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Abstract

Abstract harmonic analysis in quantum
information theory

Sang-Jun Park
Department of Mathematical Sciences

The Graduate School

Seoul National University

This Ph.D. thesis delves into the fascinating realm of quantum infor-
mation theory, employing methods from abstract harmonic analysis. The
research is organized into two parts, each focusing on independent topics,
based on the research results during the author’s doctoral studies [BCLT22,
PJPY23, PY23].

In the first part, our primary objective is to present an abstract defini-
tion of Gaussian states, inspired by the intriguing mathematical connections
between bosonic Gaussian states and stabilizer states. To achieve this, we
leverage the phase space formulation, considering a locally compact abelian
group (LCA) with a proper symplectic structure as the abstract phase space.
Within this framework, we naturally define the Weyl unitary operators and
characteristic functions. The Gaussian states are then defined through the
concept of Gaussian distributions on LCA groups in the sense of Bernstein.
Remarkably, this definition establishes a universal framework that unifies
many important notions in quantum theory as well as simultaneously ex-
plaining bosonic Gaussian states and stabilizer states. Moreover, we justify
our definition by showing that pure Gaussian states over a phase space de-

rived from a totally disconnected LCA group can be characterized by the



i

non-negativity of their Wigner quasi-distribution. This result can be inter-
preted as an analog of Hudson’s theorem and a generalization of Gross’s
result.

In the second part, we develop a theory of quantum entanglement under
the symmetry with respect to unitary representations of compact groups.
Quantum entanglement plays a vital role as a valuable resource in quantum
information processing, and significant efforts have been dedicated to unrav-
eling the mathematical structure of entanglement in recent years. While the
general dualities between mapping cones introduced by Stgrmer can describe
various notions related to quantum entanglement, they are not sufficient to ef-
fectively deal with entanglement due to the computational hardness of testing
entanglement. In this thesis, we show that such duality results carry over into
the framework of compact group symmetry. This directly leads to two appli-
cations in quantum information theory: (1) the optimization of entanglement
witnesses and Schmidt number witnesses, and (2) the equivalence between
the problem of PPT=separability and the problem of checking whether ev-
ery extremal positive map is completely positive or completely copositive
under compact group symmetry. The merits of our proposed framework are
showcased through detailed analyses of examples, which solve various open

problems related to quantum entanglement.

Key words: Abstract harmonic analysis, group representation, Quantum
information theory, Gaussian state, Quantum entanglement, Schmidt number

Student Number: 2016-20234
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Chapter 1
Introduction

This Ph.D. thesis is devoted to the study of problems in Quantum Infor-
mation Theory (QIT) using methods from abstract harmonic analysis. In
particular, we focus on several applications of representations of locally com-

pact groups in QIT, based on the three papers as follows.

1. [BCL*22] C. Beny, J. Crann, H. H. Lee, S.-J. Park, and S.-G. Youn.
Gaussian quantum information over general quantum kinematical sys-
tems I: Gaussian states. Preprint, arXiv:2204.08162, 2022

2. [PJPY23] S.-J. Park, Y.-G. Jung, J. Park, and S.-G. Youn. A universal
framework for entanglement detection under group symmetry. Preprint,

arXiv:2301.03849, 2023.

3. [PY23] S.-J. Park and S.-G. Youn. k-positivity and schmidt number
under orthogonal group symmetries. Preprint, arXiv:2306.00654, 2023.

These papers delve into applications in two indepedent areas of QIT:
(1) phase space formulation and Gaussian quantum information [BCL*22],
and (2) quantum entanglement theory [PJPY23, PY23]. In this chapter, we
provide a brief introduction to these two topics and highlight the aspects
where methods from abstract harmonic analysis were effectively applied in

our research.



CHAPTER 1. INTRODUCTION

Topic 1: Gaussian property of stabilizer states

(Bosonic) Gaussian states and stabilizer states are two fundamental objects
in quantum optics and quantum error correction, respectively [WPGP*12,
Got97]. Despite their seemingly different definitions and origins, they exhibit
several similarities. First of all, they can be understood in term of the phase
space formulation developed by H. Weyl [Wey50]. Secondly, when these states
are pure, both classes can be characterized via Hudson’s theorem and its
discrete version, i.e., the non-negativity of Wigner-quasi distribution, and
their underlying wave functions have similar explicit formulas [Hud74, SC83,
Gro06]. This supports the notion that stabilizer states can be understood as
finite-dimensional analog of Gaussian states.

Motivated by these insights, in Chapter 3, we provide a mathematically
complete framework by introducing an abstract definition of Gaussian states.
To achieve this, we use Fourier analysis over locally compact abelian (LCA)
groups with proper symplectic structures, which serve as abstract phase
spaces. We propose a comprehensive definition of Gaussian states, encom-
passing both Gaussian states and stabilizer states within the most general
setting. Specifically, we define Gaussian states using the concept of Gaus-
sian distributions on LCA groups in the sense of Bernstein (Definition 3.3.1).
This definition not only unifies Gaussian states and stabilizer states but also
offers a universal framework that incorporates various important notions in
quantum theory [RSSK*10, Zel20].

Moreover, our formulation of the abstract phase space enables a com-
prehensive definition of the Wigner quasi-distribution, prompting the explo-
ration of a generalized Hudson’s theorem. Notably, we present an affirmative
answer to this question when the underlying phase space arises from a totally
disconnected LCA group (Theorem 3.7.2), thus extending the previous work
of Gross [Gro06].

We summarize our results in Table 1.1.
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Table 1.1: Summary of the results in Chapter 3 (d: odd, F: 2-regular)

Phase space Gaussian state Hudson theorem Section
R™ x R™ bosonic Gaussian state True [Hud74, SC83|
7 X 711 stabilizer state True [Gro06] 3.4
Qp x Qp | p-adic Gaussian state [Zel20] True (New) 3.4, 3.7
FxF Fully characterized Partially true (New) | 3.4, 3.7
T x Z™ standard ONB for L*(T) True [RSSKT10] 3.5
Ly x Ly None 3.6

Topic 2: Duality and quantum entanglement

under group symmetry

Quantum entanglement has been regarded as one of the most fundamental
non-classical manifestations in quantum theory [EPR35, Bel64, CHSHG69].
Moreover, quantum entanglement serves as a key resource for various quan-
tum information processing tasks, such as cryptography, quantum telepor-
tation, and super-dense coding [HHHHO09, GT09]. Several criteria have been
developed to detect entanglement, with many of them based on Horodecki’s
criterion [HHH96]. This criterion establishes that positive maps can be used
as entanglement witnesses, leading to the recovery of well-known approaches
such as the positive partial-transpose (PPT) criterion [Per96] and reduction
criterion [HH99]. In particular, classifying PPT entanglement has been one
of the most important issues because of its direct connection with bound
entanglement [HHH99]. PPT entangled states are proven to be applicable
in performing non-classical tasks [HHH99, VW02, Mas06] and producing se-
cure cryptographic keys [HHHOO05, HHHO09, HPHHO08|]. Unfortunately, de-
termining whether a given bipartite quantum state is entangled is NP-hard
in general [Gur03], making it a challenging task to find PPT entangled states
despite extensive research.

Another crucial issue in the theory of quantum entanglement is the quan-

tification of entanglement [PV07]. Other than the case of pure states, there



CHAPTER 1. INTRODUCTION

are several (non-equivalent) candidates for entanglement measures of mixed
states, such as distillable entanglement, entanglement cost, and formation of
entanglement. Furthermore, the notion of k-positivity in operator algebra has
established a strong connection with the Schmidt number [THO0], a natural
measure to certify entanglement dimensionality. The Schmidt number has
recently gained attention in relation to the PPT-squared conjecture and en-
tanglement distillation [HLLMH18, CMHW19, CYT17, CYT19, Car20], and
the difficulty arises from the lack of explicit computable examples. Indeed,
the problem of determining whether a given linear map is (k-)positive or not
is known to be NP-hard, and accurate computations of Schmidt numbers
have been possible for very few examples.

On the other hand, both of these concepts can be described in a more
general framework, namely the duality between mapping cones. The notion of
mapping cones was introduced by Stgrmer [Sr86] to study extension problems
of positive linear maps and has been studied in the context of quantum
information theory. Mapping cones have two characteristics: (1) they contain
sufficiently many classes that are important in quantum information theory,
and (2) they can be described via duality in many different ways. For example,

we have, for a mapping cone IC,
e bec K < L*oLisCP for every L € K°.
e X el ={Cs: P €K} <— (ida®L)(X)>0V L K",

where Cf denotes the Choi matrix of £ (refer to (2.2.4)). These equivalences
mean that the linear maps in K° can be considered as witnesses for the el-
ements in K and Cy. Indeed, such duality has been applied to characterize
many notions in the theory of quantum entanglement, such as separabil-
ity, entanglement-breaking maps, Schmidt numbers, as well as decomposable
maps and k-positive maps [HHH96, TH00, SSrZ09, GKS21]. Nevertheless,
the mapping cone K° is generally too large and complex to efficiently de-
scribe the convex structure of K.

In this thesis, we restrict the class K by considering symmetries with
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respect to compact groups. Specifically, we mainly consider two types of
symmetries: invariance of bipartite matrices and covariance of linear maps
with respect to a unitary representation of a compact group (Section 4.2).
Such a restriction is common in quantum information theory, mainly due
to the difficulty in analyzing entanglement and in the hope that symmetry
allows us to focus on more tractable models.

One of the main results of the thesis shows that the duality between
mapping cones fits well with our framework of compact group symmetry,
leading to the optimization of witnesses. The statement can be outlined as

follows.

Theorem 1.0.1. Suppose K is a mapping cone of positive maps on Mgy,
into My, . Then for (w4, mg)-covariant map ®, we have ® € IC if and only if
L o ® is copmletely positive for every L € Ext((ICO)* N Covy (g, WA)), where
Covy(mp,ma) is the set of (mp, ma)-covariant linear maps whose Choi matrix
has unit trace. Furthermore, for Tx ® mg-invariant bipartite matriz X, we
have X € Cy if and only if (ida ®L)(X) > 0 for every £ € Ext((K°)* N

COV1(7TB,7TA)).

This result enables us to flexibly address the problem of PPT entangle-

ment and Schmidt number. Our contributions can be summarized as follows.

Entanglement witness and the problem of PPT = SEP

We optimize the use of entanglement witnesses [HHH96] by showing that
only extreme covariant positive maps are necessary for testing the entangle-
ment of invariant quantum states (Theorem 4.3.1). Additionally, we establish
the equivalence between PPT entanglement in invariant states and positive
non-decomposable maps in the class of covariant maps (Corollary 4.3.4).
This framework enables us to provide solutions to three problems related
to “PPT = SEP” (Table 1.2), strengthening existing results and resolving

many open problems.
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Table 1.2: The problem PPT = SEP under three group symmetries

Group symmetry PPT=SEP | Strenghthens the results in | Section
Hyperoctaheral group True [VWO01, KMS20] 5.1
UeUU False [EWO01] 5.3.1
U UeU True [COS18] 5.3.2

Schmidt number witness

More generally, it suffices to consider only (extreme) covariant k-positive
maps to analyze the Schmidt number of invariant quantum states (Theorem

4.3.2). As an application, we completely characterize the Schmidt number of

orthogonally invariant states (Section 5.2). These states, denoted as pfg €
My ® My, are defined as follows:
l—a—-5b 0 o b &
d —a— N e
Py = e ® Lo+ = > |ii) (Gl + = D i) iil. (1.0.1)

ij=1 ij=1

The regions for the Schmidt number of pgfz turn out to be highly nontriv-
ial, even in low dimensions, as visualized in Figure 1.1. To the best of our
knowledge, our computations provide the first example of the complete char-
acterization of Schmidt numbers in a non-trivial class parameterized by at

least two real variables (in arbitrarily high dimensions d).
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Chapter 2

Preliminaries

2.1 Abstract harmonic analysis

In various aspects of abstract harmonic analysis, locally compact groups and
their unitary representations play a fundamental role. Let us first introduce
some basic definitions related to these concepts. A topological group G is
called a locally compact group if the underlying topology is locally compact
(i.e., every point of G has a precompact neighbornood) and Hausdorff. A
unitary representation of G is a group homomorphism 7 : G — U(H,) for
some underlying Hilbert space H, which is continuous with respect to the
strong operator topology, i.e., x € G — w(x){ € H, is continuous for every
vector £ € H,.. We further call the representation 7 irreducible if © has
no nontrivial invariant subspaces, i.e., the only closed subspaces V of H,
satisfying 7(G)V C V are {0} and #H,. Note that if 7 is irreducible, so is
the contragredient representation ™ : G — U(H) of m which is defined by
7(z) = w(z) for all z € G (for proper choice of orthonormal basis for H).
Moreover, two unitary representations 74 : G — U(Ha) and 75 : G —
U(Hp) are called (unitarily) equivalent if there exists a unitary operator
U : Hs — Hp such that mp(x) = Uma(x)U*, and we denote by 74 = 7
in this case. Let us denote by G the set of equivalence classes of irreducible

unitary representations of G.
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Irreducible representations form basic building blocks of many functions
and operators arising from G. Indeed, the Gelfand-Raikov Theorem [Foll6,
Theorem 3.34] implies that every locally compact group has sufficiently many
(mutually inequivalent) irreducible representations. Every unitary represen-
tation of G can be built out of irreducible ones via direct integration [Foll6,
Theorem 7.28]. In particular, when G is abelian or compact, the action of
irreducible representations play an essential role in the theory of Fourier
transform on G.

In this section, we gather several preliminary tools from abstract harmonic
analysis that will be beneficial for later applications in quantum information
theory (QIT). We divide the tools into two parts: the abelian case and the
compact case. Each part is for an application to each of two independent
theories in QIT. For a more comprehensive understanding of the general
theory of abstract harmonic analysis, we refer to [Fol16, HR79, HR70].

2.1.1 Locally compact abelian groups and Fourier anal-
ysis

In this subsection we provide preliminaries for Chapter 3 by reviewing the
basics of harmonic analysis on locally compact abelian (LCA) groups. All
LCA groups in this thesis are assumed second countable.

When G is abelian, every irreducible representation is 1-dimensional, i.e.,
a continuous group homomorphism from G into the circle group T = U(1)
[Fol16, Corollary 3.6]. In this case, G becomes the set of such homomor-
phisms, and we call G the dual group of G and its elements the characters on
G. Indeed, the set G is an abelian group with respect to pointwise multipli-
cation, and is locally compact (and second countable) when equipped with
the topology of compact convergence. The double dual of an LCA group can

be canonically identified with the original group, i.e. we have

—

(@)

2

G,

oo
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which is known as Pontryagin-van Kampen duality. Under this duality, prop-
erties of G manifest in a dual manner in G. For instance, an LCA group G
is compact if and only if G is discrete ([HR79, 23.17]).

For the most part, we use additive notation for LCA groups, so that
the group operation will be denoted by a + b for a,b € G and the identity
of G will be denoted by 0. The inverse of a € G will be denoted by —a.
However, we will sometimes use multiplicative notation for dual groups G.
For example, the identity element for G will be denoted by 1, meaning the
constant function with value 1 and the inverse of v € G will be denoted by

1

v~ ! or 4 (meaning complex conjugate). For a« € G and v € G the duality
bracket

(a,7) :=7(a) €C

will be frequently used. Note that for v,v, € G and ai,as € G we have

(a1 + ag, 71 + v2) = (a1 + ag, 1) (a1 + a2, v2) = v1(a1)y1(az)y2(ar1)y2(az).

Given a closed subgroup H of G (which we write H < ), the quotient
group G/H is an LCA group endowed with the quotient topology. Its dual
group (7/?[ can be identified with H+ = {y € G : v(a) = 1, a € H}, aclosed
subgroup of G called the annihilator of H. The identification HL = (?/?[
([Fol16, Theorem 4.39]) is given by v € H- — 7, where Y(a + H) := v(a),
a € G. Here, a + H refers to the coset of H with the representative a. The
quotient group G /H* can be identified with the dual group H through the
map v+ H+ € G/H* — ~|y € H ([Foll6, Theorem 4.39]). Note that for
H < G, the subgroup H is open if and only if G/H is discrete by definition
of the quotient topology.

An LCA group G is equipped with a non-zero, translation-invariant Radon
measure p = pg, called the Haar measure, which is unique up to a positive
constant. More precisely, for another non-zero, translation-invariant Radon
measure on G we can find ¢ > 0 such that v = ¢ - p. The choice of Haar

measures will be specified later in this thesis. When the underlying group G
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is clear from context, we simply write pu. Otherwise, we use the notation p.
For a closed subgroup H of G the Haar measure provides interesting

information about H as follows.
We have 0 < pg(H) < oo if and only if H is open and compact. (2.1.1)

One direction is trivial by local finiteness of p and [Foll6, Proposition 2.19].

The converse direction follows from the fact that p|mz becomes a finite Haar

measure of H, so G/H has a G-invariant Radon measure f satisfying i({xH}) =

pu(zH) € (0,00), which implies discreteness of G/H by [DE14, Proposition
1.4.4].

The concepts of dual group and Haar measure lead to Fourier transforms.
For f € LYG) := LG, p) and v € G we define

f7) = / F(@)7(@) du(z),

and the group Fourier transform F¢ is defined by

~

Fo: LNG) = Co(@), f f, (2.1.2)

where C’o(@) refers to the space of all continuous functions on G vanishing

at infinity. The map Fg is a norm-decreasing homomorphism with respect

to convolution on L'(G) and pointwise multiplication on Cy(G), i.e. we have

Fa(f*g) = Fa(f)  Falg), f.9€ L'(G),

where f * g is the convolution of f and g given by
frglz) = /Gf(y)g(x —y)duly), v e€G.

We will sometimes use the notation fG instead of f when we need to specify

which group we are referring to. Let us record the special case when f = 1

10
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for a compact subgroup K of G:
fg(lK) = /ubg(K)lKJ_. (213)

Indeed, we have

() /K () dpic) = / () dpic(a), Yy € K

K

so that
na(K), ~eK*
[ @ dneto) = , (214
K 0, otherwise
and this explains (2.1.3).
The above Fourier transform can be extended to the L*(G) = L*(G, u)-
level. More precisely, there is a Haar measure 5 on G such that Fo: LNG)N
LX(G) — L*(@G) is isometric with respect to the corresponding L2-norms.

This map can be extended to a unitary (still denoted)
~F.G : L2(G7MG) — L2(é7ué)7

by Plancherel’s theorem [Foll6, Theorem 4.26]. Note that the choice of g
depends on p, and we call it the dual Haar measure to je. For example, if G
is a compact group and if p is the normalized Haar measure, i.e., u(G) = 1,
then the dual Haar measure p5 becomes the counting measure on the discrete
group G.

The above Fg allows for an inverse map at the L*level, but we have

a more direct inversion via the Fourier inversion theorem [Foll6, Theorem
4.33]: for f € L*(G) such that f € L'(G), we have

@)= [ fona)dngla). ae.w €. (2.1.5)

If, in addition, f is continuous on G, then the above identity holds for all
x € G. When f € L(Q) satisfies F¢(f) € LY(G) N L*(@G), the function f

11
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must be continuous and the above inversion formula also holds by [RSO00,
Theorem 4.4.13].

The space L'(G) embeds naturally into the Banach algebra M(G) of all
complex Radon measures on G via the map f — f du. The Fourier transform

~

extends to a contraction Fg : M(G) — Cy(G) satistying
Folv)) =o(0) = [ 3@ duto). v M(G)., 7 €G.

where Cb(@) is the space of bounded continuous functions on G. The homo-

morphism property still holds, i.e. for vy, 15 € M(G) we have
fg(Vl * VQ) = fg(Vl) . ]rg(l/g),

where the convolution v % 5 is determined by the following relation: for any

compactly supported continuous function ¢ on G' we have

/G (v %) = /G /G 6(x) dvn (2)dva(y).

We let M'(G) denote the set of all positive elements in M (G) with total mea-
sure 1, namely the (probability) distributions on G. A theorem by Bochner
[HR70, 33.3] says that the set Fo(M'(G)) coincides with the set of all con-
tinuous positive definite functions on G having value 1 at the identity. Recall
that a function f : G — C is positive definite if the matrix [f(z; — z;)]};; is
positive semi-definite for any finite sequence (z;)", C G.

The closed support of v € M'(G) (which we write supp v) is defined to
be the smallest closed subset A C G such that v(A) = v(G). This definition
needs to be distinguished with the (open) support of a continuous function f
on G, which we write supp f, defined by supp f = {z € G : f(z) # 0}. We
say that v € M'(G) is concentrated on a Borel subset A C G if v(B) = 0 for
any Borel B C G such that AN B = @.

Proposition 2.1.1. Let f : G — C be a continuous positive definite function
on an LCA group G.

12
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1. We have |f(z)| < f(0) for any x € G.

2. ([HR70, Corollary 32.7]) The set Gy = {x € G : |f(z)| = f(0)} is a
closed subgroup of G, | f| is constant on the cosets of Gy and f/f(0) is

a character on Gj.

Let us end this subsection by recalling a fundamental structure theorem of
LCA groups due to van Kampen: An LCA group G is isomorphic to R™ x F
(as topological groups) for some LCA group F containing a compact open

subgroup [HR79, 24.30].

2.1.2 Compact groups and invariant operators

In this subsection, we review the basics of unitary representations of com-
pact (Hausdorff) groups. Moreover, we briefly describe a notion of invariance
which will be one of the main concept in the method of compact group sym-
metry in QIT. These provide the preliminaries for Chapters 4 and 5.

Let us suppose that GG is a compact group throughout this subsection.
For a unitary representation m: G — U(H) of G, a bounded linear operator
X € B(H) is called m-invariant if X7(x) = w(x)X for all z € G (we remark
that this terminology is rather QIT-friendly: in mathematics, we call such
X an intertwining operator for m). Let us denote by Inv(7w) the set of all
m-invariant operators. Then Inv(r) = {n(z):2 € G}’ is a von Neumann
algebra on H. Moreover, Schur’s theorem [Foll6, Theorem 3.5] implies that
7 is irreducible if and only if Inv(7) = C I,.

When G is compact, it is simple to describe the space Inv(w). Indeed,
every irreducible representation is finite-dimensional, and every unitary rep-
resentation can be written as a direct sum of irreducible representations of
G [Fol16, Theorem 5.2], that is,

= @0@[,%,

[0]eG
where m,, is the multiplicity (possibly any cardinal) of the irreducible repre-
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sentation ¢ inside 7. Then we can show that

Inv(r) = @ o(z)® Iy, iz €
[U]Eé

= @ 1, ® Blta(m,)).

[0]e@

. . . . . . l
In particular, when 7 is finite-dimensional, then we can write 7 = @,_, 0; ®
I,,, for some mutually inequivalent irreducible representations oy,...,0; of

G, m; < oo, and

l
Inv(r) & P I, ® M, (2.1.6)
i=1

where n; = dim H,,. If m; = 1 for all ¢, we call m multiplicity-free.

2.2 Quantum entanglement

In this section, we provide a concise overview of fundamental definitions re-
lated to quantum entanglement, a central concept in quantum information
theory (QIT). Our focus is on finite-dimensional complex Hilbert spaces,
namely H = C?, H, = C%4, Hp = C2, as well as their direct sums and ten-
sor products. The discussion of analogous notions for the infinite-dimensional
case will be presented in Chapter 3. We refer to [NC00, Holl9, Wat18] for

more details on quantum entanglement and other topics in QIT.

2.2.1 Separability and PPT property

A quantum state is a positive matrix p € B(H), with Tr(p) = 1 and the
set of all quantum states in B(H) is denoted by D(H). A bipartite positive
operator X € B(Ha ® Hp) is said to be of positive partial transpose (PPT)
if

(ida®@Tp)(X) >0 (2.2.1)

14
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where Tp is the transpose map on B(Hp), and X is called separable if
there exist families of positive operators (X)), C B(Ha); and (XP)2, C
B(Hp)+ such that

X=>) X'exp (2.2.2)

i=1

In particular, if p € D(Ha ® Hp) is a separable quantum state, then there
exists a probability distribution (p;)"; and a family of product quantum
states (p! ® pP)r, such that

p=> pii@pP. (2:2.3)
i=1

It is clear that separability implies PPT property, but the converse is not
true in general. More precisely, all PPT quantum states in B(H ® Hp) are
separable if and only if d4-dp < 6 [Per96, HHH96, Wor76a, Cho82]. Moreover,
it is known that the separability question is NP-hard [Gur03, Ghal0].

For v € H, we define linear maps |v) : C — H given by A — Av and
(v] + H — C given by w + (v|w) where (v|w) is the inner product of
v,w € H whose first variable is the anti-linear part. In particular, |Q) =
Z?Zl \/Lg|z> ® |i) € H® H is called the mazimally entangled Bell state where
{11),12),---,|d)} is the standard orthonormal basis of H. The matrix unit
4)(j| and the product vector |i;) ® |is) ® -+ ® |ig) are also denoted by e;;
and |iqiy - - - ig) respectively.

The (normalized) Choi matriz of a linear map £ : B(Ha) — B(Hp) is
defined by

Cp = (ida @L)([24)(Q]) = (ida ®L) ( Z €ij @ %)

2]1

= Z eij @ L(ey;) € B(Ha ® Hp). (2.2.4)

'le

Recall that £ is completely positive (CP) if and only if the Choi matrix Cr

15
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is positive, and L is trace-preserving (TP) if and only if (idy ®Trp)(Cr) =
%idA. In particular, if ® : B(H4) — B(Hp) is a CPTP linear map, i.e. a
quantum channel in the Schrodinger’s picture, then the Choi matrix Cs is a
quantum state in D(H4 ® Hp). We call this channel-state duality.

Let £ : B(Ha) — B(#Hg) be a linear map. Then £ is called completely
copositive (CCP) if T g o L is completely positive, £ is called decomposable if
there exist a CP map £; and a CCP map L, such that £ = L, + L5, and L
is called PPT if £ is both CP and CCP. Thus, £ is PPT if and only if C} is
PPT.

Another important property of quantum channels is the entanglement-
breaking (EB) property [HSR03]. A quantum channel ® : B(H4) — B(Hp)
is called EB if the Choi matrix Cg is a separable quantum state. Note that

any EB quantum channel is PPT, but the converse is not true in general.

2.2.2 Schmidt number and positive maps

Let us now introduce some notions on Schmidt number and (k-)positive maps
as dual objects. Every vector £ € H4 ® Hp admits a Schmidt decomposition
[NCO00] [€) = 35, A\iJvi) @ Jw;) where Ay > -+ > X\, > 0, and {v;};_, and
{wi}le are orthonormal sets in H4 and Hp, respectively. Here the numbers
k and {)\i}le are uniquely determined, and we call k the Schmidt rank of ¢
and write SR(|¢)) = k. Now we denote by P 45 the set of positive operators

on H4 ® Hp and consider the following subsets

Schy ap := conv {[§)(¢] : SR([S)) < k}

for any natural number k£ (or simply write P and Sch; when these cause
no confusion). Then the Schmidt number of a positive bipartite operator
X € Pyp is defined as the smallest natural number & such that X € Schy,
and we write SN(X) = k. Note that SN(X) < min(d,dp) and Schy = P4p
whenever k > min(da,dg). Moreover, X € P,p is separable if and only if
SN(X) = 1.

16
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Let us denote by B(B(H4), B(Ha)) the set of all linear maps from B(H 4)
into B(Hp) and by B"(B(Ha), B(Hp)) the set of all Hermitian preserving
maps, i.e., L € B(B(Ha), B(Hp)) with L(Z)* = L(Z*) for Z € B(H4). We
also denote by POSap C B"(B(Ha), B(Hp)) the cone of positive maps from
B(H4) into B(Hpg). A list of subclasses of positive maps of our interest is

the following;:
e POSy 4, the set of k-positive maps (note that POS; = POS),
e CP4p, the set of completely positive (CP) maps,

o SPiap = conv{Adk : K € B(Hp, Ha),rank(K) < k}, the set of k-
superpositive maps [SSrZ09], where Adx (X) := KX K* is a conjugation

map,
o EBap = SPy, the set of entanglement-breaking (EB) maps.
e DECap :=CPap+ (TpoCPag), the set of decomposable maps.

o PPT ap :=CPapN(TpoCPap), the set of PPT maps,

Note that we have two nested chains of the subclasses as follows.

POS 2 POS; 2 -+ 2 POSmin(da,dp) =CP = SPmin(da.dg) 2 - 2 SP2 2 EB, (2.2.5)

POS > DEC D CP 2 PPT O EB. (2.2.6)

Moreover, the two inclusions POS D DEC and PPT D £B is in general
strict unless (da,dg) = (2,2),(2,3),(3,2) as noted in the previous subsec-
tion [Cho75b, Wor76b, HHH96, Hor97]. On the other hand, linear maps act-
ing on quantum systems are often identified with bipartite operators via
the so-called Choi-Jamiolkowski correspondence [Jk72, Cho7bal. For L €
B(B(Ha), B(Hg)), the (normalized) Choi matriz Cy € B(Ha ® Hp) is de-
fined by

Cr = (ida ®L)([24)(Q2al) = ZI )l @ L(12) (1),

1]1
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da
1
where [Q24) = NG E 77) € Ha ® Ha is the maximally entangled vector
A~
Jj=1

state on the system A. Then it is known that [Cho75a, Sr82, HSR03, SSrZ09]

e [ is Hermitian preserving if and only if C'; is Hermitian,

L is k-positive if and only if Cr € BPy 45, the set of k-block positive
operators (that is, it satisfies (£|C3|£) > 0 for all £ € Ha ® Hp such
that SR([¢)) < k),

L is CP if and only if C, € P »p,

L is k-superpositive if and only if Cr € Schy, ap,

L is EB if and only if C; € SEP 43,

L is decomposable if and only if C, € DEC 45, the set of decomposable
operators (that is, Cr; = X7+ (id4 ® T g)(X3) for some X1, Xo € P4p),

L is PPT if and only if C; € PPT 45, the set of positive operators on
Ha ® Hp which are of positive partial transpose (PPT) (that is, both
Cr € Py and (idA ®—|—B)(C£) € Pug hOld)

The adjoint linear map £* € B(B(Hg), B(Ha)) of L € B(B(Ha), B(Hg))
is defined with respect to the Hilbert-Schumidt inner product, i.e.,

Te(L(Z)'W) = Te(Z*L*(W)), Z,W € B(Ha).

Recall that the adjoint operation £ — L* preserves all the properties men-
tioned above, i.e,. k-positivity, k-superpositivity, PPT, and decomposability.

We conclude this section by presenting two important criteria of entan-
glement and Schmidt numbers. The following Theorem implies that positive
maps and k-positive maps can be regarded as entanglement witnesses and

Schmidt number witnesses in QIT.

Theorem 2.2.1 ([HHH96, THO00]). Let X € P4p. Then
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1. X € SEP if and only if (ida ®L)(X) > 0 for all L € POS 4p,
2. X € Schy, if and only if (ida ®L)(X) > 0 for all L € POSy ap.

These properties can be formulated in a generalized context using map-

ping cones, as detailed in Chapter 4.
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Chapter 3

Gaussian states over general

quantum kinematical systems

In the phase space formulation of quantum mechanics [Gro46, Moy49, Wey50,
Wig32|, states are represented through Wigner/characteristic functions on
the underlying kinematical space, and observables are parametrized by the
Weyl representation. Primary examples include systems of n-bosonic modes,
n-qudit systems, and angle-number systems, with associated phase spaces
R 72" and T™ x Z", respectively. For these systems, phase space methods
underlie important concepts and techniques, such as bosonic Gaussian states
and channels [WPGP*12], sharp uncertainty principles [BKW18], finite-dimensional
approximations of continuous systems [DVV94, Sch60], the stabilizer formal-
ism of quantum error correction [CRSS98, Got97], and the construction of
mutually unbiased bases [DEBZ10, GHWO04, Par04]. Applications of phase
space techniques continue to emerge in a variety of systems. In particular, the
theory of p-adic quantum mechanics [VV89a] has seen a surge of recent activ-
ity in connection with the anti de Sitter/conformal field theory (AdS/CFT)
correspondence (see e.g., [BHLL18, GKP*17, HMSS18)).

Mathematically, quantum kinematical systems with finitely many degrees
of freedom are described by a locally compact abelian (LCA) group G and

a cocycle o. The cocycle induces a symplectic structure on G, which en-
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codes the canonical commutation relations of the associated (o-projective)
Weyl representation. Such abstract quantum kinematical systems have been
studied from a variety of perspectives, including finite-dimensional approxi-
mations [DHV99], uncertainty relations [Werl16], and generalized metaplectic
operators [Wei64]. In this chapter we continue this program by developing
a formalism to study Gaussian states (and channels) for general quantum
kinematical systems.

Bosonic Gaussian states are defined by the Gaussianity of their associated
characteristic functions on the phase space R*" (see, e.g., [WPGP*12]). Using
the natural notion of Gaussian distribution on LCA groups [PRRV63], one
arrives at a sensible definition of a Gaussian state. However, in many cases
of interest (e.g., G finite or totally disconnected), the corresponding class of
states is trivial. To overcome this, we advocate the use of Gaussianity in the
sense of Bernstein (or B-Gaussianity for short), which is an LCA generaliza-
tion of Bernstein’s classical result: a real probability distribution p is Gaus-
sian if and only if the sum and difference of two independent p-distributed
random variables are independent [Ber41]. Our notion of B-Gaussian states,
valid for any phase space (G, o), unifies a variety of examples from the lit-
erature, including bosonic Gaussian states, discrete Hudson/stabilizer states
[Gro06], vacuum states of p-adic oscillator Hamiltonians [VV89b], (classes of)
minimal uncertainty states [OP04], and the (relatively) recently introduced
Gaussian states for single mode p-adic systems [Zell4, Zel20].

We completely characterize B-Gaussian states over 2-regular (second count-
able) LCA groups of the form G = F x F equipped with the canonical nor-
malized 2-cocycle (see Section 3.1.2 for the cocycle). Here, 2-regularity means
that the doubling map g + 2¢ is an automorphism of G, and this case in-
cludes the systems of n-bosonic modes, n-qudit systems (for odd d > 3) and
p-adic quantum systems. Thanks to van Kampen’s structure theorem, the
“configuration space” F'is of the form R" x F., where F,. admits a compact
open subgroup, and the resulting phase space G = R*" x (F, x ﬁc) Since the

Euclidean case is well understood, we begin by focusing on the case where
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the phase space is F,. X ﬁc. In this setting, we show that every B-Gaussian
state is determined uniquely by a compact open 2-regular isotropic subgroup
H of F, x F, and a character on H (Theorem 3.4.1). We also establish a
correspondence between pure B-Gaussian states and symmetric bicharacters
on compact open 2-regular subgroups K of F, (Theorem 3.4.19), which com-
plements the covariance matrix parametrization in the bosonic setting. As a
consequence of our results when F' = F,., we show that, amongst B-Gaussian
states over general configuration spaces F' = R" x [, there can be no entan-
glement across the associated tensor decomposition L?(F) = L*(R")® L?(F,)
of the system Hilbert space (Theorem 3.4.14). This completes the analysis
for 2-regular Weyl systems G = F' x F.

In the non-2-regular setting, the structure of B-Gaussian states can be
dramatically different. We show that B-Gaussian states over angle-number
systems with the phase space T" x Z" are forced to be pure, and belong to the
canonical “Fourier” basis of L?(T"). Over fermionic and hard-core bosonic
systems, which have the same phase space Z2" but with different 2-cocycles,
we show that there are no B-Gaussian states.

The phase space formulation provides another important function on the
phase space for a given quantum state, namely the Wigner function. Wigner
functions, which are dual to characteristic functions, are always real-valued
and integrate to 1 whenever they are integrable, so they are often called
“pseudo-probability distributions”. The natural question of non-negativity
of Wigner functions was answered by Hudson for pure states in single-mode
bosonic systems [Hud74], showing that pure states with non-negative Wigner
function are precisely the pure Gaussian states. This was later generalized
to multi-mode bosonic systems [SC83]. Gross continued this line of research,
establishing a discrete Hudson’s theorem for n-qudit systems with odd d > 3
[Gro06]. Our formalism allows one to define Wigner functions in full general-
ity, which, in particular, begs the question of a generalized Hudson’s theorem
for 2-regular Weyl systems. We partially answer this question by showing that
over totally disconnected 2-regular LCA groups of the form G = F X I , a
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pure state has non-negative continuous Wigner function if and only if it is
B-Gaussian.
We refer to Section 2.1.1 for preliminaries on duality and Fourier analysis

in the context of locally compact abelian (LCA) groups.

3.1 Preliminaries on general quantum kine-

matical systems

3.1.1 Phase space structure

Let G be an LCA group equipped with a Borel function ¢ : G x G — T

satisfying the conditions
o(a,b)o(a+b,c)=0c(a,b+ c)a(b,c), o(a,0) =0c(0,b) =1, ae.a,b,ceqG.

Note that the above equation holds for almost every a,b,c € G unless o is
continuous. However, we will often omit the expression “almost every” in the
sequel for simplicity. The function o is called a 2-cocycle (or a multiplier) on

G, and determines a symplectic form A : G x G — T via

A(a,b) :=o(a,b)o(b,a), a,b € G. (3.1.1)

Note that A is a bicharacter, meaning that A is continuous and A(-,b) and
A(a,-) are characters on G for all a,b € G [DV04, p.533|. Note that Borel
measurability of ¢ and A being Borel homomorphism in each argument guar-
antees that A is continuous [Mach8, p.281]. We require the map @ : G — G
given by

Da(a)(b) = A(a,b), a,be G (3.1.2)

to be a topological group isomorphism, in which case we call the associated
2-cocycle o a Heisenberg multiplier (following the terminology of [DV04]).
The pair (G, o) (or rather (G, A)) is viewed as the phase space underlying a
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general quantum kinematical system (see, e.g., [DV04]).
For example, the standard choice of 2-cocycle on the system of n-bosonic

modes with the phase space G = R** = R" x R" is given by
Uboson(aa b) = exp <_%aTJb) , a, be G, (313)

0

I, . . . .
where J = { 01 € My, (R) is the matrix of the canonical symplectic

form on R?". Note also that the above map ®4 is different from the usual
identification z € R?" > 4, € R given by Y2 (y) = @)y € R?", which
we call the canonical identification.

From the fact that ®a(a)(a) = 1 for any a € G, the isomorphism ®, is
called a symplectic self-duality for G [PSV10]. A typical example of an LCA
group G with symplectic self-duality is G = F' X F for another LCA group
F, and this is exactly the class we will focus on. Note, however, that there
exist LCA groups with symplectic self-duality not isomorphic to F' x F for
any LCA group F' [PSV10, Theorem 11.2].

Since o is a Heisenberg multiplier, there is a unique (up to unitary equiv-
alence) irreducible unitary projective representation with respect to o (or
o-representation) W : G — U(Hyw ) for some Hilbert space Hy, [DV04, The-
orem 2|. Being a o-representation means that the map a € G — W(a)y is

Borel for any 1 € Hy and we have
W(a)W(b) = o(a,b)W(a +b), a,b e G. (3.1.4)

Note that there are important examples of discontinuous 2-cocycles as we
can see in Section 3.1.2.

We call W and W(a), a € G, the Weyl representation and the Weyl
operators following the standard terminology. Note that the Weyl operators

satisfy the canonical commutation relations (CCR)

W (@)W (b) = Ala, )W (D)W (a), a,be G. (3.1.5)
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See [DV04, §3.5] for a concrete model of Hy and W.

A 2-cocycle o on an LCA group G is normalized if o(a,—a) =1, a € G.
This additional requirement on o is essential to accommodate “Gaussian
states” as we can see in Remark 3.3.5(4) below. Fortunately, any 2-cocycle
o allows a normalization 6, which is similar to o as 2-cocycles in the sense
that there exists a Borel function & : G — T (called a normalizing factor) so

that
£(a)é(b)
E(a+b)

defines a normalized 2-cocycle. In this case, the 2-cocycles ¢ and & deter-

g(a,b) = o(a,b), a,beq, (3.1.6)

mine the same symplectic form A(a,b) = o(a,b)o(b,a) = &(a,b)5(b,a), and
therefore o is a Heisenberg multiplier if and only if ¢ is. Moreover, if W is

an irreducible o-representation of G acting on Hy,, then
Wijs(a) = &(a)W (a)

is an irreducible g-representation of G acting on the same Hilbert space
Hy . We will take ¢ to be a Borel measurable square root of the function
a € G+ o(a, —a), hence the 1/2 in the notation Wi /2. Note that a choice of
square root is always possible but not unique, in general. Thus, the choice of

¢ and ¢ will be specified whenever necessary.

3.1.2 Weyl systems

The main class of quantum kinematical systems we consider have the form
G = F x I for an LCA group F. Such groups admit a canonical choice of
2-cocycle, oean : G X G — T given by

Ocan((2,7), (2',7) = v(2)), x,2" € F, 7,7 € F. (3.1.7)

It is straightforward to see that o.., is a Heisenberg multiplier and we call
the pair (F' x F, Ocan) & Weyl system. The group F' is called the configuration

space.
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In this case we have a simple description for the unique irreducible oq,-
representation W = W, as follows [Prall]. We first define the translation
operator T, and the modulation operator M., for x € F and v € F acting on
Hw := L*(F) by

Tof(y) = fly—2), Myf(y):==+W)f(), feL*(F), yeF
Then, W : G — B(L*(F)) is given by
W(z,v) :=T,M,, (z,7) € G.

2-Regular groups

The above 2-cocycle .., is never normalized unless G is trivial. There is a
canonical normalization when the group G = F' X F (equivalently, F') is 2-
reqular. Here, we say that the abelian group G is 2-regular if the map a — 2a
is an automorphism of G, and we denote its inverse by 27!. In this case,
there is a unique bicharacter ¢ such that £(x,v)? = (z,v) [DV04, Lemma 1],

namely

§(z.7) = (@) = (272,270 = (2, 270) = (27, ).

With this £ as the normalization factor, we get the canonical normalization

Tecan Of Ocan given by
Gean(a,b) == A(27%a,2710)* = A(a,27'0) = A(27'a,b), a,b € G.  (3.1.8)

We sometimes write Fe,q = AL/ for an obvious reason, and we also call the
pair (F' x F ,Ocan) & Weyl system. Note finally that the corresponding Weyl

representation Wi, becomes

Wipa (e, ) (y) = (2,9 P T M (y) = (,7) "2y, ey — o), ¢ € LP(F).
Example 3.1.1. (Bosonic systems) The additive group R" is 2-regular, and
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if we identify Rn =~ R” via (z,7,) = e'®¥) z y € R" then the formula
(3.1.3) is recovered with opeson = Gcan- The corresponding symplectic form

satisfies
A(Z,Z/) _ ei(y,x’>efi<y/’m> — 6i<JZ’Z/>7 5= (x,y), S = ($/7y/) c ]R2n7

0 I, .
; O} € Ms,(R) and (-, -) refers to the usual inner product

where J = [

on Euclidean spaces. The Weyl representation becomes
Wiz, y)o(t) = 6_%<I’y>ei<y’t>¢(t — 1), ¥ € L*R"), z,y € R™.

This is equivalent to the Weyl representation used in [Holl9, §12.2] and
[Fol16, §1.3], for example.

Example 3.1.2. (Qudit systems) If d > 3 is an odd integer then Z} is a

finite 2-regular abelian group. (27! = % is the multiplicative inverse of 2 in

the ring Z4.) Similar to above, we have the self-duality @ = 7} via
Yy(x) = ey gy e 7y. (3.1.9)
Under the canonical identification
C(Zy) = (L) @+ @ (Zg) = C' @ - @ CY,
the corresponding multiplication operators M, := M, satisfy
My=Z% @ ®2", y=(yr,-yn) € Zi,

where Z : C4 5 |k) s @ |k) € C? is the qudit generalization of the Pauli
Z matrix.

Similarly, the translation operators are given by

T,=X"® - X", x= (1.2, €Zy,

27
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where X : C? 3 |k) — |k+1) € C¢is the qudit generalization of the Pauli X
matrix. The Weyl representation W : Z% x Z% — B((C%)®") is then simply

(d+1)7s

W(z,y) =€ 4 v xnign ... Xonzvm gy € 7l
In this case the symplectic form satisfies
A(z,y), (2, y)) = e’a Wa)=Wa) gy o/ o € Zy. (3.1.10)

Example 3.1.3. (p-adic systems) If p is a prime, the field of p-adic numbers
Q, is a 2-regular totally disconnected abelian group, along with any finite
product Q. It is well-known that @) = Q, via the duality

<I, y> = €2ﬂi{$y}p7 T,y € Qp7

where {z}, is the fractional part of z defined through the (unique) power

series representation of x as follows:

-1 00
{z}, = Z x,p", when z = Z Tp".

n=—k n=—"k

(see [Foll6, Theorem 4.12], for instance). The symplectic structure on G =

Q, x Q, is given similarly as

n

A(z,y), (o y)) = [J e eidemtoients) gy 2!y € Q).
k=1

Weyl systems over non-2-regular groups I: Angle-number systems

When the LCA group G = F x F is not 2-regular the canonical normalization
(3.1.8) is no longer available. Instead, we will specify a normalization Gc., of
Ocan for each individual case.

We call the quantum system described by (T%x Z<, 5.y ) the angle-number
system in d-modes, which we named after [Wer16, Table I]. Note that there
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are many physical quantum systems modelled through the angle-number sys-
tem in 1-mode such as the quantum rotor [RKSE10] and the dynamics of a
Josephson junction between two isolated islands [Girl4]. The case d = 2 for

two rotors can be found in [ACP20, Sec IV. B.].

The canonical 2-cocycle becomes
Tean((0,12), (0, 1)) = ™M (0, n) € T x 2%,

Here, we identify T = [—1 1) and for 6 = (6;,--- ,0,) € T? = [—1, %)d and

n=(ny,- - ,ng) € Z¢ we have
(0,n) :=n10; + -+ ngbs € R. (3.1.11)

Our choice of normalizing factor £ is

d
. 11
£(0,n) = ™0™ (9, n) € T4 x 7 = [—5, 5) x 7.4, (3.1.12)
Some care needs to be applied here since the identification T = [—%, %) does
not respect the group structure of T and ¢ is discontinuous at (6,n) when
0; = —% for some 1 < 5 < d, so that the resulting normalization 6,, is also

discontinuous there.

In this case the associated Weyl representation W/, becomes
Wia(0,n) == ™" TyM,, (6,n) € T x Z¢,

which are operators acting on the Hilbert space H = L?(T¢) = ¢*(Z%) with
the canonical choice of orthonormal basis {|e,,) : m € Z%}, where ¢,,(0) =

e2mi0m 9 € T4, We will simply write |m) for |e,,).

3.1.3 Fermions and hardcore bosons

In this section we examine two quantum kinematic systems over the phase

space G = 78 x Z5 = 70 x 78 = 72",
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Fermionic systems

Even though our phase space is of the form F' x F , we can endow a 2-cocycle
which is not similar to the canonical one (when n > 2). More precisely, our

choice of 2-cocycle is as follows.

Orer(a,b) := (=1)*" 4 q b e 72", (3.1.13)

where A = . Note that the 1-mode case (i.e. n = 1) goes back

to the canonilcal1 2;ébcy1(:1600n Ziy X Zo. We can check that o, is a Heisenberg
multiplier by observing that A+ A7 is invertible. Indeed, we have A + AT =
a5 .. =
BB "1, where E = [1 j, Q= [T (1)] Then the invertibility of
coE b
A+ A" is direct from the matrix identity (I+A)(A+AT)(I+AT) = P)_, Q,
where we use the relations QF = EQ) = F and E? = 2F = 0.
The quantum kinematical system (ZJ x Z’\g,afer) describes a fermionic
system in n-modes. For a detailed explanation, let us recall the Majorana
operators ci, . .., Can, Which are self-adjoint operators acting on H = C*" =

((Z%) satisfying the CAR (canonical anti-commutation relations):
{Cj,Ck} = 25jk7 1< j, k < 2n.
Note that ¢;’s are realized as

62]_1:Y®®Y®X®[®®I
0 =Y® - QYQZQI® - &I,

where X and Z appear at the j-th tensor component and X, Y, Z are

the 2 x 2 Pauli matrices. The unique irreducible unitary og,-representation
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Wier © 22" — U(27) is given by
Wiee(a) == ¢ oo c22 a = (21, -+, 29,) € Z3". (3.1.14)

That Wi, is a og-representation is straightforward to check. Irreducibility
follows from the fact that {Wi.(a) : @ € Z3"} forms an orthogonal basis of
Myn (C) with respect to the trace inner product.

We consider a normalization g, of g, given by

£(a)§(b)
E(a+b)

Gter(a, b) == Oter(a, ), a,b € Z3", (3.1.15)

where the normalizing factor ¢ : Z2¢ — T is chosen to satisfy
§(G)2 = é(a)g(_a) = 5-fer(a7 _a)o'fer(ay —CL) = (_1>aTAa7 a € Zgn

Note that there are many choices for the factor £&. We will not fix a particular
choice of ¢ for fermionic systems, but instead consider all possible choices of
¢ (see Section 3.6).

Finally, we remark that the unique irreducible G¢,-representation is
Wl/2,fer = nger-

Hardcore bosons

Here we consider the canonical 2-cocycle ocap (3.1.7) on G = Z5 x Zg ~ 720,
As in the qudit case (Example 3.1.2), the associated Weyl operators have the

following form:

Wean(2,y) = XPZV @ -+ @ X Z0% = KRS S hY2 - hin_ by (3.1.16)
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where X, Z are the standard 2 x 2 Pauli matrices and the matrices h;,

1 < j < 2n are given by

hoj1=I® - QIRXRIQ &I
hoyy=1® - QIQZRI® @1,

where X and Z appear at the j-th tensor component for 1 < 57 < n. The
self-adjoint matrices h;, 1 < j < 2n are an analogue of Majorana operators

and they satisfy
B = —hihg, (k1) = (27— 1,2)) or (2,25 — 1), 1< j <n

and hgh; = hyhy for other choices (k,l). In other words, the observables
hj, 1 < j < 2n anti-commute in the same modes and commute for different
modes, and the associated quantum system corresponds to “hardcore bosons”
of n degrees of freedom [CL93, Section II].

To apply our program in this setting, we consider a normalization G.,, of

Ocan Ziven by

§(a)€(b)

N ik 1.1
f(a—}—b)gc’a (a,b), a,beZ3", (3.1.17)

Fean(@,b) :=

where the normalizing factor £ : Z3" — T is chosen to satisfy
E(0)” = E(@)6(~a) = Fou(a, ~ )l —a) = ()5, a7, L=}

As in the fermionic system, we will not fix a particular choice for &, and the

unique irreducible Gcap-representation is given by Wi /2 can := {Wean-
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3.2 Characteristic and Wigner functions of

quantum states

Throughout this and the next section we fix a general quantum kinematical
system given by the pair (G, o) consisting of a second countable LCA group
G and a normalized 2-cocycle o which is a Heisenberg multiplier.

Similar to the bosonic case (e.g. [Hol19, §12]) and certain qudit systems
(e.g. [Gro06]), quantum states on H := Hy, — the irreducible representation
space of W — can be recovered through their characteristic functions on the
phase space G.

Recall that the set of all quantum states on H (denoted by D = D(H))
is a subset of SY(H), the trace class on H equipped with the trace norm
1X]l; = Tr(|X]) = Tr((X*X)2), X € SY(H). Note that S'(H) is a subspace
of 8*(H), the Hilbert-Schmidt class on H equipped with the Hilbert-Schmidt
norm || X||> = (Tr(X*X))2, X € S%(H).

Definition 3.2.1. Let p € S'(H). Its characteristic function x, € L*(G) is
defined by
Xp(a) = Te(Wyj2(a) p), a€d.

For a pure state p = |¢)(¢)| with ¢ € H, we will simply write y,, instead of
X)) (-

It is straightforward that ||x,||. < |lplli, so x, is indeed bounded. The
terminology “characteristic function” can be justified from the fact that x,
determines the original operator p via the twisted group Fourier transform
on G. See [KL72] and [Mach8] for details of twisted group Fourier transforms
on locally compact (not necessarily abelian) groups. In our specific situation,
namely that W is the only (up to unitary equivalence) o-representation, the

theory simplifies.
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Definition 3.2.2. The twisted group Fourier transform Fg on G is given by

F&LNG) = B(Hy), s (W) = / F(@)Wh a(a)dpa(a) € B(Hay),
G
(3.2.1)
where the choice of Haar measure p on GG will be specified below in Theorem
3.2.3.

The map F¢ is a norm-decreasing *-homomorphism with respect to twisted

convolution and twisted involution, defined respectively by
(F 20 )@) = [ J0)g(a—byolb.a=b)du(b). a € G.

and

f*(a) :=0o(a,—a)f(—a), a € G,

for f,g € L'(G). More precisely, we have FZ(f *, g) = F&(f) - F&(g) as
the product (or composition) of two operators and FZ(f*7) = FZ(f)* as the
adjoint operator for f,g € L*(G). It extends to a unitary operator acting on
L*(@G).

Theorem 3.2.3. (Twisted Plancherel theorem, [KL72, Theorem 7.1])
The twisted group Fourier transform Fg& extends to a unitary equivalence
between L*(G) and S*(Hw) for a suitable choice of Haar measure j on G.

In particular, we have
[ F9du =T W2a W), fg € LONIG).  (:22)
a

Moreover, the extended map F, intertwines the left regular o-representation

Ao : G — B(L*(G)) given by

Ao (a)f(D) = o(a,b—a)f(b—a), a,b € G, fe L*G),

34



CHAPTER 3. ABSTRACT GAUSSIAN STATES
with an amplification of Wi ,5. More precisely, we have

[F& o Ao(@)](f) = Wipa(a) - [FE(f)] - L*(G) = S*(Hw), a € G, f € L*(G).
(3.2.3)

In what follows, we fix the Haar measure p on G respecting (3.2.2).
The following twisted Fourier inversion justifies the “characteristic func-

tion” terminology, and will be useful in Section 3.4.

Proposition 3.2.4. For any p € S'(H) we have x, € L*(G) and F&(x,) =
p-

Proof. Since Fg : L*(G) — S?*(H) is unitary, span{Fa(¢) : ¢ € C.(G)}
is dense in S?*(H), where C.(G) is the space of all continuous functions on
G whose closed support is compact. Consequently, span{Fg&(¢1)Fa(p2)* :
©1,p2 € C.(G)} is dense in S*(H).

First, for p = FZ(p1)F&(pa)* = F&(p1 *, 57) with @1, o € C.(G), the

intertwining relation (3.2.3) with A, entails

01 %0 057 (+) = (1| Aa(-)p2) = Tr(Wro(-)" F&(p1) Falw2)) = xo(-)- (3.2.4)

For arbitrary p € S'(H), there exist a sequence (p,), in the space

span{F¢ (1) Fa(p2)" 1,02 € Ce(G)}

such that lim [|p — p|lsi) = 0. Since x,, = (F&) '(pn) from (3.2.4), we
n—oo

have
T [[(F8)7(0) ~ Xpulz2e) = 1 [(F8)™0) — (F&) ™ (o) l2e
< lim [[p = palls1(30) = 0.
n—oo

In particular, the L*-convergence of (x,,)n to (FZ)"'(p) implies that a sub-

sequence of (x,,)n converges to (FZ) '(p) almost everywhere. On the other
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hand, the condition lim ||p — pn|lsi) = 0 implies lim ||x,, — xpllec = 0.
n—00 n—00

Thus, x, = (F&)(p) € L*(G). O

Remark 3.2.5.

1. For f € L*(G), the element FZ(f) is originally defined by the S?(H)-
limit of F&(fn) = fu(Wija) for some sequence (f,) € L'(G) N L*(G)
converging to f in L*(G). However, we may still express the element
F&(f) via the integral representation [, f(a)W;2(a)du(a) once we un-
derstand it as a bounded operator on ‘H given in the weak sense. Indeed,

for any §,n € H we have [[xigm/llr2) = [1€)(nllls20 = €N - [Inl] by
Proposition 3.2.4. Thus,

il [ 7@ Wsaa)dutae)] = \ [ S @le)dnto

= ‘ /G fla)xigym(a)dp(a)

< I fllzze €l - [l

This explains that the integral [, f(a)Wi/2(a)dp(a) defines a bounded
operator on H in the weak sense. The same computation also tells us
that Fg(f,) converges to [, f(a)Wi2(a)dp(a) in the weak operator
topology of B(H), which means that

Fo(f) = /G F(@)Wh ja(a)du(a).

2. The set G x T can be equipped with the “Heisenberg” group law (z, z) -
(y,w) = (x + y, zwo(x,y)). We denote the resulting locally compact
group by G(o), which is a central extension of G. The original version of
[KL72, Theorem 7.1] (which applies to more general classes of groups)
assumes that G(o) has a type I regular representation, which is the
case for any abstract quantum kinematical system (G, o). Indeed, the

quotient space G(0)/G can easily be identified with the group T, and
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the canonical Haar measure on T is G(o)-invariant as well. Thus, we

can apply [Kal70, Theorem 1] to conclude that G(o) is type L.

In bosonic systems, one often considers another function on phase space
associated to a quantum state p. It is called the Wigner function W = W,),
and is defined as the (symplectic) Fourier transform of the characteristic
function x,. This can be done in the full generality. Using the current as-
sumption that G is self-dual via the isomorphism ® (3.1.2), we can transfer
the group Fourier transform Fg from (2.1.2) to get the “symplectic” group

Fourier transform on G
FI™: LNG) — Co(G)
given by
Fom( / F(O)A(a, b)dp(b), a € G, f € LY(G).

It follows from symplectic self-duality that there is (another) Haar measure

pe " on G such that the map F&'™ extends to a unitary
Fo™ e LG, p) — LG, ™). (3.2.5)

We may call pg&™ the symplectic dual Haar measure of . We also have the

corresponding Fourier inversion theorem as in (2.1.5).

Definition 3.2.6. The Wigner function W, : G — C of p € S'(H) is defined
by the symplectic Fourier transform of its characteristic function x, € L*(G),
ie. W, = F3 " (x,)-

The Wigner function W, encodes the state p in a dual manner to x,. One

such aspect is the following.

Proposition 3.2.7. For a quantum state p € D(H) the Wigner function W,
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15 always real-valued and if it is integrable, then we have
/ W, (a) dpt™ (a) = 1. (3.2.6)
a

Proof. The first conclusion follows from the fact that W, is involutive (as
it is normalized): Tr(pW1/2(—a)*) = Tr(pWij2(a)) = W, a €
G. When W, € L*(G, ™) is also integrable, then the associated function
X, must be continuous by [RS00, Theorem 4.4.13], so we can safely take
evaluation x,. In particular, we see that x,(0) = 1, so by Fourier inversion
we have [, W,(a)dpd™(a) = 1. O

The above Proposition (which is well known for bosonic systems) is the
reason why Wigner functions are called “pseudo-probability distributions”.
It is of interest to investigate the class of states whose Wigner functions
are actual probability measures, equivalently, non-negative. We will focus
on this theme in Section 3.7, but for now we record one useful property of
characteristic/Wigner functions which follows directly from the CCR (3.1.5):
for p € D(H) we have

XW, o (2) oWy o) (W) = Az, w)x,(w), w,2€G (3.2.7)
Wi, o2y oW o (2) (W) = Wo(w + 2), w,z € G. (3.2.8)
Remark 3.2.8.

1. The above Wigner function exhibits similar properties to bosonic Wigner
functions, but we will postpone collecting such properties until the
follow-up paper [PJLY23].

2. Our Wigner functions coincide with the ones from [Muk79], [RSSK*10]
and [Gro06].
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3.3 Gaussian states in general quantum kine-

matical systems

We first recall some necessary background on Gaussian distributions over

second countable LCA groups G, and refer the reader to [Fel08] for details.
Definition 3.3.1. A distribution v on G is called

o (laussian if its Fourier transform 7 on G is of the form

~

o(7) = (v,7)exp(—0(7)), 7 €G, (3.3.1)

for some x € G and some non-negative continuous ¢ : G—R satisfying
Py +7)+e(r =) =20 + (), 1Y eG (332

e Gaussian in the sense of Bernstein, or simply B-Gaussian if
P+ =) =) ()P 7y € G (3.3.3)

Remark 3.3.2.

1. Gaussian distributions on LCA groups were first studied by Parthasarathy,

Rao, and Varadhan [PRRV63] as a generalization of Gaussian distribu-
tions on R™. This concept has been further generalized to B-Gaussian
distributions by Rukhin [Ruk69] and by Heyer and Rall [HR72] through
analogues of the Kac-Bernstein theorem on LCA groups. Note that if
the group G contains a closed subgroup homeomorphic to T?, then we
can always find a B-Gaussian distribution on G which is not Gaussian
[Fel08, Lemma 9.6].

2. Any non-negative continuous function ¢ : G->R satisfying (3.3.2) is

of the form

~

o(y) =v(v,7), v € G,
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where 1) : G x G — R is a continuous function satisfying

* V(71,72) = V(2 M),
o V(71 +72,73) = ¥(71,73) + (72, 73),
L4 ?ﬂ(’)’l’%) Z 0

for any 1,792,793 € G. In particular, ¢ € Hom(@, Hom((A}’, R)).

3. From the definition we can easily see that the Fourier transform of a

~

Gaussian distribution v on G is fully supported, i.e. suppr = G -

We collect some properties of B-Gaussian distributions which will be use-
ful throughout this chapter. An LCA group K is called a Corwin group if
2K :={2k : k € K} = K, i.e., the doubling map is surjective.

Proposition 3.3.3. Let v be a B-Gaussian distribution on G and
H =supprv = {76@:9(7)7&0}.

1. The set H is an open subgroup of @, whose annihilator H is a compact

Corwin subgroup of G.

2. Suppose that G has no subgroup isomorphic to T? and H = G. Thenv

1s a Gaussian distribution on G.

3. If G, the connected component of the identity of G, contains at most
one element of order 2, then v = vy x (1x/pu(K)) for a compact Corwin
subgroup K of G and a Gaussian distribution vy on G. The mentioned

hypothesis on G is satisfied when G is discrete or 2-reqular.

Proof. (1) Openess of H is clear, and H being a subgroup is direct fi.ln
(3.3.3). Moreover, the quotient group @/H is discrete, so that H+ = @/H
is compact. For the Corwin property of H+, it suffices to check that 2v € H
implies that v € H by [Fel08, Lemma 7.2]. But this is also direct from (3.3.3).

(2)&(3) These are [Fel08, Lemma 9.7, Theorem 9.9]. O
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We are now ready to define Gaussian states over general kinematic sys-

tems.

Definition 3.3.4. A state p € D(H) is Gaussian (resp. B-Gaussian) if there

is a Gaussian (resp. B-Gaussian) distribution v on G such that Xp = Fa(v).
Remark 3.3.5.

1. Note that Definition 3.3.4 requires x, to be the Fourier transform of a
(B-)Gaussian distribution on G instead of a (B-)Gaussian distribution
on G. This difference does not show up in the bosonic system since the
class of Gaussian distributions on R™ are preserved by Fourier trans-

form.

2. Conjugation with respect to a Weyl operator preserves (B-)gaussian
states. More precisely, (3.2.7) tells us that for any a € G the state

Wij2(a)*pWij2(a) is Gaussian (resp. B-Gaussian) whenever p is.

3. Every Gaussian state is clearly a B-Gaussian state. However, the class
of all B-Gaussian states is strictly larger than that of all Gaussian states
in general. See Example 3.3.6/3.3.7, Theorem 3.4.1, Corollary 3.4.9 and

Proposition 3.4.18 below for such cases.

4. In order to secure the existence of B-Gaussian states we need to focus
on normalized 2-cocycles. Indeed, suppose p € D(H) is a B-Gaussian
state with respect to the o-representation W where o is a general 2-

cocycle o on GG. The positivity of p says that

Xp(a) = Xp+ (@) = 0(a, —a) Tr(p*W(=a)) = o(a, —a) x,(~a).

Being a Fourier transform of a distribution, we have x,(a) = m, a €
G. Therefore, we have o(a, —a) = 1 whenever y,(a) # 0, i.e. on the
support of x,, which is an open subgroup of G' and non trivial in many
cases. This is one reason why we require our quantum kinematical sys-

tem to be equipped with normalized 2-cocycles.
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For bosonic systems, Gaussianity and B-Gaussianity coincide with the
usual notion of bosonic Gaussian states (see, e.g., [Holl9, §12.3.2]) by the
multivariate Kac-Bernstein theorem. See [Fel08] for more details, generaliza-
tions, and further references. We now present some examples of B-Gaussian
states which were already well-known in the literature under different names.
To see this, first recall that for a closed subgroup H < G, its symplectic com-
plement is defined by

A.={2€G|A(z,h) =1 Forall h € H}.
We say that H is isotropic (respectively, mazimally isotropic or Lagrangian)
if HC H® (respectively, H = H®).

Example 3.3.6. (Discrete stabilizer states) Let d > 3 be an odd integer,

and consider the Weyl system (Z} x Z[},Gcan). For a maximally isotropic

subgroup H of Z}} x Z and v € Z}} x Z the associated stabilizer state (see,
g., [Gro06, HDDMO5]) |H,v)(H,v| is the rank-1 projection

|H,v)(H,v| = | ZA v, )Wy 5 (h) ZA v, )Wy ja(h).  (3.3.4)

’ heH heH

Indeed, the projection |H, v) (H, v| is the unique state stabilized by the abelian
group {A(v, h)Wis(h) : h € H} [Gro06, Lemma 8], that is,

A(U7 h)W1/2<h)|H> U) = |H7 ’U>, h e H.

As shown in the proof of [Gro06, Lemma 9], its characteristic function

XHu = X|Hw)(H,v| i of the form
Xaw(2) = A(v, 2)1u(2), 2 € Zj x Zj,

where 1 is the indicator function of H (albeit with a different normalization
from [Gro06]). Self-duality of finite abelian groups tells us that there is vy €

Zyy x Z7 such that A(v,-) = (v, -). Hence, x g, is the Fourier transform of
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V= 0y % (‘H—ﬂllfp). Now we check the condition (3.3.3). The character A(v, )
clearly satisfies (3.3.3). Finiteness and 2-regularity of the group Z} x Zly imply
that H is also 2-regular, and consequently 1 satisfies (3.3.3). This means
that the stabilizer state |H, z)(H, z| is a pure B-Gaussian state. Note that H
is a non-trivial proper subgroup of Z! x Z} since |H| = d" and the Fourier
transform of Gaussian distributions always have full support. Thus, we know
that |H, z)(H, z| is not a Gaussian state.

Later we will show that pure B-Gaussian states in the n-qudit system
are precisely the stabilizer states |H,v)(H,v| for some v € Z2" and some
maximally isotropic subgroup H < Z2", and that there are no Gaussian
states (even mixed ones) over the Weyl system (Z]} X Z, can). (See Theorem
3.4.1, Corollary 3.4.9, Proposition 3.4.18, and Example 3.4.11.) Hence, the
Gaussian character of qudit stabilizer states (which belongs to the folklore)
is made explicit through the Bernstein identity (4.2) of their characteristic

functions.

Example 3.3.7. (Minimum uncertainty states) Consider the Weyl system
(G = F x F ,Ocan) Over a 2-regular LCA group G such that F' contains a
compact open 2-regular subgroup K. Fix zy € G. Then

v = pp(K) 7P Wypa(z0) 1 € L2(F)

is a minimum uncertainty state in the sense that it saturates the entropic

uncertainty relation from [OP04, Theorem 1.5]. The characteristic function
Xv = X|u)w| Of |¥) (1| then satisfies (by (3.2.7))

Xo(2) = pp (K)A(20, 2)X 10 (11 (2) = b (K)A(z0, 2) (Whj2(2) 1k, 1k), 2z € G.
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Note that fory € K, y—z € K if and only if x € K. Hence, for z = (x,v) € G

(Wja2) L, L) = / (2.7 ) ey — ) T (@) (y)

= 1K(;c)L(w,7>‘1/2<y,7>du(y)

= pp(K)1g(z)(z, 7)1 i ()

By 2-regularity of K, 271K = K. Thus, for z € K and vy € K+

(@, )72 = (27T2,2719)2 = 27z, ) = 1,
and consequently

Xo(2) = A(20, 2) 1w (2), 2 € G.

Similar to the previous example we see that |1) (1| is a pure B-gaussian state.
On the other hand, since K x K= is never equal to the whole phase space
G=FxF, [1) (1| is not a Gaussian state as before. The full description of

pure B-Gaussian states in this setting will be given in Theorem 3.4.19.

3.4 Weyl systems over 2-regular groups

In this section we focus on the Weyl system (G = F X r ,Ocan) OVET a 2-
regular LCA group and provide a complete characterization of B-Gaussian
states. By the structure theorem of van Kampen, we know that F' = R" x F,
for some LCA group F. admitting a compact open subgroup [HR79, 24.30].
So we have G = R*™ x (F, x ﬁc) Let us write G, = F, x F., for later use.
Our strategy is to first characteize B-Gaussian states on the Weyl system
(Ge, Gean) and then use our result to show that, amongst B-Gaussian states
over G = R?* x (., there can be no bipartite entanglement between the

subsystems R?*" and G.. The full characterization then follows naturally.
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3.4.1 Systems admitting compact open subgroups

The main goal of this section is to establish the following theorem.
Theorem 3.4.1. For a state p € D(L*(F,)), the following are equivalent:
1. pis a B-Gaussian state on the Weyl system (G, Fcan);

2. there exist a compact open 2-reqular isotropic subgroup H < G. and a

character v € H such that

b= pr = /H (&)W a(2)dic, (2). (3.4.1)

Moreover, H and v are uniquely determined.

Let us first focus on the easier direction (2) = (1). The main step in
the proof is Proposition 3.4.4, which requires a few preparatory lemmas. For

notational simplicity we write 0 = Gean = A2 from (3.1.8).
Lemma 3.4.2. Let H be a compact open 2-reqular subgroup of G..
1. For z € G we have z € H® if and only if o(z,h) =1 for allh € H.

H), zc H”
2. ForzEG,/U(Z,Z/)dMGc(Z/): HH)

H 0, otherwise

Proof. (1) If z € H”, then for all h € H
o(z,h) = AY?(z,h) = A(27 2,27 h)2 = A(2,27'h) = 1

as 27'H C H. Conversely, if 0(z,h) = 1 for all h € H then again by definition

of the normalization
Az, h) = A(27'2,271(2R))* = 0(2,2h) =1, heH.

(2) This is from (1) and (2.1.4). O

45



CHAPTER 3. ABSTRACT GAUSSIAN STATES

Lemma 3.4.3. Let H be a compact open subgroup of G.. Then H” is a

compact open subgroup of G.. Morever, if H is 2-reqular then so is H™.

Proof. Since H is open, the quotient G./H is discrete, so that H+ = G/C/\H
is compact. Since H is compact, the dual H is discrete, so that H* is open
from é\c/HL ~ f7. Thus, H* is a compact open subgroup of G,. But H* =
PA(HA) via the isomorphism @A : G, — G., implying that H2 is compact
open in G..

For the final statement, let z € H®. Then for all h € H,

A7z, h) = A(272,27 h)? = 0(2, h),

so the result follows from Lemma 3.4.2 (1). O

Proposition 3.4.4. The element py ., from (3.4.1) is a self-adjoint operator
satisfying the relation 10125(,7 = pe.(H)panms -

Proof. Self-adjointness comes from Wi/o(2)" = Wipa(—2), v(2) = v(—=2).
Since the above integral (3.4.1) is WOT-convergent, and multiplication is

separately WOT-continuous, we have

= [ AW Waa(e e, () ()
- / / V(= + )0 (2 ) Waalz + 2 )dpic, (2)dpic, ()
[ [ A0 = 2 Waa(e e, () ()
:// o(z, 2" YWja(2)dpe, (2)dpc, (2')
~ [ ([ o)) Wil )
—ne () [ A Waal ) ()
HNHA
= IUGC(H)pHﬂHA,’ya
where the second last equality is Lemma 3.4.2 (2). Note that HN H? is again
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a compact open 2-regular subgroup by Lemma 3.4.3, so the notation pynpa ,
is justified. O

Proof of Theorem 3.4.1. (2) = (1): Since H is isotropic, H = H N H~,
so Proposition 3.4.4 implies p3; ., = pa,(H)pn,- By the spectral theorem for
compact operators, pp - is positive with spec(py ) = {0, pe. (H)}. Moreover,
as puy = F&. (71m), by Lemma 3.2.4 and injectivity of ¢ , we have x, =
v1g. In particular, Tr(py ) = x,(0) =1, so pu 4 is a state. Its characteristic

function satisfies the Bernstein identity (3.3.3):

(2 +2)v(z = 2)1g(z + 21k (2 — &)
(2?7 ()" La (2)1n (=),

Xo(z + 2 )Xoz = 2) =
=7
where the last equality uses 2-regularity of H to show z + 2,z — 2’ € H
if and only if 2,2’ € H. On the other hand, x, = 7yly is continuous and
positive definite since v € H and H is a compact open subgroup [Weid0,

Pow40, Rai40]. Consequently, x, is the Fourier transform of a B-Gaussian

distribution, and thus pg . is a B-Gaussian state. O]

The other, more involved direction of the proof of Theorem 3.4.1, requires
additional preparations. The major step, Proposition 3.4.7, concerns the sin-
gularity of Gaussian distributions in our setting, and is based on [Fel08,
Proposition 3.14]. We begin with a few general lemmas. Recall that, in this
chapter, all LCA groups are assumed to be second countable (hence metriz-
able).

Lemma 3.4.5. Let G be an LCA group, and let H be an open subgroup of
G. Then G, < H, where G, is the connected component of the identity in G.

Proof. If m : G — G/H denotes the canonical quotient map, then 7(G.) is
a connected subgroup of the discrete group G/H. Hence, the group 7(G.) is
trivial, which implies G, < H. O]

Lemma 3.4.6. Let G be a 2-reqular LCA group admitting a compact open

subgroup. Then, any path connected closed subgroup of G must be trivial.
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Proof. Let H be a path connected closed subgroup of G. Together with sec-
ond countability, we know that H = R"™ x T™ for some n > 0 and m < Ny
[Arm81, 8.27].

First, connectedness of H implies H < G,.. Since G admits a compact
open subgroup, Lemma 3.4.5 implies that GG, compact. Hence, H is compact,
which forces n = 0.

Second, since G is 2-regular, the doubling map = — 2z is injective on H.
Since this is false for any non-trivial power of T, we must also have m = 0.
Thus, H is trivial. O

Proposition 3.4.7. Let G be a non-discrete 2-reqular LCA group with a
compact open subgroup. Then any Gaussian distribution v on G is singular

with respect to the Haar measure p on G.

Proof. We may assume that v is symmetric (meaning = = 0 in (3.3.1)) by
translation. Then the support C' of v is a connected closed subgroup of G
[Fel08, Proposition 3.6]. By Lemma 3.4.6, if C' were path connected, it would
be trivial, in which case v = ¢, is singular (as G is not discrete).

Suppose C' is not path connected. We know by [Fel08, Proposition 3.8,
Proposition 3.11] that there is a path connected Polish group L (not nec-
essarily locally compact), a continuous homomorphism p : L — C, and a
distribution vy, on L such that v = p(v) (push-forward measure). Hence,
v is concentrated on the subgroup p(L). We claim that p(L) is Borel with
wu(p(L)) = 0, which gives the singularity of v.

First note that p(L) is the image of the induced map p : L/Ker(p) — C,
which is injective. Since L/Ker(p) is a Polish group and C' is metrizable, it
follows that p(L) is Borel by [Tak02, Corollary A.7].

Now suppose, by way of contradiction, that p(p(L)) > 0. Since G admits
a compact open subgroup, G, is compact by Lemma 3.4.5. Hence, C' < G,
is compact, forcing 0 < u(p(L)) < u(C) < oo, which means that p(L) =
p(L) — p(L) contains a neighborhood of the identity of G by [HR79, 20.17].

Thus, p(L) is a subgroup of G with non-empty interior, hence clopen. From
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the definition of the support we then have p(L) = C, which implies that C'

is path connected; contradiction. O

We are now ready to finish the proof of the main result of this subsection.
Recall that G, = F, x F\C where F, is an LCA group admitting a compact

open subgroup.

Proof of Theorem 3.4.1. (1) = (2): Suppose p € D(L?*(F.)) is a B-Gaussian
state. Then Y, is the Fourier transform of a B-Gaussian distribution on
G,. Thanks to 2-regularity and Proposition 3.3.3 it is of the form y, =
Fa.W)|gilgr for a compact Corwin subgroup K < G, and a Gaussian
distribution v on G,. Since K is open and X, € L*(G.) we know that
Fa (v)|ge € L*(K+). We claim that

(¥) Fo, )l = Fo (v

for some Gaussian distribution vk on éc/ K. Supposing (*) holds, the mea-
sure vg € M (@c/ K) has square-integrable Fourier transform and so must
be absolutely continuous with respect to the Haar measure on G, /K (with
square-integrable Radon-Nikodym derivative, by the Plancherel theorem).
This forces K to be open. If not, the group éc /K is non-discrete, and we can
appeal to Proposition 3.4.7 to get the contradiction that vk is also singular
with respect to the Haar measure on G, /K. Note that G. /K satisfies the as-
sumption of Proposition 3.4.7: K is a Corwin subgroup of a 2-regular group,
so it is automatically 2-regular. Together with 2-regularity of @c, it follows
that @C/ K is 2-regular. Also, since @C contains a compact open subgroup,
so too does @C/K as the canonical quotient map m : @c — @C/K is open
(see, e.g., [HRT79, 5.26]). Thus, K is open, and the Gaussian disctribution v
is supported on a connected subset ([Fel08, Proposition 3.6]) of the discrete
group @C/K, so that vg = d,,+x for some 7y € @c. But then

Xo = Fa, xK) ke =75 Lice,
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so letting H = K+, and v = 7, |7, we see that H is a compact open 2-regular
subgroup of G, v € ﬁ, and x, = vly. Thus, p = py, as in (3.4.1).

Let us go back to the claim (x). Viewing Cy(G./K) C Cy(G,) in the
canonical fashion (as functions which are constant on the cosets of K), re-
striction to Cy(G./K) induces a probability preserving map from M (G.)
to M(CA}'C/K) Write vi for the image of v under this map. Then, for all
f € Cy(Ge/K),

(V)o@ @iy = (V) (0y(@0 160y

o —

Consequently, vk is a Gaussian distribution on @C/ K and for z € (@C /K) =
K+ <G,

Fa.xv)(z) = /@ » (2,7 + K)dvi (v + K) = (271, Vi) (080 /50 01(Bu )

-1
= (27 V) (0 (G (@)
= Fa. (V)|k(2).

It remains to show that H is isotropic. Uniqueness follows from (twisted)
Fourier inversion. If we denote Hy = H N H*, then p* = ug,(H)pm,~ by
Proposition 3.4.4. Since Hy is compact, open, isotropic and 2-regular, pg,
is a B-Gaussian state with p%,w = pe,(Ho)pm, ~- The eigenvalues of py, , are
therefore 0 and pu, (Hp). Since Tr(pp, ) = 1, the eigenvalue p, (Hp) has mul-
tiplicity pg, (Ho)™", implying that p has the eigenvalue g, (H)"?uq,(Hg)'/?

with the same multiplicity. From the condition Trp = 1 we get

pie, (H) Y g, (Ho) Y g, (Ho) ™ = 1,

which implies pq, (H) = pe,(Ho). If z € H\Hy, = H N H§, then there is an
open neighbourhood U of z in H\H,. But then

pa.(H) > pe.(HoUU) = pg,(Ho) + pe. (U) > pa.(Ho),
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contradiction. Thus, H = Hj is isotropic. O
Remark 3.4.8.

1. If G, admits no compact open 2-reqular subgroup, then Theorem 3.4.1

tells us that there are no B-Gaussian states.

2. There are 2-regular LCA groups with no non-trivial, proper closed 2-
regular subgroups. For example, take the 2-adic rationals Q5. Then Q-
is 2-regular as it is a field. However, if H is a non-trivial 2-regular closed
subgroup of Q, then necessarily 27'H = H. But then 27"H = H for
all n € N. Pick © € H with |z]; > 0. Then (27"z) is a sequence in H
with |27"z|y = 2"|x|s — o0 as n — oo. Hence, H is not bounded and
therefore not compact. However, every proper closed subgroup of Qs is
compact (and open) [RS68, Corollary 9], so H = Q. A similar argu-
ment shows that any closed 2-regular subgroup of QF is not compact.

In particular, there is no B-Gaussian state over the 2-adic Weyl system
Qs x Qf =~ Q3.

The following Corollary is a reason for us to consider B-Gaussian states

instead of Gaussian states.

Corollary 3.4.9. There is no Gaussian state in the Weyl system (G. =

F. X F.,Gcan) unless F, is trivial.

Proof. If p is a Gaussian state, then it is B-Gaussian, so p = pg, for H,v
as in Theorem 3.4.1, and x, = vlg. Since every Gaussian state has non-
vanishing characteristic function, we have G. = H. However, isotropy of H

and non-degeneracy of the symplectic form A implies that
G.=H c H* =G> = {0}.

]

Remark 3.4.10. Based on the characterization of B-Gaussian states we can

easily determine their von Neumann entropy. Indeed, in the proof of Theorem
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3.4.1, we saw that the non-zero spectrum of py ., is pe, (H) with multiplicity
pe.(H)™L Tt follows that

S(pr) = log(pic, (H) ™). (3.4.2)

Example 3.4.11. When F' is a 2-regular finite abelian group (here 2-regularity
equivalent to F' having odd cardinality), our Haar measure on G = F' X F
satisfying Theorem 3.2.3 is u(-) = |- |/|F|, where |- | denotes the cardinality.

Therefore, the B-Gaussian state py ., can be written as

PHy = % D () Wips(2).
z€H
Moreover, we will see later that pg, is pure if and only if H is maximally
isotropic, or equivalently, |H| = |F| (Lemma 3.4.17, Proposition 3.4.18). In
particular, if G = Z}} x Z\g = 7 x 2 with d odd, we have py ., = |H,v)(H,v|
(represented as in (3.3.4)) for some v € G, by symplectic duality. Therefore,
pure B-Gaussian states over Z) X 2} coincide with stabilizer states of n-qudit

systems.

Remark 3.4.12. From the phase space perspective, the starting point of
the stabilizer formalism of quantum error correction [CRSS98, Got97] is an
isotropic subgroup H of G = Z3" =2 7 x @ The same idea works for more
general phase groups G = F,. X ﬁc: for a compact open 2-regular isotropic
subgroup H < G and a character v € H , one can encode information in the
subspace of the system Hilbert space L?(F,) which is stabilized /fixed by the
action of (the abelian group) & = {~(h)Wi2(h) : h € H}. The B-Gaussian

state pp~ is precisely the normalized projection onto the stabilizer subspace
C(S) = {v € L*(F,) : s|yp) = |¢) for all s € S}.
Indeed,

P i= ol H) pu = ()™ [ () WayalW (1)
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satisfies P? = P > 0 (Proposition 3.4.4), so P is an orthogonal projection.
Moreover, we can show that v(h)Wis(h)P = P for all h € H from the
definition (since h — v(h)Wi/2(h) is a group homomorphism), so Ran(P) is
contained in C(S). Finally, every vector |¢) stabilized by S clearly satisfies
Ply) = 1), which means that C'(S) C Ran(P).

Example 3.4.13. In Zelenov’s (relatively recent) papers [Zell4, Zel20], Gaus-
sian states on L?(Q,) were defined by x, being the indicator function of a lat-
tice L C Q, x Q, (multiplied by a suitable character on L). By a lattice, they
mean a rank-2 free Z,-submodule of Q, x Q,,, where Z, = {x € Q, | |z|, < 1}
is the ring of p-adic integers. Concretely, this means that there exist Z,-
linearly independent z1,2o € Q, X Q, such that L = Z,z © Z,z,. Their
Gaussian terminology was justified through the observation that such indi-
cator functions are eigenfunctions of the symplectic Fourier transform.

Let us check that Gaussian states in the sense of Zelenov coincide with
B-Gaussian states. To this end, let G = Q7 x Qp with p an odd prime (so
that G possesses B-Gaussian states, Remark 3.4.8(2)). We equip G with the

metric induced by the norm

||| = ax Zilp, 2= (21,..., 22n) € G.

Note that the closed unit ball of G = Q2" in this norm is Z2".

Let p be a B-Gaussian state on L2(Q;}). Since G is 2-regular and admits
a compact open subgroup, by Theorem 3.4.1 there exist a compact open (2-
regular) isotropic subgroup H and a character v € H such that P = PHpy-
Note that any closed subgroup of G is automatically 2-regular since it is a
Z,-submodule and % € Z, for odd primes p. By compactness there exists
N € N for which H C p~VZ2". Hence, p"H is a Z,-submodule of the free
module Zf)”. Since Z,, is a principle ideal domain, p" H is free of rank at most
2n. In addition, H, and therefore p™ H is open in Q2", so there is some k € N
such that Be,-«(0)*" C pVH, where B.,-«(0) = p*Z, is the clopen ball of
radius p~* in Q,. It follows that p*e; € p™H, where ¢; are the standard
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2n

5, S0 pVH contains at least 2n independent elements.

basis vectors of Q
Therefore, the rank of p H is 2n, implying the existence of Z,-independent
hi, ..., han € H for which H = spang {p™hy,...,p"Vha,}. Hence, H is a free
Z,-module of rank 2n inside Q2", that is, a lattice.

Conversely, let p be a Gaussian state on L?(Qp) in the sense of Zelenov
associated to a lattice L. To prove p is B-Gaussian, it suffices to show that
L is a 2-regular compact open isotropic subgroup of Q; x Q. Indeed, L =

@12;11 Z,z; for some independent z1, ..., 29, € Q;", and therefore,
2n 2n
(pNZp)2n = @ Zp(pNei) CLC EB Zp(p_Nei) = (p_sz>2n
i=1 i=1

for sufficiently large N. Since @127:11 Z,z; is clearly closed in Q) x Qy, this
inclusion explains that L is compact and open. The closedness again implies
that L is 2-regular as before. Now we apply the same argument as in the
proof of Theorem 3.4.1 for the direction (1) = (2) to show that x, =1, is a

characteristic function of a state only if L is isotropic.

3.4.2 General 2-regular systems

Let us go back to the Weyl system (F' x F , Ocan) Over a general 2-regular LCA

group, where F' = R" x F, with F, admitting a compact open subgroup.

Theorem 3.4.14. Every B-Gaussian state in the Weyl system (G = F X
Z?, Gean) 1S of the form p, @ p., where p, and p. are B-Gaussian states in the

Weyl system (R™ x f&?‘, Ocan) and (G. = F, X ﬁc, Tean), TESpeECtively.

Proof. Suppose p € D(L*(F)) is B-Gaussian. Proposition 3.3.3(1) implies
that the support of x, is an open subgroup H of F' x F R (F. x ﬁc)
Thus, H = R?" x K for an open subgroup K of F, x ﬁc. A straightforward
calculation shows that the reduced state (Tr ® id)p € D(L*(F,)) satisfies

X(Tr®id)p = Xp|{0}ch>
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so that (Tr ®id)p is a B-Gaussian state over the Weyl system (G, Gcan) With
X(Tr@id)p Supported on K, which must be compact thanks to Theorem 3.4.1.

Now we apply Proposition 3.3.3(3) to get x, = 1yyexp(—¢) for some
v E H and some non-negative continuous ¢ : H — R satisfying (3.3.2). Let
v : Hx H — R be the continuous biadditive form associated to ¢ in Remark

3.3.2(2). We therefore obtain a continuous homomorphism
H > zw—19Y(z,-) € Hom(H,R),

where Hom denotes the set of continuous homomorphisms. Since H = R?" x

K, the above homomorphism can be regarded as an element of
Hom(R*" x K, Hom(R*" x K,R)),
which, by commutativity of R, identifies canonically with the product group

Hom(R*", Hom(R?*"*,R)) x Hom(K, Hom(R**, R))
x Hom(R?*", Hom(K,R)) x Hom(K, Hom(K,R)).

Under this identification, we may write

Y y/
where A € Hom(R?**, Hom(R?*",R)) & M,,(R), B € Hom(K, Hom(R?*",R)) =
Hom(K,R*), C' € Hom(R?*", Hom(K,R)) and D € Hom(K, Hom(K,R)).
Since K is compact, Hom(K,R™) = {0} for any m € N. Thus, B = C' =

D = 0, and we have ¥((z,y), (z',y)) = (Az,2'), z,2' € R*",y,y € K and

consequently

A B
C D

X

B((,y), (@) = < y

>, 2 € R, y,y € K.

o((z,y) = ¥((z,y), (z,y)) = (Az,z), e ™"y € K.

Since v € H =R x K = R x [?, we may write v = 7, X 7. with
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Yn € @, Ye € K. Putting things together, we see that

Xp(2,y) = 1Y) V() Vn(x) exp(—(Az, 2)) = xn(2)Xc(y), = €R™, yeK,

where X, = Xplr2nx{0} = X@doT)p and Xe = Xol{oyxx = X(Troid), are the
characteristic functions of B-Gaussian sates in p, € D(L*(R")) and p. €
D(L*(F.)), respectively. By uniqueness of characteristic functions, it follows

that p = p, ® pe, where p, = (id® Tr)p and p. = (Tr®id)p. O

Remark 3.4.15. Theorem 3.4.14 shows that there is a topological obstruc-
tion for B-Gaussian states over the Weyl system (F x F ,Ocan) With F' =
R™ x F, to have bipartite entanglement with respect to the decomposition
L*(F) = L*(R") ® L*(F.). A similar separability phenomenon is known to
hold for minimizers of the entropic uncertainty principle over LCA groups
[OP04].

3.4.3 Pure Gaussian states

Based on our characterization (Theorem 3.4.14), every B-Gaussian state in
a 2-regular Weyl system (F' X F , Ocan) 18 of the form p, ® p., where p, and
p. are B-Gaussian states in the Weyl systems (R" x @1, Fean) and (Ge, Gean ),
respectively. Since a product state is pure if and only if each component is
pure, and the purity of bosonic Gaussian states has been characterized (see
[AGIO7, Section 3], for example), the characterization of pure B-Gaussian
states reduces to the case of p.. By Theorem 3.4.1, it is of the form pg, for
some compact open 2-regular isotropic subgroup H < (. and a character
v € H.In Proposition 3.4.18 we will prove that pg . is pure if and only if
H is maximally isotropic. Moreover, we show that every pure B-Gaussian
state is determined (up to a Weyl translation) by a symmetric bicharacter

(Theorem 3.4.19). We begin with some preliminary results.

Lemma 3.4.16. For any compact open subgroup H < G. we have

p(H)p(H) = 1, (3.4.3)
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where pn = pg, .

Proof. Let ®5 be the (canonical) symplectic self-duality on G.. By unique-
ness of Haar measures, there exists ¢ > 0 for which ®a(u) = cug , where
A (p) is the push-forward measure. Since H+ = ®(H?), by the Plancherel

theorem we have

U= ) 21 Py = [Pl P ey, (344
= || () 10 |, = 1 H) g, (HY) = ¢ p(H)p(H>).

It remains to show that ¢ = 1. Since G, admits a compact open 2-regular
subgroup, so too does F, (project onto first coordinate). Let K < F, be such
a subgroup. Then as shown in Example 3.3.7, the characteristic function of
the state ¢ = pp, (K)™V21g € L3(F.) is Xjuyw| = lixxxL. It is easy to see
that K x K+ is a compact open Lagrangian subgroup of G.. Hence, (3.4.4)
implies

u(K ¢ K22 = (K x K5)u((K x K%)= c.

Theorem 3.2.3 then shows

L= ) WIIE = e B,y = 1K x K*) = Ve (3.4.5)

]

Lemma 3.4.17. Let H be a compact open isotropic subgroup of G.. Then H
is Lagrangian if and only if pe, (H) = 1.

Proof. Let u = pg, for simplicity. If H = H?, then pu(H) = 1 is direct from
Lemma 3.4.16. Conversely, if u(H) = 1, then we get u(H) = p(H?) =1
from the conditions u(H) < u(H?) and p(H)u(H?) = 1. Since H C H?,
this implies that H = H®. Note that H® is compact open by Lemma 3.4.3

0

Combining (3.4.2) and Lemma 3.4.17, together with the fact that a state

is pure if and only if its entropy is 0, we get the following conclusion.
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Proposition 3.4.18. A B-Gaussian state py, is pure if and only if H is

Lagrangian.

We now show that pure B-Gaussian states in D(L?(F,)) are determined
by a point in the phase space GG, and a symmetric bicharacter, which is the
analogue of the first and second moments for pure bosonic Gaussian states.

Recall that a bicharacter 5 : K x K — T on an LCA group K is symmetric
if B(x,y) =By, z), z,y € K.

Theorem 3.4.19. A pure state p = |¢p) (1| € D(L?*(F,)) s B-Gaussian if and
only if there exists a compact open 2-reqular subgroup K of F,, a symmetric
bicharacter 5 : K x K — T, zy € G, and o € T such that ¥ = aW (zo))o,

where
Vo(z) = pp (K) Vg (2)B(x, 27 ), = € F, (3.4.6)

Alternatively, for zo = (xo,7) we have
U(@) = apr,(K) ™1y (2)y0(2) B(2,2712), z € F,
for some & € T. In this case, p = pyr where I' = A(z,-) and
H={(x,7) €G.:2 € K,7[g = B(x,)}. (3.4.7)

Remark 3.4.20. Note that the above theorem implies that we can choose
a continuous wave function for every pure B-Gaussian state. Furthermore,
the result includes the characterization of stabilizer states in [Gro06, Lemma
18], which is equivalent to saying that if d > 3 is an odd integer, every pure
B-Gaussian state p = |¢)(¢| € D((3(Z2)) with ¢(z) # 0 for all x € Z" is
exactly of the form

w(x) _ d—n/QWxTAm+sz+c

Y

where w = exp(#*), A € M,(Zy) is a symmetric matrix, b € Zj, and ¢ € R.

The proof of Theorem 3.4.19 begins with a connection between compact

open 2-regular Lagrangian subgroups and symmetric bicharacters, as follows.
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Lemma 3.4.21. There exists one-to-one correspondence between the family
of 2-regular compact open Lagrangian subgroups H of G. and the family of
pairs (K, B) consisting of a compact open 2-reqular subgroup K of F. and a
symmetric bicharacter . K x K — T, related by equation (3.4.7).

Proof. For a given pair (K, 3), let H C G, be defined by the relation (3.4.7),
which can easily be checked to be 2-regular closed subgroup of G.. The
isotropy of H follows from the symmetry of 3: for (z,7v), (¢/,7') € H,

A((z,7), (¢',7) = Bz, 2")B(a', ) = L.

Moreover, for each x € K, the corresponding section
H, := {7 eF,:(z,7) € H} = {7 €F, vk = ﬁ(x,-)} (3.4.8)

is actually a coset of K+ in F.. By Fubini’s theorem and (3.4.5), we have

i, (H) = /K g (Hy) dpr, () = /K i (KY) dpir () = s, (K g, (K) = 1.

This implies that H is open and compact by (2.1.1), and H is Lagrangian by
Lemma 3.4.17, which explains one direction of the correspondence.

For the reverse direction, let H be a compact open 2-regular Lagrangian
subgroup of G.. For the natural projection 7g, : (x,7) € G.+— x € F,, define
K :=7p (H). Then K is a 2-regular compact open subgroup of F, since mp,
is a continuous homomorphism and an open map. We first claim that for
cach v € K, we have H, = ~, + K+ for some v, € ﬁc, where H, is from
(3.4.8). Indeed, we can pick any 7, € F, such that (z,7,) € H, and then

y€EH, <= (0,7 —7,) € H=H"

< A0,y — 72), (2',7) = v(@' )y (2') =1 for all (2',7") € H
= y—vy e Kt yeq, + KL

Next, we claim that the map T : K — ﬁ/KL, r — 7, + K+ is a continuous
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homomorphism. The additivity is clear from the definition, and the continuity

comes from the facts that F /K* is discrete and

KerT = {x € K : (z,7) € H for some v € K}
= U {r e K:1y(z,v) # 0}

yeKL

is open, which in turn comes from the continuity of the function 1. Passing
through the canonical identification F JK+ = K we obtain a continuous
homomorphism 7 : K — K , and we can readily check that the associated
bicharacter §: K x K — T, (z,y) — 7.(y) is the one we were looking for.

Indeed, [ is symmetric since H is isotropic:

B(x,y)B(y, v) = v(y)yy(x) = Az, %), (¥, 1) =1, 2,y € K.

The relation (3.4.7) is now straightforward.
Finally, one can easily check that the maps (K, 3) — H and H — (K, ()

are inverses to each other. O

Proof of Theorem 3.4.19. Suppose p = pgr is a pure B-Gaussian state. Then
H is a 2-regular Lagrangian compact open subgroup of G. by Proposition
3.4.18. By considering py := Wi(zp)*pW (z) for zp € G. such that I' =
A(zp, ), we may assume that ' = 1. Moreover, we can choose a pair (K, )
as in Lemma 3.4.21 such that equation (3.4.7) holds. For the conclusion we
only need to check that x, = x, for ¥(z) = pp (K) 1k (z)8(x, 27 ),
x € F,. First, we recall that x,(x,v) = 1g(x,7) = 1x(x)1y, (7), (z,7) € G..
Moreover, there is v, € F\C such that H, = ~, + K=+ for each € K as in
the proof of Lemma 3.4.21. Recall also that 5(x,y) = 7.(y) with the above
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choice. Now we observe that

x(@:7) = / =20 $y — D)) dun(v)
- /K T = T D n (K) My — 08,y — 27 2)djun ()
_— /K T e (K) B, y)dyar ()

= 1x(2) /K YW pr (K) v (y)dpr, (y)

= 1x(2)1y, 1k (V&)

which lead to the desired conclusion.
We also get the converse by following the above calculation process back-

wards, again combined with Lemma 3.4.21. [

It is well-known that in bosonic systems, every Gaussian state belongs to
the norm-closed convex hull of pure Gaussian states ([Serl7, Problem 5.10]).

The same phenomenon occurs in our setting.

Lemma 3.4.22. Let H be a compact open 2-regular isotropic subgroup of

G.. The map G. > 7 pu~ € SYL*(F,)) is norm continuous.

-~

Proof. Take a net (v;) converging to v € G., meaning uniform conver-
gence on compact sets. Since H is a compact open subgroup, it follows that
Yilg — y1g in L*(G.). Thus, by continuity of the twisted Fourier transform
(Theorem 3.2.3)

it = FE(ulu) = F5(11n) = pis

in 8*(L*(F.)). Since p¥; ., = pg.(H)pu,, (Proposition 3.4.4) we have | /b -, =
pia,(H) 2 pp . Similarly, \/pas = pe,(H)™?pu . Hence,

VPt = VPl = e (H) ™ lpt: = prall, = 0
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in 8?(L*(F,)). Furthermore, isotropy of H implies py ~.pu~ = pr~pH~; and

lpr — pEAl, < H\/pHm- - \/pHﬁ”Q H\/pHm' + \/pHﬁ”z — 0.

]

Theorem 3.4.23. Every B-Gaussian state in S*(L*(F)) belongs to the norm

closed convex hull of pure B-Gaussian states.

Proof. Thanks to the decomposition p, ® p. we can focus on the case of the
state p. = pu~ for some compact open 2-regular isotropic subgroup H of G.
and a character v € H. Pick a maximal isotropic subgroup K containing H
(by Zorn’s lemma, if needed). Since H* is a compact open subgroup of @c
and the map 7' — pg - is continuous by Lemma 3.4.22, the following state

is well defined. .

p:—/ PrAvdig, (V)
g, (HY) Jyo 0Ge

We only need to check that x,, = x, for the desired conclusion by Propo-
sition 3.4.18. Indeed, for z € G, we have

|
Su
£
T
'_
=
&
2
=
ol
&
1Y
=
§)>
=
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3.5 Angle-number systems

In this section we show that B-gaussian states in the angle-number system
in d-modes are nothing but the pure states whose wave functions are the
elements of the canonical orthonormal basis {|m) = |e,,) : m € Z¢} C H =
L2(T?) = (2(Z%), where e,,(0) = e2™%™ § € T9. Recall that the associated
Weyl representation W, is

Wia(0,n) == ™™ TyM,, (0,n) € T x Z°.

See Section 3.1.2 for details.
The first step of the proof is to determine the characteristic functions for

rank-1 operators acting on H.

Lemma 3.5.1. For a,b € Z¢ we have
X|a><b|<97 n) = 5a—b,n em<9’a+b>, (9, n) & Td X Zd. (351)
Proof. 1t is straightforward from the computation

Xlaypl (05 1) = (b[W1/2(—0, —n)la)
/ 6_2Wi<9/,b)€7ri(9,n)627ri((0’+€),a_n> d@/
"]Id

. _ ot g )
_ 67rz<9,2a n}/ 627rz(9 ,a—b—n) Ao = 5a—b,n€m<07a+b)~
Td

O

We again remark that the formula (3.5.1) is only valid for our identifica-
tion € [~1,1)¢ through (3.1.11),

T 202
Theorem 3.5.2. The set of all B-Gaussian states for the angle-number sys-
tem in d-modes is the set of all pure states of the form |m)(m| for some
m € 7.
Proof. Let p be a B-Gaussian state with the (open) support H of x,. Since H
is an open subgroup of G = T? x Z? we know that H = T?x K for a subgroup
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K of Z4. It is easy to check that the Haar measure p on G respecting the
twisted Plancherel formula (3.2.2) is given by

/fdu—Z/f@nd@ feC.(G).

nezd

Then, by (3.2.2) and Lemma 3.5.1, we have

(alplt) = Te(p(la))") = 3= [ 3,62 @) o

n€zad

_ Z/ 511 anp 0 7’L) wi{0,a+b) d6

nek

:/ Ix(a —b)x,(0,a — b)e ™0+ 4p
Td

for a,b € Z%. In particular,

—

<WW=/mefwwwzm@W%a€W
Td

On the other hand, the B-Gaussianity of p again implies that g(-) := x,(-,0) is
positive definite and satisfies the B-Gaussian identity (3.3.3) on T¢. Thus, g is
the Fourier transform of a B-Gaussian distribution on Z¢ 2 Td by Bochner’s
theorem. Furthermore, we note that Z¢ contains no subgroup homeomor-
phic to T? and g is nowhere vanishing. Then, Proposition 3.3.3(2) tells
us that ¢ is the Fourier transform of a Gaussian distribution. If we write
g(0) = e2™40m) exp(—p(#)) for some m € Z? and continuous ¢ : T¢ — [0, c0)
satisfying (3.3.2), then compactness of T? and Remark 3.3.2(2) says that
¢ = 0 since Hom(T? R) = {0}. Consequently, we have (a|pla) = §(a) = ..
The above computation means that the diagonal part of the operator
p (as an infinite matrix) is zero except one point. Thus, we can conclude
that off-diagonal parts of the positive operator p must be zero. This forces
p = |m)(ml.
O
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Recalling the fact that the Fourier transform of a Gaussian distribution

has full support we get the following conclusion.

Corollary 3.5.3. There is no Gaussian state for the angle-number system

i d-modes.

Remark 3.5.4. The above characterization is consistent with the results
about characterizing pure states with non-negative Wigner functions on the

angle-number system in 1-mode [RSSK*10].

3.6 Fermions and hard-core bosons

In this section we show that there are no B-Gaussian states in the fermionic
and hard-core bosonic systems, introduced in Section 3.1.3. Although stabi-
lizer states exist and are heavily studied in these qubit systems, in comparison
with our previous results on finite 2-regular groups, this section shows that
qubit stabilizer states do not possess an underlying Gaussian characterization
in the sense of Bernstein.

We begin with a simple description of B-Gaussian distributions on Z%'.

Proposition 3.6.1. Every B-Gaussian distribution on G = ZY' is of the

form 9, for some a € G, which is a Gaussian distribution on G.

Proof. Let p be a B-Gaussian distribution on G = Z3" and let H = supp /.
Then the annihilator H+ is trivial (or equivalently, H = @) since it is a
compact Corwin subgroup of GG in which all elements have order 2. Thus,
Proposition 3.3.3 (2) tells us that p is a Gaussian distribution on G. In
particular, (i is a character on G as the associated quadratic function ¢
must vanish, which means that p is a point-mass at some point on G. Note
finally that it is straightforward to see that every point-mass is a Gaussian
distribution.

O

Let us first focus on the hard-core boson setting.
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Theorem 3.6.2. For any choice of normalizing factor & (3.1.17), there is no

B-Gaussian state on the quantum kinematical system (Zy X 7%, Gcan)-

Proof. Suppose p € D((C?*)®") is a B-Gaussian state associated to the (B-
)Gaussian distribution d,, a € Z3" (Proposition 3.6.1). By Equation (3.2.7)
and the non-degeneracy of A, there exists 2y € Z3" such that py := W (2)*pW (20)

has a characteristic function

T

Xoo (W) = A(z0, w)a(w) = (—1)% ¥ (=1)a" = 1.

However, the twisted Fourier inversion (Proposition 3.2.4) gives that

1
Po = 2_’“ Z Wl/2,can 2n Z é can

z€Z3" 2€Z3"

and the RHS must define a state. On the other hand, for z = (x1,...,Zn, Y1, .-, Yn) €
Z3", observe from (3.1.16) that

([d® - ®id ® Tr)Wean(2) = 2004, 00,4, h{ BE" - - - hgn_shin ).
By repeating the procedure, we get

([dRTr® -+ @ Tr)Wean(2) = 2" 1 00.0500.45 * * * 00,0, 00,4, BT hE2.
Therefore,

(ideTr®--- @ Tr)p Z E(zre1, yre1)hithY!
731 WY1€L2

1
=-(I+X+Y+2)
2

where ¢; = (1,...,0) € Z%, from the formulae £(e1,0)? = £(0,¢e;)? = 1 and
£(e1,e1)? = —1. But it is easy to see that, for any choice of signs, the resulting

operator is not positive, a contradiction. ]

The same method works for fermionic systems.
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Theorem 3.6.3. For any choice of the normalizing factor £ (3.1.15), there

is no B-Gaussian state on the quantum kinematical system (Z3", Gier).

Proof. As in the hardcore boson case it boils down to check the operator

p= 2% Z g(a)errm)

acz2

is not positive. By the same argument in Theorem 3.6.2, we have
(ld RTr®---® Tr)err(a) = 2n_150,a:350,x4 T 50,902710%10;2
for a = (x1,...,%9,) € Z3", and therefore,

1
(dTr®---®Tr)p = 3 Z E(x1, 9,0, ...,0)c] 52

T1,T2€%L2

1
= JUEX+Y £2),

which is a contradiction as before. O

3.7 Hudson’s theorem for 2-regular totally dis-

connected groups

Hudson’s theorem [Hud74] and its higher dimensional generalization [SC83]
show that pure bosonic Gaussian states can be characterized by non-negativity
of their Wigner functions. Gross [Gro06] continued this line of research for
the Weyl system with F' = Z[}, d(> 3) odd, characterizing pure states with
non-negative Wigner functions as the class of stabilizer states, i.e. pure B-
Gaussian states in our terminology. We extend the result of Gross to the
case of totally disconnected groups. Recall that a topological space is totally
disconnected if the only connected sets are singletons. Note that our proof
is inspired by the one of Gross [Gro06], but there are fundamentally new

aspects to accommodate the infinite group setting.
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In this section, F' denotes a (second countable) 2-regular totally discon-

nected LCA group, unless otherwise noted.

Proposition 3.7.1. (van Dantzig, [VD36], [HR79, Theorem 7.7]) Every
open neighborhood of the identity of a totally disconnected locally compact

group contains a compact open subgroup.

Since F' contains a compact open subgroup, all the facts from Section
3.4.1 are applicable to the kinematical system (G = F' X a ,O0 = Ocan) With
the corresponding Weyl representation W = W, 5 given by

Wz, 7)d(y) = 272, y, Ne(y —a), ¥ € L*(F), z,y € F,y € F.

Let us express the Wigner function W, of a vector state ¢ € L*(F) using

the self-correlation function as in [Gro06, p.10],

@q(x) =(qg+ 27 2)Y(qg — 27 '), g,z € F.

We first note that

Xo(2,7) = /(2‘1x,7><y,7> by — 2)0(y)dur(y) = 272,76 (v)

with g.(y) = ¥(y — x)¥(y), x,y € F,~v € F. On the other hand we have

A((g,p), (,7)) = p(2)7(q), g, € F,p,v€F.

Combining the above we get

Wylq,p) = [FF @ (F")7 (xe)(0.0) = (F g.(g+27"))(p)
= @F(p), qgeFpeF. (3.7.1)

The main theorem of this section is the following.

Theorem 3.7.2 (Hudson’s theorem, 2-regular totally disconnected

version). For a pure state ¢ € L*(F) over the Weyl system (F x ﬁ, Tean)s
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the following are equivalent:
1. p=|Y)(¥| is B-Gaussian,
2. 1 is continuous and Wy > 0 a.e.

The proof for the direction (1) = (2) is a simple combination of Theorem
3.4.1 and Theorem 3.4.19. Indeed, a B-Gaussian pure state p = pyr associ-
ated to a Lagrangian subgroup H and a character I' = A(z, ) has a char-
acteristic function x, = I'- 1. Therefore we have Wy, (2) = 1y(z — 29) > 0.
Moreover, (3.4.6) reveals that v is continuous.

The reverse direction (2) = (1) is the main difficulty. Let us begin with

a lemma which exploits the total disconnectedness of F'in a crucial way.

Lemma 3.7.3. If f € LY(F), f >0 ae., and if f is continuous at 0, then
felLl

Proof. Proposition 3.7.1 and second countability of F' give a sequence { K},
of compact open subgroups of F' decreasing to the trivial subgroup. Now we
claim that 1(x,)r — 1 pointwise on Fasn— oo Indeed, if v € F and
€€ (0,1),thenV ={z € F: |(z,7) — 1| < €} is a neighborhood of 0. Choose
N such that Ky C V. Since K,, C V for n > N, we have

Lt (1) = 1 = | (K) ™ T, (1) = 1

/V (@) — Dur(F) ™ 1, (2) de

<e(<1/2).

Since |1(g,)1 () — 1] is either 0 or 1, we have 1(x y1(y) =1 for all n > N.

Now we apply the monotone convergence theorem and Fubini’s theorem
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together with the above claim to get

i = i [ fo) ()

n—oo
:g@/[ﬂwm»m@wmw
= lim e (K / (@)1, (z
= f(0) < oc.
Note that we used the continuity of f at 0 for the last equality. [

We proceed with an analogue of [Gro06, Lemma 11].

Lemma 3.7.4. If ¢ € L*(F) is continuous and Wy > 0 a.e., then ¢, is a

positive definite function on F' for each q € F. Moreover, we have

[9(@))* > [¢(g + )| [¥(g — =), (3.7.2)
W27 @ +y)I* > [()] [ (y)l, (3.7.3)

and
0g (27 (@ + ) * > [0q ()] 10g(y)] (3.7.4)

forall q,x,y € F.

Proof. Since 1 is continuous, we know that ¢, is also continuous for all
¢ € F. From our assumption and (3.7.1) we have @, = Wy(q,) > 0 a.e..
Moreover, we know ¢, € L*(F) since ¢(q+27!) € L*(F), so we can appeal
to Lemma 3.7.3 to conclude that @F is integrable. This implies that ¢, is

positive definite on F' for all ¢ € F' from Fourier inversion.
©q(0) pq(21)

Now, the positivity of the matrix [
Pq(—2x)  9q(0)

} gives

4(0)* = 94(22)pg(—22) = [¥(q)|" = [ (g + 2)PlY(g — 2)* 2 0, w € F,
which is (3.7.2). It is easy to see that (3.7.2) and (3.7.3) are equivalent thanks
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to 2-regularity and we can apply the latter to get

lpg 2 @+ )P = [v(g+ 272 (@ 4+ 9)|* x [v(g—2%(z +y))]
> |ip(q + 27 2)|[0(g 4+ 27 )| x |v(g — 27 )| (g — 271y)|

= (@)l leqW)l, ¢z, y € F.

[]

The above lemma has an immediate consequence, which will be crucial

for the proof of the main theorem.

Corollary 3.7.5. Suppose ) € L*(F) is continuous and non-zero with Wy, >
0. The set supp ) is balanced (i.e. x,y € supp ¢ implies 2~ (x+y) € suppv)
and contains a coset of a compact open subgroup of F. Moreover, || is

constant on any such coset.

Proof. The set supp 1 is obviously balanced from the inequality (3.7.3). Since
¥ is continuous and not identically zero, supp ¢ is a nonempty open set and
the second assertion follows by Proposition 3.7.1. For the last statement we
consider a compact open subgroup K of F and x € F with x + K C supp .
The function || achieves a minimum m, > 0 on z + K, say at x,,, by

continuity. However, (3.7.2) implies that

mg = [Y(@m)]* = [$(@m + Y)ll(@n —y)l = mg, y €K,

which forces |¢(x,, + )| = | (xm — y)| = m, for all y € K. Since z,,, + K =
x + K, this means that |[¢)| = m, on x + K. O

The next is the most important step towards the proof of Theorem 3.7.2.
It says that the function |¢| is constant on its support, which happens to be

a coset of a compact open 2-regular subgroup of F.

Lemma 3.7.6. If ) € L*(F) is a continuous state and Wy > 0, then there
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exist g € F' and a compact open 2-regular subgroup K of F' such that

0] = pp(K) Loy (3.7.5)

For the proof of Lemma 3.7.6 we consider the following subsets of F:

Ky = {z € F: |py(2)] = ¢4(0) = [¥(q)*},
Kt {z € F i og(a)] = e},
Ly={z€F:|px)| >0} ={x € F:q+t27 'z € suppy}, (3.7.6)

for continuous ¢ € L*(F) with W, > 0, ¢ € F and € > 0. It is obvious that

K,CK;CL,=|]JK;
>0

for ¢ € suppy and 0 < € < [¢(¢)|*>. The following lemma shows that the

three sets are actually identical.

Lemma 3.7.7. If ¢ € suppt for continuous ¢ € L*(F) with W, > 0,
then K, is a 2-regular compact open subgroup of F', and K, = K; = L, for
0 <e< (g

Proof. We first check that K, is a compact open subgroup. Proposition 2.1.1
says that K, is a closed subgroup. Since supp ) is an open set containing g
there is a compact open subgroup K such that ¢+ K C supp ¥ by Proposition
3.7.1. Then 2K C K, by the fact that |¢| = [1(¢)| on ¢+ K (Corollary 3.7.5)
and by the definition of ¢,. Since 2K is open (F being 2-regular), K, has

nonempty interior, and is therefore clopen. Moreover, as ¢, € L'(F'), we have
e (K)es0) = [ len(@lde < gyl < o
q

Consequently, pp(K,) < oo, which means K, is compact.
Let us move our attention to K¢, € € (0,[¢(¢)]*), a nonempty closed

subset of F. By Proposition 2.1.1(2), |¢,| is constant on the cosets of K, so
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that
r+ K, C K, forany z € K. (3.7.7)

Thus, K is a union of cosets of K, and in particular, is open. Moreover, we

can observe that K is actually a finite union of cosets of K, i.e.

K= J@i+K,), 5,€ Ky, 1<i<n. (3.7.8)

=1

Indeed, we have

ur() < [ e allde < gyl < o
a

which gives us the observation since cosets are disjoint with the same (non-

zero) Haar measure as K.

Now let us show that K is a subgroup of F'. The fact that K is closed
under the inversion x — —z comes from |¢,(z)| = |¢,(—2)|, € F. In order
to show K is closed under addition, we first observe that K is closed under
the map = — 27!z by (3.7.4) with y = 0. Thus, it suffices to show that
2K C K from the identity = +y = 27! (22 + 2y). To this end, we only need
to check that 2z; € K; for 1 < k < n. We will focus on the case of x; for
simplicity. Since K7 is closed under the map z 271z we get a sequence
{27921}2, in K. From (3.7.8) we can pick 1 <i <n and 0 < j; < js such
that 2772, € z; + Ky, | = 1,2. In particular, there exist yi,y2 € K, such
that 277tz = x; +y;, [ = 1,2. But then, as j, > j; + 1,

2j2—j1x1 — 2j2$z‘ + 2j2y1 — (fﬂl _ 2j2y2) + 2j2y1‘
Therefore,
2%’1 = 2_(j2_j1_1)(371 — 2j2 (yg - yl)) S Kg,

since x; — 2j2(y2 —y) €+ K, C K; and K; is closed under the map
x— 271z,

So far, we have shown that K| is 2-regular compact open subgroup of F'.
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Note that we have ¢ + 2_1K§ = q+ Ky C supp® from the definition of K¢
and (,, which allows us to use Corollary 3.7.5 to get || = [1(q)| on q + K.
Now it follows that K C K, and hence K = K.

Finally, L, = U,., K¢ = K,. O

Now we are ready to go back to the proof of Lemma 3.7.6.

Proof of Lemma 3.7.6. We may assume 0 € supp® by considering 1y =
W (xg,0)* = (- +z0) for any chosen xy € supp ¥ if necessary. We claim that
supp ¢ = Lg, where Lg is the 2-regular compact open subgroup of F' given by
(3.7.6) and Lemma 3.7.7. Once the claim is established, we get the desired
conclusion directly from Corollary 3.7.5 and the condition ||9)||z2(p) = 1.

For the claim we recall the fact
(x) ye L, q+ 27y € supp 1.

We begin with = € Ly, then we have 2z € Ly < +x € suppv by (%)
with ¢ = 0. This gives us the inclusion Ly C supp . For the converse we
consider x € supp . Corollary 3.7.5 says that supp ¢ is balanced, then we
have 27z € supp ¢ from the assumption 0 € supp ¢. Now we apply (*) with
g = 0 and the fact that L is a group to get 27 'z + 2712 € supp ¢, which is
equivalent to x € Ly-1, by (%) with ¢ = 27'2. Since Ly-1, is also a group by
Lemma 3.7.7, we have 2z € Ly-1, and therefore —27'2 = 2712 — 2 € supp ¥’
by (%) with ¢ = 2712, which means that x € Ly by (x) with ¢ = 0. O

We finally complete the proof of Theorem 3.7.2.

Proof of Theorem 3.7.2. (2) = (1): Starting from (3.7.5) of Lemma 3.7.6, we

have

[q(@)] = pop (K)  agr e (q427 0) Lagr i (q=27" ) = pp(K) ™ a4k (0) 1k (@),

where we used the 2-regularity of K in the last equality. Moreover, since ¢,
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is continuous and positive definite on K, Proposition 2.1.1(2) implies that

q(w) = pr () a4 10 (9) Lic (%) 74(2) (3.7.9)

for some v, € K. Therefore, we get the Wigner function

Wyla:p) = 85" (9) = Lagrx (@) 152 (0 — ),

where 7, € Fis any extension of ~,. Here, we use the fact that characters
on a closed subgroup can be extended to a character on the whole group
[RS00, Theorem 4.2.14]. Now, by considering 1y := W (o, 7o)*1) combined
with (3.2.8), we may assume that xo = 0 and vy = 1.

Going back to (3.7.5) we can write

U(x) = pp(K) Pl (z)a(x)
for some continuous function @ on K with |a| = 1, which gives us
0g(2) = pr(K) Mg (@) lg(z)alg + 2 2)a(qg — 271z), 2 € . (3.7.10)
Comparing (3.7.9) and (3.7.10) (under the condition zy = 0), we have
a(qg+27'2)alqg — 27 12) = y,(2), ¢,z € K. (3.7.11)

However, the condition 79 = 1 implies that a(27'z) = a(—27'z) for all
x € K, which means « is symmetric thanks to 2-regularity of K. Therefore,
() = a(27'z + g)a(2 e —q)
= Y2-12(20) = (72-12(q))*
= (a2 (@ + )22 (= — 0)))
= (a2 (g +2))a@ g~ 2)

=%(q), ¢z € K.

2
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Consequently, we get a symmetric bicharacter 5 : K x K — T, (¢, ) — v4(x)
introduced in Section 3.4.3. From the condition (3.7.11) we can easily see
that a(z) = B(x,27'z), x € K, which is the conclusion we wanted as in
(3.4.6). O

Question 3.7.8. Can we further generalize the Hudson theorem over 2-

regular LCA group with compact open subgroups?

Remark 3.7.9. Note that the original Hudson’s theorem [Hud74] and its
higher dimensional generalization [SC83] do not assume the continuity of
the vector state 1 € L*(R"). It can be deduced form the single assumption
Wy >0 a.e..

On the other hand, a corresponding result on the angle-number system
in 1-mode has been proved in [RSSK*10]. A careful inspection of the proof
reveals that an implicit assumption of the continuity of ¢ € L?(F) is made
in [RSSK*10]. It is not clear whether we could remove the continuity of
¢ € L*(F) from the assumption in both of the cases at the time of this

writing.
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Chapter 4

Mapping cone and compact

group symmetry

The notion of mapping cones was introduced by Stgrmer [Sr86] to study ex-
tension problems of positive linear maps, and later developed in many direc-
tions [SSrZ09, Skol1, Sr12, GKS21, Kye23a]. There are two characteristics of
mapping cones: (1) they contain sufficiently many classes important in QIT,
(2) they can be described via duality in many different ways. In this chapter,
we introduce definitions related to this concept, and we develop a theory of
operators and linear maps under compact group symmetry. In particular, we
show that many dualities between mapping cones carry over into the general
framework of compact group symmetry. This directly leads to two applica-
tions in quantum information theory: (1) the optimization of entanglement
witnesses and Schmidt number witnesses, and (2) the equivalence between
the problem of PPT=separability and the problem of checking whether every
extremal positive map is completely positive or completely copositive under
compact group symmetry.

We refer to Section 2.1.2 for preliminaries on representation of compact
groups and Section 2.2 for basic notions related to quantum entanglement

and positive linear maps.
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4.1 General theory of mapping cones

Let us briefly recall several notions in convex analysis and the theory of
mapping cone. First, B"(B(H4), B(Hp)) is a real vector space equipped with

an inner product
(O, V) :=Tr(C3Cy) = Tr(CeCly). (4.1.1)
For a subset K C B"(B(H,), B(Hg)), we define the dual cone K° of K by
K°:={® e B"(B(H4),B(Hg)) : (®,¥) >0VU¥ € K}. (4.1.2)

It is well-known in convex analysis [Roc70] that °° is the smallest closed con-

vex cone containing K. In particular, IC is a closed convex cone if and only if
K°° = K. Moreover, for two closed convex cones K1, Koy C B"(B(Ha), B(Hg)),

we have
(K1 V) =KIAK; and (K3 AKy)? = K7 VK3, (4.1.3)

where IC; V Iy := conv(K; U Ky) and Ky A Ky := Ky N K.
Following [Sr86, Skoll], a closed convex cone K C POS p is called a

mapping cone if it is invariant under the compositions by CP maps, i.e.,
CPpoKoCPaa CIC, (414)

where 10Ky :={P oV :d e [, ¥ e Ky}. Since the identity maps id4, idg
are CP maps, (4.1.4) is equivalent to CPpp o K o CP a4 = K.
There are some important aspects on the study of mapping cones. First,

if K, Ky, Ky are mapping cones, then so are

ICO, TBOIC, ]COTA, K* I:{E*ZEEK}, ICl\/ICQ, ]Cl/\]CQ.
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See [Skoll, GKS21] for proofs. Second, all the classes
POS, POS,CP,SPy, EB,PPT,DEC (4.1.5)

introduced in Section 2.2.2 are mapping cones, and the associated subset
Cx :={C; : L € K} of the Choi matrices and the dual cone K° are exhibited
in Table 4.1 below.

Table 4.1: Mapping cones, Choi correspondences, and dual cones
K || POS | POS, | CP | SPy EB | PPT | DEC
Ce¢ || BP | BP, | P | Sch, | SEP | PPT | DEC
Ko\ EB SPr |CP | POS, | POS | DEC | PPT

Let us focus more on direct connections between the Choi correspondences
Cx and the dual cones K£°. A natural pairing between Hermitian operators
X € B"(H4p) and Hermitian-preserving linear maps £ € B"(B(H ), B(Hpg))

is given by
(X, L) :=Tr(CrX) = (Qa|(ida L") (X)|Q24). (4.1.6)

Then an extended form of the famous Horodecki criterion for general
mapping cones K C POS 4 p is given as follows with respect to the pairing
in (4.1.6).

Proposition 4.1.1. [GKS21, Proposition 4.1] Suppose that a closed convex
cone K C B"(B(Ha), B(Hp)) satisfies K o CPas C K. Then the following
are equivalent for a linear map L € B(B(Ha), B(HB)):

1. LeK,
2. (idg @L*)(X) € Pay for every X € Cieo.
3. (X, L) >0 for every X € Cyeo.
Moreover, the following are equivalent for an operator X € B(Ha ® Hp):
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1. X € Cx,
2. (ida @L*)(X) € Paa for every L € K°,
3. (X, L) >0 for every L € K°.

Note that Proposition 4.1.1 can be applied for arbitrary mapping cone
K. For example, the Horodecki criterion is for a special case Cx = SEP and
K° =POS, and it was used to study separability of quantum states [HHH96].
Furthermore, Proposition 4.1.1 has been applied to study quantum states
with an upper bound on the Schmidt numbers [TH00], decomposable maps
[Sr82], k-positive maps [EK00, THO0], and k-superpositive maps [SSrZ09],

ete.

4.2 Group symmetry methods

4.2.1 Compact group symmetry and Twirling opera-

tions

In this section, we introduce two important objects to discuss conservation
of symmetry, namely invariant operators and covariant linear maps. Let us
suppose that G is a compact group throughout this section. Recall from
Section 2.1.2 that for a unitary representation 7 : G — U(H) of G, we call
X € B(H) m-invariant if

m(x)X7m(z) =X (4.2.1)

for all x € G, and the set of m-invariant operators in B(H) are denoted by
Inv(7). While invariance can be regarded as a compact group symmetry for
operators, another type of symmetry for linear maps is called covariance.
More precisely, for unitary representations 74 : G — B(H4) and 75 : G —
B(Hp), a linear map L : B(Ha) — B(Hp) is called (7, 7g)-covariant if

L(ma(z)Yma(x)) =mp(x)L(Y)rp(x)" (4.2.2)
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for all z € G and Y € B(H4), and let us denote by Cov(ma,7p) the space
of all (w4, mp)-covariant linear maps.

An averaging technique called the twirling operation is a standard method
to analyze invariant operators and covariant linear maps. First of all, we can
choose the Haar measure ug of G by the probability measure, i.e., ug(G) = 1,
and pg is always unimodular (i.e., left- and right-invariant). Let us simply
write dug(x) = dx. Then the m-twirling map T, : B(H) — Inv(n) is defined
by

T(X) = / m(z)Xm(x) d (4.2.3)
a

for all X € B(H). Note that the integration is well-defined in terms of
Bochner integral since ||m(x) X7 (x)*|| = || X for all z, and the translation-
invariance property of the Haar measure guarantees that 7,(X) € Inv(r) for
all X € B(H). Moreover, T, : B(H) — Inv(n) is unital, ||7:(X)| < || X]|
for all X € B(H), and X € Inv(nm) if and only if 7,(X) = X (necessity
is clear, and for sufficiency we again use the translation-invariance of the
Haar measure to show that 7, o 7, = 7T,). Therefore, T, is a projection
(more precisely, a conditional expectation [Tak02, Definition 3.3]) onto the
von Neumann subalgebra Inv(w) of B(H).

For unitary representations 74 : G — U(Ha) and 75 : G — U(Hp), the
twirling 7, , £ of L : B(Ha) — B(Hp) is defined by

(7;A7,TBL’)(X):/GWB(x)*E(ﬂA(x)XWA(:c)*)WB(x) dz (4.2.4)

for all X € B(H4). Then similarly, the twirling operation 7, ., is a well-
defined projection from B(B(Ha), B(Hp)) onto Cov(ma, 75).

Let us collect some useful properties of the twirling operations.

Proposition 4.2.1. For any unitary representations ma and wg of G, the
twirling map Tr onp preserves separability and PPT property of bipartite op-
erators. Furthermore, the twirling operation Ty, =, preserves positivity, CP,
TP, CCP, PPT, decomposability, and EB property of linear maps.
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Proof. 1t is straightforward from the definitions and closedness of the spaces
associated with each of the properties mentioned above. For example, the
set of all decomposable linear maps £ : B(Ha) — B(Hp) is closed in
B(B(Ha), B(Hp)) with respect to the natural (Euclidean) topology. O

For a linear map £ : B(Ha) — B(Hp), the adjoint map L* : B(Hp) —
B(H4) of L is a linear map satisfying

TH(L(X)Y) = Te(X £(Y)) (4.2.5)

forall X € B(H4) andY € B(Hp). Recall that the adjoint operation £ — L*
preserves positivity, CP, CCP, PPT, and decomposability.

Proposition 4.2.2. Let 7 : G - U(H), 7a : G — U(H4) and 75 : G —
U(Hp) be unitary representations of G. Then we have the following.

1. Tr((TxX)Y) = Tn(X(T:Y)) for any X,Y € B(H).

2. Trsomg © (TA®idp) = (Ta®idg) © Tazer, where T 4 is the transpose
on B(Ha).

3 (Trsrp L) = Tagma (L) for any linear map L : B(Ha) — B(Hg).

4. The Choi matriz of Tr, =L is given by Tezers (Cr) for any linear map
L:B(H4) — B(Hzp).

Proof. (1) Since the Haar measure on the compact group G is invariant under

the inverse = — 2!, we have
Tr(T:X)Y) = /GTI”(W(ZL')X’]T([L’_l)Y)dZL‘ (4.2.6)
=Tr (X/GW(m_ )Y?T(:L‘)dl‘) (4.2.7)

=Tr (X/GW(x)Yﬂ(x_l)dx) = Tr(X(7:Y)) (4.2.8)
for any X,Y € B(H).
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(2) It suffices to show the equality for product operators X = P® @, and

the conclusion follows immediately from the observation
- T
ma(z) PTra(z)* = (m@)Pm(gg)T) . (4.2.9)

(3) For any X € B(H4) and Y € B(Hp), we have

THX (Toy s £7) (V) (12.10)
- /G Tr(Xma(z) £ (7 ()Y 75 () )7ma(2))da (4.2.11)
_ /G Te(rp(x) L(ma(e) Xma(z) ) mn(a) Vde (4.2.12)
= Tr((Trams £) (X)Y), (4.2.13)

which gives us the desired conclusion.
(4) First of all, note that

Z (ma(@)eyma(e)") @ (mp(x)L(ey)mp(@)) (4.2.14)
= Z eij @ (mp(2)L(ma(z) eijma(z))mp(x)"). (4.2.15)

for each = € G. Indeed, the LHS (4.2.14) can be understood as
Aa(ida ©(Adgye) © £)) ((Talw) © 1) 2) (U (ra(2)” @ida)) . (42.16)
and the RHS (4.2.15) can be understood as
da(ida @ (Adry @) 0 £)) ((ida @ma(2)")[Q4) (Qal|(ida ®7a(2)))  (4.2.17)
where Ady (Y) = VY V*. Moreover, the so-called ricochet property

(X ®ida)|Qa) = (ida ®X7)[Q), X € B(Ha), (4.2.18)
83
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implies (4.2.16) = (4.2.17). Finally, taking the Haar integral on both sides
completes the proof. O

Combining Proposition 4.2.2 (2), (3), and (4) with the fact that both
Inv(my ® m5) and Cov(ma, mp) are the images of the twirling projections, we

obtain the following useful properties.

Corollary 4.2.3. Let X € B(Ha ® Hp) be a bipartite operator and L :
B(Ha) — B(Hg) be a linear map. Then

1. X e Inv(ma @ mg) if and only if (T4 ® id)(X) € Inv(7Ta ® 7p).
2. L € Cov(ma,np) if and only if L* € Cov(np,ma).
3. L € Cov(ma,mp) if and only if Cr € Inv(Ta @ 7p).

Remark 4.2.4. The results in Corollary 4.2.3 have been noted in various
contexts, [EWO01, Lemma 6], [GBW21, Lemma 11}, and [LY22, Proposition
5.1, Theorem 3.5] for examples. Moreover, extendibility to more general con-

texts of compact quantum group symmetry was proved in [LY22].

[

We can even write an explicit formula of 7, when © = @izl 0; @ Ly,
is a finite-dimensional unitary representation as before, so that the relation
(2.1.6) holds. Indeed, we can further show that 7, is trace-preserving (TP).
Note that for any finite-dimensional von Neumann subalgebra M of My,
there is a unique TP conditional expectation of My onto M [BOO08, Lemma
1.5.11]. For example, the map X € M, ® M,, — =(I, ® Tr,)(X) is the
unique TP conditional expectation onto M = [, ® M,,. This observation
allows us to get the following explicit formula of the twirling map 7, for the

case M = Inv(m).
Proposition 4.2.5. In (2.1.6), let II; be the orthogonal projection from H
onto H; = C™ @ C™. Then the twirling T.(X) of X € B(H) is given by

l
T.(X) = nifn ® Tr,,, (ILXTL,). (4.2.19)

i=1
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In particular, if the irreducible decomposition of w is multiplicity-free, i.e., if
m; =1 forallt=1,2,--- 1, then

T(X) =2 DY)y (4.2.20)

4.2.2 Duality between mapping cones under compact

group symmetry

From now on, we describe how the duality results between mapping cones can

be naturally carried over into our framework of compact group symmetry.

Lemma 4.2.6. Let w, mp be two unitary representations of G. For two linear
maps ©,¥ € B(B(Ha), B(Hg)), we have

<7:TA,7TBq)7\II> - <@,7;—A’7|—B\Ij>. (4221)

Moreover, for an operator X € B(HA®QHg) and a linear map L € B(B(H ), B(Hg)),

we have

<Tﬁ®7TBX7 'C> = <X7 7;TA,7TB£>' (4222)

Proof. Both two assertions follow from Proposition 4.2.2. More precisely, we

have

(Trnmp®, ) = Tr((Cir,., 1 p0) Cu) = Tr((Trzens Ca) " Cu)
= Tr(C:I;Tﬂ(@FBC‘I’) - Tr(C:I;C(ﬂA,wB\I/)) = <(I)7 7;TA77TB\I]>

which yields (4.2.21). The proof of (4.2.22) is similar. O

Let us use the following notations

Inv(7)® := Inv(7) NS,

Cov(ma, 7TB)IC = Cov(ma,m5) NK.
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for any subsets S C B(H) and K C B(B(Ha), B(Hp)). For example, the
subset Inv(7)? = Inv(w) N D(H) is the set of m-invariant quantum states.
Recall that positivity, complete positivity, and EB property are preserved
under twirling operation £ — T, », L [PJPY23, Proposition 2.1]. This leads
us to the question of which class K of linear maps is invariant under the
twirling operation, i.e., T, »,K C K. The following Proposition 4.2.7 implies
that this property holds whenever K is a mapping cone.

Proposition 4.2.7. For a closed convex cone K € B"(B(Ha), B(Hg)), the

following are equivalent:
1. TreyxsK C K,
2. Taanp(K°) C K2,
3. Trpma(K7) C K7,

4. TezenyCx C Ck.

In this case, we have Inv(Tx ® 75)* = TrreryCk and Cov(ra, mp)~ =

TransC. Moreover, the above conditions hold if CPggo K oCPas C K.

Proof. The equivalence (1) < (3) < (4) is a direct result of Proposition
4.2.2. For (1) = (2), observe that for ® € £° and ¥ € K,

<7:TA77TB(D7 qj) = <(D77;|'A777B\Ij> >0

under the assumption 7., ., C K. The other direction (2) = (1) follows
from (1) = (2) since £*° = K.

The second statement is also clear from the properties Trzor, © Taezgrs =
Trzong a0d Ty zp © Taanp = Trearg- For the last assertion, it is enough to
note that the twirling operations preserve positivity of linear maps, and that
T amp ® is approximated by the convex combination of Ad,,)-0o®PoAd,, ) €
K for z € G. |
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Recall that I and Cco determines each other via the generalized Horodecki

criterion (Proposition 4.1.1). One of our main results in this section is to es-

C’CO

tablish an analogous result for Cov(ma, 75)* and Inv(7T4 @ 75)°%° as follows.

Theorem 4.2.8. Suppose that a closed convex cone K C B"(B(Ha), B(Hp))
satisfies CPpp 0o KK o CPaa C K. Then the following are equivalent for a

(ma, TB)-covariant linear map L:
1. L€ COV(ﬂ'A,ﬂ'B)IC,
2. (idg ®L*)(X) € Paya for every X € Inv(T4 @ mp)oxe,
3. (X, L) >0 for every X € Inv(7s @ mp)°x°.

Moreover, the following are equivalent for a T4 ® wg-invariant bipartite

operator X :
1. X € Inv(7a ® mp)°%,

2. (idy ®L*)(X) € Paa for every L € Cov(ma, mp)~,

o

3. (X, L) >0 for every L € Cov(ra, )~

Proof. Let us prove only the first assertion. Then the other one is analogous.
Note that (1) = (2) follows from Proposition 4.1.1 and (2) = (3) is clear
from the relation (4.1.6), so it suffices to prove the direction (3) = (1). Since

L € Cov(ma, mp), we have
<X7 £> = <X> 7;|'A77TB‘C> = <Tﬁ®7TBX7 £>

for all X € Cxo by Lemma 4.2.6. Now Togers X € Inv(7Ts @ mp)%° by
Proposition 4.2.7, so the assumption (3) implies that (X,£) > 0 for all
X € Cyo. Therefore, Proposition 4.1.1 again implies that £ € K.

O

Note that Cov(ma, 75)" plays as detectors for Inv(74 ® mp)“<° via the

pairing, and we can prove that much fewer detectors from Cov(ma, 75)~ are
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enough for the test if K is a nonzero mapping cone, i.e., KK C POS 4. Let

us start with a compact convex subset
Covy(ma, mp)" = {® € Cov(my, )< : Tr Cp = 1}.

Now Theorem 4.2.8 implies that the only extreme points of Covy (74, 75)"°
are enough as detectors for Inv(7T1 ® 73)%% since every compact convex set
in a finite-dimensional space can be written as a convex hull of its extreme

points.

Corollary 4.2.9. If K C POSap is a nonzero mapping cone, then the

following are equivalent for X € Inv(Ta ® wpg):
1. X € Inv(7y ® n5)°x,
2. (ida ®L*)(X) € Paa for every L € Ext(Covy(ma, 7)),
3. (X, L) >0 for every L € Ext(Covy(ma, m5)~").

We conclude this section by further examining the structure of the set
Covy(ma, mg). The following lemma asserts that under certain mild conditions

on m4 and wg, we can further reduce Covy(ma, 7p).

Lemma 4.2.10. 1. Ifnp isirreducible and L € Cov(ma, p), then L(14) =

cIp for some constant c. In particular,

Covy(ma,m5) = {P € Cov(ma, ) : ®(1a/ds) = Ip/dp}

2. If wa is irreducible and L € Cov(ma,wg), then there is a constant c
such that Tr(L(X)) = ¢ Te(X) for every X € B(H4,). In particular,

Covy(ma,mp) ={® € Cov(ma, mp) : @ is TP}
Proof. 1. From the irreducibility of 7z and the identity

m5(2) Lda)mp(2)" = L(ma(z)ma(z)) = Lid4), (4.2.23)
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we have L(id4) € Inv(rg) = C - idp.

2. The adjoint map L* is (wp,ma)-covariant by Corollary 4.2.3 (2), so
L*(Idg) = c¢Id4 for some ¢ by (1). In this case, we have

Tr(L(X)) = Tr(L(X)Idg) = Te(X £5(Idp)) = ¢ Tr(X)  (4.2.24)

for any X € B(H.a).
O]

For the moment, let us remark that the above lemma allows us to resolve
one technical issue on channel-state duality: the set of quantum channels from
B(H,) into B(Hp) is not in general identified with the set D(H4 ® Hp) of
bipartite quantum states via Choi-Jamiotkowski correspondence. However,
when 74 is irreducible, then the Choi correspondence gives one-to-one corre-

CPTP = Covy(ma,m5)7 of (14, 7p)-

spondence between the set Cov(ma, 7p)
covariant quantum channels and the set Inv(7; ® 7TB)D of T4 ® wr-invariant
quantum states (as already noted in [GBW21, Lemma 15]). This leads us to

question whether the (reduced) channel-state duality

C: Cov(mp, m)TTP = Inv(7Ta @ 7p)" (4.2.25)

is bijective under conditions weaker than the irreducibility of 74. However,

Proposition 4.2.11 shows that this is not possible.

Proposition 4.2.11. Let 74 : G — U(H4) and 7 : G — U(Hp) be unitary
representations of G. Then the channel-state duality C in (4.2.25) is bijective

if and only iof wa s irreducible.

Proof. Let us prove the if part first. For any p € Inv(74 ® 75)? there exists
completely positive £ € Cov (w4, mg) such that Cz; = p by Corollary 4.2.3 (3).
Moreover, £ should be trace-preserving. Indeed, irreducibility of 74 implies
that there exists a constant ¢ such that Tr(£(X)) = ¢Tr(X) for all X €
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B(#.4) by Lemma 4.2.10 (2), and we have
c da 1 da
o= Z:; Tr(es) = o ; Tr(es ® Ley)) =Te(Cp) = 1. (4.2.26)

Conversely, if we assume that 74 = 7Tf41) ® Wf) with Hy = 7—[1(41) > ’HS) and if
I1; is the orthogonal projection from H 4 onto HS), then we can take a CP
non-TP map £ : B(H4) — B(Hp) given by

d

LX) = ————5T(LX) idp (4.2.27)
dB - dim HA
whose Choi matrix is
1 1. _ D

Co=|—mh|®(5ids ) € Inv(7Ta @ )" . (4.2.28)

dim H dp
]

4.3 A framework to characterize entanglement

under group symmetry

In this section, we utilize Theorem 4.2.8 and Corollary 4.2.9 to derive novel
results in the field of quantum entanglement. The first one is the case K =
EBup, K° = POS 4B, and Cx = SEP 5. Then these results allow us to
optimize entanglement witnesses covariant positive linear maps are enough
to characterize separability of bipartite invariant quantum states. We note
that similar findings have been reported in the literature, albeit with specific
symmetries considered [Kay11l, G11, SN21].

Theorem 4.3.1. For two finite-dimensional representations ma : G — B(Ha)
and mp : G — B(Hp), let p € Inv(Ta ® )7 and accordingly take ® €
Covy(ma, )T such that Cy = p (Note that ® becomes a quantum channel

when 4 is irreducible, by Lemma 4.2.10). The following are equivalent.
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1. p € SEP 3,

2. (ida ®L)(p) € Paa for any L € Covy(mp, m4)70,

3. (ida ®L)(p) € Paa for any L € Ext (Covy(mp, ma)79%),
4. &€ EByp,

5 Lo®cCPay for any L € Covy(ng,ma)FO%,

6. Lo® € CPay for any L € Ext (Covy (g, ma)P9%).

Next, the case (K,K°, Cx) = (SPk, POSk, Schy) provides a new sys-
tematic way to compute the Schmidt numbers of p € Inv(7a @ 7g)7
)POSK)

using

Ext(Covy(ma, g as a complete family of Schmidt number witnesses.

Theorem 4.3.2. For a m4 ® wp-invariant bipartite quantum state p, the

following are equivalent:
1. SN(p) <k,
2. (ida ®L)(p) € Paa for every L € Ext(Covy(rp, ma)PO%%),
3. (Qa|(ida ®L)(p)|24) > 0 for every L € Ext(Covy(ng, m4)7O%).

The above Theorem 4.3.2 will be applied for concrete applications in
Section 5.2.

From now on, let us focus on the question of whether PPT property
coincides with separability, i.e. problem PPT = SEP for invariant quantum

states.
Proposition 4.3.3. Let L : B(Hg) — B(Ha) be (1p,ma)-covariant. Then

1. L € POSpa4 if and only if (ida @L)(p) € Paa for any separable p €

Inv(7T4 @ mp)7.

2. L is decomposable if and only if (ida ®L)(p) > 0 for any PPT p €

Inv(7T4 @ mp)7.
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Proof. Clear from Theorem 4.2.8 with the cases K = EB and K = PPT. O

Corollary 4.3.4. Let my : G — U(H4) and 1 : G — U(Hp) be unitary

representations of G. Then the following are equivalent.
1. PPT = SEP in Inv(7a ® )"
2. PPT = EB in Covy(ra,mp)°".
3. POS = DEC in Covy(rp,m4)FOS.

Proof. (1) = (3)) If L € Cov(mp,ma)79%, then (ida ® L)(p) > 0 for
every separable (hence every PPT) state p € Inv(7a ® mp)P. Thus, £ is
decomposable by Proposition 4.3.3.

((3) = (1)) If p € Inv(Ta®@7p)" is a PPT state, then (ids ® £)(p) >0
for every decomposable (hence every positive) linear map £ € Cov(mpg, 74).
Thus, p is separable by Theorem 4.2.9.

((1) <= (2)) is clear by the Choi-Jamiotkowski correspondence. O

Finally, we claim that the decomposability of the extremal elements in

Covi (g, m4)POS is much easier to check thanks to the following theorem.

Theorem 4.3.5. Let £ € Ext(Cov,(mp, 74)79%). Then L is decomposable if
and only if L is CP or CCP.

Proof. Let us focus only on the case where 74 is irreducible since the other
case is analogous. If £ is decomposable, then there exist a CP map £, and
a CCP map L, such that £ = L£; + L5. By taking the twirling operation
Trpma, We have L = L + L) where L, = T, »,(L;) € Cov(rp,ma). Note
that £} is CP and £}, is CCP, and we can further write £, = \;L} for some
N >0, A + X =1, and L € Covy(mp,74)7°° by Lemma 4.2.10 (1). Then
extremality of £ allows us to conclude that £ = L] or £ = L], which proves

the assertion. The other direction is immediate. O

To summarize, our strategy to study the problems PPT = SEP and
PPT = EB consists of the following three independent steps.

92



CHAPTER 4. MAPPING CONE AND COMPACT GROUP
SYMMETRY

[Step 1]

[Step 2]

[Step 3]

The first step is to characterize all elements in Covy(mp,74)79° for
given specific unitary representations m4 and wg. If we take the ad-
joint operation, this step is equivalent to characterize all elements in
CovPosTP (74, mp).

The next step is to solve the problem POS = DEC in Covy(mp, 7).

In particular, for a given extremal element £ € Ext(Covy(mp, 74)79%),

L is decomposable if and only if £ is CP or CCP. If POS = DEC
holds, then both the problems PPT = SEP in Inv(7y ® m5)? and

PPT = EB in Covy(ma,75)" have the affirmative answer.

If there exists a non-decomposable element £ in Covy(7p, T A)POS , then
the last step is to realize £ as a detector for following PPT entangled

objects:

— & € Covy(ma,7m3)FF7 for which Lo ® ¢ CP,
— p € Inv(7a ® 73)PPT for which (id ®L)(p) ¢ P.
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Chapter 5

Applications to quantum

entanglement

5.1 Hyperoctaheral group symmetry and en-

tanglement detection

One of the main applications of the results in Section 4.3 is a complete
characterization of EB property for quantum channels ® : My; — M, of the

form

Tr(X)
d

d(X)=a Ij+bX +cXT + (1 —a—b—c)diag(X). (5.1.1)

The main result of this section is as follows.

Theorem 5.1.1. Let ® be a quantum channel of the form (5.1.1). Then ®
is entanglement-breaking if and only if ® is PPT.

Remark 5.1.2. Note that the quantum channels of the form (5.1.1) under
the condition a+b+c = 1 are called the generalized Werner-Holevo channels,

and their Choi matrices are given by

1—b—
Co = chd ® I+ b’Qd> <Qd| + ng, (5.1.2)
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where F; = Zf =1 €ij ®€ji is the flip matrix. The subclasses corresponding to
the cases b = 0 or ¢ = 0 are called the Werner states and the isotropic states
respectively, and their separability was studied in [Wer89, HH99, Wat18,
SN21]. Furthermore, it was proved in [VWO01]| that PPT = SEP holds for
all quantum states of the form (5.1.2).

A starting point for a proof of Theorem 5.1.1 is to observe that any
quantum channel of the form (5.1.1) is covariant with respect to the hyperoc-
tahedral group or signed symmetric group H(d). One of the equivalent ways
to realize the hyperoctahedral group is to define H(d) as a subgroup of the
orthogonal group O(d) generated by permutation matrices and diagonal or-

thogonal matrices. In other words, every element in H(d) is written as an
d

orthogonal matrix Zsz|a(z)><z] for s1,s9,...,8, € {£1} and 0 € S;. We

i=1
define Inv(H ® H) and Cov(H, H) with respect to the fundamental repre-
sentation H € H(d) — H € O(d), which is irreducible as proved below.

Lemma 5.1.3. The fundamental representation H € H(d) — H € O(d) is

rreducible.

Proof. The identity

d d
HXHT =) si5;Xlo (D)0 ()] = Y so-1)50-16)Xo 10019 D) ]
i,j=1 i,j=1

(5.1.3)
and the invariance property HX HT = X for all H € H(d) tell us that

S0(i)So(j) Xo(i)o(j) = Xij (5.1.4)

for all s1,...,55 € {£1} and ¢ € S;. This implies that X;; = X;; for all
1<i<dand X;; =0foralli#j, ie, X =X11,€C-1,. O

Let us denote by W the space of linear maps spanned by the following
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four unital TP maps g, 1, V9, 3 : Mg — My, where

(5.1.5)

It is straightforward to check ¢; € Cov(H, H) for i = 0,...,3, so we have
W C Cov(H, H). To prove Cov(H,H) = W, let us note the fact that any
L € Cov(H, H) satisfies the so-called diagonal orthogonal covariance (DOC)
property, i.e.

L(ZX7ZT)=2L(X)Z" (5.1.6)

for all X € M, and diagonal orthogonal matrices Z. This class of channels has
been analyzed recently in [SN21, SN22, SDN22]. In particular, it is shown
that any DOC map £ can be parameterized by a triple (A4, B,C) € M3
satisfying diag(A) = diag(B) = diag(C) such that

L(X) = diag(A]diag X)) + BO X +C o X7, (5.1.7)

where |diagV) = 3% Vii|i), Y =Y — diag(Y), and © denotes the Schur
product (or Hadamard product) between matrices. In this case, let us denote

by L= Lapc.

Proposition 5.1.4. The space Cov(H, H) is spanned by the four unital TP
positive maps Vg, Y1, 12, and ¥ from (5.1.5).

Proof. We already know W C Cov(H, H). To show the reverse inclusion, let
us pick an arbitrary £ € Cov(H, H). Since L is DOC, there exists (A, B,C) €
M3 such that £ = L4 g ¢ of the form (5.1.7). Note that £ further satisfies

L(P,XPT) = P,L(X)PT (5.1.8)

for all X € M, and 0 € S,;. Here, P, = ijl |0 (7)) (7] is the permutation

matrix associated with o.
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Let us take X = e;;. If ¢ = j, then (5.1.8) implies

ZAkO' l)|k k| ZAkz|0 )| (5'1'9)

which means that A, = Ag)er) for all 1 <4,k < d and o € S;. Therefore,
Ay = Aqq for all © and Ay, = Ajs for all ¢ # k. On the other hand, if ¢ # j,
then (5.1.8) becomes

Butooplo (@) (0()] + Cotioto|o (i) o () (5.1.10)
= Bylo()){o ()] + Ciilo (i) o ()], (5.1.11)

which gives B;; = Bj2 and Cj; = ()5 for all © # j. Consequently, the formula
(5.1.7) now gives

L = dAwo + Biahy + Crothg + (A — Arg — Bia — Cia)z € W, (5.1.12)
which in turn shows Cov(H, H) C W. O
From now, let us denote (H, H)-covariant unital (and TP) maps by

Vape = atho + bbby + cthy + (1 —a — b — )3 (5.1.13)

for simplicity, where )y, ..., 15 are from (5.1.5). By recalling that 1, can
be understood as a DOC map £4 g ¢ and that complete positivity of DOC
maps is fully characterized in [SN21, Section 6], we can show that 1, . is
CPTP if and only if

e (5.1.14)

Note that the set of (a,b, ¢) € R? satisfying (5.1.14) is a tetrahedron depicted
in Figure 5.1.
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Figure 5.1: The region of Cov(H, H)‘FTP

In particular, there are exactly four extremal (H, H)-covariant quantum

channels corresponding to the four vertices given by

(

Uy =y,

Uy = —Lahy + Lihy — —2-)s,

J v Vo + v — Y (5.1.15)
\P3:—ﬁ¢1+d%d1¢3)

d 1
(Vs = 75%0 — 75¢1,

whose Choi matrices are (up to normalization) four mutually orthogonal

projections. On the other hand, it is easy to see that
Td o wa,b,c = wa,b,c < Td = wa,c,b, a, ba ceC. (5116)
Therefore, the set of all PPT quantum channels 1, is given by

Covi(H, H)"?T = Cov(H, H)*"™" N T, (Cov(H, H)°"T7)

0<a< %,
= Yape: D . : w an (e (5117
max(§ — =5, —9) < b,c <min(l — “~a, 9)

The convex set Covy(H, H)PP7 can be geometrically understood as the in-
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tersection of two tetrahedrons describing the region of CP and CCP (H, H)-
covariant TP maps (depicted by blue- and red-dotted lines, respectively, in

Figure 2). Moreover, if d > 3, this set has exactly eight vertices (denoted by

Vo, - - .U7).

Figure 5.2: The region of Cov,(H, H)PFT

We will now explain why the above polytope is precisely identical to the
set of all entanglement-breaking (H, H )-covariant channels to prove Theorem
5.1.1.

[Step 1+Step 2] We first characterize the set Covy(H, H)?9% in terms
of the parameters a, b, and c. Our strategy is to start with the convex hull V,
of Cov(H, H)*PTPUT, (Cov(H, H)"T7), which is an octahedron with eight
vertices as exhibited in Figure 5.3. Then V,; C Covy(H, H )POS is immediate
since any element of V,; is decomposable. The following Theorem 5.1.5 states

that these two convex sets coincide, i.e., V; = Cov,(H, H)7°S.

Theorem 5.1.5. Let d > 3. Then the convex set Covy(H, H)P9% has ezactly

8 extreme points
\Ph ‘1127 \1137 @47 ‘Ill OTd7 \IIQOTCH \I]3OTd7 \Ij4on7 (5118)

where Wq,..., Wy are given by (5.1.15). In particular, all positive (H, H)-
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Figure 5.3: The region of Cov,(H, H)P9S

covariant maps are decomposable.

Proof. Since ¥q,..., ¥y are CP and ¥;0Ty,..., V0T, are CCP, the convex
hull V, of these 8 maps is obviously contained in Cov,(H, H)?9S. To show

the reverse inclusion Covy(H, H)P9% C V,, we observe that the set
Vy = {(a,b, c) eR?® : Yape € Vd} C R? (5.1.19)
is the convex hull of 8 points

» T d—10 )7(%1’0’ d—l)’ (5.1.20)

which are got from (5.1.15) and (5.1.16). Therefore, V,; can be understood as
the region of (a,b, c) € R? satisfying the following inequalities:

(

[N

AAAAA/—\
- W
= I D D = —

(5.1.21)

(=]
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Now if ¥, p. ¢ V4 (which is equivalent to (a,b,c) ¢ Vj, and hence violates

at least one of the inequalities (1) - (6) in (5.1.21)), we can choose a unit
vector £ € C? such that 1),4..(]€)(]) is not positive semidefinite as in Table
5.1. This shows Covy(H, H)79% C V.

Table 5.1: Non-positivity outside V,

(a, b, c) violates (1)

1§ =11) = dap(I€)(E]) 20

. 1
(a, b, ¢) violates (2) \s>=?<u>+\2>> = Yape(|E)(E]) £ 0
(a,b,¢) violates (3) 1) = —5(11) +112)) = V() E]) £ 0
. 1 &
(a,b,c) violates (4)  [€) =ﬁ;\k> = Pap([E)(EN) £ 0
(a, b, ¢) violates (5) or (6) |€>=%ik:162’3k k) = bane(|E)(E]) 20

]

Proof of Theorem 5.1.1. The conclusion is straightforward from Propo-
sition 5.1.4, Theorem 5.1.5, and Corollary 4.3.4.

Remark 5.1.6.

]

1. Note that Theorem 5.1.5 gives a complete character-

ization of all positive linear maps ¢ spanned by g, 11, Y9, 3. This

strengthens the results in Section 5 of [KMS20] focusing on positive

linear maps spanned only by g, 11, 13 without 5.

2. Theorem 5.1.5 tells us not only POS = DEC, but also explicit de-

compositions of our positive covariant maps into sums of CP and CCP

maps. Note that this was one of the open questions raised in Section
6.c of [KMS20]. We refer to Appendix 5.1.1 for more details.
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5.1.1 Covariant positive maps with respect to mono-

mial unitary groups

In Section 5 and Section 6 of [KMS20], the authors analyzed the general
structure of irreducibly covariant linear maps under some natural symme-
tries of the symmetric group S; and the monomial unitary group MU (d,n),
and presented new examples of positive irreducibly covariant maps. In this
section, we elaborate on how our Theorem 5.1.5 strengthens their results and
resolves several open questions raised in [KMS20].

On one side, they considered irreducibly (73, 73)-covariant maps, where
73 : 84 — U(3) is a 3-dimensional irreducible component of the canonical
representation o € Sy +— S_p_, |o(k)) (k| € U(4). More precisely, this canon-
ical representation is not irreducible; it allows an invariant 1-dimensional
subspace C - |v) with |v) = 22:1 |k) and the other 3-dimensional invariant
subspace V = (C-|v))*. Then the fundamental representation 73 : Sy — U(3)
is defined by m3(0) = HV0|V € U(3) for all x € Sy, where ITy is the orthogonal
projection from C* onto V.

The authors characterized all (73, 73)-covariant maps and suggested a suf-
ficient condition for positivity using the the so-called inverse reduction map
criterion [MRS15]. On the other hand, it was shown in [LY22, Section 6.1.1]
that, up to a change of basis, the (73, 73)-covariant maps are precisely the
linear combinations of Wy, Uy, W3, ¥y : M3(C) — M;3(C) from (5.1.15) with
d = 3. In other words, we have Cov(7s,73) = Cov(H, H) up to a unitary
equivalence. Thus, Theorem 5.1.5 gives the complete solution to the open
question of the characterization of all positive (73, 73)-covariant maps raised
in [KMS20].

On the other side, recall that the monomial unitary group MU(d) is
a subgroup of U(d) generated by all permutation matrices and all diago-
nal unitary matrices. Moreover, the subgroup MU (d,n) of MU(d) is gen-
erated by all permutation matrices and all diagonal matrices of the form
S wili) (] where w; € {1,e¥i/n, .. eXn=Dmi/nL In particular, we have

MU(d,2) = H(d).
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For a closed subgroup G of U(d), we denote by 7 : € G — = € U(d) the
fundamental representation of G, temporarily in this section. It was shown
in [KMS20] that, if n > 3, then

Cov(Tamu(an) > Timu(dn)) = span {1bo, ¥, Y3} (5.1.22)

where g, 11,13 are from (5.1.5). Moreover, the authors characterized all
positive maps in this class and proved that all (7 au(d,n), Tai(dn) )-covariant
positive maps are decomposable for n > 3. However, explicit decomposi-
tions were left as an open question, and the authors conjectured that a non-
decomposable positive map may arise under (7a(a), Tawi(q))-covariance.
Our results in this thesis resolve their open questions in the sense that
(T pmui(d) s Tau(ay)-covariance does not make a difference, but a weaker con-
dition (7 au(d,2), Tau(d,2))-covariance does. Furthermore, their POS = DEC
result in Cov (7 pmu(d,n), Tawi(dn)) With n > 3 (Section 6.c of [KMS20]) extends
to a more general result POS = DEC in Cov(Tawi(a,2), Trmu(d,2)) With explicit

decompositions into the sum of CP and CCP maps.

1. More precisely, it is clear that

Cov(T pmu(ays Tatu(a)) S Cov(mami(d,ny Tmu(dn)) = span {o, ¥1,¥s},
(5.1.23)

and all the three maps 19,1, and 13 are covariant with respect to

general diagonal unitary matrices. Therefore, for n > 3 we have

Cov(T pmu(ays Tatu(d)) = Cov(Tami(d,n), Tmu(dn)) = span {o, 1,93} .
(5.1.24)

Therefore, there is no positive non-decomposable element inside Cov(mawi(ay, Tru(a))-

2. On the other hand, since MU(d,2) = H(d), we have
Cov(Tau(d,2) Trmud,2)) = Cov(H, H) = span {to, ¥1, 92,93},  (5.1.25)

by Proposition 5.1.4. Moreover, POS = DEC in Cov(Tawi(a)s Trmud))
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from Section 6.c of [KMS20] is strengthened to POS = DEC in the
larger space Cov(Tau(d,2), Tau(d,2)) With explicit decompositions by
Theorem 5.1.5.

5.2 k-positivity and Schmidt number under
Orthogonal group symmetry

There are very few examples whose k-positivity or Schmidt numbers have

been fully characterized. Even in the following cases

Tr(Z)

LNZ):=(1—a—1) Ii+aZ + 077, (5.2.1)
l—a-5 b
iy = —p  la®lit alQa)(Qal + SFa (5.2.2)

their k-positivity and Schmidt numbers have not been fully characterized.

1 d
Vd j=1 ij=1
d)

is the flip matrix. Let us write L, := Egdb) and p,p 1= pgb for simplicity. On

Here, |Qy) ==

the problem of k-positivity, the answers for some special cases L,, Lo, and
L41-q, were obtained from [Tom85], and some other cases were considered
in [TT83]. On the other hand, Schmidt numbers of the isotropic states p,o
[HH99] were computed in [THO00], and Schmidt numbers of the Werner states
pop [Wer89] were also known (see [Kye23b, Theorem 1.7.4] for example). De-
spite the partial answers to the cases of single parameters, the problems of
the general cases L, and p,; remain open. To our best knowledge, our result
is the first example of computations of the Schmidt numbers for non-trivial
two-dimensional families of quantum states in arbitrarily high dimensional
settings.

A crucial observation is that the above quantum objects L., and pgp
are linked via the standard orthogonal group symmetries. Let G be the or-
thogonal group O(d), and let m4(O) = m(0O) = O be the standard repre-
sentation of O(d). In this case, we denote by Cov(O, O) = Cov(ms, 7p) and
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Inv(O ® O) = Inv(7Tx @ 7p) for simplicity. Then we have p,, = Cr,, and
Covi(0,0) ={L4p : a,b € C}, as noted in [VWO01, Has18]. Moreover, L, is
Hermitian-preserving if and only if a,b € R.

In this section, we aim to establish a complete characterization of k-
positivity of £,; and Schmidt number of p,; in terms of the parameters
a and b. Then k-block positivity of p,; and k-superpositivity of L,; are
immediate through the Choi-Jamiotkowski map.

Our strategy consists of two steps. The first step is to employ some
methodologies from [Tom85] to study k-positivity of L., € Covi(O,0) in
a direct way (Theorem 5.2.1), and the second step is to apply Theorem 4.3.2
to compute the Schmidt numbers of all p,; € Inv(O ® O)? accurately (The-
orem 5.2.4).

5.2.1 k-positivity of orthogonally covariant maps

Note that positivity and complete positivity of £, , were completely char-
acterized recently in a more general setting, namely the hyperoctahedrally

covariant maps (Section 5.1). This section is devoted to characterizing k-

positivity of all £, , € Covy (O, O), which generalizes the results from [Tom85].

Indeed, for the following convex subsets
Py:={(p.q) eR*: L,, € POS;}, 1 <k <d, (5.2.3)

we prove P, D P, D --- D P, with explicit geometric and algebraic descrip-
tions. First of all, the geometric structures of the convex subsets P, can be

categorized into four distinct cases.

1. The region P, is trapezoid-shaped with vertices (1,0), (0, =75 ), (—5,0),

and (0,1).

2. Ifl<k< g, the region Py is quadrilateral-shaped with vertices (1,0),

(0, = 29) (=512 0), and (= gy faremy)-
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3. If %l < k < d, the region Py is bounded by a piecewise-linear curve
joining (— %45, ﬂﬁ), (1,0), (0, =), and (— 7=, 0) in that order,

0) and

and by a conic (i.e. a quadratic curve) passing through (—ﬁ,

2 d
(—773 7a=)-

4. Lastly, the region Py is a triangle with vertices (1,0), (0, —ﬁ), and

2 d
(—Z7as 7ras)

A visualization of the above characterizations for special cases d = 3 and

d = 4 are given in the following Figure 5.4.

12+ Regions of k-positive maps EL'J

Regions of k-positive maps Ljy

Figure 5.4: The regions of k-positive maps E% for d = 3,4

We now present explicit algebraic descriptions of the regions Py (equiva-
lently, POS,) in the following theorem.

Theorem 5.2.1. Let L, , be a linear map of the form (5.2.1). Then

1. L, € POS if and only if { ¢ — (d —1)g < 1,

—=<p+q<l
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(p—(@-1)g<1,
pt(d+1)g<1,
(kd = 1p+(d—1)g = -1,
(¢ — (kd=1)p < 1.

2. L,q € POS;, (1 <k <2)if and only if

'p—M—UqéL
p+(d+1)g <1,
(kd = 1)p+ (d—1)g > —1,

| fr(z,y) <0,
where fr(x,y) is a quadratic polynomial explicitly given by

3. L,q € POS;, (£ <k <d) if and only if

fe(z,y) =(kd — 1)a® — (d* — kd® — kd — d + 2)ay + (d — 1)y?
—(kd —2)x — (d — 2)y — 1. (5.2.4)

4. Lpg €CPif and only if S p+ (d+1)g < 1,
d+1)p+q>—75

Note that (1) and (4) of Theorem 5.2.1, i.e. positivity and complete posi-
tivity of £, 4, are straightforward from (5.1.21) and (5.1.14). Thus, our main
focus is to prove (2) and (3) of Theorem 5.2.1. Let us recall a criterion of

k-positivity proposed in [Tom85, Lemma 1].

Proposition 5.2.2. Let 1 < k < d. Then a linear map L : My — My is
k-positive if and only if the bipartite matrix

k
Gi(L) = 3 ] © L(lwdiu)) € My @ My (525)
ij=1
is positive semidefinite for any choice of an orthonormal subset {v, ..., v}

of C.
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The following lemma plays a crucial role in applying the above Proposition
5.2.2 to prove (2) and (3) of Theorem 5.2.1.

Lemma 5.2.3. For 1 < k <d, we have

k
min Y |(v;[77)|* = max(2k — d,0), (5.2.6)

33'=1

where W is the complex conjugation of w € C? and the minimum is taken

over all orthonormal subsets {vy, ... ,vx} C CZ

Proof. 1f 2k < d, then we can take |v;) = \/ig(|2j —1)+125) (j=1,....k)
and check (v;|T;) = 0 for every j, 7', so the equality (5.2.6) holds. From now,
let us focus on the case 2k > d. First, we consider an arbitrary orthonormal
subset {v1,...,v,} C C? and orthogonal projections II, = 25:1 |v;)(v;] and
Iz = Zle |77)(75]. Then we can observe that

Z |(v;]057)|* = Tr(IT,I15) > dim(Ran(IL,) N Ran(1l;))

and the right hand side is equal to
dim(Ran(II,)) + dim(Ran(Ilg)) — dim(Ran(Il,) + Ran(Il3)).

Thus we have 3~ ., [(v;|75)|* > 2k — d. On the other hand, let us take a spe-
cific orthonormal subset {v1, v, -+, v} € C? where [v;) = —= S WD)
(j=1,...,k) and w = exp(%*). Then we can check that the desired equality
>, [(vj[77)[* = 2k — d holds from the relation

1 ifj+j —2=0modd,

UJ|UJ =

d
§ =l(+i'=2) _

&IH

0 otherwise.

]

Proof of Theorem 5.2.1 (2) and (3). For an orthonormal subset {vy, ...
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in CY, the associated bipartite matrix in (5.2.5) is given by

v 1- p—q v v v
CR(Lpg) = =Tk @ Lu+ PRI (] + g F,
v Eops
) = \/Lg Zj:l 7)) ®|v;) € CF® C7,
v k N N\
Fy =202 0] @ ) (vi] € Mk @ Md.
Fp = II% — 1Y, where II% is the projection onto the (symmetric) space
span {w 1< <5< k} and IIY is the projection onto the (anti-

where Moreover, we can write

symmetric) space span {w 1<i< g < k} Note that Ran(II%) L
Ran(I1%), and |2}) L Ran(I1%) since

for all 1 <1 < j < k. Therefore, after rewriting

V2 V2k

e RV —e; QU; 1 _ —
= > = —=(ul75) — (v;[m)) =0,

Ci(Lpg) = (Allka — ) + pk[Q5) (] + ¢Ilg) © (A — ¢) 1Ty

with A = 1‘%:‘1 for an orthogonal decomposition, the desired condition

CP(Lyy) € Pra is equivalent to A — ¢ > 0 and

(the condition k£ > 2 ensures that II% is nonzero).
A technical difficulty on (5.2.7) is that |Q})(Q}] and II% are not simulta-

neously diagonalizable since
| €00 (€% - T 7 1T - 1€2;) (€2

in general unless {v;}*_, C R%. To overcome this, let us take |¢;) = IT4]Q) €
Ran(IT%) and consider |Q}) = |&1) + |£2). Then

& L (Ran(Ig) U Ran(1I1%)).
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Moreover, we have the following block matrix decomposition

ATy — 1Y) + pk|QD Q)] + ¢I1%

géCA+@H§+MMﬁ@ﬂ pRIEL) (] )’

(5.2.8)
pk|&2) (&1 A(I —TIg — 1Y) + pk[&2) (&2l

An important fact to note on (5.2.8) is that rank(II%) = k(kzﬂ) > 2 and

rank(/ — 1% — 1Y) = d*> — k* > 2 since 1 < k < d. Therefore, the block

matrix in (5.2.8) is positive semidefinite if and only if

(

(a) A+q>0,

(b) A>0,

(¢) A+ q+pkl&|* >0, (5.2.9)
(d) A+ pkl&]* >0,

(€) (A+q+pkl&lP) (A+ pkl&I?) = (k)67 1)1

\

Since [|& |2 +][&]* = [|92]]* = 1, the conditions (d) and (e) can be understood

as
(d') A+ pk —pk|&]* >0,

() (A+q)(A+ pk) — pkqll&||* > 0.

(5.2.10)

Note that the first two conditions (a) and (b) are independent of the choices
of an orthonormal subset {v;};_, € C¢ and that the other inequalities in
(), (d') and (¢’) are linear in ||£;]|?. Since the inequalities in (c), (d') and (€’)
should hold for all possible choices of {vi}le C €4, it suffices to calculate

the maximum and minimum values of & ||*.

Recall that |Q)) = |€,) € Ran(I1%) whenever {v;}}_, ¢ R? (choose |v;) =

i) for example), so the maximum of ||&]|? is 1. For the minimum of ||&||%,
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I

the following expression of [|&;||* in terms of vy, vy, - -+, vy

€11 = (k5] 2%)
= (I FC1%) (o [92%) L Ran(IT;))

1 o 1 _
7 Z(w!w) (Uyrlvy) = P Z !<Ujfvj'>!2-
3.3" 3.3’

H2 _ max(2k—d,0)
=7

To summarize, £,, € POSy if and only if the six inequalities (a), (b),
(c), (d), (¢'), and A —q > 0 hold for ||&]]* € {1,m = w} and

A = 2229 For the cases 1 < k < d/2, we have m = 0 and obtain the

inequalities in (2). Also, for the cases d/2 < k < d, we have m = 2= and

obtain the inequalities in (3). In particular, the inequality fi(z,y) < 0 is

allows us to apply Lemma 5.2.3 to conclude that min ||£;

coming from (¢’) with ||&[|* = 24 -

5.2.2 Schmidt numbers of orthogonally invariant quan-
tum states

Now we are almost ready to compute the Schmidt numbers of all quantum

states of the form

l—a-b b
Pab = de®[d+a|ﬂd)<9d] -+ (_le (5211)
Let us denote by Sy, := {(a,b) € R* : p,, € Schy}. The main aim of this
Section is to prove S7 C Sy C --- C Sy with both geometric and algebraic

descriptions. Our strategy is to combine Theorem 4.3.2 and the explicit de-
scriptions of P, = {(p,q) € R? : L, , € POS;} (Theorem 5.2.1).
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First of all, Theorem 4.3.2 implies that we have

SN(pa,b) S k
— (Q|(ida ®L,4)(Pap)|Qa) > 0 for all (p,q) € Ext(Py)

= )62

Let us denote by

. for all (p, q) € Ext(Py).

(5.2.12)

Hyy = {(z,y) € R? :pr+qy < 1} (5.2.13)

for all (p,q) € R?\ {(0,0)}, and by o : R* — R? a linear isomorphism given

by
T d+1 1 T
(Yo (7))

Then we have the following identity:

Se= () Howa: (5.2.15)

(p,q)€Ext(Py)

This is where a detailed geometric analysis of P, (Theorem 5.2.1) mani-

fests its efficacy. Indeed, Theorem 5.2.1 states that the geometric structures

(1) k=1
o . 2) 1<k<d
of P, are categorized into four distinct cases . Further-
(3) ¢<k<d
(4) k

more, for the three cases (1), (2), (4), the associated regions Pk are compact
convex sets with at most four extreme points. Thus, it is enough to use at
most four Schmidt number witnesses £, , to determine Sj, by Theorem 4.3.2
and (5.2.15), and the consequence is that Sy is an intersection of at most four
closed half-planes for the three cases (1), (2), (4). All our discussions above

are summarized into the following theorem.
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Theorem 5.2.4. Let p,; be a bipartite matriz of the form (5.2.2) and 1 <
k <d. Then we have

Se=" (1 Howa
(p,q)€Ext(Py)
where o and H,, are from (5.2.13) and (5.2.14). Moreover, we have the
1) k=1,
following algebraic descriptions for the three cases  (2) 1<k < %,
(4) k=d.

1. pap € SEP if and only if { **

2. pap € Schy, (1 <k < %l) if and only if § a + (d + 1)b < 1,

 d—k+1 !
rihote b= =55

[y

a—(d—-1)b <1,
4 pap € Schy =P if and only if S a+ (d+1)b < 1,

d+Da+b> -1

We should remark that the remaining case (3) is quite different from the
other cases since there are infinitely many extreme points in P. In this case,
we will utilize some elementary geometric tools from projective geometry to
overcome the technical issue. Indeed, we need a quadratic curve to describe
S, for the cases g < k < d. This excluded case (3) will be discussed with

details independently in Subsection 5.2.2.

Although we postpone the proof of the remaining case % < k < dto
Subsection 5.2.2; let us exhibit a visualized geometric structures of Sy, Ss,
.-+, Sg in the following Figure 5.5, particularly for the cases d = 3 and d = 4.

As in the case of k-positivity of £, ,, the geometric structures of the

convex subsets Si can be categorized into the following four distinct cases.
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0.5

0.4

03 Regions of p") of the Schmidt number k
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Figure 5.5: Regions of pglg of the Schmidt number k for d = 3,4

1. Theregion S; is rhombus-shaped with vertices (—ﬁfm, #‘2_2), (d—i2, d_-:il-Q)’

d 2 1 1
(Fris — 7)) ad (s —7ras)

2. If1 < kK < %l, then the region S is trapezoid-shaped with vertices

2 d kd+k—2 _d—k ked-+k—1 k+1 1
(_d2+d—2’ d2+d—2)’ (a2 #ras) (Eria —#raz) and (0, —75).

3. If %l < k < d, then the region Sy is bounded by a piecewise-linear curve

L d_ 242k 1 2 d kdik—2 _d—k

joinig (575 (d—l)(3d—2k))’ 0, —77), ~z7a= #raz) (Fris 7ras)
204 k21 d d—k+1)(d—k

and (k d+k>+d—3k (d—k+1)(d—k)

MPTdD o~ E@iay ) n that order, and then joined smoothly

k2d+k?+d—3k (d—k+1)(d—k))t ( d 2d—2k )
3d—2k’ :

by an ellipse from ( k(@21d—2) ° k(d®+rd—2) T {d=1)(3d—2k)

4. The region Sy is the same with P; = {(a,b) : L, € CP}, i.e. Sy is a

triangle with vertices (1,0), (0, —745), and (— 2, 719=3)-

Algebraic descriptions of S; for the cases %l <k<d

Let us focus on explicit algebraic descriptions of

Se= ) Ha(p,q):a1< N Hp,q> (5.2.16)
(Pr)

(p,q) EEXt(Py) (p,q)EExt

for the cases g < k < d. In this case, we have
-2 d -1 -1
Ext(P) = {<d2+d2’ d2+d2> (1,0) (O’d 1) ’ (kdl’())} Y G
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by Theorem 5.2.1 (3). Here, Cj is a conic arc in the second quadrant and is

parametrized by a smooth, regular, and strictly convex curve
v :[0,1] — Cy (5.2.17)

satisfying fx(v(t)) = 0, 7(0) = (=575,0) and 1(1) = (— g5, #yas)-
Then (5.2.16) implies that Sj, := a(Sy) is given by

H 2 d mHl,OﬂHo,_ . NH_ 1+ N ﬂ H7(t), (5.2.18)

T d24d—2’d2+d—2 d—1

kd—1’
te[0,1]

and the most technical problem is to demonstrate that ﬂ H. ) is a convex
te(0,1]
set bounded by two lines and one conic arc as in the following Figure 5.6.

Polar(y(0))

Figure 5.6: Geometric description of the intersection ﬂ H.
te(0,1]

Here, we need to explain the dual curve and the pole-polar duality from
projective geometry [BK86, Cox03]. Firstly, we have an explicit formula for
the dual curve 4 of a strictly convex smooth curve 7. Recall that a plane
curve 7y : I — R? defined on an open interval [ is called strictly convex if the
number of intersection points between v and an arbitrary line is at most 2.
If ~ is smooth, then the strict convexity of 7 is equivalent to that for every

t € I, the image of ~ is contained in the same half-plane whose boundary
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is the tangent line [, at ~y(¢), and ~(¢) is the unique intersection point of I
and ~. For a strictly convex smooth curve v = (p(t),q(t)) (with additional

conditions in Lemma 5.2.5), we define its dual curve 7 by

A(t) = < q(t) , V(1) ) . (5.2.19)

p(t)q'(t) —q(t)p'(t) p(t)qd'(t) — q(t)p'(t)

Secondly, the pole-polar duality is a bijective correspondence between
R?\ {(0,0)} and the set of all lines that are not passing through the origin
(0,0) in R%. Associated to (p,q) € R*\ {(0,0)} is a line

l={(z,y) eR*:pr+qy=1}.

In this case, we call [ the polar of P and P the pole of | (with respect to the
unit circle C' : 22 + y? = 1), and denote by [ =: Polar(P) and P =: Pole(l)

respectively. Note that we have
A(t) = Pole(l;)

for all t € I, where [; denotes the line tangent to v at ~y(¢).
The following Lemma 5.2.5 establishes the connection between the dual
curve ¥ and the intersection (), ¢, Hpq- This seems a well-known fact, but

we provide a proof for readers’ convenience.

Lemma 5.2.5. Let I be an open interval and v : T — R*\ {(0,0)} be a
smooth, reqular, and strictly convexr curve. Suppose that for every t € I, the
tangent lines l; at y(t) do not pass through the origin (0,0), and the origin is
in the same (closed) half-plane with v with respect to l;. Then the dual curve
7 : I —R*\ {(0,0)} from (5.2.19) satisfies the following properties.

1. Polar(vy(t)) is tangent to 5 at A(t) for each t € I.

2. 7 1s smooth and strictly convez, and the origin is in the same half-plane

with ¥ with respect to Polar(~(t)).
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3. For any closed interval [to,t1] C I, the intersection

m Hv(t)

te [to ,tﬂ

is the largest convex region containing (0,0), which is bounded by two
lines Polar(y(to)) and Polar((t;)) as well as the dual curve ¥y, (as
in Figure 5.6).

4. If v represents a connected part of a conic, then so is 7.

Proof. Set v(t) = (p(t), ¢q(t)). Then the equation of I; is given by

¢ (t)(x —p(t) = p'(t)(y — q(t)) = 0. (5.2.20)

Note that the given assumptions imply that p(¢)q'(t) — q(t)p'(t) # 0 for all
t € 1, so by continuity, we may assume p(t)q'(t) — q(t)p/(t) > 0 for all t €
without loss of generality. In particular, the dual curve 7§ from (5.2.19) is a
well-defined smooth curve, and (5.2.20) implies that 5(¢) = Pole(l;) for all
t € 1. Let us write 4(¢) = (2(t), g(t)) for simplicity and explain why the four
conclusions (1)-(4) hold.

(1) It is enough to check that

p()z(t) + q(t)y(t) = 1,
p)T(t) + q(t)7'(t) = 0.

Indeed, the first equation comes from the fact that 4(¢) = Pole(l;), and
the second equation is obtained by differentiating the first equation and the
identity p/(t)Z(t) + ¢'(¢)g(t) = 0 from (5.2.19).

(2) Note that the strict convexity of v implies that

q'(t)(p(s) — p(t)) —p'(t)(q(s) —q(t)) <0, t#sel, (5.2.21)

117



CHAPTER 5. APPLICATIONS TO QUANTUM ENTANGLEMENT

which is equivalent to
p(s)z(t) +q(s)g(t) <1, t#sel. (5.2.22)

Thus, both the origin and & are in the same half-plane with respect to
Polar((s)). Moreover, (5.2.22) implies that 4 is strictly convex, and smooth-
ness is immediate from the explicit description (5.2.19) of 7.

(3) Let T be the largest convex region containing (0,0) bounded by two
lines Polar(v(ty)), Polar(y(t1)), and the dual curve |, . First, it is imme-
diate to see that T' C ﬂte[to’tl] H., ). Indeed, T should be contained in the
same plane with (0,0) with respect to each tangent line [; = Pole(y(t)) for all
t € I, and this implies 7" C H, for all ¢ € [to,t1]. On the other side, let us
pick an element (u,v) ¢ T and let [ be the straight line passing through the
origin and (u, v). Then [ intersects with one of Polar(v(¢y)), Polar(y(¢;)), and
Ylito,t:]- For the first two cases, (u,v) and (0,0) are not on the same half-plane
with respect to either Polar(vy(to)) or Polar(y(t1)), so (u,v) & (Nicty 1) Hrv()-
For the remaining case, if we suppose that [ contains certain 4(t), then (0, 0)
and (u,v) are not on the same plane with respect to H,. Hence, we can
conclude that T¢ C <ﬂte[t0,tl] Hv(t)>c, ie. ﬂte[to,tl] Hyy CT.

(4) This is a direct consequence from Pliicker’s formula [BK86, Section
9.1], which states that the degree of the dual curve 7 is n(n —1) for any non-
singular plane algebraic curve vy of degree n (in our case, n = 2). Alternatively,

more elementary arguments can be found in [CG96, AZ07]. O

From now on, let us focus more on the special case v : [0,1] — Cj from
(5.2.17). We may assume that v is extended to the smooth, regular, and
strictly convex curve (still denoted by ) on an open interval I D [0, 1] such
that fp oy = 0. Then Lemma 5.2.5 (4) implies that there exists a quadratic
polynomial fk(x,y) such that
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notable fact is that a~! o 4 always represents an ellipse. For this conclusion,

the following lemma provides more concrete information on the quadratic

polynomial f, (x,y).

Lemma 5.2.6. The quadratic equation fy(x,y) = 0 holds for the following
five points (a;,b;) (1 <i <5)

. d d?—kd+d—2k d®>—kd+d—k—1 _ d—k+1 2kd—d?>4+2k—d—2 2d—2k
k(d?>+d—2)’ k(d®>+d-2) ) &?+d-2  d?>+d-2 ) d?+d—2 > d?+d-2 )7
k?d+k?+d—3k _ (d—k+1)(d—k) d__ ____ 2d—2k
k(d?+d—2) > k(d2+d—2) >\ 83d—2k>  (d—1)(3d—2k) )’

with the associated tangent lines l; (1 <1 <5)

respectively. Furthermore, z'fg < k < d, the conic determined by the equation
fk(x,y) = 0 is inscribed in the convexr pentagon bounded by the above five
tangent lines. In particular, the equation fk(x,y) = 0 should represent an

ellipse.

Proof. Let us begin with the following expression
fe(z,y) = Ax® + Bay + Cy* + Dx + Ey + F (5.2.23)

with the coefficients

A=kd—1, B=—(d—kd®—kd—d+2), C=d—1,
D=—kd+2 FE=-d+2, F=-1,

from (5.2.4). If we write v(t) = (p(t),¢q(t)), then we have

(1) = — <2Ap(t) + Bq(t)+ D 2Cq(t) + Bp(t) + E> (5.2.24)

7 Dp(t) + Eq(t) + 2F Dp(t) + Eq(t) + 2F

thanks to (5.2.23) and (5.2.14).
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Recall that o~ '(5(t)) are solutions of the equation fi(z,y) = 0 for all
t € I. Thus, in order to single out five points (a;, b;) satisfying fi(as, b;) = 0,
it is enough to note that the following five points (p(t;), ¢(t;)) (1 <i <5)

—1 -1 -2 d
1 1 — —
(1,0),(0,1). (O’d—l)’(kzd—l’o)’(d2+d—2’d2+d—2)

are solutions to the equation fi(z,y) = 0. Then (5.2.24) provides us with

the associated five points (a;, b;) = a1 (F(t;)) listed in the statement. Fur-
thermore, the tangent lines [; at (a;, b;) satisfying f(a;, b;) = 0 are given by
Polar(a(p(t;), q(t;))), by Lemma 5.2.5 (1). Thus, we can write down what
the tangent lines are explicitly, as in the statement. Lastly, it is immediate
to check that when %l < k < d, those five tangent lines consist of a convex
pentagon, and the corresponding points (a;, b;) of tangency are on each of the
pentagon’s sides. This observation forces the quadratic equation fx (r,y) =0

to represent an ellipse inscribed in this pentagon. O

Remark 5.2.7. While the dual quadratic equation fi(z,y) = 0 in our con-
sideration always represents an ellipse thanks to Lemma 5.2.6, the quadratic
equation fx(z,y) = 0 can represent both an ellipse and a hyperbola. For
example, the quadratic equation fi(x,y) =0 for d = 5 is given by

(5k — 1)p* — (122 — 30k)pq + 4¢> — (5k — 2)p — 3¢ — 1 = 0,

and this represents a hyperbola if £k = 3 and an ellipse if k = 4.

Finally, we are ready to describe the intersection

N Ha(p,q>:a—1< N Hp,q)

(p.9)€Ck (P.9)€Ck
from (5.2.18). Recall that (,0) and (#3727#372

points (p, q) of the connected conic arc Cy, and their associated points (a, b)

) are the two end-

2d—2k

k2d+k%4-d—3k (d—k+1)(d—k) d
k(d2+d—2) °  k(d*+d—2) )and(

Let us denote by L the line segment between these two points, and let us

satisfying fj(a,b) = 0 are given by <
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assume (by changing the sign if necessary) that the inequality f(x,y) < 0

represents a filled ellipse.

Corollary 5.2.8. Let (a,b) € R%. Then (a,b) ﬂ Hepg) if and only if

(a,b) satisfies fy(a,b) < 0 or satisfies the followz’:gq}tehi];e conditions:
1 (d+1)a+b<EEL
2.a—(d—-1)b<1,
3. (3d —k +3)a — (kd + k — 3)b — LHkd=k=3 <

d—1

Proof. By Lemma 5.2.5 (3) and Lemma 5.2.6, the intersection ﬂ Hop.g)

(P,9)€Ck
is the largest convex region containing (0, 0) bounded by the two tangent lines
(d+ 1)z +y="1 2 —(d—1)y =1 and the dual curve J|1. We refer the

readers to Flgure 5.6 for a visualized understanding. Note that fk(x, y) <0
represents a filled ellipse which we denote by E, and F is a subset of the
intersection ﬂ Hypg) by Lemma 5.2.6. Furthermore, ﬂ Hoypog \ E

(p,0)€Ck (P,9)€Ck,
is a subset of the largest convex region bounded by the two tangent lines

(d+1)z+y =51 2 —(d—1)y = 1 and the line segment L between
k2d+k2+d—3k _ (d—k+1)(d—k) d 2d—2k
( k(§2+§—2) ' T R(d2+d—2) ) and <3d—2k’_(d—l)(3d—2k))' Hence, the conclu-

sion follows immediately. O]
Now we are ready to complete the proof for the cases g < k<d.

Theorem 5.2.9. Let p,;, be a bipartite matriz of the form (5.2.2) and g <
k < d. Then p,p € Schy if and only if fk(a,b) < 0 or (a,b) satisfies the

following inequalities:

4 <(d+1)a+b< Bl
a+ ( +1)b <1,

—(d—1)b<1,
\Bd—k+$a—@d+k—$b drkd—k=3 < (),
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Here, fk 15 the quadratic polynomaial from Lemma 5.2.6 such that the inequal-

ity fr(x,y) < 0 represents a filled ellipse.

Proof. Since m H,, CH_ > d ﬂH_%O, we have

Zid2 @rd—2 a1
(p,9)€C
S = a(Sy) = HioN Hy_ 1N ﬂ H,, (5.2.25)

(p,9)€Ck

from (5.2.18). Thus, we have

d—1

Sk = Oé_l(gk) = O[_l (HLO) N Oé_l <H07—$> N O./_1 ﬂ Hp,q

=H_(g2_1),—@-1) N Hya1 N ﬂ Hap.g)-

(P,9)€Ck

and the conclusion follows immediately from Lemma 5.2.6 and Corollary
5.2.8.
O

Remark 5.2.10. It is worth remarking that a small perturbation can pro-
duce a drastic increment of the Schmidt number. Recall that Sy is a triangle,
and let us parameterize the southern-eastern edge of S; by n : [0,1] — Sy
such that n(0) = (0,—55) and n(1) = (1,0). Then p, is always entan-

gled, and the Schmidt numbers SN(p, ) exhibit a monotonically increasing

pattern of
2,151, 181+ 1,141 +2,--- ,d,

as t increases from 0 to 1. Note that there is a huge gap between 2 and
(%ﬂ, which seems entirely new and highly non-trivial. This phenomenon does
not appear on the other line segments in the boundary of S;, and some other
known cases such as p, o and pg . The only known patterns were 1,2,3,--- ,d

(isotropic states) or 1,2 (Werner states) to our best knowledge.
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5.3 Tripartite systems with unitary group sym-

metries

Recall that a tripartite quantum state p € D(Ha® Hp® H¢) is called A-BC
separable (resp. A-BC PPT) if p is separable (resp. PPT) in the situation
where B(H4 ® Hp ® H¢) is understood as the bipartite system B(H4) ®
B(Hp®H¢). Furthermore, C-AB or B-AC separability (resp. PPT) is defined
similarly. We will focus on the situation where Hy = Hp = He = C¢, and

let us denote by

X' = (Td ® iddz)(X),
X8 = (Id®Td®Id)(X), (531)
XTe = (idp ®T,)(X),

the three partial transposes of X € B(Ha ® Hp ® He) = My (C).

The main purpose of this section is to apply our results in Section 4.3
as new sources to study the problems PPT = SEP, equivalently the prob-
lems POS = DEC for some tripartite invariant quantum states. In Section
5.3.1, we exhibit positive non-decomposable covariant maps £ : My — Mg
satisfying

LOUXUT) = (U U)LX)(UU) (5.3.2)

for all unitary matrices U € U(d) and X € M. This result is parallel to
the fact PPT # SEP for tripartite Werner states [EWO01], i.e. tripartite
quantum states p € My (C) satisfying

UeUU)p=pUUxU) (5.3.3)

for all unitary matrices U € U(d).

On the other hand, in Section 5.3.2, we show that a strong contrast
PPT = SEP holds for quantum orthogonally invariant quantum states.
More generally, we prove that PPT = SEP holds for any tripartite quantum
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states p € My (C) satisfying

UeUU)p=pUUeU) (5.3.4)

for all unitary matrices U € U(d).

5.3.1 Tripartite Werner states

Let 74, mpc be unitary representations of the unitary group U(d) given by
74(U) = U and 7pc(U) = U®U. Then the elements in InvQS(7T1 @ p¢) are
called tripartite Werner states. Let us write Inv(U®?) = Inv(7T4 ® 7p¢) and
Cov(U,UU) = Cov(ma, mpc) for simplicity. The application of Schur-Weyl
duality [EWO01] or von Neumann’s bicommutant theorem [Wat18, Theorem
7.15] implies that the space Inv(U®3) is spanned by six unitary operators
{V, : 0 € 83}. Here, V,, : (C?)®3 — (C4)®3 is determined by V, (& @& ®E3) =
§o-1(1) ® Eo1(2) @ Eo-1(3) for any &;,62,83 € C? and o € Ss, or equivalently,

d
Vo = Z |J172J8) {Jo(1)Jo(2)Jo(3) |- (5.3.5)
jl:j27j3:1
Recall that A-BC PPT property and separability of p € Inv(U®3)P were
already characterized in [EWO01], and it was shown that PPT = SEP if and
only if d = 2. Therefore, a direct application of Corollary 4.3.4 gives us the

following result.

Theorem 5.3.1. All positive (UU,U)-covariant maps are decomposable if
and only if d = 2. By taking the adjoint operation L — L*, the same conclu-

sion holds for positive (U, UU)-covariant maps.

In the remaining of this section, we will assume d > 3 and exhibit positive
non-decomposable (U, UU)-covariant maps.

[Step 1] First of all, let us characterize all elements in Cov(U,UU)PS.
Note that Corollary 4.2.3 (3) implies that the space Cov(U,UU) is spanned

by the following six linear maps L, whose unnormalized Choi matrices are
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the operators V, € Inv(U®?) in (5.3.5):

;

L(X)=(TrX) I, ® I,
LX) =XT® I,
Loz (X)=IL;® X",

(X) = (TrX) - 2?27]‘3:1 |J32) (G273l
L3)(X) = Z;’ll,jg,jgzl Xijijoldoga) (Gsinl,
L32)(X) = Z;’ll,jg,jgzl Xiijs|2gs) izl

(5.3.6)

\

Lemma 5.3.2. Let L=
and only if

a,L, € Cov(U,UU). Then L € POS 4 pc if

og€E€Ss3

(1)
(2) (e 2 Mmax {—a(12), —Aa(13), |a(23)|} )

(3) e+ aq2) + aasy + a@s) + aqas) + apsz) > 0,
(4) (ac+aqz) (ac +aus) > |aes) + aqos)|”-

e, A(12), A(13), A(23) € R and aq32) = a(123),

(5.3.7)

Proof. Since every unit vector ¢ € C? can be written as |¢) = U|1) for some
U € U(d), the (U, UU)-covariance property implies that £ is positive if and

only if £(e11) > 0. Moreover, L(e1;) has a matrix decomposition

L(e11) = (ae + a2y + ansz) + aes) + aqas) + a@se))1 © (ae + a2s)) ida—1
d
Qe a(23)
o (& o @ |
(jQ ) (2<i<j<d @(23) Qe )

(5.3.8)
with respect to the bases {|11)}, {|22),[33),...,|dd)}, {|14),|71)} for j =
2,...,d,and {|ij),|ji)} for 2 < i < j < d, respectively. Therefore, L(e11) > 0
if only if (5.3.7) holds. O

(e +Q(12)  G(23) + Q(123)

(23) T Q(132) Qe T A(13)

The next step is to classify CP and CCP conditions in Cov(U,UU) to
find all PPT elements in Inv(U®3)P.

Lemma 5.3.3. Let L=)_a,L, and let X =) _a,V,. Then
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1. L is CP if and only if X > 0 if and only if

.
e, A(12), A(13), A(23) € R and a(123) = a(132),

e 4 a3y + a@s2) > |aqe) + ans) + a3,
2@8 - a(lgg) - &(132) Z 0, (539)

(ae + wa(123) + wa(lgz))(ae + wa(lgg) + wa(132))

o 2
> |wa(12) +wagas) + a(23)‘ '

2. L is CCP if and only if X4 > 0 if and only if

.
Ue, A(12), A(13); A(23) € R and a(i23) = a(132),

e > |ags),
2a. + ap23) + apsz) + d(aqs) + a@s)) >0,
(ae + ags) + B (aqz) + aas) + aaas) + aas))
X (ae — Q(23) + %(a(m + a@as) — ag23) — a(132))>

> L= |aq) — aas)? + lages) — ags[?).

(5.3.10)

These characterizations were already known from [EWO01, Lemma 2 and
Lemma 8|, but with a different parametrization. An elaboration on Lemma

5.3.3 is attached in Appendix C using the following identifications

span{V, : 0 € S3} 2 Cd C @ My(C), (5.3.11)
span{V,'* : 0 € S3} 2 Ca C @ M,(C) (5.3.12)

as x-algebras.
[Step 2] All extremal elements in Covy (U, UU)"S are completely char-
acterized in the following lemma. Our proof is straightforward but rather

cumbersome, so we attach the proof in Appendix 5.4.2.

Lemma 5.3.4. Let £ = Y__a,L, € Cov(U,UU). Then the following are

equivalent.

1. L € Ext(Cov,(U,UU)P9%)
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2. Ge,a(12), a(13), a23) € R, a(123) = 132y, and the associated 6-tuple
(ae, a(12), a(13), a(23), Re(aqzs)), Imaas))) € R (5.3.13)

15 one of the following three types:

Type I c1(1,—1,—-1,—1,1,0)
Type II  ¢5(0, A, B,0,C, £V AB — C?)
Type II1 03(A+BZ+207 AfB272C’ 7A+12372C’ A+32+2c7 _AJ2rB7 +AB — C?)

where A,B > 0, C € R, AB > C?, and the normalizing constants

c1,Co, and cz are chosen to satisfy the TP condition

d2(le + d(a(m) + a(lg) + CL(23)) + (CL(123) + a(lgg)) =1. (5314)

Then, combining Lemma 5.3.3 and Lemma 5.3.4, we can check that
e Every £ € Ext(Cov,(U,UU)P%) of Type I is CP,

e Every £ € Ext(Cov, (U, UU)P9%) of Type II is CCP,

e Let £ € Ext(Covy(U,UU)P%) of Type III. Then

— LisCPifand only if A= B =C,

— L is CCP if and only if A = B = —C.
Thus, Type III (with neither A = B = C' nor A = B = —(') provides explicit
positive non-decomposable maps in Cov(U, UU)P9® by Theorem 4.3.5. For

example, we can choose A = 1,B = 0, and C' = 0 to obtain a specific

extremal element

£() = Ee + E(lg) - E(lg) + £(23) - £(123) — £(132) € EXt(COVl (U, UU)POS)
(5.3.15)

up to a normalizing constant.
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[Step 3] On the dual side, the chosen positive non-decomposable map
L% € CovPos(UU,U) should play a role as a PPT entanglement detector.
Indeed, if we take
t
d

1 d+t t
( =Viizs) +

pr= A3+ (t+1)d?> + 2t d Ve + Vg + d ‘/(132)) (5.3.16)

with 0 < ¢ < 3.89 and d > 3, then p; € Inv(U®3)P is A-BC PPT by Lemma

5.3.3. Moreover, it is straightforward to see that

(d3 + (t +1)d? +2t) - (d LY (pr)

2t
= <d2 + (t+2)d+ 3t — d) idg ®@idg — (d* + (2t +2)d) [Qa) (|  (5.3.17)

2
has a negative eigenvalue —t | d 4 i 3] < 0. Consequently, the quantum

state p; is A-BC PPT entangled by Theorem 4.3.1 or by Horodecki’s criterion.

Remark 5.3.5. Note that p, is also C-AB PPT entangled since V(13)p;V(13) =
pi. On the other hand, p; is not B-AC PPT (and hence entangled). Indeed,

we can observe that
pi P = Vg (VagypVaz) ' Vi, (5.3.18)

but V(12)p,V(12) is not A-BC PPT since

1 d+1t t t
Viaz)peViz) = Fri+ )P+ ( d Ve + Viag) + gV(123) + dV(132)>
(5.3.19)

does not satisfy the CCP condition (5.3.10).

It might be interesting if we can find a tripartite PPT-entangled Werner
state with respect to all the three partitions A-BC, B-AC, and C-AB. How-
ever, Lemma 7 of [EWO01] implies that there is no such an example p =

>, sV, if one of the following conditions is satisfied:
® a@2) = aq3) and a(123) = a(132),
® ((13) = G(23) and A(123) = @(132),
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® a(23) = a12) and a(123) = a(132),

We leave the general situation as an open question.

5.3.2 Tripartite quantum orthogonally invariant quan-

tum states

Within the framework of compact quantum groups, it is well-known that the
orthogonal group O(d) allows a universal object, namely the free orthogonal
quantum group O [Wan95, Tim08]. In other words, the invariance property
with respect to O is a stronger notion than the (classical) orthogonal group
invariance. See [LY22] for a general discussion on invariant quantum states
and covariant quantum channels with quantum group symmetries.

In this section, we focus on the space Inv(Of?g') of the tripartite quantum

orthogonally invariant operators spanned by five tripartite operators

d
T,=V,'? = Z |J170(2)73) (Jo(1)J2J0 )] (5.3.20)

J1,J2,J3=1

for 0 € S\ {(13)} = {e, (12),(23), (123), (132)}. See Appendix 5.4.4 for
more discussions on (5.3.20) and O} . Although Theorem 4.3.1 does not cover
quantum group symmetries, any X € Inv(OF?) satisfies the following group

invariance property

UeTU)XUeUU) =X (5.3.21)

for all U € U(d) thanks to Corollary 4.2.3 (1). This transfers our problem to

the realm of classical group symmetries. More precisely, we have
Inv(0%*) CInv(U @ U @ U) = Inv(T4 @ Tpc) (5.3.22)

where 74(U) = U and 7mpc(U) = U ® U. The main theorem of this section

is the following.
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Theorem 5.3.6. Let p € Inv(U @ U ® U)P. Then p is A-BC separable if
and only if p is A-BC PPT. In particular, A-BC PPT= A-BC SEP holds in

Inv(O$*)P.

Remark 5.3.7. Theorem 5.3.6 implies POS = DEC in Cov(U,UU) by
Corollary 4.3.4, and equivalently, POS = DEC in Cov(U,UU). We remark
that the latter class was analyzed recently in [COS18, BCS20]. In particu-
lar, k-positivity and decomposability were discussed for a special subclass
of Cov(U,UU) for d = 3 in [COS18], and it was questioned whether cer-
tain 2-positive non-decomposable map exists in Cov(U, UU). However, our
Theorem 5.3.6 gives the complete answer POS = DEC in the whole class
Cov(U,UU) regardless of the dimension d, and this means that (k-)positive

non-decomposable maps cannot exist in Cov(U, UU).

Remark 5.3.8. Note that, for any unitary representation m of a compact

group, the following three problems
¢ PPT, 5c =SEP s pc in Inv(r @7 ® )
¢ PPT; 40 =SEPgp 4c in Inv(r @ m® )
e PPT¢ 45 =SEP¢ 45 in Inv(r @7 ® )

are equivalent. However, Theorem 5.3.6 implies that this equivalence is no
longer true when 7 is replaced by a unitary representation of a compact
quantum group. Indeed, a B-AC PPT entangled state V(12)p:V(12) € Inv(U®?)
from (5.3.19) is transferred to the following B-AC PPT entangled state in
Inv(O$?):

(V(12)Ptv(12))TB

1 d+t t
( Te + T(23) + —T(123) +

t
T B+ (t+ D242\ d d d

d

T(132)) . (5.3.23)

In other words, the problem of PPT 4 pc = SEP4 p¢ is not equivalent to
the problem of PPT g 4c = SEPp 4¢ in IHV(OE)B)D. A reason for this gen-
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uine quantum phenomenon is that the associated C*-algebra of O] is non-

commutative.

[Step 1] Let us apply Corollary 4.3.4 to prove that POS = DEC holds in
Cov,(UU,U)P9S = Cov,(rpc,74)79, or equivalently, POS = DEC holds
in Covy(U,UU)P9. Recall that the space Cov(U,UU) is spanned by six

linear maps

M, = (Ty® 1) 0 L, (5.3.24)

for o € S3, where L, is given by (5.3.6). Then the unnormalized Choi matrix
of M, is given by T,.

Lemma 5.3.9. Letd > 3 and M = Y__a,M, € Cov(U,UU). Then M is
positive if and only if

.
e, A(12), A(13), A(23) € R and a32) = a(123),

e > Mmax {0, —a(12), —a(lg)} )

ae + a(12) + a3y + a(e3) + a3y + agsz) = 0,

ae+ (d —1)aws) > 0,

(ac + a2y + a@s) + aes) + aqes) + aasz)) (e + (d — 1)as))
> (d = 1)|aes) + aqas)|*.

w
— — Y —

(5.3.25)

Proof. As in the proof of Lemma 5.3.2, the positivity of M is equivalent to
M(e11) > 0. Moreover, M(eq;) € My ® My has a matrix decomposition

M (ae + (Z(lg)) idg_q @(ae + a(lg)) idg_1 Pa. id(d—l)(d—Q), (5.3.26)

where

+
v c (a@23) + aqsz) (| +a, Iy (5.3.27)

(a@s) + aqas))|v) a23)|v) (v

with ¢ = a(12) + a(13) + a(23) + a(123) + a(132) and v = (1, 1, Ceey ].)T € Cdil.

The four matrices in the matrix decomposition (5.3.26) are with respect
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to the bases {|11),|22),...,|dd)}, {|12),(13),...,|1d)}, {|21),]31),...,|d1)},
and {|ij) : 4,7 # 1 and i # j}, respectively. Thus, M(eq;) > 0 if and only if
the conditions (1) and (2) in (5.3.25) hold and M > 0. Moreover, we can
rewrite (5.3.27) as

c d—1a

M — aeId =V
\/d — la (d - 1)&(23)

v (5.3.28)

1 0

where a = ag) + a3 and V = . ] € My2(C) is an isome-
0 Z=lv

try. Thus, the nonzero eigenvalues of M — a.l; are the same with those of

c d— 1o

vV d— la (d — 1)&(23)
to the conditions (3), (4), and (5) of (5.3.25). O

]. Consequently, the condition M > 0 is equivalent

Thanks to Lemma 5.3.3, it is easy to derive CP and CCP conditions in
Cov(U,UU) or A-BC PPT condition in Inv(U ® U @ U)P.

Lemma 5.3.10. Letd >3 and M =3 __. a,M, € Cov(U,UU)POS. Then

oES3

1. M is CP if and only if the operator
Vi) <Z aavo) Vig) = Z a12)0(12) Vo (5.3.29)
0'653 0'683
satisfies the condition (5.3.10).
2. M is CCP if and only if the operator
Vi) (Z aJVU) Vs = Z a(13)0(13) Vo (5.3.30)
oES3 oES3
satisfies the condition (5.3.10).

Proof. Let X =Y a,V, € Inv(U®?) and X' = V(19X Vj19). Then M is

o€Ss3
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CP if and only if

Y a,T, =X = Viug) (X') Vg > 0, (5.3.31)

oES3

which is equivalent to (X’)T4 > 0. On the other hand, let X" = Viuzy X V().
Then M is CCP if and only if

Ta
(Z T) (X7 = (VX V) 20, (532)
oE€S3

and this is equivalent to (X”)"4 > 0. O

[Step 2] We refer the reader to Appendix 5.4.2 for a proof of the following

Lemma 5.3.11 classifying all extremal elements in Cov, (U, UU)?P%S.

Lemma 5.3.11. Letd > 3 and M =Y s agM, € Cov(U,UU)PO5. Then

the following are equivalent.
1. M € Ext(Cov, (U, UU)PO9),

2. Ge,a(12),0(13), a23) € R, a(123) = @132y, and the associated 6-tuple
(ae, ap2), apiz), a(e3), Re(anasy), Im(aas))) € RS (5.3.33)

s one of the following four types:
Type I c1(d — —d,—1,1,0),

(d—1,1—d,—1,-1,1,0),

Type III c3(0, A+B—2C 0,B,C — B,+VAB — C?),

Type IV ¢4(0,0, A+ B —2C, B,C — B, £V AB — C?),

Type 11 co

where A,B>0,C eR, AB>C? andc; (i =1,2,3,4) are normaliz-

ing constants chosen to satisfy the TP condition

d e + d( (12) + (1(13) + CL(23)) + (a(123) + (1(132)) = 1. (5334)
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Proof of Theorem 5.3.6. Let us assume d > 3. According to Theorem
4.3.5 and Lemma 5.3.11, it suffices to show that M = 20633 azM, is CP

or CCP whenever (a,)yes, is one of the four Types I - IV. Now, by applying

Lemma 5.3.10, we can check that

e Every £ € Ext(Cov,(U,UU)?°%) of Type I or Type III is CP,

e Every £ € Ext(Cov,(U,UU)?%) of Type II or Type IV CCP,

thanks to the conditions A, B > 0 and AB > C?. When d = 2, we refer to
Appendix 5.4.3 for the complete proof. O

5.4 Appendix for Section 5.3

5.4.1 Characterization of Inv(U®3)FPPT

Recall that if d > 3, there exist x-algebra isomorphisms

F:InviU®U®U) = CaoCa My(C), (5.4.1)
G:Inw(UeU®U)— CodCao M(C) (5.4.2)

by the representation theory of the unitary group U(d). Moreover, the authors
in [EWO01] proposed specific choice of *-isomorphisms F' and G that can be
used to characterize the PPT condition of X = Y7 ¢ a,V, € Inv(U®?).
For the convenience of the reader, we again present explicit maps F and
G in terms of the bases {V, : 0 € S3} and {V, 4 : 0 € 83} of Inv(U®?) and
Inv(U ® U ® U), respectively, in Table 2.

Proof of Lemma 5.3.3. Let X = > a,V,. Then X* = X is equiva-

lent to ac,ans), aas), aps) € R and apgs) = Gz since {Va}aesg is linearly

g€Ss3
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Table 5.2: The isomorphisms F and G (w = >™/3)

X F(X) XTa G(X ')
Vool g )b | CHN I
V(12) (17_17[2 g}) V(Iﬁ (0707 ?il zl )
2 2
Vi | (1, 1,[2 ij]) Vig |0 | e Tax
2 2
Ve | (-1 ) oD vas L ]y D
Vi) <1,1,[§H> Vash | (0,0, g ‘_fif)
2 2
Vis) (1,1,{3’ gp Vaay | (0,0, _df _‘i%;j )
2 2

independent. Now X > 0, or equivalently, F/(X) > 0 holds if and only if

(ae + a(123) + (l(132)) + (a(lg) + a(13) + a(gg)) Z 0 and (543)

ae + wa(mg) + a(lgg)w wa(lg) + wa(13) + a(gg)

>0, (5.4.4)

wa(12) +wWas) + a@23)  Ge + Wa(i23) + Wa32)

which is equivalent to the condition (5.3.9). Similarly, we get the equivalence
between the condition X ™4 > 0 and (5.3.10). O

5.4.2 Extremal positive maps in Cov,(U,UU)"Y® and
Covy(U,UU)POS

This section is to give detailed proofs of Lemma 5.3.4 and Lemma 5.3.11.

For convenience, we assume a., a(12), 4(13), @(23) € R, a(123) = @(132), and write

r = Re(aq23)) and s = Im(a(93)) throughout this section.

Let Py be the set of all tuples (ac,a(i2), ai3), a(23), 7, 5) satisfying (5.3.7)
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and the TP condition
d2(le + d(a(lg) + (1(13) + CL(23)) + (CL(123) + (1(132)) =1. (545)

Then P, describes the condition Y a,L, € Covy(U,UU)POS exactly, so
P, must be a convex and compact subset of R®. For simplification of the

condition (5.3.7), let us consider a linear isomorphism
o : (e, an2), aas), e3), 1, 5) = (ae, A, B,C, 1, s) (5.4.6)

of R, where A = ac+a(12), B = ac.+a(3), and C' = ag)+r. Then P = a(Po)
is the set of all tuples (a., A, B,C,r, s) € R® satisfying

(1) A B>0,
(2) AB>C?*+ s, (5.47)
(3) A+B+C+r>a.>|C—r|, o
(4)

d(d—2)ac+ d(A+ B+C) — (d—2)r = 1.

Note that we have Ext(Py) = a !(Ext(P)). That is, it suffices to find
the extreme points of P and restore the coefficients (a,),ecs, to get the cor-

responding extremal positive (U, UU)-covariant maps.

Lemma 5.4.1. Let S be the set of tuples (A, B,C,s) satisfying (1) and (2)
of (5.4.7). Then S is a convex cone in R*. Moreover, if v = 11 + x5 in S
with z; = (A;, B, Ci, si) and if AgBy = C2 + s, then 11 = Ao, T2 = Aoy
for some A, Ay > 0. In other words, the half-line R, xq is an extremal ray of

S.

Proof. 1t is straightforward that x € § implies Az € § for all A > 0. Let us
write x; = (A;, B;, Ci, s;) € S fori =1,2. Then A;+ Ay > 0 and By + By > 0,
so the last thing to check is

(Al + AQ) . (Bl + BQ) Z (Ol + Cg)Z + (81 + 82)2. (548)
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Let us choose C! > |Ci], si > |s;| such that A;B; = (C!)? + (s})?. Then,

indeed, we have

(Ay + As)(By + Bs) > A By + 27/ A, B1 Ay By + A3 By (5.4.9)
= (OD? + (s1)” +2V/((C1)? + ()2 ((C1)? + (s5)?) + (C3)* + (s5)°
(5.4.10)
> (O + (81)? +2(C1Cy + s185) + (C5)* + (s5)? (5.4.11)
= (C]+ C5)* + (8] + 85)? > (C1 + C2)? + (51 + 89)*. (5.4.12)

by applying the AM-GM inequality and the Cauchy-Schwarz inequality. There-
fore, 1+ x5 € S, which proves that S is a convex cone. The latter statement
follows by investigating the equality condition carefully in the above inequal-

ity, which is left to the reader. n

Proof of Lemma 5.3.4. It is sufficient to show that all the extreme points
x = (a., A, B,C,r,s) of P are classified into the following three types up to
normalizing constants: for A, B > 0 and AB > C?,

Type I’  (1,0,0,0,1,0),
Type IT' (0, A, B,C,C,+VAB — C?),
Type III' (44882€ A B O, —448 +\/AB — C?).

If AB > C? + s?, then we can choose s’ > |s| such that AB = C? + (s)2.
In this case, x(io) = (@, A, B,C,r,+s") € P, and x is a (nontrivial) convex
combination of XSE)) and x. Thus, x is not extremal in P.

From now on, we assume AB = C? + s? (i.e., s = +/AB — C?) and
divide the condition (3) of (5.4.7) into the following cases.

[Case 1] A+ B+C+r > a. > |C —r|. Then for sufficiently small § > 0,

d(A+ B +0C)

 _ (a 2(A+B+0C)
et ——F—F
d—2

Xy = 13 0,A+ A§,B+ Bo,C £Co,r F

0,8+t s§>
(5.4.13)
are elements of P, and x = (xil) +x") /2. Therefore, x ¢ Ext(P).

[Case 2] A+ B+ C+1r > a.=|C —r|> 0. Here we consider only the
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case C' > r since the other case C' < r can be argued similarly. Then for

sufficiently small § > 0,
x?) = (ac £ (C — k)3, A+ A8, B+ BS,C + C8,r + k8,5 + s6)  (5.4.14)
are elements of P, where k£ € R satisfies
dd—=2)(C—k)+d(A+B+C)—(d—2)k=0 (5.4.15)

so that the condition (4) of (5.4.7) holds for x?. Since x = (X(f) + X(E))/Q,
it is not extremal.

[Case 3] A+ B+C+r>a.=|C—r|=0,s0C =r. We claim that
x = (0,A,B,C,C,s) € Ext(P) corresponding to Type II'. Suppose that x
is a convex combination of x(f) = (ax, AL, By, Cy 1y, 51) € P. Then the
condition a, = 0 and a+ > 0 imply a4 = 0, which again forces |CL —ry| = 0.
Therefore, Lemma 5.4.1 implies that xi’) = (0,Ay, B+, Cy,Cy,81) = Aix
for some Ay > 0. Now the TP condition (5.4.7) (4) implies Ay = 1, so
x = xP.

[Case 4] A+ B4+ C+r =a. = C —r > 0. Then r = —4%£ and
x = (ABH2C A B, C,—4EL ). Here we claim that x € Ext(P) which cor-
responds to Type III' (note that A + B > 2v/AB = 2\/C? + 52 > 2|C/,

sor = —# conversely implies C' > r). If x is a convex combination of

ng) = (a4, Ax, By, Cy,ry,s4) € P, then the condition (5.4.7) (3) for ng)
implies AL +BL +Cy+ry = ax = |Cy —7ry|. We may assume A, > A > A_
without loss of generality, so Lemma 5.4.1 implies

X(4):<A+B+2C A+ B

¢ . +6' A+ A8, B+ B6,C + C6, —

+0", s+ 5(3) (5.4.16)

forsome d > 0,¢,8” € R,and §' = (A+B+C)6+d" from A, +B,+C,+r, =

ay. Now for the case a, =r, — C, > 0, we have
0<A+B+2C=—-(A+B+20)5<0. (5.4.17)

However, this says A+ B = —2C and x = (0, 4, B,C,C, s), which can be
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absorbed into Case 3. For the case a, = Cy —r ., we have " = —A%Bé and
§' = AEB2C 5 However, then the TP condition (5.4.7) (4) implies

A+ B+2C A+ B
<d(d—2)%+d(A+B+C)+(d—2) ‘g

) §=0, (5.4.18)
which is possible only if § = 0. Therefore, x = X(f) = xW.

[Case 5] A+ B+C+r=a.=r—C>0. Then A+ B = —2C, and the
previous inequality A + B > 2/ AB > 2|C| implies A = B = —C > 0 and
s =0. Thus, x = (r = C,-C, —=C,C,r,0) with C < 0 and r > C. Then our

problem is divided into the following three subcases.
e If C <0andr > C, then x ¢ Ext(P) since x = (X(f) +x®)/2, where

2
X®) = (T—OzF“5,—0i6,—0i6,016,r$dd2670) eP  (5.4.19)

for sufficiently small § > 0.

o If r = C, then x = (0,—C,—C,C,C,0) is extremal since it can be
absorbed into Case 3.

e If C =0, then x = r(1,0,0,0,1,0) is indeed extremal (corresponding
to Type 1) since the point (A, B,C,s) = (0,0,0,0) is an extreme point
of § in Lemma 5.4.1 and since r is uniquely determined by the TP
condition (5.4.7) (4).

]

Now we shall prove Lemma 5.3.11 using similar arguments. Let Qj be the
set of all tuples (ae, a12), a(13), a(23), 7, s) satisfying (5.3.25) and (5.4.5), and

then consider a linear isomorphism
5 : (a67 a2y, a(13), @(23), T, S) = (A7 Ba C7p7 q, 8) (5420)

=D es, oy B= 75t a@s), C=ags+r,

of RS, where Then Q =

D = Qe + A(12), ¢ = Qe + A(13)-
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B(Qp) becomes the set of all tuples (A, B,C,p,q,s) € R® satisfying

(1) A,B,p,q>0,

(2) AB>0C? + 52,

(3) A+B—-2C<p+yq,

(4) (- +d+ DA (d=1)’B+2d(d=1)C + (@~ 1)(p+q) =1
(5.4.21)

Proof of Lemma 5.3.11. 1t is sufficient to show that the extreme points
y = (A, B,C,p,q,s) of Q are classified into the following four types up to
normalizing constants: for A, B > 0 and AB > C?,

Type ' (0,0,0,1,0,0),

Type IT"  (0,0,0,0,1,0),

Type IIT" (A,B,C,A+ B —2C,0,+VAB — C?),
(

Type IV! (A, B,C,0, A+ B — 20, £v/AB — C?).

As in the proof of Lemma 5.3.4, we may assume AB = C?+ s%. Furthermore,
we may assume p = 0 or ¢ = 0 since y is a convex combination of y$ ) ¢ Q,
where yf) =(A,B,C,p+q,0,s) and y@) =(A,B,C,0,p+q,s). Let us first
assume ¢ = 0 and divide the condition (3) of (5.4.21) into the following three
cases.

[Case 1] (A, B) # (0,0) and A+ B —2C < p. Then for sufficiently small
0 >0,

yi) = (A+ A8, B+ BS,C+C8,p+6,0,s+s6) € Q (5.4.22)
where §' € R satisfies
(-*+d+1)A—(d—1)*B+2d(d—1)C)§+ (d* — 1)’ =0, (5.4.23)

so that the condition (4) of (5.4.21) holds for y'. Since y = (ySLl) +y™My/2
and y(j) +yY we have y ¢ Ext(Q).
[Case 2] A = B =0 (hence C = s = 0). Then y = p(0,0,0,1,0,0) is
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extremal in @ (corresponding to Type I') since (A, B, C, s) = (0,0,0,0) is an
extreme point of § in Lemma 5.4.1 and since p is uniquely determined by
(5.4.21) (4).

[Case 3] A+B—2C = p. In this case, we claim that y = (A, B,C, A+B—
2C,0, s) € Ext(Q), which corresponds to Type III'. Indeed, if y is a convex
combination of yf) = (A4, B+, C1,p1,qs, $+) € Q, then the conditions g =
0 and ¢+ > 0 imply ¢+ = 0. Moreover, the conditions A + B — 2C = p and
Ay + By —2C1 < py imply Ay 4+ By — 2C+ = p+. Now applying Lemma

5.4.1, we can write
y? = (A(1+6), B(1+6),C(140), (A+ B—2C)(1+6),0,s(1+6)) (5.4.24)

for some 6 € R. On the other hand, the TP condition (5.4.21) (4) for yf)
gives

(dA+2(d—1)B —2(d—1)C) 6§ = 0. (5.4.25)
However,
dA4+2(d—1)B=A+4(d—1)B+(d—1)(A+B)>2(d—-1)C (5.4.26)

since A+ B > 2C, and the equality above holds only if A= B =C =p =

s = 0 which is impossible. Therefore, (5.4.25) holds only if § = 0, and hence

we have y = yf) = y(,z).

Finally, we can proceed analogously when p = 0 and get the tuples of

Type II' and Type IV’ as extreme points of Q. m

5.4.3 Proof of Theorem 5.3.6 when d =2

When d = 2, we have an additional relation

Ve — Viazy — Viuzy — Viezy + Viaas) + Viuze) = 0. (5.4.27)
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Therefore, {V} s, is no longer linearly independent, and both the spaces
Inv(U®3) = span{V, : 0 € S3} and Inv(UQU ®U) = span {T, : 0 € S3} are
5-dimensional. In particular, we have Inv(O$*) = Inv(U ® U ® U) in this
case.

We can write a general element in Cov(U,UU) as M =Y __ so\ (e} @M
Then M is positive if and only if

a(12), a(13), a23) > 0 and a132) = a(123),
a(12) + aas) + a3y + aa23) + apsz) > 0, (5.4.28)
(aq2) + aas) + ag@s) + a(2s) + aas2))aes) > |aes) + aaas|?,

by following the same proof in Lemma 5.3.9. Now let us write (r,s) =

(Re(aq23)), Im(a(i23))) for convenience and consider a linear isomorphism

B : (a(lg), Q(13); @(23), T, 8) — (a(12), A, B, C, S), (5429)
of R®, where A = aqa) + aps) + a@s) + 2r, B = aps), and C = aps) + 7.

(
Then the set O = {B ) Q(13), A(23), T 8) : M € Covy (U, UU)POS} is equal
to the set of tuples (a(12), A B, C, s) € R satisfying

(5.4.30)

In order to find the extreme points y = (ap2), A, B,C, s) of é, note that
we still have AB = C? + s? as in the proof of Lemma 5.3.11. Moreover, we
have a9y = 0 or A+ B — 2C since y is a convex combination of y, =
(A+ B—-2C,A,B,C,s) and y_ = (0, A, B,C,s). Therefore, we can list all

possible extreme points of Q in the following two types:

TypeI' (A+ B—2C,A,B,C,+VADB — C?),
Type II' (0, A, B,C, +AB — C?),
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for A,B>0,AB>C? and A+ B —-C = % Moreover, any extreme point
of Type I' corresponds to a tuple

(a(lg),a(lg),a(23),r, 8) = (A +B-2C,0,B,C — B,+=VAB — 02), (5431)

so the associated linear map M = 20633\{6} ay,M, is CP by Lemma 5.3.10
(note that Lemma 5.3.10 (1) still gives a sufficient condition for M to be CP
when d = 2). Similarly, any extreme point of Type II' corresponds a CCP
map. In other words, every element in Ext(Cov, (U, UU)?%) is CP or CCP,
thus POS = DEC holds in Cov,(UU,U)POS. This completes the proof of
Theorem 5.3.6 by Corollary 4.3.4.

5.4.4 Quantum orthogonal symmetry

Within the framework of compact quantum groups, the orthogonal group
O(d) is understood as the space C(O(d)) of continuous functions on O(d)
endowed with the co-multiplication A : C(O(d)) — C(O(d) x O(d)) given
by

(Af)(e,y) = flay) (5.4.32)

for all z,y € O(d) and f € C(O(d)). Moreover, there exists a family of

continuous functions (7;;)1<; j<4 generating C(O(d)) and

d
A(my) =Y i@y € C(O(d) @i C(O(d)) = C(O(d) x O(d)) (5.4.33)
k=1
for all 1 <1,j < d, where ®,,;, means the minimal tensor product between
C*-algebras.
The free orthogonal quantum group O is a liberation of O(d) in the
sense that the space C'(OF) of ‘non-commutative’ continuous functions on

OF is the universal unital C*-algebra generated by d* self-adjoint operators
d
u;; satisfying that u = Z eij ® u;; is a unitary, ie. v'u = wu* = [ ® 1
ij=1

143



CHAPTER 5. APPLICATIONS TO QUANTUM ENTANGLEMENT

in My ® C(OF). The quantum group structure is encoded in the unital *-
homomorphism A : C(O}) = C(OF) @pin C(OF) determined by

d
k=1

d
Then u = Z e;;@u;j is the standard unitary representation of O satisfying
ij=1
d
ut = Z eij ® uj; = u in the sense of [Wor87, Ban96]. The 3-fold tensor
ij=1

representation u K u X u € M? ® C(OF) of u is defined by

d
uRuBu= " Y ey @ ep © gy © U Uiy, (5.4.34)

1,J1,12,2,13,j3=1
Then the space Inv(O%?) in Section 5.3.2 is understood as the space Inv(uX
u X u) of operators X € Mf’g satisfying

(uRuRu)- (X ®1)=(X®1) (uXuXu) (5.4.35)

in view of [LY22]. To sketch a proof of this fact, we can observe that the 5
operators T, (o € S3\ {(13)}) in (5.3.20) are linearly independent, and the
operators T, satisfy (5.4.35) using the identity

(R u)(|Q) ®1) = Q) @ 1. (5.4.36)

Thus, Inv(0$?) C Inv(uXu X u). Moreover, the space Inv(uXwuXwu) should
be of dimension five thanks to the representation theory of OF (see Corollary
6.4.12 and Corollary 5.3.5 of [Tim08]). Hence, we have Inv(O%?) = Inv(u X
u X u).
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