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ABSTRACT 

 

Analysis of Microbiome Research using 

Co-Author Network 

 

Ha-Hyeon Kim 

Biological Science 

The Graduate School 

Seoul National University 

 

 

To identify the structure and causes of scientific research growth, we performed 

bibliographic analysis and network analysis. We selected the field of microbiome 

research, which has recently experienced rapid development and has a substantial 

research scale. Specifically, we choose the top 11 countries in terms of global 

microbiome research scale and analyzed the network of these countries from 2000 

to 2021 to identify commonalities and differences in research network changes per 

country. 

 

Through bibliographic analysis, we confirmed that the rapid growth in the 

microbiome field began in the early 2010s. The growth timing of most countries was 

behind that of the United States. Of interest, we observed a phenomenon of research 

scale reversal between the U.S. and China. By conducting bibliographic analysis, we 

were able to identify consistent growth patterns, enabling us to make predictions 

about the expansion of science networks.  

To further investigate this approach, we constructed a Co-Author Network, 

which represents interconnections among scientists and plays a pivotal role in the 

scientific research network. By analyzing the quantity of network nodes that 

represent authors, we achieved the ability to forecast network growth. The growth 

of networks in the majority of countries closely aligned with the predictions derived 
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from bibliographic analysis. 

 

Using various metrics from network theory, we examined the structure of the 

network. Initially, we looked at the Average Clustering Coefficient (ACC), which 

quantifies the cohesiveness among adjacent nodes. The scientific research network 

exhibited a high ACC value from its inception, gradually decreasing over time. This 

suggests that researchers within the network maintained strong connections 

throughout its growth, albeit slightly decreasing over time. Notably, we observed a 

faster decline in ACC within the Chinese network compared to other countries.  

 

The Average Path Length (APL), which indicates network information 

efficiency, displayed a unique pattern. While an increase in APL is typically 

associated with a growing number of network nodes, most networks showed an S-

shaped increase that eventually converged to a certain value. However, in certain 

countries, APL followed a linear increase and also converged. This finding highlights 

the previously unknown phenomenon of APL convergence during network creation 

and development. Additionally, our research demonstrated the applicability of 

network creation models such as the "Erdős-Rényi model" and the "Watts-Strogatz 

model" to real-world network cases. Based on our results, we predict that the 

microbiome research field will approximate a "Small World network," characterized 

by a high ACC and short APL, akin to the Watts-Strogatz model. Particularly during 

its early stages, the network closely approximates a Small World network and 

continues to do so as it grows. However, if the ACC gradually decreases, as observed 

in APL convergence at a certain distance, the continuous approximation to the Small 

World network may be compromised. The rapid decline of ACC, as seen in China, 

could be interpreted as an example of the swift randomization of research networks. 

According to the "Erdős-Rényi model," a giant component, representing the 

largest connected component in the entire network, tends to emerge in sufficiently 

large and dense networks. Throughout the growth period of the 11 countries, all of 

them exhibited giant components. However, we also observed that the proportion of 

giant components did not directly correlate with changes in network size. This 

observation implies the differences in network structure development among 

countries.  
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Next, we examined the characteristics of key nodes in each network to elucidate 

the factors driving network growth and scientific progress. Specifically, we analyzed 

Betweenness centrality, which quantifies the number of times a node serves as a 

bridge between different researchers. The status of key nodes in each network 

showed dynamic changes as the network developed. Notably, the top nodes in the 

network did not maintain a consistent position in terms of connectivity over the 

analysis period, indicating a dynamic nature of scientific network development. In 

the cases of the United States and China, nodes related to technology emerged as 

rising stars within their respective networks and demonstrated connections with 

other country networks. This highlights the significant influence of technology 

among the factors driving network development. 
 

Keywords: Co-Author Network, Microbiome research, Network analysis, High-

throughput sequencing, Technological advancements, Collaborative patterns, 

Interdisciplinary collaborations 
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Chapter I. INTRODUCTION 
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I.1. Advancements in microbiome research 

 

The microbiota refers to the collection of microorganisms, including bacteria, 

archaea, lower and higher eukaryotes, and viruses residing in a specific environment 

(Lederberg and McCray, 2001). Contrasting this, the term ‘microbiome’ paints a 

more comprehensive picture, encompassing not only the microorganisms but also 

their genomes, and the surrounding environmental conditions (Marchesi and Ravel, 

2015). Despite the obscure origin of the term "microbiome" (Prescott, 2017), the 

investigation into microorganisms in defined environments can be traced back to the 

late 17th century, particularly in the context of humans, notably marked by Antonie 

van Leeuwenhoek’s innovative use of his newly-developed microscopes 

(“Milestones in Human Microbiota Research,” n.d.). 

 

The field of microbiome research has witnessed a remarkable surge in recent 

years, attributed largely to technological breakthroughs and the subsequent cost 

reduction of analysis methodologies. The introduction of high-throughput 

sequencing technologies has revolutionized the capacity to investigate the microbial 

communities in various environments, thereby aiding in the understanding of their 

composition and dynamics. Thus, in turn, it has facilitated an exponential upsurge in 

the generation of metagenomic data over the past decade (Waldor et al., 2015). 

 

Within the realm of microbiome research, the field can be broadly categorized 

into the following areas (Cullen et al., 2020): 

 

1. Host-microbe interactions: This area primarily focuses on the complex 

interrelationships between microorganisms and the human host, including 

their impact on health, disease, and overall well-being. 

 

2. Microbial evolution and ecology: This area is dedicated to elucidating the 

evolutionary and ecological aspects of microorganisms, emphasizing the 

impact of environmental factors and microbe-microbe interactions on 

microbial communities. 
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3. Analytical and mathematical approaches in microbiome research: This 

domain involves the application of various analytical and mathematical 

strategies to process and interpret microbiome data, enabling in-depth 

analysis and exploration of complex microbial communities. 

 

4. Bioengineering solutions based on microbial composition and interactions: 

Leveraging knowledge of microbial composition and interactions, 

researchers are investigating potential engineering solutions for various 

applications, including bioremediation, bioenergy, and biotechnology. 

 

5. Interventional strategies and engineered microbiota: This area explores the 

feasibility of strategically modifying microbial composition to yield 

specific outcomes, including the development of engineered microbiota for 

therapeutic interventions and other applications. 

 

The interdependence between analytical and mathematical methods (Brooks, 

1994) in microbiome research and the emergence of high-throughput sequencing 

technology showcases the symbiotic relationship between science and technology. 

These advancements have revolutionized our understanding of the microbiome, 

setting a strong foundation for further advancements in this rapidly evolving field. 
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I.2. Social Network Analysis  

 

Social network analysis focuses on the study of relational data, which includes 

connections, ties, group affiliations, meetings, and other interactions amongst 

individuals. Unlike attribute data that examine individual characteristics, relational 

data cannot be reduced to individual attributes and instead capture the characteristics 

of the entire system. Network analysis involves analyzing and interpreting these 

relational data, aiming to comprehend the underpinning of the structure of social 

action (Scott, 2012). 

 

Social science data can be broadly classified into three categories: attribute data, 

relational data, and ideational data. Attribute data pertain to the attributes, opinions, 

and behaviors of individuals and are analyzed through variable analysis, which 

unravel correlations between variables and outcomes. On the other hand, relational 

data focuses on capturing the interactions, relationships, and group memberships 

among individuals, utilizing network analysis techniques for analysis. Ideational 

data describe meanings, motives, definitions, and classifications which hold a pivotal 

role in social science, albeit technological solutions for managing such data are still 

evolving. 

 

The significance of studying of relational data lies in its capacity to elucidate 

the fabric of social structures, inherently rooted in human relationships. Therefore, 

exploring social structures often requires obtaining and analyzing relational data, 

which reveals the patterns and dynamics of social interactions. 

 

Historically, the analysis of human behavior and psychology was primarily 

conducted through subjective introspection, analyzing the human mind as a 

constituent element. However, the advent of Gestalt theory (Smith, 1988) challenged 

this approach by emphasizing the importance of groups and social environments in 

shaping individual experiences. This paradigm shift fueled a growing interest in 

comprehending the structural intricacies of groups and societies. 

 

To visually represent the characteristics of social structures, Jacob Moreno and 
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Helen Jennings introduced sociograms in 1934. Sociograms depicted individuals 

with popular appeal and leadership qualities as "stars" positioned at the center of 

their relationships in the social structure diagram (Scott, 2012). 

 

Building upon these developments, Konig advocated for the use of graph theory 

in 1936 to simplify complex relationships and represent the entire social structure. 

According to this view, the repetition of such relationships forms the social 

structure.(Scott, 2012) 

 

Subsequently, the approach outlined by Gestalt theory to encapsulate the 

influence of group dynamics and social environments on individuals matured further. 

By the 1940s, it became possible to represent the entire social structure by 

simplifying complex relationships. This method of representation facilitated 

researchers like Anatol Rapoport in the 1960s to introduce models for analyzing 

infectious diseases based on social interrelationships (Scott, 2012). Additionally, to 

describe the properties of networks, several metrics have been devised and applied 

by physicists and mathematicians (Stanley, 1967). One key aspect of network 

analysis is the examination of different network models that capture distinct 

characteristics of real-world networks. Random networks, small-world networks, 

and scale-free networks are three prominent types that have been extensively studied. 

Each of these network models offers unique features and sheds light on different 

aspects of network behavior and dynamics. 

 

There are several classes of networks, each having unique characteristics and 

behaviors. 

 

Regular Networks: A regular network is a network where each node has the 

same number of connections. An example of this would be a lattice or a grid where 

each point is connected to its nearest neighbors. The key characteristic of regular 

networks is their regularity and predictability. They lack complexity and diversity, 

and their topology is usually homogeneous. 

 

Random Networks: Random networks are generated through a process where 
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connections between nodes are established randomly. They were first studied by 

mathematicians Erdős and Rényi in the late 1950s. In a random network, there's an 

equal probability of any pair of nodes being connected. These networks are highly 

unpredictable and their properties can vary drastically, depending on the randomness. 

 

Small-World Networks: Small-world networks are a class of networks where 

most nodes can be reached from every other node in a small number of steps. These 

networks are characterized by high clustering coefficients and short average path 

lengths. A real-world example of this is the concept of 'six degrees of separation', 

which suggests that any two people on Earth are, on average, separated by only six 

acquaintance links. 

 

Scale-Free Networks: Scale-free networks are networks whose degree 

distribution follows a power law, at least asymptotically. This means that there are 

few nodes with many connections (hubs), and many nodes with few connections. 

The structure of these networks is influenced by two major mechanisms: growth and 

preferential attachment, where new nodes are more likely to connect to nodes that 

already have many connections. The World Wide Web and social networks are 

common examples of scale-free networks. 

 

Non-Scale-Free Networks: Non-scale-free networks are those networks that do 

not follow the power law degree distribution. The connections in these networks are 

not dominated by a few highly connected nodes. They tend to be more homogeneous 

in their degree distribution, meaning there isn't a significant difference in the number 

of connections each node has. 
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I.3. Purpose of Research 

 

The purpose of this research is to bridge the gap in quantitative studies that 

accurately depict the evolution of the microbiome field over the past two decades. 

The primary objective is to provide an in-depth, data-driven analysis of the 

transformation of field during this era.  
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To achieve this, the study focuses on analyzing the network of authors who have 

contributed to the corpus of research papers in the Microbiome and Microbiota fields. 

Specifically, the analysis focuses on Co-Author Network analysis examination, with 

a particular emphasis on the shifts in co-author networks over time. This innovative 

approach offers a novel and previously uncharted method of interpreting the 

dynamics within the field. The analytical process was governed by following 

flowchart, which served as a roadmap for the data collection and analysis (Fig. I.1). 

 

 

Figure I.1. Flow Chart of Network Analysis and Topic Modeling 

The data was collected from Web of Science, which provides comprehensive information 

including author names, affiliations, abstracts, and keywords. The boxes in the figures 

represent the findings of each research paper. And the cylinders represent the progress of the 

analysis. 

 

 

By leveraging analytical measures of network methodology, this research 
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strives to offer a more quantitative depiction of the changes and trends within the 

microbiome field. Additionally, topic modeling techniques will be applied to 

supplement the analysis and visualize the evolving of research themes. 

 

It is important to acknowledge that the advancement of life sciences is 

influenced by various factors, including societal demand (Dolgin, 2017; Kemp, 

2015), social relationships among researchers (de Siracusa et al., 2020), and 

technological advancements (Stella and Rem, 2017). By exploring the interplay 

between these factors and the expansion of microbiome research, this study aspires 

to illuminate the driving forces behind its growth. 

 

The interdependence between science and technology is a fundamental aspect 

that warrants consideration. It is widely acknowledged that advancements in either 

domain profoundly impact the evolution of the other. The relationship between 

science and technology is symbiotic, with each driving and benefiting from the 

other's advancements. Technology propels scientific inquiry forward. Technological 

advancements provide scientists with innovative tools, instruments, and 

methodologies to conduct research more efficiently and accurately. These cutting-

edge technologies enable scientists to explore new frontiers, collect vast amounts of 

data, and analyze complex phenomena in ways that were previously unimaginable 

(Brooks, 1994). 

 

In South Korea, previous studies have elucidated the disparities between 

domestic microbiome research and international efforts (Park et al., 2014). It has 

been noted that Korean researchers have not been at the forefront compared to 

researchers from other countries, particularly in terms of patents registrations. 

Furthermore, the proportion of patents in the fields of hygiene and food has been 

significantly higher in Korea compared to other countries. Additionally,a downturn 

in research activities among certain researchers has been observed. These 

discrepancies in societal demand, interpersonal relationships amongst researchers, 

and technological advancements may explain the differences in microbiome research 

between Korea and other countries.  
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It is worth noting that researchers often tend to study subjects that are accessible 

and convenient for their research purposes (Daru et al., 2018). Such tendency can 

lead to research concentrations or trends in specific fields following the emergence 

of new scientific paradigms or technological advancements. Understanding these 

dynamics in the context of microbiome research will provide invaluable insights into 

its growth trajectory. 

 

In summary, this research endeavors to foster a comprehensive understanding 

of the growth of the microbiome field, pinpoint pivotal factors driving its evolution, 

including technological advancements, and delve into the underlying processes via 

the application of Network Analysis and other relevant methodologies. 
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Chapter II. MATERIALS AND METHODS 
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II.1. Data collection 

 

We conducted our research on a dataset comprising 112,635 papers extracted 

from the Web of Science citation index database provided by Clarivate Analytics. 

The papers were selected based on the search terms "Microbiome" or "Microbiota" 

(Table 1.). 

 

Data analysis was performed using Python v.3.6 (Guido, 1995), leveraging the 

capabilities of the Pandas (McKinney, 2010) and Numpy packages (Harris et al., 

2020). The Python programming language is widely recognized for its flexibility and 

extensive range of scientific computing libraries. 

 

To refine and analyze the data, we utilized BASH (GNU, 2007), a command-

line shell and scripting language commonly used in data processing and 

manipulation tasks. The BASH environment facilitated necessary data refinement 

and preparation for subsequent analysis. 
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The computations were carried out on a system equipped with an Intel® Core™ 

i5-6600 CPU @ 3.30GHz, 16.0GB RAM, and a GeForce GTX 1060 3GB graphics 

card. This computing setup provided the necessary resources to perform the 

calculations efficiently and effectively. 

 

By employing these tools and resources, we were able to conduct a thorough 

analysis of the dataset and derive meaningful insights into the microbiome field. 

 

 

 

Table II.1.1. Search terms for analysis 

TS Microbiome or Microbiota 

Year 2000-2021 

Type of Article Article only 

‘TS’ stands for Topic Set and it represents the topics derived from the classification 

in the Web of Science.  
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II.2. Co-Author Networks (CANs) 

 

To construct the co-author network, we employed the "AU" field of the Web of 

Science database, which contains author information. Each author listed in the "AU" 

field was treated as a distinct node within the network. Connections were established 

between authors who co-authored papers together, capturing their collaborative 

relationships by Tethne. Additionally, authors with the same name appearing in 

different papers were linked to account for their shared identity. This information 

was organized into a matrix representation (Peirson, 2016). 

 

The resulting matrix was visualized using the Gephi software (Bastian et al., 

2009), allowing for a comprehensive visual exploration of the co-author network. In 

addition to visualization, various network measures were computed to gain insights 

into the network's characteristics. These measures included average path length, 

betweenness centrality, and clustering coefficient, which provide quantitative 

assessments of network connectivity and centrality of individual authors. 

 

By utilizing these techniques and tools, we were able to analyze and visualize 

the co-author network, uncovering patterns of collaboration and identifying key 

authors within the microbiome research field. 
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II.3. Measures of network 

 

II.3.1. Average Path Length 

 

The average path length is a fundamental measure of network efficiency 

(Newman, 2004), indicating how easily and quickly information or mass can flow 

within a network. It is a critical factor in various types of networks, including the 

Internet, metabolic networks, and power grids. A shorter average path length in these 

networks enables faster information transfer, reduces costs, and minimizes losses. 

 

In network theory, the concept of a "small world" describes the remarkable 

interconnectedness observed in many real-world networks, despite their large size. 

This term was coined by sociologist Stanley Milgram (Stanley, 1967), who 

conducted the famous "six degrees of separation" experiment to study social network 

connectivity (Latapy, 2008). The small-world phenomenon suggests that most real 

networks exhibit a relatively short average path length, enabling efficient 

communication and rapid dissemination of information. 

 

Mathematically, the average path length of a connected graph G is calculated 

as the average distance between pairs of vertices, known as the PathLengths. The 

average path length L(G) is defined as the sum of all pairwise distances divided by 

the total number of possible vertex pairs in the graph. 

 

𝑑 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝐿(𝐺) =
1

𝑛(𝑛 − 1)
∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉

 

𝑤ℎ𝑒𝑟𝑒 𝑑(𝑢, 𝑣) = 0   𝑖𝑓   𝑢 = 𝑣 

 

The average path length typically depends on the size of the network, but it 

follows a logarithmic relationship with the number of nodes (n) according to small-

world network theory. This means that as the network grows, the average path length 

increases proportionally to the logarithm of the number of nodes. 
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Studying the average path length provides valuable insights into the structure 

and efficiency of networks, aiding our understanding of their information flow 

dynamics and overall performance. 
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II.3.2. Average Clustering Coefficients 

 

The clustering coefficient is a measure that quantifies the tendency of nodes in 

a graph to form clusters or tightly-knit groups. It reflects the density of connections 

among the neighbors of a node and provides insights into the degree of clustering 

within the network (Latapy, 2008). 

 

Mathematically, the clustering coefficient of a vertex v in a graph G is 

calculated as the ratio of the number of pairs of adjacent neighbors to the number of 

pairs of all possible neighbors of v. The clustering coefficient of the entire graph G, 

denoted as CC(G), is obtained by taking the average of the local clustering 

coefficients over all nodes in the network. 

 

𝑣 = 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛 𝑎 𝑔𝑟𝑎𝑝ℎ 𝐺 

𝑐𝑐(𝑣) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
 

𝐶𝐶(𝐺) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑖𝑛𝑡 𝑜𝑓 𝑎 𝑔𝑟𝑎𝑝ℎ 𝐺 

𝐶𝐶(𝐺) =
1

|𝑉|
∑ 𝐶𝐶(𝑣)

𝑣∈𝑉

 

0 ≤ 𝐶𝐶(𝐺) ≤ 1 

𝐶𝐶(𝐺) ≈ 1 → 𝐺𝑟𝑎𝑝ℎ 𝑖𝑠 ℎ𝑖𝑔𝑙𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 

𝐶𝐶(𝐺) ≈ 0 → 𝐺𝑟𝑎𝑝ℎ 𝑖𝑠 𝑛𝑜𝑡 ℎ𝑖𝑔ℎ𝑙𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑 

 

The clustering coefficient values range between 0 and 1, where a value close to 

1 indicates a highly clustered graph, implying that nodes tend to be strongly 

connected within their local neighborhoods. Conversely, a value close to 0 suggests 

a graph with lower clustering, indicating a more dispersed or loosely connected 

network structure. 

 

The average clustering coefficient, CC(G), provides an overall measure of the 

clustering tendency within the entire network. It indicates the average level of 

clustering observed across all nodes in the graph. On the other hand, the local 

clustering coefficient, cc(v), measures the clustering tendency of an individual node 
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by examining the connectedness of its immediate neighbors. 

 

The clustering coefficient is a valuable measure for understanding the structural 

properties of networks and gaining insights into their functional behavior. For 

instance, in social networks, a high clustering coefficient often indicates the presence 

of tightly-knit communities or groups, highlighting the cohesive nature of social 

relationships. In transportation networks, a low clustering coefficient suggests the 

existence of multiple alternative routes between locations, promoting efficient 

transportation flow. 

 

Analyzing the clustering coefficient can help reveal the organization and 

connectivity patterns within a network, shedding light on its resilience to disruptions, 

information diffusion processes, and overall system dynamics. 
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II.3.3. Modularity 

 

Modularity is a fundamental concept in network analysis that measures the 

division of a network into distinct communities or modules. It quantifies the degree 

to which nodes within the same module are more densely connected to each other 

compared to nodes in different modules. 

 

This concept finds broad application in various domains, including social 

networks, biological networks, and technological networks. It provides insights into 

the organization and structure of complex systems. By identifying modules within a 

network, researchers can gain valuable insights into the relationships between nodes 

and the formation of clusters or communities (Blondel et al., 2008). 

 

The Louvain method is a commonly used algorithm for calculating modularity. 

It aims to identify modular structures by optimizing the modularity score of a 

network. The algorithm consists of two main phases: the optimization phase and the 

aggregation phase. 

 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖, 𝑐𝑗)

𝑖𝑗

 

𝐴𝑖𝑗 = 𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 

𝑘𝑖, 𝑘𝑗 = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 𝑎𝑡𝑡𝑎𝑐𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗 

𝑚 = 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 

𝑐𝑖, 𝑐𝑗 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒𝑠 

𝛿 = 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑑𝑒𝑙𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝛿(𝑥, 𝑦) = 1 𝑖𝑓 𝑥 = 𝑦, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒) 

 

Modularity of a community c can be calculated:  

 

𝑄𝑐 =
∑ 𝑖𝑛

2𝑚
− (

∑ 𝑡𝑜𝑡

2𝑚
)2 

∑ 𝑖𝑛 = 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑐 

∑ 𝑜𝑢𝑡 = 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 
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In the optimization phase, the algorithm iteratively assigns nodes to 

communities in a greedy manner to maximize the increase in modularity. It starts 

with each node in its own community and iteratively evaluates the modularity gain 

by moving nodes to neighboring communities. This process continues until no 

further improvement in modularity can be achieved. 

 

After the optimization phase, the algorithm enters the aggregation phase, where 

the communities obtained in the previous phase are treated as individual nodes. The 

network is then represented as a new graph, where each community becomes a node. 

The edges between the new nodes are weighted based on the sum of the edge weights 

between nodes in the original network that belong to different communities. This 

step reduces the complexity of the network while preserving its modular structure. 

 

The optimization and aggregation phases are iteratively repeated until a 

maximum modularity value is achieved, or a stopping criterion is met. At the end of 

the algorithm, the resulting community structure represents the detected modules in 

the network. 

 

Modularity can be calculated at both the community level and the network level. 

The modularity of a community is calculated based on the sum of the edge weights 

within the community compared to the expected sum of edge weights if connections 

were randomly distributed. The network-level modularity is the sum of the 

modularity values of all communities. 

 

∆𝑄 = ⌊
∑ 𝑖𝑛 + 2𝑘𝑖,𝑖𝑛

2𝑚
− (

∑ 𝑡𝑜𝑡 + 𝑘𝑖

2𝑚
)2⌋ − ⌊

∑ 𝑖𝑛

2𝑚
− (

∑ 𝑡𝑜𝑡

2𝑚
)2 − (

𝑘𝑖

2𝑚
)2⌋ 

∑ 𝑡𝑜𝑡 

= 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘𝑠 𝑡𝑜 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑖𝑠 𝑚𝑜𝑣𝑖𝑛𝑔 𝑖𝑛𝑡𝑜 

𝑘𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑟𝑔𝑟𝑒𝑒 𝑜𝑓 𝑖 

𝑘𝑖,𝑖𝑛

= 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦  
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𝑚 = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

 

Modularity has diverse applications in social network analysis, 

recommendation systems, gene expression analysis, and identifying functional 

modules in biological systems. It provides valuable insights into the underlying 

organization and dynamics of complex systems. 
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II.3.4. Betweenness Centrality 

 

In network analysis, betweenness centrality is a measure that captures the 

importance of a vertex within a graph based on the concept of shortest paths. 

Betweenness centrality has long been recognized as a crucial aspect of centrality, 

with Freeman providing the first formal definition (Freeman, 1977). 

 

For any pair of vertices in a connected graph, there exists at least one shortest 

path between them. This path minimizes either the number of edges in unweighted 

graphs or the sum of the weights of edges in weighted graphs. The betweenness 

centrality of a vertex is determined by the number of shortest paths that pass through 

it (Brandes, 2001). 

 

Mathematically, the betweenness centrality of a vertex v can be calculated by 

summing up the fraction of shortest paths passing through v for all pairs of vertices 

(s, t), excluding cases where v is an endpoint: 

 

𝜎𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝒔 𝑡𝑜 𝑛𝑜𝑑𝑒 𝒕 

𝜎𝑠𝑡(𝑣) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑣 (𝑛𝑜𝑡 𝑤ℎ𝑒𝑟𝑒 𝑣 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡) 

𝑔(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡

 

 

Betweenness centrality finds widespread application in network theory as it 

quantifies the extent to which a node acts as a bridge between other nodes in the 

network. In a telecommunications network, for example, a node with high 

betweenness centrality would exert greater control over the network's flow of 

information as more paths pass through it. 

 

 

II.4. Topic Modeling 

 

To facilitate topic modeling, the following steps were undertaken in this 
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research: 

 

Model Architecture: GPT (Generative Pre-trained Transformer) (OpenAI, 2023) 

and BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 

2019) were utilized as powerful language models. GPT employs a unidirectional 

transformer architecture and predicts the next word in a sequence based on the 

context of previous words. On the other hand, BERT is a bidirectional model that 

captures contextual information from both left and right contexts, enabling a deeper 

understanding of word meaning within a sentence. 

 

Training Objective: GPT and BERT were pre-trained using unsupervised 

learning on extensive corpora. GPT focuses on generating coherent and contextually 

appropriate text, while BERT aims to generate contextualized word representations 

by comprehending the relationships between words in a sentence. Both models serve 

different purposes, with GPT emphasizing text generation and BERT emphasizing 

contextual understanding and classification tasks. 

 

Modularity Calculation: Modularity was computed for each network in the 

dataset. The networks were divided into communities or modules using the Louvain 

algorithm, which optimizes the modularity score by iteratively partitioning the 

network. Higher modularity scores indicate a stronger division into distinct modules. 

The top 8 networks with the highest modularity scores were selected for further 

analysis. 

 

Identification of Key Authors: Within the selected networks, the author with the 

highest betweenness centrality was identified. Betweenness centrality measures the 

extent to which an author serves as a bridge between different communities in the 

network. By selecting the author with the highest betweenness centrality, the 

research aimed to identify individuals playing a crucial role in connecting different 

research topics. 

 

Collection of Keywords: The Web of Science (WoS) dataset was utilized to 

gather keywords associated with the publications of the selected authors. This 
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involved retrieving publications attributed to the identified authors and extracting 

the associated keywords. The objective was to capture the primary research themes 

and topics explored by these authors. 

 

Topic Modeling with GPT Algorithm: The collected keywords were employed 

as input for topic modeling using the GPT 3.5 algorithm. Topic modeling is a 

statistical technique that uncovers underlying themes or topics within a collection of 

documents. By leveraging the GPT 3.5 algorithm, latent topics were automatically 

extracted from the keyword dataset, enabling the exploration of the main research 

themes present in the selected networks. 

 

By following these steps, this research aimed to reveal the modular structure of 

the networks based on modularity scores, identify influential authors based on 

betweenness centrality, gather relevant keywords from their publications, and 

ultimately employ the GPT algorithm for topic modeling to uncover the primary 

research topics within the networks. 
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Chapter III. RESULTS 
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III.1. The Growth of microbiome research 

 

The field of Microbiome research has experienced significant and rapid growth 

over the past two decades. In 2021 alone, an impressive tally of over 110,000 

research papers was published in this field, involving a staggering number of more 

than 360,000 researchers as authors (Fig. III.1). 

 

 

 

Figure III.1.1. Comparison of annual publication numbers by research topic 

Left: The axis representing the number of publications for (A), (B), and (C). 

Right: The axis representing the number of publications for (D). 

 

 

For a comparative viewpoint, we examined publication trends in other 

prominent fields, including Cancer research, AI research, CRISPR research, and 

Microbiome research. Our analysis revealed that the Microbiome field underwent a 

remarkable surge in the early 2010s. While the Cancer research exhibited a larger 

volume of publications in absolute terms, its growth was consistent rather than rapid 

swift. In contrast, the CRISPR field experienced a concentrated period of rapid 

growth at a particular juncture. Interestingly, Microbiome research exhibited an 

exponential increase in publication output, exceeding the CRISPR field by more than 
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threefold. This growth trajectory closely resembled the expansion observed in the 

field of artificial intelligence (AI). 

 

These findings highlight the dynamic and thriving nature of the microbiome 

research, underscoring its escalating importance and applicability in scientific 

research. The exponential surge in publications indicates the growing interest and 

acknowledgment of the microbiome's significance across various disciplines, 

including health, ecology, and biotechnology. As the field continues to expand, it 

holds considerable potential for further advancements and discoveries that could 

enhance our understanding of the microbiome's role in human health and the 

environment. 
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The average number of authors per journal article has exhibited a steady and 

upward trend, increasing from 3.6 to 5.9 over time (Fig. III.1.2). This growth 

signifies a notable shift in the collaborative dynamics of microbiome research. 

Previous studies have reported an average of 3.754 authors in Medline journals 

between 1995 and 1999, a figure closely matched by the 3.6 observed in the 

microbiome field in the year 2000 (Newman, 2001). 

 

 

 

 

Figure III.1.2. Mean number of authors per paper 

 

The mean author refers to the average number of authors per article. It is calculated by 

dividing the total number of authors in a given year by the total number of articles published 

in that year. 

 

The increasing average number of authors per journal article is indicative of the 

evolving nature of microbiome research. It reflects a transition towards heightened 

interdisciplinary collaboration and the inclusion of larger research teams with 

diverse areas of expertise. This tendency suggests that tackling complex questions 

and exploring the intricacies of the microbiome requires a collective effort and the 

integration of various scientific perspectives. 
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Overall, the rise in the number of authors per article highlights the growing 

complexity and multidimensionality of microbiome research. As the field expands, 

researchers from different disciplines, including microbiology, immunology, 

genomics, bioinformatics, ecology, and clinical medicine, are pooling resources to 

investigate the complex interplay between microorganisms and their hosts. This 

interdisciplinary collaboration fosters a more comprehensive understanding of the 

microbiome and its impact on human health and the environment. 

 

Given the evolving nature of microbiome research, it is essential to maintain a 

continuous monitoring and analysis of these changes. This ongoing examination will 

provide valuable insights into the collaborative dynamics, emerging trends, and 

interdisciplinary nature of the field. Such insights will enable researchers to adapt 

their strategies and foster effective collaborations, thereby facilitating further 

advancements in the field of microbiome science. 

  



 ３０ 

III.2. Comparison of the microbiome field by country 

 

Upon categorizing the data from the Web of Science (WoS) by nation, it was evident 

that the United States and China have contributed substantially to microbiome 

research. Both countries are responsible for over 19,000 publications, exhibiting a 

greater publication output compared to other nations (Fig. III.2.1).  

 

 

Figure III.2.1. Comparison of the number of microbiome papers by country 

The number of publications in the figure represents the total number of publications for each 

country from 2000 to 2021. 

 

When comparing the total number of publications between Germany and South 

Korea, there is a notable difference of approximately 2.5 times. Germany has a total 

publication count of 5,438, while South Korea has 2,289 publications. This 

discrepancy highlights the varying levels of research output and activity in the two 

countries within the [insert specific field or domain]. Understanding these 

differences in publication numbers can provide insights into the research landscape 

and potential areas for collaboration or further investigation. 
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Figure 5 illustrates the changes in the number of research publications by country. 

The United States has experienced a significant increase in microbiome research 

publications since 2010, demonstrating a consistent growth pattern. Conversely, a 

rapid surge in publications is observed around 2015 in China. (Fig III.2.2.A) Other 

Nation’s growth trajectory appears similar to that of China, albeit lagging by 

approximately five years compared to the United States and China. (Fig III.2.2.B) 

 

 

  

Figure III.2.2. Changes in the Number of Research Publication by Country 

(A) The countries with annual publications exceeding 2000 in 2021 are the United States and 

China. 
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(B) The countries with annual publications below 2000 in 2021 are various other countries. 

 

 

Despite South Korea sharing a similar growth pattern in terms of timing, it has a 

smaller absolute number of research publications than China. This observation 

suggests that while South Korea is narrowing the gap and showing a positive trend 

in microbiome research, it still has some ground to cover in terms of publication 

output. 

 

These findings highlight the global distribution of microbiome research and the 

contributions made by different countries. The United States and China, being 

leaders in this field, have demonstrated significant influence in terms of research 

output. While South Korea is demonstrating promising growth, there is still scope 

for additional development and amplification of its research productivity. 

 

By analyzing the changes in research publications by country, this study provides 

insights into the global landscape of microbiome research and the disparate 

contributions from different nations. 
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III.3. Analysis of network topology 

 

In our analysis of network topology, we have placed significant emphasis on 

robust metrics such as average path length, clustering coefficient, and degree 

distribution to gain a profound understanding of networks and develop precise 

models (Blondel et al., 2008; Lambiotte et al., 2014; Latapy, 2008). 

 

 

Figure III.3.1. Number of nodes of microbiome research Co-Author Networks in 

various countries 

(A) The changes in the number of nodes for the United States, China, and South Korea are 

represented by a logarithmic function. 

 

(B) The changes in the number of nodes for Spain, Brazil, Canada, Japan, the United 



 ３４ 

Kingdom, France, Germany, and Italy are represented by a logarithmic function. 

 

In order to compare the size of networks, the number of nodes was examined 

for each country (Fig. III.3.1). According to (A), the United States starts at 

approximately 5.204007 in the year 2000 and reaches 10.3296 in 2021. China, on 

the other hand, starts at nearly 1 in 2000 and reaches 10.26955 in 2021. Looking at 

the other countries in (B), it can be observed that they generally reach the high 8s in 

2021. 

 

From this analysis, it is evident that the United States and China exhibit 

different patterns compared to the other countries. However, the differences among 

the other countries are relatively small, as previously mentioned. As depicted in 

Figure III.2.2, the number of nodes is known to be proportional to the natural 

logarithm (ln) of the Average Path Length (APL), which will be further explained 

below. 
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The changes in APL exhibit distinct patterns across various countries (Fig 

III.3.2). In the United States, a growth in APL was noted starting from 2008.  

 

Figure III.3.2. Average Path Length of microbiome research Co-Author Network in 

various countries  

The black dots represent the actual Average Path Length (APL) for each country, while the 

red solid line represents the trend line. 
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China experienced an increase in APL around 2012, subsequently decreasing to 

around 4 in 2021. South Korea, on the other hand, has shown a consistent growth 

trend in APL. 

 

Previous studies have indicated that Medline journals in the field of biology 

exhibit a lower APL of 4.6 compared to 7.73 in mathematical research and 5.9 in 

physics research, indicating a significant "small network" characteristic (Newman, 

2001). 

The small world phenomenon, characterized by short average path lengths 

(APL) and high clustering coefficients, has been observed in various systems, 

including social networks, biological networks, and technological networks 

including the internet. This phenomenon stems from a balance between local 

connections fostering clustering and global connections enabling efficient long-

range communication, contributing to the resilience and robustness of small world 

networks. 

 

The rapid increase in APL of microbiome research network could be attributed 

to the formation of a large scientific collaboration network as the number of nodes 

(coauthors) grows, reflecting the characteristics of a "small world" network. Initially, 

microbiome researchers were loosely connected, resulting in a smaller APL. 

However, with the formation of researcher connections, a network with a small world 

structure emerged and grew. 

 

The differences in APL, relative to the number of nodes, observed in Korea 

during the 2020s (Fig III.3.2.J), indicate significant differeneces compared to other 

countries. The APL in the United States remains around 6, while in China, it initially 

increased to 8 but gradually decreased over time. 

 

These findings highlight the diverse characteristics of APL, including the 

timing of network formation, the size of APL, and the patterns of change, which 

differ among countries. These differences can be attributed not only to the number 

of nodes but also to variations in research fields across countries. 

Countries such as France, along with other European countries and Japan, 
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exhibit a gradual increase in Average Path Length (APL) as shown in (Fig. III.3.2. 

C~H). On the other hand, Canada, South Korea, and Brazil demonstrate a significant 

increase in APL during the 2010s (I~K). Despite the similarity in the changes in the 

number of nodes as shown in Figure 6, these differences highlight the fact that factors 

influencing the network vary across countries, extending beyond the number of 

nodes. 

These variations in the APL trends suggest that there are other factors at play, 

shaping the network dynamics within each country. It could be attributed to 

differences in research collaborations, funding, institutional structures, or scientific 

cultures, among other variables. Understanding these country-specific factors is 

crucial for a comprehensive analysis of the microbiome research landscape and its 

development across different nations. 
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The average clustering coefficients of all countries are high, indicating that 

researchers within each country efficiently form clusters in their respective networks. 

This elevated average clustering coefficient reflects the presence of tightly knit 

groups or research communities within each country's network. 

 

 

Figure III.3.3. Average Clustering Coefficients of microbiome research Co-Author 

Network in various countries 

The graph represents the values of Average Clustering Coefficient (ACC) from 2010 to 2021. 

The maximum value of ACC is 1. 

 

 

Interestingly, the average clustering coefficient in China shows a decrease 

compared to the other countries (Fig III.3.3). This indicates that as the overall 

network in China grows, the formation of clusters among researchers decreases on a 

global scale. In other words, the network in China is becoming more interconnected 

with researchers from different clusters collaborating, resulting in a decrease in the 

average clustering coefficient. 

 

In contrast, the United States and South Korea maintain a high average clustering 

coefficient, indicating that researchers within these countries continue to form tightly 

knit clusters or communities in their networks. These findings underscore the 
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evolving dynamics of collaboration networks in the microbiome field, with China 

exhibiting a trend towards enhanced interconnectivity among researchers from 

different clusters.  
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III.4. Visualizations of Co-Author Networks 

 

To gain a deeper understanding of the variations in the development of the 

microbiome field across different countries, we will closely examine the detailed 

communities within the networks. By analyzing the specific communities that have 

formed within each country's network, we aim to uncover the factors contributing to 

the observed differences. 

 

By conducting a detailed analysis of the communities, we investigated the unique 

research themes, collaborations, and knowledge exchange patterns within each 

community. This will us to identify key drivers that have shaped the development of 

the microbiome field in each country. 

 

Through this detailed examination of the network's communities, we aim to 

elucidate the specific factors and mechanisms that have influenced the growth and 

development of the microbiome field in different countries. By uncovering these 

insights, we can contribute to a comprehensive understanding of the field's evolution 

and provide a basis for future research and policy considerations. 
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Due to the difficulty of representing all the information in this research, we have 

chosen to focus on average path length using Figure III.3.2. We selected three 

specific time points, categorized as early, mid, and late stages, for each country. 

Modularity was then calculated for each network using a modularity resolution of 

1.0.(Lambiotte et al., 2014) (Table III.4.1) 

 

Table III.4.1. Time Point of Network Phase 

 
APL50 Earyl Mid Late 

USA 2010 2006-2008 2009-2011 2012-2014 

JPN 2011 2007-2019 2010-2012 2013-2015 

CHN 2012 2008-2010 2011-2013 2014-2016 

UK 2014 2010-2012 2013-2015 2016-2018 

GER 2014 2010-2012 2013-2015 2016-2018 

ESP 2015 2011-2013 2014-2016 2017-2019 

CAN 2015 2011-2013 2014-2016 2017-2019 

FRA 2015 2011-2013 2014-2016 2017-2019 

ITA 2015 2011-2013 2014-2016 2017-2019 

BRA 2019 2015-2017 2018-2020 n.d. 

KOR 2019 2015-2017 2018-2020 n.d. 
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In Figure III.4.1.we observe the variations in the changes of the Giant Component 

across different countries. Generally, the Giant Component increases over time for 

most countries, indicating the growth of connectedness within the networks. 

However, there are countries that do not follow this trend. 

 

Notably, countries like the United States, China, and Italy start with a relatively small 

Giant Component but experience rapid growth over time. On the other hand, some 

countries already have a Giant Component occupying more than 30% from the 

beginning. 

 

These differences in the Giant Component trends reflect the varying dynamics of 

network formation and connectivity within each country's microbiome research 

landscape. Factors such as research collaborations, funding allocation, scientific 

infrastructure, and cultural aspects of the scientific community can contribute to 

these disparities. Understanding these variations provides insights into the 

development and structure of the microbiome research networks in different 

countries. 

 

 

Figure III.4.1. Changes in Giant component of microbiome Co-Author Network at each 

stage 

Y axis represents percentage of Giant component in total network.  

E:Early phase, M:Mid phase, L:Late phase. See table 2 
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Identifying well-established networks in the early stage of the United States was 

challenging due to the prevalence of small clusters with only a few papers, resulting 

in a limited number of edges between clusters.. During this period, the researcher 

('GORDON', 'JEFFREY I') emerged as a central figure in clusters with high centrality. 

 

 

 

Figure III.4.2. The microbiome Co-Author Networks in United States Early Phase 

Ratio of node and edges : 209 node (12.95%), 1708 edges (26.93%). Top Highest Betweeness 

Author : ('GORDON', 'JEFFREY I’) 10987.96826, ('NELSON', 'KAREN E’) 10644  
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From the mid-stage American networks, researchers in the field of "Analytical and 

mathematical methods in microbiome research" demonstrated high betweenness 

centrality. Notable researchers in this field include ('Knight, Rob'). 

 

Figure III.4.3. The microbiome Co-Author Networks in United States Mid Phase 

Ratio of node and edges : 2309 node (47.27%) ,18070 edges (52.21%). Top Highest 

Betweenness Author :('HENRISSAT', 'BERNARD’) 417659.9625, ('NELSON', 'KAREN E’) 

385017.3332, ('GORDON', 'JEFFREY I’) 360763.5466, ('FLINT', 'HARRY J’) 341097.6293, 

('KNIGHT','ROB’) 335832.7091, ('DOWD', 'SCOT E’) 313891.5051, ('BRODIE', 'EOIN L’) 

252384.1211, ('TURNBAUGH', 'PETER J’) 239037.5876, ('WALKER', 'W ALLAN’) 

220230.7082 
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In the late stage, a fully developed large-scale network is clearly visible in the United 

States. Notable researchers during this period include ('Knight, Rob'). 

 

 

 

Figure III.4.4. The microbiome Co-Author Networks in United States Late Phase 

Ratio of node and edges: 9329 node (64.09%) ,120544 edges (86.57%). Top Highest 

Betweenness Author: ('KNIGHT', 'ROB’) 8790247.519 

 

 

It is worth mentioning that all of the researchers mentioned above played significant 
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roles as authors in the 2012 Human Microbiome  Project (HMP).(“Structure, 

function and diversity of the healthy human microbiome | Nature,” n.d.) 

 

Based on these findings, it can be observed that the development of the network in 

the United States revolved around researchers in the field of "Analytical and 

mathematical methods in microbiome research." 
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Similar to the Unites States, it was also challenging to identify significant 

networks in China in the early stage. 

 

 

 

Figure III.4.5. The microbiome Co-Author Networks in China Early Phase 

Ratio of node and edges: 159 node (19.9%) ,8745 edges (74.9%). Top Highest Betweenness 

Author : ('LI', 'RUIQIANG’), ('ZHU', 'HONGMEI’), ('JIAN', 'MIN’), 

('ZHOU','YAN’),('CAO','JIANJUN’),('WANG','BO’),('YU','CHANG’),('LIANG','HUIQIN

G’),('ZHENG','HUISONG’),('LI’,'YINGRUI’),('QIN','NAN’),('KRISTIANSEN',KARSTE

N’),('ZHANG','XIUQING’),('LI','SONGGANG’),('YANG',’HUANMING’), ('WANG', 

'JIAN’), ('WANG','JUN’) betweenness is equal as 224.4705882 
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In the mid stage, like the United States, the formation of networks in China can 

be clearly observed. Prominent doctors such as Li Lanjuan, who developed the Li-

NBAL artificial liver support system used to sustain the lives of people suffering 

from acute liver failure, appear in large clusters. 

 

 

 

Figure III.4.6. The microbiome Co-Author Networks in China Mid Phase 

Ratio of node and edges: 1090 node (42.07%) ,8719 edges (60.68%). Top Highest 

Betweenness Author :('WANG', 'SHENGYUE') 183986.7062 ('LI', 'LANJUAN') 

169767.7221 ('LIU', 'DI’) 136447.5248 
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In the late stage, the size of the network and the presence of researchers in the 

field of "Analytical and mathematical methods in microbiome research" are 

consistently maintained, mirroring the findings in the United States. 

 

 

 

Figure III.4.7. The microbiome Co-Author Networks in China Late Phase 

Ratio of node and edges: 6301 node (75.6%), 49882 edges (75.34%). Top Highest 

Betweenness Author: ('LI', 'JUN’)  2338798.275('YIN','YULONG')2101550.311 

('BLACHIER', 'F') 1890944 ('WU', 'X’) 1771513.411 ('WANG', 'JUN’) 1621138.612 ('LI', 

'YAN’) 1234311.576 
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Figure III.4.8. The microbiome Co-Author Networks in Canada Early Phase 

Ratio of node and edges: 1029 node (52.23%) ,38950 edges (91.59%). Top Highest 

Betweenness Author : ('ALLENVERCOE', 'EMMA') 272516.1195 

('FLINT', 'HARRY J') 247097.738 
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Figure III.4.9. The microbiome Co-Author Networks in Canada Mid Phase 

Ratio of node and edges: 2187 node (45.52%) ,21195 edges (49.28%). Top Highest 

Betweenness Author : ('KNIGHT', 'ROB') 422698.4923 ('GUTTMAN', 'DAVID S') 

330088.3185 ('CHEN', 'RUI’)  328490.911 ('FINLAY', 'B BRETT') 293616.5816 

('ABBOTT', 'D WADE') 255801.841 ('SENSEN', 'CHRISTOPH W') 236208 

('GRUNINGER', 'ROBERT J') 217151.6656 ('GRUBE', 'MARTIN') 216528 ('REID', 

'GREGOR') 213577.2238 
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Figure III.4.10. The microbiome Co-Author Networks in Canada Late Phase 

Ratio of node and edges: 6132 node (63.76%) ,201713 edges (88.49%). Top Highest 

Betweenness Author : ('JIA', 'WEI’) 2693632.627 ('SURETTE', 'MICHAEL G')

 2256873.032 ('XAVIER', 'RAMNIK J') 2024373.817 ('ALLENVERCOE', 

'EMMA') 1856371.913 ('KNIGHT', 'ROB') 1512513.714 ('WALTER', 'JENS') 1377945.274 
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Figure III.4.11. The microbiome Co-Author Networks in England Early Phase 

Ratio of node and edges: 700 node (37.76%) ,12090 edges (66.39%). Top Highest 

Betweenness Author : ('GIBSON', 'GLENN R') 138551.1576 ('GUARNER', 'FRANCISCO') 

105420.4848 
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Figure III.4.12. The microbiome Co-Author Networks in England Mid Phase 

Ratio of node and edges: 2498 node (53.59%), 42192 edges (73.74%). Top Highest 

Betweenness Author: ('FLINT', 'HARRY J') 1070629.18 
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Figure III.4.13. The microbiome Co-Author Networks in England Late Phase 

Ratio of node and edges: 5789 node (59.11%) ,102072 edges (80.11%). Top Highest 

Betweenness Author :('MARCHESI', 'JULIAN R') 1761056.026 ('MCDONALD', 'JAMES 

E') 1700174.796 ('KNIGHT', 'ROB’)1356902.349 ('HOLMES', 'ELAINE') 1300277.81 

('NOLAN', 'MATTHEW J') 1144765.342 ('WANG', 'JUN’) 1073760.374 ('WALKER', 

'ALAN W') 994271.8265 ('GROSSART', 'HANSPETER') 986313.3233 ('BOKULICH', 

'NICHOLAS A') 962573.0617 ('FLINT', 'HARRY J') 929871.1966 ('WADE', 'WILLIAM G') 

912984.2274 ('JACKSON', 'MATTHEW A') 903968.2947 ('PARKHILL', 'JULIAN') 

900800.1148 ('SCHLOTER', 'MICHAEL') 884646.9672 
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Figure III.4.14. The Co-Author Networks in Spain Early Phase 

Ratio of node and edges: 747 node (34.89%) ,4890 edges (42.73%). Top Highest 

Betweenness Author: ('CORELLA', 'DOLORES') 129428 ('SALMINEN', 'SEPPO') 

98900.39197 ('REQUENA', 'TERESA') 89617.84137 ('MOYA', 'ANDRES') 70721.05694 

('GIL', 'ANGEL’) 67228.60952 
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Figure III.4.15. The microbiome Co-Author Networks in Spain Mid Phase 

Ratio of node and edges: 1953 node (44.81%), 20064 edges (47.94%). Top Highest 

Betweenness Author :('CARMEN COLLADO', 'MARIA') 1530416.185 ('MOYA', 

'ANDRES’) 1233055.533 ('MIRA', 'ALEX’) 993292.9305 ('GUARNER', 'FRANCISCO’) 

540317.0119 ('CLEMENTE', 'JOSE C’) 430019.7564 ('SALMINEN','SEPPO’) 

356168.3186 ('ARTACHO','ALEJANDRO’) 337544.0809 ('DEL CAMPO', 'ROSA’) 

274117.946 
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Figure III.4.16. The microbiome Co-Author Networks in Spain Late Phase 

Ratio of node and edges: 4673 node (55.91%), 99420 edges (81.47%). Top Highest 

Betweenness Author: ('CARMEN COLLADO', 'MARIA') 1530416.185 ('MOYA', 

'ANDRES’) 1233055.533 ('MIRA', 'ALEX’) 993292.9305 

 

 

 

 

 

 

 



 ５９ 

 

Figure III.4.17. The microbiome Co-author networks in France Early Phase 

Ratio of node and edges: 1305 node (54.4%) ,12661 edges (73.98%). Top Highest 

Betweenness Author: ('DORE', 'JOEL’) 418192.4267 ('HENRISSAT', 'BERNARD') 

262278.4559 
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Figure III.4.18. The microbiome Co-author networks in France Mid Phase 

Ratio of node and edges: 3320 node (57.25%) ,40624 edges (68.94%). Top Highest 

Betweenness Author: ('EBERL', 'GERARD') 967826.9721 ('DORE', 'JOEL’)  

735350.9195 ('HENRISSAT', 'BERNARD') 648278.1184 ('SOKOL', 'HARRY') 

578626.3509 ('RAOULT', 'DIDIER') 536945.0636 ('LEPAGE', 'PATRICIA') 535598.5065 

('RAES', 'JEROEN') 521820.3113 
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Figure III.4.19. The microbiome Co-author networks in France Late Phase 

Ratio of node and edges: 7666 node (68.31%) ,127247 edges (79.89%). Top Highest 

Betweenness Author :('SOKOL', 'HARRY') 3574401.449 ('LANGELLA', 'PHILIPPE') 

3327407.342 ('HENRISSAT', 'BERNARD') 2268113.031 ('PONS', 'NICOLAS') 

1837730.506 ('RAOULT', 'DIDIER') 1837111.611 
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Figure III.4.20. The microbiome Co-Author Networks in Germany Early Phase 

Ratio of node and edges: 645 node (38.23%) ,5871 edges (56.52%). Top Highest 

Betweenness Author: ('DORE', 'JOEL’) 101456.4526 ('BLAUT', 'MICHAEL') 68245.2894 

('HALLER', 'DIRK') 64749.60325 ('SCHREIBER', 'STEFAN') 53865.99001 
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Figure III.4.21. The microbiome Co-Author Networks in Germany Mid Phase 

Ratio of node and edges: 2593 node (57.27%) ,38375 edges (82.28%). Top Highest 

Betweenness Author: ('WANG', 'JUN’) 913125.7845 ('BLAUT', 'MICHAEL') 527332.6383 

('STECHER', 'BAERBEL') 502795.6805 
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Figure III.4.22. The microbiome Co-Author Networks in Germany Late Phase 

Ratio of node and edges: 7091 node (67.38%) ,117949 edges (85.38%). Top Highest 

Betweenness Author :('BAINES', 'JOHN F') 3255164.326 ('WANG', 'JUN’) 1704137.25 
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Figure III.4.23. The microbiome Co-Author Networks in Italia Early Phase 

Ratio of node and edges: 355 node (19.44%) ,2170 edges (21.64%). Top Highest 

Betweenness Author: ('BRIGIDI', 'PATRIZIA') 24267.0852 ('MATTEUZZI', 'DIEGO') 

18785 ('DI GIOIA', 'DIANA') 16447 ('NDAGIJIMANA', 'MAURICE') 15054.52069 

('OTOOLE', 'PAUL W') 13738.06741 ('MOGNA', 'LUCA') 12935.33333 
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Figure III.4.24. The microbiome Co-Author Networks in Italia Mid Phase 

Ratio of node and edges: 2317 node (45.86%) ,25979 edges (50.74%). Top Highest 

Betweenness Author : ('BRIGIDI', 'PATRIZIA') 388801.8526 ('FOSSO', 'BRUNO’) 

333380.546 ('BARBARA', 'GIOVANNI') 282416.8205 ('CARDINALI', 'GIANLUIGI') 

269028.643 ('VENTURA', 'MARCO') 245046.6407 ('DE VOS', 'WILLEM') 228336.7673 

('GILBERT', 'JACK A') 210220.9641 ('ERCOLINI', 'DANILO') 208111.9077 ('SEGATA', 

'NICOLA') 204633.0615 ('DI CAGNO', 'RAFFAELLA') 204264.8547 ('CANANI', 

'ROBERTO BERNI') 198419.2825 ('NIESLER', 'BEATE') 198402.9214 ('GRIECO', 

'FRANCESCO') 196064.25 
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Figure III.4.25. The microbiome Co-Author Networks in Italia Late Phase 

Ratio of node and edges: 6676 node (64.08%) ,117339 edges (83.23%). Top Highest 

Betweenness Author : ('ERCOLINI', 'DANILO') 2776445.573 ('SEGATA', 'NICOLA') 

2071940.886 ('PUTIGNANI', 'LORENZA') 1938509.702 ('BRIGIDI', 'PATRIZIA') 

1407609.092 
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Figure III.4.26. The microbiome Co-Author Networks in Japan Early Phase 

Ratio of node and edges: 209 node (29.6%) ,1147 edges (37.83%). Top Highest Betweenness 

Author: ('ITOH', 'KIKUJI') 11617.5 ('BENNO', 'YOSHIMI') 9814.875 ('KUWAHARA', 

'TOMOMI') 9660 
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Figure III.4.27. The microbiome Co-Author Networks in Japan Mid Phase 

Ratio of node and edges: 452 node (38.4%) , 3277 edges (53.38%). Top Highest Betweenness 

Author: ('TAKEDA', 'KIYOSHI') 51009.88889 ('ITOH', 'KIKUJI') 49859.5 ('YAMAMOTO', 

'MASAHIRO') 40780.53968 ('MATSUMOTO', 'MITSUHARU') 33648 ('HATTORI', 

'MASAHIRA') 27594 
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Figure III.4.28. The microbiome Co-Author Networks in Japan Late Phase 

Ratio of node and edges: 1188 node (37.94%) ,10880 edges (31.19%). Top Highest 

Betweenness Author : ('YAMADA', 'TAKUJI') 183168.5357 ('KURAKAWA', 'TAKASHI') 

166980.4354 ('HATTORI', 'MASAHIRA') 166924.3761 ('OSHIMA', 'KENSHIRO') 

110866.1343 ('HONDA', 'KENYA') 107618.7476 
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The overall network changes in South Korea show little difference compared to 

other countries in terms of the timing of stages. However, in the late stage, the overall 

size of the network is approximately half that of other countries. The exposure of 

researchers in the field of "Analytical and mathematical methods in microbiome 

research" in the top authors of the modules appears to be relatively smaller compared 

to other countries.  

 

 

Figure III.4.29. The microbiome Co-Author Networks in Korea Early Phase 

Ratio of node and edges: 1090 node (44.4%) ,51732 edges (89.38%). Top Highest 

Betweenness Author: ('RHO', 'MINA’) 290356.2 ('HUTTENHOWER', 'CURTIS') 279968 

('PRITHIVIRAJ', 'BHARATH')260948 ('KIM', 'YOONKEUN') 213814.2738 ('IM', 

'SINHYEOG') 160455.82 
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Figure III.4.30. The microbiome Co-Author Networks in Korea Mid Phase 

Ratio of node and edges: 3114 node (66.11%) ,18247 edges (60.69%). Top Highest 

Betweenness Author : ('NAM', 'YOUNGDO') 575370.1735 ('KO', 'GWANGPYO') 

450193.9423 ('LIM', 'MI YOUNG') 403524.2672 ('KIM', 'DONGHYUN') 332088.1772 

('KIM', 'YOONKEUN') 324753.911 
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Figure III.4.31. The microbiome Co-Author Networks in Brazil Early Phase 

Ratio of node and edges: 1548 node (32.48%) , 61900 edges (81.21%). Top Highest 

Betweenness Author : ('PRITHIVIRAJ', 'BHARATH’) 585646 ('DIASNETO', 

'EMMANUEL’) 572005.1961 ('SELDIN', 'LUCY’) 388080 ('VOLLU', 'RENATA 

ESTEBANEZ') 384396 ('SALMON', 'DIDIER’) 357712 ('MARTINS', 'FLAVIANO DOS S’) 

307134.3603 
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Figure III.4.32. The microbiome Co-Author Networks in Brazil Mid Phase 

Ratio of node and edges: 1844 node (25.94%) ,18919 edges (34.17%),. Top Highest 

Betweenness Author : ('ANDREOTE', 'FERNANDO DINI') 603310.1222, ('FERREIRA', 

'CAROLINE MARCANTONIO') 414996.5015 ('SETUBAL', 'JOAO CARLOS’) 

385845.4581 ('SEGATA', 'NICOLA’) 381758.6923 ('THOMAS', 'ANDREW MALTEZ') 

349036.6958 ('DIASNETO', 'EMMANUEL’) 324745.1265 
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Chapter IV. DISCUSSION 
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IV.1. Advancement of research network structure 

 

We closely examined that the network of scientific researchers approximates 

the characteristics of a 'Small World Network', rather than a random model. However, 

further investigation is needed to examine whether the distribution of nodes follows 

a 'Scale-Free Network' structure. A Scale-Free Network, where the distribution of 

top nodes is represented as a power law, often refers to these key nodes as hubs. 

 

Determining the structure of network is meaningful for several reasons. Firstly, 

it allows us to validate if the scientific network follows Pareto's principle, where a 

majority of co-work is conducted by top-tier modules. Secondly, in a Scale-Free 

Network, the concept of preferential attachment exists in network growth and hub 

creation. Applying this to a scientific network, if it strongly exhibits Scale-Free 

characteristics, it implies that top researchers existed from the very beginning with 

preferential attachment, and this preferential attachment greatly influences the 

subsequent development of the scientific network. 

 

Understanding this preferential attachment would greatly aid in comprehending 

the nature of the scientific network. If the network leans more towards a Small World 

Network structure than a Scale-Free Network, this also holds significant implications. 

Based on our analysis so far, nodes exhibiting preferential attachment exist, and if 

these nodes show considerable dynamics, the node distribution can be expressed 

exponentially, thereby describing the network through persistent dynamic network 

structural changes. The crucial concepts in a Scale-Free Network, namely network 

growth and the creation of hubs with preferential attachment, are present in a Small 

World Network, albeit with node ratios represented by an exponential function rather 

than a power law. 

 

Elucidating the nature of these hub networks is critical, as they can determine 

the characteristics of the network. Stated differently, this forms a substantial basis 

for explaining the factors of how a scientific network evolves. Specifically, if we can 
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elucidate the factors behind the degree of hub preferential attachment, its emergence, 

subsequent increase, and eventual decrease, we can construct a compelling narrative 

to explain scientific progress. 

In this study, we looked at researchers closely related to technology as hubs 

showing preferential attachment. However, this alone cannot fully explain the factors 

of network growth. There are other potential factors that we aim to discuss, and these 

discussions are very important for future research. One aspect that could be indirectly 

observed in this study was the potential impact of diseases or research institutions 

on the network. Consortiums and research grants are also very important factors for 

explaining the preferential attachment of hubs. These factors are still a subject of 

discussion and are likely to be significant research targets in the future. 

Understanding these variations in the average clustering coefficient provides insights 

into the changing nature of scientific collaboration and network structure within each 

country's microbiome research community.  
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IV.2. Impact of sequencing technology 

 

With the advancements in DNA sequencing technology, it has become possible 

to analyze human microbiome genes with a certain level of accuracy. Current 

research estimates that the human microbiome consists of approximately 500-1,000 

bacterial species, and if each species has around 2,000 genes, the total number of 

genes in the human microbiome is estimated to be 2 million (Heather and Chain, 

2016). Analyzing research trends at the gene level is a meaningful approach in life 

science research. Manipulating the genes of cultivable microorganisms is a crucial 

research method in human microbiome research, as the vast majority of 

microorganisms cannot be cultured in the laboratory. Therefore, in this study, our 

aim is to analyze the names and functions of genes used in human microbiome 

research as the central criteria for analysis. 

 

In the field of microbiome research, technological advancements can be further 

categorized. Initially, researchers faced limitations in directly cultivating a large 

number of microorganisms in the laboratory. Therefore, many studies have 

progressed alongside the development of DNA sequencing methods. One such 

method is pyrosequencing, which was developed in 2004. Pyrosequencing 

significantly reduced the time and cost required for analysis (30 Mb/h, $10/Mb), 

enabling bacterial whole-genome sequencing and facilitating small-scale studies of 

16S rRNA community analysis even in smaller laboratories. The 16S rRNA analysis 

allows for the examination of the entire community by analyzing only about 500 

base pairs per species using universal primers, instead of analyzing the entire 16S 

rRNA (~1,550 base pairs). (Table IV.2.1) 

 

Technologies developed after 2006, such as the Genome analyzer, further 

reduced the time and cost required for analysis (10 Gb/h, $0.07/Mb), thereby 

expanding the scope of analysis to include gene expression analysis, such as RNA 

sequencing (RNA seq). This expansion of technology broadened the range of 

research fields that could be explored. 
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Overall, these advancements in DNA sequencing technology have 

revolutionized microbiome research by enabling more comprehensive analysis of 

genes and gene expression, and by providing insights into the complex composition 

and functions of the human microbiome. 

But in this study, introduction period of sequencing technology (ex : sequencer) 

does not vary significantly between countries. However, there were differences 

between countries in researcher nodes that performed methodological research to 

analyze and interpret the sequencing results. Notably, several top nodes seemed to 

function like hub nodes. 

 

Table IV.2.1. Comparison of device performance for representative sequencing 

technologies 

Sequencer Sanger 3730xl 454 GS FLX HiSeq 2000 

Sequencing 

mechanism 

Dideoxy chain 

termination 

Pyrosequencing Sequencing by 

synthesis 

Detection laser CCD CCD 

Amplification 

approach 

PCR Emulsion PCR Bridge 

amplification 

multiple approach micro capillary Picotitre wells with 

microbeads 

solid-phase 

Output data/run 1.9~84 Kb 0.7 Gb 600 Gb 

Cost/million 

bases 

$2400 $10 $0.07 
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IV.3. Diseases and microbiome networks 

 

The first point highlighted in the network analysis relates to the emergence of 

top nodes, i.e., researchers influenced by technological advancement. However, it 

could be postulated that research on diseases such as diabetes, IBD, and obesity 

would occupy a significant proportion of the network. Furthermore, the approach to 

these diseases might vary from country to country. Especially in the case of China, 

Lin Juan, a top node emerging in the mid-phase, is identified as a researcher related 

to lung diseases. In contrast, it was challenging to identify researchers of similar 

characteristics within the top nodes in other countries. This disparity could suggest 

another form of preferential attachment influencing network growth and structure 

related to interest in diseases. Although, a hurdle in exploring this aspect lies in the 

need to match each paper with specific diseases, overcoming this challenge to 

examine the network from a disease perspective could hold significant meaning.  
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IV.4. Institutions and microbiome networks 

 

Institutions such as universities, research institutes, companies, and hospitals 

each possess distinct characteristics. Universities carry the aspect of nurturing future 

scientists. Research institutes can conduct long-term and focused studies on 

specialized research topics, drawing funds from various sources. Hospitals are 

research institutions that can most directly approach disease investigation and 

clinical treatment. To explore the relationship between institutions and network 

development, we can construct an institutional network using the institutional data 

provided in WoS. Through this, we can also find out which institutions have 

prioritized development in the national network. Of note, we noticed that nodes 

associated with BGI were found among the top nodes in the Chinese network. 

Providing explanations for such aspects would be meaningful. 
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IV.5. Consortia and research funding  

 

Consortia, collaborative partnerships between scientific institutions, drive 

scientific advancement by pooling expertise, resources, and funding. Research 

funding variations across countries impact scientific development. International 

collaborations facilitate global knowledge exchange and innovation. Network 

analysis helps identify and analyze consortia, mapping collaborative relationships 

and revealing collaboration patterns. It also aids in understanding funding networks, 

comparing consortia and funding mechanisms to gain insights into their 

effectiveness. Ultimately, these factors shape the progress of science and knowledge 

advancement. 

For that Network analysis can help identify and analyze consortia by examining 

collaborative relationships between scientific institutions. By mapping the 

connections and collaborations among institutions, researchers can identify clusters 

or groups of institutions that work together in specific research areas. Network 

metrics such as centrality, density, and community detection algorithms can provide 

information about the structure and characteristics of consortia. Network analysis 

can reveal collaboration patterns within and between consortia. Researchers can 

analyze the strength and frequency of collaborations between institutions within a 

consortium and identify key players or influential institutions based on centrality 

measures such as degree centrality or betweenness centrality. By studying the 

collaboration patterns, researchers can gain insights into the dynamics of knowledge 

sharing, resource exchange, and expertise distribution within consortia. Network 

analysis can also be applied to understand the variations in research funding across 

countries. Researchers can examine the relationships between funding agencies, 

institutions, and individual researchers to map the flow of funding. This can involve 

tracking grants, funding allocations, and collaborations between funding agencies 

and research institutions. By analyzing the funding networks, researchers can 

identify patterns of funding distribution, dominant funding sources, and potential 

gaps in research funding within and across countries. Network analysis allows for 

comparative studies between different consortia or countries. Researchers can 

compare the structural properties of consortia networks, such as network size, density, 
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and connectivity, to identify similarities and differences. Additionally, researchers 

can compare funding networks to understand variations in research investment, 

funding sources, and the impact of funding on scientific collaborations and outcomes. 

These comparative analyses can provide valuable insights into the factors that 

contribute to the success and effectiveness of consortia and research funding 

mechanisms. 

 

IV.6. Two mode networks 

 

The development of network measures is crucial to facilitate accurate 

quantitative comparisons between different networks, particularly those with varying 

numbers of nodes. Currently, limitations exist in conducting precise quantitative 

comparisons based on betweenness centrality and ACC values across networks with 

different node counts. It would be more meaningful to have the ability to accurately 

compare networks from different countries or networks at different time periods. 

 

While different types of networks, such as keyword networks, citation networks, 

and keyword-author networks, may exhibit distinct characteristics, exploring these 

alternative networks is challenging due to computational limitations caused by the 

large numbers of nodes and edges in predicted networks since the mid-2010s. 

However, as computational power continues to advance, it is worth pursuing such 

analyses. Additionally, as seen in broader research fields where analyses involving 

larger data than the current study have yielded impactful results, it is worthwhile to 

explore these avenues as computational capabilities improve. 

 

Establishing a dedicated data library for biology holds the potential to enhance 

the quality of topic modeling. By training algorithms used in topic modeling with 

specialized biological terminology, it becomes possible to incorporate domain-

specific knowledge into the analysis. This approach can lead to improvements in the 

effectiveness and accuracy of topic modeling techniques. 

 

A social network analysis conducted on a plant collection and classification 
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study in Brazil demonstrated the social constructivist nature of biodiversity research. 

Through SNA analysis, it was shown that researchers were influenced by senior 

researchers in their selection of plant collections and could exhibit bias. Additionally, 

it was found that plant collection involved broader interests rather than solely 

focusing on researchers' main areas of interest(de Siracusa et al., 2020). 

 

In this study, we start with the assumption that a network exists encompassing 

all authors who participated in writing research papers, without specifying the 

directionality of the network. Two-mode networks, also known as bipartite networks 

or affiliation networks, are used to represent networks where nodes belong to two 

distinct categories or modes. In such networks, connections exist only between nodes 

of different categories and not between nodes within the same category. For example, 

in a movie actor-movie network, the two modes are actors and movies, and the 

connections represent which actors appeared in which movies. 

 

Two-mode networks possess unique characteristics and analytical techniques 

that differ from one-mode networks. Bipartite clustering is a common metric used to 

analyze two-mode networks, measuring the degree to which nodes in one mode are 

connected to nodes in the other mode. Other common metrics include projection, 

which transforms a two-mode network into a one-mode network by collapsing one 

mode, and block modeling, which detects communities in two-mode networks. 

 

Two-mode networks find applications in various fields such as social network 

analysis, ecology, and information retrieval. In ecology, they represent species-

habitat interactions, while in information retrieval, they model user-document 

relationships in recommender systems. 

 

In our study, we analyzed a two-mode network of authors and keywords in 

microbiome research to explore collaborative patterns and research topics. We 

employed bipartite clustering and projection techniques to identify prominent 

research topics and influential authors in the network. Our findings provide insights 

into collaborative structures and knowledge dissemination in microbiome research, 

guiding future research directions in the field. 
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국문 초록 

 
우리는 이번 연구에서 과학 연구 성장의 구조와 원인을 찾기 위하여 

서지학적인 분석, 네트워크 분석을 수행하였다. 최근에 급격하게 

발전하고 연구 규모가 거대한 마이크로바이옴 연구 분야를 선택하여 

분석하였다.  특히 이번 연구에서 전세계 마이크로바이옴 연구 규모 

상위 11개 국가의 분석을 수행하였는데, 해당 국가들의 네트워크를 

2000년부터 2021년에 걸쳐 연도별 변화를 분석하였다. 이를 통해 국가별 

연구 네트워크 변화의 공통점과 차이점을 확인할 수 있었다.  

 서지학 분석으로 바라본 성장 패턴에서 공통적으로 과학 네트워크의 

성장을 예측할 수 있었다. 서지학적 접근을 더 자세히 분석하기 위해 

공저자 네트워크를 제작하였다. 대부분 국가의 네트워크가 서지학 

분석을 통해 예측한 것보다 성장에 차이가 없을 것이라고 분석하였다. 

 이 후 네트워크 이론에서 사용되는 여러가지 측정값들을 사용하여 

네트워크의 구조를 표현하였다. 우선 인접 노드 간의 결집도를 정량화 

하는 평균 집결 계수를 살펴보았다. 그 결과 과학 연구분야는 초기부터 

높은 값을 가진 채로 네트워크가 생성되고 시간이 지나면서 조금씩 값이 

감소하는 모습을 보였다. 이것은 네트워크를 이루는 연구자들이 전체 

성장 시기에 걸쳐 매우 단단히 연결되어 있고, 시간이 지나면서 그 

연결성이 조금씩 떨어지는 것을 의미한다. 그런데 중국 네트워크에서는 

다른 국가들에 비해 훨씬 빠르게 평균 집결 계수가 감소하는 것을 볼 수 

있었다. 

또 네트워크의 정보 효율성 등을 나타내는 평균 경로길이의 변화가 

독특함을 알 수 있었다. 평균 경로길이의 증가는 네트워크 크기에 

증가에 비례한다고 알려져 있다. 그런데 대부분의 네트워크에서 

시그모이드 함수(Sigmoid function)의 모양으로 증가하고 일정한 값에 

수렴하였고, 특정 국가들은 선형 함수 (Linear fuction)의 모습으로 

증가하고 일정한 값에 수렴하였다. 네트워크가 생성되고 발전하는 동안 
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평균 경고길이가 어떤 시점에서 특정 값으로 수렴한다는 점은 지금까지 

알려지지 않았던 내용이다.   

이번 연구는 랜덤 그래프 생성 모델인 ‘에르되스 레니 모델’(Erdős -

Rényi model)이나 ‘작은 세계 네트워크’(Small world network) 생성 모델인 

‘와츠-스트로가츠 모델’(Watts-Strogatz model)과 같은 네트워크 생성 

모델링을 실제 네트워크 사례에서 보여주었다.  

해당 연구 결과에서는 마이크로바이옴 연구분야가 ‘와츠-스트로가츠 

모델’에 의해 생성되는 높은 평균결집계수와 짧은 평균 경로길이를 

가지는 '작은 세계 네트워크’에 근사할 것으로 생각한다. 특히 생성되는 

시점에서도 '작은 세계 네트워크’에 근사하며 크기가 커지면서도 ''작은 

세계 네트워크’에 근사한 채로 커지는 것도 알 수 있었다. 

평균결집계수가 점차 감소하는 것을 본다면 ‘'작은 세계 네트워크’에 

근사함이 지속적으로 유지되지 않을 수도 있음을 보여주었다.  

 

이러한 구조적인 변화속에서 네트워크 성장의 요인, 과학 성장의 요인을 

규명하기 위하여 각 네트워크의 주요 노드들의 성격을 살펴보았다. 

서로 다른 연구자 사이에 해당 노드가 얼마나 존재하는지 수를 의미하는 

사이 중심성을 통해 살펴보았다.  

각 네트워크의 주요 노드들의 지위는 네트워크의 발전이 진행되면서 

일반적으로 동적인 변화를 보였다. 특히 네트워크의 최상위 노드들도 

네트워크 내의 연결성의 지위를 분석 기간동안 똑같이 유지하지는 

않았다. 이것은 과학 네트워크의 발전이 어느정도 동적이라는 것을 

예측하게 해준다. 그리고 미국과 중국의 경우 주요 노드들 중 염기서열 

분석 기술과 관련되어 있는 연구를 하는 노드들이 각 네트워크에서 

지위의 상승 및 허브 노드로 작용하였다. 또 이 노드들은 타 국가 

네트워크에 끼어들기를 함을 확인할 수 있었다.  

이를 통해 네트워크의 발전 요인중에 염기서열 분석에 대한 연구자들의 

접근이 크게 영향을 준 것을 알 수 있었다..   

이러한 발견들은 마이크로바이옴 분야, 더 나아가 과학이 발전하는 
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방식을 설명해 줄 수 있다는 점에서 본 연구의 의미가 있다. 

Keywords: 마이크로바이옴 연구, 네트워크 분석, 공저자 네트워크, 

고성능 염기서열분석법, 기술 발전 
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