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ABSTRACT

Umbral oscillations of intensity and velocity are conspicuous dynamical features

in sunspot umbrae. They are associated with slow magnetoacoustic waves propa-

gating upwards from the photosphere to the corona along the magnetic field with

the sound speed. Interestingly, recent observational studies have reported that these

waves appear to propagate across the magnetic field, forming complex horizontal

patterns. The study of oscillation patterns is significant because they give us infor-

mation about the nature and origin of umbral oscillations and how they can trans-

port their energy from the source region to the chromosphere or above. Moreover,

oscillation patterns are useful to infer the properties of the source region because

they propagate information about the medium which they pass through. Despite

several endeavors to understand the nature of oscillation patterns, it is still elusive.

In this thesis, we devised theoretical models to understand the nature of observed

patterns in sunspot umbrae using the data obtained from the Fast Imaging Solar

Spectrograph of the Goode Solar Telescope and the Atmospheric Imaging Assembly

(AIA) of the Solar Dynamics Observatory (SDO).

First, we suggested a theoretical model that interprets the observed spiral-shaped

wave patterns (SWPs) as the superposition of the axisymmetric mode and the non-

axisymmetric mode of slow waves driven below the sunspot surface in an untwisted

magnetic flux tube. We applied the model to the observed SWPs of the line-of-sight

(LOS) Doppler velocity. The oscillation period of the SWPs was about 160 s with

a duration of about 5 minutes. According to the suggested model, the spiral arm

features were reproduced by the non-zero azimuthal modes (m ̸= 0) driven 1600

km below the surface in the pore. The observed one-armed SWP was formed by

the sausage and the kink modes, and the two-armed SWP was reproduced by the

sausage and fluting modes in the flux tube.
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Second, we analyzed the observational properties of the SWPs by using the

SDO/AIA 304 Å. We investigated 496 sunspots in the disk center for 2 hours from

the 2013 to 2018 data set. We found 241 SWPs in 140 sunspots with a detection

rate of 0.24 per hour; 192 one-armed SWPs, 48 two-armed SWPs, and only one

three-armed SWP. The lifetime was 780±250 seconds, and the oscillation period was

149±35 seconds, being comparable to those of conventional umbral oscillations. From

the apparent angular speed, we estimated the rotation periods of each SWP. The

rotation period of one-armed SWPs is 183±72 seconds, and that of two-armed SWPs

is 317±132 seconds. The observational properties of the SWPs were irrespective of

the hemisphere, latitude, and size of sunspots. By supposing the observed SWPs

originated from localized random events in the interior and by using the eikonal

method, we inferred that most of the SWPs were generated between 2 Mm and 10

Mm below the surface with a mean value of about 6 Mm.

Third, we successfully reproduced the temporal evolution of the observed chro-

mospheric oscillation patterns using the subphotospheric fast resonance model. Be-

cause of the cutoff wavenumber of the fast body waves, only a few low-order modes

can be trapped in the pore-like small-scale flux tube. Through the fast-to-slow mode

conversion, the inherited patterns of resonance of fast waves in the subphotosphere

can be detected in the chromospheric oscillation patterns of slow waves. This model

is the most important achievement of this thesis. It sheds light on the subphoto-

spheric seismology in sunspots in that we can infer the unobservable atmospheric

properties from the observed chromospheric oscillation patterns.

Our approaches provide new insights into the nature and origin of umbral os-

cillations. Furthermore, our results will give a better understanding of the energy

transfer of waves from the interior to the solar corona and infer the internal structure

below the sunspot surface.

Keywords: Sunspots; Magnetohydrodynamics; Solar oscillations; Solar atmosphere;
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Chapter 1

Introduction

Oscillations and waves are ubiquitous dynamic phenomena in the solar atmosphere.

One of the most well-known wave phenomena in the Sun is the global standing

acoustic waves of pressure mode (p-mode) trapped in the solar interior (e.g., Ulrich

1970; Deubner 1975). Since the predominant restoring force of the p-mode waves is

the gas pressure, they are detected from the temporal changes of the intensity and

the Doppler velocity with the dominant period of 5 minutes at the photosphere. The

source of these waves has been considered as the turbulent convective disturbance of

the photosphere at the top of the convection zone near the solar surface (Goldreich

& Kumar 1990). Since the p-mode waves are trapped in the spherical Sun, the

global patterns of the waves can be mathematically described in terms of spherical

harmonics in three dimensions.

In a localized and magnetized region, such as a sunspot, waves have also been

reported. The nature of waves in a sunspot is somewhat different from acoustic

waves because they are affected by strong magnetic fields. In addition, the waves

in a sunspot can transfer their energy from the interior to the corona along the

magnetic field and contribute to the heating of the upper atmosphere. Recently their

two-dimensional patterns in umbrae have been reported, but it is still elusive what
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2 Introduction

makes these patterns (e.g., Sych & Nakariakov 2014; Zhao et al. 2015). Therefore,

the understanding of wave patterns in sunspots is significant in that they give us

information about (1) what generates the sunspot waves, (2) how they transfer their

energy, and (3) the medium where the waves occur.

1.1 Magnetohydrodynamic waves

Magnetohydrodynamics (MHD) is the physics that combines hydrodynamics and

electromagnetism to describe the fluid, especially plasma, in a magnetized medium.

The importance of the magnetic field relative to the plasma is decided by the plasma

beta,

β =
p

pm
=

8πp

B2
, (1.1)

where p is the gas pressure and pm = B2/8π is the magnetic pressure and B is the

magnetic field. This plasma β is also represented in the ratio between sound speed

(c2s = γp/ρ) and Alfvén speed (v2A = B2/4πρ),

β =
2

γ

c2s
v2A

, (1.2)

where γ is the specific heat ratio, and ρ is the density of the plasma. In a low-β

plasma (β ≪ 1), the Lorentz force is dominant, and the Alfvén speed is much higher

than the sound speed. In contrast, in a high-β region (β ≫ 1), the pressure gradient

force is dominant, and the sound speed is much higher than the Alfvén speed.

For the sound waves, the restoring force is the gradient force of the gas pressure.

For MHD waves, the Lorentz force also works as the restoring force. This Lorentz

force can be separated into the gradient force of the magnetic pressure and the

magnetic tension force. The combination of three restoring forces generates several

MHD waves.
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1.1.1 MHD waves in a uniform medium

In a uniform medium, several MHD wave modes are decoupled from each other,

so the fundamental properties of each mode can be described easily. Thus it is

essential to understand the waves in a uniform medium. In this medium, MHD waves

are separated into the Alfvén waves (Alfvén 1942) and the magnetoacoustic waves

depending on the compressibility of the plasma. Figure 1.1 shows the summary of

the MHD waves.

Alfvén waves

The magnetic tension force generates incompressible waves called Alfvén waves. The

Alfvén waves can transfer the magnetic energy only because the restoring force is

the magnetic tension force only. The phase speed and group velocity of the Alfvén

waves are given by,

ω

k
= vA cos θB, (1.3)

∂ω

∂k
= ±vAB̂, (1.4)

where ω is the frequency, k is the wave vector, k = |k|, θB is the angle between the

direction of k and B, and B̂ = B/|B| is a unit vector in direction of B. Thus, the

Alfvén waves transport their energy along the magnetic field, and cannot propagate

across the magnetic field. The motion of Alfvén waves is perpendicular to both the

wave vector and the magnetic field because the Alfvén waves are incompressible

(v ⊥ k), and the direction of the magnetic tension force is perpendicular to the

magnetic field (v ⊥ B).

Magnetoacoustic waves

The magnetoacoustic waves are the compressible MHD waves generated by the com-

bination of gas pressure and magnetic pressure. From the dispersion relation, the



4 Introduction

Figure 1.1 Summary of the MHD waves.
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phase speed of the magnetoacoustic waves is given by,

ω2

k2
=

1

2

(
(c2s + v2A)±

√
(c2s + v2A)

2 − 4c2sv
2
A cos2 θB

)
. (1.5)

The magnetoacoustic waves have two solutions; one is the fast magnetoacoustic waves

with the positive (+) root, and the other is the slow magnetoacoustic waves with

the negative (-) root.

Fast magnetoacoustic waves (or fast waves) are generated when two in-phase

gradient forces of gas pressure and magnetic pressure disturb the plasma. The phase

speed is faster than two characteristic speeds (sound speed and Alfvén speed) and

propagates quasi-isotropically in the low-β and the high-β plasma. The velocity

perturbation is in the plane of the wave vector and the magnetic field, and the field-

parallel component is in phase with the perpendicular component. In the high-β

region, the fast waves have an acoustic nature transporting more acoustic energy

than magnetic energy with the phase speed of the sound speed. In addition, they

are longitudinal because the velocity perturbation is aligned with the wave vector.

On the other hand, in the low-β plasma, the fast waves transfer magnetic energy

with the Alfvén speed, and the motion is perpendicular to the magnetic field. Thus

(magnetic) fast waves in the low-β region are sometimes called compressible Alfvén

waves.

Slow magnetoacoustic waves (or slow waves) are disturbed by two out-of-phase

gradient forces of gas pressure and magnetic pressure. The phase speed is slower

than the sound speed and the Alfvén speed. Similar to the Alfvén waves, they

propagate along the magnetic field and cannot propagate across the field line. As

with the fast waves, the velocity perturbation lies in the same plane of the wave

vector and the magnetic field, but the field-parallel component is out of phase with

the perpendicular component. In fact, the motion of the slow waves is orthogonal to

the motion of fast waves. In the high-β region, the slow waves have magnetic nature

transporting magnetic energy, and they are transverse to the wave vector. In the low-
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β region, the slow waves are considered one-dimensional sound waves because they

propagate along the magnetic field, and their motion is aligned with the magnetic

field showing the longitudinal nature. See more details in Roberts (2019).

1.1.2 Waves in a flux tube

Except for the ideal case, plasma in the Sun is non-uniform and inhomogeneous be-

cause of the structured magnetic field and the effect of gravity. In an inhomogeneous

medium, waves are dispersive: the propagation speed depends on the wavelength.

Thus we should understand the properties of the waves in such a medium.

At first, we consider the magnetoacoustic waves in a cylindrical magnetic flux

tube surrounded by a uniform medium. If the waves are trapped in the flux tube and

exponentially decay in the surroundings, the waves in the flux tube can be classified

as surface waves or body waves by the behavior of the wave motions (see Figure

1.2). The surface waves exponentially decay from the interface, so the radial motion

is maximum at the interface. The motion of body waves also decays outside the flux

tube but is oscillatory within the flux tube. The total pressure perturbation (pT ) of

waves inside the tube can be described by Bessel functions Im and Jm in cylindrical

coordinates (r, θ, z),

pT ∝


Im(krr) exp i(kzz +mθ − ωt), Surface waves

Jm(krr) exp i(kzz +mθ − ωt), Body waves

 (r < R) (1.6)

where m is the azimuthal mode, kr is the effective radial wavenumber, kz is the

vertical wavenumber. The total pressure perturbation in the exterior is described by

the Bessel function Km.

The waves in the flux tube can also be classified according to the distinctive

geometric patterns of the boundary (see Figure 1.3). The symmetric expanding or

contracting boundary is referred to as sausage mode waves. The central axis of the
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Figure 1.2 A surface wave on (a) a single magnetic interface, (b) a magnetic flux

tube, (c) and a body wave on a magnetic flux tube. The surface waves decay away

from the boundary where the velocity is maximized. In contrast, the body waves are

oscillatory in the flux tube. (From Priest (2014))
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Figure 1.3 A sausage mode wave (left) and a kink mode wave (right) on the magnetic

flux tube. The sausage wave has the symmetric motion of the flux tube. The kink

wave is described by the asymmetric motion displacing the central axis of the flux

tube.(From Morton et al. (2012))
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tube is not perturbed because of the symmetric motion. In contrast, asymmetric

transverse motions disturb the central axis of the (thin) flux tube like the motion

of a snake. These waves are called the kink mode waves. Moreover, the more com-

plex higher-order motion of the tube boundary is called fluting modes. The motions

of kink and fluting modes can be linearly or circularly polarized (See the review

Nakariakov et al. 2021). More generally, symmetrical motions of either surface or

body waves are categorized as sausage waves, and asymmetric motions are classified

as kink waves.

1.1.3 Waves in gravitationally stratified atmosphere

When the gravity force is not negligible, we have to consider the effect of gravity on

the medium. In this medium, the mass density and the plasma pressure exponentially

decrease with height: ρ = ρ0 exp(−z/H0) and p = p0 exp(−z/H0), whereH0 = c2s/γg

is the density scale height, and g is the gravitational acceleration. On the other hand,

the amplitude of the oscillations becomes large with height because of the energy

conservation (v ∝ ρ−1/2 ∝ exp(z/2H0)). This atmosphere is called the gravitationally

stratified medium.

Two distinctive effects occur in a gravitationally stratified medium: the acoustic

cutoff frequency and the mode conversion.

Acoustic cutoff frequency

The acoustic cutoff frequency is the critical frequency of whether a particular fre-

quency of acoustic waves can propagate. The acoustic cutoff frequency acts as a

high-frequency filter that the waves with the frequency below this cannot propagate

upwards but exponentially decay, which are called evanescent waves (Kalkofen et al.

1994; Chae & Goode 2015). Only the waves above the acoustic cutoff frequency can

pass through the medium.
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This acoustic cutoff frequency occurs due to the presence of a gravitational force

acting as a buoyancy force. The density gradient creates the buoyancy force oppos-

ing the propagation direction of waves. This buoyancy force is proportional to the

distance from the equilibrium position in the stratified medium. When the buoyancy

force is stronger than the pressure gradient force, waves cannot propagate. It means

that the waves with a wavelength (λ) longer than the given length scale 2H0 cannot

propagate. From the relation of ω = csk ∝ λ−1, this critical length can be converted

to the timescale of cutoff frequency ωc,

ωc =
cs
2H0

=
γg

2cs
. (1.7)

Therefore, the acoustic waves of frequency larger than the acoustic cutoff frequency

can propagate.

Note, the acoustic cutoff frequency has a similar value to the Brunt-Väisälä

frequency (N) of the internal gravity waves at the temperature-minimum region.

If the waves propagate obliquely, the acoustic waves with a frequency higher than

the acoustic cutoff and the internal gravity waves with a frequency lower than the

Brunt-Väisälä frequency can propagate. Thus the acoustic cutoff acts as a high-pass

filter of the acoustic waves, but the Brunt-Väisälä frequency performs as a low-pass

filter of the internal gravity waves. For the case of slow (acoustic) MHD waves in the

low-beta region, the internal gravity waves cannot propagate because the waves are

aligned with the magnetic field (kz ≫ k⊥). The dispersion relation of the acoustic-

gravity waves is given by (Roberts 2019),

k2z =
ω2 − ω2

c

c2s
+ k2⊥

(
N2

ω2
− 1

)
. (1.8)

See more details in chapter 9 of Roberts (2019).
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Figure 1.4 Schematic diagram illustrating the mode conversion in two inclined mag-

netic fields (sky blue). Here the curved black arrow indicates the ray path of the

fast MHD waves, the red arrow represents the wave vector of the slow waves, and

the blue arrow is the wave vector of the Alfvén waves. Some fast (acoustic) waves

are converted to slow (acoustic) waves in the equipartition layer (black solid line),

and some fast (magnetic) waves are converted to Alfvén waves. The efficiency of the

mode conversion decrease with the angle between the wavevector and the magnetic

field. (From Khomenko & Cally (2012))
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Mode conversion

In an inhomogeneous medium, some of the energy of one wave mode can be trans-

ferred to other wave modes. Assume that the atmosphere is gravitationally stratified,

but temperature and the magnetic field strength are not varying with height. In this

atmosphere, the sound speed is constant because it depends on the temperature

(cs ∝ T ), but the Alfvén speed is exponentially increased because it is inversely

proportional to plasma density (vA ∝ ρ−1/2 ∝ exp(z/2H0)). Thus the sound speed

is higher than the Alfvén speed in the deep region (high-β), while the sound speed

is lower than the Alfvén speed in the high atmosphere (low-β). In between, there is

a region where the sound speed and the Alfvén speed are about the same, called the

equipartition layer. In this layer, the speeds of slow and fast waves become similar,

and the two modes are coupled. Thus the energy can be converted between two

modes, and this process is the fast-to-slow mode conversion. This mode conversion

process conserves the nature of the waves. It means that the acoustic nature of fast

waves in the high-β region are conserved when they are converted to (acoustic)

slow waves, or vice versa (Figure 1.4).

In this thesis, we do not add the gravity force on the momentum equation for

simplification but utilize the concept of the acoustic cutoff frequency and the fast-

to-slow mode conversion process to interpret observed features.

1.2 Umbral oscillations in sunspots

A sunspot is a dark region where the magnetic fields are concentrated. As the mag-

netic tension suppresses the convective flow, the sunspot looks darker, with a tem-

perature of 4000 K. The sunspot can be separated into the umbra and penumbra.

The umbra has strong vertical magnetic fields that suppress heat transport, so it is

cooler than its surroundings. The penumbra surrounds the umbra with the inclined
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magnetic fields, and the field strength is weaker than the umbra. The penumbra

is brighter than the umbra because the magneto-convective cell that transfers the

internal heat to the surface along the magnetic fields becomes larger in a weaker and

more inclined magnetic fields. Especially a sunspot without the penumbra is called

a pore.

One of the most prominent physical phenomena in sunspots is umbral oscillations

of intensity and Doppler line-of-sight (LOS) velocity (Figure 1.5). The first detection

of intensity oscillations in the chromosphere of sunspot umbrae was reported by

Beckers & Tallant (1969) using the Ca II H and K lines. After the first detection,

the umbral oscillations were also found in the photosphere (Bhatnagar et al. 1972;

Lites 1984), the transition region, and the corona (Gurman et al. 1982; O’Shea et al.

2002; Tian et al. 2014). The oscillation period of the umbral oscillation is around 5

minutes in the photosphere, 2-3 minutes above the chromosphere (Figure 1.6).

The nature of umbral oscillations has been known as slow magnetoacoustic waves.

They are compressible waves because they display the fluctuation of either intensity

or LOS velocity. Moreover, they propagate upwards along the magnetic field from

the photosphere to the chromosphere and above (Lites 1984; Centeno et al. 2006;

Felipe et al. 2010). Their propagation speed is around the local sound speed. The

3-minute period above the chromosphere comes from the acoustic cutoff frequency

at the temperature-minimum region of 2-3 minutes (Kalkofen et al. 1994). The long-

period waves of larger than 2-3 minutes are reflected at the temperature-minimum

region, but waves shorter than the acoustic cutoff period can propagate above the

temperature-minimum region. Actually, considering a temperature gradient and ra-

diative heating and cooling, a portion of 5-minute waves can propagate upwards

(Mihalas & Mihalas 1984; Bunte & Bogdan 1994; Chae & Litvinenko 2018; Chae

et al. 2023). Therefore, observed umbral oscillations are interpreted as slow MHD

waves.
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Figure 1.5 Chromospheric umbral oscillations. a is the intensity image at the photo-

sphere obtained from the GST/FISS continuum on June 3rd, 2014, at 17:45:47 UT.

b is the time series of the chromospheric intensity fluctuation observed from the Hα

line core from 17:44:27 UT to 17:49:47 UT. c is the time series of the chromospheric

Doppler LOS velocity measured from the Hα line profile. Gray contours in all panels

show the boundary of the pore.
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Figure 1.6 Average power spectrum for a sunspot umbra. The power spectrum de-

rived from the photospheric line is maximized at a frequency of 3.3 mHz, and the

power spectrum obtained from the chromospheric line is peaked at a frequency of 6

mHz. (From Centeno et al. (2006))
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There are two plausible excitation sources of umbral oscillations; one is the ex-

ternal p-mode, and the other is the internal magneto-convection. In the external

driving model, the umbral oscillations are generated by the incoming p-mode waves

from the quiet sun region. A portion of the energy of incident waves can be absorbed

by the sunspot (e.g., Cally et al. 1994; Cally & Bogdan 1997; Cally et al. 2003). This

idea has been supported by measuring the absorption of surrounding p-mode waves

(Zhao & Chou 2013; Grant et al. 2022). In contrast, the internal excitation model

suggests that the umbral waves are disturbed by a local magneto-convection inside

a sunspot (e.g., Lee 1993; Jacoutot et al. 2008). Several works have supported this

model by measuring enhanced wave energy above umbral dots and light bridge of

magneto-convection (Jess et al. 2012; Chae et al. 2017; Cho et al. 2019).

Interestingly, recent observational works have reported that the umbral waves

seem to propagate across the magnetic fields, forming two-dimensional patterns (Fig-

ure 1.7). Sych & Nakariakov (2014) first reported the spiral-shaped wave patterns

observed in the temperature-minimum region and the corona. Zhao et al. (2015)

identified the fast-moving ring-like patterns that appear to propagate across the

magnetic fields with the speed of about 40 km s−1 near the photosphere, and this

speed is much faster than the sound speed of less than 10 km s−1. They interpreted

these patterns as slow magnetoacoustic waves by measuring intensity fluctuation and

vertical propagation speed. However, it is still elusive what makes two-dimensional

patterns of umbral oscillations even though the slow waves cannot propagate across

the magnetic field. Here, we suggest two models that can reproduce the observed

chromospheric patterns of umbral oscillations and analyze these to derive their na-

ture and origin.
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Figure 1.7 Two-dimensional patterns of umbral oscillations. Time series of spiral-

shaped umbral oscillations observed on December 08th, 2010, with the SDO/AIA

304 Å line (left). Time series of ring-like patterns of umbral oscillations obtained

with the GST/FISS Fe I 5434 Å line on June 15th, 2017 (right). Image reproduce

from Sych & Nakariakov (2014) (left) and from Cho et al. (2019) (right).
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1.3 Importance of the oscillation patterns

Numerous studies have successfully interpreted umbral oscillations in one dimension.

However, this one-dimensional perspective cannot explain why the umbral oscillation

has two-dimensional patterns. Thus, the new physical interpretation is indispensable

to comprehend the nature of umbral oscillations.

Moreover, the umbral oscillations patterns may give us the atmospheric condi-

tion of their origin. The waves have the information of the medium that they pass

through. Thus, if we understand wave propagation and nature, we can derive the

properties of the unobservable atmosphere, such as plasma density, temperature,

and magnetic strength, like the helioseismology of p-mode or the seismology of the

earthquake.

One of the unsolved problems in solar physics is the coronal heating. MHD waves

in sunspots can contribute to the heating of the upper atmosphere because they can

transfer either kinetic or magnetic energy. Therefore if we understand how they

transport their energy from the solar interior to the corona, we can give a clue to

the coronal heating problem.

1.4 Instruments

In order to analyze two-dimensional patterns of umbral oscillation, we need data

satisfying several requirements. First, spectral data is preferable. Doppler velocity

is only affected by the motion of the plasma, but the intensity can be affected

by the plasma density and temperature as well as the plasma motion. Thus, the

Doppler velocity is fundamental to derive the properties of the waves. Second, the

field of view (FOV) should be larger than 10 Mm. The size of patterns of umbral

oscillations is comparable to the size of the umbrae, so the data should cover the size

of the umbrae or pore. Third, the spatial resolution should be better than 0.5 Mm.
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In order to resolve the structures of the two-dimensional patterns and to accurately

derive the apparent radial propagation speed of them in a radial direction, we need

a high-spatial resolution of more than one-third of the radius of the umbrae. Finally,

the temporal resolution (time cadence) should be shorter than 30 seconds. To observe

the temporal evolution of the patterns and measure the radial speed in the umbrae,

high-temporal resolution is required. In this thesis, therefore, we examined the data

taken from the Fast Imaging Solar Spectrograph (FISS; Chae et al. 2013b) of 1.6 m

Goode Solar Telescope (GST; Cao et al. 2010) that satisfy the requirements.

The FISS is optimized to study magnetohydrodynamic phenomena from the pho-

tosphere to the chromosphere (Figure 1.8). This instrument simultaneously observes

two chromospheric line profiles of Hα and Ca II 8542 Å band covering 10 Å and

13 Å, respectively. The FISS generates the three-dimensional data (λ, y, x) at one

scanning, where λ is the wavelength, x is the scanning position, and y is the slit

position. The spectral resolution is about 0.019 Å for Hα band and is about 0.026

Å for Ca II 8542 Å band. The spatial resolution is 0.16′′ × 0.16′′, and the temporal

cadence for 21′′ × 41′′ is 20 seconds. See details in Chae et al. (2013b).

We also used the data of the Atmospheric Imaging Assembly of the Solar Dy-

namics Observatory (SDO/AIA; Lemen et al. 2012) for statistical analysis of spiral-

shaped wave patterns. The AIA observes the full-disk image of the Sun from the

temperature-minimum to the corona using two ultraviolet channels (1600 Å, 1700

Å) and seven extreme ultraviolet bands (94 Å, 131 Å, 171 Å, 193 Å, 211 Å, 304 Å,

335 Å) with the spatial resolution of 0.6′′ and the temporal cadence of 12 seconds.

See details in Lemen et al. (2012).
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Figure 1.8 (Left) The Goode Solar Telescope (GST) and (right) the Fast Imaging

Solar Spectrograph (FISS). (From http://fiss.snu.ac.kr/instrument)
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Figure 1.9 (Left) Solar Dynamics Observatory (SDO) and (right) the Atmospheric

Imaging Assembly (AIA). (From https://sdo.gsfc.nasa.gov)
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1.5 Outline

This thesis consists of several pieces of my work on the nature of the two-dimensional

patterns of the umbral oscillations. It may appear to the readers that the individual

works in the thesis are not well-organized, even lacking consistency. This is because

they reflect the trial and error I experienced throughout my academic journey. They

also display the history of my growth in understanding this interesting topic. I believe

the early works are meaningful themselves, but the final research is more significant

because it is based on my most recent understanding.

In Chapter 2, we suggest the internal excitation model (IEM) that can explain

the spiral-shaped wave patterns. In Chapter 3, we analyze the statistical properties

of the SWPs obtained from the SDO/AIA 304 Å line based on the internal exci-

tation model. In Chapter 4, we propose another model of the subphotospheric fast

resonance wave model that can reproduce the chromospheric umbral oscillations

more precisely. In this chapter, we correct a mistake in the equation in the IEM

and explain the frequency-dependent patterns of umbral oscillations that cannot be

described in the IEM. In Chapter 5, we provide the summary and conclusion of our

findings, and then we suggest ideas for future works.



Chapter 2

The Physical Nature of Spiral

Wave Patterns in Sunspots1

2.1 Introduction

Wave motions are a conspicuous dynamic phenomenon observed in sunspots. The

first detection of sunspot waves in the chromosphere was reported by Beckers &

Tallant (1969). Subsequent works revealed that the predominant period of the waves

is 5 minutes in the umbral photosphere (Bhatnagar et al. 1972), and 3 minutes

in the chromosphere (Beckers & Schultz 1972). Sunspot waves were also observed

in the transition region and corona with the periods of less than three minutes

(e.g. De Moortel et al. 2002; Sych et al. 2009; Tian et al. 2014). Furthermore, a

radially propagating wave pattern was detected in the sunspot penumbra that is

known as running penumbral waves (RPWs; Giovanelli 1972; Zirin & Stein 1972).

A comprehensive review of sunspot waves can be found in Khomenko & Collados

1Most of the contents in this chapter were written as a separate paper: Juhyung Kang, Jongchul

Chae, Valery M. Nakariakov, Kyuhyoun Cho, Hannah Kwak, and Kyeore Lee, “The physical Nature

of Spiral Wave Patterns in Sunspots”, 2019, ApJL, 877, 9

23
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(2015).

The nature of 3 minute chromospheric oscillations has been attributed to upward

propagating slow magnetoacoustic waves (Lites 1984; Centeno et al. 2006). Centeno

et al. (2006) clearly showed the propagating property of the waves by measuring the

phase difference between the time series of the line-of-sight (LOS) velocity in the

photosphere and that in the chromosphere. In the same context, the RPWs have

been interpreted as the slow waves propagating along the inclined magnetic field

lines (Bloomfield et al. 2007; Löhner-Böttcher & Bello González 2015).

The plausible driving sources of sunspot waves are external p-modes and internal

magnetoconvection. The external driving scenario assumes that f - and p-mode waves

in a quiet Sun propagate into a sunspot. A fraction of the energy of the incident

f - and p-mode is absorbed by its conversion into a slow magnetoacoustic mode

at the plasma-β equal to one layer (e.g., Cally et al. 1994; Cally & Bogdan 1997;

Cally et al. 2003). Zhao & Chou (2013) successfully observed the absorption of the

f - and p-mode wave energy in a sunspot in the k − ω diagram. In the internal

driving model, magnetoconvection occurring inside a sunspot can excite the waves.

The radiative magnetohydrodynamics simulations of the magnetoconvection showed

that multi-frequency waves can be generated in a magnetic concentration region such

as a sunspot (Jacoutot et al. 2008). Chae et al. (2017) found that the wave energy

flux was enhanced around the light bridge and umbral dots, and they concluded

that the magnetoconvection may be the driving source of 3 minute oscillations. The

internal excitation was further supported by Cho et al. (2019)’s identification of

several patterns characterized by oscillation centers and radial propagation above

individual umbral dots that are under substantial changes. Recent works suggested

that an internal driving source may be located, below the sunspot photosphere down

to 5 Mm in the sunspot’s flux tube, by analyzing the photospheric fast-moving wave

patterns (Zhao et al. 2015; Felipe & Khomenko 2017).
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Interestingly, recent observational works reported that in the horizontal plane,

3 minute oscillations often appear in sunspot umbrae as one- and two-armed spiral

wave patterns (SWPs; Sych & Nakariakov 2014; Su et al. 2016; Felipe et al. 2019).

SWPs apparently propagate radially out at the velocity of around 20 km s−1, and

also propagate upward (Su et al. 2016). Because these propagating properties are

similar to RPWs, Su et al. (2016) concluded that observed SWPs could be associated

with the slow waves propagating along a twisted magnetic field. Sych & Nakariakov

(2014), however, pointed out that the magnetic field should be uniformly twisted in

low-β plasma of sunspots, and it cannot contribute to the non-uniformity of a SWP.

Moreover, the observed SWPs highlight the structure of the wavefront in a certain

horizontal cross section of the magnetic flux tube, which does not require the flux

tube twisting. Very recently, Felipe et al. (2019) also concluded that although the

twist can affect the shape of the observed SWPs, it is not their main cause.

In this chapter we present a simple model that SWPs can naturally appear in

an untwisted magnetic flux tube when non-axisymmetric disturbances from below

the surface are taken into account. We observationally identify one- and two-armed

SWPs in a pore in Doppler velocity maps of the Hα line profiles, and develop a

theoretical model explaining the appearance of SWPs. In section 2.2, we describe

the observations, and summarize observational results. In section 2.3 we describe

the theoretical model that reproduces the SWPs, together with their simulation.

Finally, in Section 2.4 we discuss and conclude the main results.

2.2 Observation

We observed a pore in NOAA 12078 on 2014 June 3 from 16:48:41 to 17:56:32 UT

with the 1.6 m Goode Solar Telescope. The target was located at x = 160′′, y =

−300′′ when we started the observation. In this chapter, we used the data acquired

by the Fast Imaging Solar Spectrograph (FISS) in the Hα band, and this is the same
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data analyzed previously in Chae et al. (2015). The FISS scanned the pore with a

spectral sampling of 0.019 Åand spatial sampling of 0.′′16, covering a field of view

of 20′′ by 40′′. The exposure time was 30 ms, and the time cadence of the data was

20 s. The basic calibration was performed as described by Chae et al. (2013b). We

measured the LOS Doppler velocities for all data pixels by using the lambdameter

method (Chae et al. 2013a) with the lambdameter chord of 0.4 Å. To highlight 3

minute oscillations, we filtered the data in frequency, leaving only the frequencies of

5.5− 9 mHz.

From the filtered Doppler velocity maps, we identified three SWPs, but here we

deal only with the the case studies of one- and two-armed SWPs. The left panels of

Figure 2.1 show the one- and two-armed SWPs measured from the velocity maps at

17:18:20 UT and 17:44:47 UT, respectively. The temporal evolution of these patterns

during one cycle is illustrated in Figure 2.4 and Figure 2.5. These wave patterns

rotated in the counterclockwise direction. The spiral arm structures are seen to move

outward, and their amplitude become to zero near the boundary of the pore. On the

other hand, the center of the arms moved abruptly inward direction while rotating,

like a spiral; hereafter, we call this as spiraling. We determined the duration of the

SWPs by the visual inspection of the rotating motion. It was found to be about 4

minutes for the one-armed spiral, and 5 minutes for the two-armed spiral. From the

wavelet analysis, we estimated the oscillation period of SWPs at about 120 s at the

center of the pore and at about 250 s near its boundary. The period averaged over

the pore is about 165 s.

To identify the spatial fluctuations of the patterns in the azimuthal direction, the

discrete Fourier transform was applied along the dashed line. The Figure 2.1 shows

the time-averaged azimuthal power spectra of the two SWPs constructed along the

two circles marked by the dashed curves. At these two radii, the power of non-zero

azimuthal mode m is the largest. In the case of the one-armed SWP, most of the
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Figure 2.1 Snapshots of the LOS Doppler velocity maps (left panels), and their time-

averaged azimuthal power spectra in the azimuthal direction along the dashed line

(right panels). Blue (red) color represents upflows (downflows), and the saturation

amplitude of velocity is 3 km s−1. The black contour represents the boundary of the

pore. The cross symbol indicates the center of the dashed line, and this position is

set to be the origin. The radius of the dashed line is 2′′ for the one-armed SWP (a)

and 3′′ for the two-armed SWP (c).
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power is concentrated at m = 0 and m = 1 (panel (b)). For the two-armed spiral,

the power is concentrated at the m = 0 and m = 2 (panel (d)). These indicate that

the SWPs are composed of at least two azimuthal modes. We found that during

each event, both the azimuthally symmetric modes (m = 0) and the non-symmetric

mode (m = 1 or 2) appeared and disappeared together. The power of m = 0 mode

at the chosen radius fluctuated substantially for the period of about 80 s, whereas

the power of m = 1 or 2 mode changed slowly with time.

We detected such SWPs in other sunspots as well. Roughly speaking, from an

one hour observation, two or three SWPs occurred inside each sunspot. The rotation

direction of the SWPs did not have any hemispheric dependence. In some cases, in

fact, two SWPs of opposite rotation directions were observed in the same sunspot at

two different times. Even though such SWPs were detected in any types of sunspots,

the spiral arms were simply shaped in small axisymmetric sunspots. The details of

these observational results will be described in a subsequent paper.

2.3 Modeling

To interpret the detected SWPs, we first consider azimuthal wave modes in an

untwisted uniform thick magnetic cylinder with the magnetic field along the z di-

rection, following Edwin & Roberts (1983). The observed pore is well compatible

with this assumption because it contains a straight field that is confined to the

pore’s boundary. The internally oscillatory solution (body waves) of the transverse

and longitudinal velocity components in cylindrical coordinates (r, θ, z) are given as

follows (Spruit 1982; López Ariste et al. 2016):

vr = −ω2 − k2zc
2
s

ω2n
AmJ ′

m(krr) exp i (kzz +mθ − ωt), (2.1)

vz = −i
kzc

2
s

ω2
AmJm(krr) exp i (kzz +mθ − ωt), (2.2)
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where kz is the wavenumber along the field, ω is the frequency, cs is the sound

speed, Am is the amplitude of an azimuthal mode m, Jm is the Bessel function of

the first kind, and J ′
m is its derivative. In this chapter, we follow the general naming

convention for the integer azimuthal modes: sausage mode for m = 0, kink mode for

m = 1, and fluting modes for m ≥ 2.

The effective radial wavenumber kr is given by (Edwin & Roberts 1983)

k2r =

(
ω2 − c2sk

2
z

) (
ω2 − c2Ak

2
z

)(
c2s + c2A

) (
ω2 − c2Tk

2
z

) , (2.3)

where cA is the Alfvén speed, and cT is the tube speed, c2T = c2sc
2
A/(c

2
s+c2A). For body

waves n2 must be positive, and for slow modes the phase speed ω/k lies between the

tube speed and sound speed (Roberts 2006).

In addition, we assume that the driving source of the wave is located below

the photosphere inside the flux tube. This approach is in line with the suggestion of

Zhao et al. (2015) and Felipe & Khomenko (2017) made to interpret the photospheric

fast-moving radial wave patterns. In this scenario a fast mode wave is driven at the

high-β region, then it propagates quasi-isotropically to the β = 1 layer (see Figure

2.2). Thus, the arrival time tA(r) at the β = 1 layer is given as a function of the

transverse distance r from the center of the source,

tA(r) =

√
r2 + d2

vfast
, (2.4)

where d is the depth of the source and vfast is the averaged propagation speed of the

fast wave in the high-β region. For simplicity, here we have assumed the constancy

of the propagation speed and neglected the effect of refraction and reflection. After

arriving at the β = 1 layer, a portion of the fast wave is converted to the slow wave

(Cally 2001) which then propagates along the field. For that reason, we can observe

the radially propagating wave patterns when the slow mode reaches the detection

layer. With the use of this effect, we can re-write the Equation (2.2) as follows:

vz = −i
kzc

2
s

ω2
AmJm(krr) exp i (kzz +mθ − ω (t− tA(r))). (2.5)
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Figure 2.2 Schematic images of the longitudinal velocities vz in the m = 1 mode

in the x − z plane. The driving source of the wave is located at the center of the

bottom. Blue (red) color represents the upflows (downflows). The black solid line

indicates the β = 1 layer and the dashed line denotes the detection layer (D layer).

Magnetic field lines are shown by the gray arrows. The propagating direction of the

fast (slow) wave is shown by the blue (red) arrow.
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As the wave frequency is constrained by the observation, we can derive the wave

numbers k for each azimuthal mode m from the dispersion relation of (Edwin &

Roberts 1983)

ρkr,e
(
ω2 − k2zc

2
A

) K ′
m(kr,eR)

Km(kr,eR)
= ρekr

(
ω2 − k2zc

2
A,e

) J ′
m(krR)

Jm(krR)
, (2.6)

where the subscript e represents the exterior of the flux tube, Km is the modified

Bessel function of the second kind, K ′
m is its derivative and R is the radius of

the tube, which is 5′′ in our case. We take ω = 2π/160 s−1 from the observation,

cs = 9 km s−1 from Maltby et al. (1986), cA = 300 km s−1 from Khomenko &

Collados (2006), cs,e = 1.5cs and cA,e = 0.5cs from Edwin & Roberts (1983), then

the k is approximately 4.36×10−6 rad m−1 for all azimuthal modes.

Substituting these parameters into Equations (2.1) and (2.2), the ratio between

the amplitudes of vz and vr is estimated as vz/vr ∼ 5× 103 for all azimuthal modes.

It means that every azimuthal slow-body mode is predominantly longitudinal in the

chromosphere. Figure 2.3 shows snapshots of vz for m = 0, 1, and 2 modes in the

x − y plane with d = 1600 km and vfast = 20 km s−1. For the case of m = 0, the

ring-like pattern is generated, and this ring apparently propagates radially outward.

On the other hand, m = +1 and +2 modes produce apparently rotating patterns in

the counterclockwise direction with one- and two-armed structures, respectively. As

the ring-like pattern of m = 0 mode propagates radially, the power of this changes

with time and radius, while the power of non-zero modes depends only on the radius

because the patterns of these modes do not move out.

To reproduce the observed one-armed spiraling pattern, we summed up pertur-

bations with m = 0 and m = 1, which are the most powerful modes according to

the Fourier analysis, with the amplitude ratio of A0/A1 = 0.54, the source depth of

d = 1600 km and averaged propagation speed of vfast = 20 km s−1. In addition, we

introduce the reference time t0 and reference angle θ0 terms to set the origin of the

simulation, then the t is replaced by t− t0, and θ is substituted by θ − θ0 in Equa-
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Figure 2.3 Snapshots of the simulated parallel velocity component for the azimuthal

wave modes m = 0, +1 and +2 at t = 0 in x − y plane. Speeds are normalized by

the amplitude of each mode.
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tion 2.5. Figure 2.4 indicates that the temporal evolution of the one-armed SWP

from the observation (top) can be fairly well modeled by the simulation (bottom)

with t0 = −20 s and θ0 = 170◦. Like the observation, the simulation can make the

one-armed SWP. The red or blue arms abruptly change the trajectory to inward

around x = 2′′, y = 1′′ in both the observation and the simulation.

We can successfully model the observed two-armed SWP as well. Because the

wave power is concentrated at m = 0 and 2, we reproduce this pattern by summing

up vz of m = 0 and m = 2 with the amplitude ratio of A0/A2 = 0.54, the reference

time of t0 = 30 s, and the reference angle of θ0 = 30◦. In this simulation, the source

is located at 1600 km below the β = 1 layer and the averaged phase velocity is about

20 km s−1. Figure 2.5 represents the temporal evolution of the two-armed SWP. The

observation and simulation show quite similar two-armed spiraling features. The two

blue and red arms abruptly move inward around x = −1′′, y = 2.′′5 and x = 1′′,

y = −2.′′5.

2.4 Discussion

In this chapter, for the first time, we have presented a model that can explain

the observed SWPs as slow magnetohydrodynamic (MHD) waves in an untwisted

magnetic field. In our model, the apparently rotating pattern is associated with the

superposition of non-zero-m azimuthal slow modes. A non-zero-m mode has a right-

handed (left-handed) helical shaped wavefront for the case of positive (negative) m.

As this wave propagates upwardly along the straight field in a vertical magnetic

flux tube, the wave pattern observed at some height shows an apparent rotation in

the counterclockwise (clockwise) direction. This kind of a rotating wave pattern was

observed for the case of m = 1 kink mode (Jess et al. 2017), and the related vortex

dislocations were detected in a time-distance map along the slit placed in the center

of the axis (López Ariste et al. 2016).
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Figure 2.4 Temporal evolution of observed (top) and simulated (bottom) one-armed

SWP from 17:17:20 UT to 17:20:00 UT. The observed Doppler maps are filtered in

frequency bands from 5.5 to 9 mHz. The speeds in simulation are normalized by the

maximum value. The boundary of the pore is shown by the solid line in both cases.
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Figure 2.5 Similar to Figure 2.4, but for the case of two-armed SWP from

17:44:07 UT to 17:46:47 UT.
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The spiral structures and outward propagating wave patterns are formed by

the internal driving sources, i.e. situated inside the magnetic flux tube forming the

umbra, which are placed below the photosphere. Beacause the wave propagates

quasi-isotropically in the high-β region, the longer the horizontal distance from the

wave source to the observation point, the later the wave arrives. The difference in the

arrival times in the photosphere results in an apparent radially moving ring pattern

in the case of m = 0 (sausage) mode. In non-zero-m modes, the trailing spiral arm

structures are formed because of the wave patterns rotate earlier as it is closer to

the axis of the waveguiding flux tube. The number of arms depends on the absolute

value of m. Thus, the observed apparent rotating spiral arms are not caused by

the wave propagation in the azimuthal direction, but by the oblique, spiral-shaped

wavefront of vertically propagating perturbations.

Because of the abrupt spiraling motion of the one-armed spiral, Su et al. (2016)

proposed that this pattern may be caused by the reflection at a light bridge. In our

case, however, there was not light bridge at all and, nevertheless, such SWPs were

detected. Our simulation clearly shows that the spiraling patterns are formed by the

superposition of the wavefronts of an m = 0 and a higher-m modes. The one-armed

SWP is generated by an m = 0 sausage mode and an m = 1 kink mode, and the

two-armed SWP is formed by an m = 0 sausage mode and an m = 2 fluting mode.

We surmise that the driving source of a SWP may be associated with the down-

flows caused by the local magnetoconvection inside the sunspot. According to the

3D radiative MHD simulation of Kitiashvili et al. (2019), acoustic waves can be gen-

erated by the converging downflows at 1.5 Mm beneath the surface inside a pore.

This depth is very close to the depth of the source used for our model. Furthermore,

as there is no time lag between the two azimuthal modes in our simulation, it seems

that these modes are excited simultaneously by the same driver.

We need to stress that the kink wave in a sunspot umbra or a pore considered
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here should not be confused with the kink waves studied in coronal loops. In the

loop, the kink mode is a transverse wave (Aschwanden et al. 1999; Nakariakov et al.

1999), while the sunspot kink mode considered here is a longitudinal wave associated

with a slow magnetoacoustic wave (López Ariste et al. 2016; Jess et al. 2017). As a

slow wave in a low-β plasma, the kink wave in a sunspot is mainly characterized by

parallel, field-aligned plasma flows. The radial flows, vr, in this wave are quite small,

because the ω2 − k2zc
2
s factor in Equation (2.1) tends to zero as the phase speed is

about the sound speed. Another difference is connected with the wave polarization.

Kink oscillations of coronal loops are usually linearly polarized, while the spiral wave

structure in a sunspot requires the kink oscillation to be circularly polarized; i.e. the

azimuthal wavenumber is m = +1 or m = −1. The sign is determined by the sense

of rotation of the wavefront.

Because the mechanism does not require additional assumptions such as the flux

tube twisting or rotation, we expect that such SWPs may be generally detected in

any sunspots. As we accumulate the observation of those patterns, we can infer more

physical parameters in sunspots such as propagating speed of fast wave and depth

of the wave driving source. Furthermore, those wave patterns can be considered as

the evidence of the internal excitation of 3 minute oscillations in sunspots. Further

study of the SWPs may provide us with the clues to how magnetoconvection inside

a sunspot generates such waves.
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Chapter 3

Statistical Analysis of

Spiral-Shaped Wave Patterns in

Sunspot Umbrae1

3.1 Introduction

Intensity and velocity oscillations are one of the prominent magnetohydrodynamic

(MHD) features observed in sunspot umbrae. After the first observation of chromo-

spheric umbral oscillations was reported by Beckers & Tallant (1969), it was found

that the predominant oscillation period is 2-3 minutes in the chromosphere (Beckers

& Schultz 1972) and above (Gurman et al. 1982; O’Shea et al. 2002). Sunspot waves

have been considered slow MHD waves that propagate upwards along the magnetic

field with the group speed around sound speed (Centeno et al. 2006; Felipe et al.

2010) even to the corona (Maltby et al. 1999; O’Shea et al. 2002; Sharma et al.

1Most of the contents in this chapter were written as a separate paper: Juhyung Kang, Jongchul

Chae, Jooyeon Geem, “Statistical Analysis of Spiral-Shaped Wave Patterns in Sunspot Umbrae”,

2023, Submmited to ApJ
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2017). These waves have been thought to excited by the magnetoconvection such as

umbral dots (Jess et al. 2012; Cho et al. 2019) and light bridges (Yurchyshyn et al.

2015; Chae et al. 2017).

Sometimes the umbral waves display outstanding spiral-shaped wave patterns

(SWPs) on the image plane. Sych & Nakariakov (2014) first detected the SWPs with

two arms at different atmospheric levels ranging from the temperature minimum

to the corona. These SWPs were characterized by the rotating pattern and the

radially propagating arms. Sych & Nakariakov (2014) concluded that these patterns

are basically consistent with the umbral slow MHD waves propagating upwards.

Subsequently, Su et al. (2016) reported one and multiple-armed spiral structures in

the chromosphere. They suggested that the spiral structure may be related to the

reflection of wavefronts and magnetic twists. However, Felipe et al. (2019) concluded

that the twisted field is not the main cause even though it can affect the shape of

the wavefronts. Jess et al. (2017) interpreted the observed rotating pattern as a

two-dimensional pattern of slow body waves with non-zero azimuthal numbers. This

pattern, however, cannot reproduce the spiral-arm structures.

Recently, Kang et al. (2019) suggested a model that the spiral-shaped pattern re-

sults from a non-axisymmetric disturbance in the interior. According to this model,

the apparent radial outward motion and spiral-shaped arms are related to a source

located in the deep interior. If a disturbance occurs at a deep subsurface region, i.e.

high-β region, in the sunspot, fast (acoustic) waves are excited, propagate quasi-

isotropically initially, and then become refracted into the outward direction, eventu-

ally reaching the β ∼ 1 layer (Zhao et al. 2015). The difference in the ray path among

the wavefronts makes the phase vary as a function of radial distance. The resulting

phase difference is responsible for radial motion and spiral arms. The existence of

the non-zero azimuthal mode generates the rotating motion, and the direction of

the rotation is determined by its sign. In addition, the absolute value of the mode is
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related to the number of arm structures. The inward motion near the center of the

SWPs is produced by the superposition of the axisymmetric (m = 0) with the non-

axisymmetric mode. According to this interpretation, the morphology of the SWPs

is irrelevant to the magnetic twist. This conclusion was supported by comparing the

patterns generated in a uniform magnetic field and the waves in a twisted magnetic

field (Wu et al. 2021).

The success of this model implies that these SWPs may occur in any sunspot

regardless of magnetic structures only if a disturbance excites non-axisymmetric

waves. Note that, the previous observational results were obtained from a limited

number of samples. We raise several questions to infer the general properties or to

compare the umbral oscillations. How frequently do the SWPs occur? What are

the observational differences between the SWPs and the umbral waves? Is there any

hemispheric dependence on the rotation direction? Is the size of the umbra associated

with the generation of these patterns? How deep is the source? With these questions

in mind, we investigate the statistics of the observational parameters in this chapter.

In section 3.2, we describe the data and how to define the SWPs. In section

3.3, we show the results. In section 3.4, we summarize the results and present our

discussion.

3.2 Data and Methods

In this chapter, we used 304 Å line EUV data taken by the Atmospheric Imaging

Assembly of the Solar Dynamics Observatory (SDO/AIA; Lemen et al. 2012) from

2013 to 2018. The SWPs are observable at the different bandpass of AIA covering

from the temperature minimum to the corona, but are best visible in 304 Å with the

maximum power, which covers the upper chromosphere and the transition region

(Sych & Nakariakov 2014).

Here, we examined 496 sunspots satisfying the following criteria. First, they have
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to be located near the disk center with longitudes of |ϕ| ≤ 30◦, i.e. µ ≤ 0.87, on the

intensity images obtained with the Helioseismic and Magnetic Imager (HMI; Schou

et al. 2012) as a supplementary data. Second, they should have umbrae larger than

4.5 Mm for spiral arms to be spatially resolved. Third, they should have a simple

shape, either a circle or an ellipse, not having light bridges and jet events that can

modify or shade wave patterns. Finally, they have to be observed for at least two

hours, not being disturbed by any impulsive events such as flares.

We automatically identified SWPs in the sunspot umbrae using a four-step al-

gorithm in the following. First, we extract the intensity oscillation in the frequency

band of 5-9 mHz by applying the Fourier bandpass filter (Figure 3.1b). This fre-

quency band highlights chromospheric umbral oscillations because most of the wave

power is concentrated near cutoff frequency (Chae et al. 2019).

Second, we determine the center of the patterns by locating the local peak of

C(x, y) = ∇ · v/|v| that is stable enough, changing less than one arcsecond over one

minute (panel c). Here v is the velocity vector determined with the differential affine

velocity estimator (DAVE) code (Schuck 2006). If the spherical waves (fast waves)

are driven below the surface, as mentioned in section 3.1, the phase difference of

wavefront arriving at the equipartition layer (β ∼ 1) makes a pattern diverge out of

a point. This point is identified by a local peak of C(x, y).

Third, we obtain the spatially-filtered intensity by extracting only the intensity

oscillation of the azimuthal mode of maximum power (panel e). The azimuthal mode

of maximum power is determined from the azimuthal Fourier transform (panel d)

applied to the one-dimensional temporally filtered data taken along the blue dashed

circle. Since the number of spiral arms reflects the spatial distribution of the pattern

(Kang et al. 2019), this number, in fact, becomes equal to the derived azimuthal

mode of the maximum power.

Finally, we obtain the temporal information of SWPs from the wavelet power
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Figure 3.1 Detection method to identify the SWPs. (a) Intensity fluctuation image in

NOAA 11658 obtained on 2013 January 18 at 15:49:19 UT with the SDO/AIA 304 Å band.

(b) Temporally-filtered image in a frequency band of 5-9 mHz of the sunspot. (c) ∇ · v/|v|

map of the filtered image. (d) Azimuthal power spectrum calculated along the blue dashed

circle. (e) Spatially filteredm = 2 mode intensity fluctuation map. (f) Normalized temporally

averaged filtered intensity power map (g) Wavelet power spectrum of m=2 mode intensity

map at the cyan ’+’ position. The yellow contour in panels represents the umbra-penumbra

boundary. The green arrows in panel (b) display velocity vectors v. The red ’X’ symbol

represents the center of the SWPs, and the cyan ’+’ symbol marks the position where the

intensity power is maximized. The orange line shows the slit of the time-distance map, and

the blue dashed circle illustrates the circular slit of the time-angle map shown in Figure 3.2.

The angle of the orange line from the x-axis is equivalent to the gradient between the center

(x) and the maximum intensity (+), and the radius of the blue dashed circle is the same as

the distance. The green dashed line in panels (d) marks the azimuthal mode of maximum

power. The red dashed line in panel (g) shows the equivalent time of the image shown in

other panels. The yellow region in panel (g) represents the lifetime of the detected SWP.
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spectrum of the spatially filtered intensity at the position of maximum intensity

power (panel g). In the intensity power map (panel f), we mark the position of the

maximum intensity power by the cyan ’+’ symbol. At this position, we calculate

the wavelet power spectrum of the spatially-filtered intensity and identify the wave

packets. For 2 hours duration, we often identify more than one SWP in the same

sunspot. Note that all the steps above are automatically done. As this automatic

detection may not be perfect, we examine every detection by eye and exclude the

detected patterns that are too complex for the spiral arms to be clearly displayed.

We derive the intensity oscillation period and the lifetime of an SWP from the

wavelet power spectrum. The oscillation period comes from the peak frequency of

the wave packet, which is usually different from the morphological period of the

SWP that is equal to the azimuthal mode times the oscillation period. We set the

lifetime of the SWP to twice the full width at half maximum (FWHM) time of

the wave packet that may be close to the duration when the oscillation has power

significantly above the noise. This oscillation period and lifetime may depend on the

distance of the measurement point from the center because high-frequency waves

are more confined at the center of the axis (Sych & Nakariakov 2014), and these

high-frequency waves can propagate faster than low-frequency that linger for a long

time (Kalkofen et al. 1994; Chae & Goode 2015). We put the measurement point on

the position of maximum intensity power of the azimuthal mode, as we are interested

in the SWP.

We calculate the apparent speed of the pattern from the time-distance map of

intensity fluctuation and the time-angle diagram (Figure 3.2). We produce the time-

distance map by stacking all time data taken from the slit that is directed from the

oscillation center (red ×) into the point of the maximum power of |δI|2 (cyan +).

From the gradient of ridges visible in the time-distance map, we derive the speed of

apparent radial motion. Similarly, a time-angle diagram was produced by stacking
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Figure 3.2 Time-distance map (a) and time-angle diagram (b) derived from the

orange slit and the blue dashed circle in Figure 3.1b, respectively. The color scale

is the same as the Figure 3.1b. The green solid line represents the gradient of the

ridge.
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all time data taken along the blue dashed circle. The radius of the circle is the

same with the length between two positions. The apparent angular speed (dθ/dt)

was measured from the gradient of the ridges seen in this map, and the rotation

direction comes from its sign. We convert the angular speed to the rotation period

using the relationship Pr = 360◦/(dθ/dt).

3.3 Results

We found a total of 241 SWPs in 140 sunspots. Among them, 192 SWPs had one

spiral arm and 48 SWPs had two arms. Only one SWP had three arms, which was

not included in our statistical analysis because of its rarity. The detection rate of

SWPs is 0.24 per hour. In other words, if a sunspot is observed for 4 hours, at least

one SWP can be detected. This is significantly lower than the occurrence of the

consecutively generated umbral oscillations.

Figure 3.3 illustrates the time variation of two SWPs rotating in opposite direc-

tions with different spiral arms that occurred at the same sunspot umbra in NOAA

11658 on 2013 June 18. Upper panels display the spiral patterns with one arm and

lower panels exhibit two-armed cases. Two cases clearly showed the apparent radial

moving spiral arms far from the center of the SWPs. The two SWPs swirled in oppo-

site directions: the one-armed SWPs rotated in a clockwise (CW) direction and the

two-armed cases rotated in a counterclockwise (CCW) direction. These features are

very similar to the SWPs previously reported based on the Doppler velocity (Felipe

et al. 2019; Kang et al. 2019).

We find that the rotation direction of the SWPs does not depend on the hemi-

sphere and the latitude as indicated by the histograms of sunspot latitude for the

two rotation directions shown in Figure 3.4a. In order to statistically confirm that

the rotation direction of the SWPs is independent of the hemisphere and the lati-

tude, we examine the hypothesis that the two different rotation samples are drawn
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from the same populations by applying the two-sample Anderson-Darling (AD) test

to two rotation samples (see Anderson & Darling 1952). As a result, we find that

the probability value (p-value) of the AD test is higher than 0.25, which means that

we have no reason to reject the hypothesis. Moreover, we find that CW SWPs and

CCW SWPs are almost equal in number at every latitude in the range of 10 (or−10)

to 20 (or −20) degree where the number of sunspots is large enough (Figure 3.4b).

Does the occurrence probability of a SWP depend on the size of the sunspot

umbra that hosts it? Figure 3.5a indicates that the umbral sizes are mostly (90

%) distributed between 3.0 and 15.5 Mm with a mean of 9.9 Mm and a standard

deviation of 4.4 Mm. Within the range of 3.0 to 15.5 Mm, we find the tendency that

the larger the sunspot umbra is, the higher the occurrence probability of a one-armed

SWP is (panel b). We confirm that this tendency is statistically meaningful. If this

tendency would be nothing but a result of statistical flucutation from a uniform

distribution, the p-value of the AD uniformity test should be higher than at least

0.05. However, our calculation yields a smaller value of 0.038, so the one-armed

SWP relates to the umbral size. Similarly, we find that the occurrence probability

of a two-armed SWP is independent of the umbral size with the p-value of 0.24

obtained from the AD uniformity test. This tendency may be related to the number

of the source of the wave because it can increase with the sunspot size according to

the internal excitation model.

Figure 3.6 presents the number distribution of the parameters determined in

the SWPs of the two types, respectively. First, we find that oscillation periods of

the SWPs of the two types are about the same: the period of one-armed SWPs is

148± 35 seconds, and that of two-armed SWPs is 151± 37 seconds (panel a). This

oscillation period is comparable to the period of chromospheric 3-minute umbral

oscillations (see the reviews of Khomenko & Collados 2015), which is not surprising

at all because the SWPs are regarded as a specific pattern of slow magnetoacoustic
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waves propagating along magnetic fields (Sych & Nakariakov 2014; Felipe et al.

2019). As a matter of fact, the SWP at each location can be identified as one-

dimensional umbral oscillations that have their phase depending on their location

inside the sunspot.

Next, we find from Figure 3.6b that the SWPs of the two types have almost the

same lifetime: the lifetime of one-armed SWPs is 770 ± 260 seconds, and that of

two-armed SWPs is 810± 230 seconds. These are roughly five times the oscillation

period, being comparable to the lifetime of the one wave packet of umbral oscillations

of around 10-20 minutes (e.g. O’Shea et al. 2002; Chae et al. 2019), and the duration

of the vortex waves of about 15 minutes (López Ariste et al. 2016).

Figure 3.6c shows the histograms of apparent radial speed for one-armed SWPs

and two-armed SWPs, respectively. The measured speed is 42.5±18.2 km s−1 for the

one-armed SWPs and 42.0±16.5 km s−1 for the two-armed pattern, indicating that

there is no practical difference in the speed between them. As the apparent radial

speed may depend on the depth of the source according to the internal excitation

model (Felipe & Khomenko 2017; Cho & Chae 2020), the source depth can be

inferred from the pattern speed. Using the eikonal method following the equations (3)

to (7) in Cho & Chae (2020), we have calculated the ray path of waves driven beneath

the surface. As a result, we have obtained the theoretical relationship between the

depth of the source and the radial speed, as shown in Figure 3.7. Using this relation,

we find that the two-sigma range of speed from 10 km s−1 to 75 km s−1 corresponds

to the range of depth from 2 to 10 Mm, with the mean depth being about 6 Mm,

irrespective of the type.

Finally, the rotation period of the one-armed SWPs is 183± 72 seconds which is

half of the two-armed SWPs of 317 ± 132 seconds and is comparable to the result

of the m = 1 slow magnetoacoustic mode previously obtained by Jess et al. (2017)

(Figure 3.6d). The observed dependence of the rotation period on the azimuthal
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Figure 3.7 Apparent radial speeds for different depths of wave sources.
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mode is very compatible with the theoretical expression,

Pr =
360◦

dθ/dt
=

m

ω
, (3.1)

where ω is the oscillation frequency that equals the inverse of the oscillation period

(2π/P ). This relation can be easily derived from the constancy of the phase kz +

mθ − ωt in the wave equation of Kang et al. (2019) with z being constant. Here ω

is independent of the azimuthal mode m (see Figure 3.6).

We found relations between measured parameters from the scatter plots shown

in Figure 3.8. When calculating each correlation value, we excluded the samples

with any parameter outside three times standard deviations as outliers, that is,

with oscillation period longer than 300 seconds, radial speed faster than 95 km

s−1, umbral size larger than 25 Mm and rotation period longer than 500 seconds.

For the case of two-armed SWPs, the rotation period and the intensity oscillation

period have a weak positive correlation (0.31) as described in equation (3.1), but

the correlation is somewhat weak because of the measurement error. There are no

significant correlations between other parameters. The oscillation period and the

radial speed do not correlate because the two parameters come from different layers:

the oscillation period depends on the cutoff frequency at temperature minimum, and

the apparent radial speed may be determined from the source depth according to

the internal excitation model. The radial speed is independent of the umbral size

because the internal excitation source may be irrelevant to the size of the flux tube. If

the converging plasma of the magneto-convection generates waves, the radial speed

is relevant to the rotation period conserving the angular momentum but isn’t. From

these relations, we conjecture that the SWPs may be generated by random events,

such as the turbulent motion in the high-β region.



Statistical Analysis of the SWPs 55

125 150 175 200
Osc. period (sec)

200

400

600

800

1000

1200

Li
fe

tim
e 

(s
ec

)

 cc1=0.04 
 cc2=-0.09 

narm = 1
narm = 2

 cc1=-0.13 
 cc2=0.02 

 cc1=-0.03 
 cc2=-0.28 

 cc1=-0.10 
 cc2=0.09 

10 20 30
Diameter (Mm)

120

140

160

180

200

O
sc

. p
er

io
d 

(s
ec

)

 cc1=0.15 
 cc2=0.18 

 cc1=0.10 
 cc2=0.31 

 cc1=0.02 
 cc2=-0.04 

0 200 400
Rot. period (sec)

10

20

30

D
ia

m
et

er
 (M

m
)

 cc1=0.07 
 cc2=-0.02 

 cc1=0.03 
 cc2=0.01 

50 100 150
Radial speed (km/s)

0

100

200

300

400

500

R
ot

. p
er

io
d 

(s
ec

)

 cc1=-0.10 
 cc2=-0.03 

Figure 3.8 Scatter plots between measured parameters for one-armed SWPs (blue)

and two-armed SWPs (orange). Pearson correlation values for one-armed SWPs

(cc1) and the two-armed SWPs (cc2) are indicated in the upper right box on each

panel.
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3.4 Discussion

We investigated the observational properties of the spiral-shaped wave patterns

(SWPs) by investigating 496 sunspots observed in the SDO/AIA 304 Å line. We de-

veloped a method to identify the spiral structures in a 2D image plane. The rotation

direction of the patterns does not depend on hemisphere and latitude. The rotation

period is proportional to the number of spiral arms. The SWPs persisted for about

780 seconds with the intensity oscillation period of about 150 seconds. The speed of

apparent radial motion ranges from 10 to 75 km s−1, which suggests a depth of 2 to

10 Mm, according to the model of impulsive excitation below the surface.

The most notable discrepancy between observation and our expectation is the low

value of the detection rate. This discrepancy may come either from observational bias

or physical reasons. Observationally, the SWPs occurring near the umbra-penumbra

boundary are difficult to be identified. Since the waves over the umbra-penumbra

boundary propagate along the inclined magnetic field lines as running penumbral

waves, the observed wavefronts look different from the typical SWPs shown inside the

umbral region. In addition, if several waves occur at the same time but at different

positions, the observed waves can show complex patterns because of the interference.

From the physical viewpoint, we note only the waves where m mode dominates over

−m mode (where m is a non-zero integer) are responsible for the rotating spiral arm

structures. The waves with the balanced +m and −m modes cannot contribute to

the rotating pattern because the rotating component is canceled out. Considering

this, we expect that non-axisymmetric wave modes (m ̸= 0) may exist much more

frequently than SWPs in the umbrae.

It seems that the rotating pattern is relevant neither to magnetic twist nor to

the Coriolis force. We observed the reversal of rotation direction in a sunspot in an

hour, which can not be attributed to the reversal of magnetic twist in such a short

time in the low-β region. Therefore, it is very likely that the rotating direction is
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irrelevant to the magnetic twist. Meanwhile, if the Coriolis force is to be responsible

for the rotating direction, there should be hemispheric dependence, which we could

not find in our data. Thus it is likely that the source may be related to local turbulent

motions if the SWPs are generated by the internal source.

It is possible to explain the measured radial speed if the SWPs originate from

localized sources located 2 to 10 Mm below the surface. From the fast-moving pattern

speed, Zhao et al. (2015) reported that the waves occurred at about 5 Mm beneath

the surface. Analyzing the speed of the ring-like moving pattern with the eikonal

method, Cho & Chae (2020) suggested that the depth of the wave driver is located

between 1 and 2 Mm below. Using the same method, we estimated that the 20 km

s−1 radial speed of the SWPs observed in Su et al. (2016) corresponds to a depth

of about 2.1 Mm, which is quite similar to the value of 1.6 Mm proposed in Kang

et al. (2019). Rigorous numerical 2.5D MHD simulations suggested that the observed

pattern speeds are in agreement with the waves that occurred between 1 and 5 Mm

beneath the photosphere (Felipe & Khomenko 2017). Analyzing the acoustic events

in the 3D radiative MHD simulations, Kitiashvili et al. (2019) have reported that

the wave sources are located from 1 to 2.5 Mm below the photosphere inside the

self-organized pore-like magnetic structure. Most recent observational studies have

concluded that the mixed shallow (∼ 2000km) and deep (≥ 5000 km) sources excite

the fast-moving pattern in one sunspot (Cho et al. 2021).

Based on our results, we suggest that the SWPs may be excited by random

events below the surface. In addition, there may be non-zero azimuthal modes as

well that may not rotate, unlike SWPs. Further systematic studies are required to

investigate non-axisymmetric patterns of oscillations including SWPs.
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Chapter 4

Chromospheric Umbral

Oscillations Driven by the

Resonance of Fast

Magnetohydrodynamic Waves

in the Subphotosphere

4.1 Introduction

Umbral oscillations are the most conspicuous magnetohydrodynamic phenomena in

sunspot umbrae. After the first detection of intensity fluctuations in chromospheric

umbrae was reported (Beckers & Tallant 1969), subsequent works have revealed that

these oscillations are the slow waves propagating upwards from the photosphere to

the corona with the group speed of around sound speed (Lites 1984; Centeno et al.

2006; Felipe et al. 2010; Khomenko & Collados 2015). The temperature-minimum

59
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at the bottom of the chromosphere in the gravitationally stratified medium acts as

a high-pass filter of acoustic waves, and the wave power peaks around the cutoff

frequency of about 6 mHz in the chromosphere (Centeno et al. 2006; Kalkofen et al.

1994; Chae & Goode 2015). A portion of low-frequency waves can propagate upwards

by the effect of the temperature gradient (Chae & Litvinenko 2018), and the non-

adiabatic heating and cooling such as radiation (Centeno et al. 2006; Chae et al.

2023).

Interestingly, even though the slow waves cannot propagate across the magnetic

field, recent observational studies have reported that the waves appear to move

across the magnetic field forming ring-like patterns (Zhao et al. 2015; Cho & Chae

2020; Cho et al. 2021) or spiral-shaped wave patterns (SWPs) (Sych & Nakariakov

2014; Su et al. 2016; Felipe et al. 2019; Kang et al. 2019). To interpret these fea-

tures, the internal excitation model focused on a localized disturbance in the high

plasma β region beneath the sunspot surface (Zhao et al. 2015; Cho & Chae 2020).

If the disturbance excites fast waves in the high-β region, the waves propagate quasi-

isotropically. The wavefront reaching the β ∼ 1 region has a time delay as a function

of horizontal distance, and this time delay makes ring-like patterns appear to prop-

agate across the magnetic field (Zhao et al. 2015). After reaching the β ∼ 1 region,

a portion of the fast waves can be converted to the slow waves by the mode con-

version process (Zhugzhda & Dzhalilov 1984; Cally 2001; Schunker & Cally 2006;

Cally 2007; Cho & Chae 2020). Using this idea, the SWPs were also regarded as the

waves excited by the point-like source generating non-axisymmetric modes beneath

the photosphere (Kang et al. 2019).

Another model to explain the wave patterns is the resonance of the slow body

waves (Stangalini et al. 2022). If the waves are trapped in the flux tube, the orthog-

onal eigenmodes of the resonance appear in the horizontal planes (Edwin & Roberts

1982, 1983; Roberts 2019). According to this model, the observed complex wave
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patterns in a large-scale sunspot were reproduced by the superposition of several

simultaneous resonant modes of slow body waves (Stangalini et al. 2022). In the

same way, the chromospheric oscillation patterns observed in circular and elliptical

sunspots were identified (Albidah et al. 2022). Even though the slow wave resonance

model can explain the patterns themselves, this model cannot explain why only a

few resonant modes were detected in pore-like small-scale flux tubes (Morton et al.

2011; Jess et al. 2017; Keys et al. 2018; Kang et al. 2019) because an infinite number

of modes of slow waves can be trapped in the flux tube (Edwin & Roberts 1982,

1983).

In this chapter, we propose the subphotospheric fast body wave resonance model

that can reproduce the observed complex wave patterns in the chromosphere. Our

model can also explain why less than four radial modes exist in small-scale flux

tubes and why lots of radial modes can be detected in large-scale sunspots from the

existence of the cutoff wavenumber.

4.2 Data and method

We analyzed a pore in NOAA 12078 located at (-301′′, 162′′) on June 3rd, 2014

from 16:49 UT to 17:56 UT taken with the Fast Imaging Solar Spectrograph (FISS

(Chae et al. 2013b)) at the Goode Solar Telescope (GST), which is the same data

analyzed previously in several studies (Chae et al. 2015; Kang et al. 2019; Chae

et al. 2022). The observed pore is an ideal simple circular flux tube with a size of

7 Mm in diameter and a vertical magnetic field (Figure 4.1a). The time cadence of

the data is 20 seconds with a spatial resolution of 0.16′′ and a spectral resolution of

19 mÅ in a spectral domain -5 Å to 5 Å of Hα. The raw data is calibrated following

the reduction pipeline described in detail by Chae et al. (2013b). Among the two

wavebands of Hα and Ca II 8542 Å, we only used the Hα data in this chapter.

Figure 4.1a shows the continuum intensity map and the chromospheric intensity
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Figure 4.1 Detection of non-axisymmetric oscillation patterns in a pore. a

The continuum intensity map of the GST/FISS constructed at the -3.5 Å of the Hα

line center and the chromospheric intensity map constructed at the line center at

17:44:07 UT on June 3rd, 2014. b Spiral-shaped wave patterns of the chromospheric

Doppler velocity map temporally filtered in 5.5−9 mHz. c Azimuthally decomposed

spiral-shaped wave patterns for m = 0 and ±2 modes. d Modeled LOS velocity

fluctuation map constructed by the superposition of three azimuthal modes and

three radial modes for each azimuthal mode. e All resonant modes of fast body

waves for the modeled LOS velocity map. The black contours shown in the panels

b and c represent the boundary of the pore. The dashed circles in the panels d and

e represent the flux tube boundary of the model. The red color in the panels b-e

represents the redshift that is away from the observer, and the blue color represents

the blueshift that is moving towards the observer. The color limit of the panels b-d

is -3.5 to 3.5 km s−1, and that for the panel e is -1.75 to 1.75 km s−1. The temporal

evolution of these patterns is shown in Figure 4.5.
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map at the line center of the Hα. The line-of-sight (LOS) Doppler velocity of the

Hα line spectrum is measured from the lambdameter method (Chae et al. 2014).

Here we only focus on the two-armed SWPs occurred at around 17:43:27 UT (Figure

4.1b).

The observed data is filtered temporally to increase the signal-to-noise ratio. The

wavelet power spectrum of the line-of-sight (LOS) Doppler velocity at the center of

the SWPs shows that most of the wave power is concentrated on the 2-3 minute

band (Figure 4.2). The peak period is around 160 seconds, and a small portion

of energy peaks in 1-minute and 5-minute bands. We apply a bandpass filter in

the range of 5.5− 9 mHz that is equivalent to the 2-3 minute band by using a fast

Fourier transform (FFT) to focus on the primary peak frequency of the LOS Doppler

velocity map (Figure 4.1b and the top row in Figure 4.5).

Furthermore, we spatially filter the data to decompose each azimuthal mode

m. The wave power of the two-armed SWP is concentrated at the azimuthal mode

m = 0 and 2 (see Figure 1d in Kang et al. (2019)), but m = 1 mode can be negligible.

We first transform the data coordinate to the polar coordinate at the center of the

oscillation patterns using the interpolation and transformation matrix. Second, We

perform the fast Fourier transform along the azimuthal direction for each point to

filter the m = 0 and m = 2 modes. After filtering the azimuthal component, we

return to data coordinates by applying the inverse coordinate transform from polar

to cartesian coordinate. Figure 4.1c and the middle row in Figure 4.5 show the

results.
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Figure 4.2 Wavelet power spectrum. Wavelet power spectrum of the Doppler

velocity averaged over 3×3 pixels at the center of the oscillation patterns. The black

dashed line represents the time t=0 at 17:43:27 UT which is the middle time of the

wave packet of spiral-shaped wave patterns. Among the total observing duration

(-3200 s to 780 s), the diagram shows only the time range of -780 s to 780 s.
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4.3 Model

4.3.1 Analytic model

To interpret the observed oscillation patterns using the simple analytic solution,

we consider the wave equation in the uniform vertical magnetic flux tube with a

radius R. The trapped wave solution appears by choosing the exponentially decaying

solution outside the flux tube in cylindrical coordinates (Edwin & Roberts 1983;

Roberts 2019),

vz = AJm(krr) exp i (kzz +mθ − ωt), 0 ≤ x < R (4.1)

where the vz is the velocity fluctuation along the magnetic field, A is an amplitude

constant, Jm is the first kind of the Bessel function of an azimuthal mode m, ω is

the angular frequency, and kz is the vertical wavenumber. Here the azimuthal mode

m has an integer value. The kr is the radial wavenumber given as

k2r = −
(k2zc

2
s − ω2)(k2zv

2
A − ω2)

(c2s + v2A)(k
2
zc

2
T − ω2)

(4.2)

where, vA is the Alfvén speed, cs is the sound speed and cT is the tube speed defined

as c2T =
c2sv

2
A

c2s+v2A
. Since observed oscillations have the nature of body waves, the k2r

should be positive.

The continuity of the total pressure and the radial velocity fluctuation at the

boundary (r = R) gives a dispersion relation described as (Edwin & Roberts 1983),

1

ρe(k2zv
2
A,e − ω2)

kr,e
K ′

m(kr,eR)

Km(kr,eR)
=

1

ρ0(k2zv
2
A − ω2)

kr
J ′
m(krR)

Jm(krR)
(4.3)

where ρ0 is the density, Km is the second kind of the modified Bessel function,

the dash(′) denotes the derivative of the Bessel function, and parameters with a

subscript e stand for the external region, r > R. For zero-external density limit,

this relation is satisfied when Jm(krR) ≃ 0, and there are several kr satisfying this
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condition. Here we define the radial mode n as the number of nodes (Jm(krr) = 0)

in the region 0 < r ≤ R. The radial mode n has a positive integer value.

Note, the zero-external density limit is not the general case in the subphotosphere

of the sunspot, but we can easily understand the physics between the slow body

waves and the fast body waves in this limit because the equation can be easily

described analytically by only considering the internal atmospheric condition (cs

and vA). In addition, the difference between the zero-external density limit and the

numerical solution of the dispersion relation is small (see Figure 4.4).

Each resonance mode can have different amplitudeAm,n, orientation θm, wavenum-

ber kr;m,n, kz;m,n and the phase tm,n. Since several modes can be excited simultane-

ously, the vertical velocity fluctuation is the form,

vz =
∑
m,n

vz;m,n (4.4)

=
∑
m,n

Am,nJm(kr;m,nr) exp i[kz;m,nz +m(θ − θm)− ω(t− tm,n)]. (4.5)

Here θ0 = 0 because m = 0 is the axisymmetric mode, and we set t0,1 = 0 as a

reference. In the subphotospheric region, vertical wavenumber kz;m,n depends on

modes because of the dispersion relation described in the subsequent section.

4.3.2 Cutoff wavenumber

The trapped waves are dispersive, and the wavenumber of each mode is obtained

from the equation 4.2. In the special case of very low external density limit, the

boundary condition in equation 4.3 leads to the simpler one: Jm(krR) ≃ 0, then the

dispersion relation is described simply from the equation 4.2,

k2z,∓ =
−b±

√
b2 − 4ac

2a
, (4.6)



Umbral Oscillations Driven by the Resonance of Fast Waves 67

0.005 0.010 0.015 0.020 0.025
kz (km−1)

50

100

150

200

250

300

P
er

io
d 

(s
)

for m= 2

vp >vA

vp <cT

a Slow Body Waves

n = 1
n = 2
n = 3
n = 4

0.000 0.002 0.004 0.006 0.008 0.010
kz (km−1)

50

100

150

200

250

300

P
er

io
d 

(s
)

for m= 2

vp >cs, e

vp <cs

b Fast Body Waves

n = 1
n = 2
n = 3
n = 4

Figure 4.3 p− k diagrams. a Period p as a function of the vertical wavenumber kz

of four radial modes of m = 2 azimuthal mode for the case of the slow body waves in

the subphotospheric condition (cs,e > cs > vA). b p− k diagram for the case of the

fast body waves. The white area in panel a marks the range of vA > vp > cT where

the slow body wave solution can exist. The white area in panel b represents the

range where the fast body wave solution can exist (cs,e > vp > cs). We have taken

the internal sound speed of cs = 8.1 km s−1, internal Alfvén speed of vA = 0.4cs,

external sound speed of cs,e = 1.5cs, external Alfvén speed of vA,e = 0.5cs, and the

tube speed of c2T = c2sv
2
A/(c

2
s + v2A). Here vp represents the longitudinal phase speed

of waves, i.e. vp = ω/kz.
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Figure 4.4 Dispersion relations of the zero-external density limit and the

numerical solution. The left panel shows the dispersion relation of the fast body

wave in the zero-external density limit shown in panel b of Figure 4.3. The right

panel shows the numerical solution of the equation 4.3. In the numerical solution,

wave mode in the gray area cannot be calculated. Two panels show a similar trend

with just a small difference.
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where kz,+ is the vertical wavenumber of fast waves and kz,− is the solution of slow

waves. The constants are of the form

a = v2Ac
2
sR

2, (4.7)

b = (c2s + v2A)(f
2
m(n)c2T −R2ω2), (4.8)

c = R2ω4 − f2
m(n)ω2(c2s + v2A), (4.9)

where fm(n) is n-th root of the Bessel function, Jm(fm(n)) = 0. Figure 4.3 shows

oscillation period p as a function of vertical wavenumber kz for two body wave cases

following the dispersion relation in the subphotospheric condition (cs,e > cs > vA) at

190 km depth below the equipartition layer, where cs,e is the external sound speed,

cs is the internal sound speed and vA is the internal Alfvén speed. Here only four

radial modes of m = 2 azimuthal mode are plotted. The internal sound speed is

derived from the extrapolation of the Maltby M model (Maltby et al. 1986). The

internal Alfvén speed is derived following the method described in Cho et al.(Cho &

Chae 2020): after measuring the mean magnetic field strength of 1400 G magnetic

strength from the Helioseismic and Magnetic Imager onboard the Solar Dynamics

Observatory (SDO/HMI(Schou et al. 2012)) at 100 km height, the magnetic field

strength in the deeper region by applying the vertical gradient of −1 G km−1 (Bor-

rero & Ichimoto 2011). For simplification, we set the external sound speed to 1.5cs

and the external Alfvén speed to 0.5cs. Since the phase speed of the fast body

waves vp,f is in between the internal sound speed and the external sound speed

(cs,e > vp,f > cs > vA), the solution is confined in the white region. The slow body

waves are valid if the phase speed (vp,s) is in between the Alfvén speed and the tube

speed (vA > vp,s > cT ). Even if the exterior magnetic field is negligible (va,e = 0),

two body waves can exist in the flux tube (Roberts 1981; Edwin & Roberts 1982).

The noticeable difference between the slow body wave resonance model and the

fast body wave resonance model comes from whether the cutoff wavenumber, which
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is related to the incident angle to the interface, exists or not. For the case of slow

body waves, there is no cutoff wavenumber, and hence infinite radial modes can exist

in all period ranges (panel a). For the case of fast body waves, however, the finite

number of radial mode can be survived by the effect of the cutoff wavenumber (panel

b). Moreover, this cutoff wavenumber highly depends on the oscillation period. In

the case of m = 2 azimuthal mode waves, only one radial mode appears at the period

of 300 seconds, three radial modes exist at the period of 150 seconds, and more than

four radial modes can be survived at the period of 75 seconds.

4.4 Results

To reproduce the temporal evolution of the spatially and temporally filtered SWPs

(Figure 4.5b), we found the free parameter values of Am,n, θm,n and tm,n in the

equation 4.5. The radial wavenumber kr;m,n is derived from the boundary condition,

and we set z = 0. At first, we found the phase difference value tm,n from the shape

of spiral arms and their temporal evolution. Second, we determined the amplitude

Am,n from the apparent radial pattern speed and the width of the spiral arms. After

that, we rotated the patterns to fit their orientation θm to the observation. The two-

armed SWP was reconstructed by the superposition of nine resonant modes; three

azimuthal modes (m = 0,±2) and three radial modes (n = 1, 2, 3) of each azimuthal

mode (Figure 4.1 d-e). The temporal evolution of the model is shown in the bottom

panels of Figure 4.5, and the model parameters are described in Table 4.1. The

temporal evolutions of m = 0 and m = 2 azimuthal modes are shown in Figure 4.6

and 4.7, respectively. During the lifetime of the SWPs, the model parameters and

the number of resonant modes are not changed.

The shape of spiral patterns is relevant to the phase difference (tm,n) between

radial modes. The inner region of the patterns is highly affected by high-order radial

modes, and the outer part is associated with low-order modes. The phase speed
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Figure 4.5 Temporal evolution of the spiral-shaped wave patterns. Top row:

Observed Doppler velocity maps temporally filtered in the frequency range of 5.5−9

mHz. Middle row: Doppler velocity maps that are temporally filtered in the same

frequency range and are spatially filtered in the azimuthal mode m = 0, and 2. Bot-

tom row: Modeled LOS velocity fluctuation vz constructed by the superposition of

total nine resonance modes; m = 0,±2, and n = 1, 2, 3. Columns show the temporal

evolution of each map from left to right. The time t = 0 is equal to 17:43:27 UT.

The black contour indicates the boundary of the pore, and the black dashed circle

represents the boundary of the flux tube of the model. The oscillation period of the

patterns is about 160 seconds, and input model parameters are shown in Table 4.1.

Temporal evolutions of m = 0 and 2 modes are illustrated in Figure 4.6 and 4.7

respectively.
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Table 4.1 Input parameters of the model shown in Figure 4.5

m n Am,n θm tm,n

(km s−1) (◦) (s)

0 1 1.50 0 0

0 2 2.25 0 -20

0 3 1.50 0 -40

2 1 2.00 30 28

2 2 3.00 30 -2

2 3 3.00 30 -52

-2 1 0.60 30 28

-2 2 0.90 30 -2

-2 3 0.90 30 -52
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Figure 4.6 Temporal evolution of oscillation patterns filtered in m = 0

mode. Top row: Similar to the middle row in Fig 4.5 but filtered in the azimuthal

mode m = 0. Bottom row: Modeled LOS velocity fluctuation of m = 0 mode.
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Figure 4.7 Temporal evolution of oscillation patterns filtered in m = 2

mode. Top row: Similar to the middle row in Fig 4.5 but filtered in the azimuthal

mode m = 2. Bottom row: Modeled LOS velocity fluctuation of m = ±2 mode.
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Figure 4.8 Time-distance map of modeled m=0 waves. a Time-distance (TD)

map of the m = 0 mode with the amplitudes of A0,1 = 2.25, A0,2 = 2.0 and

A0,3 = 0.5. b TD map with the amplitudes of A0,1 = 1.5, A0,2 = 2.25 and A0,3 = 1.5.

c TD map with the amplitudes of A0,1 = 0.5, A0,2 = 2.0 and A0,3 = 2.25. All of

them have the phase differences of t0,1 = 0, t0,2 = −20 and t0,3 = −40. The solid

lines represent the gradient of ridges.
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difference may be responsible for the phase difference because it takes different

times for different modes to establish standing waves after being reflected at the

flux tube boundary. If the high-order modes form the standing waves earlier than

the low-order modes for non-zero azimuthal modes, the inner part appears to rotate

earlier than the outer part. As a result, the superposition of radial wave modes with

different phases forms trailing spiral arm structures.

The speed of radial apparent fast-moving patterns is associated with the ampli-

tude ratio between radial modes (see Figure 4.8). If the n = 1 mode has the dominant

wave power of the patterns, the radial pattern speed becomes faster (panel a). On

the other hand, if the n = 2 or 3 has the most of the wave power of the patterns,

the apparent speed becomes slower (panels b and c). Therefore, the speed of the

radial moving patterns may be irrelevant to the depth of a source suggested in the

previous studies (Zhao et al. 2015; Cho & Chae 2020; Felipe & Khomenko 2017),

but it corresponds to the energy distribution between radial modes.

The effect of the cutoff wavenumber is shown in the observation of the m = 2

azimuthal mode filtered in three different frequency band (Figure 4.9). The 2.5− 4

mHz (4.2 − 6.7 minute) frequency-filtered Doppler velocity map shows the blob

patterns generated by only one radial mode (panel a). In contrast with the low

frequency-filtered map, the oscillation pattern filtered in the range of 5.5 − 9 mHz

(1.9−3.0 minute) forms the spiral arms associated with the three radial modes (panel

b), and more winding spiral structures are shown in the 12−20 mHz (0.8−1.4 minute)

frequency-filtered map because of the superposition of more than four radial modes

(panel c). These support the idea that the observed chromospheric features are

originally generated by the resonance of the fast body waves in the subphotosphere.

The cutoff wavenumber also depends on the size of a flux tube (see equations

(4.6)-(4.9)). If the flux size is less than 2 Mm, only one resonance mode, fundamental

sausage mode (m = 0, n = 1), can be trapped in the flux tube. For the intermediate
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Figure 4.9 Oscillation patterns filtered in three different frequency bands.

a Observed Doppler velocity map filtered in the range of 2.5 − 4 mHz. b Velocity

map filtered in the range of 5.5 − 9 mHz. c Velocity map filtered in the range of

12− 20 mHz. The black contour represents the boundary of the pore.
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size of the flux tube with the size of 7 Mm, the waves have the maximum order of

radial mode of four with m = 0 and the highest azimuthal mode of eight with n = 1.

However, a large-scale sunspot of more than 30 Mm can trap many resonance modes,

so it is hard to distinguish whether these modes occur from the resonance of the slow

waves or the resonance of the fast waves. Therefore, only sausage or kink body waves

have been reported previously in small-scale flux tubes such as pores (Morton et al.

2011; Keys et al. 2018), the limited number of resonance modes have been detected

in the intermediate sunspots (Kang et al. 2019; Albidah et al. 2022). and more than

30 resonance modes have been identified in large-scale sunspots (Stangalini et al.

2022).

4.5 Discussion

For the first time, we successfully reproduced the observed temporal evolution of the

spiral-shaped wave patterns by the superposition of the resonance modes of the fast

body waves driven in the subphotosphere. The spiral arms were constructed by the

superposition of three radial modes of non-zero azimuthal modes, and the speed of

the fast-moving radial pattern was associated with the energy distribution between

the radial modes. Since the cutoff wavenumber of the fast body waves limited the

high-order radial modes, only a few low-order radial modes were identified in the

pore. The evidence of the cutoff wavenumber was detected in the filtered Doppler

velocity maps in three different frequency ranges; 2.5−4 mHz, 5.5−9 mHz, and 12−20

mHz. The existence of the cutoff wavenumber is the most remarkable difference from

the solution of trapped slow body waves.

How can the resonance of the fast body waves contribute to the chromospheric

oscillations of slow waves? The mode conversion at the equipartition layer (cs = vA)

links the subphotospheric fast waves to the chromospheric slow waves (Zhugzhda &

Dzhalilov 1984; Cally 2001; Schunker & Cally 2006; Cally 2007) (see Figure 4.10).
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Figure 4.10 Schematics of the vertical cross-section view of the model. The

yellow area represents the region where the sound speed is faster than the Alfvén

speed (cs > vA), and the white area represents the region where the sound speed is

slower than the Alfvén speed (cs < vA). The black solid line between the two regions

represents the equipartition layer (cs = vA) where the mode conversion can occur.

The gray vertical lines represent the magnetic field lines, and the vertical dashed

line illustrates the boundary of the flux tube. The red line demonstrates the vertical

velocity fluctuation vz of fast body waves and the blue line illustrates the vz of slow

body waves. The dotted horizontal line indicates the resonance layer of the fast body

waves, and the dash-dotted horizontal line expresses the detection layer. The two

panels shown in the right-bottom corner illustrate the vertical velocity fluctuation

of two azimuthal modes of m = 0 and 2. The right-top panel shows the horizontal

cross-section view of the modeled oscillation patterns shown in panel d of Figure

4.1.
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First, the resonance of fast body waves occurs at the resonance layer in the subpho-

tosphere (cs > vA). When the waves propagate upwards through the equipartition

layer (cs = vA), some portion of fast waves is converted to slow waves maintaining

their oscillation patterns. After mode conversion, the slow waves propagate upwards

along the vertical magnetic field. Therefore we can observe inherited oscillation pat-

terns of the resonance of the fast body waves even in the detection layer of the

chromosphere (cs < vA).

The mode conversion efficiency depends on the order of the radial mode. In

other words, the shape of oscillation patterns in the subphotospheric region may be

slightly different from the patterns observed in the chromosphere. The direction of

the wave vector or the ratio of the vertical wavenumber kz to the radial wavenumber

kr depends on the order of the radial mode. For the lowest order radial mode (n =

1), the kz/kr becomes 3, but the highest order radial mode of n = 3 has a low

wavenumber ratio of around 1. Since the fast-to-slow mode conversion is enhanced

when the wave vector is aligned with the field lines (Schunker & Cally 2006), more

energy of the fast waves of the low-order modes can be converted to the slow waves

rather than the high-order modes. As a result, the chromospheric oscillation patterns

have a larger amplitude ratio of the low-order to high-order modes than the patterns

in the subphotosphere. Thus the chromospheric oscillation patterns can show faster

radial apparent pattern speed than the subphotospheric patterns according to the

notion shown in Figure 4.8. In this chapter, we have ignored this modal-dependant

transmission to describe the observed patterns analytically, but in a further study,

we will consider this effect numerically.

There is a physical reason why horizontal resonance occurs in fast waves, not

in slow waves. To form trapped oscillation patterns in the horizontal plane, waves

should propagate energy across the field lines. Since the wave vector and group

velocity of the slow waves are highly aligned with the field line even in the subpho-
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tospheric region, the slow waves propagate upwards before being trapped in the flux

tube. For the case of fast waves, however, the vertical wavenumber is comparable to

the radial wavenumber, so it is relatively easier for the fast waves to propagate the

wave energy across the field line rather than the slow waves. Therefore, fast waves

are preferred to for the horizontal resonance in flux tubes.

The driving sources of the oscillation patterns can be either internal magneto-

convection or external p-mode. Regardless of the location of a source, the oscillations

can show similar patterns if the waves are trapped in the flux tube. In this regard,

the wave source does not need to be located at the center of the oscillation patterns.

The center of oscillation patterns is related to the shape of the flux tube. In an

axisymmetric circular sunspot, the center of oscillation patterns is located at the

center of the flux tube, and the central position of the resonances in an irregular-

shaped sunspot is affected by the field geometry (Albidah et al. 2022). Therefore,

one should be careful to determine the source of waves from the apparent motion of

the oscillation patterns.

The solution of fast body waves exists only in a shallow range of the subpho-

tosphere (cs,e > cs > vA). In the deep region below the surface, the effect of the

magnetic field is negligible, and then it is difficult to trap the waves in the flux tube

because the boundary becomes ambiguous (cs ∼ cs,e). If the internal sound speed

is slow enough near the equipartition layer, more than four radial modes can be

trapped in the observed pore for the case of 3-minute waves, but it is inconsistent

with the observation. Thus the fast wave resonance should occur in a confined layer.

Calculating the depth of the resonance layer using the Maltby sunspot M model

(Maltby et al. 1986), the fast body wave resonance of the observed two-armed SWPs

is formed in a shallow range of -250 km to -110 km below the equipartition layer

that equals 4 < β < 10 in terms of plasma beta.

Our research sheds light on the physical nature and origin of umbral oscillations
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and contributes to the establishment of the subphotospheric seismology in the mag-

netic flux tube. Since the cutoff wavenumber depends on the internal/external sound

speed and internal Alfvén speed for a given flux tube size and oscillation frequency,

we can derive the atmospheric condition from the chromospheric oscillation patterns

by using this model. Our study is significant in that we can infer the atmospheric

conditions and the wave phenomena in the unobservable subphotosphere through

the observable oscillation patterns in the chromosphere.



Chapter 5

Summary and Discussion

5.1 Summary

In this thesis, we investigated the nature and origin of two-dimensional oscillation

patterns in sunspot umbrae by comparing the observations and models.

In Chapter 2, we reproduced observed one- and two-armed spiral-shaped wave

patterns in the pore using the internal excitation model. According to this model, the

spiral arms may be generated by the non-zero azimuthal mode of a localized source

beneath the photosphere. The number of spiral arms is the same as the magnitude

of the azimuthal mode, and the rotation direction is determined by its sign. In this

model, the radial moving patterns and the spiral shape may be associated with

the depth of the disturbance. From this relation, we derived that the source of

the observed SWPs may be located at a depth of 1600 km below the photospheric

surface.

In Chapter 3, we investigated the statistical properties of 241 spiral-shaped wave

patterns in sunspot umbrae. The detection probability of 0.24 per hour is lower than

our expectation. This low detection rate implies that there may be non-rotating

patterns of non-axisymmetric mode with the balanced opposite sign of azimuthal

83
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modes; +m and −m. The oscillation period of 150 seconds and the lifetime of 780

seconds are comparable to conventional umbral oscillations. The rotation direction

is independent of the hemisphere and the magnetic twist. It implies that SWPs

may be generated by the local turbulent motions if they originated from an internal

source. We indirectly inferred that the source of SWPs is between 2 Mm and 10 Mm

below the equipartition layer using the apparent radial speed supposing the waves

are excited by the interior motion.

In Chapter ??, we proposed the subphotospheric fast resonance model that more

precisely reproduces the observed chromospheric patterns of umbral oscillations.

This model is contrasted with the former internal excitation model employed in

the works described in the previous chapters. In this chapter, we have corrected

the analytic solution of the former model by considering the boundary effect of the

flux tube. In addition, we have interpreted the two-dimensional patterns in three

different frequency bands as the effect of the cutoff wavenumber or cutoff radial mode

related to the incident angle of each radial mode. According to this new model, the

chromospheric patterns of umbral (slow) waves are regarded as the inherited patterns

of the resonance of fast waves in the subphotosphere. Either internal convective

motion or external p-mode waves in the subphotosphere can generate the proposed

resonance of fast waves. The observed patterns in a pore are formed within narrow

and shallow layers between -250 km to -110 km below the surface.

The differences between the earlier internal excitation model (IEM) and the

later subphotospheric fast resonance model (SFRM) are described in Figure 5.1.

The SFRM can reproduce spatial details of the patterns of umbral oscillations be-

cause of the existence of the radial mode. Furthermore, the frequency dependence

of the oscillation patterns can be interpreted as the effect of the cutoff wavenum-

ber (or cutoff radial mode) in the SFRM. The source of the pattern in the IEM is

the localized random impulsive events. Accordingly, the oscillation pattern can be
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Figiure 5.1 Summary of the internal excitaiton model and the subphotospheric fast

resonance model.
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located everywhere in the umbrae. On the other hand, the source of the SFRM can

be either internal excitation or the external p-mode. For that reason, the SFRM

can propagate more energy to the upper atmosphere. In addition, the wave pattern

of the SFRM can be located near the center of the umbrae because it is formed

by the standing waves trapped in the flux tube. In the IEM, the apparent radi-

ally propagating pattern is related to the depth of the source. By contrast, in the

SFRM, the radial propagation is associated with the phase difference and the energy

distribution between radial modes.

The remarkable achievement of our studies is that the observed umbral slow

waves are originally fast waves below the surface. The key process connecting these

two wave modes is the mode conversion at the equipartition layer. With the help

of this process, sunspots can transfer the energy of the solar interior to the upper

atmosphere with the two linked magnetoacoustic waves of acoustic nature. Moreover,

we can explore the unobservable sunspot interior from the umbral oscillations with

devised models. If we improve these models more quantitatively with the help of

numerical simulation, we can find a hint to solve the coronal heating problems.

5.2 Future works

Our results broaden our understanding of the observed oscillation in the magnetized

region. Based on this knowledge, we suggest several research subjects. In this section,

we introduce several ideas and some preliminary results.

1. Detection of non-rotating patterns of umbral oscillations

As discussed in Chapter 3, the low detection rate of SWPs implies that there should

be non-rotating patterns (NRPs) of umbral oscillation. We identified some cases of

NRPs in a pore observed on June 24, 2018, from 18:36 to 20:34 UT (Figure 5.2).
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The first case shows the NRP with the dominant powers at the azimuthal numbers

0 and 2, and the second case is the NRP of the superposition of m = 0 and 3. We

reproduced the observed patterns using the temporal evolution of NRPs and the

time-distance map. The apparent radial speeds of m = 0 and m = 2 are different

(Figure 5.3 a and b). It supports the idea of the subphotospheric fast resonance

model because the radial speeds of the different modes are the same if two modes are

generated simultaneously by a single local disturbance, as suggested in the internal

excitation model. The second important finding is that the oscillation power is also

horizontally distributed regardless of the local magneto-convection shown in the

photosphere (Figure 5.3 c and f). Therefore, it should be careful to identify the

source of the slow waves from the distribution of the oscillation power.

2. Nature of penumbral waves

What about the waves shown in the penumbral? According to the subphotospheric

model, the penumbral waves can also be related to the trapped umbral waves. If the

penumbral waves are related to the subphotospheric model, the penumbral waves

are linked with the patterns of umbral oscillations. To find this feature, we analyzed

sunspot waves temporally filtered in the period range of 3-minute and 5-minute

bands, respectively. We find that either 3-minute waves or 5-minute waves appear to

propagate from the umbra to the penumbra (Figure 5.4). From this result, we conjec-

ture that the penumbral waves may be related to the leaky waves. After improving

the analytic model, we will reproduce the observation.

3. Surface waves at the umbra-penumbra boundary and their relation to

the Alfvénic waves

As mentioned in Chapter 1, the surface wave can exist near the umbra-penumbra

boundary. If these surface waves are generated in the subphotosphere like the body
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Figiure 5.2 Example of non-rotating patterns. (Left) Photospheric intensity image

of the pore observed on June 24, 2018, from 18:36 19:51 UT using GST/FISS.

(Right 1st column) Chromospheric LOS velocity map temporally filtered in the

frequency range from 5 to 9 mHz and spatially filtered in the frequency range at

m=0 and 2, observed at 19:12 UT. (Right 2nd column) Modeled velocity map with

ten eigenmodes. (Right 3rd column) Same with the 1st column but spatially filtered

in the frequency range at m=0 and 3, observed at 20:23 UT. (Right 4th column)

Model of observed NRP with ten eigenmodes.
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waves, the only allowable solution is the slow surface waves (see Figure 6 of Edwin

& Roberts (1983)). If we decompose the patterns of body waves with the subpho-

tospheric fast resonance model, we can identify the surface waves at the umbra-

penumbra boundary. Moreover, slow waves have magnetic nature in the high-β re-

gion, and the slow waves are strongly coupled with Alfvén waves. In this region,

a portion of slow waves can be converted to the Alfvén waves, maintaining their

magnetic nature (Cally 2022). Therefore, surface waves can transfer the magnetic

energy of the solar interior to the upper atmosphere.

4. Sunspot seismology

In helioseismology, p-mode waves can be described by spherical harmonics, and this

harmonic feature can be identified in the k−ω diagram. Similarly, umbral oscillations

can be given by cylindrical harmonics using the resonance model. Thus the harmonic

feature of umbral oscillation can also be detected in the k−ω diagram in a sunspot

umbra with enough spatial and temporal size and resolution. According to Figure

4.3, the separation between two harmonic branches is about 20 seconds in time and

about 200 km in space for 3-minute waves. Considering the Nyquist frequency, the

temporal resolution should be better than 10 seconds, and the spatial resolution

should be better than 100 km. This resolution is slightly better than the resolution

of the FISS. If we improve the FISS in the near future, we can resolve this harmonic

feature in the frequency domain.

5. Distribution of oscillation period in sunspot umbrae

The distribution of the predominant oscillation period is different even in an um-

bra. The oscillation period near the umbra center is shorter than the outer parts.

Conventionally this observed phenomenon is considered as the difference of acoustic

cutoff by the effective gravity of inclination of the magnetic field (Reznikova et al.
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2012; Jess et al. 2013). This phenomenon can also be interpreted as the effect of

the distribution of the maximum amplitude of each radial mode (see Figure 4.9).

Therefore, we will compare these two scenarios by comparing the oscillation power

map and the magnetic field inclination map.

6. Relation between oscillation patterns and structure of sunspot

The morphological patterns of umbral oscillations may depend on the size and struc-

ture of sunspots. According to equation (4.6-4.9), the cutoff wavenumber of trapped

fast waves in the subphotosphere depends on the size of the flux tube. The larger the

umbra is, the more radial modes can be trapped in the umbra. Thus, the shape of

oscillation patterns may depend on the size of the flux tube. Moreover, the oscillation

patterns are affected by the shape of the sunspots. If the sunspots have an elliptical

shape, the oscillation patterns are elongated along the major axis (Aldhafeeri et al.

2021). Therefore, we should consider the structure of the sunspots to derive the wave

mode correctly.

7. Oscillation patterns in fragmented sunspots.

Sunspots can be fragmented by the magneto-convection, such as a light bridge.

Each separated sunspot can trap the waves. If the flow in the light bridge disturbs

these two sunspots, wave patterns in two separated sunspots may be similar or

rotate in opposite directions. If we find these features, the results also support the

idea of a subphotospheric fast resonance model because the internal source cannot

simultaneously disturb two separated flux tubes.

8. Energy transfer of the oscillation patterns

According to the fast subphotospheric resonance model, the external p-mode waves

can be absorbed by a sunspot, and absorbed energy can be transferred to the corona
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along the magnetic field. In this model, the sunspot acts as an optical fiber that traps

the energy within the tube and transfers this energy to the opposite end. If we quan-

titatively measure the absorbed energy of p-mode in the sunspot and the energy flux

of the waves, we can give a clue to the coronal heating problem.

In this dissertation, we have successfully explained the chromospheric oscillation

patterns based on the mode of fast wave resonance in the subphotosphere. We expect

that our model can give a hint or clue to the unsolved problems associated with

sunspot waves, such as the origin of Alfvénic waves or the chromospheric heating

problem.
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요 약

암부 진동은 흑점의 안부에서 보이는 가장 눈에 띄는 활동 현상이다. 암부 진동은

음속으로광구에서코로나까지자기장을따라서전파하는느린자기음파 (slow magne-

toacoustic wave) 와 연관된다. 흥미롭게도, 최근 관측 연구는 이 파동이 복잡한 형태의

수평 양상을 가지고 자기장을 가로질러 전파하는 것 처럼 보이는 것을 보고하였다. 이

러한 진동 양상의 연구는 암부진동의 본성과 기원을 알려줄 뿐만 아니라 파동이 원천

지역부터채층이상의상층대기까지어떻게전파되는지에대한정보를알려줄수있기

때문에 중요하다. 게다가, 진동 양상과 파동은 원천 지역의 대기 조건을 유추하는데

유용한데 파동이 지나온 매질의 정보를 가지고 전달되기 때문이다. 암부 진동 양상의

본성을 이해하기 위한 여러 노력에도 불구하고, 아직까지 미제로 남아있다. 본 학위

논문에서 우리는 구디 태양 망원경 (Goode Solar Telescope)의 고속영상태양분광기

(Fast Imaging Solar Spectrograph)와 태양 활동 관측위성 (Solar Dynamics Observa-

tory, SDO)의 대기 영상 관측기 (Atmospheric Imaging Assembly, AIA) 를 통해 얻은

흑점 암부에서 관측된 진동 양상의 본성을 이해할 수 있는 이론 모형을 고안하였다.

먼저, 우리는 관측된 나산형 파동 양상 (spiral-shaped wave pattern, SWP)을 꼬이

지 않은 자속관의 흑점 표면 아래에서 발생한 느린 자기음파의 축대칭성 모드와 비축

대칭성 모드의 중첩으로써 해석하는 이론 모형을 제안하였다. 우리는 모형을 미소흑점

(pore)에서 도플러 시선속도로 관측한 나선팔이 각각 한 개 그리고 두 개인 SWP 에

대해 적용하였다. 시선속도진동의 주기는 약 160 초 이고 5 분간 지속되었다. 제안된

모형에 따르면 나선팔 양상은 미소흑점 표면에서 1600 km 깊이에서 발진된 0 이 아닌

방위각모드에의해만들어진다.관측된나선팔이하나인 SWP는자속관에서의소시지

(sausage) 모드와 킨크 (kink) 모드에 의해 형성되고, 나선팔이 두개인 SWP는 소시지

모드와 플루팅 (flutting) 모드에 의해 형성된다.

둘 째로 우리는 SDO/AIA 304 Å 를 이용하여 SWP의 관측적 특성을 분석하였다.

2013 년부터 2018 년까지 태양 중심에서 두 시간 동안 관측된 496 개의 흑점을 조사하

였다. 이 중 우리는 140 개의 흑점에서 241 개의 SWP를 찾았고 이때 발견율은 시간당
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0.24 개이다; 192 개는 나선팔이 하나인 SWP, 48 개는 나선팔이 두 개인 SWP, 한 개는

나선팔이 세 개인 경우 이다. SWP의 수명은 780±250 초이고 진동 주기는 149±35

초로 일차원적인 암부진동의 결과와 유사하다. 나선팔이 한 개인 SWP의 겉보기 회전

주기는 183±72초이고나선팔이두개인 SWP는 317±132초이다.나선형파동양상의

관측적 특성은 반구, 위도 그리고 흑점 크기와 무관하다. SWP가 내부에서의 국부적인

무작위 사건 (event)에 의해 비롯된다고 가정하고 아이코날 (eikonal) 방법을 통해 계

산하면, 대부분의 나선팔은 2 Mm 에서 10 Mm 사이의 표면 아래 깊이에서 발생하고

평균적으로 6 Mm 깊이에서 발생한다.

셋 째로 우리는 광구아래층 (subphotosphere)에서의 빠른 자기음파의 공명 모형

을 이용하여 관측된 흑점 진동 양상의 시간 변화를 성공적으로 재현했다. 빠른 실체파

(body wave)의 절단 파수 때문에 오직 몇개의 작은 차수 모드만이 미소흑점 같은 작은

규모의 자속관에 갖히게 된다. 빠른 자기음파에서 느린 파동으로의 모드 변환 (mode

conversion)에 의해서 광구아래층의 빠른 자기음파의 공명파의 상속된 양상이 채층의

느린 자기음파 양상으로써 관측될 수 있다. 이 모형은 본 학위논문에서 가장 중요한

성과이다. 이 연구는 우리가 관측할 수 있는 채층 진동 양상을 통해서 관측할 수 없는

대기조건을유추할수있다는점에서흑점에서의광구아래층의지진학의해결의빛을

던지는데 있다.

우리의 이러한 접근 방식은 암부 진동의 본성과 기원에 대한 새로운 통찰을 제공한

다. 이와 더불어 우리의 결과는 암부 진동 그 자체 뿐만 아니라 흑점 진동을 발생시키는

섭동과 흑점 표면 아래 내부 구조를 이해하는데 기여할 것이다.

주요어: 흑점; 자기유체역학; 태양 진동; 태양 대기; 태양 채층

학 번: 2016-20325

102



Acknowledgement

I greatly appreciate all the support provided to me during my thesis work.

From 2016 to 2018, I was supported by the interdisciplinary program in space

system. Chatper 2 was supported by the National Research Foundation of Korea

(NRF-2017R1A2B4004466). Chapter 3 was supported by the National Research

Foundation of Korea (RS-2023-00208117). Chapter ?? was supported by the Na-

tional Research Foundation of Korea (RS-2023-00208117). My work has been based

on the data taken by the FISS on the GST at Big Bear Solar Observatory (BBSO)

and the data from the Solar Dynamics Observatory (SDO). BBSO operation is sup-

ported by NJIT, US NSF AGS-1821294 grant. GST operation is partly supported

by the Korea Astronomy and Space Science Institute and Seoul National University.

‘’

103



104



감 사 의 글

한 사람이 어려서 부터 하고 싶었던 일을 업으로 삼고 끝까지 나아가는 것이 쉬운

일이 아닌데, 큰 어려움 없이 이렇게 졸업하게 되어서 감사합니다. 한 편으로는 운이

좋았고다른한편으로는주변의많은도움덕분에학위과정을즐겁고무난하게끝마치

게 되었습니다.여기서는 저에게 도움과격려를 주신 분들께 감사한 마음을 전달하고자

합니다.

먼저 학부생 인턴 때 부터 저를 지도해주신 채종철 교수님께 감사드립니다. 학부생

인턴인데도 불구하고 매주 개별 면담을 통해 직접 이론적인 설명과 프로그램을 알려주

셔서더쉽고재밌게태양연구에접할수있었습니다.대학원입학하고 3년간이렇다할

연구성과를보여드리지못했는데도격려해주시고응원해주신덕분에포기하지않고연

구할 수 있었습니다. 연구에 있어서도 제가 잘 못 이해한 부분이 있거나 하면 친절하게

여러 번 설명해주시고 예시를 들어주셔서 어려운 개념을 이해하는데 큰 도움이 되었

습니다. 졸업하는 해에는 시도 때도 없이 교수님을 찾아뵙고 시간을 많이 뺏었는데도

교수님께서 항상 웃는 얼굴로 반겨주시고 칭찬해주셔서 연구를 재밌게 임할 수 있었습

니다. 제가 교수님을 만나뵙고 재밌게 태양 연구를 할 수 있던 것이 제게 주어진 가장

큰 행운이 아닐까 싶습니다.

제박사학위논문심사를맡아주신박용선교수님,김웅태교수님,최광선교수님,임

은경 박사님께 감사드립니다. 흔쾌히 학위 심사를 승낙해주시고 바쁘신 시간을 내주신

덕분에 제가 박사로써 발걸음을 뗄 수 있게 되었습니다. 심사 중에 주신 조언과 질문을

바탕으로 연구를 발전시킬 수 있었고, 질문 주신 내용을 토대로 앞으로 박사후 연구원

과정때흑점연구뿐만아니라다양한대상에서주제를확장시켜연구해볼생각입니다.

제 첫 연구주제의 공저자로 참여해주신 Nakariakov 교수님께도 감사의 말씀을 전

합니다. 경희대학교 방문 일정 중 시간을 내시어 제 연구에 조언을 주셔서 첫 논문의

내용을 보강하여 발전시킬 수 있었습니다. 또한, 그때 주신 조언을 계기로 주제를 확장

시켜 이렇게 졸업할 수 있게 되었습니다.

105



제 연구 주제의 공저자로 참여해 준 선후배님들께도 감사의 인사를 전합니다. 가장

먼저 감사를 드리고 싶은 분은 조규현 박사님입니다. 제 첫 번째 주제의 해석 모형

은 조규현 박사님이 제안한 모형을 기반으로 만들었었고 세 번째 주제 역시 박사님이

제안하신 공명을 고려하여서 이토록 연구를 발전시킬 수 있었습니다. 특히, 미국이라

새벽시간에 제가 질문을 드린 건데도 다양한 해석 방식과 연구 주제를 논의해주셔서

앞으로도 재미나게 연구를 할 수 있을 것 같습니다. 이후에도 같이 공동 연구를 수행

하기를 희망합니다. 심사위원이자 공저자로 참여해 주신 임박사님께도 감사드립니다.

제가 급하게 논문을 보내드렸는데 새벽까지 읽어보시고 조언을 주신 덕분에 논문이

조금 더 잘 다듬어졌습니다. 이외에도 항상 밝게 맞아주고 같이 논의한 한나 누나, 제

초창기 아이디어를 가장 열심히 들어주고 공감해준 겨레형, 그리고 마치 자기 연구인

듯 열정적으로 참여한 수상이, 또 바쁜데도 불구하고 시간내서 통계자료 처리를 도

와준 주연이에게 감사의 마음을 전합니다. 공저자로 참여하지 않았지만 재밌게 같이

이야기하고 연구 내용을 공유했던 이경선 박사님, 항상 친절하게 대해주신 정혜원 박사

님, 연구외에 모르는게 없던 민주형, 항상 씩씩하고 쾌활했던 다나, 학부생 연구원으로

열정적로 참여했던 병하와 유정이, 실로스탯 운용에 참여한 현용이, 그리고 새롭게 팀

에 들어와서 재밌게 연구를 시작한 민재와 영훈이에게도 감사합니다. 학부 연구생 때

지원과 많은 도움을 주신 임명신 교수님 감사드립니다.

사회에서 만난 선후배 박사님들과 천문연 박사님들께도 감사합니다. 가장 먼저 천

문연에서 저를 가장 많이 챙겨준 희수 형과 형수님께 감사드립니다. 주말에도 혼자서

밥먹을까봐 챙겨주시고, 평일에도 대전 방방곳곳에 데리고 가서 맛집 탐방과 대청호수

에등에데려가주셔서덕분에외롭지않게재미나게보낼수있었습니다.같이일하면서

많이싸우기도하고서로티격태격하긴했지만덕분에조금더학자로써그리고한명의

어른으로 성장할 수 있는 계기가 되었습니다. 마찬가지로 동욱이 형도 같이 일하면서

많이 티격태격하기도 했지만, 저랑 같이 놀아주시고 신경써주셔서 감사합니다. 늦게까

지 같이 일하면서 같이 야식도 많이 먹고 차로 저희 집까지 데려다 주셨어서 재밌게

시간을 보낼 수 있었습니다. 특히 두 분이 제 얘기를 많이 공감해주신 덕분에 스트레스

도 많이 풀리고 힘내서 일할 수 있어서 좋았습니다. 먼저 나갔지만 함께 코로나그래프

106



개발과 환경시험 등 여러 일을 같이한 김진현 선생님께도 감사드립니다. 정말 짜증도

많이 내고 헀었는데 위트있게 받아주시고 같이 힘써주셔서 덕분에 일을 잘 마무리할

수 있었습니다. 코로나그래프 개발에서 시스템 엔지니어로서 개발 과정을 이끌어주신

최성환박사님그리고프로젝트책임자로서전반적으로이끌어주신김연한박사님께도

감사드립니다. 논의를 통해 기기 개발에 있어서 많은 것을 배울 수 있었고, 고군분투하

는 저희를 위해서 격려와 지원을 아끼지 않으신 덕분에 힘을 낼 수 있었습니다. 그리고,

연구 관련 조언을 해주신 조경석 박사님, 환경시험 관련에서 많은 조언을 주신 손종대

박사님, 광학 기기에 관련하여 조언을 아끼지 않으신 김지헌 박사님, 프로그램 개발

에 있어 도움을 주신 박종엽 박사님과 백지혜 선생님, 열진공 시험과 진동 시험 등

환경시험에 많은 도움을 주신 문봉곤 박사님, 방사선 시험을 혼자간다고 하니 도와주

시겠다고 같이 참여해주신 남욱원 박사님, 카메라 개발과 회로 관련하여 항상 도움을

주신 김정웅 사장님과 아이트릭스 직원분들 (조병경, 이다교, 조인혁, 이용기, 박시열,

주형우),카메라소프트웨어개발과환경시험보조물을개발에도움을주신앤트브릿지

정광희 사장님, 진현씨가 나가고 특성측정과 여러 일로 도움을 준 방병채 선생님과, 그

리고 환경시험에 도움을 준 천문연 박사님들 (김연한, 최성환, 남욱원, 문봉곤, 김록순,

장비호, 봉수찬, 김수진, 서정준, 이재옥, 이환희, 김진현, 방병채, 한정열)과 전문연구

요원 이찬행 선생님 모두에게 감사드립니다. 지금은 경희대에 계시지만 혼자 천문연에

내려온 제가 초반에 적응하기 힘들까봐 많이 도와주시고 격려해주신 장수정 박사님,

감사합니다. 제가 빅베어 천문대에 관측가거나 수리하러 갔을 때도 항상 시간 내주셔

서 확인해주시고 신경써주신 안광수 박사님께도 감사드립니다. 천문연에서 같이 놀고

재미난 이야기 해주신 권윤영 박사님, 김정헌 박사님, 감호식 박사님, 박은수 박사님,

천문연에서 또래로 같이 놀아준 곽재영 선생님과 이재욱 선생님, 송호섭 선생님께도

감사드립니다. 전문연 관련해서 많이 조언해주고 응원해준 양하늘 박사님 덕분에 잘

끝마칠 수 있었습니다. 행정 업무로 항상 도와주신 윤누리 선생님 감사합니다.

대학 동기와 선후배 덕분에 즐거운 대학 및 대학원 생활을 하였습니다. 항상 같이

밥먹고 이야기 하며 재미난 일 뿐만 아니라 불평불만을 같이 공유하며 대학원 생활을

재미나게 보낸 건우, 덕분에 즐거웠다. 항상 저를 생각하고 아껴준 창수형, 하늘이 형이
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랑 같이 항상 격려해고 응원해준 지수 누나, 대학 생활부터 같이 고군분투한 상혁이형,

본 받을게 많은 윤수, 항상 재밌는 성용이, 정 많은 소피아 누나, 잘생긴 민철이형과 그

옆의 범후씨, 항상 신나는 나은이, 말장난 하고 노는게 재밌었던 수현이, 똑똑한 호진

이형, 누구보다 열심히인 정환이형, 인턴 생활을 도와준 용정이 형과 윤찬이형, 민희

누나, 전이슬 박사님, 감사합니다. 그리고, 행정실 노조교님 덕분에 행정관련 도움을

많이 받고 학부부터 대학원까지 순탄하게 지낼 수 있었습니다.

고등학교 친구들한테도 고마움을 전합니다. 천문연에 있을 때도 굳이 먼 곳까지

와서 전문연 전역을 축하해준 호영이, 건태, 은빈, 주국아 고마워. 특히 호영이는 박사

졸업한다고 하니 바쁠텐데도 격려차 학교까지 들러주어 고마워.그리고 함께 같이 놀아

준 과특 친구들 재직이, 진이, 찬빈이, 효정이, 소연이, 유정이도 고맙고 시간내서 같이

모이면 좋겠다.

끝으로 저를 가장 많이 응원해주고 지지해준 가족에게 감사드립니다. 격려하고 지

지해준 우리 아빠, 항상 내 몸부터 생각해주고 아껴준 사랑하는 우리 엄마, 그리고

티격태격하지만 날 먼저 위해주는 우리 형, 감사하고 사랑합니다. 그리고 절 응원해준

친척분들께도 감사하다는 말 전합니다.

끝으로 제가 실수로 누락했을 저를 응원해주신 많은 분들께도 감사드립니다.

2023년 8월

강 주 형 올림

108


	Abstract
	List of Figures
	1 Introduction
	1.1 Magnetohydrodynamic waves
	1.1.1 MHD waves in a uniform medium
	1.1.2 Waves in a flux tube
	1.1.3 Waves in gravitationally stratified atmosphere

	1.2 Umbral oscillations in sunspots
	1.3 Importance of the oscillation patterns
	1.4 Instruments
	1.5 Outline

	2 The Physical Nature of Spiral Wave Patterns in Sunspots
	2.1 Introduction
	2.2 Observation
	2.3 Modeling
	2.4 Discussion

	3. Statistical Analysis of Spiral-Shaped Wave Patterns in Sunspot Umbrae
	3.1 Introduction
	3.2 Data and Methods
	3.3 Results
	3.4 Discussion

	4 Chromospheric Umbral Oscillations Driven by the Resonance of Fast Magnetohydrodynamic Waves in the Subphotosphere
	4.1 Introduction
	4.2 Data and method
	4.3 Model
	4.3.1 Analytic model
	4.3.2 Cutoff wavenumber

	4.4 Results
	4.5 Discussion
	5 Summary and Discussion
	5.1 Summary
	5.2 Future works


	Bibliography
	요 약
	Acknowledgement
	감사의 글


<startpage>16
Abstract i
List of Figures viii
1 Introduction 1
 1.1 Magnetohydrodynamic waves 2
  1.1.1 MHD waves in a uniform medium 3
  1.1.2 Waves in a flux tube 6
  1.1.3 Waves in gravitationally stratified atmosphere 9
 1.2 Umbral oscillations in sunspots 12
 1.3 Importance of the oscillation patterns 18
 1.4 Instruments 18
 1.5 Outline 22
2 The Physical Nature of Spiral Wave Patterns in Sunspots 23
 2.1 Introduction 23
 2.2 Observation 25
 2.3 Modeling 28
 2.4 Discussion 33
3. Statistical Analysis of Spiral-Shaped Wave Patterns in Sunspot Umbrae 39
 3.1 Introduction 39
 3.2 Data and Methods 41
 3.3 Results 46
 3.4 Discussion 56
4 Chromospheric Umbral Oscillations Driven by the Resonance of Fast Magnetohydrodynamic Waves in the Subphotosphere 59
 4.1 Introduction 59
 4.2 Data and method 61
 4.3 Model 65
  4.3.1 Analytic model 65
  4.3.2 Cutoff wavenumber 66
 4.4 Results 70
 4.5 Discussion 78
 5 Summary and Discussion 83
  5.1 Summary 83
  5.2 Future works 86
Bibliography 94
요 약 101
Acknowledgement 103
감사의 글 105
</body>

