

)d−2

 ,

(2.77)

uij(t) =
∏

{j,r1,··· ,rd−2}∈N̄ (i)

(
1− βd

PSI···I
ijr1···rd−2

(t)

PSI
ij (t)

)

=
∏

{j,r1,··· ,rd−2}∈N̄ (i)

1− βd

∏d−2
ℓ=1 (prℓ(t)− ψirℓ(t))

∏d−2
ℓ=1 ψjrℓ(t)

∏
ℓ ̸=m ψrℓrm(t)

(1− pj(t))
d−1

pj(t)d−2
(∏d−2

ℓ=1 prℓ(t)
)d−2

 ,

(2.78)

where PX1···Xd
r1···rd is the probability that nodes r1 · · · rd are each in stateX1 · · ·Xd. qi(t)
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represents the same probability in the network PBMF, qij(t) is the probability that

the node i is not infected by hyperedges that do not contain node j during time step

t → t + 1 given that node i is not infected at time t, and uij(t) is the probability that

node i is not infected by hyperedges that contain node j during time step t → t + 1

given that node i is not infected at time t. We have used the following equation for

closure:

PX1···Xd
r1···rd =

∏
ℓ̸=m P (Xrℓ , Xrm)(∏d
ℓ=1 P (Xrℓ)

)d−2
. (2.79)

For d ≤ 3, we recover the identity in Ref. [232].

2.10.3 Immunization strategies

An immunization strategy is defined as a specific rule that determines a set of nodes

or edges that will be immunized to eliminate the epidemic from the network. Immu-

nized nodes cannot be infected and the infection cannot spread along the immunized

edges. The immunization of nodes/edges does not only protect the nodes directly con-

nected to them. When a sufficiently large fraction p > pc of the nodes/edges are im-

mune, the system cannot maintain the epidemic state with a non-vanishing density

of infection. This effect is called herd immunity. The objective of an immunization

strategy is to find an algorithm that minimizes pc. Efficient immunization strategy

that can be implemented in complex network has been extensively studied for both

SIS [227,230,268,326] and SIR [52,63,220] model. However, efficient immunization

strategy for epidemics in hypergraphs has not been studied, despite the importance

of the subject. Here, we develop a simultaneous infection probability (SIP)-based im-

munization strategy that can be used to efficiently eliminate epidemic states by im-

munizing edges in networks or hyperedges in hypergraphs. The strategy immunizes

the edges or hyperedges in the descending order of the SIP, which is the probability

that all the nodes in the edge/hyperedge are infected at the same time. The probability
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is calculated by IBMF in both networks and hypergraphs. In networks, the strategy

is as efficient as the EI-based strategy [230], which is the state-of-the-art immuniza-

tion strategy, while incurring a lower computational cost. This method can be imple-

mented in general nonuniform hypergraphs. We compare the efficiency of the strategy

with several other methods in networks, uniform hypergraphs, and nonuniform hyper-

graphs. However, only the proposed SIP-based strategy can be efficiently implemented

in general nonuniform hypergraphs.

The EI of an edge is defined as Iij = gij + gji, where

gij = βP (Xi = S,Xj = I)
∑

r∈N (i)

βP (Xr = S|Xi = I) . (2.80)

The probabilities are calculated by means of PBMF; βP (Xi = S,Xj = I) is the prob-

ability that the infection spreads from j to i along the edge (i, j), and
∑

r∈N (i) βP (Xr =

S|Xi = I) quantifies the impact of such an event. For the s-SIS model in hypergraphs,

the epidemic importance is expressed as

I{i1,··· ,id} =
∑

σ∈S({i1,··· ,id})

gσ , (2.81)

where S({i1, · · · , id}) is the set of all the permutations of the set {i1, · · · , id}, and

gi1···id = βdP (Xi1 = S,Xi2 · · ·Xid = I)

∑
{j1···jd′−1}∈N (i1)

βd′
d′−1∑
ℓ=1

P (Xj1 = I, · · · , Xjℓ−1 = I,Xjℓ = S,Xjℓ+1 = I,

· · · , Xjd′−1
= I|Xi = I) . (2.82)

It was shown that immunizing edges with high EI efficiently eliminates epidemic states

in various synthetic and empirical networks. Because we use PBMF, as the size of

hyperedge d increases, the number of pairs whose probability should be tracked by
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ψij rapidly increases, and the computational cost of the method diverges.

The eigenscore [326], which is widely used as a centrality measure, of a node i is

the element of the largest eigenvector ei of the adjacency matrix, and the eigenscore of

an edge (i, j) is the product of the eigenscores of the two nodes of the edge eiej . By

immunizing the edges with the highest eigenscore, the spectral radius of the network is

effectively reduced, and the epidemics in the network can efficiently be contained. The

eigenscore-based strategy can be generalized for implementation in hypergraphs; how-

ever, there are multiple types of eigenvectors and eigenvalues in a uniform hypergraph.

We find that the H-eigenvector is more suitable than the Z-eigenvector [211, 278] for

s-SIS dynamics. The H-eigenvector ei of a d-uniform hypergraph is defined as a vector

that satisfies (
aed−1

)
i1

n∑
i2,··· ,i2=1

ai1i2···idei2 · · · eid = λed−1
i1

, (2.83)

where a is the hypergraph adjacency tensor. We define the H-eigenscore of the hyper-

edge {i1, · · · , id} as the product of the elements of the H-eigenvector with the largest

H-eigenvalue: ei1 · · · eid . For networks where d = 2, the H-eigenscore becomes the

traditional eigenscore. Because the adjacency tensor is symmetric and hence diagonal-

izable [67], the H-eigenvector with the largest H-eigenvalue can be computed by an

iterative power method:

ẽ
(m+1)
i1

=

 n∑
i2,··· ,i2=1

ai1i2···ide
(m)
i2

· · · e(m)
id

 1
d−1

, (2.84)

e
(m+1)
i =

ẽ
(m+1)
i√∑n

j=1

∣∣∣ẽ(m+1)
j

∣∣∣2 . (2.85)

Then, e(m) converges to the H-eigenvector with the largest H-eigenvalue as m → ∞.

We show that removing high H-eigenscore hyperedges leads to effective epidemic

containment in uniform hypergraphs. However, for nonuniform hypergraphs, the adja-

cency tensor is not defined, and the method cannot be implemented in general nonuni-
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Figure 2.11: Random edge immunization (Random), H-eigenscore (H-ES), EI, and
SIP-based strategies tested in various synthetic and empirical networks: (a, e, i) the
static model, (b, f, j) clustered power-law network, (c, g, k) an airline network, and
(d, h, l) the general relativity collaboration network. Because this is a network (i.e.
hypergraph with only size-two hyperedges) the H-eigenscore is identical to the usual
eigenscore. (a, b, c, d) The density of infection ρ versus the removed portion of the
edges p. The recovery rate µ = 0.2 and the contagion rate β = 0.2. Efficient immu-
nization strategies usually result in a higher density of infection compared to random
immunization for small p but eliminate epidemics with smaller pc. (e, f, g, h) HIT
pc, which is the minimally required portion of edges to eliminate the epidemics. The
efficient strategies (i.e. H-eigenscore, EI, and SIP-based strategies) exhibit marginal
differences in their HITs. To compare the HITs of efficient strategies more thoroughly,
we plot the differences between the pcs of EI and SIP-based strategies from the pc
of the H-eigenscore-based strategy in (i, j, k, l). The SIP-based strategy is often more
efficient than EI-based strategy, despite its lower computational cost.
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form hypergraphs.

We introduce SIP as a measure of a hyperedge’s contribution to the continuation

of epidemics in the hypergraph. The SIP of a size-d hyperedge {r1, . . . , rd} is the

probability that all nodes in the hyperedge are infected, which is calculated by the

IBMF

P I···I
r1···rd ≃ P I

r1 · · ·P I
rd
. (2.86)

Each infection probability P I
rℓ

can be numerically calculated by solving Eq. (2.65)

for its fixed point. Because this method uses IBMF, it incurs less computational cost

than the EI-based strategy. This measure can be calculated in arbitrary nonuniform

hypergraphs whose hyperedges have various sizes. We test the strategies in Sec. 5.6.3.

Other centrality measures have been tested for immunization strategies; however,

they were found to be inefficient. Immunizing high edge-betweenness edges is inef-

fective, sometimes less efficient than randomly immunizing edges [230]. The node-

infectivity-based method has been tested as well, but it is not as efficient as the eigen-

score or EI-based methods.

2.10.4 Numerical Results

To test the immunization strategies, we implement the quasistationary method [90,91],

which is a standard simulation method used to study stationary states of stochastic pro-

cesses with absorbing states. An absorbing state has zero probability of transitioning

to other states. In this case, because both the contagion and recovery process involves

an infected node, if all the nodes are in the susceptible state, it cannot turn into any

other state: it is the absorbing state of the s-SIS model. The quasistationary method

constrains the system in the active states. We keep track of a set of configurations of

the system, which is referred to as the history. With a certain probability, we replace

one of the configurations in the history, randomly selected at each time step with the

current state of the system. When the absorbing state is reached, the state of the system

is replaced by a configuration randomly selected from the history. Here, we track 50
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Figure 2.12: Random hyperedge immunization (Random), H-eigenscore (H-ES), EI,
and SIP-based strategies tested in 3-uniform hypergraphs: (a, c) the hypergraph static
model and (b, d) the hypergraph popularity-similarity optimization (h-PSO) model. (a,
b) The density of infection ρ versus the removed portion of the edges p. The recovery
rate µ = 0.2 and the contagion rate β = β3 = 0.2. The efficient strategies generally
exhibit a higher density of infection for small p, but herd immunity is achieved at lower
pc, which is the minimally required portion of hyperedges that needs to be immunized
to eliminate epidemics. (c, d) HIT pc as a function of contagion rate β = β3. The
H-ES and SIP-based strategies outperform the EI-based strategy, despite their lower
computational cost.
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Figure 2.13: Random hyperedge immunization (Random) and SIP-based strategy
tested in empirical hypergraphs: (a, c, e) the congressional bill cosponsorship (in 2000)
hypergraph and (b, d, f) the protein interaction hypergraph. For nonuniform empirical
hypergraphs, H-ES cannot be implemented due to the variety of hyperedge sizes, and
EI is computationally inefficient due to the large hyperedges. (a, b) The density of in-
fection ρ versus the removed portion of the edges p. The recovery rate µ = 0.2 and the
contagion rate β = βd = 0.2 for all hyperedge sizes d. The efficient strategies gener-
ally exhibit a higher density of infection for small p, but herd immunity is achieved at
lower HIT pc, which is the minimally required portion of hyperedges that need to be
immunized to eliminate the epidemics. (c, d) HIT pc as a function of the contagion rate
β = βd. Efficient epidemic containment is achieved by the SIP-based method with low
computational cost. (e, f) The immunization rate of hyperedges with size d plotted for
various contagion rates. Small hyperedges are primarily targeted by the immunization
strategy especially when β is low.
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configurations and update with probability 0.2 at each time step.

We first test the strategies in synthetic and empirical networks. These networks

are selected as examples, and the relative effectiveness of the immunization strategies

generally do not strongly vary from network to network. For the unclustered scale-free

network, we use the static model [106,199] with 5000 nodes, 15000 edges, and degree

exponent 3. For the clustered scale-free network, we implement the model proposed

in Ref. [133] with 5000 nodes, 15000 edges, degree exponent 3, and the parameter

p = 0.8, which makes the clustering coefficient 0.6. For empirical networks, we use

the largest connected component of the airline network [153] which has 3354 nodes

and 19162 edges. Each node represents an airport, and if there exists an airline be-

tween two airports, they are connected by an edge in the network. Another empirical

network we use is the largest connected component of the general relativity and quan-

tum cosmology collaboration network [205]. There are 4158 nodes and 13428 edges

in the network. Each node represents an author of a paper submitted to the General

Relativity and Cosmology category in arXiv, and if two authors coauthored a paper in

the arXiv category from January 1993 to April 2003, they are connected by an edge in

the network.

The results of the strategies in the networks are illustrated in Fig. 2.11. We plot the

density of infection versus the immunization rate p for β = µ = 0.2 [Figs. 2.11(a–d)].

The density of infection of efficient strategies is often higher than that of random edge

immunization for small immunization rate p, but for sufficiently large p, the density

of infection drops quickly and achieves herd immunity at a lower pc. The HIT pc is

illustrated in Figs. 2.11(e–h). One way to calculate the effective HIT of is to calculate

the minimally required immunization rate to lower the density of infection below 1/N .

However, when simulating the stationary states of epidemic processes, if the system

reaches its absorbing state, we arbitrarily adjust the system by reverting it back to one

of its histories (quasistationary method) or activating a single site [158]. Therefore,

the state whose number of infected nodes is close to zero is highly influenced by the
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choice of the simulation method which is not part of the epidemic model. To solve this

problem, one can choose the herd immunity condition as the density of infection of

1%, which is sometimes used as a threshold to be considered as subextensive in net-

works [138]. However, in real-world situations, an epidemic prevalence of 1% is still

an alerting scenario, and the epidemics cannot be considered under control. By choos-

ing the density of infection of min
(
0.01, 1/

√
N
)

as the herd immunity condition, this

dilemma can be resolved. In the thermodynamics limit N → ∞, the epidemic density

of the herd immunity condition converges to zero while the number of the infected

nodes approaches infinity.

The recovery rate is fixed to µ = 0.2. The HITs of the three efficient strategies are

almost identical. To compare the HITs of efficient strategies more thoroughly, we plot

the differences between the eigenscore strategy and two other strategies in Figs. 2.11(i–

l). The EI-based strategy is generally slightly more efficient than the eigenscore strat-

egy, but it does not have an advantage over the SIP-based strategy, despite its higher

computational cost. Rather, the SIP-based strategy has a small advantage in the net-

works studied here, although the differences are marginal.

Then, we test the strategies in 3-uniform hypergraphs. We use two synthetic mod-

els of 3-uniform hypergraphs: a static model with 2000 nodes, 4000 hyperedges, and

degree exponent 3, and the h-PSO model introduced in Sec. 2.10.1 with the same

number of nodes, hyperedges, and degree exponent. The temperature T = 0.5 and

R = 1 result in the clustering coefficient C(H) = 1.0430. We illustrated the results in

Fig. 2.12. The density of infection ρ of the strategies versus the immunization ratio p

for β = β3 = µ = 0.2 is depicted in Figs. 2.12(a, b). The H-eigenscore and SIP-based

method result in a higher density of infection for small immunization ratios, but even-

tually yield a smaller HIT pc for herd immunity [Figs. 2.12(c, d)]. The recovery rate is

fixed to µ = 0.2.

We test the SIP-based strategy in two empirical hypergraphs with various hyper-

edge sizes. One is the congressional bill cosponsorship hypergraph [21,95], which has
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536 nodes and 2773 hyperedges whose mean size is 16.57 and maximum size is 323.

Each node represents a US congressperson, and if a set of d congresspeople cospon-

sored a bill in the year 2000, they are connected by a hyperedge of size d. The other is

the protein interaction hypergraph [179], which has 8243 nodes and 6688 hyperedges

whose mean size is 10.12 and maximum size is 421. Each node in the hypergraph rep-

resents a protein, and each hyperedge represents a type of multiprotein complex. Due

to the large and heterogeneous size of hyperedges, only the SIP-based strategy can

efficiently be implemented in these systems. We compare the density of infection of

the strategy with random immunization in Figs. 2.13(a, b). The recovery rate µ = 0.2

and the contagion rate for hyperedges are set βd = β = 0.2 independently of their

sizes. While random immunization requires the majority of hyperedges to be immune

to eliminate the epidemics, the SIP-based strategy achieves it with small pc. The HITs

are plotted for various contagion rates β = βd in Figs. 2.13(c, d). The immunization

rate of hyperedges of each size are illustrated in Fig. 3(e, f). Although removing large

hyperedges affect large number of nodes, small hyperedges are primarily immunized

especially when the contagion rate β is low. This is because the nodes that are con-

nected by a small hyperedge interact more strongly. It is interesting to point out that

an epidemic containment strategy that immunizes groups in descending order of their

size was effective in the localized regime [315] of higher-order epidemics [316].

2.11 Summary and conclusion

In summary, we investigated the phase transitions and critical phenomena of the s-

SIS model in SF uniform hypergraphs. We proposed a static model of the uniform

hypergraph, which is a generalization of the static model of a complex network. We

showed that the model indeed exhibits a degree distribution with a power-law tail.

Using the heterogeneous mean-field theory, we analytically studied the s-SIS model.

We showed that the system exhibits rich phase transition and critical phenomena when

the exponent of the degree distribution λ is larger than two. There exists a character-
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istic degree λc = 2 + 1/(d − 2). For λ < λc, the epidemic threshold vanishes. Thus,

there exists a stationary state for an arbitrarily small contagion rate in the thermody-

namic limit. The susceptibility χ2, the fluctuations of the order parameter, diverges

as κ → 0. Thus, a second-order contagion transition occurs at κc = 0. For λ = λc,

the epidemic threshold becomes finite and the susceptibility χ2 diverges as κ → κc.

Thus, a second-order contagion transition occurs. For λ > λc, the system undergoes a

hybrid phase transition at a finite transition point κc. The susceptibility diverges at the

transition point. We note that in a previous study [137], a discontinuous contagion tran-

sition was observed owing to higher-order interactions in a different model; however,

we observed a hybrid phase transition, which exhibits a discontinuous transition with

criticality at the same transition point. We also notice that for the static model, when

the degree exponent is 2 < λ ≤ 3, a degree-degree correlation exists. Consequently,

the correlation size exponent ν̄⊥ differs from that for λ > 3. Accordingly, whereas the

measured critical exponents β and γ are close to each other for λc < λ < 3 and λ > 3,

the dynamic exponents δ and z̄ associated with ν̄⊥ and ν∥ are different.

We performed numerical simulations of annealed SF 3-uniform hypergraphs with

λc = 2.5 and the degree exponents λ = 2.1, 2.9, and 3.5. Using dynamical FSS and

steady-state FSS, the critical exponents {δ, z̄, ν∥} and {β, ν̄⊥, γ1, γ2} are listed in

Tables 2.2 and 2.3, respectively. The two methods are consistent within the error bars.

Finally, the numerical values of the critical exponents {β, ν̄⊥, γ2} are consistent with

the theoretical values based on the heterogeneous mean-field theory in Sec. 2.5. They

are listed in Table 5.2.

Moreover, we proposed an effective immunization strategy that immunizes hy-

peredges with high SIP that can be used in general hypergraphs, including networks.

Hyperedges with high SIP are ”hotspots” of the epidemics, and they can be identified

and immunized. In case of information spreading processes, such hyperedges can be

fostered to boost the information flow in the system. We also show that H-eigenscore

is a natural generalization of the eigenscore for hypergraphs. If all the hyperedges in a
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hypergraph have a size of 2, the H-eigenscore becomes identical to the eigenscore used

in networks. Immunizing hyperedges with a high H-eigenscore effectively contains the

epidemics, but the method can only be implemented in uniform hypergraphs.

We tested the performance of the method and compared it with the state-of-the-

art immunization strategy of the EI-based method in networks and hypergraphs. In

networks, the HIT pc of the SIP-based strategy is marginally smaller than that of the

EI-based strategy, despite its lower computational cost. In hypergraphs, the SIP-based

strategy yields significantly smaller HIT pc with lower computational cost. This sug-

gests that SIP can serve as a centrality measure for hyperedges in general hypergraphs.

The large disparity between the pc of an efficient immunization strategy and random

immunization calls for scientific, data-driven, systematic policy-making for contain-

ment measures to eliminate epidemics with the minimum use of resources for vacci-

nation and minimal regulation of air traffic and social gatherings.

The IBMF used to calculate the SIP tend to overestimate the infection probability

of the nodes (and, as a consequence, overestimate the global prevalence) because it

ignores the correlations between the neighboring nodes. Recently introduced micro-

scopic epidemic clique equations (MECLE) [34], which generalizes the epidemic-link

equation to higher-order group interactions, predicted the density of infection and epi-

demic thresholds by taking the dynamic correlations between the neighboring nodes

into account. An interesting work for the future might be to see how the performance

of the SIP-based immunization strategy would be affected if the dynamical correla-

tions are considered. Accounting for such correlations rapidly becomes unfeasible as

the size of the hyperedges grow, therefore, it should be studied in hypergraphs whose

hyperedges are not too large.
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Chapter 3

Phase transition in vaccination strategy

3.1 Introduction

The spreading process in complex systems, such as networks [80, 81, 177, 244, 360]

and metapopulation [65, 66, 213, 228, 343], has been an active field of research for

modeling many physical and social phenomena [27, 132, 247]. This research has in-

cluded opinion formation in social groups [3,27,113,342], the spread of epidemic dis-

eases [89,152,229,235,265,343], and the diffusion of innovations [143,149,164,282].

Current access to a plethora of data [95, 153, 205] on human mobility, collaboration,

the contagion of epidemic disease, and temporal contacts, all of which were previ-

ously unavailable to researchers, now enable effective research into various dynamic

processes in social systems. Extensive research devoted to the spreading processes has

provided quantitative analyses for policy-making, especially in the public health do-

main. Moreover, study of the spreading process has provided a deeper understanding

of phase transitions and critical behaviors, such as the effect of structural heterogene-

ity on epidemic thresholds [265, 267, 343] and the hybrid phase transition induced by

cascades [59, 191, 192].

One of the most important topics in mathematical epidemiology is vaccination

strategy, which has been extensively studied with various epidemic models [52,62,63,

68,78,97,126,220,227,231,253,268,296,326,350]. If an individual is vaccinated for

certain epidemic disease, that individual acquires immunity to the disease. Actual vac-

cines have less than perfect efficacy, which means that there is a small probability that
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a vaccinated individual can be infected by the disease (i.e., a vaccine breakthrough).

It is often modeled that vaccinated individuals do not turn into the infected state even

in contact with infected individuals. In such a model, when a sufficient fraction of in-

dividuals in a system are vaccinated, the infection is unable to spread throughout the

system, and the epidemic state is eliminated by the vaccination. This effect is called

herd immunity. Vaccination strategies frequently aim to achieve herd immunity with

the smallest number of vaccine shots.

The SARS-CoV-2 pandemic is ongoing worldwide and has caused more than five

million deaths to date. Due to the development of effective vaccines for the disease, the

epidemic damage of the disease can be greatly reduced. However, in most countries,

especially developing countries, the number of vaccine shots available is less than the

total population [318]. Therefore, it is important to formulate a vaccination strategy

that minimizes the damage caused by the disease, such as the number of deaths, with

the limited supply of vaccines available. Currently, many countries are vaccinating

their populations in descending order of age, since the infection fatality rate (IFR)

for the COVID-19 increases with age [13, 22, 169, 206, 209, 223, 304]. However, the

effectiveness of this strategy needs to be quantitatively assessed.

Here, we employ the susceptible-infected-recovered-dead (SIRD) model, which is

a minimal model to study epidemic mortality. We evaluate the effectiveness of fatality-

based and contact-based vaccination strategies in a metapopulation model with het-

erogeneous contact and fatality rates. We find that the fatality-based strategy is more

effective than the contact-based strategy for a high contagion rate and low vaccination

supply, but the contact-based strategy outperforms the fatality-based strategy when a

sufficiently large amount of vaccine is available. Simulated annealing is implemented

to find the globally optimal vaccination strategy. We find that there is a discontinu-

ous transition of the optimal strategy and path-dependency analogous to hysteresis.

Further, we demonstrate that these phenomena occur in the vaccination of real-world

epidemic diseases, such as tuberculosis (TB) and COVID-19.
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3.2 Susceptible-infected-recovered-dead (SIRD) model

The susceptible-infected-recovered (SIR) model is a minimal model of epidemic spread-

ing and the most extensively studied model both in complex networks [152, 235, 267,

291] and in the metapopulation model [65, 66, 213, 228, 343], together with its vari-

ants [23, 36, 51, 55, 56, 59, 208, 212, 292, 314]. In the SIR model, each individual is in

either the susceptible (S), infected (I), or recovered (R) state. A susceptible individ-

ual can turn into an infected state if it comes into contact with an infected individual.

If a susceptible individual and an infected individual are in contact, the susceptible

individual is turned into the I state at rate η (it turns with probability η∆t in an in-

finitesimal time step ∆t). If the S individual is in contact with n infected individuals,

the rate becomes nη. Infected individuals eventually turn into the recovered state at a

constant rate µ. A recovered individual obtains immunity and does not turn into the

infected state again. In actual epidemic diseases, there is a probability of reinfection

whose effects on the results of this research are discussed in Sec. 3.3.4.

Vaccination strategy is one of the core topics in mathematical epidemiology; there-

fore, considerable research has been devoted to the subject [52, 62, 63, 68, 78, 97, 126,

220,227,231,253,268,296,326,350]. The objective of vaccination strategies in the SIR

model is to minimize the total number of individuals affected by the disease, which

can be measured by the number of recovered individuals when the infection vanishes,

with limited vaccination resources. However, one of the most important objectives of

vaccinations in the real world is to minimize the total number of deaths caused by a

disease. Because recovery and death are not distinguished in the SIR model, it cannot

be used to study vaccination strategies related to such a purpose. At this point, we

employ the SIRD model, which is a minimal model that distinguishes recovery and

mortality [8, 299, 338, 355].

In the SIRD model, similar to the SIR model, each individual is in either a suscepti-

ble (S), infected (I), recovered (R), or dead (D) state. The contagion occurs identically
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as in the SIR model. Any individual from subpopulation α (such as an age group) that

is in the I state turns into the R state at rate (1 − κα)µ or into the D state at rate καµ.

The rate equation for the SIRD model is, therefore,

S + I
η→ I + I , (3.1)

I
(1−κα)µ→ R , (3.2)

I
καµ→ D , (3.3)

where η is the contagion rate, µ is the recovery rate, and κα is the IFR of subpopulation

α. If an individual from subpopulation α is infected, the individual turns into R state

or D state with probability ratio (1 − κα) : κα. We assumed that the three processes

(contagion, recovery, and death) occur independently at constant rates. This assump-

tion reasonably describes the pathology of each individual; however, complex social

interventions such as quarantine and social distancing that depend on the number of

epidemic cases and mortality can complicate the process.

3.3 Results

3.3.1 Fatality- and contact-based strategies

A metapopulation model consists of interacting subpopulations, which are often but

not necessarily, spatially structured. The subpopulations are assumed to be well-mixed.

For epidemic studies using a metapopulation model, the density of epidemic states in

each subpopulation is tracked instead of tracking the epidemic states of each individ-

ual. The density of states evolves due to the interactions among subpopulations and

interactions that occur within the same subpopulation. Because metapopulation mod-

els have lower dimensions compared to networks, they allow more exhaustive studies

on the spread of epidemic diseases. The epidemic equation for the SIRD model in the
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Figure 3.1: (a–b) The mortality rate as a result of various vaccination strategies. The
contagion rate is (a) η = 0.05 and (b) η = 0.4, while the recovery rate is normalized
µ = 1. When the fraction of the population affected by the epidemic (i.e., the fraction
of R and D state at the end of the dynamic) is less than 10−4, we assume that herd
immunity is achieved, and the epidemic is eliminated by vaccination. The point at
which herd immunity is achieved is depicted as a dot. When the contagion rate is
low, the contact-based strategy is more effective regardless of the vaccination rate.
When the contagion rate is high, the fatality-based strategy is more effective at a low
vaccination rate; however, the contact-based strategy outperforms the fatality-based
strategy when the vaccine supply is sufficiently high, achieving herd immunity at a
lower vaccination rate. (c) The difference between the mortality rates resulting from
fatality-based and contact-based strategies. The fatality-based strategy reduces more
deaths compared to the contact-based strategy when the contagion rate is high and the
vaccination rate is low. However, as the vaccination rate becomes higher, the contact-
based strategy outperforms the fatality-based strategy.
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metapopulation model is

∂

∂t
ρIα(t) = η

(
ρSα(t)− vα

)∑
β

Mαβρ
I
β(t)− µρIα(t) , (3.4)

∂

∂t
ρRα (t) = (1− κα)µρ

I
α(t) , (3.5)

∂

∂t
ρDα (t) = καµρ

I
α(t) , (3.6)

where ρSα, ρIα, ρRα , and ρDα are the probabilities that an individual in group α is in the S,

I, R, and D state, respectively; vα is the fraction of vaccinated individuals in subpopu-

lation α; and Mαβ is the contact matrix, which is defined as the average contacts that

an individual in group α has with the individuals in group β.

Initially, an infinitesimal fraction, n0 = 10−8 of each group α of the population,

is in the I state, and all the rest of the population, 1 − n0, is in the S state. As long

as n0 is small enough, the value of n0 and how these initially infected individuals are

distributed among the subpopulations do not affect the final states ρR and ρD. The

differential equations are then solved by the fourth order Runge-Kutta method [185,

286] until the total fraction of infected individuals, ρI =
∑

α Pαρ
I
α, becomes less

than a certain threshold, 10−12, and the epidemic process ends (Pα is the fraction of

individuals in subpopulation α.). We then calculate the total fraction of the deceased

population ρD =
∑

α Pαρ
D
α .

We constructed a metapopulation model with heterogeneous contact and fatality

rates. The population has fatality rates κi =5%, 7.5%, 10%, 12.5%, and 15% and

relative contact rates cj =0.5, 0.75, 1, 1.25, and 1.5. The population is equally divided

into 25 subpopulations according to the five fatalities and five contact rates (5 × 5 =

25). The contact rate between groups (i, j) and (i′, j′) is Miji′j′ = cjc
′
j .

We investigated the effectiveness of random, fatality-based, and contact-based strate-

gies for various levels of vaccine supply. In the random strategy, the vaccine is ran-

domly distributed and each subpopulation is uniformly vaccinated. In the fatality-
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based strategy, the subpopulations are vaccinated in descending order of fatality rates,

and if two subpopulations have identical fatality rates, the one with a higher contact

rate is vaccinated. In the contact-based method, an infinitesimal amount of vaccine is

iteratively given to the age group with the highest contact rate with unvaccinated indi-

viduals until the total amount of vaccine is distributed. The contact rate of age group

α with unvaccinated individuals is

∑
β

Mαβ (1− vβ) , (3.7)

and the value is recalculated at each iteration. This differs from the contact rate of age

group α with any individual in the population, which is
∑

βMαβ .

The mortality rate of the population when each vaccination strategy is employed

is illustrated in Figs. 3.1(a) and (b). When the contagion rate is low, the contact-based

strategy results in a lower mortality rate than the fatality-based strategy regardless of

the vaccination rate; however, for a high contagion rate, there is a crossover between

the strategies. The fatality-based strategy more effectively reduces mortality when the

vaccination rate is low, but the contact-based strategy outperforms the fatality-based

strategy when the vaccination rate is high. If the vaccination rate is sufficiently high,

herd immunity is achieved regardless of the choice of the vaccination strategy (fatality-

based, contact-based, random, etc). The difference between the mortality rates when

fatality- and contact-based strategies are employed is depicted in Fig. 3.1(c). The

fatality-based strategy is effective when the contagion rate is high and the vaccine

supply is low.

3.3.2 Transition and path-dependency of the optimal vaccination strat-

egy

In this section, we further investigate the vaccination rate dependency of the vaccina-

tion strategy and demonstrate that the optimal vaccination strategy undergoes a dis-
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Figure 3.2: (a, d) Fraction of recovered population, (b, e) average fatality of the vac-
cinated population, and (c, f) average contact rate of the vaccinated population of the
synthetic metapopulation model with heterogeneous fatality and contact rates. The re-
covery rate is normalized to µ = 1, and contagion rates are (a–c) η = 0.05 and (d–f)
η = 0.4. The increasing (decreasing) curve, where the locally optimal vaccination
strategies are found by iteratively increasing (decreasing) the vaccination rate, is de-
picted as solid red (dashed blue) lines. The globally optimal strategies are found by
simulated annealing (SA). There is no abrupt transition nor separation of the curves
for a low contagion rate, η = 0.05, and the optimal vaccination strategy prefers to vac-
cinate individuals with high contact rates regardless of the vaccination rate. For a large
contagion rate, η = 0.4, there is an abrupt transition in the globally optimal strategy.
The separation of the increasing and decreasing curve indicates the path-dependency
of the vaccination strategy which is analogous to hysteresis. For a small (0–0.56) or
large (0.67–1) vaccination rate, the increasing and decreasing curves coincide; how-
ever, near the transition point, the increasing curve tends to vaccinate individuals with
high fatality rates (high-fatality strategy) and the decreasing curve vaccinates individ-
uals with high contact rates (high-contact strategy). The High-fatality strategy results
in a higher number of recovered population than the high-contact strategy because the
high-fatality strategy aims to protect high-risk groups, while the high-contact strategy
aims to contain the infection.
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Figure 3.3: The mortality rate of a mixed strategy that combines the high-fatality and
high-contact strategies. The contagion rate is η = 0.4, and vaccine supply is, from top
to bottom, 58%, 60%, 62%, 64%, and 66%. There is a barrier of mortality rate between
the high-fatality and high-contact strategies, which is the cause of the path-dependency
and discontinuous transition of the vaccination strategy.

The mortality rate of the high-contact strategy drops faster than the high-fatality
strategy as the level of vaccine supply increases, causing the crossover between the

two strategies.

continuous transition. To find the globally optimal vaccination strategy, we implement

a modified version of the simulated annealing technique. The simulated annealing is a

probabilistic optimization algorithm inspired by spin glass [174]. First, we start with a

random vaccination strategy with a given amount of vaccine supply. We set this strat-

egy as a provisional solution. We then calculate the mortality rate of a trial strategy,

which is perturbed from the provisional solution by a small amount while keeping the

vaccine supply of the total population constant. If the mortality rate of the trial strat-

egy is smaller than that of the provisional solution, we replace the provisional solution

with the trial strategy. Otherwise, we replace the provisional solution with the trial

strategy with probability exp (−1/T ), where T is the temperature of the algorithm. In

the beginning, the temperature is set at T = 2. We iterate this process niter = 106

times, while the temperature is dropped by a factor of fiter = 1 − 2 × 10−5 at each

step. The resulting provisional solution is the optimal vaccination strategy, given that

niter is sufficiently large and fiter is sufficiently close to one. To find locally optimal

solutions, we use the zero-temperature simulated annealing, which is analogous to the

gradient-descent method. We perturb the provisional solution by decreasing the vacci-
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nation rate of group α by δv/P (α) and increasing the vaccination rate of group β by

δv/P (β), where δv is a small number, and P (α) is the fraction of the group α in the

population. This way, the total vaccination rate of the entire population remains con-

stant. Among perturbed solutions, if any solution results in a smaller mortality rate, we

replace the provisional solution with the perturbed solution that results in the smallest

mortality rate. Otherwise (i.e., if all the perturbed solutions result in larger mortal-

ity rates than the provisional solution), we have achieved a locally optimal solution;

hence, we terminate the process.

To investigate the path-dependency of the optimal vaccination strategy, we itera-

tively increased and decreased the vaccination rate by a small amount, while constantly

calculating the locally optimal vaccination strategy in the vicinity. To obtain the in-

creasing curve, we first set the vaccination rate to ∆v = 0.01 and find the optimal

vaccination strategy v(I)β (∆v). We then increase the vaccination rate by ∆v and find

the locally optimal vaccination strategy v(I)β (2∆v) near the optimal strategy from the

previous step. We repeat this process until the vaccination rate reaches one. To obtain

the decreasing curve, we start from a vaccination rate of 1−∆v and repeat the process.

The results are illustrated in Fig. 3.2. Fraction of the recovered population ρR,

average fatality, and contact rates of the vaccinated individuals are depicted as charac-

teristics of vaccination strategies. These values are analogous to the order parameters

of the phase transition in thermal systems and the vaccination rate is the control pa-

rameter. The order parameters of the two local mortality minima are depicted in the

curves similarly to the magnetization of the two free energy minima is depicted in the

hysteresis curve of the magnetic systems. The global mortality minimum corresponds

to the global free energy minimum where the system lies in the Boltzmann distribu-

tion. For a low contagion rate, there is no abrupt transition of the optimal vaccination

strategy. For a high contagion rate, an abrupt transition of the globally optimal vac-

cination strategy, which is obtained by simulated annealing, discontinuously changes.

Moreover, there is a path-dependency in the vaccination strategy. When locally optimal
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vaccination strategies are found by slowly increasing the vaccination rate from zero,

the strategies vaccinate individuals with high fatality rates in the middle region (high-

fatality strategy). If the strategies are found by slowly decreasing the vaccination rate

from one, they primarily vaccinate individuals with high contact rates (high-contact

strategy). A high-fatality strategy results in a higher fraction of recovered individuals

than the high-contact strategy, even though the strategies’ mortality rates are similar or

the same in the vicinity of the transition point.

The path-dependency of this transition implies that a moderate strategy that com-

bines the high-fatality and high-contact strategy can be less effective than either strat-

egy. The vaccination rate of the moderate strategy is vmod
α = rvfα + (1− r)vcα, where

vfα and vcα are the vaccination rates of subpopulation α in the high-fatality and high-

contact strategy, respectively. The performance of the moderate strategy for various

levels of vaccine supply is depicted in Fig. 3.3. There is a barrier of mortality rate be-

tween the high-fatality and high-contact strategies, and the moderate strategy is never

more effective than both of the strategies, and in some regions, it is less effective than

either of the two strategies. Hence, it is inadvisable to mix the two strategies or change

from one to the other in the middle. The mortality rate of the high-contact strategy

(r = 0) decreases faster than the high-fatality strategy (r = 1), which results in an

abrupt transition of the optimal vaccination strategy from a high-fatality to a high-

contact strategy.

3.3.3 Real-world epidemic diseases

In this section, we show that the discontinuous transition and path-dependency of the

optimal vaccination strategy illustrated in the previous section occur in the vaccina-

tion of actual epidemic diseases, such as tuberculosis (TB) and COVID-19. Contact

data between each age group in the various countries have been studied utilizing sur-

veys [234]. To model TB, we employed a contact matrix calculated from the UK data

along with the incidence risk ratio of TB in the UK [270]. The population is divided
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Figure 3.4: The age contact matrix of the (a) United Kingdom and (b) United States,
and (c) contact rate of each age group. The population is divided into 17 groups: aged
0–4, 5–9, . . . , 75–79, and above 80. The interaction strength between groups of sim-
ilar age is disproportionately higher, and the groups of ages 10–29 show the highest
number of contacts. (d) The fatality rates of TB in the United Kingdom (UK) and
COVID-19 in the United States (US). The fatality rate is highly heterogeneous and
monotonically increases with age, with the sole exception of children below age five
in TB. Therefore, the senior population is primarily vaccinated by the fatality-based
strategy, and individuals of age 10–29 are primarily vaccinated by the contact-based
strategy.
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Figure 3.5: Average age of vaccinated individuals for (a) TB, (b) COVID-19, and
(c) COVID-19 with reinfection and finite vaccine efficacy. The contagion rates are
η = 0.25, and the recovery rate is normalized to µ = 1. The total amount of vac-
cine is increased (solid red line) and decreased (dashed blue line) while keeping the
vaccination strategy at its local optimum. For a small vaccination rate, the increas-
ing curve and decreasing curve coincide; however, for a sufficiently large vaccination
rate, the two curves show a largely unequal average age of the vaccinated population.
The increasing curve has a higher average age. The globally optimal strategy, which is
calculated by the simulated annealing, undergoes an abrupt transition from the high-
fatality to the high-contact strategies. The separation of the increasing and decreasing
curve indicates the path-dependency of the vaccination strategy which is analogous to
hysteresis.
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Figure 3.6: The mortality rate of the mixed strategy of high-fatality and high-contact
strategies for (a) TB and (b) COVID-19. The contagion rate is η = 0.25, and the vac-
cine supply is, from top to bottom, 52%, 54%, 56%, 58%, and 60%. There is a barrier
of mortality rate between the high-fatality and high-contact strategy, which is the cause
of the discontinuous transition and path-dependency of the optimal vaccination strat-
egy. The mortality rate of the high-contact strategy drops faster than the high-fatality
strategy as the level of vaccine supply increases, and herd immunity is achieved at a
lower vaccine supply.
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into 17 groups: aged 0–4, 5–10, ..., 75–79, and above 80. For COVID-19, we use the

contact matrix of the US and the age-dependent IFR obtained from a meta-analysis of

medical literature [206]. The latter is calculated as

log10 IFR = (−3.27± 0.07) + (0.0524± 0.0013) age . (3.8)

The contact matrices and the fatality rates of the diseases are illustrated in Fig. 3.4.

Contact within a similar age group is disproportionately intense (Figs. 3.4(a, b)), and

contacts between teenagers exhibit the highest strength. Fatality rates of the diseases

monotonically increase with age, except for children below age five for TB. As a re-

sult, the fatality-based strategy primarily vaccinates the senior population, while the

contact-based strategy vaccinates the teenagers first.

The average age of the vaccinated individuals are presented for TB (Fig. 3.5(a))

and COVID-19 (Fig. 3.5(b)). Both figures exhibit the discontinuous transition and

path-dependency of the optimal vaccination strategy. The increasing curve vaccinates

the senior population more than the decreasing curve, which corresponds to the phe-

nomenon depicted in Fig. 3.2(e), where the increasing curve has a greater preference

to vaccinate individuals from groups with high fatality rates than the decreasing curve.

Also, there are barriers of mortality rate between the high-fatality and high-contact

strategies (Fig. 3.6), suggesting that mixing the two strategies is ineffective. As the

vaccination rate increases, the mortality associated with the high-contact strategy de-

creases faster than that of the high-fatality strategy to achieve herd immunity at a lower

vaccine supply.

3.3.4 Complex epidemic stages, vaccine breakthrough infection, and re-

infection

The previous results are obtained in simplified models. In this section, we demonstrate

that the more complicated behaviors of the actual diseases do not significantly alter the
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findings of this research. First, in the real world, actual infectious diseases progress in

a series of epidemic stages, such as the incubation period, prodromal period, and acute

period. Each of these stages has a distinct rate of spreading the disease. These stages

have complicated effects on the temporal dynamics of epidemics, but in this study, only

the fraction of population in each epidemic state (R and D) at the end of the epidemic

is relevant. In this sense, the complex stages of a disease can be reduced to a simplified

model. For instance, suppose there multiple infectious stages Ik (k = 1, · · · ,K) of a

disease, each with contagion rate ηk and progression rate µk (i.e., S + Ik → I1 + Ik

occurs with rate ηk, Ik → Ik+1 occurs with rate µk, and IK → R occurs with rate µK).

The total recovered population at the end of the epidemic disease is then identical to

that of the SIR model with contagion rate η∗ =
∑

k ηk/µk and µ = 1. To model an

incubation stage, we can set ηI = 0 and µI = 1/τI , where τI is the incubation period

of the disease.

Also, we assumed that vaccinated individuals never become infected even in con-

tact with infected individuals. However, people who are vaccinated still can get in-

fected by COVID-19. An infection of a vaccinated individual is referred to as a vaccine

breakthrough infection. To include vaccine breakthrough infection, we can suppose a

vaccine efficacy of θ < 1, and the vaccinated individuals turn into the infected state at

a rate of (1−θ)η instead of η. Additionally, even when an infected individual recovers

and obtains immunity to the disease, there is a small probability that the individual can

be infected by the disease again. Such reinfection can be modeled as some individuals

losing immunity [252, 288, 290]. Hence, individuals in state R turn into S state at rate

ν. The typical time for an individual to lose immunity is 1/ν. Individuals in the D state

remain in the D state.

We included vaccine breakthrough infections and reinfections to COVID-19 and

illustrated the average age of the vaccinated population in Fig. 3.5(c). The vaccine

efficacy is θ = 0.9, and the rate of immunity loss is ν = 0.05. This means that typically

the immunity of a vaccine is lost over a duration 20 times the average recovery time
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of the disease (∼ 200 days). The discontinuous transition of the optimal strategy and

path-dependency still manifests themselves in the model with these modifications.

3.4 Conclusion

In summary, we employed the SIRD model to investigate the effectiveness of vaccina-

tion strategies to minimize the mortality rate in a population with heterogeneous fatal-

ity rates. We constructed a synthetic metapopulation model with heterogeneous fatality

and contact rates to investigate how the effectiveness of vaccination strategies relates

to the amount of vaccine available. Vaccinating individuals with high fatality rates is

effective when the contagion rate is high and the vaccine supply is low. We found

the discontinuous transition and path-dependency, which is analogous to hysteresis

in statistical physics, of the optimal vaccination strategy. The path-dependency of the

vaccination strategy implies that combining high-fatality and high-contact strategies

is ineffective in reducing the mortality rate of the epidemic disease. We also demon-

strated that such phenomena occur in real-world epidemic diseases, such as TB and

COVID-19. These conclusions are valid even when complex stages of a disease, vac-

cine breakthrough infection, and reinfection are considered.

In conclusion, the effectiveness of vaccination strategies is closely related to the

amount of vaccine available. Hence, the quantity of vaccine supply should be estimated

before the design of the vaccination strategies. Precise estimation of the contact matrix,

basic reproduction number, and the IFR of the population is also important. In the

survey data used in this paper, all types of contacts were treated equally. However, the

contagion rate of disease among individuals who live in the same house, work in the

same place, or shop in the same grocery store should differ from each other. If more

accurate contagion tree data of the disease are collected and implemented, the relative

strength of such interactions can be taken into account. Although the effectiveness

of the strategies at specific vaccination rates will be modified if the precision of the

dataset is improved, because the discontinuous transition and path-dependency of the
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optimal vaccination strategies occur in various epidemic models with a wide range of

parameters, the conclusions of this research should still be valid.
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Chapter 4

Application of graph neural network (GNN) on spread-

ing processes

4.1 Introduction

4.2 Prediction and mitigation of avalanche dynamics in power

grids using graph neural network

Small, local disturbances in a complex networks can trigger consecutive failures of

other nodes in the network. Most failures remain local and do not last for an extended

period [44,86,154]. However, there is a small probability that they will spread through-

out the network, resulting in catastrophic global failure. This type of failure in infras-

tructure networks such as the Internet and electrical grids can result in tremendous

financial damage and even the loss of human lives. For example, in the Northeast

blackout of 2003, an initial disturbance in Ohio triggered the largest blackout in North

American history, which affected more than 50 million people and lasted for up to 15

hours in the US and Canada.

The prediction and control of cascading failures in complex networks is a cen-

tral topic of research in network science. Conventional epidemic models [262] based

on local contact process, propagating in branching process, fail to capture the unique

features of cascading failures that propagate nonlocally [131, 255]. Therefore, several

models have been proposed to simulate such nonlocal cascading failures, and this sub-
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ject has been extensively studied.

Most studies of cascading failures have used numerical simulations and enumera-

tion. In this study, computational complexity is an important issue. The computational

complexity of the local cascading failure dynamics is generally somewhat lower than

that of the nonlocal dynamics. For instance, for the k-core percolation [193], cascading

failure occurs at nodes with a degree of less than k. Thus, cascading failures propagate

locally. The calculation of a single cascade step has a time complexity of O(N) in a

network withN nodes and can be simulated even in large-scale networks. By contrast,

the random resistor network model [74], in which cascading failures propagate nonlo-

cally, has a time complexity of O(N2) because of a critical slowdown near the critical

point. To overcome this problem, Batrouni et al. [14] proposed the Fourier acceleration

algorithm, which decreased the computation complexity dramatically, to O(N logN).

In the Motter–Lai (ML) model [241], cascading failure propagates nonlocally, and the

time complexity is higher, O(N2 logN), because the shortest paths must be identified

for a single cascade step. Therefore, the ML model has been simulated only for small

networks.

The ML model [241] was proposed to study data packet transport along the shortest

paths between two routers on the Internet. When heavily loaded nodes break down,

network traffic is rerouted, causing load redistribution; consequently, cascading failure

can occur at nodes distant from the failed nodes. This simple dynamics of the ML

model makes it possible to understand the propagation of cascading failure in detail;

thus, the model has been widely implemented [87, 123, 134, 181, 186, 195, 240, 295,

336, 345, 358, 359].

In this study, we addressed the problem of avalanche mitigation. We define the

avalanche centrality (AC) of each node and show that this quantity can be used to

effectively suppress avalanches. To reduce the time complexity of the AC calculation,

which exceeds O(N3 logN), we used a graph neural network (GNN) approach. The

GNN is a deep learning model for analyzing graph data; it was introduced by Scarselli
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Figure 4.1: Computation time of ML model as a function of network size. The Schultz–
Heitzig–Kurths (SHK) random power grid model was used. The computation time is
proportional to N3.3; thus, if the network size doubles, the computation time increases
by approximately tenfold. More than a year of computation is required to simulate the
process in a network of size N = 25000 using the CPU of model i7-10700.

et al. [293]. In particular, we constructed a scalable GNN structure that is independent

of network size using an inductive learning scheme that is applicable to various type

of networks. The GNN structure was designed to be effective for modeling a large

network, even if it is trained using the simulation results for a small network. An

avalanche mitigation strategy that uses this methodology and is applicable to large-

scale networks, which are impractical to simulate, is proposed.

4.2.1 Avalanche dynamics

Many models of cascading failure dynamics have been proposed, for example, random

fuse networks [74], k-core percolation [20, 79, 109, 193], dynamically induced cas-

cades [294], and others [19,33,48,71,172,191,281]. Among them, the ML model [241]

is one of the simplest models capable of capturing the avalanche dynamics of propa-

gation through nonlocal nodes. It has been applied to power grids [181]. This simple,

shortest-path-based model can be used to understand the avalanche process. Conse-

quently, it has been extensively applied in studies of suppression strategies [123, 240],

the analytic calculation of the robustness criterion [358, 359], the effect of network
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Figure 4.2: Avalanche size distribution of SHK network with various numbers of nodes
for the ML model. The control parameter a is taken as 0.25, at which the avalanche
sizes have a scale-free distribution with exponent τ ≈ 1.6.

topology [345], and other topics [87, 134, 181, 186, 195, 295, 336].

In the ML model [241], the capacity Ci of each node i is proportional to the be-

tweenness centrality (BC), B(0)
i , of node i, as follows:

Ci = (1 + a)B
(0)
i , (4.1)

where a > 0 is a model parameter. The superscript (0) denotes that the BC is calculated

in a network without any failure. The BC is the number of shortest paths that pass

through the node; it is written as

B
(0)
i =

∑
j ̸=k ̸=i

mjk(i)

mjk
, (4.2)

where mjk is the number of shortest paths between nodes j and k, and mjk(i) is the

number of those paths that pass through node i.

We initiate the avalanche dynamics by causing node i on the network to fail. The

failed node is effectively removed from the network, as all the connected links are

disconnected. Then, all the shortest paths that had passed through node i are rerouted

to detours. Consequently, the excess BC is redistributed over the network. The BC of
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each node j is then updated to B(1)
j . If the updated B(1)

j exceeds the capacity of the

preassigned node, Cj , node j is overloaded and fails. Other nodes with BCs exceeding

their capacities fail simultaneously. Then the BCs of the remaining active nodes are

again updated to B(2)
k . The process is repeated until there are no overloaded nodes in

the network: B(t)
k < Ck for all remaining nodes k.

The avalanche size Si of each node (i = 1, · · · , N ) has a distribution Pa(S). On

scale-free networks, the distribution exhibits power-law behavior as Pa(S) ∼ S−τ ,

where τ ≈ 2.1 when a particular value of a is chosen, which is denoted as ac ≈
0.15 [195]. This result may indicate that Pa(s) exhibits critical behavior at ac. The

exponent τ is insensitive to the degree exponent λ of scale-free networks and seems

to be closely related to the exponent of the diameter-change distribution when nodes

are deleted one by one [171]. It has also been found that the average size ⟨s(k)⟩ of

avalanches triggered by removing each node with degree k depends on k as ⟨s(k)⟩ ∼
k(λ−1)/(τ−1). Note that the avalanche size distribution observed in cascading failures

in real-world electric power grids has a heavy-tailed distribution [43–45, 77, 130].

In this study, we simulated the ML model on a network model proposed by Schultz,

Heitzig, and Kurths (SHK), which was designed according to the essential features of

real-world electric power grids [297]. This model has many control parameters. Using

an appropriate set of parameter values used in Ref. [249], we obtained power-law

behavior of the avalanche size distribution at ac ≈ 0.25. The exponent τ ≈ 1.6 was

found as shown in Fig. 4.2, which is close to τ = 1.5, the value of the sandpile model

in random networks [108].

The ML model was modified for application to electric power grids by Carreras et

al. [42]. In this modified ML model, each node i is characterized by an input power Pi,

which has positive and negative values for power generators and consumers, respec-

tively. To account for the avalanche failures of links rather than nodes, the capacity of

each link is defined as Cij = (1 − a)Fmax
ij , where Fmax

ij is the maximum power flow

through link (ij) between nodes i and j. At each time step, the direct-current circuit
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Figure 4.3: Paradoxical effect of reinforcement in electric power grid of France. Red
square (indicated by A) represents the initial failure, red dots represent secondary fail-
ures, and blue triangle (indicated by B) represents a reinforced node. (a) and (b) If no
node is reinforced, the avalanche ends at t = 2 with avalanche size S = 5. (c)–(f)
If node B (▲) is reinforced, the avalanche lasts until t = 4, and the avalanche size
increases to 33. Because the reinforced node does not fail, heavy traffic through route
via node B (blue arrow) is maintained, causing other nodes on the route to fail. Rein-
forcement thus may result in a significantly larger global cascade.

equation is solved, and the power flow Fij through link (ij) is obtained. If Fij > Cij ,

link (ij) is disconnected, and the power flow of each link is recalculated. This link

disconnection process is repeated until further link failure occurs. The avalanche size

is obtained by counting the number of failed links.

4.2.2 Avalanche mitigation strategy

Various methods of reducing the avalanche size in the ML model have been imple-

mented. For instance, after an initial failure but before the failure propagates to other

nodes, selected nodes are removed to reduce the avalanche size [123, 240]. However,

the initial failure often propagates so rapidly that it is impossible to remove nodes in-

volved in significant propagation of the failure. As another strategy, a parameter a is

assigned to each node under the constraint
∑

i ai = const [336]. However, there is
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no way to adjust the capacity of every node to an appropriate value to minimize the

avalanche size.

In this study, we compare the performance of various strategies that minimize the

avalanche size when nodes are reinforced. To simplify the problem, we suppose that

reinforced nodes never fail unless they are intentionally chosen as the initial failure

of the cascade; however, the effectiveness of the strategies should be maintained even

when reinforcement is finite.

The problem with reinforcement is analogous to the problem of vaccination against

epidemic contagion, where epidemic spreading is minimized by vaccination; however,

there is a crucial difference. Specifically, during epidemics, a node is eliminated after

vaccination, and the centrality measures of the network are recalculated to determine

the next node to be vaccinated [6, 62, 63, 230, 340]. This process is repeated until

the feasible number of vaccinations is reached. In the avalanche mitigation problem,

however, reinforced nodes can remain in the power flow; they simply do not fail even

if the power flow increases.

Avalanche mitigation poses a novel type of vaccination problem in which the

effects of reinforced nodes on the avalanche are complex. A unique feature of the

avalanche mitigation problem is the paradoxical effect of reinforcement. In some cases,

reinforcement of a node can increase the avalanche size. As shown in Fig. 4.3, even if

one correctly predicts that node B is at risk and reinforces it, reinforcement results in

a significant increase in avalanche size. Therefore, reinforcement of nodes without a

systematic strategy can be counterproductive.

To characterize the role of each node in the avalanche dynamics, we define a binary

variable xij , which is 1 if node j fails in an avalanche triggered by node i and is 0

otherwise (xii = 1). Then, the avalanche fraction of node i is given by si =
∑

j x
i
j/N .

This quantity represents the effect of node i in cascading failures. The failure fraction

fj of node j is defined as fj =
∑

i x
i
j/N and represents the probability that node j fails

in isolation or because of triggering by another node. These two quantities characterize
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the role of each node in cascading failures. For instance, if si ≫ 0 but fi ≪ 1, then

node i triggers a large avalanche, but its effect on the avalanche is rather limited.

We define the AC of node i as

Ai = si

(
fi −

1

N

)
, (4.3)

where the factor 1/N accounts for the case where node i is selected as the initial trigger

of the avalanche. Fig. 4.9 shows that the avalanche size can be reduced by reinforcing

nodes with high ACs.

We define the performance measure Rm of each avalanche mitigation strategy as

Rm =

∫ 1

0
φ(r)dr ≃

∑
i

φ(ri) + φ(ri+1)

2
∆r , (4.4)

where

φ(r) =
s̄(r)− 1/N

s̄(0)− 1/N
. (4.5)

Here r denotes the fraction of reinforced nodes, and s̄(r) is the mean avalanche frac-

tion; that is,
∑

i si(r)/N when a fraction r of nodes are reinforced according to the

avalanche mitigation strategy. The term 1/N is needed to exclude initial failure from s.

Consequently, φ(0) = 1, φ(1) = 0, and 0 ≤ Rm ≤ 1. AsRm decreases, the avalanche

mitigation strategy becomes more efficient. To calculate Rm, we use ∆r = 0.01 for

small networks (N ≤ 1000) and ∆r = 0.1 for large networks (N > 1000) to avoid

excessive computational cost.

Fig. 4.9 shows the φ(r) values of various avalanche mitigation strategies in the

SHK network. The area under each curve represents the performance measure Rm.

Reinforcing nodes with high network centralities, such as degree centrality, eigenvec-

tor centrality, and BC, blocks the avalanche dynamics more effectively than random

reinforcement. The strategy based on an avalanche fraction s is effective in a small r

range. The strategy based on the failure fraction f is even less effective than random
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reinforcement for small r. However, for sufficiently large r, strategies based on s and

f both become more effective than other strategies except that based on the AC, and

the cascading failure is reduced to zero at a certain value rc. This value corresponds

to the threshold of herd immunity in epidemics. The strategy based on the AC that

takes into account both the avalanche and failure fractions becomes the most effective

strategy among all the strategies in the broad range r < rc.

Table 4.1 lists the performance measureRm for various avalanche mitigation strate-

gies in the SHK networks of various sizes and real-world electrical power grids. The

AC-based strategy exhibits fairly good performance compared with all other meth-

ods. We remark that the BC-based strategy is also highly effective. However, it is

not scalable because of the logarithmic correction of the computational complexity

O(N2 logN). Thus, strategies using scalable centrality measures such as degree cen-

trality and eigenvector centrality can be employed in the GNN.

4.2.3 Graph neural network (GNN)

The AC can be used for effective avalanche suppression; however, it has high com-

putational complexity as high as O(N3 logN). Thus, it cannot be calculated directly

in large networks. To overcome this problem, we apply the GNN, a deep learning

algorithm that can be used for graph-structured data [293]. We constructed a GNN

structure applicable to networks of different sizes. This GNN was trained using the

ACs obtained by simulations of small networks. Then, the AC of each node in large

networks, where simulations using the ML model are not feasible, can be predicted.

We used the SHK network, a synthetic network mimicking a power grid, to sim-

ulate avalanche failures. The network size was selected at random from 100 to 999 in

uniform increments. The dataset consists of 104 data.

The GNN is a type of space-based convolutional GNN [346] composed of graph

isomorphism network (GIN) layers [348], as shown in Fig. 4.5. In the GIN layers,

the hidden feature yi of node i is updated according to its own value and those of the
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Figure 4.4: Performance of avalanche mitigation strategies in the SHK network of
size N = 1000. Degree, eigenvector centrality (EC), betweenness centrality (BC),
avalanche fraction (s), failure fraction (f ), avalanche centrality (AC), and GNN es-
timation of avalanche centrality (AC-GNN) are employed for avalanche mitigation
strategies. Nodes are reinforced in descending order of the corresponding centrality
measure. The area under each curve is the performance measure Rm.
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Figure 4.5: Structure of GNN. Only the adjacency matrix of the network is input, and
the features of all nodes are initially constant. Batch normalization and ReLU activa-
tion are applied between each pair of adjacent GIN layers, but they are omitted from
the diagram for simplicity. A short skip connection is applied between each pair of
adjacent GIN layers, and an elementwise average is obtained before the regressor. The
regressor is implemented as a single–layer perceptron followed by a sigmoid function
for normalization.

nearest–neighbor nodes of i, that is, {yj}, where j ∈ n.n. of i as

y′i = hΘ

(1 + ϵ)yi +
∑

j ∈ n.n. of i

yj

 , (4.6)

where ϵ is a constant and hΘ is taken to be a two-layer perceptron for the trainable

parameter Θ. The GNN also has a batch normalization layer [139] and a rectified

linear unit (ReLU) activation function between subsequently GIN layers.

The ML model is based on the BC, which contains a global connection information

of network. Therefore, the GNN must consider not only local information around a

given node, but also the global information of the entire network. As shown in Eq (4.6),

the GIN layer is used for one-hop calculation. yi is updated locally. To address the

global features at longer hopping distances, many layers should be stacked. This deep

structure may cause the so-called vanishing gradient problem [124]. To mitigate this

problem and to take into account the effect of nodes at various hopping distances [2,

328], the short skip connection algorithm [309] is applied for every pair of adjacent
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Table 4.2: Hyper parameters used to train GNN.
name value
node embedding dimension 128
batch normalization momentum 0.1
optimizer RMSprop
learning rate 10−3

loss MAE
L2 value 10−5

layers. Table. 4.2 lists the hyperparameters used to train the GNN.

To perform avalanche mitigation in the GNN framework, it is necessary to rank the

ACs of the nodes. This information makes it possible to handle all reinforcement states

because one can choose a node set depending on the available reinforcement resources.

Because the AC distribution is highly skewed, simple node feature regression is not an

appropriate approach. Instead, we applied the quantile transformation to the ACs and

then the min-max scale to the obtained values for normalization. The validation and

test datasets were scaled using the scaler fitted to the training dataset.

Let zi is an observable, for example, the AC of node i. Rank(i) is defined according

to the relative size of zi among others. σ(i) is the estimated rank of zi using the GNN.

A pair of observables (zi, zj) is concordant if the order of their ranks is correctly

estimated: for the Rank(i) < Rank(j), σ(i) < σ(j). The pair is discordant, otherwise.

A well-known metric for ordinal association is the Kendall rank correlation or

Kendall’s tau [166], which is defined as

τ =
nc − nd
nc + nd

, (4.7)

where nc and nd denote the numbers of concordant and discordant pairs, respectively.

This Kendall’s tau is expressed explicitly as

τ =
2

N(N − 1)

∑
i<j

sign (zi − zj) sign (σ(j)− σ(i)) . (4.8)
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Figure 4.6: The cumulative fractionCσ(n) of AC as a function of n on an SHK network
of sizeN = 1000. The mean cumulative fraction ⟨Cσ⟩ is the area under the cumulative
fraction Cσ(n) curve. A large ⟨Cσ⟩ means that the ranking estimation performs well.
Red solid curve is obtained by taking the estimated rank σ as the graph degree, i.e., the
number of connections, of each node. The estimated curve lies between those of the
descending order (best case) and ascending order (worst case).

In the calculation of Kendall’s tau, the incorrect ranking of two values that differ

greatly receives the same penalty as the incorrect ranking of two similar values. How-

ever, the former error is likely to be disproportionately detrimental (in avalanche mit-

igation, for example). This problem may be more important for highly heterogeneous

data.

Accordingly, we propose a new quantity, the cumulative fractionCσ(n) ≡
∑n

i=1 zσ(i)/
∑N

j=1 zj .

This represents the contribution of n the most highly estimated zis in the sum of all val-

ues in the data. The average of Cσ(n) over n (denoted as ⟨Cσ⟩) represents the overall

performance of the σ estimation.

⟨Cσ⟩ =
N∑

n=1

1

N

n∑
i=1

zσ(i)∑N
j=1 zj

=
N∑
i=1

N − i+ 1

N

zσ(i)∑N
j=1 zj

. (4.9)

Fig. 4.6 shows the behavior of Cσ(n) as a function of n. Cσ(n) is always between the

two extremes: the descending and the ascending orders of Rank(i) (i = 1, · · · , N).
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Accordingly, we define the normalized ⟨Cσ⟩ (denoted as ⟨Cσ,N ⟩) as

⟨Cσ,N ⟩ ≡ ⟨Cσ,N ⟩ − ⟨Cascending⟩
⟨Cdescending⟩ − ⟨Cascending⟩

. (4.10)

Then, 0 ≤ ⟨Cσ,N ⟩ ≤ 1.

We also use R2 score to evaluate the prediction of zi value, which is defined as

follows [104]:

R2 ≡ 1−
∑N

i=1(zi − ẑi)
2∑N

i=1(zi − z̄)2
, (4.11)

where ẑi is the estimated value of zi and z̄ is the average of all zi.

Fig. 4.7 shows the performances of the R2 score, ⟨Cσ,N ⟩, and Kendall’s tau for the

prediction of zi obtained by the GNN. Although the R2 score decreases rapidly as the

network size increases (N = 1000−8000), the ⟨Cσ,N ⟩ and Kendall’s tau values of the

GNN do not change significantly as N increases. This result suggests that R2 score

fails to predict the AC values of networks larger than those in the training dataset. As

shown in Fig. 4.9 and Table. 4.1, node reinforcement according to the AC predicted by

the GNN is also effective for suppressing avalanches in the SHK model as well as in

several real-world electric power grids of Spain, France, and UK. We remark that the

GNN was trained on the SHK model, however, the real-world electrical power grids

were not trained.

4.2.4 Conclusion

In summary, we introduced the concept of the avalanche centrality (AC) of each node

in networks and showed that reinforcing nodes in descending order of AC is effective

for suppressing the nonlocal avalanche propagation in electrical power grids. How-

ever, the calculation of the AC has a high computational cost. Therefore, we employed

a GNN to address this problem. We trained the GNN with the ACs of small networks

and showed that it can be used for larger networks where the direct calculation of the

ACs is not feasible. The GNN predicts the descending order of AC in large networks,
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Figure 4.7: Performance of the GNN prediction in large networks in the range N =
1000−8000, which is trained in various network sizes from 100 to 999. All the results
are averaged over 4 different GNNs with different random seed. (a) R2 scores for dif-
ferent system sizes: the R2 score is not appropriate to predict the performance because
the AC values are distributed very skewed. (b) and (c) ⟨Cσ,N ⟩ and Kendall’s tau for
different sizes, respectively. (Blue, dark bars) the GNN predicts ranks of ACs using a
quantile scaled dataset. (Orange, light bars) the GNN predicts values of ACs using a
raw dataset. Rank prediction using the quantile scaling marked in blue is better and
more consistent than value prediction marked in orange. The representation by ⟨Cσ,N ⟩
in (b) is more appropriate compared with that by the Kendall’s Tau in (c).

allowing the effective suppression of avalanche failures in electrical power grids. Con-

ventionally, the Kendall’s tau was used as a performance measure of ranking estima-

tion. However, this measure contains intrinsic drawback: the incorrect estimation of

the order of two values that differ greatly is penalized similarly to that of the ranking

of two slightly different values. To overcome such a limitation, here, we introduced a

new performance measure denoted as ⟨Cσ⟩ for ranking prediction. This new perfor-

mance measure successfully reflects the importance of the ordering of two values that

differ greatly as shown in Fig 4.6.

In network epidemiology, the microscopic Markov chain approximation (MMCA) [110,

111, 232] was introduced to bypass the computationally cumbersome Monte Carlo

simulation. The result of MMCA was then used to calculate epidemic prevalence or

to formulate vaccination strategies [143, 144, 230]. This method, however, cannot be

used to approximate avalanche dynamics that propagates nonlocally, for example, in

the ML model. Therefore, we think the GNN introduced here may replace the role of

the MMCA in the analysis of nonlocal avalanche dynamics and the development of
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mitigation strategy, for example, for the blackout in electrical power grid.

4.3 Epidemic control using graph neural network ansatz

Epidemics do not occur randomly; instead, they spread through structured interactions

among the host population. Network theory provides an integrated framework to study

the effects of the structure of interactions on dynamical processes [12, 16, 26, 27, 81].

For epidemic processes, individuals are represented as nodes, and contacts between

individuals are represented as edges (links) in the network. Traditional theories of epi-

demic spreading ignored network effects [9,165]; however, extensive research devoted

to network epidemiology demonstrated that the structural properties of network such as

heterogeneity of degree (number of edges a node has) significantly affect the spreading

of epidemics [90, 235, 262, 264, 266]. Such network effects have significant implica-

tions because most real-world social systems exhibit highly complex connectivity pat-

terns characterized by heavy-tailed distributions [12,26,27,81]. Network epidemiology

has also been applied to social spreading processes such as the spread of innovations,

rumors, and opinions [88, 164, 237, 342].

Containing, mitigating, and preventing the spread of epidemics is a crucial goal in

mathematical epidemiology, therefore, extensive research has been devoted to devel-

oping effective vaccination strategies in complex networks [52, 62, 63, 126, 143, 220,

230, 262, 268, 296, 326, 339, 340]. Effective vaccination strategies aim to vaccinate the

optimal set of nodes in the network to minimize the damage caused by epidemic dis-

eases such as the total number of infections or epidemic mortality. It has been found

that the effectiveness of a vaccination highly depends on which nodes we choose to

vaccinate even if we choose the same number of nodes. This problem is relevant to

the current situation where the number of effective SARS-CoV-2 vaccine shots is less

than the total population in most countries, especially in developing countries [318].

Moreover, the vanishing epidemic threshold of scale-free networks [264,266] suggests

that such a pandemic will presumably occur repeatedly; therefore, it is crucial to be
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prepared for another vaccine shortage.

Graph neural networks (GNNs) are deep learning–based methods that operate on

graphs or networks where other types of machine-learning methods such as convo-

lutional neural networks (CNNs) or recurrent neural networks (RNNs) cannot be im-

plemented because of the irregular and non-Euclidean nature of the complex network.

GNN has become a widely used method for network analysis because of its convincing

performance in various fields, such as estimation of molecular properties [121, 356],

drug discovery [112], and traffic forecasting [32, 285]. In the epidemic field, GNNs

have been employed for the prediction of disease prevalence [75, 242, 256], identi-

fication of patient zero [300], and estimation of epidemic state using limited infor-

mation [323]. Few studies have developed dynamic epidemic control schemes that

identify epidemic hotspots from the partially observed epidemic state of each individ-

ual [233, 313].

Here, we propose a framework for vaccination strategy in complex networks based

on GNN. By employing graph neural network ansatz (GNNA) and microscopic Markov

chain approach (MMCA) [110,111,232], we can determine the optimal strategy through

few mean-field calculations. Note that comparing the performances of two similar vac-

cination strategies generally requires an excessive number of Monte Carlo epidemic

simulations. This framework can be implemented to formulate effective vaccination

strategies, tailored to the available amount of vaccine shots, for various epidemic

processes in a complex network. If the properties of each node, such as contagion

rate, recovery rate, or fatality rate, are distinct, the GNNA can systematically con-

sider this information to formulate an optimal strategy. Such a situation wherein the

nodes of a network possess distinctive characteristics is relevant in real-world epi-

demics. For instance, the case fatality rate of COVID-19 varies significantly according

to age [13, 22, 169, 206, 209, 223, 303]; hence, it is not trivial to determine whether

senior population with high fatality rate or young population with high contact rate

should be primarily vaccinated to minimize the epidemic mortality [146]. The age-
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dependent efficacy and probability of severe reaction to vaccines further complicate

the issue [184, 280]. However, there has been no vaccination strategy that systemati-

cally takes the epidemic properties of each node into account.

To prove the validity of our algorithm, we test this method for network disman-

tling, the susceptible-infected-susceptible (SIS) model with homogeneous and het-

erogeneous epidemic parameters, and the susceptible-infected-recovered-dead (SIRD)

model in many real-world networks with up to 320K nodes and 1M edges. We also

extend this framework to edge immunization, which represents non-pharmaceutical

epidemic containment measures such as travel regulations and social distancing. We

compare the performance of the proposed framework with the existing centrality-based

methods. The proposed method outperforms the centrality-based vaccination strategies

at all levels of vaccine supply. Moreover, because GNNA considers the properties of

each node and tailors the vaccination strategy to the specific amount of vaccine avail-

able, it allows us to find new phenomena such as the transition of optimal strategies

from high-fatality to high-BC strategies according to the level of vaccine supply.

4.3.1 Model

SIS model with homogeneous and heterogeneous contagion/recovery rate

The SIS model and contact process are among the most extensively studied epidemic

models in complex network [15, 90, 91, 137, 149, 230, 262, 264]. Recently, the SIS

model where the recovery rate varies from node to node was introduced [53, 89, 279].

We extend this model and let the contagion rate that each node infects others to be

varying as well. Such variability of epidemic parameters is a natural assumption be-

cause the prognosis of an epidemic disease depends on the age and other factors of

each individual.

In the SIS model, each node is either in the susceptible (S) or infected (I) state. At

each time step, each infected node j infects its neighbors with probability βj , hence
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susceptible node i turns into the infected state with probability

Pi = 1−
∏

j∈n.n. of i
(1− βj) , (4.12)

where the index j runs over all the nearest neighbors of node i. An infected node turns

into the susceptible state with probability µi. If βi = β and µi = µ, the equation

is reduced to the traditionally studied SIS model with homogeneous contagion and

recovery rate. For heterogeneous cases, the distribution of the contagion and recovery

rates can be arbitrary, but in this study, the contagion rate and recovery rate of node i

are uniformly distributed between 0 and β, and 0 and µ, respectively.

We start the simulation with the fully infected system and evolve the system for

trelax = 2 × 104 so that the system reaches its stationary state. Then, the density

of infection is sampled for tsample = 2 × 104. Quasistationary method [90, 91] and

other approaches [158] have been employed to obtain the steady-state of the epidemic

dynamics in previous studies. Here, we apply a small conjugated field hi = 10−3µi on

each node i to keep the system in the active state [217]. The intensity of the conjugated

field is irrelevant as long as the value is very low.

SIRD model

Although mortality is one of the significant damage caused by epidemic diseases, the

susceptible-infected-recovered (SIR) model cannot be used to study the vaccination

strategy to minimize epidemic mortality, because recovery and death are not distin-

guished in the SIR model. The SIRD model was therefore introduced as a minimal

epidemic model to study epidemic mortality.

In the SIRD model, each node is in either susceptible (S), infected (I), recovered

(R), or dead (D) states. The infection occurs by the same rule with the SIS model. A
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susceptible node turns into the infected state with probability

Pi = 1− (1− β)n
I
i , (4.13)

where nIi is the number of infected neighbors of node i. At each time step, an infected

node turns to the R state with probability (1− IFRi)µ and to D state with probability

IFRi · µ.

Recovery and death occur with ratio (1 − IFRi) : IFRi, therefore, the infection

fatality rate (IFR) of node i is IFRi. IFR is defined as the ratio of deaths caused by

disease to the total number of people infected with the disease. The fatality rate of

epidemic diseases such as COVID-19 significantly depends on age and other morbidity

factors [161,210]. Therefore, it is important to study the SIRD model where the fatality

rate varies from node to node. We start the simulation after infecting a small fraction

10−3 of nodes in the network. All the reactions (infection, recovery, and death) include

an infected node; therefore, if the number of infected nodes becomes zero, then the

epidemic dynamics ends. In this study, we sampled the mortality rate for nsample =

2× 104.

Construction of a multiplex network from contact data

To investigate the effectiveness of the vaccination strategies on real-world epidemic

diseases, we construct a multiplex network from human contact patterns between age

groups and the degree distribution, and the age-dependent IFR of COVID-19 was im-

plemented. The network is constructed [5] from the contact matrix Mαβ , which is the

average number of contacts that an individual in group α has with individuals in group

β, obtained by survey [234]. The human contact degree distribution follows negative

binomial distribution NB(r, p) with r ≃ 0.36 [239]. The parameter pβ of age group β

is determined by the average degree ⟨k⟩β =
∑

αMαβ: pβ = 1− ⟨k⟩β /
(
r + ⟨k⟩β

)
.

The data was collected for people of age 0 to 84, and people of age 85 and above
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were aggregated. We extend the data to people of age 99 by assuming that people

of age 85 and above exhibit identical contact patterns. First, we draw the degree of

each node from the degree distribution NB(r, pβ) of the corresponding age group,

and place ”stubs” of that number. We then select a stub with equal probability and

connect it with another stub, which is selected with probability proportional to Mαβ ,

where α is the age group of the first selected stub and β is that of the second selected

stub. This iteration is repeated until only one or no stub is left (If only one stub is left,

it cannot be matched with any other stub).

The IFR of each node is calculated based on meta-analysis of medical litera-

ture [206], where the age dependent IFR is calculated as

log10 IFR = (−3.27± 0.07) + (0.0524± 0.0013) age . (4.14)

4.3.2 Vaccination strategy

Graph neural network ansatz (GNNA)

We aim to vaccinate the optimal set of q nodes to minimize the damage caused by

an epidemic process, such as the total number of infections or infectious deaths. A

vaccinated node does not get infected even if it has contact with infected nodes. We

suppose that each node’s fitness to be vaccinated in the network can be expressed by

an L-layered GNN, namely GNNA.

s
(ℓ)
i = Agg

(
s
(ℓ−1)
i ,∪j∈n.n. of is

(ℓ−1)
j

)
, (4.15)

and

s
(0)
i = xi , (4.16)

zi = s
(L)
i , (4.17)
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where Agg is the function that aggregates the information from the neighbors of each

node, xi is the vector of node features of node i such as its contagion rate, recovery

rate, fatality rate, efficacy of vaccine, or probability of having a severe reaction to the

vaccine. s(ℓ)i is the vector of hidden state of node i in layer ℓ, and zi is the output of the

GNN. Various functions have been used for the aggregation function [120, 173, 330].

Here, we take the form

s
(0)
i = σ

(
w

(0)
0 + w

(0)
1 xi1 + w

(0)
2 xi2 + · · ·

)
, (4.18)

s
(1)
i = σ

(
w

(1)
0 + w

(1)
1 s

(0)
i + w

(1)
2 k

w
(1)
4 −1

i

∑
j∈n.n. of i(s

(0)
j + w

(1)
3 )

)
, (4.19)

...

s
(L)
i = σ

(
w

(L)
0 + w

(L)
1 s

(L−1)
i + w

(L)
2 k

w
(L)
4 −1

i

∑
j∈n.n. of i(s

(L−1)
j + w

(L)
3 )

)
,(4.20)

where ki is the degree of node i, and we choose leaky rectified linear unit (ReLU) for

the activation function σ(·). The introduction ofw(ℓ)
4 allows GNNA to include both the

summation (w(ℓ)
4 = 1) and average (w(ℓ)

4 = 0) for the aggregation. The permutational

invariance among neighboring nodes is retained. In this study, we use L = 2. The

output s(L)i = s
(2)
i is the fitness of node i to be vaccinated. This fitness effectively

works as a centrality measure tailored to the epidemic process of the interest. We

vaccinate q nodes with the highest fitness.

The ansatz Eqs. 4.18–4.20 includes various vaccination strategies. For instance, if

w(0)
r0 = 1 , (4.21)

w(0)
r = 0 ∀r ̸= r0 , (4.22)

w
(ℓ)
1 = 1 ∀ℓ > 0 , (4.23)

w(ℓ)
r = 0 ∀r ̸= 1, ℓ > 0 , (4.24)

the fitness of each node becomes equal to its node feature xir0 , and we vaccinate the
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nodes in descending order of their feature (fatality rate of the node, for instance). If

w
(0)
0 = 1 , (4.25)

w(0)
r = 0 ∀r > 0 , (4.26)

w
(1)
0 = w

(1)
1 = w

(1)
3 = 0 , (4.27)

w
(1)
2 = w

(1)
4 = 1 , (4.28)

w
(ℓ)
1 = 1 ℓ > 1 , (4.29)

w(ℓ)
r = 0 ∀r ̸= 1, ℓ > 1 , (4.30)

the fitness equals the degree of each node. Other strategies such as averaging the node

features of the nearest or second-nearest neighbors of a node can be represented by the

Eqs. 4.18–4.20.

Because the weights w(ℓ)
r are shared over the entire network, the number of param-

eters of GNNA is 5L + m + 1, where m is the number of node features. Moreover,

the actual dimension of the manifold represented by GNNA is lower. The output of

GNNA, which is the vaccination strategy, is invariant under the following transforms

for each 0 ≤ ℓ ≤ L (because if the input of leaky ReLU scales by a factor of α, so

does the output):

w(ℓ)
r → αw

(ℓ)
r ∀r , (4.31)

w
(ℓ′)
0 → αw

(ℓ′)
0 ∀ℓ′ > ℓ , (4.32)

w
(ℓ′)
3 → αw

(ℓ′)
3 ∀ℓ′ > ℓ , (4.33)

while other weights are kept unchanged. Additionally, because we are only interested

in the rank of s(L)i , the parameter w(L)
0 is irrelevant. The dimension of the manifold is,

therefore, 4L+m. Moreover, when there is no node feature, w(1)
3 becomes irrelevant

because s(0)j is constant, and the dimension is 4L − 1. Therefore, GNNA is highly

scalable to large networks.
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We can extend GNNA to edge immunization by aggregating the fitness of nodes

in each edge. Because an edge is always connected to two nodes, we employ two-

dimensional Taylor series expansion for the aggregation function. The fitness s(i,j) of

an edge (i, j) is then

s(i,j) = w
(L+1)
0

(
s
(L)
i + s

(L)
j

)
+ w

(L+1)
1

(
s
(L)2
i + s

(L)2
j

)
+w

(L+1)
2 s

(L)
i s

(L)
j + · · · , (4.34)

where the coefficients are chosen so that there is a symmetry between i and j. Here,

we only use quadratic terms w(L+1)
0 , w(L+1)

1 , and w(L+1)
2 . Therefore, three additional

parameters are required for the edge immunization.

Microscopic Markov chain approach (MMCA)

The stochasticity of the epidemic processes brings a challenge to the optimization

problem. Because of the fluctuation in the results of the epidemic simulations, the

average of the sampled density of infection can exhibit a low value even if the ex-

pectation value is not low. If the gradient descent method is directly implemented, the

trajectory of the optimization may be forever affected by a low value once obtained

because of the fluctuation. Also, to compare the performances of two similar vaccina-

tion strategies, which likely have similar expectation values of the density of infection,

an excessive number of Monte Carlo simulations have to be performed. A point with

high fluctuation can be selected as the optimal point even if the expectation value is

not low.

To avoid such issues, we employ MMCA [110, 111, 232], to analytically estimate

the performance of the vaccination strategies. MMCA solves the mean-field equa-

tion for each node in the network to provide more accurate predictions of the epi-

demic prevalence than heterogeneous mean-field (HMF) theory [235, 264, 266]. Be-

cause there is no fluctuation in the result of the MMCA, the aforementioned problem
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can be avoided. We show that even when the GNNA is optimized with MMCA, the

resulting vaccination strategies effectively minimize the density of infection of the

stochastic epidemic model.

The MMCA tracks the probability PX
i (t) of each node i being in state X at time

t [110, 111, 232]. For SIS model, we track P I
i (t). The MMCA equations of the SIS

model with heterogeneous contagion/recovery rate is expressed

P I
i (t+ 1) = P S

i (t)

1− ∏
j∈n.n. of i

(
1− βjP

I
j (t)

)+ (1− µi)P
I
i (t) , (4.35)

and P S
i (t) = 1 − P I

i (t). For the traditionally studied SIS model with homogeneous

contagion and recovery rate, βi = β and µi = µ. We solve Eq. 4.35 for its fixed point

to determine the stationary state.

For SIRD model, we track P I
i (t), P

R
i (t), and PD

i (t). The MMCA equations of the

SIRD model is expressed

P I
i (t+ 1) = P S

i (t)
[
1−∏j∈n.n. of i

(
1− βP I

j (t)
)]

+ (1− µ)P I
i (t) , (4.36)

PR
i (t+ 1) = (1− IFRi)µP

I
i (t) , (4.37)

PD
i (t+ 1) = IFRi · µP I

i (t) , (4.38)

and P S
i (t) = 1− P I

i (t)− PR
i (t)− PD

i (t). We solve Eqs. 4.36–4.38 until
∑

i P
I
i (t) <

ϵ = 10−4, then calculate the mortality rate
∑

i P
D
i /N .

Gaussian random walk–based optimization

The loss surface of GNNA is distinct from the loss landscape of usual neural net-

works [207]. The loss, which is the density of infection calculated by MMCA in this

case, is illustrated in Fig. 4.8 for the SIS model. It is flat almost everywhere; at certain

lines, there is a leap. This is because the parameters of the GNNA are continuous but

the vaccination strategy is discrete. For a small perturbation of the weights, except for
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Figure 4.8: Density of infection of SIS model calculated by MMCA as the function of
weight parameter w(ℓ)

r of GNNA. The plot illustrates the loss surface projected on the
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(1)
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2 plane. The value is flat everywhere except on certain lines. The flat regions
each correspond to an identical vaccination strategy; therefore, the objective function
does not vary in the region. The vaccination is tested in the airline network with the
contagion rate β = 0.2, recovery rate µ = 0.5, and vaccination rate q/N = 0.1.
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special cases, the vaccination strategy formulated by the GNNA is invariant, as is the

objective function. Therefore, the gradient descent and other gradient descent–based

optimization algorithms such as SQP [100] and the Nelder–Mead method [245] cannot

be used in this case.

GNNA reduces the exponentially large dimension of the space of the vaccination to

7–10 and allows Gaussian random walk to effectively optimize the vaccination strate-

gies. Initially, the weights of the provisional solution are set as w(0)
0 = 1, w(ℓ)

1 = 1 for

all ℓ > 0, and zero if otherwise. This way, the fitnesses of all nodes are equal to one.

At each step, we perturb the weights w(ℓ)
r → w

(ℓ)
r + ω

(ℓ)
r , where ω(ℓ)

r independently

follows the Gaussian distribution with zero mean: ω(ℓ)
r ∼ N (0, σ2). The standard de-

viation σ is initially 0.5 and decreases by a factor of 1 − 5/niter at each step (the

standard deviation becomes 0.003 at the end of the iteration). This way, as the iteration

progresses, we can focus on finding a more detailed position of the minimum in the

loss landscape. There is a probability that the perturbed weight returns the same set of

nodes as the provisional solution. In such cases, we find another position without cal-

culating the objective function again (Because the result is the same as the provisional

solution).

4.3.3 Results

Effectiveness of the vaccination strategy

Vaccinating nodes with high centrality measures has been reported to effectively re-

duce epidemics in complex networks. One example of such centrality measure is be-

tweenness centrality (BC), or load [105,246]. This measure is related to the number of

shortest paths passing through the node or edge. It was found that immunizing nodes

or edges with high BC is effective in containing epidemics [63, 296]. However, the

computational complexity for calculating the BC is O(N2 logN). This significantly

limits its capability to be used in large networks.

As an alternative to BC, collective influence (CI) was introduced [238]. The CI
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Figure 4.9: Performance of GNNA compared to centrality-based vaccination strate-
gies. (a) Largest connected component size of network dismantling and the density of
infection ρ of (b) MMCA SIS model, (c) SIS model, (d) SIS model with heterogeneous
contagion and recovery rate, (e) edge immunization of SIS model, and (f) mortality rate
D/N of SIRD model. A multiplex network constructed from the human contact pat-
tern is used for the SIRD model and DBLP Coauthorship network for the others. The
number of nodes in the network is N , the number of edges is L, the number of vacci-
nated nodes is q, and the number of immunized edges is qL. The vaccination strategy
obtained by GNNA outperforms all centrality measures at all vaccination levels.
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provides a scalable centrality measure that considers the local stability of message-

passing equations. Vaccinating (or eliminating) nodes with the highest CI leads to

effective dismantling (or herd immunity) of a network. The collective influence of a

node i is

Cℓ(i) = (ki − 1)
∑

j∈∂Ball(i,ℓ)

(kj − 1) , (4.39)

where ∂Ball(i, ℓ) is the set of nodes that have distance ℓ from node i (surface of a ball

with radius ℓ). Although the algorithm becomes exact as ℓ→ ∞ for treelike networks,

a small ℓ yields good results in general complex networks. In this study, we take ℓ = 2.

CI can be calculated within a time complexity of O(N logN). Eliminating nodes with

high CI effectively reduces the size of the largest connected component in the network

and contains epidemics.

Further, vaccinating nodes with high eigenvector centrality (EC), which has a com-

putational complexity of O(N logN), is effective in reducing epidemics [326]. Other

centrality measures such as K-core index [178], closeness [49], K-shell [175], and H-

index [82] have been used to formulate vaccination strategies; however, one cannot

conclude which of these strategies is the most effective because the efficiency of the

strategies varies depending on the network and level of vaccine supply. In this study,

we show the performance of BC, which is believed to be effective in a wide class of

networks [262, 339, 340], and CI as benchmarks. Recalculating these centrality mea-

sures after each node vaccination enhances the performance of the vaccination; how-

ever, this increases the time complexity of the algorithm by a factor of N , and makes

the method no longer scalable. Other vaccination strategies that can be implemented

when the entire network structure is not available have been researched [63, 78, 289];

however, these strategies are not as effective as the centrality-based methods.

We tested and compared GNNA-based vaccination with centrality-based strategies

for network dismantling, SIS models with homogeneous and heterogeneous conta-

gion/recovery rate, edge immunization of SIS model, and SIRD model. The strategies
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were tested in various networks [117,204,230,352], with the number of nodes ranging

from 1K to 320K and number of edges from 5K to 1M (the specifics of the networks

are provided in the Supplementary Table S1). We only show the result from one net-

work for each epidemic process (a multiplex network constructed from the human

contact pattern for the SIRD model and DBLP Coauthorship network for the others);

the rest is provided in Supplementary Figures S2–S6.

Network dismantling is a problem of finding an optimal set of q nodes that breaks

the largest connected component of a network into small components with subexten-

sive size. It can be mapped to the optimal vaccination strategy for the spreading pro-

cess [62,238]. For the network dismantling, we directly calculate the size of the largest

connected component instead of employing MMCA because there is no stochasticity

in this process. The size of the largest connected component of the DBLP Coauthor-

ship network dismantled by GNNA is illustrated in Fig. 4.9(a). For comparison, we

plotted the performance of the BC-, EC-, and CI-based strategies. GNNA-based strat-

egy outperforms all centrality-based strategies at all vaccination levels.

Further, we tested the performance of GNNA-based vaccination for the SIS model.

The density of infection calculated by MMCA is illustrated in Fig. 4.9(b), and the result

of the Monte Carlo simulation is illustrated in Fig. 4.9(c). GNNA-based strategy out-

performs all centrality-based strategies at all vaccination levels. The results for the SIS

model with heterogeneous contagion and recovery rates are illustrated in Fig. 4.9(d).

The disparity between the performance of GNNA-based strategy and centrality-based

strategies is greater than the homogeneous case because GNNA considers the epidemic

properties of each node whereas centrality-based methods do not.

For edge immunization, vaccinating edges with high edge BC or high edge EC is

effective [230, 296]. The edge EC is calculated as the product of the ECs of the two

nodes in the edge. It has been shown that iteratively eliminating edges with the highest

link epidemic importance is effective [230]; however, the complexity of the algorithm

is O(N2). The results of the edge immunization are illustrated in Fig. 4.9(e). The per-
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formances of high edge BC and high edge EC vaccinations are plotted as benchmarks.

GNNA-based strategy outperforms all the edge centrality-based methods at all vacci-

nation levels.

For the SIRD model, the results are illustrated in Fig. 4.9(f). Vaccinating nodes

with high IFR is effective in reducing the number of deaths; hence, a high-IFR vac-

cination strategy has been employed in many countries to minimize the mortality due

to COVID-19. The performances of high-BC and high-IFR strategies are shown as

baselines. The high-IFR strategy is more effective than the high-BC strategy when

the vaccination rate is low; however, the high-BC strategy outperforms the high-IFR

strategy when the vaccination rate is high. GNNA-based strategy outperforms the two

strategies at all vaccination levels. The number of iterations is niter = 103 for all cases

except for network dismantling is niter = 104. Because there is a small probability

that weights get stuck in a local minimum, we took the best results out of eight trials.

Transition of the optimal vaccination strategy in the SIRD model

There is a crossover between the efficiency of the high-IFR and high-BC strategies

in the SIRD model as illustrated in Fig. 4.9(f), which is consistent with the results of

previous research [214]. Similar phenomena in the metapopulation model have been

reported, and the first-order phase transition has been identified [146]. Although the

crossover between the two strategies has been observed, the investigation of the tran-

sition of the optimal strategy according to the availability of vaccine has not been

extended to networks due to the lack of an appropriate method to study the optimal

vaccination strategy in complex networks. By considering the node features and tai-

loring the vaccination strategy to specific levels of vaccine supply, GNNA enables us

to observe a new phenomenon in complex networks that could not be observed by

the existing methods. Phi coefficient, which is identical to Pearson correlation coef-

ficient for binary variables, of the optimal vaccination strategy identified by GNNA

and BC/IFR-based strategy is illustrated in Fig. 4.10(a). When only a small fraction of
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Figure 4.10: Transition of the optimal vaccination strategy in the SIRD model. (a)
Phi coefficient between the nodes vaccinated by GNNA and high-BC/IFR vaccination
strategies. The point where herd immunity is achieved by GNNA-based strategy (but
not necessarily by other methods) is depicted by the dashed black line. When the total
vaccination rate q/N is low, the set of nodes vaccinated by GNNA has a large overlap
with the high-IFR strategy. As the vaccination level approaches the state where herd
immunity is possible, GNNA adjusts its strategy, wherein it becomes similar to the
high-BC strategy. (b) Vaccination rate of four age groups when GNNA-based vaccina-
tion is applied. Yellow, green, and blue represent high, moderate, and low vaccination
rates, respectively. When the total vaccination rate q/N is low, the senior age group
whose IFRs are the highest is primarily vaccinated. However, when the vaccination
rate becomes high and approaches herd immunity, which is depicted by the dashed
white line, the individuals below age 50 who have high contact rates are primarily vac-
cinated.
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nodes can be vaccinated, the optimal strategy is similar to that of the high-IFR strategy.

However, when the vaccination rate approaches the point where herd immunity can be

achieved, an abrupt transition occurs in the optimal vaccination strategy and involves

vaccinating nodes with high BC. The vaccination rate of the population divided into

four age groups is illustrated in Fig. 4.10(b). When the vaccination rate is low, the old-

est age group 75–99, who has the highest fatality rate, is primarily vaccinated. When

the vaccination rate increases to approach herd immunity, the age group primarily tar-

geted by the optimal vaccination strategy abruptly changes, and the population below

age 50 is primarily vaccinated. The senior age group is even less vaccinated than the

rest of the population because they have a low contact rate (see Supplementary Figure

S1).

4.3.4 Conclusion

We presented a vaccination framework based on GNNA, which can be implemented

to minimize the damage, such as the total number of infections or epidemic mortal-

ity, caused by general epidemic processes. The main advantage of GNNA is that it

takes node features such as contagion rate, recovery rate, and fatality rate, and tai-

lors the vaccination strategy to the level of vaccine supply available. GNNA reduces

the exponentially large dimension of the space of the vaccination to 7–10 and enables

Gaussian random walk to effectively optimize vaccination strategies. The efficacy and

risk of vaccine side effects vary from individual to individual [184, 280]. GNNA can

consider statistical estimation of such factors along with other risks (here, we only

considered the age-dependency of the fatality rate) and morbidity.

We demonstrated that the optimal vaccination strategy is closely related to the

total amount of vaccines available. For instance, in the SIRD model, when vaccine

supply is low, the optimal strategy primarily vaccinates nodes with high fatality rates,

and when the vaccine supply is relatively high, it vaccinates nodes with high BC.

Such transition of the optimal vaccination strategy based on the vaccination rate can
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be identified by GNNA. This transition is of theoretical interest also with real-world

implications. For instance, the hysteresis of the optimal vaccination strategy implies

that mixing the fatality- and centrality-based strategies is ineffective in reducing the

mortality rate [146]. The proposed framework can be implemented in future research

to find other new phenomena in the optimal vaccination strategies that couldn’t be

observed in the current centrality-based vaccination paradigm.

104



Chapter 5

Quantum spreading processes in complex networks

5.1 Introduction

Phase transitions and critical phenomena in dissipative quantum many-body systems

have attracted considerable attention recently because theoretical results can be real-

ized experimentally, and vice versa [17, 18, 25, 39, 46, 92–94, 127, 135, 156, 180, 189,

197,243,250,272,362]. Mutual competition between the coherent Hamiltonian and in-

coherent dissipation dynamics creates unexpected emergent phenomena such as time

crystals [57, 96], zero-entropy entangled states [182, 333], driven-dissipative strong

correlations [218, 322], and dissipative phase transitions in the nonequilibrium steady

state [72, 73, 76, 306–308, 320], including novel universal behaviors [159, 225].

Dissipative phase transitions from a disordered (absorbing) state to an ordered (ac-

tive) state in dissipative quantum systems, such as the quantum contact process (QCP)

and dissipative transverse Ising (DTI) model, have been exploited by developing sev-

eral analytical techniques in the mean-field (MF) limit. For instance, the Keldysh (or

semiclassical MF) approach and fluctuationless MF approach have been proposed. In

the Keldysh approach, the spins of the DTI model are changed to bosonic operators,

and an MF functional integral formalism is applied [221, 305]. Once the upper critical

dimension (dc) is determined, a transition point is obtained. In the fluctuationless MF

approach, the MF concept is applied to the correlation function. The average of the

product of a pair of individual field amplitudes is treated as the product of the indi-

vidual average of the field amplitudes. The result is regarded as a valid approximation
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in infinite dimensions (d∞). In addition, noise effects are ignored. In the semiclassical

approach, averaging is applied to individuals, as in the fluctuationless MF approach.

However, noise effects are considered [163]. These approaches are thought to provide

a general framework for exploring the critical behaviors of dissipative phase transitions

in the MF limit [31, 305, 307].

According to the conventional theoretical framework of equilibrium systems, the

two MF solutions at dc and d∞ exhibit the same universal behavior. Indeed, for the

QCP model, the MF solutions obtained using the semiclassical and fluctuationless

MF approaches appear to be the same, as expected. However, for the DTI model, the

Keldysh solution predicts dc = 3, at which a dissipative phase transition is of first order

when the dissipation is strong, whereas it is of second order when the dissipation is

weak [221]. By contrast, the fluctuationless MF approach predicts that the dissipative

phase transition is of second order regardless of the dissipation strength. This result

is regarded as the MF solution at d∞. Accordingly, the two solutions in the strong

dissipation limit at dc and d∞ are inconsistent with each other. This result is also

obtained numerically in three dimensions [254]. Therefore, this discrepancy remains a

challenging problem.

To resolve this inconsistency, it is necessary to confirm the analytical results nu-

merically; however, numerical approaches, including quantum jump Monte Carlo sim-

ulations [276] and the tensor network [331, 334] and its variants [183, 332, 344], are

not feasible in higher dimensions because the computational complexity increases ex-

ponentially as the dimensionality is increased.

Here, we aim to show that numerical studies are possible when the quantum states

can be contracted considerably. Thus, the MF solutions for the DTI model can be tested

using this numerical method. To this end, we use that spin indices are permutation in-

variant (PI) on fully connected graphs [301], which is regarded as the networks at d∞.

On the all-to-all graphs, the quantum states that are PI can be contracted to a single

state. The contracted quantum states are called the PI states for simplicity. This con-
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traction reduces the computational complexity considerably, from O(22N ) to O(N3),

which enables us to numerical study the model in large systems (up to N = 1024).

In this paper, we test the transition type of the DTI mode. It reveals to be continuous.

The critical behaviors are obtained using finite-size scaling (FSS) analysis. The critical

behaviors are in agreement with those obtained using the fluctuationless MF approach.

To check the validity of the numerical method, we first consider the QCP model.

This model is chosen because it is regarded as a prototypical model that exhibits a

dissipative phase transition. Using the semiclassical method and fluctuationless MF

approach, analytical solutions were obtained at dc and d∞. Unlike those of the DTI

model, the two analytical solutions exhibit a continuous transition with the same uni-

versal behavior. However, like the DTI model, the transition behaviors of the QCP

model have not been numerically studied yet because of the numerical complexity.

Therefore, we perform numerical studies based on the PI states and confirm that the

numerical results are in agreement with the analytical solutions of dc and critical ex-

ponents [31, 160].

Next, we consider the transverse Ising (TI) model in a closed quantum system,

which corresponds to the zero limit of the dissipation strength of the DTI model in an

open quantum system. Because the system is a closed quantum system, we reset the

Schrödinger equation based on the PI states. We find that its complexity is reduced as

O(N). The static critical exponents we obtain are in agreement with the previously

known values. We summarize previous analytical results for the three models in Ta-

ble. 5.1.
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5.2 Permutational symmetry

The time evolution of an open quantum system is described by the Lindblad equation,

which consists of the Hamiltonian and dissipation terms:

∂tρ̂ = −i
[
ĤS , ρ̂

]
+

N∑
ℓ=1

[
L̂ℓρ̂L̂

†
ℓ −

1

2

{
L̂†
ℓL̂ℓ, ρ̂

}]
, (5.1)

where ρ̂ is the density matrix of the full system, ĤS is the system Hamiltonian, and L̂ℓ

is the Lindblad operator at site ℓ.

Qubit systems on a fully connected structure are invariant under any permutation

of the spin indices. The elements of the density matrix satisfy the relation ρv,w =

ρP (v),P (w), where v andw denote two states among 2N quantum states ofN spins, and

P denotes a permutation operator. If both the dynamical equation and initial density

matrix are PI, the density matrix would also be PI. For example, for a four-spin system,

ρ↑↑↓↓,↑↓↑↓ = ρ↑↑↓↓,↑↓↓↑ = ρ↑↑↓↓,↓↑↓↑ = ρ↓↑↑↓,↑↑↓↓ = · · · . According to this symmetry,

the elements |v⟩ ⟨w| of the density matrix can be classified in terms of (n1, n2, s),

where n1 is the number of up spins in v, n2 is the number of up spins in w, and s is

the number of sites with up spins in both v and w states. Then the density matrix is

written as

ρ̂ =
∑

n1,n2,s

An1,n2,s|n1, s⟩⟨n2, s| , (5.2)

where An1,n2,s = ⟨n1, s| ρ̂ |n2, s⟩ is the 3-rank tensor whose components are the sum

of the elements of ρ̂. |n1, s⟩ is a PI state. Particularly, P (n) denotes An1=n2=s=n, rep-

resenting the probability that the system has n up spins. For convenience, we introduce

a Liouvillian superoperator L and rewrite the time evolution of the Lindblad equation,
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Figure 5.1: (a) Phase diagram of the QCP model on a fully connected graph in the
parameter space (κ, ω), determined by direct numerical enumeration of the Liouville
equation based on the PI states. Discontinuous (dashed curve) and continuous transi-
tions (dotted and solid lines) occur, and they meet at a tricritical point (TP). On the dot-
ted critical line in ω ∈ [ω∗, 1], the critical exponent α varies continuously, whereas on
the solid line, it has the DP value. The color means the average order parameter ⟨n⟩ de-
fined in Eq. (5.10). (b) The distribution of the order parameters n for (κ, ω) = (0, 1.8).
This shows that the system is bistable at n = 0 and ≈ 0.45. (c) Plot of the order param-
eter n as a function of ω for κ = 0.0 in the steady state. This shows that the transition
is first-order. (d) Plot of the order parameter n as a function of κ at ω = 0.0 in the
steady state. This shows that the transition is second-order. Data are obtained by direct
enumerations from the system of size N = 256. We set Γ = 1 for all figures. In (c)
and (d), the color means the probability that the order parameter n exists.
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Eq. (5.1), in the form of the Liouville equation,

∂tρ̂ = Lρ̂ , (5.3)

This transformation is possible because the Lindblad equation is linear in ρ. Conse-

quently,

∑
n1,n2,s

∂tAn1,n2,s|n1, s⟩⟨n2, s| (5.4)

=
∑

n1,n2,s

LAn1,n2,s|n1, s⟩⟨n2, s| . (5.5)

Thus, the computational complexity decreases as O(N3) [301].

5.3 Quantum contact process

We consider the QCP model [40, 101–103, 159, 160, 224], a paradigmatic model ex-

hibiting an absorbing phase transition in open quantum systems. This theoretical model

has recently become attractive to scientists because it is simple and thus can be ana-

lytically solved at dc and d∞. Moreover, it has been realized experimentally in ultra-

cold Rydberg atomic systems using the antiblockade effect [119] in the classical limit.

However, numerical results of this model in the MF limit have not been obtained yet

because of its numerical complexity. We perform numerical studies using the Runge-

Kutta algorithm for the Liouville equation (5.5) based on the PI states.

The Hamiltonian ĤS contains coherent terms for branching and coagulation and

is given by

ĤS =
ω

N − 1

∑
m̸=ℓ

n̂m(σ̂+ℓ + σ̂−ℓ ) , (5.6)
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and the Lindblad decay, branching, and coagulation operators are given by

L̂
(b)
mℓ =

√
κn̂mσ̂

+
ℓ , (5.7)

L̂
(c)
mℓ =

√
κn̂mσ̂

−
ℓ , (5.8)

L̂
(d)
ℓ =

√
Γσ̂−ℓ , (5.9)

respectively. Here, n̂ℓ = |↑⟩⟨↑|ℓ is the number operator of the active state at site ℓ, and

σ̂±ℓ = (σ̂xℓ ± iσ̂yℓ )/2. The composite operator n̂mσ̂+ℓ or n̂mσ̂−ℓ with ℓ ̸= m indicates

that the active state at sitem activates or deactivates the state at ℓ, which represents the

branching or coagulation process, respectively. κ is the rate of incoherent branching or

coagulation. By contrast, L̂(d)
ℓ in Eq. (5.7) denotes the decay dynamics |↑⟩ → |↓⟩ at

ℓ, where Γ is the decay rate. Therefore, if there is no active state, no further dynamics

occurs, and the system enters an absorbing state.

According to the MF solution obtained by the semiclassical method [31, 160], the

QCP exhibits three types of phase transitions: i) for κ < 1, a discontinuous transition

[dashed line in Fig. 5.9(a)] occurs; ii) for κc = 1 and ω∗ < ω < ωc = 1 [dotted line in

Fig. 5.9(a)], a continuous transition occurs with continuously varying exponents; and

iii) for κ = 1 and ω < ω∗, a continuous transition [solid line in Fig. 5.9(a)] occurs. A

tricritical point (TP) appears at (κc, ωc), as shown in Fig. 5.9. The continuous transition

iii) belongs to the directed percolation (DP) universality class [37]. The continuous

transition at the TP belongs to the tricritical DP class [115, 158, 215].

We discuss the numerical results for the QCP model based on the PI states. The

QCP model exhibits a phase transition from the absorbing state to the active state as

shown in Fig. 5.9. The order parameter of the phase transition is defined as the average

density of active sites (i.e. the sites of up spins), formulated as

⟨n(t)⟩ =
(∑

ℓ

Tr[ρ̂(t)n̂ℓ]
)
/N =

∑
n

P (n)n . (5.10)
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Figure 5.2: Plots of the order parameter ⟨n(t)⟩ of the QCP model as a function of time t
for fixed κ = 1 but different (a) ω =0.0, (b) 0.6, (c) 0.8, and (d) 1.0. AsN is increased,
the data exhibit a power-law behavior in large-t regime. Guide lines (dashed lines) are
drawn to show the power-law behavior, indicating ⟨n(t)⟩ ∼ t−α. The exponent α is
estimated as (a) α = 1.0 for ω = 0, (b) α = 0.92 for ω = 0.6, (c) α = 0.70 for
ω = 0.8, and (d) α = 0.50 for ω = 1.0. Figures (a)–(d) show that the critical exponent
α varies continuously depending on ω. The data are obtained for Γ = 1 and κ = 1.
Insets: Scaling plots of ⟨n(t)⟩tα versus tN−z .

In the absorbing state, ⟨n(t)⟩ → 0 as t → ∞, whereas in the active state, ⟨n(t)⟩ →
finite as t → ∞. The phase boundaries are composed of two parts for the first-order

and second-order transitions in the parameter space [κ, ω], and their positions are in

agreement with the ones predicted by the theory using the semiclassical method.

The numerical method using the PI states enables to easily calculate P (n) as a

function of n for any given κ and ω as shown in Fig. 5.9(b). We find that the den-

sity of n up spins is broadly distributed around the phase boundary. This distribution
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Table 5.2: Critical exponent α values for different ω values.

ω α

1.0 0.50± 0.02

0.9 0.61± 0.02

0.8 0.70± 0.02

0.7 0.81± 0.02

0.6 0.92± 0.02

≤ 0.53 MF DP values

originates from the quantum effect.

The numerical results are obtained on a fully connected graph of size N = 256.

Along the continuous transition line (solid line) at κ = 1 in Fig. 5.9(a), we examine

critical behaviors under different initial conditions. For an initial state with all up spins

at time t = 0, we measure ⟨n(t)⟩ as a function of time for different system sizes up

to N = 1024. We find that ⟨n(t)⟩ exhibits power-law decay as ⟨n(t)⟩ ∼ t−α. As

predicted by the theory, the exponent α is continuously varying for ω∗ < ω < 1 with

ω∗ ≈ 0.53 as shown in Fig. 5.12(d)−(b)] and α is fixed as 1.0 ± 0.02 at ω = 0.0

[Fig. 5.12(a)]. The value α = 1 is the DP value. Numerical estimates for different ω

values are listed in Table 5.2). Therefore, we conclude that the numerical method based

on the PI states successfully reproduces the theoretical values of the QCP model.

5.4 Dissipative Transverse Ising model

5.4.1 Transverse Ising model

The Hamiltonian ĤS of the TI model at d∞ is expressed as

ĤS = − J

N − 1

∑
ℓ̸=m

σ̂zℓ σ̂
z
m +∆

∑
ℓ

σ̂xℓ , (5.11)
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where J represents the strength of the ferromagnetic interaction of the Ising spins in

the z direction. The summation runs for every pair of spins. ℓ is the spin index, ℓ =

1, · · ·N . The parameter ∆ represents the strength of the transverse field. When ∆/J <

1, the ferromagnetic interaction becomes dominant, and the ground states are two-fold

degenerate ordered states, whereas for ∆/J > 1, the ground state is nondegenerate

and disordered. Thus, the system exhibits a quantum phase transition [287] from a

ferromagnetic phase (∆/J < 1) to a paramagnetic phase (∆/J > 1). Note that this

Hamiltonian has Z2 symmetry under the transformation σ̂z → −σ̂z .

The Liouville equation of Eq. (5.5) must be replaced by imaginary time dynamics,

because the TI model is a closed quantum system. The elements of the wavefunction

satisfies the relation ψν = ψP (ν), where ν denotes a state among 2N quantum states of

N spins, and P denotes a permutation operator. Therefore, the wave function is simply

written as

|ψ⟩ =
N∑

n=0

Bn |n⟩ , (5.12)

where n is the number of up spins in ν and Bn is the coefficient of the state n. Thus,

we need to track only N + 1 complex numbers to study the system.

To obtain the ground state, we use the imaginary-time Schrödinger evolution ∂t |ψ⟩ =
−ĤS |ψ⟩ under the normalization condition for the wave function ⟨ψ|ψ⟩ = 1. Using

the above expression for the wave function, we obtain the differential equations for

Bn:
N∑

n=0

∂tBn |n⟩ = −
N∑

n=0

BnĤS |n⟩ . (5.13)

Unlike the Lindblad open quantum systems, where the normalization condition
∑

ν ρνν =∑
nAn,n,n = 1 holds owing to the dynamics given by Eq. (5.5), the normalization con-

dition
∑N

n=0 |Bn|2 = 1 is broken at each time step. Therefore, Bns must be rescaled

at each time step in the simulation to restore the normalization condition.

Using this method, we perform numerical iterations of the dynamics, Eq. (5.13),

for different system sizes. FSS analysis follows to measure the critical exponents β
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and ν̄ associated with the order parameter and correlation size, respectively. For a

steady-state of Bn, the magnetization is obtained as

m =
∑
n

|Bn|2|mn| , (5.14)

where mn ≡ (1/N) ⟨n|∑i σ̂
z
i |n⟩. We plot the magnetization m versus ∆c − ∆ for

different sizes N up to N = 20480 in Fig. 5.3(a), and obtain the critical exponent

β = 0.50±0.01. We also plotmNβ/ν̄ versus (∆c −∆)N1/ν̄ in the inset of Fig. 5.3(a).

In this plot, ν̄ is taken so that data points for various N values collapse onto a single

curve. ν̄ = dcν = 1.5± 0.01 is obtained.

The susceptibility χ [257], which represents the fluctuations of the order parameter

in finite quantum systems, is defined as

χ = N1+z̄
(
⟨m2⟩ − ⟨m⟩2

)
, (5.15)

where z = z̄dc is the dynamical critical exponent. We note that the dynamical expo-

nent contributes to the susceptibility, because the imaginary time appears as an extra

dimension at zero temperature, and the dynamic correlation function appears with the

imaginary time axis [189] in a closed quantum system. Thus, the critical phenomena

are described using one additional scaling variable with a single new exponent z [319].

The susceptibility diverges as χ ∼ (∆c − ∆)−γ as ∆ → ∆−
c . Therefore, we plot χ

versus ∆c−∆ on a double logarithmic scale and find that χ exhibits power-law decay

with slope −1.00 ± 0.01. Thus, the exponent γ is estimated as γ = 1.00 ± 0.01. In

particular, we note that in Fig. 5.3(b), the data points collapse onto a single power-law

line in the subcritical region when z̄ = 0.33 ± 0.005 is chosen. Inserting this z̄ value

into dc+z = 4, we obtain dc = 3.0±0.01 and z = 1.0±0.03. At ∆ = ∆c, we find that

χ ∼ Nγ/ν̄ holds, as shown in Fig. 5.3(c). A similar plot is presented in Ref. [257] for

one-dimensional case with L = 120. Next, by plotting χN−γ/ν̄ versus (∆c−∆)N1/ν̄

and taking ν̄ = 1.50 ± 0.01, we find that the data points collapse onto a single curve.
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Figure 5.3: FSS analysis for the transverse Ising model on fully connected graphs. (a)
Plot of the order parameter m as a function of ∆c −∆ for different system sizes. We
set J = 1 and ∆c = 1. The auxiliary dashed line with slope 0.5 means the power-law
behavior m ∼ (∆c −∆)0.5. Inset: Scaling plot of the magnetization mNβ/ν̄ versus
(∆c −∆)N1/ν̄ with ν̄ = 1.5 and β = 0.5. (b) Plot of the susceptibility as a func-
tion of ∆c − ∆ for different system sizes. χ = N1+z̄

(〈
(σ̂z)2

〉
− ⟨σ̂z⟩2

)
, where

z̄ = z/dc = 1/3. The black dashed line is a guide line indicating χ ∼ (∆c −∆)−1.
Inset: Scaling plot of the susceptibility χN−γ/ν̄ versus (∆c −∆)N1/ν̄ . The critical
exponents ν̄ = 1.5 and γ = 1.0 are used for the FSS analysis. (c) Plot of χ versus N
at ∆c. The slope represents the value of the critical exponent γ/ν̄.

These results confirm that ν̄ = 1.50 ± 0.01. When z̄ is chosen as the classical Ising

value z̄ = 0 in Eq. (5.15), we confirm that data collapse fails because the value of z̄ is

incorrect.

Next, using the dimensional analysis of Eq. (5.15), we find the hyperscaling rela-

tion 2β+γ = ν(dc+z), or equivalently, 2β+γ = ν̄(1+ z̄) [83]. Using the numerical

values β = 0.50 ± 0.01, γ = 1.00 ± 0.04, ν̄ = 1.50 ± 0.01, and z̄ = 0.33 ± 0.01,

we find that the hyperscaling relation is satisfied. Below, we examine whether this

hyperscaling relation still holds in dissipative quantum systems.

5.4.2 Dissipative transverse Ising model

Model definition

We consider the DTI model [10,136,155,284], which has been experimentally realized

using ultracold Rydberg atoms [41,222]. For open quantum systems, in addition to the

Hamiltonian ĤS given by Eq. (5.11), we need the Lindblad operator to account for

the dissipation process. For the DTI model, a spin decay is imposed from positive to
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negative eigenvectors on the x axis. This operation is written as

L̂ℓ =
√
Γσ̂x

−
ℓ =

√
Γ
σ̂zℓ + iσ̂yℓ

2
, (5.16)

where Γ is the decay rate. For this system, Z2 symmetry still remains under the trans-

formation (σ̂x, σ̂y, σ̂z) → (σ̂x,−σ̂y,−σ̂z). Accordingly, it is expected that the critical

exponents of the static variables remains in the Ising class [319]. Conventionally, this

DTI model is known to exhibit a continuous transition according to the fluctuationless

MF approach [10]. However, a recent analytical solution based on the Keldysh formal-

ism shows that the transition at the upper critical dimension (which is calculated as

dc = 3) is not continuous but rather discontinuous when the dissipation is sufficiently

strong [221], specifically, in the regions ∆/Γ < 0.5 [221] and ∆/J < 0.22 [254].

This result is also confirmed by numerical results using the variational method [254].

Fluctuationless MF approach

Let us consider the MF solution for the DTI model using the fluctuationless MF ap-

proach [31, 160]. To obtain the MF solution, one may explore the equation of motion

of an observable O. This equation is given as the conjugate master equation:

∂tÔ = i
[
ĤS , Ô

]
+

N∑
ℓ=1

[
L̂†
ℓÔL̂ℓ −

1

2

{
L̂†
ℓL̂ℓ, Ô

}]
. (5.17)

Ignoring correlations and assuming uniform fields, we derive the MF equations as

follows:

∂tσ
x = 4Jσyσz − Γ(1 + σx) , (5.18)

∂tσ
y = −4Jσxσz − 2∆σz − Γ

2
σy , (5.19)

∂tσ
z = 2∆σy − Γ

2
σz . (5.20)
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We find that there exist two sets of steady-state solutions for {σx0 , σy0 , σz0}. The first set

is given as

σx0 = −1 , σy0 = σz0 = 0 , (5.21)

and the other set is given as

σx0 =
J

∆
(σz0)

2 − 1 , (5.22)

σy0 =
4

Γ
(2J −∆)

(
1 +

32J2z2

Γ2

)−1

σz0 ,

σz0 = ±
√
−Γ2 + 32J∆− 16∆2

4
√
2J

. (5.23)

Next, we check the stability of the two solutions. For the first solution [Eq. (5.21)],

the dynamical equations (5.18)–(5.20) are linearized around the fixed point. By insert-

ing σx = σx0 + δσx, σy = σy0 + δσy, and σz = σz0 + δσz into Eqs. (5.18)–(5.20)

and expanding up to the linear order of perturbations, we obtain the linear equation

˙δa = Mδa, where

δa = (δσx0 , δσ
y, δσz)T , (5.24)

and the matrix M is given by

M =


−Γ 4Jσz0 4Jσy0

−4Jσz0 −Γ
2 −2∆− 4Jσx0

0 2∆ −Γ
2

 . (5.25)

All the eigenvalues of M are negative in the region 2J−∆−Γ2/(16∆) < 0, indicating

that the fixed point is stable.

For the other solution [Eq. (5.22)], all the eigenvalues of M are negative in the

other region, 2J − ∆ − Γ2/(16∆) > 0, indicating that the fixed point is unstable.

Thus, a continuous phase transition occurs from the disordered phase governed by
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Eq. (5.21) to the ordered phase governed by Eq. (5.22) across a transition line given

by

2J −∆− Γ2/(16∆) = 0 . (5.26)

By substituting the expression for σy0 in Eq. (5.22) into Eq. (5.20), one may expand

the equation with respect to σz0 ≪ 1 as

∂tσ
z = 0 = −u2σz0 − u4(σ

z
0)

3 +O
(
(σz0)

5
)
, (5.27)

where u2 and u4 are defined as

u2 = −8∆

Γ

(
2J −∆− Γ2

16∆

)
, (5.28)

u4 =
256∆J2

Γ3
(2J −∆) . (5.29)

Note that Eq. (5.27) implies that there exists an effective potential defined as

U(σz) =
u2
2
(σz)2 +

u4
4
(σz)4 +O

(
(σz)6

)
, (5.30)

where O
(
(σz)6

)
is irrelevant because the u4 term is always positive near the transi-

tion line. Thus, we consider the terms up to the u4 term hereafter. Note that U(σz) =

U(−σz) holds because of the Z2 symmetry, and this effective potential describes

the universality class of the classical Ising model. Then, the solution σz0 satisfying

Eq. (5.27) is also the steady-state solution of the single effective equation of the order

parameter, which is given by

∂tσ
z = − ∂U

∂σz
.

Again, we obtain the transition line of Eq. (5.26) given by u2 = 0. Then the transition
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line Γc is expressed as a function of J :

Γc/J = 4
√

2(∆c/J)− (∆c/J)2 , (5.31)

where ∆c denotes the ∆ value at the transition line. Then, the order parameter behavior

near the transition line can be obtained by taking the minimum value of the effective

potential in Eq. (5.53); the resulting solution equals σz0 in Eq. (5.22). Expanding the

order parameter for Γc − Γ ≪ 1, we obtain

m =

√
Γc

4J

√
Γc − Γ , (5.32)

which gives the exponent of magnetization β = 0.5. Similarly, we find the transition

line for fixed Γ as follows:

Jc/Γ =
1 + 16(∆c/Γ)

2

32(∆c/Γ)
. (5.33)

We also obtain the order parameter for J − Jc ≪ 1 as

m =

√
∆c

Jc

√
J − Jc . (5.34)

Thus, the critical exponent β = 0.5 is obtained.

Numerical results

Hereafter, we consider the numerical results for the DTI model. We first consider the

case where J is fixed at J = 1, but ∆ and Γ are varied. Numerical simulations are

performed by applying the Runge-Kutta method to the Liouville equation [Eq. (5.5)]

based on the PI states. The phase diagram obtained numerically in the parameter space

(∆,Γ) is shown in Fig. 5.4(a). The phase boundary curve (white curve) is obtained

by the analytic fluctuationless MF solution [Eq. (5.31)]. A distribution of the order

parameter is shown in Fig. 5.4(b), where J = 1 and ∆ = 0.1 are fixed.
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Figure 5.4: (a) Phase diagram of the DTI model on fully connected graphs in the pa-
rameter space (∆, Γ). A continuous transition occurs across the solid white curve. The
brightness represents the magnitude of magnetization m. (b) The density of the order
parameter in the steady state as a function of Γ at ∆ = 0.1. System size is taken as
N = 128. The brightness represents the probability that the order parameter exists.
Data are obtained from the Liouville equation with J = 1 based on the PI states.
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Figure 5.5: FSS analysis for the DTI model at ∆ = 0.5 and J = 1 on fully connected
graphs. (a) Plot of the order parameter m as a function of Γc − Γ for different system
sizes. The auxiliary dashed line with slope 0.5 means the power-law behavior m ∼
(Γc − Γ)0.5. Inset: Scaling plot of the magnetization mNβ/ν̄ versus (∆c −∆)N1/ν̄

with ν̄ = 1.75 and β = 0.5. (b) Plot of χ as a function of Γc − Γ for different system
sizes. The auxiliary dashed line with slope −1.0 means the power-law behavior χ ∼
(Γc − Γ)−1.0. Inset: Scaling plot of the susceptibility χN−γ/ν̄ versus (Γc − Γ)N1/ν̄ .
The critical exponents ν̄ = 1.75 and γ = 1.0 are used for the FSS analysis.

Next, we perform FSS analysis to obtain the critical exponents β and ν̄, which

are associated with the order parameter and correlation size, respectively. We obtain

the critical exponent β associated with the order parameter by directly measuring the

local slope of the plot of m versus Γc − Γ on a double logarithmic scale in Fig. 5.5(a).

Then, we plot mNβ/ν̄ versus (Γc − Γ)N1/ν̄ for different system sizes N in the inset

of Fig. 5.5(a). The result confirms that β = 0.50 ± 0.01. We also obtain a correlation
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Figure 5.6: (a) Phase diagram of the DTI model on fully connected graphs in the pa-
rameter space (∆, J). A continuous transition occurs across the solid white curve. The
brightness represents the magnitude of magnetization m. (b) The density of the order
parameter in the steady state as a function of J at ∆ = 0.2. System size is taken as
N = 128. The brightness represents the probability that the order parameter exists.
Data are obtained from the Liouville equation with Γ = 1 based on the PI states.

size exponent ν̄ of ν̄ = dcν = 1.75±0.01 using FSS analysis, as shown in the inset of

Fig. 5.5(a). Note that the critical exponent β is in agreement with the analytical result

of Eq. (5.32).

The susceptibility χ defined in Eq. (5.15) exhibits the divergent behavior χ ∼
(Γc − Γ)−γ as Γ → Γ−

c . Therefore, we plot χ versus ∆c −∆ on a double logarithmic

scale and find that χ exhibits power-law decay with slope −1.00±0.01 in in Fig. 5.5(b).

Thus, the exponent γ is estimated as γ = 1.00 ± 0.01. We note that the data points

collapse onto a single power-law line in the subcritical region with the choice of z̄ =

0.14 ± 0.01. Inserting this z̄ value into dc + z = 4, we obtain dc = 3.5 ± 0.02

and z = 0.5 ± 0.03. Next, by plotting χN−γ/ν̄ versus (∆c − ∆)N1/ν̄ and taking
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Figure 5.7: FSS analysis for the DTI model at ∆ = 0.2 and J = 1 on fully connected
graphs. (a) Plot of the order parameter m as a function of J − Jc for different system
sizes. The auxiliary dashed line with slope 0.5 means the power-law behavior m ∼
(J − Jc)

0.5. Inset: Scaling plot of the magnetization mNβ/ν̄ versus (J − Jc)N
1/ν̄

with ν̄ = 1.75 and β = 0.5. (b) Plot of χ as a function of J − Jc for different system
sizes. The auxiliary dashed line with slope −1.0 means the power-law behavior χ ∼
(J − Jc)

−1.0. Inset: Scaling plot of the susceptibility χN−γ/ν̄ versus (J − Jc)N
1/ν̄ .

The critical exponents ν̄ = 1.75 and γ = 1.0 are used.

ν̄ = 1.75± 0.01 in the inset of Fig. 5.5(b), we find that the data points collapse onto a

single curve. These results confirm that ν̄ = 1.75± 0.01.

Next, we consider the case where Γ = 1 is fixed. The phase diagram obtained

numerically in the parameter space (∆, J) is shown in Fig. 5.6(a). The heat map data

are obtained by the direct enumeration of the magnetization on the basis of PI states,
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whereas the phase boundary curve (white curve) is obtained by the fluctuationless MF

solution. The probability of the order parameter is shown in Fig. 5.6(b), where ∆ = 0.2

is fixed, but J is varied. For ∆ = 0.2, a discontinuous transition is predicted by the

Keldysh formalism; however, we obtain a continuous transition. Note that the order

parameter curve does not increase monotonously but rather decreases after a point

near J ≈ 0.5. It is likely that the order parameter saturates at a constant value in the

large-J limit.

Our result implies that if we simulate the DTI model at d = 4, the transition

would be continuous with the criticality in the MF limit. These results differ from

those obtained from the Keldysh formalism [221]. Because the Keldysh field theory

is well justified for bosonic systems when one applies to the Keldysh formalism on

the spin systems such as the DTI model, it is necessary to map spins to bosons; for

instance, through a hard-core bosonization using a large on-site potential, which might

not result in a valid qubit system in the infinite potential limit.

Next, we perform FSS analysis to obtain the critical exponents β and ν̄, which are

associated with the order parameter and correlation size, respectively. From Fig. 5.7(a),

for ∆ = 0.2, we obtain β = 0.50 ± 0.01 by measuring the local slope of m as a

function of J − Jc on a double logarithmic scale. Here, Jc is the value predicted by

the fluctuationless MF theory. Next, we plotmNβ/ν̄ versus (J−Jc)N1/ν̄ for different

system sizes in the inset of Fig. 5.7(a). In this plot, ν̄ is the value at which the data for

different N values collapse onto the same curve. ν̄ = dcν = 1.75 ± 0.01 is obtained.

The susceptibility defined in Eq. (5.15) diverges as χ ∼ (∆c − ∆)−γ as ∆ → ∆−
c .

Therefore, we plot χ versus ∆c − ∆ on a double logarithmic scale and find that χ

exhibits power-law decay with slope −1.00±0.01 in Fig. 5.7(b). We note that the data

points collapse onto a single power-law line in the subcritical region with the choice

of z̄ = 0.14 ± 0.01. Next, by plotting χN−γ/ν̄ versus (∆c − ∆)N1/ν̄ and taking

ν̄ = 1.75 ± 0.01, we find that the data collapse onto a single curve, as shown in the

inset of Fig. 5.7(b). This result confirms that ν̄ = 1.75± 0.01.
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Figure 5.8: Comparison of the data sets obtained by the direct enumerations of the
Lindblad equation based on the PI state (solid curve) and the quantum jump Monte
Carlo (QJMC) simulations (symbols) for the DTI model with ∆ = 0.1 and J = 1 for
different system sizes.

Similarly, we obtain the same critical exponents and upper critical dimension along

the transition line. The obtained exponents β = 0.50 ± 0.01, γ = 1.00 ± 0.04, ν̄ =

1.75±0.01, and z̄ = 0.14±0.01 satisfy the hyperscaling relation 2β+γ = ν(dc+z),

or equivalently 2β + γ = ν̄(1 + z̄) [83]. Note that the Lindblad operator in Eq. (5.16)

conserves Z2 symmetry, and thus the static critical exponents are the same, whereas it

affects the dynamics and the related critical exponent z.

5.5 Comparison with quantum jump Monte Carlo simula-

tion

To check the validity of the numerical method of the Lindblad equation based on the

PI states, we perform quantum jump Monte Carlo simulations for the DTI model on

the fully-connected graph. Simulations are performed on relatively small system sizes,

N = 8, 12, and 16 shown in Fig. 5.8. We find the two methods are in good agreement.
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5.6 Quantum contact process in scale-free networks

Studying the QCP model on complex networks provides advantages for obtaining an-

alytical solutions. Here, we obtain an analytical solution of the PT using the annealed

approximation. Furthermore, we confirm our result with numerical simulations of the

static model [107, 198], which is a simple model of an SF network, allowing us to

obtain analytic solutions. We find that the PTs and critical behavior depend on the het-

erogeneity of the network, i.e., the exponent λ of the degree distribution. We obtain

the following results. If the degree exponent of the SF network is less than a critical

value, λc = 3, the transition point becomes zero, and thus the system is always in a

nontrivial stationary state. At λ = 3, the system undergoes a continuous PT at a finite

transition point and the susceptibility diverges logarithmically. If λ > 3, the system

undergoes a discontinuous PT [4, 11, 58, 162, 193, 194, 260, 261]. The order parameter

jumps at a transition point and the susceptibility, defined as the response of the order

parameter to the conjugated field [215, 216], diverges at the transition point. We dis-

cuss the similarities and differences between these phenomena and those of a classical

model using hypergraphs [143, 149].

5.6.1 Annealed approximation and self-consistency equation

We introduce the annealed approximation. We average the expectation values of the

observables over the nodes with the same degree k. Next, we establish a set of differ-

ential equations for the observables for each k. If we ignore fluctuations and set κ = 0,

the annealed equations for the QCP become

∂nk
∂t

= ωykkθ − nk , (5.35)

∂xk
∂t

= −ωykkϕ− 1

2
xk , (5.36)

∂yk
∂t

= ω(2kθ − 4nkkθ + xkkϕ)−
1

2
yk , (5.37)
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where nk, xk, and yk are the expectation values of the operators over the nodes with

degree k, and

θ =
1

⟨k⟩

∫ ∞

km

dkkPd(k)nk , (5.38)

ϕ =
1

⟨k⟩

∫ ∞

km

dkkPd(k)xk , (5.39)

where km denotes the minimum degree. For the steady state, we set ∂nk
∂t = 0, ∂xk

∂t = 0,

and ∂yk
∂t = 0. The solutions are as follows:

nk =
4θ2k2ω2

1 + 8θ2k2ω2 + 4k2ω2ϕ2
, (5.40)

xk = − 8θk2ω2ϕ

1 + 8θ2k2ω2 + 4k2ω2ϕ2
, (5.41)

yk =
4θkω

1 + 8θ2k2ω2 + 4k2ω2ϕ2
. (5.42)

Then, θ and ϕ are again expressed in terms of nk and xk using Eqs. (5.38) and (5.39),

respectively. Inserting Eq. (5.40) into Eq. (5.38), we obtain a self-consistency function

G(θ) as

G(θ) ≡ 1

⟨k⟩

∫ ∞

km

dk kPd(k)
4θ2k2ω2

1 + 8θ2k2ω2 + 4k2ω2ϕ2
− θ (5.43)

and obtain a solution θ0 of G(θ0) = 0. Similarly, inserting Eq. (5.41) into Eq. (5.39),

we obtain the solution ϕ0 = 0. The power-law degree distribution Pd(k) ∝ k−λ for

k > km. Then, the self-consistency condition is rewritten as follows:

G(θ0) =
1

2
2F1

(
λ

2
− 1, 1;

λ

2
;− 1

8k2mω
2θ20

)
− θ0 = 0 , (5.44)

where 2F1(a, b; c; d) is the Gauss hypergeometric function defined as [1]

2F1(a, b; c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− tz)−a.
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Using the Taylor expansion of the hypergeometric function near the trivial solution

θ0 = 0,

2F1

(
λ

2
− 1, 1;

λ

2
;− 1

8k2mω
2θ20

)
=

(λ/2− 1)π

sin [(λ/2 + 1)π]

(
8k2mω

2θ20
)λ/2−1 (5.45)

+

(
λ

2
− 1

) ∞∑
i=1

(−1)i
(
8k2mω

2θ20
)i

i+ 1− λ/2
, (5.46)

we obtain that the self-consistency function has the following properties: G(0) = 0

and G(1) < 0. Hence, G(θ) always has a trivial solution θ0 = 0. This reflects that

n = θ0 = 0 is an absorbing state: the absorbing state is a steady-state of QCP whether

the system is finite or infinite. If limθ→0G
′(θ) > 0, there exists at least one nonzero

solution, because G(1) < 0. Using the asymptotic properties of the hypergeometric

function, we find that the derivative of the self-consistency function

G′(θ) =
λ− 2

8λk2mω
2θ3

2F1

(
λ

2
, 2;

λ

2
+ 1;− 1

8k2mω
2θ2

)
− 1 (5.47)

reduces in the limit θ → 0 to the following:

lim
θ→0

G′(θ) =


+∞ for λ < λc

πkmω√
2

− 1 for λ = λc

−1 for λ > λc

. (5.48)

Therefore, there exists a characteristic degree exponent λc = 3. These results can be

confirmed numerically, as shown in Fig. 5.9.

After we obtain the solution θ0, we can calculate the density of active sites in the
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system, which serves as the order parameter of the PT and is given by

n =

∫ ∞

km

dkPd(k)
4θ20k

2ω2

1 + 8θ20k
2ω2

=
1

2
2F1

(
λ− 1

2
, 1;

λ+ 1

2
;− 1

8k2mω
2θ20

)
. (5.49)

To determine the stability of the solution θ0, we apply small perturbations to the

steady-state solution nk and θ0 as δnk and δθ, respectively, where nk → n′k = nk +

δnk, and θ0 → θ′ = θ0 + δθ. Then, yk(θ) in Eq. (5.42) becomes yk(θ′), and the

equation of motion of nk given by Eq. (5.35) becomes

∂δnk
∂t

=
4θ′2k2ω2

1 + 8θ′2k2ω2 + 4k2ω2ϕ2
− n′k . (5.50)

By integrating the equation after multiplying both sides by kPd(k)/⟨k⟩, we obtain

∂δθ

∂t
=

1

⟨k⟩

∫ ∞

km

dk kPd(k)
4θ′2k2ω2

1 + 8θ′2k2ω2 + 4k2ω2ϕ2
− θ′

= G′(θ0)δθ , (5.51)

where we used G(θ0) = 0. Therefore, the solution θ0 is stable when G′(θ0) < 0.

5.6.2 Phase transition and critical behavior

A PT can be determined in terms of the ad hoc potential, which has been employed

to study a synchronization transition in nonequilibrium systems [312]. This approach

is similar to approach using the Landau free energy proposed in equilibrium systems.

The ad hoc potential can be applied to the QCP model. The ad hoc potential U(θ) is

defined through the relation G(θ) = −dU(θ)/dθ. In turn, U(θ) is written as

U(θ) = −
∫ θ

0
G(θ′)dθ′, (5.52)
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where we set U(0) = 0. The effective potential is illustrated in Fig. 5.9(a)–(c). Inte-

grating the leading terms in Eq. (5.46), we obtain

U(θ) =
1

2
θ2 − 8k2mω

2

3

(
λ− 2

λ− 4

)
θ3

− (λ/2− 1)π

(λ− 1) sin [(λ/2 + 1)π]

(
8k2mω

2
)λ/2−1

θλ−1 + h.o. , (5.53)

where h.o. represents higher-order terms. The profile of U(θ) depends on the degree

exponent λ and the frequency ω as shown in Fig. 5.9(a)–(c). The transition type is de-

termined by investigating the profile of U(θ): the solution of dU(θ)/dθ = 0 provides

the behavior of the order parameter and the sign of d2U(θ)/dθ2 at the solution θ0 does

the stability.

Here, we determine the type of PT and investigate the critical behavior of the QCP

model as a function of ω for different λ values.

Type of phase transition and order parameter

(i) For 2 < λ < 3 (Fig. 5.9(a), (d), and (g)), the term of O(θλ−1) in Eq. (5.53) is

much dominant than θ2. There exists a potential well at θ0 (Fig.5.9(a)), at which

U ′(θ0) = G(θ0) = 0 (Fig.5.9(d)). θ0 > 0 for ω > 0, but θ0 = 0 for ω = 0. A

PT occurs at ωc = 0. From G(θ0) = 0, we obtain the relation that for θ0 ≪ 1,

(λ/2− 1)π

sin [(λ/2 + 1)π]

(
8k2mω

2θ20
)λ/2−1 − θ0 = 0 . (5.54)

Therefore,

θ0 ∼ ω
λ−2
3−λ , (5.55)

n ∼
(
ω2θ20

)(λ−1)/2 ∼ ω
λ−1
3−λ . (5.56)
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Figure 5.9: (a)–(c) Plots of the ad hoc potential U(θ) as a function of θ for different
ω values. (d)–(f) Plots of the self-consistency function G(θ) versus θ for different ω
values. (g)–(i) Plot of the derivative ofG(θ) versus θ for different ω values. (i) λ = 2.5
for (a), (d), and (g). (ii) λ = 3 for (b), (e), and (h). (iii) λ = 3.5 for (c), (f), and (i).
Numerical values are obtained by solving Eq. (5.44) for the mean degree ⟨k⟩ = 1.
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Figure 5.10: Numerical solutions of the self-consistency equation. (a) Solution θ of the
self-consistency equation, (b) density of active sites, and (c) susceptibility of the steady
state as a function of ω. Dashed blue, solid blaeck, and dash-dotted curves represent
λ = 2.5, λ = λc = 3, and λ = 3.5, respectively.
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Thus, the critical exponent of the order parameter β = (λ − 1)/(3 − λ). By

contrast, in the classical limit (ω = 0 and κ ̸= 0), the transition point is also

κc = 0 and β = 1/(3− λ).

(ii) At λ = λc = 3 (Fig. 5.9(b), (e), and (h)), the terms of O(θλ−1) and O(θ3)

are of the same order. For this case, the profile of U(θ) depends on ω. There

exists a characteristic value ωc, calculated as ωc =
√
2/kmπ = 0.900316 using

Eq. (5.48) for the case ⟨k⟩ = 1. For ω < ωc, a potential well exists at θ0 = 0,

whereas for ω > ωc, it locates at finite θ0 depending on ω. A PT occurs at finite

ωc.

The self-consistency function and the density of active sites are expressed as

G(θ0) = θ0
√
2ωkm tan−1

(
1

2
√
2θ0ωkm

)
− θ0 = 0 , (5.57)

n = 4θ20ω
2k2m ln

(
1

8θ20ω
2k2m

+ 1

)
, (5.58)

where we used the properties 2F1

(
1
2 , 1;

3
2 ;−z2

)
= tan−1(z)/z and 2F1 (1, 1; 2;−z) =

ln(1 + z)/z [1]. When ω > ωc, G′(θ0 = 0) > 0. The absorbing state (n =

θ0 = 0) becomes unstable, and a single stable nonzero solution θ0 > 0 appears

(Fig. 5.9(e)). Near the transition point ωc,

G(θ0) ≃
(
ω − ωc

ωc

)
θ0 − 8k2mω

2θ20 , (5.59)

and the solutions are

θ0 ∼ (ω − ωc) , (5.60)

n ∼ θ20 ln

(
1

θ0

)
∼ (ω − ωc)

2 ln

(
1

ω − ωc

)
. (5.61)

Thus, the critical exponent β = 2 but with a logarithmic correction.

(iii) For 3 < λ < 4 (Fig. 5.9(c), (f), and (i)), the term of O(θλ−1) in U(θ) is the
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second leading term and its coefficient is negative. For λ > 4, the term of O(θ3)

is the second leading term, which is negative. Therefore, the critical behavior

for λ > 3 is mainly determined by the competition between the strengths of

the terms of O(θ2) and O(θλ−1) or O(θ3). Because limθ0→0G
′(θ0) = −1 in

Eq. (5.48), there exists a finite ωc at which there exists a characteristic nonzero

θ0 satisfying G(θ0) = 0 (Fig. 5.9(f)). For instance, ωc = 1.246471 in Fig 5.9(f).

Moreover, we find that G′(θ0) = 0 at ωc (Fig 5.9(i)). Near the transition point

θ0,

G(θ0) =
∂G

∂θ0
∆θ0 +

1

2

∂2G

∂θ20
(∆θ0)

2 +
∂G

∂ω
∆ω . (5.62)

Because G(θ0) = 0 and G′(θ0) = 0, θ0(ω)− θ0(ωc) ∼ (ω − ωc)
1/2. Therefore,

n(ω)− n(ωc) ∼ (ω − ωc)
1/2 . (5.63)

The order parameter jumps by the amount of n(ωc), and increases continu-

ously as ω is increased beyond ωc. The PT is hybrid with the critical expo-

nent β = 1/2. The phase diagram is illustrated in Fig. 5.11. At the transition

point, G(θ0) = 0 and G′(θ0) = 0. Similar behaviors appear in the epidemic

model [58], synchronization [312], and colloid crystal [4] in non-equilibrium

and the Ashkin-Teller model [140, 170] on complex networks in thermal equi-

librium systems. Note that for the colloid crystal problem, the ad hoc potential

is zero at the transition point for hybrid phase transitions, whereas U(θ0) ̸= 0

for the QCP model on SF networks.

Susceptibility

We define the susceptibility as the response of the density of active sites n to the

conjugated field H , which is realized as the time-reversed form of the decay process
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Figure 5.11: The phase diagram of the QCP model on SF networks. The type of PT
depends on the degree exponent λ. If λ < λc = 3, the transition point becomes zero
(ωc = 0), thus n > 0 for any ω > 0. At λ = λc, the system undergoes a continuous
PT at ωc ≈ 0.900316. If λ > λc, the system undergoes a discontinuous PT, and n is
discontinuous on the transition line.

(|↓⟩ → |↑⟩) [215, 216]:

L(h)
ℓ ρ̂ = H

(
σ̂+ℓ ρ̂σ̂

−
ℓ − 1

2
{(1− n̂ℓ) , ρ̂}

)
. (5.64)

Then, the annealed equations, Eqs. (5.35)−(5.37), become

∂nk
∂t

= ωkθyk − nk + h(1− nk) , (5.65)

∂xk
∂t

= −ωkϕyk −
1 + h

2
xk , (5.66)

∂yk
∂t

= ωk(2θ − 4θnk + ϕxk)−
1 + h

2
yk , (5.67)

where h = H/Γ. The conjugated field affects n directly through Eq. (5.49) and indi-

rectly through the self-consistency equation, Eq. (5.44). The susceptibility is then

χ =
dn

dh
=
∂n

∂h

∣∣∣
ω,θ

− ∂n

∂θ

∣∣∣
ω,h

∂G

∂h

∣∣∣
ω,θ

(
∂G

∂θ

∣∣∣
ω,h

)−1

. (5.68)

The susceptibility for various λ is illustrated in Fig. 5.10(c). We can use the asymp-
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totic properties of the hypergeometric function to calculate the behavior of the suscep-

tibility near the transition point.

(i) For 2 < λ < 3, ∂n
∂h

∣∣∣
ω,θ

→ 1, and ∂n
∂θ

∣∣∣
ω,h

→ 0 as ω → 0. Therefore, the

susceptibility converges to one, and the critical exponent of the susceptibility

γ = 0.

(ii) For λ = λc = 3, ∂n
∂θ

∣∣∣
ω,h

∼ θ ln
(
1
θ

)
, and ∂G

∂θ

∣∣∣
ω,h

∼ θ (ω − ωc). Thus, the

susceptibility diverges logarithmically at the transition point: χ ∼ ln
(

1
ω−ωc

)
.

Again, the critical exponent of the susceptibility γ = 0.

(iii) For λ > 3, ∂G
∂θ

∣∣∣
ω,h

∼ (ω − ωc)
1/2, whereas all the other terms converge to

a finite value at the transition point. The susceptibility diverges as (ω − ωc)
−γ

with the critical exponent γ = 1/2.

5.6.3 Numerical results

To further confirm our results, we perform numerical simulations by tracking the ex-

pectation values of the observables nℓ, xℓ, and yℓ. This method has also been imple-

mented in the quantum three-state epidemic model [273]. Note that this method is

analogous to the individual-based mean-field method [118, 298, 302], which is often

employed to study stochastic epidemic dynamics. This method enables us to predict

the transition point of PT and the critical phenomena in the classical stochastic pro-

cess in static and temporal networks [118, 298, 302, 324]. The effect of the power-law

degree distribution does not manifest itself notably unless the number of the nodes in

the network is at least 1000. Therefore, an exact numerical simulation method such as

the quantum-jump Monte Carlo method [276] or exact diagonalization cannot be used

for these two-state systems owing to their exponential numerical complexity.

We perform numerical simulations in the static model network. We choose three

values of the degree exponent: λ = 2.2 < λc, λ = λc = 3, and λ = 3.5 > λc. The

density of active sites and the susceptibility for these degree exponents are presented in
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Figure 5.12: Numerical simulation results for the PTs of the QCP model on the static
model. Plots of (a) the density of active sites ⟨n⟩ and (d) the susceptibility versus the
control parameter ω for λ = 2.2 (•), 3.0 (■), and 3.5 (▲). Note that ωcs for λ = 3.0
and λ = 3.5 are estimated to be 0.900316 and 1.246471, respectively. (b) Scaling
plot of the order parameter nNβ/ν̄ versus ωN1/ν̄ for λ = 2.2. (c) Scaling plot of
order parameter (n − nc)N

β/ν̄ versus (ω − ωc)N
1/ν̄ for λ = 3.5. (e) Scaling plot of

susceptibility χN−γ/ν̄ versus ωN1/ν̄ for λ = 2.2. (f) Scaling plot of order parameter
χNγ/ν̄ versus (ω − ωc)N

1/ν̄ for λ = 3.5. The critical exponents β = 0.5, γ = 0.5,
ν̄ = 2.05, ωc = 1.246471, and nc = n(ωc) = 0.167748 are used. The data points
for different system sizes collapse onto a single curve. Finite-size scaling analysis is
not feasible for λ = λc, because logarithmic corrections are applied to both the order
parameter and the susceptibility: n ∼ (ω − ωc)

2 ln
(

1
ω−ωc

)
and χ ∼ ln

(
1

ω−ωc

)
.
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Fig. 5.12(a) and (d), respectively. The order parameter is continuous near the transition

point for λ = 2.2 and λ = 3 and discontinuous for λ = 3.5. In addition, the transition

point ωc is zero for λ = 2.2, whereas it is nonzero for λ = 3 and λ = 3.5. The

susceptibility converges to unity for λ = 2.2, and it diverges for λ = 3 and λ = 3.5.

The numerical results confirm these analytical predictions.

We also perform finite-size scaling analysis to measure the critical exponent ν̄ for

λ = 2.2 and λ = 3.5. When the degree exponent is λc = 3, the order parameter

increases continuously from zero with the critical exponent β = 2, but with a loga-

rithmic correction as n ∼ (ω − ωc)
2 ln

(
1

ω−ωc

)
. Moreover, the susceptibility diverges

logarithmically: χ ∼ − ln (ω − ωc). Therefore, finite-size scaling analysis may not be

feasible for λ = λc.

For λ < λc, we choose λ = 2.2, the effect of the logarithmic correction is so

large that FSS analysis may not be feasible. We plot nNβ/ν̄ versus ωN1/ν̄ for various

system sizes in Fig. 5.12(b) for λ = 2.2. The data points for various system sizes

collapse onto a single curve with the critical exponents β = 1.5 and ν̄ = 2.0.

For λ = 3.5, in Fig. 5.12(c) we plot [n(ω) − n(ωc)]N
β/ν̄ versus (ω − ωc)N

1/ν̄

with the obtained n(ωc), because the transition is discontinuous at finite ωc. The tran-

sition points ωc = 1.246471 and nc = n(ωc) = 0.167748 are numerically estimated

using the annealed approximation. The data points collapse onto a single curve for

β = 0.5 and ν̄ = 1.95. This β value is consistent with the analytical solution.

For the susceptibility, we plot χN−γ/ν̄ versus (ω − ωc)N
1/ν̄ for ω > ωc. For

λ = 2.2, the susceptibility converges to unity [Fig. 5.12(e)]. For λ = 3.5, the data

points collapse onto a single curve with γ = 0.5 and the previously obtained ν̄ = 1.95

[Fig. 5.12(f)]. Indeed, this result is consistent with the analytical prediction using the

annealed approximation.
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5.7 Summary and Discussion

Several analytical approaches have exploited phase transitions from an absorbing state

to an active state in the mean-field (MF) limit in dissipative quantum systems such

as the quantum contact process (QCP) and dissipative transverse Ising (DTI) model.

However, their results are not consistent to each other. Thus, it is necessary to con-

firm the analytical results numerically. However, the numerical check is not feasible in

higher dimensions because the computational complexity increases exponentially as

the dimensionality is increased. Here, we numerically exploited the critical behaviors

in such quantum phase transitions using the property in infinite dimensions (d∞) that

spin indices are permutation invariant (PI). Assuming that the MF solution is equiva-

lent to the solution above the upper critical dimension dc including d∞, we considered

the critical behavior at d∞. The system at d∞ is regarded as the all-to-all graph, on

which spin indices are PI. The quantum states that are PI can be contracted to a sin-

gle state. This contraction reduces the computational complexity considerably, from

O(22N ) to O(N3). Thus numerical simulations are feasible in relatively large system

sizes (up to N = 1024). The critical behavior was obtained using finite-size scaling

(FSS) analysis, which are consistent with those obtained using the fluctuationless MF

approach.

We first considered the quantum contact process (QCP), where a previous result

based on the semiclassical MF solution showed that the continuous transition belongs

to the directed percolation (DP) universality class and the tricritical point (TP) belongs

to the tricritical DP class (Fig. 5.9). Using our approach, we find that the transition lines

are the same as those obtained using the semiclassical approach with an upper criti-

cal dimension dc = 3 [160]. Furthermore, a crossover region exists along which the

exponent α (associated with the density of active sites) decreases continuously from

the tricritical DP value to the DP value, which is reminiscent of the one-dimensional

QCP [159].
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Next, both the transverse Ising (TI) and DTI models are characterized by Z2 sym-

metry; thus, the universality class in the steady state should belong to the Ising univer-

sality class with β = 0.5, γ = 1.0, and ν = 0.5. Using this analytical transition line

obtained from the fluctuationless MF results, we successfully performed FSS analysis.

For the TI model, the critical exponents β ≈ 0.5, γ ≈ 1.0, ν̄ ≈ 1.5, and z̄ ≈ 0.33 are

obtained. Thus, the upper critical dimension and dynamic critical exponent are found

as dc = 3 and z = 1, respectively; these values are important for quantum phase

transitions because the upper critical dimension is smaller by z than that of the clas-

sical transition [189]. By contrast, for the DTI model, the critical exponents β ≈ 0.5,

γ ≈ 1.0, ν̄ ≈ 1.75, and z̄ ≈ 0.14 are obtained. Inserting these values into dc + z = 4,

we obtained dc = 3.5 ± 0.02 and z = 0.5 ± 0.03. Thus, both models satisfy the hy-

perscaling relation 2β + γ = ν(dc + z), or equivalently, 2β + γ = ν̄(1 + z̄) [83]. The

MF universality behavior of the three Ising-type models is summarized in Table 5.3.

When the Keldysh formalism is applied to describe the dissipative transverse Ising

(DTI) model, the spins in the DTI model are transformed to bosonic operators so that

the mean-field functional integral can be applied. The Keldysh formalism is valid for

bosonic systems; however, its validity is not completely warranted when applied to

spin systems where spins are mapped into hard-core bosons using intense potentials

on spin sites.

We remark that the upper critical dimension dc ≈ 3.5 is fractional, which may be

unexpected. Thus, we show another example showing a fractional upper critical dimen-

sion: the 3-state Potts model. An analytic solution for this model exhibits a continuous

transition in d = 2. For d > 2, using the Kadanoff variational renormalization group

method, it was shown that the phase transition is discontinuous in d = 3. However, it

was formidable to identify dc, which remains a challenging task. Using the numerical

conformal bootstrap and extensive Monte Carlo simulations, dc was obtained approx-

imately as 2.4 [54]. Thus, the upper critical dimension for the 3-state Potts model is

fractional. Finally, we think the PI property can be used for other problems, for in-
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stance, the quantum synchronizations arising in all-to-all networks [128].

Moreover, we investigated the PTs of the QCP model on SF networks. Using the

annealed approximation, which is valid in the network with no degree-degree correla-

tion, we derived the analytical formulae for the PTs as a function of the degree expo-

nent of SF networks. The highly heterogeneous degree distribution characterized by

the power-law degree distribution results in rich critical behaviors, including the van-

ishing transition point, second-order PT, and discontinuous PT, that are not observed in

low dimensional systems [31]. When the degree exponent λ < λc = 3, the transition

point ωc vanishes, and there is a nontrivial stationary active state for ω > 0. At λc, the

system undergoes a second-order PT at finite ωc, and the susceptibility diverges loga-

rithmically. When λ > 3, a hybrid PT occurs at a finite ωc. While the order parameter

jumps, the susceptibility diverges at the transition point.

We performed numerical simulations on the static model network to confirm the

theoretical predictions. The numerical results for the density of active sites and sus-

ceptibility were consistent with the analytical predictions. We further investigated the

finite-size scaling behavior near the transition point. The critical exponent ν̄ for the

correlation length was obtained.

The classical contact process and epidemic susceptible-infected-susceptible (SIS)

model are known to belong to the same universality class, which is the DP class. Con-

sequently, one may wonder if the critical exponent values of the QCP in the quantum

limit and the previously studied simplicial SIS (s-SIS) model [149] are the same. The

s-SIS model was introduced in SF hypergraphs to study the epidemic process in com-

munities with higher-order interactions. Note that the QCP includes the quantum co-

herent effect, which may be regarded as a consequence of the higher-order interactions

in the semiclassical action [31, 160]. Here, we found that the two systems commonly

exhibit a discontinuous PT for λ > λc with the same critical exponent values β and γ.

However, λc is 3 for the QCP and 2.5 for the s-SIS model. For λ < λc, the transition is

second-order, and the transition point is zero in both cases. Moreover, the values of the
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critical exponent β are different; β = (λ−1)/(3−λ) for the QCP, and β = 1/(5−2λ)

for the s-SIS model. This difference is apparently attributable to the different roles of

hubs in the SF network for each model. In the classical case, the various types of phase

transitions stems from the higher-order interaction mediated by hyperedges; however,

in the quantum case, there is no higher-order interaction between more-than-two nodes

— the interaction is purely dyadic. Instead, the complex critical behaviors are driven

by mutually related non-commuting observables of the system.
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Chapter 6

Conclusion

In this dissertation, we identified that the hybrid phase transition occurs universally in

complex contagion processes. We also discovered a novel phenomenon where the type

of phase transition is controlled by the degree exponent of the network or hypergraph.

When the exponent of the degree distribution is below a certain value, the threshold

of the phase transition vanishes. When the exponent is exactly the certain value, the

system undergoes a continuous phase transition at finite threshold. When the expo-

nent is larger than the certain value, the system undergoes a hybrid phase transition.

We also investigated control strategies to contain complex contagion processes. We

implemented the pair-based mean-field theory to resolve the issue of stochastic fluctu-

ations to calculate the appropriateness of each hyperedge to be removed to minimize

the epidemic prevalence. For nonlocal spreading processes where the pair-based mean-

field theory cannot be applied, we introduced machine learning to calculate a centrality

measure tailored to the process. For Further research, we can investigate how prevalent

hybrid phase transition is in other types of complex spreading processes. Moreover, for

nonlocal contagion processes, we can identify a new network where the contagion oc-

curs locally.
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[49] Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao

Zhou. Identifying influential nodes in complex networks. Phys. A Stat. Mech.

its Appl., 391(4):1777–1787, feb 2012.

151



[50] Hanshuang Chen, Shuang Wang, Chuansheng Shen, Haifeng Zhang, and

Ginestra Bianconi. Non-Markovian majority-vote model. Phys. Rev. E,

102(6):062311, dec 2020.

[51] Li Chen, Fakhteh Ghanbarnejad, Weiran Cai, and Peter Grassberger. Outbreaks

of coinfections: The critical role of cooperativity. EPL, 104(5), 2013.

[52] Yiping Chen, Gerald Paul, Shlomo Havlin, Fredrik Liljeros, and H. Eu-

gene Stanley. Finding a Better Immunization Strategy. Phys. Rev. Lett.,

101(5):058701, jul 2008.

[53] Ziqi Chen and David B. Smith. Heterogeneous machine-type communications

in cellular networks: Random access optimization by deep reinforcement learn-

ing. In 2018 IEEE International Conference on Communications (ICC), pages

1–6, 2018.

[54] Shai M Chester and Ning Su. Upper critical dimension of the 3-state potts

model. arXiv preprint arXiv:2210.09091, 2022.

[55] Y S Cho, J S Kim, J Park, B Kahng, and D Kim. Percolation Transi-

tions in Scale-Free Networks under the Achlioptas Process. Phys. Rev. Lett.,

103(13):135702, 2009.

[56] K. Choi, Hoyun Choi, and B. Kahng. COVID-19 epidemic under the K-

quarantine model: Network approach. Chaos, Solitons & Fractals, 157:111904,

apr 2022.

[57] Soonwon Choi, Joonhee Choi, Renate Landig, Georg Kucsko, Hengyun Zhou,

Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika Khe-

mani, Curt von Keyserlingk, Norman Y. Yao, Eugene Demler, and Mikhail D.

Lukin. Observation of discrete time-crystalline order in a disordered dipolar

many-body system. Nature, 543(7644):221–225, 2017.

152



[58] Wonjun Choi, Deokjae Lee, and B Kahng. Mixed-order phase transition in

a two-step contagion model with a single infectious seed. Phys. Rev. E,

95(2):022304, 2017.

[59] Wonjun Choi, Deokjae Lee, and B. Kahng. Mixed-order phase transition

in a two-step contagion model with a single infectious seed. Phys. Rev. E,

95(2):022304, feb 2017.

[60] Sandeep Chowdhary, Aanjaneya Kumar, Giulia Cencetti, Iacopo Iacopini, and

Federico Battiston. Simplicial contagion in temporal higher-order networks. J.

Phys. Complex., 2(3):035019, sep 2021.

[61] Ertugrul Necdet Ciftcioglu, Ram Ramanathan, and Prithwish Basu. Generative

models for global collaboration relationships. Sci. Rep., 7(1):11160, 2017.

[62] Pau Clusella, Peter Grassberger, Francisco J. Pérez-Reche, and Antonio Politi.
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[334] Guifré Vidal. Efficient classical simulation of slightly entangled quantum com-

putations. Phys. Rev. Lett., 91:147902, Oct 2003.

[335] Erik Volz and Lauren Ancel Meyers. Epidemic thresholds in dynamic contact

networks. J. Royal Soc. Interface, 6(32):233–241, 2008.

[336] B. Wang and B. J. Kim. A high-robustness and low-cost model for cascading

failures. Europhys. Lett., 78(4):48001, may 2007.

[337] Dong Wang, Yi Zhao, Jianfeng Luo, and Hui Leng. Simplicial SIRS epidemic

models with nonlinear incidence rates. Chaos An Interdiscip. J. Nonlinear Sci.,

31(5):053112, may 2021.

[338] Panpan Wang and Jianwen Jia. Stationary distribution of a stochastic SIRD

epidemic model of Ebola with double saturated incidence rates and vaccination.

Adv. Differ. Equations, 2019(1):433, dec 2019.

184



[339] Zhen Wang, Chris T. Bauch, Samit Bhattacharyya, Alberto D’Onofrio, Piero

Manfredi, Matjaž Perc, Nicola Perra, Marcel Salathé, and Dawei Zhao. Statis-
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초록

지난 20년간 복잡계 네트워크의 창발현상에 대해 많은 연구가 이루어져왔다.

이런 현상의 예측과 제어는 복잡계 과학에서 중요한 주제이다. 복잡계 네트워크의

그래프 표현은 이런 주제를 효과적으로 다룬다. 복잡계 중에서는 두개 이상의 개

체들이동시에상호작용하는경우가있다.예를들어두명이상의연구자가동시에

협업을할수있다.네트워크의엣지를통한전파는단순한전파라불린다.단순한전

파과정으로나타낼수없는많은현상들이있다.그예로는하이퍼그래프전파과정,

양자전파과정,그리고사회기반시설에서의연쇄파멸현상이있다.

구체적으로이학위논문에서는복잡한전파과정의예측과제어를다룬다.하이

퍼그래프에서의 전염병 전파 모델인 simplicial SIS 모델의 상전이와 제어 전략을

다룬다.또한불균일한치명률을가진인구분포에서최적백신전략의상전이에대

해서도다룬다.추가로 degree분포가균일한네트워크와불균일한네트워크에서의

양자상전이에대해서도연구한다.마지막으로기계학습을적용하여전염병전파와

연쇄파멸현상을예측하고제어한연구에대해소개한다.

주요어: 전염병 확산과정, 복잡한 전염, 하이퍼그래프, 비평형 상전이, 백신 전략,

연쇄파멸,그래프신경망,열린양자계,하이브리드상전이

학번: 2020-34297
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