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Abstract

Abstract harmonic analysis in quantum

information theory

Sang-Jun Park

Department of Mathematical Sciences

The Graduate School

Seoul National University

This Ph.D. thesis delves into the fascinating realm of quantum infor-

mation theory, employing methods from abstract harmonic analysis. The

research is organized into two parts, each focusing on independent topics,

based on the research results during the author’s doctoral studies [BCL+22,

PJPY23, PY23].

In the first part, our primary objective is to present an abstract defini-

tion of Gaussian states, inspired by the intriguing mathematical connections

between bosonic Gaussian states and stabilizer states. To achieve this, we

leverage the phase space formulation, considering a locally compact abelian

group (LCA) with a proper symplectic structure as the abstract phase space.

Within this framework, we naturally define the Weyl unitary operators and

characteristic functions. The Gaussian states are then defined through the

concept of Gaussian distributions on LCA groups in the sense of Bernstein.

Remarkably, this definition establishes a universal framework that unifies

many important notions in quantum theory as well as simultaneously ex-

plaining bosonic Gaussian states and stabilizer states. Moreover, we justify

our definition by showing that pure Gaussian states over a phase space de-

rived from a totally disconnected LCA group can be characterized by the
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non-negativity of their Wigner quasi-distribution. This result can be inter-

preted as an analog of Hudson’s theorem and a generalization of Gross’s

result.

In the second part, we develop a theory of quantum entanglement under

the symmetry with respect to unitary representations of compact groups.

Quantum entanglement plays a vital role as a valuable resource in quantum

information processing, and significant efforts have been dedicated to unrav-

eling the mathematical structure of entanglement in recent years. While the

general dualities between mapping cones introduced by Størmer can describe

various notions related to quantum entanglement, they are not sufficient to ef-

fectively deal with entanglement due to the computational hardness of testing

entanglement. In this thesis, we show that such duality results carry over into

the framework of compact group symmetry. This directly leads to two appli-

cations in quantum information theory: (1) the optimization of entanglement

witnesses and Schmidt number witnesses, and (2) the equivalence between

the problem of PPT=separability and the problem of checking whether ev-

ery extremal positive map is completely positive or completely copositive

under compact group symmetry. The merits of our proposed framework are

showcased through detailed analyses of examples, which solve various open

problems related to quantum entanglement.

Key words: Abstract harmonic analysis, group representation, Quantum

information theory, Gaussian state, Quantum entanglement, Schmidt number

Student Number: 2016-20234
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Chapter 1

Introduction

This Ph.D. thesis is devoted to the study of problems in Quantum Infor-

mation Theory (QIT) using methods from abstract harmonic analysis. In

particular, we focus on several applications of representations of locally com-

pact groups in QIT, based on the three papers as follows.

1. [BCL+22] C. Beny, J. Crann, H. H. Lee, S.-J. Park, and S.-G. Youn.

Gaussian quantum information over general quantum kinematical sys-

tems I: Gaussian states. Preprint, arXiv:2204.08162, 2022

2. [PJPY23] S.-J. Park, Y.-G. Jung, J. Park, and S.-G. Youn. A universal

framework for entanglement detection under group symmetry. Preprint,

arXiv:2301.03849, 2023.

3. [PY23] S.-J. Park and S.-G. Youn. k-positivity and schmidt number

under orthogonal group symmetries. Preprint, arXiv:2306.00654, 2023.

These papers delve into applications in two indepedent areas of QIT:

(1) phase space formulation and Gaussian quantum information [BCL+22],

and (2) quantum entanglement theory [PJPY23, PY23]. In this chapter, we

provide a brief introduction to these two topics and highlight the aspects

where methods from abstract harmonic analysis were effectively applied in

our research.
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CHAPTER 1. INTRODUCTION

Topic 1: Gaussian property of stabilizer states

(Bosonic) Gaussian states and stabilizer states are two fundamental objects

in quantum optics and quantum error correction, respectively [WPGP+12,

Got97]. Despite their seemingly different definitions and origins, they exhibit

several similarities. First of all, they can be understood in term of the phase

space formulation developed by H. Weyl [Wey50]. Secondly, when these states

are pure, both classes can be characterized via Hudson’s theorem and its

discrete version, i.e., the non-negativity of Wigner-quasi distribution, and

their underlying wave functions have similar explicit formulas [Hud74, SC83,

Gro06]. This supports the notion that stabilizer states can be understood as

finite-dimensional analog of Gaussian states.

Motivated by these insights, in Chapter 3, we provide a mathematically

complete framework by introducing an abstract definition of Gaussian states.

To achieve this, we use Fourier analysis over locally compact abelian (LCA)

groups with proper symplectic structures, which serve as abstract phase

spaces. We propose a comprehensive definition of Gaussian states, encom-

passing both Gaussian states and stabilizer states within the most general

setting. Specifically, we define Gaussian states using the concept of Gaus-

sian distributions on LCA groups in the sense of Bernstein (Definition 3.3.1).

This definition not only unifies Gaussian states and stabilizer states but also

offers a universal framework that incorporates various important notions in

quantum theory [RSSK+10, Zel20].

Moreover, our formulation of the abstract phase space enables a com-

prehensive definition of the Wigner quasi-distribution, prompting the explo-

ration of a generalized Hudson’s theorem. Notably, we present an affirmative

answer to this question when the underlying phase space arises from a totally

disconnected LCA group (Theorem 3.7.2), thus extending the previous work

of Gross [Gro06].

We summarize our results in Table 1.1.

2



CHAPTER 1. INTRODUCTION

Table 1.1: Summary of the results in Chapter 3 (d: odd, F : 2-regular)

Phase space Gaussian state Hudson theorem Section

Rn × Rn bosonic Gaussian state True [Hud74, SC83]
Znd × Znd stabilizer state True [Gro06] 3.4
Qn
p ×Qn

p p-adic Gaussian state [Zel20] True (New) 3.4, 3.7

F × F̂ Fully characterized Partially true (New) 3.4, 3.7
Tn × Zn standard ONB for L2(T) True [RSSK+10] 3.5
Zn2 × Zn2 None 3.6

Topic 2: Duality and quantum entanglement

under group symmetry

Quantum entanglement has been regarded as one of the most fundamental

non-classical manifestations in quantum theory [EPR35, Bel64, CHSH69].

Moreover, quantum entanglement serves as a key resource for various quan-

tum information processing tasks, such as cryptography, quantum telepor-

tation, and super-dense coding [HHHH09, GT09]. Several criteria have been

developed to detect entanglement, with many of them based on Horodecki’s

criterion [HHH96]. This criterion establishes that positive maps can be used

as entanglement witnesses, leading to the recovery of well-known approaches

such as the positive partial-transpose (PPT) criterion [Per96] and reduction

criterion [HH99]. In particular, classifying PPT entanglement has been one

of the most important issues because of its direct connection with bound

entanglement [HHH99]. PPT entangled states are proven to be applicable

in performing non-classical tasks [HHH99, VW02, Mas06] and producing se-

cure cryptographic keys [HHHO05, HHHO09, HPHH08]. Unfortunately, de-

termining whether a given bipartite quantum state is entangled is NP-hard

in general [Gur03], making it a challenging task to find PPT entangled states

despite extensive research.

Another crucial issue in the theory of quantum entanglement is the quan-

tification of entanglement [PV07]. Other than the case of pure states, there

3



CHAPTER 1. INTRODUCTION

are several (non-equivalent) candidates for entanglement measures of mixed

states, such as distillable entanglement, entanglement cost, and formation of

entanglement. Furthermore, the notion of k-positivity in operator algebra has

established a strong connection with the Schmidt number [TH00], a natural

measure to certify entanglement dimensionality. The Schmidt number has

recently gained attention in relation to the PPT-squared conjecture and en-

tanglement distillation [HLLMH18, CMHW19, CYT17, CYT19, Car20], and

the difficulty arises from the lack of explicit computable examples. Indeed,

the problem of determining whether a given linear map is (k-)positive or not

is known to be NP-hard, and accurate computations of Schmidt numbers

have been possible for very few examples.

On the other hand, both of these concepts can be described in a more

general framework, namely the duality between mapping cones. The notion of

mapping cones was introduced by Størmer [Sr86] to study extension problems

of positive linear maps and has been studied in the context of quantum

information theory. Mapping cones have two characteristics: (1) they contain

sufficiently many classes that are important in quantum information theory,

and (2) they can be described via duality in many different ways. For example,

we have, for a mapping cone K,

� Φ ∈ K ⇐⇒ L∗ ◦ L is CP for every L ∈ K◦.

� X ∈ CK := {CΦ : Φ ∈ K} ⇐⇒ (idA⊗L∗)(X) ≥ 0 ∀ L ∈ K◦,

where CL denotes the Choi matrix of L (refer to (2.2.4)). These equivalences

mean that the linear maps in K◦ can be considered as witnesses for the el-

ements in K and CK. Indeed, such duality has been applied to characterize

many notions in the theory of quantum entanglement, such as separabil-

ity, entanglement-breaking maps, Schmidt numbers, as well as decomposable

maps and k-positive maps [HHH96, TH00, SSrZ09, GKS21]. Nevertheless,

the mapping cone K◦ is generally too large and complex to efficiently de-

scribe the convex structure of K.

In this thesis, we restrict the class K by considering symmetries with

4



CHAPTER 1. INTRODUCTION

respect to compact groups. Specifically, we mainly consider two types of

symmetries: invariance of bipartite matrices and covariance of linear maps

with respect to a unitary representation of a compact group (Section 4.2).

Such a restriction is common in quantum information theory, mainly due

to the difficulty in analyzing entanglement and in the hope that symmetry

allows us to focus on more tractable models.

One of the main results of the thesis shows that the duality between

mapping cones fits well with our framework of compact group symmetry,

leading to the optimization of witnesses. The statement can be outlined as

follows.

Theorem 1.0.1. Suppose K is a mapping cone of positive maps on MdA

into MdB . Then for (πA, πB)-covariant map Φ, we have Φ ∈ K if and only if

L ◦ Φ is copmletely positive for every L ∈ Ext
(
(K◦)∗ ∩ Cov1(πB, πA)

)
, where

Cov1(πB, πA) is the set of (πB, πA)-covariant linear maps whose Choi matrix

has unit trace. Furthermore, for πA ⊗ πB-invariant bipartite matrix X, we

have X ∈ CK if and only if (idA⊗L)(X) ≥ 0 for every L ∈ Ext
(
(K◦)∗ ∩

Cov1(πB, πA)
)
.

This result enables us to flexibly address the problem of PPT entangle-

ment and Schmidt number. Our contributions can be summarized as follows.

Entanglement witness and the problem of PPT = SEP

We optimize the use of entanglement witnesses [HHH96] by showing that

only extreme covariant positive maps are necessary for testing the entangle-

ment of invariant quantum states (Theorem 4.3.1). Additionally, we establish

the equivalence between PPT entanglement in invariant states and positive

non-decomposable maps in the class of covariant maps (Corollary 4.3.4).

This framework enables us to provide solutions to three problems related

to “PPT = SEP” (Table 1.2), strengthening existing results and resolving

many open problems.

5



CHAPTER 1. INTRODUCTION

Table 1.2: The problem PPT = SEP under three group symmetries

Group symmetry PPT=SEP Strenghthens the results in Section

Hyperoctaheral group True [VW01, KMS20] 5.1
U ⊗ U ⊗ U False [EW01] 5.3.1

U ⊗ U ⊗ U True [COS18] 5.3.2

Schmidt number witness

More generally, it suffices to consider only (extreme) covariant k-positive

maps to analyze the Schmidt number of invariant quantum states (Theorem

4.3.2). As an application, we completely characterize the Schmidt number of

orthogonally invariant states (Section 5.2). These states, denoted as ρ
(d)
a,b ∈

Md ⊗Md, are defined as follows:

ρ
(d)
a,b :=

1 − a− b

d2
Id ⊗ Id +

a

d

d∑
i,j=1

|ii⟩⟨jj| +
b

d

d∑
i,j=1

|ij⟩⟨ji|, (1.0.1)

The regions for the Schmidt number of ρ
(d)
a,b turn out to be highly nontriv-

ial, even in low dimensions, as visualized in Figure 1.1. To the best of our

knowledge, our computations provide the first example of the complete char-

acterization of Schmidt numbers in a non-trivial class parameterized by at

least two real variables (in arbitrarily high dimensions d).

Figure 1.1: Schmidt number of orthogonally invariant states when d = 3, 4

6



Chapter 2

Preliminaries

2.1 Abstract harmonic analysis

In various aspects of abstract harmonic analysis, locally compact groups and

their unitary representations play a fundamental role. Let us first introduce

some basic definitions related to these concepts. A topological group G is

called a locally compact group if the underlying topology is locally compact

(i.e., every point of G has a precompact neighbornood) and Hausdorff. A

unitary representation of G is a group homomorphism π : G → U(Hπ) for

some underlying Hilbert space Hπ which is continuous with respect to the

strong operator topology, i.e., x ∈ G 7→ π(x)ξ ∈ Hπ is continuous for every

vector ξ ∈ Hπ. We further call the representation π irreducible if π has

no nontrivial invariant subspaces, i.e., the only closed subspaces V of Hπ

satisfying π(G)V ⊂ V are {0} and Hπ. Note that if π is irreducible, so is

the contragredient representation π : G → U(H) of π which is defined by

π(x) = π(x) for all x ∈ G (for proper choice of orthonormal basis for H).

Moreover, two unitary representations πA : G → U(HA) and πB : G →
U(HB) are called (unitarily) equivalent if there exists a unitary operator

U : HA → HB such that πB(x) = UπA(x)U∗, and we denote by πA ∼= πB

in this case. Let us denote by Ĝ the set of equivalence classes of irreducible

unitary representations of G.

7



CHAPTER 2. PRELIMINARIES

Irreducible representations form basic building blocks of many functions

and operators arising from G. Indeed, the Gelfand-Raikov Theorem [Fol16,

Theorem 3.34] implies that every locally compact group has sufficiently many

(mutually inequivalent) irreducible representations. Every unitary represen-

tation of G can be built out of irreducible ones via direct integration [Fol16,

Theorem 7.28]. In particular, when G is abelian or compact, the action of

irreducible representations play an essential role in the theory of Fourier

transform on G.

In this section, we gather several preliminary tools from abstract harmonic

analysis that will be beneficial for later applications in quantum information

theory (QIT). We divide the tools into two parts: the abelian case and the

compact case. Each part is for an application to each of two independent

theories in QIT. For a more comprehensive understanding of the general

theory of abstract harmonic analysis, we refer to [Fol16, HR79, HR70].

2.1.1 Locally compact abelian groups and Fourier anal-

ysis

In this subsection we provide preliminaries for Chapter 3 by reviewing the

basics of harmonic analysis on locally compact abelian (LCA) groups. All

LCA groups in this thesis are assumed second countable.

When G is abelian, every irreducible representation is 1-dimensional, i.e.,

a continuous group homomorphism from G into the circle group T = U(1)

[Fol16, Corollary 3.6]. In this case, Ĝ becomes the set of such homomor-

phisms, and we call Ĝ the dual group of G and its elements the characters on

G. Indeed, the set Ĝ is an abelian group with respect to pointwise multipli-

cation, and is locally compact (and second countable) when equipped with

the topology of compact convergence. The double dual of an LCA group can

be canonically identified with the original group, i.e. we have

(̂Ĝ) ∼= G,

8



CHAPTER 2. PRELIMINARIES

which is known as Pontryagin-van Kampen duality. Under this duality, prop-

erties of G manifest in a dual manner in Ĝ. For instance, an LCA group G

is compact if and only if Ĝ is discrete ([HR79, 23.17]).

For the most part, we use additive notation for LCA groups, so that

the group operation will be denoted by a + b for a, b ∈ G and the identity

of G will be denoted by 0. The inverse of a ∈ G will be denoted by −a.

However, we will sometimes use multiplicative notation for dual groups Ĝ.

For example, the identity element for Ĝ will be denoted by 1, meaning the

constant function with value 1 and the inverse of γ ∈ Ĝ will be denoted by

γ−1 or γ̄ (meaning complex conjugate). For a ∈ G and γ ∈ Ĝ the duality

bracket

⟨a, γ⟩ := γ(a) ∈ C

will be frequently used. Note that for γ1, γ2 ∈ Ĝ and a1, a2 ∈ G we have

⟨a1 + a2, γ1 + γ2⟩ = ⟨a1 + a2, γ1⟩⟨a1 + a2, γ2⟩ = γ1(a1)γ1(a2)γ2(a1)γ2(a2).

Given a closed subgroup H of G (which we write H ≤ G), the quotient

group G/H is an LCA group endowed with the quotient topology. Its dual

group Ĝ/H can be identified withH⊥ = {γ ∈ Ĝ : γ(a) = 1, a ∈ H}, a closed

subgroup of Ĝ called the annihilator of H. The identification H⊥ ∼= Ĝ/H

([Fol16, Theorem 4.39]) is given by γ ∈ H⊥ 7→ γ̃, where γ̃(a + H) := γ(a),

a ∈ G. Here, a + H refers to the coset of H with the representative a. The

quotient group Ĝ/H⊥ can be identified with the dual group Ĥ through the

map γ + H⊥ ∈ Ĝ/H⊥ 7→ γ|H ∈ Ĥ ([Fol16, Theorem 4.39]). Note that for

H ≤ G, the subgroup H is open if and only if G/H is discrete by definition

of the quotient topology.

An LCA groupG is equipped with a non-zero, translation-invariant Radon

measure µ = µG, called the Haar measure, which is unique up to a positive

constant. More precisely, for another non-zero, translation-invariant Radon

measure on G we can find c > 0 such that ν = c · µ. The choice of Haar

measures will be specified later in this thesis. When the underlying group G

9



CHAPTER 2. PRELIMINARIES

is clear from context, we simply write µ. Otherwise, we use the notation µG.

For a closed subgroup H of G the Haar measure provides interesting

information about H as follows.

We have 0 < µG(H) <∞ if and only if H is open and compact. (2.1.1)

One direction is trivial by local finiteness of µ and [Fol16, Proposition 2.19].

The converse direction follows from the fact that µ|H becomes a finite Haar

measure ofH, soG/H has aG-invariant Radon measure µ satisfying µ({xH}) =

µ(xH) ∈ (0,∞), which implies discreteness of G/H by [DE14, Proposition

1.4.4].

The concepts of dual group and Haar measure lead to Fourier transforms.

For f ∈ L1(G) := L1(G, µ) and γ ∈ Ĝ we define

f̂(γ) :=

�
G

f(x)γ(x) dµ(x),

and the group Fourier transform FG is defined by

FG : L1(G) → C0(Ĝ), f 7→ f̂ , (2.1.2)

where C0(Ĝ) refers to the space of all continuous functions on Ĝ vanishing

at infinity. The map FG is a norm-decreasing homomorphism with respect

to convolution on L1(G) and pointwise multiplication on C0(Ĝ), i.e. we have

FG(f ∗ g) = FG(f) · FG(g), f, g ∈ L1(G),

where f ∗ g is the convolution of f and g given by

f ∗ g(x) =

�
G

f(y)g(x− y)dµ(y), x ∈ G.

We will sometimes use the notation f̂G instead of f̂ when we need to specify

which group we are referring to. Let us record the special case when f = 1K

10



CHAPTER 2. PRELIMINARIES

for a compact subgroup K of G:

FG(1K) = µG(K)1K⊥ . (2.1.3)

Indeed, we have

γ(y)

�
K

γ(x) dµG(x) =

�
K

γ(x) dµG(x), ∀y ∈ K

so that �
K

γ(x) dµG(x) =

µG(K), γ ∈ K⊥

0, otherwise
, (2.1.4)

and this explains (2.1.3).

The above Fourier transform can be extended to the L2(G) = L2(G, µ)-

level. More precisely, there is a Haar measure µĜ on Ĝ such that FG : L1(G)∩
L2(G) → L2(Ĝ) is isometric with respect to the corresponding L2-norms.

This map can be extended to a unitary (still denoted)

FG : L2(G, µG) → L2(Ĝ, µĜ),

by Plancherel’s theorem [Fol16, Theorem 4.26]. Note that the choice of µĜ

depends on µG, and we call it the dual Haar measure to µG. For example, if G

is a compact group and if µ is the normalized Haar measure, i.e., µ(G) = 1,

then the dual Haar measure µĜ becomes the counting measure on the discrete

group Ĝ.

The above FG allows for an inverse map at the L2-level, but we have

a more direct inversion via the Fourier inversion theorem [Fol16, Theorem

4.33]: for f ∈ L1(G) such that f̂ ∈ L1(Ĝ), we have

f(x) =

�
G

f̂(γ)γ(x) dµĜ(γ), a.e. x ∈ G. (2.1.5)

If, in addition, f is continuous on G, then the above identity holds for all

x ∈ G. When f ∈ L2(G) satisfies FG(f) ∈ L1(Ĝ) ∩ L2(Ĝ), the function f

11
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must be continuous and the above inversion formula also holds by [RS00,

Theorem 4.4.13].

The space L1(G) embeds naturally into the Banach algebra M(G) of all

complex Radon measures on G via the map f 7→ f dµ. The Fourier transform

extends to a contraction FG : M(G) → Cb(Ĝ) satisfying

FG(ν)(γ) = ν̂(γ) :=

�
G

γ(x) dµ(x), ν ∈M(G), γ ∈ Ĝ,

where Cb(Ĝ) is the space of bounded continuous functions on Ĝ. The homo-

morphism property still holds, i.e. for ν1, ν2 ∈M(G) we have

FG(ν1 ∗ ν2) = FG(ν1) · FG(ν2),

where the convolution ν1 ∗ ν2 is determined by the following relation: for any

compactly supported continuous function ϕ on G we have

�
G

ϕ d(ν1 ∗ ν2) =

�
G

�
G

ϕ(x) dν1(x)dν2(y).

We let M1(G) denote the set of all positive elements in M(G) with total mea-

sure 1, namely the (probability) distributions on G. A theorem by Bochner

[HR70, 33.3] says that the set FG(M1(G)) coincides with the set of all con-

tinuous positive definite functions on Ĝ having value 1 at the identity. Recall

that a function f : G→ C is positive definite if the matrix [f(xi− xj)]
n
i,j=1 is

positive semi-definite for any finite sequence (xi)
n
i=1 ⊆ G.

The closed support of ν ∈ M1(G) (which we write supp ν) is defined to

be the smallest closed subset A ⊆ G such that ν(A) = ν(G). This definition

needs to be distinguished with the (open) support of a continuous function f

on G, which we write supp f , defined by supp f = {x ∈ G : f(x) ̸= 0}. We

say that ν ∈M1(G) is concentrated on a Borel subset A ⊆ G if ν(B) = 0 for

any Borel B ⊆ G such that A ∩B = ∅.

Proposition 2.1.1. Let f : G→ C be a continuous positive definite function

on an LCA group G.

12
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1. We have |f(x)| ≤ f(0) for any x ∈ G.

2. ([HR70, Corollary 32.7]) The set G1 := {x ∈ G : |f(x)| = f(0)} is a

closed subgroup of G, |f | is constant on the cosets of G1 and f/f(0) is

a character on G1.

Let us end this subsection by recalling a fundamental structure theorem of

LCA groups due to van Kampen: An LCA group G is isomorphic to Rn×F

(as topological groups) for some LCA group F containing a compact open

subgroup [HR79, 24.30].

2.1.2 Compact groups and invariant operators

In this subsection, we review the basics of unitary representations of com-

pact (Hausdorff) groups. Moreover, we briefly describe a notion of invariance

which will be one of the main concept in the method of compact group sym-

metry in QIT. These provide the preliminaries for Chapters 4 and 5.

Let us suppose that G is a compact group throughout this subsection.

For a unitary representation π : G→ U(H) of G, a bounded linear operator

X ∈ B(H) is called π-invariant if Xπ(x) = π(x)X for all x ∈ G (we remark

that this terminology is rather QIT-friendly: in mathematics, we call such

X an intertwining operator for π). Let us denote by Inv(π) the set of all

π-invariant operators. Then Inv(π) = {π(x) : x ∈ G}′ is a von Neumann

algebra on H. Moreover, Schur’s theorem [Fol16, Theorem 3.5] implies that

π is irreducible if and only if Inv(π) = C IH.

When G is compact, it is simple to describe the space Inv(π). Indeed,

every irreducible representation is finite-dimensional, and every unitary rep-

resentation can be written as a direct sum of irreducible representations of

G [Fol16, Theorem 5.2], that is,

π ∼=
⊕
[σ]∈Ĝ

σ ⊗ Imσ ,

where mσ is the multiplicity (possibly any cardinal) of the irreducible repre-

13
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sentation σ inside π. Then we can show that

Inv(π) ∼=

⊕
[σ]∈Ĝ

σ(x) ⊗ Imσ : x ∈ G


′

=
⊕
[σ]∈Ĝ

IHσ ⊗B(ℓ2(mσ)).

In particular, when π is finite-dimensional, then we can write π ∼=
⊕l

i=1 σi⊗
Imi

for some mutually inequivalent irreducible representations σ1, . . . , σl of

G, mi <∞, and

Inv(π) ∼=
l⊕

i=1

Ini
⊗Mmi

, (2.1.6)

where ni = dimHσi . If mi = 1 for all i, we call π multiplicity-free.

2.2 Quantum entanglement

In this section, we provide a concise overview of fundamental definitions re-

lated to quantum entanglement, a central concept in quantum information

theory (QIT). Our focus is on finite-dimensional complex Hilbert spaces,

namely H = Cd, HA = CdA , HB = CdB , as well as their direct sums and ten-

sor products. The discussion of analogous notions for the infinite-dimensional

case will be presented in Chapter 3. We refer to [NC00, Hol19, Wat18] for

more details on quantum entanglement and other topics in QIT.

2.2.1 Separability and PPT property

A quantum state is a positive matrix ρ ∈ B(H)+ with Tr(ρ) = 1 and the

set of all quantum states in B(H) is denoted by D(H). A bipartite positive

operator X ∈ B(HA ⊗HB) is said to be of positive partial transpose (PPT)

if

(idA⊗⊤B)(X) ≥ 0 (2.2.1)

14
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where ⊤B is the transpose map on B(HB), and X is called separable if

there exist families of positive operators (XA
i )ni=1 ⊂ B(HA)+ and (XB

i )ni=1 ⊂
B(HB)+ such that

X =
n∑
i=1

XA
i ⊗XB

i . (2.2.2)

In particular, if ρ ∈ D(HA ⊗ HB) is a separable quantum state, then there

exists a probability distribution (pi)
n
i=1 and a family of product quantum

states (ρAi ⊗ ρBi )ni=1 such that

ρ =
n∑
i=1

piρ
A
i ⊗ ρBi . (2.2.3)

It is clear that separability implies PPT property, but the converse is not

true in general. More precisely, all PPT quantum states in B(HA ⊗HB) are

separable if and only if dA·dB ≤ 6 [Per96, HHH96, Wor76a, Cho82]. Moreover,

it is known that the separability question is NP-hard [Gur03, Gha10].

For v ∈ H, we define linear maps |v⟩ : C → H given by λ 7→ λv and

⟨v| : H → C given by w 7→ ⟨v|w⟩ where ⟨v|w⟩ is the inner product of

v, w ∈ H whose first variable is the anti-linear part. In particular, |Ω⟩ =∑d
i=1

1√
d
|i⟩ ⊗ |i⟩ ∈ H ⊗H is called the maximally entangled Bell state where

{|1⟩, |2⟩, · · · , |d⟩} is the standard orthonormal basis of H. The matrix unit

|i⟩⟨j| and the product vector |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |ik⟩ are also denoted by eij

and |i1i2 · · · ik⟩ respectively.

The (normalized) Choi matrix of a linear map L : B(HA) → B(HB) is

defined by

CL = (idA⊗L)(|ΩA⟩⟨ΩA|) = (idA⊗L)

(
1

dA

dA∑
i,j=1

eij ⊗ eij

)

=
1

dA

dA∑
i,j=1

eij ⊗ L(eij) ∈ B(HA ⊗HB). (2.2.4)

Recall that L is completely positive (CP) if and only if the Choi matrix CL

15
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is positive, and L is trace-preserving (TP) if and only if (idA⊗TrB)(CL) =
1

dA
idA. In particular, if Φ : B(HA) → B(HB) is a CPTP linear map, i.e. a

quantum channel in the Schrödinger’s picture, then the Choi matrix CΦ is a

quantum state in D(HA ⊗HB). We call this channel-state duality.

Let L : B(HA) → B(HB) be a linear map. Then L is called completely

copositive (CCP) if ⊤B ◦L is completely positive, L is called decomposable if

there exist a CP map L1 and a CCP map L2 such that L = L1 + L2, and L
is called PPT if L is both CP and CCP. Thus, L is PPT if and only if CL is

PPT.

Another important property of quantum channels is the entanglement-

breaking (EB) property [HSR03]. A quantum channel Φ : B(HA) → B(HB)

is called EB if the Choi matrix CΦ is a separable quantum state. Note that

any EB quantum channel is PPT, but the converse is not true in general.

2.2.2 Schmidt number and positive maps

Let us now introduce some notions on Schmidt number and (k-)positive maps

as dual objects. Every vector ξ ∈ HA⊗HB admits a Schmidt decomposition

[NC00] |ξ⟩ =
∑k

i=1 λi|vi⟩ ⊗ |wi⟩ where λ1 ≥ · · · ≥ λk > 0, and {vi}ki=1 and

{wi}ki=1 are orthonormal sets in HA and HB, respectively. Here the numbers

k and {λi}ki=1 are uniquely determined, and we call k the Schmidt rank of ξ

and write SR(|ξ⟩) = k. Now we denote by PAB the set of positive operators

on HA ⊗HB and consider the following subsets

Schk,AB := conv {|ξ⟩⟨ξ| : SR(|ξ⟩) ≤ k}

for any natural number k (or simply write P and Schk when these cause

no confusion). Then the Schmidt number of a positive bipartite operator

X ∈ PAB is defined as the smallest natural number k such that X ∈ Schk,

and we write SN(X) = k. Note that SN(X) ≤ min(dA, dB) and Schk = PAB

whenever k ≥ min(dA, dB). Moreover, X ∈ PAB is separable if and only if

SN(X) = 1.
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Let us denote by B(B(HA), B(HA)) the set of all linear maps from B(HA)

into B(HB) and by Bh(B(HA), B(HB)) the set of all Hermitian preserving

maps, i.e., L ∈ B(B(HA), B(HB)) with L(Z)∗ = L(Z∗) for Z ∈ B(HA). We

also denote by POSAB ⊂ Bh(B(HA), B(HB)) the cone of positive maps from

B(HA) into B(HB). A list of subclasses of positive maps of our interest is

the following:

� POSk,AB, the set of k-positive maps (note that POS1 = POS),

� CPAB, the set of completely positive (CP) maps,

� SPk,AB := conv {AdK : K ∈ B(HB,HA), rank(K) ≤ k}, the set of k-

superpositive maps [SSrZ09], where AdK(X) := KXK∗ is a conjugation

map,

� EBAB := SP1, the set of entanglement-breaking (EB) maps.

� DECAB := CPAB + (⊤B ◦ CPAB), the set of decomposable maps.

� PPT AB := CPAB ∩ (⊤B ◦ CPAB), the set of PPT maps,

Note that we have two nested chains of the subclasses as follows.

POS ⊋ POS2 ⊋ · · · ⊋ POSmin(dA,dB) =CP = SPmin(dA,dB) ⊋ · · · ⊋ SP2 ⊋ EB, (2.2.5)

POS ⊃ DEC ⊋ CP ⊋ PPT ⊃ EB. (2.2.6)

Moreover, the two inclusions POS ⊃ DEC and PPT ⊃ EB is in general

strict unless (dA, dB) = (2, 2), (2, 3), (3, 2) as noted in the previous subsec-

tion [Cho75b, Wor76b, HHH96, Hor97]. On the other hand, linear maps act-

ing on quantum systems are often identified with bipartite operators via

the so-called Choi-Jamio lkowski correspondence [Jk72, Cho75a]. For L ∈
B(B(HA), B(HB)), the (normalized) Choi matrix CL ∈ B(HA ⊗HB) is de-

fined by

CL := (idA⊗L)(|ΩA⟩⟨ΩA|) =
1

dA

dA∑
i,j=1

|i⟩⟨j| ⊗ L(|i⟩⟨j|),
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where |ΩA⟩ =
1√
dA

dA∑
j=1

|jj⟩ ∈ HA ⊗ HA is the maximally entangled vector

state on the system A. Then it is known that [Cho75a, Sr82, HSR03, SSrZ09]

� L is Hermitian preserving if and only if CL is Hermitian,

� L is k-positive if and only if CL ∈ BPk,AB, the set of k-block positive

operators (that is, it satisfies ⟨ξ|CΦ|ξ⟩ ≥ 0 for all ξ ∈ HA ⊗ HB such

that SR(|ξ⟩) ≤ k),

� L is CP if and only if CL ∈ PAB,

� L is k-superpositive if and only if CL ∈ Schk,AB,

� L is EB if and only if CL ∈ SEPAB,

� L is decomposable if and only if CL ∈ DECAB, the set of decomposable

operators (that is, CL = X1 + (idA⊗⊤B)(X2) for some X1, X2 ∈ PAB),

� L is PPT if and only if CL ∈ PPTAB, the set of positive operators on

HA ⊗HB which are of positive partial transpose (PPT) (that is, both

CL ∈ PAB and (idA⊗⊤B)(CL) ∈ PAB hold).

The adjoint linear map L∗ ∈ B(B(HB), B(HA)) of L ∈ B(B(HA), B(HB))

is defined with respect to the Hilbert-Schumidt inner product, i.e.,

Tr(L(Z)∗W ) = Tr(Z∗L∗(W )), Z,W ∈ B(HA).

Recall that the adjoint operation L 7→ L∗ preserves all the properties men-

tioned above, i.e,. k-positivity, k-superpositivity, PPT, and decomposability.

We conclude this section by presenting two important criteria of entan-

glement and Schmidt numbers. The following Theorem implies that positive

maps and k-positive maps can be regarded as entanglement witnesses and

Schmidt number witnesses in QIT.

Theorem 2.2.1 ([HHH96, TH00]). Let X ∈ PAB. Then
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1. X ∈ SEP if and only if (idA⊗L)(X) ≥ 0 for all L ∈ POSAB,

2. X ∈ Schk if and only if (idA⊗L)(X) ≥ 0 for all L ∈ POSk,AB.

These properties can be formulated in a generalized context using map-

ping cones, as detailed in Chapter 4.
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Chapter 3

Gaussian states over general

quantum kinematical systems

In the phase space formulation of quantum mechanics [Gro46, Moy49, Wey50,

Wig32], states are represented through Wigner/characteristic functions on

the underlying kinematical space, and observables are parametrized by the

Weyl representation. Primary examples include systems of n-bosonic modes,

n-qudit systems, and angle-number systems, with associated phase spaces

R2n, Z2n
d and Tn × Zn, respectively. For these systems, phase space methods

underlie important concepts and techniques, such as bosonic Gaussian states

and channels [WPGP+12], sharp uncertainty principles [BKW18], finite-dimensional

approximations of continuous systems [DVV94, Sch60], the stabilizer formal-

ism of quantum error correction [CRSS98, Got97], and the construction of

mutually unbiased bases [DEBZ10, GHW04, Par04]. Applications of phase

space techniques continue to emerge in a variety of systems. In particular, the

theory of p-adic quantum mechanics [VV89a] has seen a surge of recent activ-

ity in connection with the anti de Sitter/conformal field theory (AdS/CFT)

correspondence (see e.g., [BHLL18, GKP+17, HMSS18]).

Mathematically, quantum kinematical systems with finitely many degrees

of freedom are described by a locally compact abelian (LCA) group G and

a cocycle σ. The cocycle induces a symplectic structure on G, which en-
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codes the canonical commutation relations of the associated (σ-projective)

Weyl representation. Such abstract quantum kinematical systems have been

studied from a variety of perspectives, including finite-dimensional approxi-

mations [DHV99], uncertainty relations [Wer16], and generalized metaplectic

operators [Wei64]. In this chapter we continue this program by developing

a formalism to study Gaussian states (and channels) for general quantum

kinematical systems.

Bosonic Gaussian states are defined by the Gaussianity of their associated

characteristic functions on the phase space R2n (see, e.g., [WPGP+12]). Using

the natural notion of Gaussian distribution on LCA groups [PRRV63], one

arrives at a sensible definition of a Gaussian state. However, in many cases

of interest (e.g., G finite or totally disconnected), the corresponding class of

states is trivial. To overcome this, we advocate the use of Gaussianity in the

sense of Bernstein (or B-Gaussianity for short), which is an LCA generaliza-

tion of Bernstein’s classical result: a real probability distribution µ is Gaus-

sian if and only if the sum and difference of two independent µ-distributed

random variables are independent [Ber41]. Our notion of B-Gaussian states,

valid for any phase space (G, σ), unifies a variety of examples from the lit-

erature, including bosonic Gaussian states, discrete Hudson/stabilizer states

[Gro06], vacuum states of p-adic oscillator Hamiltonians [VV89b], (classes of)

minimal uncertainty states [OP04], and the (relatively) recently introduced

Gaussian states for single mode p-adic systems [Zel14, Zel20].

We completely characterize B-Gaussian states over 2-regular (second count-

able) LCA groups of the form G = F × F̂ equipped with the canonical nor-

malized 2-cocycle (see Section 3.1.2 for the cocycle). Here, 2-regularity means

that the doubling map g 7→ 2g is an automorphism of G, and this case in-

cludes the systems of n-bosonic modes, n-qudit systems (for odd d ≥ 3) and

p-adic quantum systems. Thanks to van Kampen’s structure theorem, the

“configuration space” F is of the form Rn × Fc, where Fc admits a compact

open subgroup, and the resulting phase space G ∼= R2n× (Fc× F̂c). Since the

Euclidean case is well understood, we begin by focusing on the case where
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the phase space is Fc × F̂c. In this setting, we show that every B-Gaussian

state is determined uniquely by a compact open 2-regular isotropic subgroup

H of Fc × F̂c and a character on H (Theorem 3.4.1). We also establish a

correspondence between pure B-Gaussian states and symmetric bicharacters

on compact open 2-regular subgroups K of Fc (Theorem 3.4.19), which com-

plements the covariance matrix parametrization in the bosonic setting. As a

consequence of our results when F = Fc, we show that, amongst B-Gaussian

states over general configuration spaces F = Rn×Fc, there can be no entan-

glement across the associated tensor decomposition L2(F ) = L2(Rn)⊗L2(Fc)

of the system Hilbert space (Theorem 3.4.14). This completes the analysis

for 2-regular Weyl systems G = F × F̂ .

In the non-2-regular setting, the structure of B-Gaussian states can be

dramatically different. We show that B-Gaussian states over angle-number

systems with the phase space Tn×Zn are forced to be pure, and belong to the

canonical “Fourier” basis of L2(Tn). Over fermionic and hard-core bosonic

systems, which have the same phase space Z2n
2 but with different 2-cocycles,

we show that there are no B-Gaussian states.

The phase space formulation provides another important function on the

phase space for a given quantum state, namely the Wigner function. Wigner

functions, which are dual to characteristic functions, are always real-valued

and integrate to 1 whenever they are integrable, so they are often called

“pseudo-probability distributions”. The natural question of non-negativity

of Wigner functions was answered by Hudson for pure states in single-mode

bosonic systems [Hud74], showing that pure states with non-negative Wigner

function are precisely the pure Gaussian states. This was later generalized

to multi-mode bosonic systems [SC83]. Gross continued this line of research,

establishing a discrete Hudson’s theorem for n-qudit systems with odd d ≥ 3

[Gro06]. Our formalism allows one to define Wigner functions in full general-

ity, which, in particular, begs the question of a generalized Hudson’s theorem

for 2-regular Weyl systems. We partially answer this question by showing that

over totally disconnected 2-regular LCA groups of the form G = F × F̂ , a
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pure state has non-negative continuous Wigner function if and only if it is

B-Gaussian.

We refer to Section 2.1.1 for preliminaries on duality and Fourier analysis

in the context of locally compact abelian (LCA) groups.

3.1 Preliminaries on general quantum kine-

matical systems

3.1.1 Phase space structure

Let G be an LCA group equipped with a Borel function σ : G × G → T
satisfying the conditions

σ(a, b)σ(a+ b, c) = σ(a, b+ c)σ(b, c), σ(a, 0) = σ(0, b) = 1, a.e. a, b, c ∈ G.

Note that the above equation holds for almost every a, b, c ∈ G unless σ is

continuous. However, we will often omit the expression “almost every” in the

sequel for simplicity. The function σ is called a 2-cocycle (or a multiplier) on

G, and determines a symplectic form ∆ : G×G→ T via

∆(a, b) := σ(a, b)σ(b, a), a, b ∈ G. (3.1.1)

Note that ∆ is a bicharacter, meaning that ∆ is continuous and ∆(·, b) and

∆(a, ·) are characters on G for all a, b ∈ G [DV04, p.533]. Note that Borel

measurability of σ and ∆ being Borel homomorphism in each argument guar-

antees that ∆ is continuous [Mac58, p.281]. We require the map Φ∆ : G→ Ĝ

given by

Φ∆(a)(b) = ∆(a, b), a, b ∈ G (3.1.2)

to be a topological group isomorphism, in which case we call the associated

2-cocycle σ a Heisenberg multiplier (following the terminology of [DV04]).

The pair (G, σ) (or rather (G,∆)) is viewed as the phase space underlying a
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general quantum kinematical system (see, e.g., [DV04]).

For example, the standard choice of 2-cocycle on the system of n-bosonic

modes with the phase space G = R2n ∼= Rn × Rn is given by

σboson(a, b) = exp

(
− i

2
aTJb

)
, a, b ∈ G, (3.1.3)

where J =

[
0 In

−In 0

]
∈ M2n(R) is the matrix of the canonical symplectic

form on R2n. Note also that the above map Φ∆ is different from the usual

identification x ∈ R2n 7→ γx ∈ R̂2n given by γx(y) := ei⟨x,y⟩, y ∈ R2n, which

we call the canonical identification.

From the fact that Φ∆(a)(a) = 1 for any a ∈ G, the isomorphism Φ∆ is

called a symplectic self-duality for G [PSV10]. A typical example of an LCA

group G with symplectic self-duality is G = F × F̂ for another LCA group

F , and this is exactly the class we will focus on. Note, however, that there

exist LCA groups with symplectic self-duality not isomorphic to F × F̂ for

any LCA group F [PSV10, Theorem 11.2].

Since σ is a Heisenberg multiplier, there is a unique (up to unitary equiv-

alence) irreducible unitary projective representation with respect to σ (or

σ-representation) W : G→ U(HW ) for some Hilbert space HW [DV04, The-

orem 2]. Being a σ-representation means that the map a ∈ G 7→ W (a)ψ is

Borel for any ψ ∈ HW and we have

W (a)W (b) = σ(a, b)W (a+ b), a, b ∈ G. (3.1.4)

Note that there are important examples of discontinuous 2-cocycles as we

can see in Section 3.1.2.

We call W and W (a), a ∈ G, the Weyl representation and the Weyl

operators following the standard terminology. Note that the Weyl operators

satisfy the canonical commutation relations (CCR)

W (a)W (b) = ∆(a, b)W (b)W (a), a, b ∈ G. (3.1.5)
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See [DV04, §3.5] for a concrete model of HW and W .

A 2-cocycle σ on an LCA group G is normalized if σ(a,−a) = 1, a ∈ G.

This additional requirement on σ is essential to accommodate “Gaussian

states” as we can see in Remark 3.3.5(4) below. Fortunately, any 2-cocycle

σ allows a normalization σ̃, which is similar to σ as 2-cocycles in the sense

that there exists a Borel function ξ : G→ T (called a normalizing factor) so

that

σ̃(a, b) =
ξ(a)ξ(b)

ξ(a+ b)
σ(a, b), a, b ∈ G, (3.1.6)

defines a normalized 2-cocycle. In this case, the 2-cocycles σ and σ̃ deter-

mine the same symplectic form ∆(a, b) = σ(a, b)σ(b, a) = σ̃(a, b)σ̃(b, a), and

therefore σ is a Heisenberg multiplier if and only if σ̃ is. Moreover, if W is

an irreducible σ-representation of G acting on HW , then

W1/2(a) := ξ(a)W (a)

is an irreducible σ̃-representation of G acting on the same Hilbert space

HW . We will take ξ to be a Borel measurable square root of the function

a ∈ G 7→ σ(a,−a), hence the 1/2 in the notation W1/2. Note that a choice of

square root is always possible but not unique, in general. Thus, the choice of

ξ and σ̃ will be specified whenever necessary.

3.1.2 Weyl systems

The main class of quantum kinematical systems we consider have the form

G = F × F̂ for an LCA group F . Such groups admit a canonical choice of

2-cocycle, σcan : G×G→ T given by

σcan((x, γ), (x′, γ′)) := γ(x′), x, x′ ∈ F, γ, γ′ ∈ F̂ . (3.1.7)

It is straightforward to see that σcan is a Heisenberg multiplier and we call

the pair (F × F̂ , σcan) a Weyl system. The group F is called the configuration

space.
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In this case we have a simple description for the unique irreducible σcan-

representation W = Wcan as follows [Pra11]. We first define the translation

operator Tx and the modulation operator Mγ for x ∈ F and γ ∈ F̂ acting on

HW := L2(F ) by

Txf(y) := f(y − x), Mγf(y) := γ(y)f(y), f ∈ L2(F ), y ∈ F.

Then, W : G→ B(L2(F )) is given by

W (x, γ) := TxMγ, (x, γ) ∈ G.

2-Regular groups

The above 2-cocycle σcan is never normalized unless G is trivial. There is a

canonical normalization when the group G = F × F̂ (equivalently, F ) is 2-

regular. Here, we say that the abelian group G is 2-regular if the map a 7→ 2a

is an automorphism of G, and we denote its inverse by 2−1. In this case,

there is a unique bicharacter ξ such that ξ(x, γ)2 = ⟨x, γ⟩ [DV04, Lemma 1],

namely

ξ(x, γ) := ⟨x, γ⟩1/2 := ⟨2−1x, 2−1γ⟩2 = ⟨x, 2−1γ⟩ = ⟨2−1x, γ⟩.

With this ξ as the normalization factor, we get the canonical normalization

σ̃can of σcan given by

σ̃can(a, b) := ∆(2−1a, 2−1b)2 = ∆(a, 2−1b) = ∆(2−1a, b), a, b ∈ G. (3.1.8)

We sometimes write σ̃can = ∆1/2 for an obvious reason, and we also call the

pair (F × F̂ , σ̃can) a Weyl system. Note finally that the corresponding Weyl

representation W1/2 becomes

W1/2(x, γ)ψ(y) = ⟨x, γ⟩1/2TxMγψ(y) = ⟨x, γ⟩−1/2⟨y, γ⟩ψ(y − x), ψ ∈ L2(F ).

Example 3.1.1. (Bosonic systems) The additive group Rn is 2-regular, and
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if we identify R̂n ∼= Rn via ⟨x, γy⟩ := ei⟨x,y⟩, x, y ∈ Rn, then the formula

(3.1.3) is recovered with σboson = σ̃can. The corresponding symplectic form

satisfies

∆(z, z′) = ei⟨y,x
′⟩e−i⟨y

′,x⟩ = ei⟨Jz,z
′⟩, z = (x, y), z′ = (x′, y′) ∈ R2n,

where J =

[
0 In

−In 0

]
∈ M2n(R) and ⟨·, ·⟩ refers to the usual inner product

on Euclidean spaces. The Weyl representation becomes

W1/2(x, y)ψ(t) = e−
i
2
⟨x,y⟩ei⟨y,t⟩ψ(t− x), ψ ∈ L2(Rn), x, y ∈ Rn.

This is equivalent to the Weyl representation used in [Hol19, §12.2] and

[Fol16, §1.3], for example.

Example 3.1.2. (Qudit systems) If d ≥ 3 is an odd integer then Znd is a

finite 2-regular abelian group. (2−1 = d+1
2

is the multiplicative inverse of 2 in

the ring Zd.) Similar to above, we have the self-duality Ẑnd ∼= Znd via

γy(x) = e
2πi
d

⟨x,y⟩, x, y ∈ Znd . (3.1.9)

Under the canonical identification

ℓ2(Znd) = ℓ2(Zd) ⊗ · · · ⊗ ℓ2(Zd) ∼= Cd ⊗ · · · ⊗ Cd,

the corresponding multiplication operators My := Mγy satisfy

My = Zy1 ⊗ · · · ⊗ Zyn , y = (y1, ..., yn) ∈ Znd ,

where Z : Cd ∋ |k⟩ 7→ e
2πik
d |k⟩ ∈ Cd is the qudit generalization of the Pauli

Z matrix.

Similarly, the translation operators are given by

Tx = Xx1 ⊗ · · · ⊗Xxn , x = (x1, ..., xn) ∈ Znd ,
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where X : Cd ∋ |k⟩ 7→ |k+ 1⟩ ∈ Cd is the qudit generalization of the Pauli X

matrix. The Weyl representation W : Znd × Znd → B((Cd)⊗n) is then simply

W (x, y) = e
(d+1)πi

d
⟨x,y⟩Xx1Zy1 ⊗ · · · ⊗XxnZyn , x, y ∈ Znd .

In this case the symplectic form satisfies

∆((x, y), (x′, y′)) = e
2πi
d

(⟨y,x′⟩−⟨y′,x⟩), x, y, x′, y′ ∈ Znd . (3.1.10)

Example 3.1.3. (p-adic systems) If p is a prime, the field of p-adic numbers

Qp is a 2-regular totally disconnected abelian group, along with any finite

product Qn
p . It is well-known that Q̂p

∼= Qp via the duality

⟨x, y⟩ = e2πi{xy}p , x, y ∈ Qp,

where {x}p is the fractional part of x defined through the (unique) power

series representation of x as follows:

{x}p =
−1∑

n=−k

xnp
n, when x =

∞∑
n=−k

xnp
n.

(see [Fol16, Theorem 4.12], for instance). The symplectic structure on G =

Qn
p ×Qn

p is given similarly as

∆((x, y), (x′, y′)) =
n∏
k=1

e2πi({ykx
′
k}p−{y′kxk}p), x, y, x′, y′ ∈ Qn

p .

Weyl systems over non-2-regular groups I: Angle-number systems

When the LCA group G = F×F̂ is not 2-regular the canonical normalization

(3.1.8) is no longer available. Instead, we will specify a normalization σ̃can of

σcan for each individual case.

We call the quantum system described by (Td×Zd, σ̃can) the angle-number

system in d-modes, which we named after [Wer16, Table I]. Note that there
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are many physical quantum systems modelled through the angle-number sys-

tem in 1-mode such as the quantum rotor [RKSE10] and the dynamics of a

Josephson junction between two isolated islands [Gir14]. The case d = 2 for

two rotors can be found in [ACP20, Sec IV. B.].

The canonical 2-cocycle becomes

σcan((θ, n), (θ′, n′)) = e2πi⟨θ
′,n⟩, (θ, n) ∈ Td × Zd.

Here, we identify T ∼=
[
−1

2
, 1
2

)
and for θ = (θ1, · · · , θd) ∈ Td ∼=

[
−1

2
, 1
2

)d
and

n = (n1, · · · , nd) ∈ Zd we have

⟨θ, n⟩ := n1θ1 + · · · + ndθd ∈ R. (3.1.11)

Our choice of normalizing factor ξ is

ξ(θ, n) = eπi⟨θ,n⟩, (θ, n) ∈ Td × Zd ∼=
[
−1

2
,
1

2

)d
× Zd. (3.1.12)

Some care needs to be applied here since the identification T ∼=
[
−1

2
, 1
2

)
does

not respect the group structure of T and ξ is discontinuous at (θ, n) when

θj = −1
2

for some 1 ≤ j ≤ d, so that the resulting normalization σ̃can is also

discontinuous there.

In this case the associated Weyl representation W1/2 becomes

W1/2(θ, n) := eπi⟨θ,n⟩TθMn, (θ, n) ∈ Td × Zd,

which are operators acting on the Hilbert space H = L2(Td) ∼= ℓ2(Zd) with

the canonical choice of orthonormal basis {|em⟩ : m ∈ Zd}, where em(θ) =

e2πi⟨θ,m⟩, θ ∈ Td. We will simply write |m⟩ for |em⟩.

3.1.3 Fermions and hardcore bosons

In this section we examine two quantum kinematic systems over the phase

space G = Zn2 × Ẑn2 ∼= Zn2 × Zn2 = Z2n
2 .
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Fermionic systems

Even though our phase space is of the form F × F̂ , we can endow a 2-cocycle

which is not similar to the canonical one (when n ≥ 2). More precisely, our

choice of 2-cocycle is as follows.

σfer(a, b) := (−1)a
TAb, a, b ∈ Z2n

2 , (3.1.13)

whereA =


0

1 0

1 1 0

.

.

.

.

.

.
. .
.

. .
.

1 1 · · · 1 0

. Note that the 1-mode case (i.e. n = 1) goes back

to the canonical 2-cocycle on Z2×Z2. We can check that σfer is a Heisenberg

multiplier by observing that A+AT is invertible. Indeed, we have A+AT =
Ω E E · · · E

E Ω E · · · E

E E Ω · · · E

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

E E E · · · Ω

, where E =
[
1 1

1 1

]
, Ω =

[
0 1

1 0

]
. Then the invertibility of

A+AT is direct from the matrix identity (I+A)(A+AT )(I+AT ) =
⊕n

j=1 Ω,

where we use the relations ΩE = EΩ = E and E2 = 2E = 0.

The quantum kinematical system (Zn2 × Ẑn2 , σfer) describes a fermionic

system in n-modes. For a detailed explanation, let us recall the Majorana

operators c1, . . . , c2n, which are self-adjoint operators acting on H = C2n =

ℓ2(Zn2 ) satisfying the CAR (canonical anti-commutation relations):

{cj, ck} = 2δjk, 1 ≤ j, k ≤ 2n.

Note that cj’s are realized as

c2j−1 = Y ⊗ · · · ⊗ Y ⊗X ⊗ I ⊗ · · · ⊗ I

c2j = Y ⊗ · · · ⊗ Y ⊗ Z ⊗ I ⊗ · · · ⊗ I,

where X and Z appear at the j-th tensor component and X, Y , Z are

the 2 × 2 Pauli matrices. The unique irreducible unitary σfer-representation
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Wfer : Z2n
2 → U(2n) is given by

Wfer(a) := cx11 · · · cx2n2n , a = (x1, · · · , x2n) ∈ Z2n
2 . (3.1.14)

That Wfer is a σfer-representation is straightforward to check. Irreducibility

follows from the fact that {Wfer(a) : a ∈ Z2n
2 } forms an orthogonal basis of

M2n(C) with respect to the trace inner product.

We consider a normalization σ̃fer of σfer given by

σ̃fer(a, b) :=
ξ(a)ξ(b)

ξ(a+ b)
σfer(a, b), a, b ∈ Z2n

2 , (3.1.15)

where the normalizing factor ξ : Z2d
2 → T is chosen to satisfy

ξ(a)2 = ξ(a)ξ(−a) = σ̃fer(a,−a)σfer(a,−a) = (−1)a
TAa, a ∈ Z2n

2 .

Note that there are many choices for the factor ξ. We will not fix a particular

choice of ξ for fermionic systems, but instead consider all possible choices of

ξ (see Section 3.6).

Finally, we remark that the unique irreducible σ̃fer-representation is

W1/2,fer := ξWfer.

Hardcore bosons

Here we consider the canonical 2-cocycle σcan (3.1.7) on G = Zn2 × Ẑn2 ∼= Z2n
2 .

As in the qudit case (Example 3.1.2), the associated Weyl operators have the

following form:

Wcan(x, y) = Xx1Zy1 ⊗ · · · ⊗XxnZyn = hx11 h
y1
2 h

x2
3 h

y2
4 · · ·hxn2n−1h

yn
2n, (3.1.16)

31



CHAPTER 3. ABSTRACT GAUSSIAN STATES

where X, Z are the standard 2 × 2 Pauli matrices and the matrices hj,

1 ≤ j ≤ 2n are given by

h2j−1 = I ⊗ · · · ⊗ I ⊗X ⊗ I ⊗ · · · ⊗ I

h2j = I ⊗ · · · ⊗ I ⊗ Z ⊗ I ⊗ · · · ⊗ I,

where X and Z appear at the j-th tensor component for 1 ≤ j ≤ n. The

self-adjoint matrices hj, 1 ≤ j ≤ 2n are an analogue of Majorana operators

and they satisfy

hkhl = −hlhk, (k, l) = (2j − 1, 2j) or (2j, 2j − 1), 1 ≤ j ≤ n

and hkhl = hlhk for other choices (k, l). In other words, the observables

hj, 1 ≤ j ≤ 2n anti-commute in the same modes and commute for different

modes, and the associated quantum system corresponds to “hardcore bosons”

of n degrees of freedom [CL93, Section II].

To apply our program in this setting, we consider a normalization σ̃can of

σcan given by

σ̃can(a, b) :=
ξ(a)ξ(b)

ξ(a+ b)
σcan(a, b), a, b ∈ Z2n

2 , (3.1.17)

where the normalizing factor ξ : Z2n
2 → T is chosen to satisfy

ξ(a)2 = ξ(a)ξ(−a) = σ̃can(a,−a)σcan(a,−a) = (−1)a
TLa, a ∈ Z2n

2 , L :=
[

0 0

In 0

]
.

As in the fermionic system, we will not fix a particular choice for ξ, and the

unique irreducible σ̃can-representation is given by W1/2,can := ξWcan.
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3.2 Characteristic and Wigner functions of

quantum states

Throughout this and the next section we fix a general quantum kinematical

system given by the pair (G, σ) consisting of a second countable LCA group

G and a normalized 2-cocycle σ which is a Heisenberg multiplier.

Similar to the bosonic case (e.g. [Hol19, §12]) and certain qudit systems

(e.g. [Gro06]), quantum states on H := HW – the irreducible representation

space of W – can be recovered through their characteristic functions on the

phase space G.

Recall that the set of all quantum states on H (denoted by D = D(H))

is a subset of S1(H), the trace class on H equipped with the trace norm

∥X∥1 = Tr(|X|) = Tr((X∗X)
1
2 ), X ∈ S1(H). Note that S1(H) is a subspace

of S2(H), the Hilbert-Schmidt class on H equipped with the Hilbert-Schmidt

norm ∥X∥2 = (Tr(X∗X))
1
2 , X ∈ S2(H).

Definition 3.2.1. Let ρ ∈ S1(H). Its characteristic function χρ ∈ L∞(G) is

defined by

χρ(a) = Tr(W1/2(a)∗ρ), a ∈ G.

For a pure state ρ = |ψ⟩⟨ψ| with ψ ∈ H, we will simply write χψ instead of

χ|ψ⟩⟨ψ|.

It is straightforward that ∥χρ∥∞ ≤ ∥ρ∥1, so χρ is indeed bounded. The

terminology “characteristic function” can be justified from the fact that χρ

determines the original operator ρ via the twisted group Fourier transform

on G. See [KL72] and [Mac58] for details of twisted group Fourier transforms

on locally compact (not necessarily abelian) groups. In our specific situation,

namely that W is the only (up to unitary equivalence) σ-representation, the

theory simplifies.
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Definition 3.2.2. The twisted group Fourier transform Fσ
G on G is given by

Fσ
G : L1(G) → B(HW ), f 7→ f̂(W1/2) :=

�
G

f(a)W1/2(a)dµ(a) ∈ B(HW ),

(3.2.1)

where the choice of Haar measure µ on G will be specified below in Theorem

3.2.3.

The map Fσ
G is a norm-decreasing ∗-homomorphism with respect to twisted

convolution and twisted involution, defined respectively by

(f ∗σ g)(a) :=

�
G

f(b)g(a− b)σ(b, a− b)dµ(b), a ∈ G,

and

f ⋆σ(a) := σ(a,−a)f(−a), a ∈ G,

for f, g ∈ L1(G). More precisely, we have Fσ
G(f ∗σ g) = Fσ

G(f) · Fσ
G(g) as

the product (or composition) of two operators and Fσ
G(f ⋆σ) = Fσ

G(f)∗ as the

adjoint operator for f, g ∈ L1(G). It extends to a unitary operator acting on

L2(G).

Theorem 3.2.3. (Twisted Plancherel theorem, [KL72, Theorem 7.1])

The twisted group Fourier transform Fσ
G extends to a unitary equivalence

between L2(G) and S2(HW ) for a suitable choice of Haar measure µ on G.

In particular, we have

�
G

fḡdµ = Tr(f̂(W1/2)ĝ(W1/2)
∗), f, g ∈ L1(G) ∩ L2(G). (3.2.2)

Moreover, the extended map Fσ intertwines the left regular σ-representation

λσ : G→ B(L2(G)) given by

λσ(a)f(b) = σ(a, b− a)f(b− a), a, b ∈ G, f ∈ L2(G),
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with an amplification of W1/2. More precisely, we have

[Fσ
G ◦ λσ(a)](f) = W1/2(a) · [Fσ

G(f)] : L2(G) → S2(HW ), a ∈ G, f ∈ L2(G).

(3.2.3)

In what follows, we fix the Haar measure µ on G respecting (3.2.2).

The following twisted Fourier inversion justifies the “characteristic func-

tion” terminology, and will be useful in Section 3.4.

Proposition 3.2.4. For any ρ ∈ S1(H) we have χρ ∈ L2(G) and Fσ
G(χρ) =

ρ.

Proof. Since Fσ
G : L2(G) → S2(H) is unitary, span{Fσ

G(φ) : φ ∈ Cc(G)}
is dense in S2(H), where Cc(G) is the space of all continuous functions on

G whose closed support is compact. Consequently, span{Fσ
G(φ1)Fσ

G(φ2)
∗ :

φ1, φ2 ∈ Cc(G)} is dense in S1(H).

First, for ρ = Fσ
G(φ1)Fσ

G(φ2)
∗ = Fσ

G(φ1 ∗σ φ⋆σ2 ) with φ1, φ2 ∈ Cc(G), the

intertwining relation (3.2.3) with λσ entails

φ1 ∗σ φ⋆σ2 (·) = ⟨φ1|λσ(·)φ2⟩ = Tr(W1/2(·)∗Fσ
G(φ1)Fσ

G(φ2)
∗) = χρ(·). (3.2.4)

For arbitrary ρ ∈ S1(H), there exist a sequence (ρn)n in the space

span{Fσ
G(φ1)Fσ

G(φ2)
∗ : φ1, φ2 ∈ Cc(G)}

such that lim
n→∞

∥ρ − ρn∥S1(H) = 0. Since χρn = (Fσ
G)−1(ρn) from (3.2.4), we

have

lim
n→∞

∥(Fσ
G)−1(ρ) − χρn∥L2(G) = lim

n→∞
∥(Fσ

G)−1(ρ) − (Fσ
G)−1(ρn)∥L2(G)

≤ lim
n→∞

∥ρ− ρn∥S1(H) = 0.

In particular, the L2-convergence of (χρn)n to (Fσ
G)−1(ρ) implies that a sub-

sequence of (χρn)n converges to (Fσ
G)−1(ρ) almost everywhere. On the other
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hand, the condition lim
n→∞

∥ρ − ρn∥S1(H) = 0 implies lim
n→∞

∥χρn − χρ∥∞ = 0.

Thus, χρ = (Fσ
G)−1(ρ) ∈ L2(G).

Remark 3.2.5.

1. For f ∈ L2(G), the element Fσ
G(f) is originally defined by the S2(H)-

limit of Fσ
G(fn) = f̂n(W1/2) for some sequence (fn) ⊆ L1(G) ∩ L2(G)

converging to f in L2(G). However, we may still express the element

Fσ
G(f) via the integral representation

�
G
f(a)W1/2(a)dµ(a) once we un-

derstand it as a bounded operator on H given in the weak sense. Indeed,

for any ξ, η ∈ H we have ∥χ|ξ⟩⟨η|∥L2(G) = ∥|ξ⟩⟨η|∥S2(H) = ∥ξ∥ · ∥η∥ by

Proposition 3.2.4. Thus,

|⟨η|
�
G

f(a)W1/2(a)dµ(a)|ξ⟩| =

∣∣∣∣�
G

f(a)⟨η|W1/2(a)|ξ⟩dµ(a)

∣∣∣∣
=

∣∣∣∣�
G

f(a)χ|ξ⟩⟨η|(a)dµ(a)

∣∣∣∣
≤ ∥f∥L2(G)∥ξ∥ · ∥η∥.

This explains that the integral
�
G
f(a)W1/2(a)dµ(a) defines a bounded

operator on H in the weak sense. The same computation also tells us

that Fσ
G(fn) converges to

�
G
f(a)W1/2(a)dµ(a) in the weak operator

topology of B(H), which means that

Fσ
G(f) =

�
G

f(a)W1/2(a)dµ(a).

2. The set G×T can be equipped with the “Heisenberg” group law (x, z) ·
(y, w) = (x + y, zwσ(x, y)). We denote the resulting locally compact

group by G(σ), which is a central extension of G. The original version of

[KL72, Theorem 7.1] (which applies to more general classes of groups)

assumes that G(σ) has a type I regular representation, which is the

case for any abstract quantum kinematical system (G, σ). Indeed, the

quotient space G(σ)/G can easily be identified with the group T, and
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the canonical Haar measure on T is G(σ)-invariant as well. Thus, we

can apply [Kal70, Theorem 1] to conclude that G(σ) is type I.

In bosonic systems, one often considers another function on phase space

associated to a quantum state ρ. It is called the Wigner function W = Wρ,

and is defined as the (symplectic) Fourier transform of the characteristic

function χρ. This can be done in the full generality. Using the current as-

sumption that G is self-dual via the isomorphism Φ∆ (3.1.2), we can transfer

the group Fourier transform FG from (2.1.2) to get the “symplectic” group

Fourier transform on G

F sym
G : L1(G) → C0(G)

given by

F sym
G (f)(a) :=

�
G

f(b)∆(a, b)dµ(b), a ∈ G, f ∈ L1(G).

It follows from symplectic self-duality that there is (another) Haar measure

µsym
G on G such that the map F sym

G extends to a unitary

F sym
G : L2(G, µ) → L2(G, µsym

G ). (3.2.5)

We may call µsym
G the symplectic dual Haar measure of µ. We also have the

corresponding Fourier inversion theorem as in (2.1.5).

Definition 3.2.6. The Wigner function Wρ : G→ C of ρ ∈ S1(H) is defined

by the symplectic Fourier transform of its characteristic function χρ ∈ L2(G),

i.e. Wρ := F sym
G (χρ).

The Wigner function Wρ encodes the state ρ in a dual manner to χρ. One

such aspect is the following.

Proposition 3.2.7. For a quantum state ρ ∈ D(H) the Wigner function Wρ
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is always real-valued and if it is integrable, then we have

�
G

Wρ(a) dµsym
G (a) = 1. (3.2.6)

Proof. The first conclusion follows from the fact that W1/2 is involutive (as

it is normalized): Tr(ρW1/2(−a)∗) = Tr(ρW1/2(a)) = Tr(ρW1/2(a)∗), a ∈
G. When Wρ ∈ L2(G, µsym

G ) is also integrable, then the associated function

χρ must be continuous by [RS00, Theorem 4.4.13], so we can safely take

evaluation χρ. In particular, we see that χρ(0) = 1, so by Fourier inversion

we have
�
G
Wρ(a)dµsym

G (a) = 1.

The above Proposition (which is well known for bosonic systems) is the

reason why Wigner functions are called “pseudo-probability distributions”.

It is of interest to investigate the class of states whose Wigner functions

are actual probability measures, equivalently, non-negative. We will focus

on this theme in Section 3.7, but for now we record one useful property of

characteristic/Wigner functions which follows directly from the CCR (3.1.5):

for ρ ∈ D(H) we have

χW1/2(z)
∗ρW1/2(z)(w) = ∆(z, w)χρ(w), w, z ∈ G (3.2.7)

WW1/2(z)
∗ρW1/2(z)(w) = Wρ(w + z), w, z ∈ G. (3.2.8)

Remark 3.2.8.

1. The above Wigner function exhibits similar properties to bosonic Wigner

functions, but we will postpone collecting such properties until the

follow-up paper [PJLY23].

2. Our Wigner functions coincide with the ones from [Muk79], [RSSK+10]

and [Gro06].
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3.3 Gaussian states in general quantum kine-

matical systems

We first recall some necessary background on Gaussian distributions over

second countable LCA groups G, and refer the reader to [Fel08] for details.

Definition 3.3.1. A distribution ν on G is called

� Gaussian if its Fourier transform ν̂ on Ĝ is of the form

ν̂(γ) = ⟨γ, x⟩ exp(−φ(γ)), γ ∈ Ĝ, (3.3.1)

for some x ∈ G and some non-negative continuous φ : Ĝ→ R satisfying

φ(γ + γ′) + φ(γ − γ′) = 2(φ(γ) + φ(γ′)), γ, γ′ ∈ Ĝ. (3.3.2)

� Gaussian in the sense of Bernstein, or simply B-Gaussian if

ν̂(γ + γ′)ν̂(γ − γ′) = ν̂(γ)2|ν̂(γ′)|2, γ, γ′ ∈ Ĝ. (3.3.3)

Remark 3.3.2.

1. Gaussian distributions on LCA groups were first studied by Parthasarathy,

Rao, and Varadhan [PRRV63] as a generalization of Gaussian distribu-

tions on Rn. This concept has been further generalized to B-Gaussian

distributions by Rukhin [Ruk69] and by Heyer and Rall [HR72] through

analogues of the Kac-Bernstein theorem on LCA groups. Note that if

the group G contains a closed subgroup homeomorphic to T2, then we

can always find a B-Gaussian distribution on G which is not Gaussian

[Fel08, Lemma 9.6].

2. Any non-negative continuous function φ : Ĝ → R satisfying (3.3.2) is

of the form

φ(γ) = ψ(γ, γ), γ ∈ Ĝ,
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where ψ : Ĝ× Ĝ→ R is a continuous function satisfying

� ψ(γ1, γ2) = ψ(γ2, γ1),

� ψ(γ1 + γ2, γ3) = ψ(γ1, γ3) + ψ(γ2, γ3),

� ψ(γ1, γ1) ≥ 0

for any γ1, γ2, γ3 ∈ Ĝ. In particular, ψ ∈ Hom(Ĝ,Hom(Ĝ,R)).

3. From the definition we can easily see that the Fourier transform of a

Gaussian distribution ν on G is fully supported, i.e. supp ν = Ĝ ·

We collect some properties of B-Gaussian distributions which will be use-

ful throughout this chapter. An LCA group K is called a Corwin group if

2K := {2k : k ∈ K} = K, i.e., the doubling map is surjective.

Proposition 3.3.3. Let ν be a B-Gaussian distribution on G and

H = supp ν̂ =
{
γ ∈ Ĝ : ν̂(γ) ̸= 0

}
.

1. The set H is an open subgroup of Ĝ, whose annihilator H⊥ is a compact

Corwin subgroup of G.

2. Suppose that G has no subgroup isomorphic to T2 and H = Ĝ. Then ν

is a Gaussian distribution on G.

3. If Ge, the connected component of the identity of G, contains at most

one element of order 2, then ν = ν0 ∗ (1K/µ(K)) for a compact Corwin

subgroup K of G and a Gaussian distribution ν0 on G. The mentioned

hypothesis on G is satisfied when G is discrete or 2-regular.

Proof. (1) Openess of H is clear, and H being a subgroup is direct from

(3.3.3). Moreover, the quotient group Ĝ/H is discrete, so that H⊥ ∼= ̂̂
G/H

is compact. For the Corwin property of H⊥, it suffices to check that 2γ ∈ H

implies that γ ∈ H by [Fel08, Lemma 7.2]. But this is also direct from (3.3.3).

(2)&(3) These are [Fel08, Lemma 9.7, Theorem 9.9].
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We are now ready to define Gaussian states over general kinematic sys-

tems.

Definition 3.3.4. A state ρ ∈ D(H) is Gaussian (resp. B-Gaussian) if there

is a Gaussian (resp. B-Gaussian) distribution ν on Ĝ such that χρ = FĜ(ν).

Remark 3.3.5.

1. Note that Definition 3.3.4 requires χρ to be the Fourier transform of a

(B-)Gaussian distribution on Ĝ instead of a (B-)Gaussian distribution

on G. This difference does not show up in the bosonic system since the

class of Gaussian distributions on Rn are preserved by Fourier trans-

form.

2. Conjugation with respect to a Weyl operator preserves (B-)gaussian

states. More precisely, (3.2.7) tells us that for any a ∈ G the state

W1/2(a)∗ρW1/2(a) is Gaussian (resp. B-Gaussian) whenever ρ is.

3. Every Gaussian state is clearly a B-Gaussian state. However, the class

of all B-Gaussian states is strictly larger than that of all Gaussian states

in general. See Example 3.3.6/3.3.7, Theorem 3.4.1, Corollary 3.4.9 and

Proposition 3.4.18 below for such cases.

4. In order to secure the existence of B-Gaussian states we need to focus

on normalized 2-cocycles. Indeed, suppose ρ ∈ D(H) is a B-Gaussian

state with respect to the σ-representation W where σ is a general 2-

cocycle σ on G. The positivity of ρ says that

χρ(a) = χρ∗(a) = σ(a,−a) Tr(ρ∗W (−a)) = σ(a,−a) χρ(−a).

Being a Fourier transform of a distribution, we have χρ(a) = χρ(−a), a ∈
G. Therefore, we have σ(a,−a) = 1 whenever χρ(a) ̸= 0, i.e. on the

support of χρ, which is an open subgroup of G and non trivial in many

cases. This is one reason why we require our quantum kinematical sys-

tem to be equipped with normalized 2-cocycles.
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For bosonic systems, Gaussianity and B-Gaussianity coincide with the

usual notion of bosonic Gaussian states (see, e.g., [Hol19, §12.3.2]) by the

multivariate Kac-Bernstein theorem. See [Fel08] for more details, generaliza-

tions, and further references. We now present some examples of B-Gaussian

states which were already well-known in the literature under different names.

To see this, first recall that for a closed subgroup H ≤ G, its symplectic com-

plement is defined by

H∆ := {z ∈ G | ∆(z, h) = 1 Forall h ∈ H}.

We say that H is isotropic (respectively, maximally isotropic or Lagrangian)

if H ⊆ H∆ (respectively, H = H∆).

Example 3.3.6. (Discrete stabilizer states) Let d ≥ 3 be an odd integer,

and consider the Weyl system (Znd × Znd , σ̃can). For a maximally isotropic

subgroup H of Znd × Znd and v ∈ Znd × Znd the associated stabilizer state (see,

e.g., [Gro06, HDDM05]) |H, v⟩⟨H, v| is the rank-1 projection

|H, v⟩⟨H, v| =
1

|H|
∑
h∈H

∆(v, h)W1/2(h) =
1

dn

∑
h∈H

∆(v, h)W1/2(h). (3.3.4)

Indeed, the projection |H, v⟩⟨H, v| is the unique state stabilized by the abelian

group
{

∆(v, h)W1/2(h) : h ∈ H
}

[Gro06, Lemma 8], that is,

∆(v, h)W1/2(h)|H, v⟩ = |H, v⟩, h ∈ H.

As shown in the proof of [Gro06, Lemma 9], its characteristic function

χH,v := χ|H,v⟩⟨H,v| is of the form

χH,v(z) = ∆(v, z)1H(z), z ∈ Znd × Znd ,

where 1H is the indicator function of H (albeit with a different normalization

from [Gro06]). Self-duality of finite abelian groups tells us that there is v0 ∈
Znd × Znd such that ∆(v, ·) = ⟨v0, ·⟩. Hence, χH,v is the Fourier transform of
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ν = δv0∗( 1
|H⊥|1H⊥). Now we check the condition (3.3.3). The character ∆(v, ·)

clearly satisfies (3.3.3). Finiteness and 2-regularity of the group Znd×Znd imply

that H is also 2-regular, and consequently 1H satisfies (3.3.3). This means

that the stabilizer state |H, z⟩⟨H, z| is a pure B-Gaussian state. Note that H

is a non-trivial proper subgroup of Znd × Znd since |H| = dn and the Fourier

transform of Gaussian distributions always have full support. Thus, we know

that |H, z⟩⟨H, z| is not a Gaussian state.

Later we will show that pure B-Gaussian states in the n-qudit system

are precisely the stabilizer states |H, v⟩⟨H, v| for some v ∈ Z2n
d and some

maximally isotropic subgroup H ≤ Z2n
d , and that there are no Gaussian

states (even mixed ones) over the Weyl system (Znd×Znd , σ̃can). (See Theorem

3.4.1, Corollary 3.4.9, Proposition 3.4.18, and Example 3.4.11.) Hence, the

Gaussian character of qudit stabilizer states (which belongs to the folklore)

is made explicit through the Bernstein identity (4.2) of their characteristic

functions.

Example 3.3.7. (Minimum uncertainty states) Consider the Weyl system

(G = F × F̂ , σ̃can) over a 2-regular LCA group G such that F contains a

compact open 2-regular subgroup K. Fix z0 ∈ G. Then

ψ = µF (K)−1/2W1/2(z0)1K ∈ L2(F )

is a minimum uncertainty state in the sense that it saturates the entropic

uncertainty relation from [OP04, Theorem 1.5]. The characteristic function

χψ := χ|ψ⟩⟨ψ| of |ψ⟩⟨ψ| then satisfies (by (3.2.7))

χψ(z) = µ−1
F (K)∆(z0, z)χ|1K⟩⟨1K |(z) = µ−1

F (K)∆(z0, z)⟨W1/2(z)1K , 1K⟩, z ∈ G.
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Note that for y ∈ K, y−x ∈ K if and only if x ∈ K. Hence, for z = (x, γ) ∈ G

⟨W1/2(z)1K , 1K⟩ =

�
G

⟨x, γ⟩−1/2⟨y, γ⟩1K(y − x)1K(y)dµ(y)

= 1K(x)

�
K

⟨x, γ⟩−1/2⟨y, γ⟩dµ(y)

= µF (K)1K(x)⟨x, γ⟩−1/21K⊥(γ)

By 2-regularity of K, 2−1K = K. Thus, for x ∈ K and γ ∈ K⊥

⟨x, γ⟩−1/2 = ⟨2−1x, 2−1γ⟩2 = ⟨2−1x, γ⟩ = 1,

and consequently

χψ(z) = ∆(z0, z)1K×K⊥(z), z ∈ G.

Similar to the previous example we see that |ψ⟩⟨ψ| is a pure B-gaussian state.

On the other hand, since K × K⊥ is never equal to the whole phase space

G = F × F̂ , |ψ⟩⟨ψ| is not a Gaussian state as before. The full description of

pure B-Gaussian states in this setting will be given in Theorem 3.4.19.

3.4 Weyl systems over 2-regular groups

In this section we focus on the Weyl system (G = F × F̂ , σ̃can) over a 2-

regular LCA group and provide a complete characterization of B-Gaussian

states. By the structure theorem of van Kampen, we know that F ∼= Rn×Fc

for some LCA group Fc admitting a compact open subgroup [HR79, 24.30].

So we have G ∼= R2n × (Fc × F̂c). Let us write Gc = Fc × F̂c for later use.

Our strategy is to first characteize B-Gaussian states on the Weyl system

(Gc, σ̃can) and then use our result to show that, amongst B-Gaussian states

over G = R2n × Gc, there can be no bipartite entanglement between the

subsystems R2n and Gc. The full characterization then follows naturally.
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3.4.1 Systems admitting compact open subgroups

The main goal of this section is to establish the following theorem.

Theorem 3.4.1. For a state ρ ∈ D(L2(Fc)), the following are equivalent:

1. ρ is a B-Gaussian state on the Weyl system (Gc, σ̃can);

2. there exist a compact open 2-regular isotropic subgroup H ≤ Gc and a

character γ ∈ Ĥ such that

ρ = ρH,γ :=

�
H

γ(z)W1/2(z)dµGc(z). (3.4.1)

Moreover, H and γ are uniquely determined.

Let us first focus on the easier direction (2) ⇒ (1). The main step in

the proof is Proposition 3.4.4, which requires a few preparatory lemmas. For

notational simplicity we write σ = σ̃can = ∆1/2 from (3.1.8).

Lemma 3.4.2. Let H be a compact open 2-regular subgroup of Gc.

1. For z ∈ G we have z ∈ H∆ if and only if σ(z, h) = 1 for all h ∈ H.

2. For z ∈ G,

�
H

σ(z, z′)dµGc(z
′) =

µ(H), z ∈ H∆

0, otherwise
.

Proof. (1) If z ∈ H∆, then for all h ∈ H

σ(z, h) = ∆1/2(z, h) = ∆(2−1z, 2−1h)2 = ∆(z, 2−1h) = 1

as 2−1H ⊆ H. Conversely, if σ(z, h) = 1 for all h ∈ H then again by definition

of the normalization

∆(z, h) = ∆(2−1z, 2−1(2h))2 = σ(z, 2h) = 1, h ∈ H.

(2) This is from (1) and (2.1.4).
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Lemma 3.4.3. Let H be a compact open subgroup of Gc. Then H∆ is a

compact open subgroup of Gc. Morever, if H is 2-regular then so is H∆.

Proof. Since H is open, the quotient Gc/H is discrete, so that H⊥ ∼= Ĝc/H

is compact. Since H is compact, the dual Ĥ is discrete, so that H⊥ is open

from Ĝc/H
⊥ ∼= Ĥ. Thus, H⊥ is a compact open subgroup of Ĝc. But H⊥ =

Φ∆(H∆) via the isomorphism Φ∆ : Gc → Ĝc, implying that H∆ is compact

open in Gc.

For the final statement, let z ∈ H∆. Then for all h ∈ H,

∆(2−1z, h) = ∆(2−1z, 2−1h)2 = σ(z, h),

so the result follows from Lemma 3.4.2 (1).

Proposition 3.4.4. The element ρH,γ from (3.4.1) is a self-adjoint operator

satisfying the relation ρ2H,γ = µGc(H)ρH∩H∆,γ.

Proof. Self-adjointness comes from W1/2(z)∗ = W1/2(−z), γ(z) = γ(−z).

Since the above integral (3.4.1) is WOT-convergent, and multiplication is

separately WOT-continuous, we have

ρ2H,γ =

�
H

�
H

γ(z)γ(z′)W1/2(z)W1/2(z
′)dµGc(z)dµGc(z

′)

=

�
H

�
H

γ(z + z′)σ(z, z′)W1/2(z + z′)dµGc(z)dµGc(z
′)

=

�
H

�
H

γ(z′)σ(z, z′ − z)W1/2(z
′)dµGc(z)dµGc(z

′)

=

�
H

�
H

γ(z′)σ(z, z′)W1/2(z
′)dµGc(z)dµGc(z

′)

=

�
H

γ(z′)

( �
H

σ(z, z′)dµGc(z)

)
W1/2(z

′)dµGc(z
′)

= µGc(H)

�
H∩H∆

γ(z′)W1/2(z
′)dµGc(z

′)

= µGc(H)ρH∩H∆,γ,

where the second last equality is Lemma 3.4.2 (2). Note that H∩H∆ is again
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a compact open 2-regular subgroup by Lemma 3.4.3, so the notation ρH∩H∆,γ

is justified.

Proof of Theorem 3.4.1. (2) ⇒ (1): Since H is isotropic, H = H ∩ H∆,

so Proposition 3.4.4 implies ρ2H,γ = µGc(H)ρH,γ. By the spectral theorem for

compact operators, ρH,γ is positive with spec(ρH,γ) = {0, µGc(H)}. Moreover,

as ρH,γ = Fσ
Gc

(γ1H), by Lemma 3.2.4 and injectivity of Fσ
Gc

, we have χρ =

γ1H . In particular, Tr(ρH,γ) = χρ(0) = 1, so ρH,γ is a state. Its characteristic

function satisfies the Bernstein identity (3.3.3):

χρ(z + z′)χρ(z − z′) = γ(z + z′)γ(z − z′)1H(z + z′)1H(z − z′)

= γ(z)2|γ(z′)|21H(z)1H(z′),

where the last equality uses 2-regularity of H to show z + z′, z − z′ ∈ H

if and only if z, z′ ∈ H. On the other hand, χρ = γ1H is continuous and

positive definite since γ ∈ Ĥ and H is a compact open subgroup [Wei40,

Pow40, Rai40]. Consequently, χρ is the Fourier transform of a B-Gaussian

distribution, and thus ρH,γ is a B-Gaussian state.

The other, more involved direction of the proof of Theorem 3.4.1, requires

additional preparations. The major step, Proposition 3.4.7, concerns the sin-

gularity of Gaussian distributions in our setting, and is based on [Fel08,

Proposition 3.14]. We begin with a few general lemmas. Recall that, in this

chapter, all LCA groups are assumed to be second countable (hence metriz-

able).

Lemma 3.4.5. Let G be an LCA group, and let H be an open subgroup of

G. Then Ge ≤ H, where Ge is the connected component of the identity in G.

Proof. If π : G ↠ G/H denotes the canonical quotient map, then π(Ge) is

a connected subgroup of the discrete group G/H. Hence, the group π(Ge) is

trivial, which implies Ge ≤ H.

Lemma 3.4.6. Let G be a 2-regular LCA group admitting a compact open

subgroup. Then, any path connected closed subgroup of G must be trivial.
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Proof. Let H be a path connected closed subgroup of G. Together with sec-

ond countability, we know that H ∼= Rn × Tm for some n ≥ 0 and m ≤ ℵ0

[Arm81, 8.27].

First, connectedness of H implies H ≤ Ge. Since G admits a compact

open subgroup, Lemma 3.4.5 implies that Ge compact. Hence, H is compact,

which forces n = 0.

Second, since G is 2-regular, the doubling map x 7→ 2x is injective on H.

Since this is false for any non-trivial power of T, we must also have m = 0.

Thus, H is trivial.

Proposition 3.4.7. Let G be a non-discrete 2-regular LCA group with a

compact open subgroup. Then any Gaussian distribution ν on G is singular

with respect to the Haar measure µ on G.

Proof. We may assume that ν is symmetric (meaning x = 0 in (3.3.1)) by

translation. Then the support C of ν is a connected closed subgroup of G

[Fel08, Proposition 3.6]. By Lemma 3.4.6, if C were path connected, it would

be trivial, in which case ν = δe is singular (as G is not discrete).

Suppose C is not path connected. We know by [Fel08, Proposition 3.8,

Proposition 3.11] that there is a path connected Polish group L (not nec-

essarily locally compact), a continuous homomorphism p : L → C, and a

distribution νL on L such that ν = p(νL) (push-forward measure). Hence,

ν is concentrated on the subgroup p(L). We claim that p(L) is Borel with

µ(p(L)) = 0, which gives the singularity of ν.

First note that p(L) is the image of the induced map p̃ : L/Ker(p) → C,

which is injective. Since L/Ker(p) is a Polish group and C is metrizable, it

follows that p(L) is Borel by [Tak02, Corollary A.7].

Now suppose, by way of contradiction, that µ(p(L)) > 0. Since G admits

a compact open subgroup, Ge is compact by Lemma 3.4.5. Hence, C ≤ Ge

is compact, forcing 0 < µ(p(L)) ≤ µ(C) < ∞, which means that p(L) =

p(L) − p(L) contains a neighborhood of the identity of G by [HR79, 20.17].

Thus, p(L) is a subgroup of G with non-empty interior, hence clopen. From
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the definition of the support we then have p(L) = C, which implies that C

is path connected; contradiction.

We are now ready to finish the proof of the main result of this subsection.

Recall that Gc = Fc × F̂c where Fc is an LCA group admitting a compact

open subgroup.

Proof of Theorem 3.4.1. (1) ⇒ (2): Suppose ρ ∈ D(L2(Fc)) is a B-Gaussian

state. Then χρ is the Fourier transform of a B-Gaussian distribution on

Ĝc. Thanks to 2-regularity and Proposition 3.3.3 it is of the form χρ =

FĜc
(ν)|K⊥1K⊥ for a compact Corwin subgroup K ≤ Ĝc and a Gaussian

distribution ν on Ĝc. Since K⊥ is open and χρ ∈ L2(Gc) we know that

FĜc
(ν)|K⊥ ∈ L2(K⊥). We claim that

(∗) FĜc
(ν)|K⊥ = FĜc/K

(νK)

for some Gaussian distribution νK on Ĝc/K. Supposing (∗) holds, the mea-

sure νK ∈ M(Ĝc/K) has square-integrable Fourier transform and so must

be absolutely continuous with respect to the Haar measure on Ĝc/K (with

square-integrable Radon-Nikodym derivative, by the Plancherel theorem).

This forces K to be open. If not, the group Ĝc/K is non-discrete, and we can

appeal to Proposition 3.4.7 to get the contradiction that νK is also singular

with respect to the Haar measure on Ĝc/K. Note that Ĝc/K satisfies the as-

sumption of Proposition 3.4.7: K is a Corwin subgroup of a 2-regular group,

so it is automatically 2-regular. Together with 2-regularity of Ĝc, it follows

that Ĝc/K is 2-regular. Also, since Ĝc contains a compact open subgroup,

so too does Ĝc/K as the canonical quotient map π : Ĝc → Ĝc/K is open

(see, e.g., [HR79, 5.26]). Thus, K is open, and the Gaussian disctribution νK

is supported on a connected subset ([Fel08, Proposition 3.6]) of the discrete

group Ĝc/K, so that νK = δγ0+K for some γ0 ∈ Ĝc. But then

χρ = FĜc/K
(νK)1K⊥ = γ−1

0 1K⊥ ,
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so letting H = K⊥, and γ = γ−1
0 |H , we see that H is a compact open 2-regular

subgroup of G, γ ∈ Ĥ, and χρ = γ1H . Thus, ρ = ρH,γ as in (3.4.1).

Let us go back to the claim (∗). Viewing Cb(Ĝc/K) ⊆ Cb(Ĝc) in the

canonical fashion (as functions which are constant on the cosets of K), re-

striction to Cb(Ĝc/K) induces a probability preserving map from M(Ĝc)

to M(Ĝc/K). Write νK for the image of ν under this map. Then, for all

f ∈ Cb(Ĝc/K),

⟨f, νK⟩(Cb(Ĝc/K),M(Ĝc/K)) = ⟨f, ν⟩(Cb(Ĝc),M(Ĝc))
.

Consequently, νK is a Gaussian distribution on Ĝc/K and for z ∈ ̂
(Ĝc/K) ∼=

K⊥ ≤ G,

FĜc/K
(νK)(z) =

�
Ĝc/K

⟨z, γ +K⟩dνK(γ +K) = ⟨z−1, νK⟩(Cb(Ĝc/K),M(Ĝc/K))

= ⟨z−1, ν⟩(Cb(Ĝc),M(Ĝc))

= FĜc
(ν)|K⊥(z).

It remains to show that H is isotropic. Uniqueness follows from (twisted)

Fourier inversion. If we denote H0 = H ∩ H∆, then ρ2 = µGc(H)ρH0,γ by

Proposition 3.4.4. Since H0 is compact, open, isotropic and 2-regular, ρH0,γ

is a B-Gaussian state with ρ2H0,γ
= µGc(H0)ρH0,γ. The eigenvalues of ρH0,γ are

therefore 0 and µGc(H0). Since Tr(ρH0,γ) = 1, the eigenvalue µGc(H0) has mul-

tiplicity µGc(H0)
−1, implying that ρ has the eigenvalue µGc(H)1/2µGc(H0)

1/2

with the same multiplicity. From the condition Tr ρ = 1 we get

µGc(H)1/2µGc(H0)
1/2µGc(H0)

−1 = 1,

which implies µGc(H) = µGc(H0). If z ∈ H\H0 = H ∩ Hc
0, then there is an

open neighbourhood U of z in H\H0. But then

µGc(H) ≥ µGc(H0 ∪ U) = µGc(H0) + µGc(U) > µGc(H0),
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contradiction. Thus, H = H0 is isotropic.

Remark 3.4.8.

1. If Gc admits no compact open 2-regular subgroup, then Theorem 3.4.1

tells us that there are no B-Gaussian states.

2. There are 2-regular LCA groups with no non-trivial, proper closed 2-

regular subgroups. For example, take the 2-adic rationals Q2. Then Q2

is 2-regular as it is a field. However, if H is a non-trivial 2-regular closed

subgroup of Q2 then necessarily 2−1H = H. But then 2−nH = H for

all n ∈ N. Pick x ∈ H with |x|2 > 0. Then (2−nx) is a sequence in H

with |2−nx|2 = 2n|x|2 → ∞ as n → ∞. Hence, H is not bounded and

therefore not compact. However, every proper closed subgroup of Q2 is

compact (and open) [RS68, Corollary 9], so H = Q2. A similar argu-

ment shows that any closed 2-regular subgroup of Qn
2 is not compact.

In particular, there is no B-Gaussian state over the 2-adic Weyl system

Qn
2 × Q̂n

2
∼= Q2n

2 .

The following Corollary is a reason for us to consider B-Gaussian states

instead of Gaussian states.

Corollary 3.4.9. There is no Gaussian state in the Weyl system (Gc =

Fc × F̂c, σ̃can) unless Fc is trivial.

Proof. If ρ is a Gaussian state, then it is B-Gaussian, so ρ = ρH,γ for H, γ

as in Theorem 3.4.1, and χρ = γ1H . Since every Gaussian state has non-

vanishing characteristic function, we have Gc = H. However, isotropy of H

and non-degeneracy of the symplectic form ∆ implies that

Gc = H ⊂ H∆ = G∆
c = {0} .

Remark 3.4.10. Based on the characterization of B-Gaussian states we can

easily determine their von Neumann entropy. Indeed, in the proof of Theorem
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3.4.1, we saw that the non-zero spectrum of ρH,γ is µGc(H) with multiplicity

µGc(H)−1. It follows that

S(ρH,γ) = log(µGc(H)−1). (3.4.2)

Example 3.4.11. When F is a 2-regular finite abelian group (here 2-regularity

equivalent to F having odd cardinality), our Haar measure on G = F × F̂

satisfying Theorem 3.2.3 is µ(·) = | · |/|F |, where | · | denotes the cardinality.

Therefore, the B-Gaussian state ρH,γ can be written as

ρH,γ =
1

|F |
∑
z∈H

γ(z)W1/2(z).

Moreover, we will see later that ρH,γ is pure if and only if H is maximally

isotropic, or equivalently, |H| = |F | (Lemma 3.4.17, Proposition 3.4.18). In

particular, if G = Znd× Ẑnd ∼= Znd×Znd with d odd, we have ρH,γ = |H, v⟩⟨H, v|
(represented as in (3.3.4)) for some v ∈ G, by symplectic duality. Therefore,

pure B-Gaussian states over Znd×Znd coincide with stabilizer states of n-qudit

systems.

Remark 3.4.12. From the phase space perspective, the starting point of

the stabilizer formalism of quantum error correction [CRSS98, Got97] is an

isotropic subgroup H of G = Z2n
2

∼= Zn2 × Ẑn2 . The same idea works for more

general phase groups G = Fc × F̂c: for a compact open 2-regular isotropic

subgroup H ≤ G and a character γ ∈ Ĥ, one can encode information in the

subspace of the system Hilbert space L2(Fc) which is stabilized/fixed by the

action of (the abelian group) S =
{
γ(h)W1/2(h) : h ∈ H

}
. The B-Gaussian

state ρH,γ is precisely the normalized projection onto the stabilizer subspace

C(S) =
{
ψ ∈ L2(Fc) : s|ψ⟩ = |ψ⟩ for all s ∈ S

}
.

Indeed,

P := µG(H)−1ρH,γ = µG(H)−1

�
H

γ(h′)W1/2(h
′)dµG(h′)
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satisfies P 2 = P ≥ 0 (Proposition 3.4.4), so P is an orthogonal projection.

Moreover, we can show that γ(h)W1/2(h)P = P for all h ∈ H from the

definition (since h 7→ γ(h)W1/2(h) is a group homomorphism), so Ran(P ) is

contained in C(S). Finally, every vector |ψ⟩ stabilized by S clearly satisfies

P |ψ⟩ = |ψ⟩, which means that C(S) ⊂ Ran(P ).

Example 3.4.13. In Zelenov’s (relatively recent) papers [Zel14, Zel20], Gaus-

sian states on L2(Qp) were defined by χρ being the indicator function of a lat-

tice L ⊆ Qp×Qp (multiplied by a suitable character on L). By a lattice, they

mean a rank-2 free Zp-submodule of Qp×Qp, where Zp = {x ∈ Qp | |x|p ≤ 1}
is the ring of p-adic integers. Concretely, this means that there exist Zp-

linearly independent z1, z2 ∈ Qp × Qp such that L = Zpz1 ⊕ Zpz2. Their

Gaussian terminology was justified through the observation that such indi-

cator functions are eigenfunctions of the symplectic Fourier transform.

Let us check that Gaussian states in the sense of Zelenov coincide with

B-Gaussian states. To this end, let G = Qn
p ×Qn

p with p an odd prime (so

that G possesses B-Gaussian states, Remark 3.4.8(2)). We equip G with the

metric induced by the norm

∥z∥ = max
1≤i≤2n

|zi|p, z = (z1, ..., z2n) ∈ G.

Note that the closed unit ball of G = Q2n
p in this norm is Z2n

p .

Let ρ be a B-Gaussian state on L2(Qn
p ). Since G is 2-regular and admits

a compact open subgroup, by Theorem 3.4.1 there exist a compact open (2-

regular) isotropic subgroup H and a character γ ∈ Ĥ such that ρ = ρH,γ.

Note that any closed subgroup of G is automatically 2-regular since it is a

Zp-submodule and 1
2
∈ Zp for odd primes p. By compactness there exists

N ∈ N for which H ⊆ p−NZ2n
p . Hence, pNH is a Zp-submodule of the free

module Z2n
p . Since Zp is a principle ideal domain, pNH is free of rank at most

2n. In addition, H, and therefore pNH is open in Q2n
p , so there is some k ∈ N

such that B≤p−k(0)2n ⊆ pNH, where B≤p−k(0) = pkZp is the clopen ball of

radius p−k in Qp. It follows that pkei ∈ pNH, where ei are the standard
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basis vectors of Q2n
p , so pNH contains at least 2n independent elements.

Therefore, the rank of pNH is 2n, implying the existence of Zp-independent

h1, ..., h2n ∈ H for which H = spanZp
{p−Nh1, ..., p−Nh2n}. Hence, H is a free

Zp-module of rank 2n inside Q2n
p , that is, a lattice.

Conversely, let ρ be a Gaussian state on L2(Qn
p ) in the sense of Zelenov

associated to a lattice L. To prove ρ is B-Gaussian, it suffices to show that

L is a 2-regular compact open isotropic subgroup of Qn
p ×Qn

p . Indeed, L =⊕2n
i=1 Zpzi for some independent z1, . . . , z2n ∈ Q2n

p , and therefore,

(pNZp)
2n =

2n⊕
i=1

Zp(p
Nei) ⊂ L ⊂

2n⊕
i=1

Zp(p
−Nei) = (p−NZp)

2n

for sufficiently large N . Since
⊕2n

i=1 Zpzi is clearly closed in Qn
p × Qn

p , this

inclusion explains that L is compact and open. The closedness again implies

that L is 2-regular as before. Now we apply the same argument as in the

proof of Theorem 3.4.1 for the direction (1) ⇒ (2) to show that χρ = 1L is a

characteristic function of a state only if L is isotropic.

3.4.2 General 2-regular systems

Let us go back to the Weyl system (F×F̂ , σ̃can) over a general 2-regular LCA

group, where F ∼= Rn × Fc with Fc admitting a compact open subgroup.

Theorem 3.4.14. Every B-Gaussian state in the Weyl system (G = F ×
F̂ , σ̃can) is of the form ρn⊗ ρc, where ρn and ρc are B-Gaussian states in the

Weyl system (Rn × R̂n, σ̃can) and (Gc = Fc × F̂c, σ̃can), respectively.

Proof. Suppose ρ ∈ D(L2(F )) is B-Gaussian. Proposition 3.3.3(1) implies

that the support of χρ is an open subgroup H of F × F̂ ∼= R2n × (Fc × F̂c).

Thus, H ∼= R2n ×K for an open subgroup K of Fc × F̂c. A straightforward

calculation shows that the reduced state (Tr⊗ id)ρ ∈ D(L2(Fc)) satisfies

χ(Tr⊗ id)ρ = χρ|{0}×Gc ,

54



CHAPTER 3. ABSTRACT GAUSSIAN STATES

so that (Tr⊗ id)ρ is a B-Gaussian state over the Weyl system (Gc, σ̃can) with

χ(Tr⊗ id)ρ supported on K, which must be compact thanks to Theorem 3.4.1.

Now we apply Proposition 3.3.3(3) to get χρ = 1Hγ exp(−φ) for some

γ ∈ Ĥ and some non-negative continuous φ : H → R satisfying (3.3.2). Let

ψ : H×H → R be the continuous biadditive form associated to φ in Remark

3.3.2(2). We therefore obtain a continuous homomorphism

H ∋ z 7→ ψ(z, ·) ∈ Hom(H,R),

where Hom denotes the set of continuous homomorphisms. Since H ∼= R2n×
K, the above homomorphism can be regarded as an element of

Hom(R2n ×K,Hom(R2n ×K,R)),

which, by commutativity of R, identifies canonically with the product group

Hom(R2n,Hom(R2n,R)) × Hom(K,Hom(R2n,R))

×Hom(R2n,Hom(K,R)) × Hom(K,Hom(K,R)).

Under this identification, we may write

ψ((x, y), (x′, y′)) =

〈[
A B

C D

][
x

y

]
,

[
x′

y′

]〉
, x, x′ ∈ R2n, y, y′ ∈ K.

whereA ∈ Hom(R2n,Hom(R2n,R)) ∼= M2n(R),B ∈ Hom(K,Hom(R2n,R)) ∼=
Hom(K,R2n), C ∈ Hom(R2n,Hom(K,R)) and D ∈ Hom(K,Hom(K,R)).

Since K is compact, Hom(K,Rm) = {0} for any m ∈ N. Thus, B = C =

D = 0, and we have ψ((x, y), (x′, y′)) = ⟨Ax, x′⟩, x, x′ ∈ R2n, y, y′ ∈ K and

consequently

φ((x, y)) = ψ((x, y), (x, y)) = ⟨Ax, x⟩, x ∈ R2n, y ∈ K.

Since γ ∈ Ĥ ∼= ̂R2n ×K = R̂2n × K̂, we may write γ = γn × γc with
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γn ∈ R̂2n, γc ∈ K̂. Putting things together, we see that

χρ(x, y) = 1K(y)γc(y)γn(x) exp(−⟨Ax, x⟩) = χn(x)χc(y), x ∈ R2n, y ∈ K,

where χn = χρ|R2n×{0} = χ(id⊗Tr)ρ and χc = χρ|{0}×K = χ(Tr⊗ id)ρ are the

characteristic functions of B-Gaussian sates in ρn ∈ D(L2(Rn)) and ρc ∈
D(L2(Fc)), respectively. By uniqueness of characteristic functions, it follows

that ρ = ρn ⊗ ρc, where ρn = (id⊗Tr)ρ and ρc = (Tr⊗ id)ρ.

Remark 3.4.15. Theorem 3.4.14 shows that there is a topological obstruc-

tion for B-Gaussian states over the Weyl system (F × F̂ , σ̃can) with F ∼=
Rn × Fc to have bipartite entanglement with respect to the decomposition

L2(F ) ∼= L2(Rn) ⊗ L2(Fc). A similar separability phenomenon is known to

hold for minimizers of the entropic uncertainty principle over LCA groups

[OP04].

3.4.3 Pure Gaussian states

Based on our characterization (Theorem 3.4.14), every B-Gaussian state in

a 2-regular Weyl system (F × F̂ , σ̃can) is of the form ρn ⊗ ρc, where ρn and

ρc are B-Gaussian states in the Weyl systems (Rn× R̂n, σ̃can) and (Gc, σ̃can),

respectively. Since a product state is pure if and only if each component is

pure, and the purity of bosonic Gaussian states has been characterized (see

[AGI07, Section 3], for example), the characterization of pure B-Gaussian

states reduces to the case of ρc. By Theorem 3.4.1, it is of the form ρH,γ for

some compact open 2-regular isotropic subgroup H ≤ Gc and a character

γ ∈ Ĥ. In Proposition 3.4.18 we will prove that ρH,γ is pure if and only if

H is maximally isotropic. Moreover, we show that every pure B-Gaussian

state is determined (up to a Weyl translation) by a symmetric bicharacter

(Theorem 3.4.19). We begin with some preliminary results.

Lemma 3.4.16. For any compact open subgroup H ≤ Gc we have

µ(H)µ(H∆) = 1, (3.4.3)
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where µ = µGc.

Proof. Let Φ∆ be the (canonical) symplectic self-duality on Gc. By unique-

ness of Haar measures, there exists c > 0 for which Φ∆(µ) = cµĜc
, where

Φ∆(µ) is the push-forward measure. Since H⊥ = Φ∆(H∆), by the Plancherel

theorem we have

1 =
∥∥µ(H)−1/21H

∥∥2
L2(Gc)

=
∥∥FGc(µ(H)−1/21H)

∥∥2
L2(Ĝc)

(3.4.4)

=
∥∥µ(H)1/21H⊥

∥∥2
L2(Ĝc)

= µ(H)µĜc
(H⊥) = c−1µ(H)µ(H∆).

It remains to show that c = 1. Since Gc admits a compact open 2-regular

subgroup, so too does Fc (project onto first coordinate). Let K ≤ Fc be such

a subgroup. Then as shown in Example 3.3.7, the characteristic function of

the state ψ = µFc(K)−1/21K ∈ L2(Fc) is χ|ψ⟩⟨ψ| = 1K×K⊥ . It is easy to see

that K ×K⊥ is a compact open Lagrangian subgroup of Gc. Hence, (3.4.4)

implies

µ(K ×K⊥)2 = µ(K ×K⊥)µ((K ×K⊥)∆) = c.

Theorem 3.2.3 then shows

1 = ∥|ψ⟩⟨ψ|∥22 = ∥1K×K⊥∥2L2(Gc)
= µ(K ×K⊥) =

√
c. (3.4.5)

Lemma 3.4.17. Let H be a compact open isotropic subgroup of Gc. Then H

is Lagrangian if and only if µGc(H) = 1.

Proof. Let µ = µGc for simplicity. If H = H∆, then µ(H) = 1 is direct from

Lemma 3.4.16. Conversely, if µ(H) = 1, then we get µ(H) = µ(H∆) = 1

from the conditions µ(H) ≤ µ(H∆) and µ(H)µ(H∆) = 1. Since H ⊆ H∆,

this implies that H = H∆. Note that H∆ is compact open by Lemma 3.4.3

Combining (3.4.2) and Lemma 3.4.17, together with the fact that a state

is pure if and only if its entropy is 0, we get the following conclusion.
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Proposition 3.4.18. A B-Gaussian state ρH,γ is pure if and only if H is

Lagrangian.

We now show that pure B-Gaussian states in D(L2(Fc)) are determined

by a point in the phase space Gc and a symmetric bicharacter, which is the

analogue of the first and second moments for pure bosonic Gaussian states.

Recall that a bicharacter β : K ×K → T on an LCA group K is symmetric

if β(x, y) = β(y, x), x, y ∈ K.

Theorem 3.4.19. A pure state ρ = |ψ⟩⟨ψ| ∈ D(L2(Fc)) is B-Gaussian if and

only if there exists a compact open 2-regular subgroup K of Fc, a symmetric

bicharacter β : K ×K → T, z0 ∈ Gc, and α ∈ T such that ψ = αW (z0)ψ0,

where

ψ0(x) = µFc(K)−1/21K(x)β(x, 2−1x), x ∈ Fc. (3.4.6)

Alternatively, for z0 = (x0, γ0) we have

ψ(x) = α̃µFc(K)−1/21K+x0(x)γ0(x)β(x, 2−1x), x ∈ Fc,

for some α̃ ∈ T. In this case, ρ = ρH,Γ where Γ = ∆(z0, ·) and

H = {(x, γ) ∈ Gc : x ∈ K, γ|K = β(x, ·)} . (3.4.7)

Remark 3.4.20. Note that the above theorem implies that we can choose

a continuous wave function for every pure B-Gaussian state. Furthermore,

the result includes the characterization of stabilizer states in [Gro06, Lemma

18], which is equivalent to saying that if d ≥ 3 is an odd integer, every pure

B-Gaussian state ρ = |ψ⟩⟨ψ| ∈ D(ℓ2(Znd)) with ψ(x) ̸= 0 for all x ∈ Znd is

exactly of the form

ψ(x) = d−n/2ωx
TAx+bT x+c,

where ω = exp(2πi
d

), A ∈Mn(Zd) is a symmetric matrix, b ∈ Znd , and c ∈ R.

The proof of Theorem 3.4.19 begins with a connection between compact

open 2-regular Lagrangian subgroups and symmetric bicharacters, as follows.
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Lemma 3.4.21. There exists one-to-one correspondence between the family

of 2-regular compact open Lagrangian subgroups H of Gc and the family of

pairs (K, β) consisting of a compact open 2-regular subgroup K of Fc and a

symmetric bicharacter β : K ×K → T, related by equation (3.4.7).

Proof. For a given pair (K, β), let H ⊂ Gc be defined by the relation (3.4.7),

which can easily be checked to be 2-regular closed subgroup of Gc. The

isotropy of H follows from the symmetry of β: for (x, γ), (x′, γ′) ∈ H,

∆((x, γ), (x′, γ′)) = β(x, x′)β(x′, x) = 1.

Moreover, for each x ∈ K, the corresponding section

Hx :=
{
γ ∈ F̂c : (x, γ) ∈ H

}
=
{
γ ∈ F̂c : γ|K = β(x, ·)

}
(3.4.8)

is actually a coset of K⊥ in F̂c. By Fubini’s theorem and (3.4.5), we have

µGc(H) =

�
K

µF̂c
(Hx) dµFc(x) =

�
K

µF̂c
(K⊥) dµFc(x) = µFc(K)µF̂c

(K⊥) = 1.

This implies that H is open and compact by (2.1.1), and H is Lagrangian by

Lemma 3.4.17, which explains one direction of the correspondence.

For the reverse direction, let H be a compact open 2-regular Lagrangian

subgroup of Gc. For the natural projection πFc : (x, γ) ∈ Gc 7→ x ∈ Fc, define

K := πFc(H). Then K is a 2-regular compact open subgroup of Fc since πFc

is a continuous homomorphism and an open map. We first claim that for

each x ∈ K, we have Hx = γx + K⊥ for some γx ∈ F̂c, where Hx is from

(3.4.8). Indeed, we can pick any γx ∈ F̂c such that (x, γx) ∈ H, and then

γ ∈ Hx ⇐⇒ (0, γ − γx) ∈ H = H∆

⇐⇒ ∆((0, γ − γx), (x
′, γ′)) = γ(x′)γx(x′) = 1 for all (x′, γ′) ∈ H

⇐⇒ γ − γx ∈ K⊥ ⇐⇒ γ ∈ γx +K⊥.

Next, we claim that the map T : K → F̂ /K⊥, x 7→ γx +K⊥ is a continuous
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homomorphism. The additivity is clear from the definition, and the continuity

comes from the facts that F̂ /K⊥ is discrete and

KerT =
{
x ∈ K : (x, γ) ∈ H for some γ ∈ K⊥}

=
⋃

γ∈K⊥

{x ∈ K : 1H(x, γ) ̸= 0}

is open, which in turn comes from the continuity of the function 1H . Passing

through the canonical identification F̂ /K⊥ ∼= K̂ we obtain a continuous

homomorphism T̃ : K → K̂, and we can readily check that the associated

bicharacter β : K ×K → T, (x, y) 7→ γx(y) is the one we were looking for.

Indeed, β is symmetric since H is isotropic:

β(x, y)β(y, x) = γx(y)γy(x) = ∆((x, γx), (y, γy)) = 1, x, y ∈ K.

The relation (3.4.7) is now straightforward.

Finally, one can easily check that the maps (K, β) 7→ H and H 7→ (K, β)

are inverses to each other.

Proof of Theorem 3.4.19. Suppose ρ = ρH,Γ is a pure B-Gaussian state. Then

H is a 2-regular Lagrangian compact open subgroup of Gc by Proposition

3.4.18. By considering ρ0 := W (z0)
∗ρW (z0) for z0 ∈ Gc such that Γ =

∆(z0, ·), we may assume that Γ ≡ 1. Moreover, we can choose a pair (K, β)

as in Lemma 3.4.21 such that equation (3.4.7) holds. For the conclusion we

only need to check that χψ = χρ for ψ(x) = µFc(K)−1/21K(x)β(x, 2−1x),

x ∈ Fc. First, we recall that χρ(x, γ) = 1H(x, γ) = 1K(x)1Hx(γ), (x, γ) ∈ Gc.

Moreover, there is γx ∈ F̂c such that Hx = γx + K⊥ for each x ∈ K as in

the proof of Lemma 3.4.21. Recall also that β(x, y) = γx(y) with the above
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choice. Now we observe that

χψ(x, γ) =

�
Fc

γ(y − 2−1x)ψ(y − x)ψ(y)dµFc(y)

=

�
K

γ(y − 2−1x)µFc(K)−11K(y − x)β(x, y − 2−1x)dµFc(y)

= 1K(x)

�
K

γ(y)µFc(K)−1β(x, y)dµFc(y)

= 1K(x)

�
K

γ(y)µFc(K)−1γx(y)dµFc(y)

= 1K(x)1γx+K⊥(γ|K),

which lead to the desired conclusion.

We also get the converse by following the above calculation process back-

wards, again combined with Lemma 3.4.21.

It is well-known that in bosonic systems, every Gaussian state belongs to

the norm-closed convex hull of pure Gaussian states ([Ser17, Problem 5.10]).

The same phenomenon occurs in our setting.

Lemma 3.4.22. Let H be a compact open 2-regular isotropic subgroup of

Gc. The map Ĝc ∋ γ 7→ ρH,γ ∈ S1(L2(Fc)) is norm continuous.

Proof. Take a net (γi) converging to γ ∈ Ĝc, meaning uniform conver-

gence on compact sets. Since H is a compact open subgroup, it follows that

γi1H → γ1H in L2(Gc). Thus, by continuity of the twisted Fourier transform

(Theorem 3.2.3)

ρH,γi = Fσ
G(γi1H) → Fσ

G(γ1H) = ρH,γ

in S2(L2(Fc)). Since ρ2H,γi = µGc(H)ρH,γi (Proposition 3.4.4) we have
√
ρH,γi =

µGc(H)−1/2ρH,γi . Similarly,
√
ρH,γ = µGc(H)−1/2ρH,γ. Hence,

∥∥√ρH,γi −√
ρH,γ

∥∥
2

= µGc(H)−1/2 ∥ρH,γi − ρH,γ∥2 → 0
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in S2(L2(Fc)). Furthermore, isotropy of H implies ρH,γiρH,γ = ρH,γρH,γi and

∥ρH,γi − ρH,γ∥1 ≤
∥∥√ρH,γi −√

ρH,γ
∥∥
2

∥∥√ρH,γi +
√
ρH,γ

∥∥
2
→ 0.

Theorem 3.4.23. Every B-Gaussian state in S1(L2(F )) belongs to the norm

closed convex hull of pure B-Gaussian states.

Proof. Thanks to the decomposition ρn ⊗ ρc we can focus on the case of the

state ρc = ρH,γ for some compact open 2-regular isotropic subgroup H of Gc

and a character γ ∈ Ĥ. Pick a maximal isotropic subgroup K containing H

(by Zorn’s lemma, if needed). Since H⊥ is a compact open subgroup of Ĝc

and the map γ′ 7→ ρK,γγ′ is continuous by Lemma 3.4.22, the following state

is well defined.

ρ =
1

µĜc
(H⊥)

�
H⊥

ρK,γγ′dµĜc
(γ′).

We only need to check that χρH,γ
= χρ for the desired conclusion by Propo-

sition 3.4.18. Indeed, for z ∈ Gc we have

χρ(z) = Tr

(
W1/2(z)∗

(
1

µĜc
(H⊥)

�
H⊥

ρK,γγ′dµĜc
(γ′)

))
=

1

µĜc
(H⊥)

�
H⊥

Tr(W1/2(z)∗ρK,γγ′)dµĜc
(γ′)

=
1

µĜc
(H⊥)

�
H⊥

γ(z)γ′(z)1K(z)dµĜc
(γ′)

=
γ(z)1K(z)

µĜc
(H⊥)

�
H⊥

γ′(z)dµĜc
(γ′)

= γ(z)1K(z)1H⊥⊥(z) = γ(z)1K∩H(z)

= γ(z)1H(z) = χρH,γ
(z).
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3.5 Angle-number systems

In this section we show that B-gaussian states in the angle-number system

in d-modes are nothing but the pure states whose wave functions are the

elements of the canonical orthonormal basis {|m⟩ = |em⟩ : m ∈ Zd} ⊆ H =

L2(Td) ∼= ℓ2(Zd), where em(θ) = e2πi⟨θ,m⟩, θ ∈ Td. Recall that the associated

Weyl representation W1/2 is

W1/2(θ, n) := eπi⟨θ,n⟩TθMn, (θ, n) ∈ Td × Zd.

See Section 3.1.2 for details.

The first step of the proof is to determine the characteristic functions for

rank-1 operators acting on H.

Lemma 3.5.1. For a, b ∈ Zd we have

χ|a⟩⟨b|(θ, n) = δa−b,n e
πi⟨θ,a+b⟩, (θ, n) ∈ Td × Zd. (3.5.1)

Proof. It is straightforward from the computation

χ|a⟩⟨b|(θ, n) = ⟨b|W1/2(−θ,−n)|a⟩

=

�
Td

e−2πi⟨θ′,b⟩eπi⟨θ,n⟩e2πi⟨(θ
′+θ),a−n⟩ dθ′

= eπi⟨θ,2a−n⟩
�
Td

e2πi⟨θ
′,a−b−n⟩ dθ′ = δa−b,ne

πi⟨θ,a+b⟩.

We again remark that the formula (3.5.1) is only valid for our identifica-

tion θ ∈
[
−1

2
, 1
2

)d
through (3.1.11).

Theorem 3.5.2. The set of all B-Gaussian states for the angle-number sys-

tem in d-modes is the set of all pure states of the form |m⟩⟨m| for some

m ∈ Zd.

Proof. Let ρ be a B-Gaussian state with the (open) support H of χρ. Since H

is an open subgroup of G = Td×Zd we know that H = Td×K for a subgroup
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K of Zd. It is easy to check that the Haar measure µ on G respecting the

twisted Plancherel formula (3.2.2) is given by

�
G

f dµ =
∑
n∈Zd

�
Td

f(θ, n)dθ, f ∈ Cc(G).

Then, by (3.2.2) and Lemma 3.5.1, we have

⟨a|ρ|b⟩ = Tr(ρ(|a⟩⟨b|)∗) =
∑
n∈Zd

�
Td

χρ(θ, n)χ|a⟩⟨b|(θ, n) dθ

=
∑
n∈K

�
Td

δa−b,nχρ(θ, n)e−πi⟨θ,a+b⟩ dθ

=

�
Td

1K(a− b)χρ(θ, a− b)e−πi⟨θ,a+b⟩ dθ

for a, b ∈ Zd. In particular,

⟨a|ρ|a⟩ =

�
Td

χρ(θ, 0)e−2πi⟨θ,a⟩ dθ = χ̂ρ(·, 0)(a), a ∈ Zd.

On the other hand, the B-Gaussianity of ρ again implies that g(·) := χρ(·, 0) is

positive definite and satisfies the B-Gaussian identity (3.3.3) on Td. Thus, g is

the Fourier transform of a B-Gaussian distribution on Zd ∼= T̂d by Bochner’s

theorem. Furthermore, we note that Zd contains no subgroup homeomor-

phic to T2 and g is nowhere vanishing. Then, Proposition 3.3.3(2) tells

us that g is the Fourier transform of a Gaussian distribution. If we write

g(θ) = e2πi⟨θ,m⟩ exp(−φ(θ)) for some m ∈ Zd and continuous φ : Td → [0,∞)

satisfying (3.3.2), then compactness of Td and Remark 3.3.2(2) says that

φ ≡ 0 since Hom(Td,R) = {0}. Consequently, we have ⟨a|ρ|a⟩ = ĝ(a) = δm,a.

The above computation means that the diagonal part of the operator

ρ (as an infinite matrix) is zero except one point. Thus, we can conclude

that off-diagonal parts of the positive operator ρ must be zero. This forces

ρ = |m⟩⟨m|.
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Recalling the fact that the Fourier transform of a Gaussian distribution

has full support we get the following conclusion.

Corollary 3.5.3. There is no Gaussian state for the angle-number system

in d-modes.

Remark 3.5.4. The above characterization is consistent with the results

about characterizing pure states with non-negative Wigner functions on the

angle-number system in 1-mode [RSSK+10].

3.6 Fermions and hard-core bosons

In this section we show that there are no B-Gaussian states in the fermionic

and hard-core bosonic systems, introduced in Section 3.1.3. Although stabi-

lizer states exist and are heavily studied in these qubit systems, in comparison

with our previous results on finite 2-regular groups, this section shows that

qubit stabilizer states do not possess an underlying Gaussian characterization

in the sense of Bernstein.

We begin with a simple description of B-Gaussian distributions on Zm2 .

Proposition 3.6.1. Every B-Gaussian distribution on G = Zm2 is of the

form δa for some a ∈ G, which is a Gaussian distribution on G.

Proof. Let µ be a B-Gaussian distribution on G = Zm2 and let H = supp µ̂.

Then the annihilator H⊥ is trivial (or equivalently, H = G) since it is a

compact Corwin subgroup of G in which all elements have order 2. Thus,

Proposition 3.3.3 (2) tells us that µ is a Gaussian distribution on G. In

particular, µ̂ is a character on Ĝ as the associated quadratic function φ

must vanish, which means that µ is a point-mass at some point on G. Note

finally that it is straightforward to see that every point-mass is a Gaussian

distribution.

Let us first focus on the hard-core boson setting.
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Theorem 3.6.2. For any choice of normalizing factor ξ (3.1.17), there is no

B-Gaussian state on the quantum kinematical system (Zn2 × Zn2 , σ̃can).

Proof. Suppose ρ ∈ D((C2)⊗n) is a B-Gaussian state associated to the (B-

)Gaussian distribution δa, a ∈ Z2n
2 (Proposition 3.6.1). By Equation (3.2.7)

and the non-degeneracy of ∆, there exists z0 ∈ Z2n
2 such that ρ0 := W (z0)

∗ρW (z0)

has a characteristic function

χρ0(w) = ∆(z0, w)δ̂a(w) = (−1)z
T
0 Jw(−1)a

Tw ≡ 1.

However, the twisted Fourier inversion (Proposition 3.2.4) gives that

ρ0 =
1

2n

∑
z∈Z2n

2

W1/2,can(z) =
1

2n

∑
z∈Z2n

2

ξ(z)Wcan(z),

and the RHS must define a state. On the other hand, for z = (x1, . . . , xn, y1, . . . , yn) ∈
Z2n

2 , observe from (3.1.16) that

(id⊗ · · · ⊗ id⊗Tr)Wcan(z) = 2δ0,xnδ0,ynh
x1
1 h

y1
2 · · ·hxn−1

2n−3h
yn−1

2n−2.

By repeating the procedure, we get

(id⊗Tr⊗ · · · ⊗ Tr)Wcan(z) = 2n−1δ0,x2δ0,y2 · · · δ0,xnδ0,ynhx11 h
y2
2 .

Therefore,

(id⊗Tr⊗ · · · ⊗ Tr)ρ0 =
1

2

∑
x1,y1∈Z2

ξ(x1e1, y1e1)h
x1
1 h

y1
2

=
1

2
(I ±X ± Y ± Z)

where e1 = (1, . . . , 0) ∈ Zn2 , from the formulae ξ(e1, 0)2 = ξ(0, e1)
2 = 1 and

ξ(e1, e1)
2 = −1. But it is easy to see that, for any choice of signs, the resulting

operator is not positive, a contradiction.

The same method works for fermionic systems.
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Theorem 3.6.3. For any choice of the normalizing factor ξ (3.1.15), there

is no B-Gaussian state on the quantum kinematical system (Z2n
2 , σ̃fer).

Proof. As in the hardcore boson case it boils down to check the operator

ρ =
1

2n

∑
a∈Z2n

2

ξ(a)Wfer(a)

is not positive. By the same argument in Theorem 3.6.2, we have

(id⊗Tr⊗ · · · ⊗ Tr)Wfer(a) = 2n−1δ0,x3δ0,x4 · · · δ0,x2ncx11 cx22

for a = (x1, . . . , x2n) ∈ Z2n
2 , and therefore,

(id⊗Tr⊗ · · · ⊗ Tr)ρ =
1

2

∑
x1,x2∈Z2

ξ(x1, x2, 0, . . . , 0)cx11 c
x2
2

=
1

2
(I ±X ± Y ± Z),

which is a contradiction as before.

3.7 Hudson’s theorem for 2-regular totally dis-

connected groups

Hudson’s theorem [Hud74] and its higher dimensional generalization [SC83]

show that pure bosonic Gaussian states can be characterized by non-negativity

of their Wigner functions. Gross [Gro06] continued this line of research for

the Weyl system with F = Znd , d(≥ 3) odd, characterizing pure states with

non-negative Wigner functions as the class of stabilizer states, i.e. pure B-

Gaussian states in our terminology. We extend the result of Gross to the

case of totally disconnected groups. Recall that a topological space is totally

disconnected if the only connected sets are singletons. Note that our proof

is inspired by the one of Gross [Gro06], but there are fundamentally new

aspects to accommodate the infinite group setting.
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In this section, F denotes a (second countable) 2-regular totally discon-

nected LCA group, unless otherwise noted.

Proposition 3.7.1. (van Dantzig, [VD36], [HR79, Theorem 7.7]) Every

open neighborhood of the identity of a totally disconnected locally compact

group contains a compact open subgroup.

Since F contains a compact open subgroup, all the facts from Section

3.4.1 are applicable to the kinematical system (G = F × F̂ , σ = σ̃can) with

the corresponding Weyl representation W = W1/2 given by

W (x, γ)ψ(y) = ⟨2−1x, γ⟩⟨y, γ⟩ψ(y − x), ψ ∈ L2(F ), x, y ∈ F, γ ∈ F̂ .

Let us express the Wigner function Wψ of a vector state ψ ∈ L2(F ) using

the self-correlation function as in [Gro06, p.10],

φq(x) := ψ(q + 2−1x)ψ(q − 2−1x), q, x ∈ F.

We first note that

χψ(x, γ) =

�
⟨2−1x, γ⟩⟨y, γ⟩ψ(y − x)ψ(y)dµF (y) = ⟨2−1x, γ⟩ĝxF (γ)

with gx(y) = ψ(y − x)ψ(y), x, y ∈ F, γ ∈ F̂ . On the other hand we have

∆((q, p), (x, γ)) = p(x)γ(q), q, x ∈ F, p, γ ∈ F̂ .

Combining the above we get

Wψ(q, p) =
[
FF ⊗ (FF )−1

]
(χψ)(p, q) = (FFg·(q + 2−1·))(p)

= φ̂q
F (p), q ∈ F, p ∈ F̂ . (3.7.1)

The main theorem of this section is the following.

Theorem 3.7.2 (Hudson’s theorem, 2-regular totally disconnected

version). For a pure state ψ ∈ L2(F ) over the Weyl system (F × F̂ , σ̃can),
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the following are equivalent:

1. ρ = |ψ⟩⟨ψ| is B-Gaussian,

2. ψ is continuous and Wψ ≥ 0 a.e.

The proof for the direction (1) ⇒ (2) is a simple combination of Theorem

3.4.1 and Theorem 3.4.19. Indeed, a B-Gaussian pure state ρ = ρH,Γ associ-

ated to a Lagrangian subgroup H and a character Γ = ∆(z0, ·) has a char-

acteristic function χρ = Γ · 1H . Therefore we have Wψ(z) = 1H(z − z0) ≥ 0.

Moreover, (3.4.6) reveals that ψ is continuous.

The reverse direction (2) ⇒ (1) is the main difficulty. Let us begin with

a lemma which exploits the total disconnectedness of F in a crucial way.

Lemma 3.7.3. If f ∈ L1(F ), f̂ ≥ 0 a.e., and if f is continuous at 0, then

f̂ ∈ L1.

Proof. Proposition 3.7.1 and second countability of F give a sequence {Kn}∞n=1

of compact open subgroups of F decreasing to the trivial subgroup. Now we

claim that 1(Kn)⊥ → 1 pointwise on F̂ as n → ∞. Indeed, if γ ∈ F̂ and

ϵ ∈ (0, 1
2
), then V = {x ∈ F : |⟨x, γ⟩ − 1| < ϵ} is a neighborhood of 0. Choose

N such that KN ⊂ V . Since Kn ⊂ V for n ≥ N , we have

|1(Kn)⊥(γ) − 1| =
∣∣∣µF (Kn)−1 1̂Kn(γ) − 1

∣∣∣
=

∣∣∣∣�
V

(⟨x, γ⟩ − 1)µF (Kn)−1 1Kn(x) dx

∣∣∣∣ < ϵ (< 1/2).

Since |1(Kn)⊥(γ) − 1| is either 0 or 1, we have 1(Kn)⊥(γ) = 1 for all n ≥ N .

Now we apply the monotone convergence theorem and Fubini’s theorem
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together with the above claim to get

�
F̂

f̂(γ)dγ = lim
n→∞

�
F̂

f̂(γ)1(Kn)⊥(γ)dγ

= lim
n→∞

�
F

�
F̂

f(x)1(Kn)⊥(γ)⟨x, γ⟩ dγ dx

= lim
n→∞

µF (Kn)−1

�
F

f(x)1Kn(x)dx

= f(0) <∞.

Note that we used the continuity of f at 0 for the last equality.

We proceed with an analogue of [Gro06, Lemma 11].

Lemma 3.7.4. If ψ ∈ L2(F ) is continuous and Wψ ≥ 0 a.e., then φq is a

positive definite function on F for each q ∈ F . Moreover, we have

|ψ(q)|2 ≥ |ψ(q + x)| |ψ(q − x)|, (3.7.2)

|ψ(2−1(x+ y))|2 ≥ |ψ(x)| |ψ(y)|, (3.7.3)

and

|φq(2−1(x+ y))|2 ≥ |φq(x)| |φq(y)| (3.7.4)

for all q, x, y ∈ F .

Proof. Since ψ is continuous, we know that φq is also continuous for all

q ∈ F . From our assumption and (3.7.1) we have φ̂q
F = Wψ(q, ·) ≥ 0 a.e..

Moreover, we know φq ∈ L1(F ) since ψ(q ± 2−1·) ∈ L2(F ), so we can appeal

to Lemma 3.7.3 to conclude that φ̂q
F is integrable. This implies that φq is

positive definite on F for all q ∈ F from Fourier inversion.

Now, the positivity of the matrix

[
φq(0) φq(2x)

φq(−2x) φq(0)

]
gives

φq(0)2 − φq(2x)φq(−2x) = |ψ(q)|4 − |ψ(q + x)|2|ψ(q − x)|2 ≥ 0, x ∈ F,

which is (3.7.2). It is easy to see that (3.7.2) and (3.7.3) are equivalent thanks
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to 2-regularity and we can apply the latter to get

|φq(2−1(x+ y))|2 = |ψ(q + 2−2(x+ y))|2 × |ψ(q − 2−2(x+ y))|2

≥ |ψ(q + 2−1x)||ψ(q + 2−1y)| × |ψ(q − 2−1x)||ψ(q − 2−1y)|

= |φq(x)| |φq(y)|, q, x, y ∈ F.

The above lemma has an immediate consequence, which will be crucial

for the proof of the main theorem.

Corollary 3.7.5. Suppose ψ ∈ L2(F ) is continuous and non-zero with Wψ ≥
0. The set suppψ is balanced (i.e. x, y ∈ suppψ implies 2−1(x+y) ∈ suppψ)

and contains a coset of a compact open subgroup of F . Moreover, |ψ| is

constant on any such coset.

Proof. The set suppψ is obviously balanced from the inequality (3.7.3). Since

ψ is continuous and not identically zero, suppψ is a nonempty open set and

the second assertion follows by Proposition 3.7.1. For the last statement we

consider a compact open subgroup K of F and x ∈ F with x+K ⊆ suppψ.

The function |ψ| achieves a minimum mx > 0 on x + K, say at xm, by

continuity. However, (3.7.2) implies that

m2
x = |ψ(xm)|2 ≥ |ψ(xm + y)||ψ(xm − y)| ≥ m2

x, y ∈ K,

which forces |ψ(xm + y)| = |ψ(xm − y)| = mx for all y ∈ K. Since xm +K =

x+K, this means that |ψ| ≡ mx on x+K.

The next is the most important step towards the proof of Theorem 3.7.2.

It says that the function |ψ| is constant on its support, which happens to be

a coset of a compact open 2-regular subgroup of F .

Lemma 3.7.6. If ψ ∈ L2(F ) is a continuous state and Wψ ≥ 0, then there
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exist x0 ∈ F and a compact open 2-regular subgroup K of F such that

|ψ| = µF (K)−1/21x0+K (3.7.5)

For the proof of Lemma 3.7.6 we consider the following subsets of F :

Kq :=
{
x ∈ F : |φq(x)| = φq(0) = |ψ(q)|2

}
,

Kϵ
q := {x ∈ F : |φq(x)| ≥ ϵ} ,

Lq := {x ∈ F : |φq(x)| > 0} =
{
x ∈ F : q ± 2−1x ∈ suppψ

}
, (3.7.6)

for continuous ψ ∈ L2(F ) with Wψ ≥ 0, q ∈ F and ϵ > 0. It is obvious that

Kq ⊂ Kϵ
q ⊂ Lq =

⋃
ϵ>0

Kϵ
q

for q ∈ suppψ and 0 < ϵ < |ψ(q)|2. The following lemma shows that the

three sets are actually identical.

Lemma 3.7.7. If q ∈ suppψ for continuous ψ ∈ L2(F ) with Wψ ≥ 0,

then Kq is a 2-regular compact open subgroup of F , and Kq = Kϵ
q = Lq for

0 < ϵ < |ψ(q)|2.

Proof. We first check that Kq is a compact open subgroup. Proposition 2.1.1

says that Kq is a closed subgroup. Since suppψ is an open set containing q

there is a compact open subgroup K such that q+K ⊂ suppψ by Proposition

3.7.1. Then 2K ⊂ Kq by the fact that |ψ| ≡ |ψ(q)| on q+K (Corollary 3.7.5)

and by the definition of φq. Since 2K is open (F being 2-regular), Kq has

nonempty interior, and is therefore clopen. Moreover, as φq ∈ L1(F ), we have

µF (Kq)φq(0) =

�
Kq

|φq(x)|dx ≤ ∥φq∥L1(F ) <∞.

Consequently, µF (Kq) <∞, which means Kq is compact.

Let us move our attention to Kϵ
q , ϵ ∈ (0, |ψ(q)|2), a nonempty closed

subset of F . By Proposition 2.1.1(2), |φq| is constant on the cosets of Kq, so
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that

x+Kq ⊂ Kϵ
q for any x ∈ Kϵ

q . (3.7.7)

Thus, Kϵ
q is a union of cosets of Kq, and in particular, is open. Moreover, we

can observe that Kϵ
q is actually a finite union of cosets of Kq, i.e.

Kϵ
q =

n⋃
i=1

(xi +Kq), xi ∈ Kϵ
q , 1 ≤ i ≤ n. (3.7.8)

Indeed, we have

µF (Kϵ
q) ≤ ϵ−1

�
Kϵ

q

|φq(x)|dx ≤ ϵ−1∥φq∥L1(F ) <∞,

which gives us the observation since cosets are disjoint with the same (non-

zero) Haar measure as Kq.

Now let us show that Kϵ
q is a subgroup of F . The fact that Kϵ

q is closed

under the inversion x 7→ −x comes from |φq(x)| = |φq(−x)|, x ∈ F . In order

to show Kϵ
q is closed under addition, we first observe that Kϵ

q is closed under

the map x 7→ 2−1x by (3.7.4) with y = 0. Thus, it suffices to show that

2Kϵ
q ⊂ Kϵ

q from the identity x+ y = 2−1(2x+ 2y). To this end, we only need

to check that 2xk ∈ Kϵ
q for 1 ≤ k ≤ n. We will focus on the case of x1 for

simplicity. Since Kϵ
q is closed under the map x 7→ 2−1x we get a sequence

{2−jx1}
∞
j=1 in Kϵ

q . From (3.7.8) we can pick 1 ≤ i ≤ n and 0 ≤ j1 < j2 such

that 2−jlx1 ∈ xi + Kq, l = 1, 2. In particular, there exist y1, y2 ∈ Kq such

that 2−jlx1 = xi + yl, l = 1, 2. But then, as j2 ≥ j1 + 1,

2j2−j1x1 = 2j2xi + 2j2y1 = (x1 − 2j2y2) + 2j2y1.

Therefore,

2x1 = 2−(j2−j1−1)(x1 − 2j2(y2 − y1)) ∈ Kϵ
q ,

since x1 − 2j2(y2 − y1) ∈ x1 + Kq ⊂ Kϵ
q and Kϵ

q is closed under the map

x 7→ 2−1x.

So far, we have shown that Kϵ
q is 2-regular compact open subgroup of F .
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Note that we have q + 2−1Kϵ
q = q + Kϵ

q ⊂ suppψ from the definition of Kϵ
q

and φq, which allows us to use Corollary 3.7.5 to get |ψ| ≡ |ψ(q)| on q+Kϵ
q .

Now it follows that Kϵ
q ⊂ Kq, and hence Kϵ

q = Kq.

Finally, Lq =
⋃
ϵ>0K

ϵ
q = Kq.

Now we are ready to go back to the proof of Lemma 3.7.6.

Proof of Lemma 3.7.6. We may assume 0 ∈ suppψ by considering ψ0 =

W (x0, 0)∗ψ = ψ(·+x0) for any chosen x0 ∈ suppψ if necessary. We claim that

suppψ = L0, where L0 is the 2-regular compact open subgroup of F given by

(3.7.6) and Lemma 3.7.7. Once the claim is established, we get the desired

conclusion directly from Corollary 3.7.5 and the condition ∥ψ∥L2(F ) = 1.

For the claim we recall the fact

(∗) y ∈ Lq ⇔ q ± 2−1y ∈ suppψ.

We begin with x ∈ L0, then we have 2x ∈ L0 ⇔ ±x ∈ suppψ by (∗)

with q = 0. This gives us the inclusion L0 ⊂ suppψ. For the converse we

consider x ∈ suppψ. Corollary 3.7.5 says that suppψ is balanced, then we

have 2−1x ∈ suppψ from the assumption 0 ∈ suppψ. Now we apply (∗) with

q = 0 and the fact that L0 is a group to get 2−1x± 2−1x ∈ suppψ, which is

equivalent to x ∈ L2−1x by (∗) with q = 2−1x. Since L2−1x is also a group by

Lemma 3.7.7, we have 2x ∈ L2−1x and therefore −2−1x = 2−1x− x ∈ suppψ

by (∗) with q = 2−1x, which means that x ∈ L0 by (∗) with q = 0.

We finally complete the proof of Theorem 3.7.2.

Proof of Theorem 3.7.2. (2) ⇒ (1): Starting from (3.7.5) of Lemma 3.7.6, we

have

|φq(x)| = µF (K)−11x0+K(q+2−1x)1x0+K(q−2−1x) = µF (K)−11x0+K(q)1K(x),

where we used the 2-regularity of K in the last equality. Moreover, since φq
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is continuous and positive definite on K, Proposition 2.1.1(2) implies that

φq(x) = µF (K)−11x0+K(q)1K(x)γq(x) (3.7.9)

for some γq ∈ K̂. Therefore, we get the Wigner function

Wψ(q, p) = φ̂q
F (p) = 1x0+K(q)1K⊥(p− γ̃q),

where γ̃q ∈ F̂ is any extension of γq. Here, we use the fact that characters

on a closed subgroup can be extended to a character on the whole group

[RS00, Theorem 4.2.14]. Now, by considering ψ0 := W (x0, γ̃0)
∗ψ combined

with (3.2.8), we may assume that x0 = 0 and γ0 ≡ 1.

Going back to (3.7.5) we can write

ψ(x) = µF (K)−1/21K(x)α(x)

for some continuous function α on K with |α| ≡ 1, which gives us

φq(x) = µF (K)−11K(q)1K(x)α(q + 2−1x)α(q − 2−1x), x ∈ F. (3.7.10)

Comparing (3.7.9) and (3.7.10) (under the condition x0 = 0), we have

α(q + 2−1x)α(q − 2−1x) = γq(x), q, x ∈ K. (3.7.11)

However, the condition γ0 ≡ 1 implies that α(2−1x) = α(−2−1x) for all

x ∈ K, which means α is symmetric thanks to 2-regularity of K. Therefore,

γq(x) = α(2−1x+ q)α(2−1x− q)

= γ2−1x(2q) = (γ2−1x(q))
2

=
(
α(2−1(x+ q))α(2−1(x− q))

)2
=
(
α(2−1(q + x))α(2−1(q − x))

)2
= γx(q), q, x ∈ K.
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Consequently, we get a symmetric bicharacter β : K×K → T, (q, x) 7→ γq(x)

introduced in Section 3.4.3. From the condition (3.7.11) we can easily see

that α(x) = β(x, 2−1x), x ∈ K, which is the conclusion we wanted as in

(3.4.6).

Question 3.7.8. Can we further generalize the Hudson theorem over 2-

regular LCA group with compact open subgroups?

Remark 3.7.9. Note that the original Hudson’s theorem [Hud74] and its

higher dimensional generalization [SC83] do not assume the continuity of

the vector state ψ ∈ L2(Rn). It can be deduced form the single assumption

Wψ ≥ 0 a.e..

On the other hand, a corresponding result on the angle-number system

in 1-mode has been proved in [RSSK+10]. A careful inspection of the proof

reveals that an implicit assumption of the continuity of ψ ∈ L2(F ) is made

in [RSSK+10]. It is not clear whether we could remove the continuity of

ψ ∈ L2(F ) from the assumption in both of the cases at the time of this

writing.
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Mapping cone and compact

group symmetry

The notion of mapping cones was introduced by Størmer [Sr86] to study ex-

tension problems of positive linear maps, and later developed in many direc-

tions [SSrZ09, Sko11, Sr12, GKS21, Kye23a]. There are two characteristics of

mapping cones: (1) they contain sufficiently many classes important in QIT,

(2) they can be described via duality in many different ways. In this chapter,

we introduce definitions related to this concept, and we develop a theory of

operators and linear maps under compact group symmetry. In particular, we

show that many dualities between mapping cones carry over into the general

framework of compact group symmetry. This directly leads to two applica-

tions in quantum information theory: (1) the optimization of entanglement

witnesses and Schmidt number witnesses, and (2) the equivalence between

the problem of PPT=separability and the problem of checking whether every

extremal positive map is completely positive or completely copositive under

compact group symmetry.

We refer to Section 2.1.2 for preliminaries on representation of compact

groups and Section 2.2 for basic notions related to quantum entanglement

and positive linear maps.
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4.1 General theory of mapping cones

Let us briefly recall several notions in convex analysis and the theory of

mapping cone. First, Bh(B(HA), B(HB)) is a real vector space equipped with

an inner product

⟨Φ,Ψ⟩ := Tr(C∗
ΦCΨ) = Tr(CΦCΨ). (4.1.1)

For a subset K ⊂ Bh(B(HA), B(HB)), we define the dual cone K◦ of K by

K◦ :=
{

Φ ∈ Bh(B(HA), B(HB)) : ⟨Φ,Ψ⟩ ≥ 0 ∀Ψ ∈ K
}
. (4.1.2)

It is well-known in convex analysis [Roc70] that K◦◦ is the smallest closed con-

vex cone containing K. In particular, K is a closed convex cone if and only if

K◦◦ = K. Moreover, for two closed convex cones K1,K2 ⊂ Bh(B(HA), B(HB)),

we have

(K1 ∨ K2)
◦ = K◦

1 ∧ K◦
2 and (K1 ∧ K2)

◦ = K◦
1 ∨ K◦

2, (4.1.3)

where K1 ∨ K2 := conv(K1 ∪ K2) and K1 ∧ K2 := K1 ∩ K2.

Following [Sr86, Sko11], a closed convex cone K ⊂ POSAB is called a

mapping cone if it is invariant under the compositions by CP maps, i.e.,

CPBB ◦ K ◦ CPAA ⊂ K, (4.1.4)

where K1◦K2 := {Φ ◦ Ψ : Φ ∈ K1, Ψ ∈ K2}. Since the identity maps idA, idB

are CP maps, (4.1.4) is equivalent to CPBB ◦ K ◦ CPAA = K.

There are some important aspects on the study of mapping cones. First,

if K,K1, K2 are mapping cones, then so are

K◦, ⊤B ◦ K, K ◦ ⊤A, K∗ := {L∗ : L ∈ K} , K1 ∨ K2, K1 ∧ K2.
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See [Sko11, GKS21] for proofs. Second, all the classes

POS,POSk, CP ,SPk, EB,PPT ,DEC (4.1.5)

introduced in Section 2.2.2 are mapping cones, and the associated subset

CK := {CL : L ∈ K} of the Choi matrices and the dual cone K◦ are exhibited

in Table 4.1 below.

Table 4.1: Mapping cones, Choi correspondences, and dual cones
K POS POSk CP SPk EB PPT DEC
CK BP BPk P Schk SEP PPT DEC
K◦ EB SPk CP POSk POS DEC PPT

Let us focus more on direct connections between the Choi correspondences

CK and the dual cones K◦. A natural pairing between Hermitian operators

X ∈ Bh(HAB) and Hermitian-preserving linear maps L ∈ Bh(B(HA), B(HB))

is given by

⟨X,L⟩ := Tr(CLX) = ⟨ΩA|(idA⊗L∗)(X)|ΩA⟩. (4.1.6)

Then an extended form of the famous Horodecki criterion for general

mapping cones K ⊆ POSA,B is given as follows with respect to the pairing

in (4.1.6).

Proposition 4.1.1. [GKS21, Proposition 4.1] Suppose that a closed convex

cone K ⊂ Bh(B(HA), B(HB)) satisfies K ◦ CPAA ⊂ K. Then the following

are equivalent for a linear map L ∈ B(B(HA), B(HB)):

1. L ∈ K,

2. (idA⊗L∗)(X) ∈ PAA for every X ∈ CK◦.

3. ⟨X,L⟩ ≥ 0 for every X ∈ CK◦.

Moreover, the following are equivalent for an operator X ∈ B(HA ⊗HB):
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1. X ∈ CK,

2. (idA⊗L∗)(X) ∈ PAA for every L ∈ K◦,

3. ⟨X,L⟩ ≥ 0 for every L ∈ K◦.

Note that Proposition 4.1.1 can be applied for arbitrary mapping cone

K. For example, the Horodecki criterion is for a special case CK = SEP and

K◦ = POS, and it was used to study separability of quantum states [HHH96].

Furthermore, Proposition 4.1.1 has been applied to study quantum states

with an upper bound on the Schmidt numbers [TH00], decomposable maps

[Sr82], k-positive maps [EK00, TH00], and k-superpositive maps [SSrZ09],

etc.

4.2 Group symmetry methods

4.2.1 Compact group symmetry and Twirling opera-

tions

In this section, we introduce two important objects to discuss conservation

of symmetry, namely invariant operators and covariant linear maps. Let us

suppose that G is a compact group throughout this section. Recall from

Section 2.1.2 that for a unitary representation π : G → U(H) of G, we call

X ∈ B(H) π-invariant if

π(x)Xπ(x)∗ = X (4.2.1)

for all x ∈ G, and the set of π-invariant operators in B(H) are denoted by

Inv(π). While invariance can be regarded as a compact group symmetry for

operators, another type of symmetry for linear maps is called covariance.

More precisely, for unitary representations πA : G → B(HA) and πB : G →
B(HB), a linear map L : B(HA) → B(HB) is called (πA, πB)-covariant if

L(πA(x)Y πA(x)∗) = πB(x)L(Y )πB(x)∗ (4.2.2)
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for all x ∈ G and Y ∈ B(HA), and let us denote by Cov(πA, πB) the space

of all (πA, πB)-covariant linear maps.

An averaging technique called the twirling operation is a standard method

to analyze invariant operators and covariant linear maps. First of all, we can

choose the Haar measure µG of G by the probability measure, i.e., µG(G) = 1,

and µG is always unimodular (i.e., left- and right-invariant). Let us simply

write dµG(x) = dx. Then the π-twirling map Tπ : B(H) → Inv(π) is defined

by

Tπ(X) =

�
G

π(x)Xπ(x)∗dx (4.2.3)

for all X ∈ B(H). Note that the integration is well-defined in terms of

Bochner integral since ∥π(x)Xπ(x)∗∥ = ∥X∥ for all x, and the translation-

invariance property of the Haar measure guarantees that Tπ(X) ∈ Inv(π) for

all X ∈ B(H). Moreover, Tπ : B(H) → Inv(π) is unital, ∥Tπ(X)∥ ≤ ∥X∥
for all X ∈ B(H), and X ∈ Inv(π) if and only if Tπ(X) = X (necessity

is clear, and for sufficiency we again use the translation-invariance of the

Haar measure to show that Tπ ◦ Tπ = Tπ). Therefore, Tπ is a projection

(more precisely, a conditional expectation [Tak02, Definition 3.3]) onto the

von Neumann subalgebra Inv(π) of B(H).

For unitary representations πA : G → U(HA) and πB : G → U(HB), the

twirling TπA,πBL of L : B(HA) → B(HB) is defined by

(TπA,πBL)(X) =

�
G

πB(x)∗L(πA(x)XπA(x)∗)πB(x) dx (4.2.4)

for all X ∈ B(HA). Then similarly, the twirling operation TπA,πB is a well-

defined projection from B(B(HA), B(HB)) onto Cov(πA, πB).

Let us collect some useful properties of the twirling operations.

Proposition 4.2.1. For any unitary representations πA and πB of G, the

twirling map TπA⊗πB preserves separability and PPT property of bipartite op-

erators. Furthermore, the twirling operation TπA,πB preserves positivity, CP,

TP, CCP, PPT, decomposability, and EB property of linear maps.
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Proof. It is straightforward from the definitions and closedness of the spaces

associated with each of the properties mentioned above. For example, the

set of all decomposable linear maps L : B(HA) → B(HB) is closed in

B(B(HA), B(HB)) with respect to the natural (Euclidean) topology.

For a linear map L : B(HA) → B(HB), the adjoint map L∗ : B(HB) →
B(HA) of L is a linear map satisfying

Tr(L(X)Y ) = Tr(X L∗(Y )) (4.2.5)

for allX ∈ B(HA) and Y ∈ B(HB). Recall that the adjoint operation L 7→ L∗

preserves positivity, CP, CCP, PPT, and decomposability.

Proposition 4.2.2. Let π : G → U(H), πA : G → U(HA) and πB : G →
U(HB) be unitary representations of G. Then we have the following.

1. Tr((TπX)Y ) = Tr(X(TπY )) for any X, Y ∈ B(H).

2. TπA⊗πB ◦ (⊤A ⊗ idB) = (⊤A ⊗ idB) ◦ TπA⊗πB where ⊤A is the transpose

on B(HA).

3. (TπA,πBL)∗ = TπB ,πA(L∗) for any linear map L : B(HA) → B(HB).

4. The Choi matrix of TπA,πBL is given by TπA⊗πB (CL) for any linear map

L : B(HA) → B(HB).

Proof. (1) Since the Haar measure on the compact group G is invariant under

the inverse x 7→ x−1, we have

Tr((TπX)Y ) =

�
G

Tr(π(x)Xπ(x−1)Y )dx (4.2.6)

= Tr

(
X

�
G

π(x−1)Y π(x)dx

)
(4.2.7)

= Tr

(
X

�
G

π(x)Y π(x−1)dx

)
= Tr(X(TπY )) (4.2.8)

for any X, Y ∈ B(H).
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(2) It suffices to show the equality for product operators X = P ⊗Q, and

the conclusion follows immediately from the observation

πA(x)P TπA(x)∗ =
(
πA(x)PπA(x)T

)T
. (4.2.9)

(3) For any X ∈ B(HA) and Y ∈ B(HB), we have

Tr(X (TπB ,πAL∗) (Y )) (4.2.10)

=

�
G

Tr(XπA(x)∗L∗(πB(x)Y πB(x)∗)πA(x))dx (4.2.11)

=

�
G

Tr(πB(x)∗L(πA(x)XπA(x)∗)πB(x)Y )dx (4.2.12)

= Tr((TπA,πBL) (X)Y ), (4.2.13)

which gives us the desired conclusion.

(4) First of all, note that

dA∑
i,j=1

(πA(x)eijπA(x)T ) ⊗ (πB(x)L(eij)πB(x)∗) (4.2.14)

=

dA∑
i,j=1

eij ⊗ (πB(x)L(πA(x)∗eijπA(x))πB(x)∗). (4.2.15)

for each x ∈ G. Indeed, the LHS (4.2.14) can be understood as

dA(idA⊗(AdπB(x) ◦ L))
(

(πA(x) ⊗ idA)|ΩA⟩⟨ΩA|(πA(x)T ⊗ idA)
)
, (4.2.16)

and the RHS (4.2.15) can be understood as

dA(idA⊗(AdπB(x) ◦ L)) ((idA⊗πA(x)∗)|ΩA⟩⟨ΩA|(idA⊗πA(x))) (4.2.17)

where AdV (Y ) = V Y V ∗. Moreover, the so-called ricochet property

(X ⊗ idA)|ΩA⟩ = (idA⊗XT )|ΩA⟩, X ∈ B(HA), (4.2.18)
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implies (4.2.16) = (4.2.17). Finally, taking the Haar integral on both sides

completes the proof.

Combining Proposition 4.2.2 (2), (3), and (4) with the fact that both

Inv(πA⊗ πB) and Cov(πA, πB) are the images of the twirling projections, we

obtain the following useful properties.

Corollary 4.2.3. Let X ∈ B(HA ⊗ HB) be a bipartite operator and L :

B(HA) → B(HB) be a linear map. Then

1. X ∈ Inv(πA ⊗ πB) if and only if (⊤A ⊗ id)(X) ∈ Inv(πA ⊗ πB).

2. L ∈ Cov(πA, πB) if and only if L∗ ∈ Cov(πB, πA).

3. L ∈ Cov(πA, πB) if and only if CL ∈ Inv(πA ⊗ πB).

Remark 4.2.4. The results in Corollary 4.2.3 have been noted in various

contexts, [EW01, Lemma 6], [GBW21, Lemma 11], and [LY22, Proposition

5.1, Theorem 3.5] for examples. Moreover, extendibility to more general con-

texts of compact quantum group symmetry was proved in [LY22].

We can even write an explicit formula of Tπ when π ∼=
⊕l

i=1 σi ⊗ Imi

is a finite-dimensional unitary representation as before, so that the relation

(2.1.6) holds. Indeed, we can further show that Tπ is trace-preserving (TP).

Note that for any finite-dimensional von Neumann subalgebra M of Md,

there is a unique TP conditional expectation of Md onto M [BO08, Lemma

1.5.11]. For example, the map X ∈ Mn ⊗ Mm 7→ 1
n
(In ⊗ Trn)(X) is the

unique TP conditional expectation onto M = In ⊗ Mm. This observation

allows us to get the following explicit formula of the twirling map Tπ for the

case M = Inv(π).

Proposition 4.2.5. In (2.1.6), let Πi be the orthogonal projection from H

onto Hi
∼= Cni ⊗ Cmi. Then the twirling Tπ(X) of X ∈ B(H) is given by

Tπ(X) =
l⊕

i=1

1

ni
Ini

⊗ Trni
(ΠiXΠi). (4.2.19)
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In particular, if the irreducible decomposition of π is multiplicity-free, i.e., if

mi ≡ 1 for all i = 1, 2, · · · , l, then

Tπ(X) =
l∑

i=1

Tr(ΠiX)

ni
Πi. (4.2.20)

4.2.2 Duality between mapping cones under compact

group symmetry

From now on, we describe how the duality results between mapping cones can

be naturally carried over into our framework of compact group symmetry.

Lemma 4.2.6. Let πA, πB be two unitary representations of G. For two linear

maps Φ,Ψ ∈ B(B(HA), B(HB)), we have

⟨TπA,πBΦ,Ψ⟩ = ⟨Φ, TπA,πBΨ⟩. (4.2.21)

Moreover, for an operator X ∈ B(HA⊗HB) and a linear map L ∈ B(B(HA), B(HB)),

we have

⟨TπA⊗πBX,L⟩ = ⟨X, TπA,πBL⟩. (4.2.22)

Proof. Both two assertions follow from Proposition 4.2.2. More precisely, we

have

⟨TπA,πBΦ,Ψ⟩ = Tr((C(TπA,πB
Φ))

∗CΨ) = Tr((TπA⊗πBCΦ)∗CΨ)

= Tr(C∗
ΦTπA⊗πBCΨ) = Tr(C∗

ΦC(TπA,πB
Ψ)) = ⟨Φ, TπA,πBΨ⟩

which yields (4.2.21). The proof of (4.2.22) is similar.

Let us use the following notations

Inv(π)S := Inv(π) ∩ S,

Cov(πA, πB)K := Cov(πA, πB) ∩ K.
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for any subsets S ⊂ B(H) and K ⊂ B(B(HA), B(HB)). For example, the

subset Inv(π)D = Inv(π) ∩ D(H) is the set of π-invariant quantum states.

Recall that positivity, complete positivity, and EB property are preserved

under twirling operation L 7→ TπA,πBL [PJPY23, Proposition 2.1]. This leads

us to the question of which class K of linear maps is invariant under the

twirling operation, i.e., TπA,πBK ⊂ K. The following Proposition 4.2.7 implies

that this property holds whenever K is a mapping cone.

Proposition 4.2.7. For a closed convex cone K ∈ Bh(B(HA), B(HB)), the

following are equivalent:

1. TπA,πBK ⊂ K,

2. TπA,πB(K◦) ⊂ K◦,

3. TπB ,πA(K∗) ⊂ K∗,

4. TπA⊗πBCK ⊂ CK.

In this case, we have Inv(πA ⊗ πB)CK = TπA⊗πBCK and Cov(πA, πB)K =

TπA,πBK. Moreover, the above conditions hold if CPBB ◦ K ◦ CPAA ⊂ K.

Proof. The equivalence (1) ⇔ (3) ⇔ (4) is a direct result of Proposition

4.2.2. For (1) ⇒ (2), observe that for Φ ∈ K◦ and Ψ ∈ K,

⟨TπA,πBΦ,Ψ⟩ = ⟨Φ, TπA,πBΨ⟩ ≥ 0

under the assumption TπA,πBK ⊂ K. The other direction (2) ⇒ (1) follows

from (1) ⇒ (2) since K◦◦ = K.

The second statement is also clear from the properties TπA⊗πB ◦TπA⊗πB =

TπA⊗πB and TπA,πB ◦ TπA,πB = TπA,πB . For the last assertion, it is enough to

note that the twirling operations preserve positivity of linear maps, and that

TπA,πBΦ is approximated by the convex combination of AdπB(x)∗◦Φ◦AdπA(x) ∈
K for x ∈ G.
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Recall that K and CK◦ determines each other via the generalized Horodecki

criterion (Proposition 4.1.1). One of our main results in this section is to es-

tablish an analogous result for Cov(πA, πB)K and Inv(πA⊗πB)CK◦ as follows.

Theorem 4.2.8. Suppose that a closed convex cone K ⊂ Bh(B(HA), B(HB))

satisfies CPBB ◦ K ◦ CPAA ⊂ K. Then the following are equivalent for a

(πA, πB)-covariant linear map L:

1. L ∈ Cov(πA, πB)K,

2. (idA⊗L∗)(X) ∈ PAA for every X ∈ Inv(πA ⊗ πB)CK◦ ,

3. ⟨X,L⟩ ≥ 0 for every X ∈ Inv(πA ⊗ πB)CK◦ .

Moreover, the following are equivalent for a πA ⊗ πB-invariant bipartite

operator X:

1. X ∈ Inv(πA ⊗ πB)CK,

2. (idA⊗L∗)(X) ∈ PAA for every L ∈ Cov(πA, πB)K
◦
,

3. ⟨X,L⟩ ≥ 0 for every L ∈ Cov(πA, πB)K
◦
.

Proof. Let us prove only the first assertion. Then the other one is analogous.

Note that (1) ⇒ (2) follows from Proposition 4.1.1 and (2) ⇒ (3) is clear

from the relation (4.1.6), so it suffices to prove the direction (3) ⇒ (1). Since

L ∈ Cov(πA, πB), we have

⟨X,L⟩ = ⟨X, TπA,πBL⟩ = ⟨TπA⊗πBX,L⟩

for all X ∈ CK◦ by Lemma 4.2.6. Now TπA⊗πBX ∈ Inv(πA ⊗ πB)CK◦ by

Proposition 4.2.7, so the assumption (3) implies that ⟨X,L⟩ ≥ 0 for all

X ∈ CK◦ . Therefore, Proposition 4.1.1 again implies that L ∈ K.

Note that Cov(πA, πB)K plays as detectors for Inv(πA ⊗ πB)CK◦ via the

pairing, and we can prove that much fewer detectors from Cov(πA, πB)K are
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enough for the test if K is a nonzero mapping cone, i.e., K ⊂ POSAB. Let

us start with a compact convex subset

Cov1(πA, πB)K :=
{

Φ ∈ Cov(πA, πB)K : TrCΦ = 1
}
.

Now Theorem 4.2.8 implies that the only extreme points of Cov1(πA, πB)K
◦

are enough as detectors for Inv(πA ⊗ πB)CK since every compact convex set

in a finite-dimensional space can be written as a convex hull of its extreme

points.

Corollary 4.2.9. If K ⊂ POSAB is a nonzero mapping cone, then the

following are equivalent for X ∈ Inv(πA ⊗ πB):

1. X ∈ Inv(πA ⊗ πB)CK,

2. (idA⊗L∗)(X) ∈ PAA for every L ∈ Ext(Cov1(πA, πB)K
◦
),

3. ⟨X,L⟩ ≥ 0 for every L ∈ Ext(Cov1(πA, πB)K
◦
).

We conclude this section by further examining the structure of the set

Cov1(πA, πB). The following lemma asserts that under certain mild conditions

on πA and πB, we can further reduce Cov1(πA, πB).

Lemma 4.2.10. 1. If πB is irreducible and L ∈ Cov(πA, πB), then L(IA) =

c IB for some constant c. In particular,

Cov1(πA, πB) = {Φ ∈ Cov(πA, πB) : Φ(IA/dA) = IB/dB}

2. If πA is irreducible and L ∈ Cov(πA, πB), then there is a constant c

such that Tr(L(X)) = c Tr(X) for every X ∈ B(HA). In particular,

Cov1(πA, πB) = {Φ ∈ Cov(πA, πB) : Φ is TP}

Proof. 1. From the irreducibility of πB and the identity

πB(x)L(idA)πB(x)∗ = L(πA(x)πA(x)∗) = L(idA), (4.2.23)
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we have L(idA) ∈ Inv(πB) = C · idB.

2. The adjoint map L∗ is (πB, πA)-covariant by Corollary 4.2.3 (2), so

L∗(IdB) = c IdA for some c by (1). In this case, we have

Tr(L(X)) = Tr(L(X) IdB) = Tr(X L∗(IdB)) = cTr(X) (4.2.24)

for any X ∈ B(HA).

For the moment, let us remark that the above lemma allows us to resolve

one technical issue on channel-state duality : the set of quantum channels from

B(HA) into B(HB) is not in general identified with the set D(HA ⊗HB) of

bipartite quantum states via Choi-Jamio lkowski correspondence. However,

when πA is irreducible, then the Choi correspondence gives one-to-one corre-

spondence between the set Cov(πA, πB)CPT P = Cov1(πA, πB)CP of (πA, πB)-

covariant quantum channels and the set Inv(πA⊗ πB)D of πA⊗ πB-invariant

quantum states (as already noted in [GBW21, Lemma 15]). This leads us to

question whether the (reduced) channel-state duality

C̃ : Cov(πA, πB)CPT P → Inv(πA ⊗ πB)D (4.2.25)

is bijective under conditions weaker than the irreducibility of πA. However,

Proposition 4.2.11 shows that this is not possible.

Proposition 4.2.11. Let πA : G→ U(HA) and πB : G→ U(HB) be unitary

representations of G. Then the channel-state duality C̃ in (4.2.25) is bijective

if and only if πA is irreducible.

Proof. Let us prove the if part first. For any ρ ∈ Inv(πA ⊗ πB)D there exists

completely positive L ∈ Cov(πA, πB) such that CL = ρ by Corollary 4.2.3 (3).

Moreover, L should be trace-preserving. Indeed, irreducibility of πA implies

that there exists a constant c such that Tr(L(X)) = cTr(X) for all X ∈
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B(HA) by Lemma 4.2.10 (2), and we have

c =
c

dA

dA∑
i=1

Tr(eii) =
1

dA

dA∑
i=1

Tr(eii ⊗ L(eii)) = Tr(CL) = 1. (4.2.26)

Conversely, if we assume that πA = π
(1)
A ⊕ π

(2)
A with HA = H(1)

A ⊕H(2)
A and if

Π1 is the orthogonal projection from HA onto H(1)
A , then we can take a CP

non-TP map L : B(HA) → B(HB) given by

L(X) =
dA

dB · dimH(1)
A

Tr(Π1X) idB (4.2.27)

whose Choi matrix is

CL =

(
1

dimH(1)
A

Π1

)
⊗
(

1

dB
idB

)
∈ Inv(πA ⊗ πB)D. (4.2.28)

4.3 A framework to characterize entanglement

under group symmetry

In this section, we utilize Theorem 4.2.8 and Corollary 4.2.9 to derive novel

results in the field of quantum entanglement. The first one is the case K =

EBAB, K◦ = POSAB, and CK = SEPAB. Then these results allow us to

optimize entanglement witnesses covariant positive linear maps are enough

to characterize separability of bipartite invariant quantum states. We note

that similar findings have been reported in the literature, albeit with specific

symmetries considered [Kay11, G1̈1, SN21].

Theorem 4.3.1. For two finite-dimensional representations πA : G→ B(HA)

and πB : G → B(HB), let ρ ∈ Inv(πA ⊗ πB)D and accordingly take Φ ∈
Cov1(πA, πB)CP such that CΦ = ρ (Note that Φ becomes a quantum channel

when πA is irreducible, by Lemma 4.2.10). The following are equivalent.
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1. ρ ∈ SEPAB,

2. (idA⊗L)(ρ) ∈ PAA for any L ∈ Cov1(πB, πA)POS ,

3. (idA⊗L)(ρ) ∈ PAA for any L ∈ Ext
(
Cov1(πB, πA)POS),

4. Φ ∈ EBAB,

5. L ◦ Φ ∈ CPAA for any L ∈ Cov1(πB, πA)POS ,

6. L ◦ Φ ∈ CPAA for any L ∈ Ext
(
Cov1(πB, πA)POS).

Next, the case (K,K◦, CK) = (SPk,POSk,Schk) provides a new sys-

tematic way to compute the Schmidt numbers of ρ ∈ Inv(πA ⊗ πB)D using

Ext(Cov1(πA, πB)POSk) as a complete family of Schmidt number witnesses.

Theorem 4.3.2. For a πA ⊗ πB-invariant bipartite quantum state ρ, the

following are equivalent:

1. SN(ρ) ≤ k,

2. (idA⊗L)(ρ) ∈ PAA for every L ∈ Ext(Cov1(πB, πA)POSk),

3. ⟨ΩA|(idA⊗L)(ρ)|ΩA⟩ ≥ 0 for every L ∈ Ext(Cov1(πB, πA)POSk).

The above Theorem 4.3.2 will be applied for concrete applications in

Section 5.2.

From now on, let us focus on the question of whether PPT property

coincides with separability, i.e. problem PPT = SEP for invariant quantum

states.

Proposition 4.3.3. Let L : B(HB) → B(HA) be (πB, πA)-covariant. Then

1. L ∈ POSBA if and only if (idA⊗L)(ρ) ∈ PAA for any separable ρ ∈
Inv(πA ⊗ πB)D.

2. L is decomposable if and only if (idA⊗L)(ρ) ≥ 0 for any PPT ρ ∈
Inv(πA ⊗ πB)D.
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Proof. Clear from Theorem 4.2.8 with the cases K = EB and K = PPT .

Corollary 4.3.4. Let πA : G → U(HA) and πB : G → U(HB) be unitary

representations of G. Then the following are equivalent.

1. PPT = SEP in Inv(πA ⊗ πB)D.

2. PPT = EB in Cov1(πA, πB)CP .

3. POS = DEC in Cov1(πB, πA)POS .

Proof. ((1) =⇒ (3)) If L ∈ Cov(πB, πA)POS , then (idA ⊗ L)(ρ) ≥ 0 for

every separable (hence every PPT) state ρ ∈ Inv(πA ⊗ πB)D. Thus, L is

decomposable by Proposition 4.3.3.

((3) =⇒ (1)) If ρ ∈ Inv(πA⊗ πB)D is a PPT state, then (idA⊗L)(ρ) ≥ 0

for every decomposable (hence every positive) linear map L ∈ Cov(πB, πA).

Thus, ρ is separable by Theorem 4.2.9.

((1) ⇐⇒ (2)) is clear by the Choi-Jamio lkowski correspondence.

Finally, we claim that the decomposability of the extremal elements in

Cov1(πB, πA)POS is much easier to check thanks to the following theorem.

Theorem 4.3.5. Let L ∈ Ext(Cov1(πB, πA)POS). Then L is decomposable if

and only if L is CP or CCP.

Proof. Let us focus only on the case where πA is irreducible since the other

case is analogous. If L is decomposable, then there exist a CP map L1 and

a CCP map L2 such that L = L1 + L2. By taking the twirling operation

TπB ,πA , we have L = L′
1 + L′

2 where L′
i = TπB ,πA(Li) ∈ Cov(πB, πA). Note

that L′
1 is CP and L′

2 is CCP, and we can further write L′
i = λiL′′

i for some

λi ≥ 0, λ1 + λ2 = 1, and L′′
i ∈ Cov1(πB, πA)POS by Lemma 4.2.10 (1). Then

extremality of L allows us to conclude that L = L′′
1 or L = L′′

2, which proves

the assertion. The other direction is immediate.

To summarize, our strategy to study the problems PPT = SEP and

PPT = EB consists of the following three independent steps.
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[Step 1] The first step is to characterize all elements in Cov1(πB, πA)POS for

given specific unitary representations πA and πB. If we take the ad-

joint operation, this step is equivalent to characterize all elements in

CovPosTP(πA, πB).

[Step 2] The next step is to solve the problem POS = DEC in Cov1(πB, πA).

In particular, for a given extremal element L ∈ Ext(Cov1(πB, πA)POS),

L is decomposable if and only if L is CP or CCP. If POS = DEC
holds, then both the problems PPT = SEP in Inv(πA ⊗ πB)D and

PPT = EB in Cov1(πA, πB)CP have the affirmative answer.

[Step 3] If there exists a non-decomposable element L in Cov1(πB, πA)POS , then

the last step is to realize L as a detector for following PPT entangled

objects:

– Φ ∈ Cov1(πA, πB)PPT for which L ◦ Φ /∈ CP ,

– ρ ∈ Inv(πA ⊗ πB)PPT for which (id⊗L)(ρ) /∈ P.
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Applications to quantum

entanglement

5.1 Hyperoctaheral group symmetry and en-

tanglement detection

One of the main applications of the results in Section 4.3 is a complete

characterization of EB property for quantum channels Φ : Md → Md of the

form

Φ(X) = a
Tr(X)

d
Id + bX + cXT + (1 − a− b− c) diag(X). (5.1.1)

The main result of this section is as follows.

Theorem 5.1.1. Let Φ be a quantum channel of the form (5.1.1). Then Φ

is entanglement-breaking if and only if Φ is PPT.

Remark 5.1.2. Note that the quantum channels of the form (5.1.1) under

the condition a+b+c = 1 are called the generalized Werner-Holevo channels,

and their Choi matrices are given by

CΦ =
1 − b− c

d2
Id ⊗ Id + b|Ωd⟩⟨Ωd| +

c

d
Fd, (5.1.2)
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where Fd =
∑d

i,j=1 eij⊗eji is the flip matrix. The subclasses corresponding to

the cases b = 0 or c = 0 are called the Werner states and the isotropic states

respectively, and their separability was studied in [Wer89, HH99, Wat18,

SN21]. Furthermore, it was proved in [VW01] that PPT = SEP holds for

all quantum states of the form (5.1.2).

A starting point for a proof of Theorem 5.1.1 is to observe that any

quantum channel of the form (5.1.1) is covariant with respect to the hyperoc-

tahedral group or signed symmetric group H(d). One of the equivalent ways

to realize the hyperoctahedral group is to define H(d) as a subgroup of the

orthogonal group O(d) generated by permutation matrices and diagonal or-

thogonal matrices. In other words, every element in H(d) is written as an

orthogonal matrix
d∑
i=1

si|σ(i)⟩⟨i| for s1, s2, . . . , sn ∈ {±1} and σ ∈ Sd. We

define Inv(H ⊗ H) and Cov(H,H) with respect to the fundamental repre-

sentation H ∈ H(d) 7→ H ∈ O(d), which is irreducible as proved below.

Lemma 5.1.3. The fundamental representation H ∈ H(d) 7→ H ∈ O(d) is

irreducible.

Proof. The identity

HXHT =
d∑

i,j=1

sisjXij|σ(i)⟩⟨σ(j)| =
d∑

i,j=1

sσ−1(i)sσ−1(j)Xσ−1(i)σ−1(j)|i⟩⟨j|

(5.1.3)

and the invariance property HXHT = X for all H ∈ H(d) tell us that

sσ(i)sσ(j)Xσ(i)σ(j) = Xij (5.1.4)

for all s1, . . . , sd ∈ {±1} and σ ∈ Sd. This implies that Xii ≡ X11 for all

1 ≤ i ≤ d and Xij = 0 for all i ̸= j, i.e., X = X11 Id ∈ C · Id.

Let us denote by W the space of linear maps spanned by the following
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four unital TP maps ψ0, ψ1, ψ2, ψ3 : Md →Md, where
ψ0(X) = Tr(X)

d
Id,

ψ1(X) = X,

ψ2(X) = XT ,

ψ3(X) = diag(X) =
∑d

i=1Xii|i⟩⟨i|.

(5.1.5)

It is straightforward to check ψi ∈ Cov(H,H) for i = 0, . . . , 3, so we have

W ⊆ Cov(H,H). To prove Cov(H,H) = W , let us note the fact that any

L ∈ Cov(H,H) satisfies the so-called diagonal orthogonal covariance (DOC)

property, i.e.

L(ZXZT ) = ZL(X)ZT (5.1.6)

for all X ∈Md and diagonal orthogonal matrices Z. This class of channels has

been analyzed recently in [SN21, SN22, SDN22]. In particular, it is shown

that any DOC map L can be parameterized by a triple (A,B,C) ∈ M3
d

satisfying diag(A) = diag(B) = diag(C) such that

L(X) = diag(A|diagX⟩) + B̃ ⊙X + C̃ ⊙XT , (5.1.7)

where |diagY ⟩ =
∑d

i=1 Yii|i⟩, Ỹ = Y − diag(Y ), and ⊙ denotes the Schur

product (or Hadamard product) between matrices. In this case, let us denote

by L = LA,B,C .

Proposition 5.1.4. The space Cov(H,H) is spanned by the four unital TP

positive maps ψ0, ψ1, ψ2, and ψ3 from (5.1.5).

Proof. We already know W ⊆ Cov(H,H). To show the reverse inclusion, let

us pick an arbitrary L ∈ Cov(H,H). Since L is DOC, there exists (A,B,C) ∈
M3

d such that L = LA,B,C of the form (5.1.7). Note that L further satisfies

L(PσXP
T
σ ) = PσL(X)P T

σ (5.1.8)

for all X ∈ Md and σ ∈ Sd. Here, Pσ =
∑d

i=1 |σ(i)⟩⟨i| is the permutation

matrix associated with σ.
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Let us take X = eij. If i = j, then (5.1.8) implies

d∑
k=1

Akσ(i)|k⟩⟨k| =
d∑

k=1

Aki|σ(k)⟩⟨σ(k)|, (5.1.9)

which means that Aik = Aσ(i)σ(k) for all 1 ≤ i, k ≤ d and σ ∈ Sd. Therefore,

Aii ≡ A11 for all i and Aik ≡ A12 for all i ̸= k. On the other hand, if i ̸= j,

then (5.1.8) becomes

Bσ(i)σ(j)|σ(i)⟩⟨σ(j)| + Cσ(j)σ(i)|σ(j)⟩⟨σ(i)| (5.1.10)

= Bij|σ(i)⟩⟨σ(j)| + Cji|σ(j)⟩⟨σ(i)|, (5.1.11)

which gives Bij ≡ B12 and Cij ≡ C12 for all i ̸= j. Consequently, the formula

(5.1.7) now gives

L = dA12ψ0 +B12ψ1 + C12ψ2 + (A11 − A12 −B12 − C12)ψ3 ∈ W , (5.1.12)

which in turn shows Cov(H,H) ⊆ W .

From now, let us denote (H,H)-covariant unital (and TP) maps by

ψa,b,c = aψ0 + bψ1 + cψ2 + (1 − a− b− c)ψ3 (5.1.13)

for simplicity, where ψ0, . . . , ψ3 are from (5.1.5). By recalling that ψa,b,c can

be understood as a DOC map LA,B,C and that complete positivity of DOC

maps is fully characterized in [SN21, Section 6], we can show that ψa,b,c is

CPTP if and only if 
0 ≤ a ≤ d

d−1
,

a
d
− 1

d−1
≤ b ≤ 1 − d−1

d
a,

−a
d
≤ c ≤ a

d
.

(5.1.14)

Note that the set of (a, b, c) ∈ R3 satisfying (5.1.14) is a tetrahedron depicted

in Figure 5.1.
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Figure 5.1: The region of Cov(H,H)CPT P

In particular, there are exactly four extremal (H,H)-covariant quantum

channels corresponding to the four vertices given by

Ψ1 = ψ1,

Ψ2 = d
d−1

ψ0 + 1
d−1

ψ2 − 2
d−1

ψ3,

Ψ3 = − 1
d−1

ψ1 + d
d−1

ψ3,

Ψ4 = d
d−1

ψ0 − 1
d−1

ψ1,

(5.1.15)

whose Choi matrices are (up to normalization) four mutually orthogonal

projections. On the other hand, it is easy to see that

Td ◦ ψa,b,c = ψa,b,c ◦ Td = ψa,c,b, a, b, c ∈ C. (5.1.16)

Therefore, the set of all PPT quantum channels ψa,b,c is given by

Cov1(H,H)PPT = Cov(H,H)CPT P ∩ Td
(
Cov(H,H)CPT P)

=

{
ψa,b,c :

0 ≤ a ≤ d
d−1

,

max(a
d
− 1

d−1
,−a

d
) ≤ b, c ≤ min(1 − d−1

d
a, a

d
)

}
. (5.1.17)

The convex set Cov1(H,H)PPT can be geometrically understood as the in-
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tersection of two tetrahedrons describing the region of CP and CCP (H,H)-

covariant TP maps (depicted by blue- and red-dotted lines, respectively, in

Figure 2). Moreover, if d ≥ 3, this set has exactly eight vertices (denoted by

v0, . . . v7).

Figure 5.2: The region of Cov1(H,H)PPT

We will now explain why the above polytope is precisely identical to the

set of all entanglement-breaking (H,H)-covariant channels to prove Theorem

5.1.1.

[Step 1+Step 2] We first characterize the set Cov1(H,H)POS in terms

of the parameters a, b, and c. Our strategy is to start with the convex hull Vd
of Cov(H,H)CPT P ∪Td

(
Cov(H,H)CPT P), which is an octahedron with eight

vertices as exhibited in Figure 5.3. Then Vd ⊆ Cov1(H,H)POS is immediate

since any element of Vd is decomposable. The following Theorem 5.1.5 states

that these two convex sets coincide, i.e., Vd = Cov1(H,H)POS .

Theorem 5.1.5. Let d ≥ 3. Then the convex set Cov1(H,H)POS has exactly

8 extreme points

Ψ1, Ψ2, Ψ3, Ψ4, Ψ1 ◦ Td, Ψ2 ◦ Td, Ψ3 ◦ Td, Ψ4 ◦ Td, (5.1.18)

where Ψ1, . . . ,Ψ4 are given by (5.1.15). In particular, all positive (H,H)-
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Figure 5.3: The region of Cov1(H,H)POS

covariant maps are decomposable.

Proof. Since Ψ1, . . . ,Ψ4 are CP and Ψ1 ◦Td, . . . ,Ψ4 ◦Td are CCP, the convex

hull Vd of these 8 maps is obviously contained in Cov1(H,H)POS . To show

the reverse inclusion Cov1(H,H)POS ⊆ Vd, we observe that the set

Vd :=
{

(a, b, c) ∈ R3 : ψa,b,c ∈ Vd
}
⊂ R3 (5.1.19)

is the convex hull of 8 points{
(0, 1, 0) ,

(
d
d−1

, 0, 1
d−1

)
,
(
0,− 1

d−1
, 0
)
,
(

d
d−1

, 0,− 1
d−1

)
,

(0, 0, 1) ,
(

d
d−1

, 1
d−1

, 0
)
,
(
0, 0,− 1

d−1

)
,
(

d
d−1

,− 1
d−1

, 0
)
,

(5.1.20)

which are got from (5.1.15) and (5.1.16). Therefore, Vd can be understood as

the region of (a, b, c) ∈ R3 satisfying the following inequalities:

(1) 0 ≤ a ≤ d
d−1

,

(2) d−2
d
a+ b+ c ≤ 1,

(3) d−2
d
a+ |b− c| ≤ 1,

(4) b+ c ≥ − 1
d−1

,

(5) b− (d− 1) c ≤ 1,

(6) c− (d− 1) b ≤ 1.

(5.1.21)
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Now if ψa,b,c /∈ Vd (which is equivalent to (a, b, c) /∈ Vd, and hence violates

at least one of the inequalities (1) - (6) in (5.1.21)), we can choose a unit

vector ξ ∈ Cd such that ψa,b,c(|ξ⟩⟨ξ|) is not positive semidefinite as in Table

5.1. This shows Cov1(H,H)POS ⊆ Vd.

Table 5.1: Non-positivity outside Vd
(a, b, c) violates (1) |ξ⟩ = |1⟩ =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0

(a, b, c) violates (2) |ξ⟩ =
1√
2

(|1⟩ + |2⟩) =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0

(a, b, c) violates (3) |ξ⟩ =
1√
2

(|1⟩ + i|2⟩) =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0

(a, b, c) violates (4) |ξ⟩ =
1√
d

d∑
k=1

|k⟩ =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0

(a, b, c) violates (5) or (6) |ξ⟩ =
1√
d

d∑
k=1

e
2πik
d |k⟩ =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0

Proof of Theorem 5.1.1. The conclusion is straightforward from Propo-

sition 5.1.4, Theorem 5.1.5, and Corollary 4.3.4.

Remark 5.1.6. 1. Note that Theorem 5.1.5 gives a complete character-

ization of all positive linear maps ψ spanned by ψ0, ψ1, ψ2, ψ3. This

strengthens the results in Section 5 of [KMS20] focusing on positive

linear maps spanned only by ψ0, ψ1, ψ3 without ψ2.

2. Theorem 5.1.5 tells us not only POS = DEC, but also explicit de-

compositions of our positive covariant maps into sums of CP and CCP

maps. Note that this was one of the open questions raised in Section

6.c of [KMS20]. We refer to Appendix 5.1.1 for more details.
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5.1.1 Covariant positive maps with respect to mono-

mial unitary groups

In Section 5 and Section 6 of [KMS20], the authors analyzed the general

structure of irreducibly covariant linear maps under some natural symme-

tries of the symmetric group S4 and the monomial unitary group MU(d, n),

and presented new examples of positive irreducibly covariant maps. In this

section, we elaborate on how our Theorem 5.1.5 strengthens their results and

resolves several open questions raised in [KMS20].

On one side, they considered irreducibly (τ3, τ3)-covariant maps, where

τ3 : S4 → U(3) is a 3-dimensional irreducible component of the canonical

representation σ ∈ S4 7→
∑4

k=1 |σ(k)⟩⟨k| ∈ U(4). More precisely, this canon-

ical representation is not irreducible; it allows an invariant 1-dimensional

subspace C · |v⟩ with |v⟩ =
∑d

k=1 |k⟩ and the other 3-dimensional invariant

subspace V = (C·|v⟩)⊥. Then the fundamental representation τ3 : S4 → U(3)

is defined by τ3(σ) = ΠV σ
∣∣
V
∈ U(3) for all x ∈ S4, where ΠV is the orthogonal

projection from C4 onto V .

The authors characterized all (τ3, τ3)-covariant maps and suggested a suf-

ficient condition for positivity using the the so-called inverse reduction map

criterion [MRS15]. On the other hand, it was shown in [LY22, Section 6.1.1]

that, up to a change of basis, the (τ3, τ3)-covariant maps are precisely the

linear combinations of Ψ1,Ψ2,Ψ3,Ψ4 : M3(C) → M3(C) from (5.1.15) with

d = 3. In other words, we have Cov(τ3, τ3) = Cov(H,H) up to a unitary

equivalence. Thus, Theorem 5.1.5 gives the complete solution to the open

question of the characterization of all positive (τ3, τ3)-covariant maps raised

in [KMS20].

On the other side, recall that the monomial unitary group MU(d) is

a subgroup of U(d) generated by all permutation matrices and all diago-

nal unitary matrices. Moreover, the subgroup MU(d, n) of MU(d) is gen-

erated by all permutation matrices and all diagonal matrices of the form∑d
i=1 ωi|i⟩⟨i| where ωi ∈

{
1, e2πi/n, . . . , e2(n−1)πi/n

}
, In particular, we have

MU(d, 2) = H(d).
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For a closed subgroup G of U(d), we denote by πG : x ∈ G 7→ x ∈ U(d) the

fundamental representation of G, temporarily in this section. It was shown

in [KMS20] that, if n ≥ 3, then

Cov(πMU(d,n), πMU(d,n)) = span {ψ0, ψ1, ψ3} (5.1.22)

where ψ0, ψ1, ψ3 are from (5.1.5). Moreover, the authors characterized all

positive maps in this class and proved that all (πMU(d,n), πMU(d,n))-covariant

positive maps are decomposable for n ≥ 3. However, explicit decomposi-

tions were left as an open question, and the authors conjectured that a non-

decomposable positive map may arise under (πMU(d), πMU(d))-covariance.

Our results in this thesis resolve their open questions in the sense that

(πMU(d), πMU(d))-covariance does not make a difference, but a weaker con-

dition (πMU(d,2), πMU(d,2))-covariance does. Furthermore, their POS = DEC
result in Cov(πMU(d,n), πMU(d,n)) with n ≥ 3 (Section 6.c of [KMS20]) extends

to a more general result POS = DEC in Cov(πMU(d,2), πMU(d,2)) with explicit

decompositions into the sum of CP and CCP maps.

1. More precisely, it is clear that

Cov(πMU(d), πMU(d)) ⊆ Cov(πMU(d,n), πMU(d,n)) = span {ψ0, ψ1, ψ3} ,
(5.1.23)

and all the three maps ψ0, ψ1, and ψ3 are covariant with respect to

general diagonal unitary matrices. Therefore, for n ≥ 3 we have

Cov(πMU(d), πMU(d)) = Cov(πMU(d,n), πMU(d,n)) = span {ψ0, ψ1, ψ3} .
(5.1.24)

Therefore, there is no positive non-decomposable element inside Cov(πMU(d), πMU(d)).

2. On the other hand, since MU(d, 2) = H(d), we have

Cov(πMU(d,2), πMU(d,2)) = Cov(H,H) = span {ψ0, ψ1, ψ2, ψ3} , (5.1.25)

by Proposition 5.1.4. Moreover, POS = DEC in Cov(πMU(d), πMU(d))
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from Section 6.c of [KMS20] is strengthened to POS = DEC in the

larger space Cov(πMU(d,2), πMU(d,2)) with explicit decompositions by

Theorem 5.1.5.

5.2 k-positivity and Schmidt number under

Orthogonal group symmetry

There are very few examples whose k-positivity or Schmidt numbers have

been fully characterized. Even in the following cases

L(d)
a,b(Z) := (1 − a− b)

Tr(Z)

d
Id + aZ + bZ⊤, (5.2.1)

ρ
(d)
a,b :=

1 − a− b

d2
Id ⊗ Id + a|Ωd⟩⟨Ωd| +

b

d
Fd, (5.2.2)

their k-positivity and Schmidt numbers have not been fully characterized.

Here, |Ωd⟩ :=
1√
d

d∑
j=1

|jj⟩ is the maximally entangled state and Fd :=
d∑

i,j=1

|ij⟩⟨ji|

is the flip matrix. Let us write La,b := L(d)
a,b and ρa,b := ρ

(d)
a,b for simplicity. On

the problem of k-positivity, the answers for some special cases La,0, L0,b, and

La,1−a, were obtained from [Tom85], and some other cases were considered

in [TT83]. On the other hand, Schmidt numbers of the isotropic states ρa,0

[HH99] were computed in [TH00], and Schmidt numbers of the Werner states

ρ0,b [Wer89] were also known (see [Kye23b, Theorem 1.7.4] for example). De-

spite the partial answers to the cases of single parameters, the problems of

the general cases La,b and ρa,b remain open. To our best knowledge, our result

is the first example of computations of the Schmidt numbers for non-trivial

two-dimensional families of quantum states in arbitrarily high dimensional

settings.

A crucial observation is that the above quantum objects La,b and ρa,b

are linked via the standard orthogonal group symmetries. Let G be the or-

thogonal group O(d), and let πA(O) = πB(O) = O be the standard repre-

sentation of O(d). In this case, we denote by Cov(O,O) = Cov(πA, πB) and
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Inv(O ⊗ O) = Inv(πA ⊗ πB) for simplicity. Then we have ρa,b = CLa,b
and

Cov1(O,O) = {La,b : a, b ∈ C}, as noted in [VW01, Has18]. Moreover, La,b is

Hermitian-preserving if and only if a, b ∈ R.

In this section, we aim to establish a complete characterization of k-

positivity of La,b and Schmidt number of ρa,b in terms of the parameters

a and b. Then k-block positivity of ρa,b and k-superpositivity of La,b are

immediate through the Choi-Jamio lkowski map.

Our strategy consists of two steps. The first step is to employ some

methodologies from [Tom85] to study k-positivity of La,b ∈ Cov1(O,O) in

a direct way (Theorem 5.2.1), and the second step is to apply Theorem 4.3.2

to compute the Schmidt numbers of all ρa,b ∈ Inv(O⊗O)D accurately (The-

orem 5.2.4).

5.2.1 k-positivity of orthogonally covariant maps

Note that positivity and complete positivity of Lp,q were completely char-

acterized recently in a more general setting, namely the hyperoctahedrally

covariant maps (Section 5.1). This section is devoted to characterizing k-

positivity of all Lp,q ∈ Cov1(O,O), which generalizes the results from [Tom85].

Indeed, for the following convex subsets

Pk :=
{

(p, q) ∈ R2 : Lp,q ∈ POSk
}
, 1 ≤ k ≤ d, (5.2.3)

we prove P1 ⊋ P2 ⊋ · · · ⊋ Pd with explicit geometric and algebraic descrip-

tions. First of all, the geometric structures of the convex subsets Pk can be

categorized into four distinct cases.

1. The region P1 is trapezoid-shaped with vertices (1, 0), (0,− 1
d−1

), (− 1
d−1

, 0),

and (0, 1).

2. If 1 < k ≤ d
2
, the region Pk is quadrilateral-shaped with vertices (1, 0),

(0,− 1
d−1

), (− 1
kd−1

, 0), and (− 1
kd+k−1

, k
kd+k−1

).
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3. If d
2
< k < d, the region Pk is bounded by a piecewise-linear curve

joining (− 2
d2+d−2

, d
d2+d−2

), (1, 0), (0,− 1
d−1

), and (− 1
kd−1

, 0) in that order,

and by a conic (i.e. a quadratic curve) passing through (− 1
kd−1

, 0) and

(− 2
d2+d−2

, d
d2+d−2

).

4. Lastly, the region Pd is a triangle with vertices (1, 0), (0,− 1
d−1

), and

(− 2
d2+d−2

, d
d2+d−2

).

A visualization of the above characterizations for special cases d = 3 and

d = 4 are given in the following Figure 5.4.

Figure 5.4: The regions of k-positive maps L(d)
p,q for d = 3, 4

We now present explicit algebraic descriptions of the regions Pk (equiva-

lently, POSk) in the following theorem.

Theorem 5.2.1. Let Lp,q be a linear map of the form (5.2.1). Then

1. Lp,q ∈ POS if and only if


p− (d− 1)q ≤ 1,

q − (d− 1)q ≤ 1,

− 1
d−1

≤ p+ q ≤ 1.
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2. Lp,q ∈ POSk (1 < k ≤ d
2
) if and only if



p− (d− 1)q ≤ 1,

p+ (d+ 1)q ≤ 1,

(kd− 1)p+ (d− 1)q ≥ −1,

q − (kd− 1)p ≤ 1.

3. Lp,q ∈ POSk (d
2
< k < d) if and only if



p− (d− 1)q ≤ 1,

p+ (d+ 1)q ≤ 1,

(kd− 1)p+ (d− 1)q ≥ −1,

fk(x, y) ≤ 0,

where fk(x, y) is a quadratic polynomial explicitly given by

fk(x, y) =(kd− 1)x2 − (d3 − kd2 − kd− d+ 2)xy + (d− 1)y2

− (kd− 2)x− (d− 2)y − 1. (5.2.4)

4. Lp,q ∈ CP if and only if


p− (d− 1)q ≤ 1,

p+ (d+ 1)q ≤ 1,

(d+ 1)p+ q ≥ − 1
d−1

.

Note that (1) and (4) of Theorem 5.2.1, i.e. positivity and complete posi-

tivity of Lp,q, are straightforward from (5.1.21) and (5.1.14). Thus, our main

focus is to prove (2) and (3) of Theorem 5.2.1. Let us recall a criterion of

k-positivity proposed in [Tom85, Lemma 1].

Proposition 5.2.2. Let 1 ≤ k ≤ d. Then a linear map L : Md → Md is

k-positive if and only if the bipartite matrix

Cv
k(L) :=

k∑
i,j=1

|i⟩⟨j| ⊗ L(|vi⟩⟨vj|) ∈Mk ⊗Md (5.2.5)

is positive semidefinite for any choice of an orthonormal subset {v1, . . . , vk}
of Cd.
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The following lemma plays a crucial role in applying the above Proposition

5.2.2 to prove (2) and (3) of Theorem 5.2.1.

Lemma 5.2.3. For 1 ≤ k ≤ d, we have

min
k∑

j,j′=1

|⟨vj|vj′⟩|2 = max(2k − d, 0), (5.2.6)

where w is the complex conjugation of w ∈ Cd and the minimum is taken

over all orthonormal subsets {v1, . . . , vk} ⊂ Cd.

Proof. If 2k ≤ d, then we can take |vj⟩ = 1√
2
(|2j − 1⟩ + i|2j⟩) (j = 1, . . . , k)

and check ⟨vj|vj′⟩ = 0 for every j, j′, so the equality (5.2.6) holds. From now,

let us focus on the case 2k > d. First, we consider an arbitrary orthonormal

subset {v1, . . . , vk} ⊂ Cd and orthogonal projections Πv =
∑k

j=1 |vj⟩⟨vj| and

Πv =
∑k

j=1 |vj⟩⟨vj|. Then we can observe that

∑
j,j′

|⟨vj|vj′⟩|2 = Tr(ΠvΠv) ≥ dim(Ran(Πv) ∩ Ran(Πv))

and the right hand side is equal to

dim(Ran(Πv)) + dim(Ran(Πv)) − dim(Ran(Πv) + Ran(Πv)).

Thus we have
∑

j,j′ |⟨vj|vj′⟩|2 ≥ 2k− d. On the other hand, let us take a spe-

cific orthonormal subset {v1, v2, · · · , vk} ⊆ Cd where |vj⟩ = 1√
d

∑d
l=1 ω

l(j−1)|l⟩
(j = 1, . . . , k) and ω = exp(2πi

d
). Then we can check that the desired equality∑

j,j′ |⟨vj|vj′⟩|2 = 2k − d holds from the relation

⟨vj|vj′⟩ =
1

d

d∑
l=1

ω−l(j+j′−2) =

1 if j + j′ − 2 ≡ 0 mod d,

0 otherwise.

Proof of Theorem 5.2.1 (2) and (3). For an orthonormal subset {v1, . . . , vk}

108



CHAPTER 5. APPLICATIONS TO QUANTUM ENTANGLEMENT

in Cd, the associated bipartite matrix in (5.2.5) is given by

Cv
k(Lp,q) =

1 − p− q

d
Ik ⊗ Id + pk|Ωv

k⟩⟨Ωv
k| + qF v

k ,

where

|Ωv
k⟩ = 1√

k

∑k
j=1 |j⟩ ⊗ |vj⟩ ∈ Ck ⊗ Cd,

F v
k =

∑k
i,j=1 |i⟩⟨j| ⊗ |vj⟩⟨vi| ∈ Mk ⊗Md.

Moreover, we can write

F v
k = Πv

S − Πv
A, where Πv

S is the projection onto the (symmetric) space

span
{

|i⟩|vj⟩+|j⟩|vi⟩√
2

: 1 ≤ i ≤ j ≤ k
}

and Πv
A is the projection onto the (anti-

symmetric) space span
{

|i⟩|vj⟩−|j⟩|vi⟩√
2

: 1 ≤ i < j ≤ k
}

. Note that Ran(Πv
S) ⊥

Ran(Πv
A), and |Ωv

k⟩ ⊥ Ran(Πv
A) since〈

Ωv
k

∣∣∣∣∣ei ⊗ vj − ej ⊗ vi√
2

〉
=

1√
2k

(⟨vi|vj⟩ − ⟨vj|vi⟩) = 0,

for all 1 ≤ i < j ≤ k. Therefore, after rewriting

Cv
k(Lp,q) = (A(Ikd − Πv

A) + pk|Ωv
k⟩⟨Ωv

k| + qΠv
S) ⊕ (A− q) Πv

A

with A := 1−p−q
d

for an orthogonal decomposition, the desired condition

Cv
k(Lp,q) ∈ Pkd is equivalent to A− q ≥ 0 and

A(Ikd − Πv
A) + pk|Ωv

k⟩⟨Ωv
k| + qΠv

S ∈ P (5.2.7)

(the condition k ≥ 2 ensures that Πv
A is nonzero).

A technical difficulty on (5.2.7) is that |Ωv
k⟩⟨Ωv

k| and Πv
S are not simulta-

neously diagonalizable since

|Ωv
k⟩⟨Ωv

k| · Πv
S ̸= Πv

S · |Ωv
k⟩⟨Ωv

k|

in general unless {vi}ki=1 ⊂ Rd. To overcome this, let us take |ξ1⟩ = Πv
S |Ωv

k⟩ ∈
Ran(Πv

S) and consider |Ωv
k⟩ = |ξ1⟩ + |ξ2⟩. Then

ξ2 ⊥ (Ran(Πv
S) ∪ Ran(Πv

A)).
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Moreover, we have the following block matrix decomposition

A(Ikd − Πv
A) + pk|Ωv

k⟩⟨Ωv
k| + qΠv

S

∼=
(
(A+ q)Πv

S + pk|ξ1⟩⟨ξ1| pk|ξ1⟩⟨ξ2|
pk|ξ2⟩⟨ξ1| A(I −Πv

S −Πv
A) + pk|ξ2⟩⟨ξ2|

)
. (5.2.8)

An important fact to note on (5.2.8) is that rank(Πv
S) = k(k+1)

2
≥ 2 and

rank(I − Πv
S − Πv

A) = d2 − k2 ≥ 2 since 1 < k < d. Therefore, the block

matrix in (5.2.8) is positive semidefinite if and only if

(a) A+ q ≥ 0,

(b) A ≥ 0,

(c) A+ q + pk∥ξ1∥2 ≥ 0,

(d) A+ pk∥ξ2∥2 ≥ 0,

(e) (A+ q + pk∥ξ1∥2) (A+ pk∥ξ2∥2) ≥ (pk)2∥ξ1∥2∥ξ2∥2.

(5.2.9)

Since ∥ξ1∥2+∥ξ2∥2 = ∥Ωv
k∥2 = 1, the conditions (d) and (e) can be understood

as (d′) A+ pk − pk∥ξ1∥2 ≥ 0,

(e′) (A+ q)(A+ pk) − pkq∥ξ1∥2 ≥ 0.
(5.2.10)

Note that the first two conditions (a) and (b) are independent of the choices

of an orthonormal subset {vi}ki=1 ⊂ Cd, and that the other inequalities in

(c), (d′) and (e′) are linear in ∥ξ1∥2. Since the inequalities in (c), (d′) and (e′)

should hold for all possible choices of {vi}ki=1 ⊆ Cd, it suffices to calculate

the maximum and minimum values of ∥ξ1∥2.
Recall that |Ωv

k⟩ = |ξ1⟩ ∈ Ran(Πv
S) whenever {vi}ki=1 ⊂ Rd (choose |vi⟩ =

|i⟩ for example), so the maximum of ∥ξ1∥2 is 1. For the minimum of ∥ξ1∥2,
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the following expression of ∥ξ1∥2 in terms of v1, v2, · · · , vk

∥ξ1∥2 = ⟨Ωv
k|Πv

S |Ωv
k⟩

= ⟨Ωv
k|F v

k |Ωv
k⟩ (∵ |Ωv

k⟩ ⊥ Ran(Πv
A))

=
1

k

∑
j,j′

⟨vj|vj′⟩ · ⟨vj′ |vj⟩ =
1

k

∑
j,j′

|⟨vj|vj′⟩|2.

allows us to apply Lemma 5.2.3 to conclude that min ∥ξ1∥2 = max(2k−d,0)
k

.

To summarize, Lp,q ∈ POSk if and only if the six inequalities (a), (b),

(c), (d′), (e′), and A − q ≥ 0 hold for ∥ξ1∥2 ∈
{

1,m := max(2k−d,0)
k

}
and

A = 1−p−q
d

. For the cases 1 < k ≤ d/2, we have m = 0 and obtain the

inequalities in (2). Also, for the cases d/2 < k < d, we have m = 2k−d
k

and

obtain the inequalities in (3). In particular, the inequality fk(x, y) ≤ 0 is

coming from (e′) with ∥ξ1∥2 = 2k−d
k

.

5.2.2 Schmidt numbers of orthogonally invariant quan-

tum states

Now we are almost ready to compute the Schmidt numbers of all quantum

states of the form

ρa,b :=
1 − a− b

d2
Id ⊗ Id + a|Ωd⟩⟨Ωd| +

b

d
Fd (5.2.11)

Let us denote by Sk := {(a, b) ∈ R2 : ρa,b ∈ Schk}. The main aim of this

Section is to prove S1 ⊊ S2 ⊊ · · · ⊊ Sd with both geometric and algebraic

descriptions. Our strategy is to combine Theorem 4.3.2 and the explicit de-

scriptions of Pk = {(p, q) ∈ R2 : Lp,q ∈ POSk} (Theorem 5.2.1).
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First of all, Theorem 4.3.2 implies that we have

SN(ρa,b) ≤ k

⇐⇒ ⟨Ωd|(idd⊗Lp,q)(ρa,b)|Ωd⟩ ≥ 0 for all (p, q) ∈ Ext(Pk)

⇐⇒
(
p q

)(d+ 1 1

1 d+ 1

)(
a

b

)
≥ − 1

d− 1
for all (p, q) ∈ Ext(Pk).

(5.2.12)

Let us denote by

Hp,q =
{

(x, y) ∈ R2 : px+ qy ≤ 1
}

(5.2.13)

for all (p, q) ∈ R2 \ {(0, 0)}, and by α : R2 → R2 a linear isomorphism given

by

α :

(
x

y

)
7→ −(d− 1)

(
d+ 1 1

1 d+ 1

)(
x

y

)
. (5.2.14)

Then we have the following identity:

Sk =
⋂

(p,q)∈Ext(Pk)

Hα(p,q). (5.2.15)

This is where a detailed geometric analysis of Pk (Theorem 5.2.1) mani-

fests its efficacy. Indeed, Theorem 5.2.1 states that the geometric structures

of Pk are categorized into four distinct cases


(1) k = 1

(2) 1 < k ≤ d
2

(3) d
2
< k < d

(4) k = d

. Further-

more, for the three cases (1), (2), (4), the associated regions Pk are compact

convex sets with at most four extreme points. Thus, it is enough to use at

most four Schmidt number witnesses Lp,q to determine Sk by Theorem 4.3.2

and (5.2.15), and the consequence is that Sk is an intersection of at most four

closed half-planes for the three cases (1), (2), (4). All our discussions above

are summarized into the following theorem.
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Theorem 5.2.4. Let ρa,b be a bipartite matrix of the form (5.2.2) and 1 ≤
k ≤ d. Then we have

Sk =
⋂

(p,q)∈Ext(Pk)

Hα(p,q)

where α and Hp,q are from (5.2.13) and (5.2.14). Moreover, we have the

following algebraic descriptions for the three cases


(1) k = 1,

(2) 1 < k ≤ d
2
,

(4) k = d.

1. ρa,b ∈ SEP if and only if

− 1
d−1

≤ (d+ 1)a+ b ≤ 1,

− 1
d−1

≤ a+ (d+ 1)b ≤ 1.

2. ρa,b ∈ Schk (1 < k ≤ d
2
) if and only if


− 1
d−1

≤ (d+ 1)a+ b ≤ kd−1
d−1

,

a+ (d+ 1)b ≤ 1,

− d−k+1
kd+k−1

a+ b ≥ − 1
d−1

.

4. ρa,b ∈ Schd = P if and only if


a− (d− 1)b ≤ 1,

a+ (d+ 1)b ≤ 1,

(d+ 1)a+ b ≥ − 1
d−1

.

We should remark that the remaining case (3) is quite different from the

other cases since there are infinitely many extreme points in Pk. In this case,

we will utilize some elementary geometric tools from projective geometry to

overcome the technical issue. Indeed, we need a quadratic curve to describe

Sk for the cases d
2
< k < d. This excluded case (3) will be discussed with

details independently in Subsection 5.2.2.

Although we postpone the proof of the remaining case d
2
< k < d to

Subsection 5.2.2, let us exhibit a visualized geometric structures of S1, S2,

· · · , Sd in the following Figure 5.5, particularly for the cases d = 3 and d = 4.

As in the case of k-positivity of Lp,q, the geometric structures of the

convex subsets Sk can be categorized into the following four distinct cases.
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Figure 5.5: Regions of ρ
(d)
a,b of the Schmidt number k for d = 3, 4

1. The region S1 is rhombus-shaped with vertices (− 2
d2+d−2

, d
d2+d−2

), ( 1
d+2

, 1
d+2

),

( d
d2+d−2

,− 2
d2+d−2

), and (− 1
d2+d−2

,− 1
d2+d−2

).

2. If 1 < k ≤ d
2
, then the region Sk is trapezoid-shaped with vertices

(− 2
d2+d−2

, d
d2+d−2

), (kd+k−2
d2+d−2

, d−k
d2+d−2

), (kd+k−1
d2+d−2

,− k+1
d2+d−2

), and (0,− 1
d−1

).

3. If d
2
< k < d, then the region Sk is bounded by a piecewise-linear curve

joinig ( d
3d−2k

,− 2d−2k
(d−1)(3d−2k)

), (0,− 1
d−1

), (− 2
d2+d−2

, d
d2+d−2

), (kd+k−2
d2+d−2

, d−k
d2+d−2

)

and (k
2d+k2+d−3k
k(d2+d−2)

,− (d−k+1)(d−k)
k(d2+d−2)

) in that order, and then joined smoothly

by an ellipse from (k
2d+k2+d−3k
k(d2+d−2)

,− (d−k+1)(d−k)
k(d2+d−2)

) to ( d
3d−2k

,− 2d−2k
(d−1)(3d−2k)

).

4. The region Sd is the same with Pd = {(a, b) : La,b ∈ CP}, i.e. Sd is a

triangle with vertices (1, 0), (0,− 1
d−1

), and (− 2
d2+d−2

, d
d2+d−2

).

Algebraic descriptions of Sk for the cases d
2
< k < d

Let us focus on explicit algebraic descriptions of

Sk =
⋂

(p,q)∈Ext(Pk)

Hα(p,q) = α−1

( ⋂
(p,q)∈Ext(Pk)

Hp,q

)
(5.2.16)

for the cases d
2
< k < d. In this case, we have

Ext(Pk) =

{(
−2

d2 + d− 2
,

d

d2 + d− 2

)
, (1, 0),

(
0,

−1

d− 1

)
,

(
−1

kd− 1
, 0

)}
∪ Ck
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by Theorem 5.2.1 (3). Here, Ck is a conic arc in the second quadrant and is

parametrized by a smooth, regular, and strictly convex curve

γ : [0, 1] → Ck (5.2.17)

satisfying fk(γ(t)) ≡ 0, γ(0) = (− 1
kd−1

, 0) and γ(1) = (− 2
d2+d−2

, d
d2+d−2

).

Then (5.2.16) implies that S̃k := α(Sk) is given by

H− 2
d2+d−2

, d
d2+d−2

∩H1,0 ∩H0,− 1
d−1

∩H− 1
kd−1

,0 ∩
⋂
t∈[0,1]

Hγ(t), (5.2.18)

and the most technical problem is to demonstrate that
⋂
t∈[0,1]

Hγ(t) is a convex

set bounded by two lines and one conic arc as in the following Figure 5.6.

Figure 5.6: Geometric description of the intersection
⋂
t∈[0,1]

Hγ(t)

Here, we need to explain the dual curve and the pole-polar duality from

projective geometry [BK86, Cox03]. Firstly, we have an explicit formula for

the dual curve γ̃ of a strictly convex smooth curve γ. Recall that a plane

curve γ : I → R2 defined on an open interval I is called strictly convex if the

number of intersection points between γ and an arbitrary line is at most 2.

If γ is smooth, then the strict convexity of γ is equivalent to that for every

t ∈ I, the image of γ is contained in the same half-plane whose boundary
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is the tangent line lt at γ(t), and γ(t) is the unique intersection point of lt

and γ. For a strictly convex smooth curve γ = (p(t), q(t)) (with additional

conditions in Lemma 5.2.5), we define its dual curve γ̃ by

γ̃(t) :=

(
q′(t)

p(t)q′(t) − q(t)p′(t)
,

−p′(t)
p(t)q′(t) − q(t)p′(t)

)
. (5.2.19)

Secondly, the pole-polar duality is a bijective correspondence between

R2 \ {(0, 0)} and the set of all lines that are not passing through the origin

(0, 0) in R2. Associated to (p, q) ∈ R2 \ {(0, 0)} is a line

l =
{

(x, y) ∈ R2 : px+ qy = 1
}
.

In this case, we call l the polar of P and P the pole of l (with respect to the

unit circle C : x2 + y2 = 1), and denote by l =: Polar(P ) and P =: Pole(l)

respectively. Note that we have

γ̃(t) = Pole(lt)

for all t ∈ I, where lt denotes the line tangent to γ at γ(t).

The following Lemma 5.2.5 establishes the connection between the dual

curve γ̃ and the intersection
⋂

(p,q)∈Ck
Hp,q. This seems a well-known fact, but

we provide a proof for readers’ convenience.

Lemma 5.2.5. Let I be an open interval and γ : I → R2 \ {(0, 0)} be a

smooth, regular, and strictly convex curve. Suppose that for every t ∈ I, the

tangent lines lt at γ(t) do not pass through the origin (0, 0), and the origin is

in the same (closed) half-plane with γ with respect to lt. Then the dual curve

γ̃ : I → R2 \ {(0, 0)} from (5.2.19) satisfies the following properties.

1. Polar(γ(t)) is tangent to γ̃ at γ̃(t) for each t ∈ I.

2. γ̃ is smooth and strictly convex, and the origin is in the same half-plane

with γ̃ with respect to Polar(γ(t)).
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3. For any closed interval [t0, t1] ⊂ I, the intersection

⋂
t∈[t0,t1]

Hγ(t)

is the largest convex region containing (0, 0), which is bounded by two

lines Polar(γ(t0)) and Polar(γ(t1)) as well as the dual curve γ̃|[t0,t1] (as

in Figure 5.6).

4. If γ represents a connected part of a conic, then so is γ̃.

Proof. Set γ(t) = (p(t), q(t)). Then the equation of lt is given by

q′(t)(x− p(t)) − p′(t)(y − q(t)) = 0. (5.2.20)

Note that the given assumptions imply that p(t)q′(t) − q(t)p′(t) ̸= 0 for all

t ∈ I, so by continuity, we may assume p(t)q′(t) − q(t)p′(t) > 0 for all t ∈ I

without loss of generality. In particular, the dual curve γ̃ from (5.2.19) is a

well-defined smooth curve, and (5.2.20) implies that γ̃(t) = Pole(lt) for all

t ∈ I. Let us write γ̃(t) = (x̃(t), ỹ(t)) for simplicity and explain why the four

conclusions (1)-(4) hold.

(1) It is enough to check that

p(t)x̃(t) + q(t)ỹ(t) = 1,

p(t)x̃′(t) + q(t)ỹ′(t) = 0.

Indeed, the first equation comes from the fact that γ̃(t) = Pole(lt), and

the second equation is obtained by differentiating the first equation and the

identity p′(t)x̃(t) + q′(t)ỹ(t) ≡ 0 from (5.2.19).

(2) Note that the strict convexity of γ implies that

q′(t)(p(s) − p(t)) − p′(t)(q(s) − q(t)) < 0, t ̸= s ∈ I, (5.2.21)
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which is equivalent to

p(s)x̃(t) + q(s)ỹ(t) < 1, t ̸= s ∈ I. (5.2.22)

Thus, both the origin and γ̃ are in the same half-plane with respect to

Polar(γ(s)). Moreover, (5.2.22) implies that γ̃ is strictly convex, and smooth-

ness is immediate from the explicit description (5.2.19) of γ̃.

(3) Let T be the largest convex region containing (0, 0) bounded by two

lines Polar(γ(t0)), Polar(γ(t1)), and the dual curve γ̃|[t0,t1]. First, it is imme-

diate to see that T ⊆
⋂
t∈[t0,t1]Hγ(t). Indeed, T should be contained in the

same plane with (0, 0) with respect to each tangent line lt = Pole(γ(t)) for all

t ∈ I, and this implies T ⊆ Hγ(t) for all t ∈ [t0, t1]. On the other side, let us

pick an element (u, v) /∈ T and let l be the straight line passing through the

origin and (u, v). Then l intersects with one of Polar(γ(t0)), Polar(γ(t1)), and

γ̃|[t0,t1]. For the first two cases, (u, v) and (0, 0) are not on the same half-plane

with respect to either Polar(γ(t0)) or Polar(γ(t1)), so (u, v) /∈
⋂
t∈[t0,t1]Hγ(t).

For the remaining case, if we suppose that l contains certain γ̃(t), then (0, 0)

and (u, v) are not on the same plane with respect to Hγ(t). Hence, we can

conclude that T c ⊆
(⋂

t∈[t0,t1]Hγ(t)

)c
, i.e.

⋂
t∈[t0,t1]Hγ(t) ⊆ T .

(4) This is a direct consequence from Plücker’s formula [BK86, Section

9.1], which states that the degree of the dual curve γ̃ is n(n−1) for any non-

singular plane algebraic curve γ of degree n (in our case, n = 2). Alternatively,

more elementary arguments can be found in [CG96, AZ07].

From now on, let us focus more on the special case γ : [0, 1] → Ck from

(5.2.17). We may assume that γ is extended to the smooth, regular, and

strictly convex curve (still denoted by γ) on an open interval I ⊃ [0, 1] such

that fk ◦ γ ≡ 0. Then Lemma 5.2.5 (4) implies that there exists a quadratic

polynomial f̃k(x, y) such that

f̃k
(
(α−1 ◦ γ̃)(t)

)
≡ 0.

Here, γ̃ is the dual curve of γ, and α is the linear isomorphism from (5.2.14). A
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notable fact is that α−1 ◦ γ̃ always represents an ellipse. For this conclusion,

the following lemma provides more concrete information on the quadratic

polynomial f̃k(x, y).

Lemma 5.2.6. The quadratic equation f̃k(x, y) = 0 holds for the following

five points (ai, bi) (1 ≤ i ≤ 5)(
− d
k(d2+d−2)

, d
2−kd+d−2k
k(d2+d−2)

)
,
(
d2−kd+d−k−1

d2+d−2
,− d−k+1

d2+d−2

)
,
(
2kd−d2+2k−d−2

d2+d−2
, 2d−2k
d2+d−2

)
,(

k2d+k2+d−3k
k(d2+d−2)

,− (d−k+1)(d−k)
k(d2+d−2)

)
,
(

d
3d−2k ,−

2d−2k
(d−1)(3d−2k)

)
,

with the associated tangent lines li (1 ≤ i ≤ 5)

(d+ 1)x+ y = − 1
d−1

, x+ (d+ 1)y = − 1
d−1

, x+ (d+ 1)y = 1,

(d+ 1)x+ y = kd−1
d−1

, x− (d− 1)y = 1,

respectively. Furthermore, if d
2
< k < d, the conic determined by the equation

f̃k(x, y) = 0 is inscribed in the convex pentagon bounded by the above five

tangent lines. In particular, the equation f̃k(x, y) = 0 should represent an

ellipse.

Proof. Let us begin with the following expression

fk(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F (5.2.23)

with the coefficientsA = kd− 1, B = −(d3 − kd2 − kd− d+ 2), C = d− 1,

D = −kd+ 2, E = −d+ 2, F = −1,

from (5.2.4). If we write γ(t) = (p(t), q(t)), then we have

γ̃(t) = −
(

2Ap(t) +Bq(t) +D

Dp(t) + Eq(t) + 2F
,

2Cq(t) +Bp(t) + E

Dp(t) + Eq(t) + 2F

)
(5.2.24)

thanks to (5.2.23) and (5.2.14).
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Recall that α−1(γ̃(t)) are solutions of the equation f̃k(x, y) = 0 for all

t ∈ I. Thus, in order to single out five points (ai, bi) satisfying f̃k(ai, bi) = 0,

it is enough to note that the following five points (p(ti), q(ti)) (1 ≤ i ≤ 5)

(1, 0), (0, 1),

(
0,

−1

d− 1

)
,

(
−1

kd− 1
, 0

)
,

(
−2

d2 + d− 2
,

d

d2 + d− 2

)
are solutions to the equation fk(x, y) = 0. Then (5.2.24) provides us with

the associated five points (ai, bi) = α−1(γ̃(ti)) listed in the statement. Fur-

thermore, the tangent lines li at (ai, bi) satisfying f̃k(ai, bi) = 0 are given by

Polar(α(p(ti), q(ti))), by Lemma 5.2.5 (1). Thus, we can write down what

the tangent lines are explicitly, as in the statement. Lastly, it is immediate

to check that when d
2
< k < d, those five tangent lines consist of a convex

pentagon, and the corresponding points (ai, bi) of tangency are on each of the

pentagon’s sides. This observation forces the quadratic equation f̃k(x, y) = 0

to represent an ellipse inscribed in this pentagon.

Remark 5.2.7. While the dual quadratic equation f̃k(x, y) = 0 in our con-

sideration always represents an ellipse thanks to Lemma 5.2.6, the quadratic

equation fk(x, y) = 0 can represent both an ellipse and a hyperbola. For

example, the quadratic equation fk(x, y) = 0 for d = 5 is given by

(5k − 1)p2 − (122 − 30k)pq + 4q2 − (5k − 2)p− 3q − 1 = 0,

and this represents a hyperbola if k = 3 and an ellipse if k = 4.

Finally, we are ready to describe the intersection

⋂
(p,q)∈Ck

Hα(p,q) = α−1

( ⋂
(p,q)∈Ck

Hp,q

)

from (5.2.18). Recall that
( −1
kd−1

, 0
)

and
( −2
d2+d−2

, d
d2+d−2

)
are the two end-

points (p, q) of the connected conic arc Ck, and their associated points (a, b)

satisfying f̃k(a, b) = 0 are given by
(
k2d+k2+d−3k
k(d2+d−2)

,− (d−k+1)(d−k)
k(d2+d−2)

)
and

(
d

3d−2k
,− 2d−2k

(d−1)(3d−2k)

)
.

Let us denote by L the line segment between these two points, and let us
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assume (by changing the sign if necessary) that the inequality f̃k(x, y) ≤ 0

represents a filled ellipse.

Corollary 5.2.8. Let (a, b) ∈ R2. Then (a, b) ∈
⋂

(p,q)∈Ck

Hα(p,q) if and only if

(a, b) satisfies f̃k(a, b) ≤ 0 or satisfies the following three conditions:

1. (d+ 1)a+ b ≤ kd−1
d−1

,

2. a− (d− 1)b ≤ 1,

3. (3d− k + 3)a− (kd+ k − 3)b− d2+kd−k−3
d−1

≤ 0.

Proof. By Lemma 5.2.5 (3) and Lemma 5.2.6, the intersection
⋂

(p,q)∈Ck

Hα(p,q)

is the largest convex region containing (0, 0) bounded by the two tangent lines

(d+ 1)x+ y = kd−1
d−1

, x− (d− 1)y = 1 and the dual curve γ̃|[0,1]. We refer the

readers to Figure 5.6 for a visualized understanding. Note that f̃k(x, y) ≤ 0

represents a filled ellipse which we denote by E, and E is a subset of the

intersection
⋂

(p,q)∈Ck

Hα(p,q) by Lemma 5.2.6. Furthermore,
⋂

(p,q)∈Ck

Hα(p,q) \ E

is a subset of the largest convex region bounded by the two tangent lines

(d + 1)x + y = kd−1
d−1

, x − (d − 1)y = 1 and the line segment L between(
k2d+k2+d−3k
k(d2+d−2)

,− (d−k+1)(d−k)
k(d2+d−2)

)
and

(
d

3d−2k
,− 2d−2k

(d−1)(3d−2k)

)
. Hence, the conclu-

sion follows immediately.

Now we are ready to complete the proof for the cases d
2
< k < d.

Theorem 5.2.9. Let ρa,b be a bipartite matrix of the form (5.2.2) and d
2
<

k < d. Then ρa,b ∈ Schk if and only if f̃k(a, b) ≤ 0 or (a, b) satisfies the

following inequalities:

− 1
d−1

≤ (d+ 1)a+ b ≤ kd−1
d−1

,

a+ (d+ 1)b ≤ 1,

a− (d− 1)b ≤ 1,

(3d− k + 3)a− (kd+ k − 3)b− d2+kd−k−3
d−1

≤ 0.
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Here, f̃k is the quadratic polynomial from Lemma 5.2.6 such that the inequal-

ity f̃k(x, y) ≤ 0 represents a filled ellipse.

Proof. Since
⋂

(p,q)∈Ck

Hp,q ⊆ H− 2
d2+d−2

, d
d2+d−2

∩H− 1
kd−1

,0, we have

S̃k := α(Sk) = H1,0 ∩H0,− 1
d−1

∩
⋂

(p,q)∈Ck

Hp,q (5.2.25)

from (5.2.18). Thus, we have

Sk = α−1(S̃k) = α−1 (H1,0) ∩ α−1
(
H0,− 1

d−1

)
∩ α−1

 ⋂
(p,q)∈Ck

Hp,q


= H−(d2−1),−(d−1) ∩H1,d+1 ∩

⋂
(p,q)∈Ck

Hα(p,q).

and the conclusion follows immediately from Lemma 5.2.6 and Corollary

5.2.8.

Remark 5.2.10. It is worth remarking that a small perturbation can pro-

duce a drastic increment of the Schmidt number. Recall that Sd is a triangle,

and let us parameterize the southern-eastern edge of Sd by η : [0, 1] → Sd

such that η(0) = (0,− 1
d−1

) and η(1) = (1, 0). Then ρη(t) is always entan-

gled, and the Schmidt numbers SN(ρη(t)) exhibit a monotonically increasing

pattern of

2, ⌈d
2
⌉, ⌈d

2
⌉ + 1, ⌈d

2
⌉ + 2, · · · , d,

as t increases from 0 to 1. Note that there is a huge gap between 2 and

⌈d
2
⌉, which seems entirely new and highly non-trivial. This phenomenon does

not appear on the other line segments in the boundary of Sd, and some other

known cases such as ρa,0 and ρ0,b. The only known patterns were 1, 2, 3, · · · , d
(isotropic states) or 1, 2 (Werner states) to our best knowledge.

122



CHAPTER 5. APPLICATIONS TO QUANTUM ENTANGLEMENT

5.3 Tripartite systems with unitary group sym-

metries

Recall that a tripartite quantum state ρ ∈ D(HA⊗HB⊗HC) is called A-BC

separable (resp. A-BC PPT) if ρ is separable (resp. PPT) in the situation

where B(HA ⊗ HB ⊗ HC) is understood as the bipartite system B(HA) ⊗
B(HB⊗HC). Furthermore, C-AB or B-AC separability (resp. PPT) is defined

similarly. We will focus on the situation where HA = HB = HC = Cd, and

let us denote by 
X⊤A = (Td ⊗ idd2)(X),

X⊤B = (Id ⊗ Td ⊗ Id)(X),

X⊤C = (idd2 ⊗Td)(X),

(5.3.1)

the three partial transposes of X ∈ B(HA ⊗HB ⊗HC) = Md3(C).

The main purpose of this section is to apply our results in Section 4.3

as new sources to study the problems PPT = SEP, equivalently the prob-

lems POS = DEC for some tripartite invariant quantum states. In Section

5.3.1, we exhibit positive non-decomposable covariant maps L : Md → Md2

satisfying

L(UXUT ) = (U ⊗ U)L(X)(U ⊗ U)∗ (5.3.2)

for all unitary matrices U ∈ U(d) and X ∈ Md. This result is parallel to

the fact PPT ̸= SEP for tripartite Werner states [EW01], i.e. tripartite

quantum states ρ ∈Md3(C) satisfying

(U ⊗ U ⊗ U)ρ = ρ(U ⊗ U ⊗ U) (5.3.3)

for all unitary matrices U ∈ U(d).

On the other hand, in Section 5.3.2, we show that a strong contrast

PPT = SEP holds for quantum orthogonally invariant quantum states.

More generally, we prove that PPT = SEP holds for any tripartite quantum
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states ρ ∈Md3(C) satisfying

(U ⊗ U ⊗ U)ρ = ρ(U ⊗ U ⊗ U) (5.3.4)

for all unitary matrices U ∈ U(d).

5.3.1 Tripartite Werner states

Let πA, πBC be unitary representations of the unitary group U(d) given by

πA(U) = U and πBC(U) = U⊗U . Then the elements in InvQS(πA⊗πBC) are

called tripartite Werner states. Let us write Inv(U⊗3) = Inv(πA ⊗ πBC) and

Cov(U,UU) = Cov(πA, πBC) for simplicity. The application of Schur-Weyl

duality [EW01] or von Neumann’s bicommutant theorem [Wat18, Theorem

7.15] implies that the space Inv(U⊗3) is spanned by six unitary operators

{Vσ : σ ∈ S3}. Here, Vσ : (Cd)⊗3 → (Cd)⊗3 is determined by Vσ(ξ1⊗ξ2⊗ξ3) =

ξσ−1(1) ⊗ ξσ−1(2) ⊗ ξσ−1(3) for any ξ1, ξ2, ξ3 ∈ Cd and σ ∈ S3, or equivalently,

Vσ =
d∑

j1,j2,j3=1

|j1j2j3⟩⟨jσ(1)jσ(2)jσ(3)|. (5.3.5)

Recall that A-BC PPT property and separability of ρ ∈ Inv(U⊗3)D were

already characterized in [EW01], and it was shown that PPT = SEP if and

only if d = 2. Therefore, a direct application of Corollary 4.3.4 gives us the

following result.

Theorem 5.3.1. All positive (UU,U)-covariant maps are decomposable if

and only if d = 2. By taking the adjoint operation L 7→ L∗, the same conclu-

sion holds for positive (U,UU)-covariant maps.

In the remaining of this section, we will assume d ≥ 3 and exhibit positive

non-decomposable (U,UU)-covariant maps.

[Step 1] First of all, let us characterize all elements in Cov(U,UU)POS .

Note that Corollary 4.2.3 (3) implies that the space Cov(U,UU) is spanned

by the following six linear maps Lσ whose unnormalized Choi matrices are
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the operators Vσ ∈ Inv(U⊗3) in (5.3.5):

Le(X) = (TrX) · Id ⊗ Id,

L(12)(X) = XT ⊗ Id,

L(13)(X) = Id ⊗XT ,

L(23)(X) = (TrX) ·
∑d

j2,j3=1 |j3j2⟩⟨j2j3|,
L(123)(X) =

∑d
j1,j2,j3=1Xj1j2 |j2j3⟩⟨j3j1|,

L(132)(X) =
∑d

j1,j2,j3=1Xj1j3|j2j3⟩⟨j1j2|.

(5.3.6)

Lemma 5.3.2. Let L =
∑

σ∈S3
aσLσ ∈ Cov(U,UU). Then L ∈ POSA,BC if

and only if
(1) ae, a(12), a(13), a(23) ∈ R and a(132) = a(123),

(2) ae ≥ max
{
−a(12),−a(13), |a(23)|

}
,

(3) ae + a(12) + a(13) + a(23) + a(123) + a(132) ≥ 0,

(4)
(
ae + a(12)

) (
ae + a(13)

)
≥
∣∣a(23) + a(123)

∣∣2 .
(5.3.7)

Proof. Since every unit vector ξ ∈ Cd can be written as |ξ⟩ = U |1⟩ for some

U ∈ U(d), the (U,UU)-covariance property implies that L is positive if and

only if L(e11) ≥ 0. Moreover, L(e11) has a matrix decomposition

L(e11) ∼= (ae + a(12) + a(13) + a(23) + a(123) + a(132))1⊕ (ae + a(23)) idd−1

⊕

 d⊕
j=2

[
ae + a(12) a(23) + a(123)

a(23) + a(132) ae + a(13)

]⊕

 ⊕
2≤i<j≤d

[
ae a(23)

a(23) ae

]
(5.3.8)

with respect to the bases {|11⟩}, {|22⟩, |33⟩, . . . , |dd⟩}, {|1j⟩, |j1⟩} for j =

2, . . . , d, and {|ij⟩, |ji⟩} for 2 ≤ i < j ≤ d, respectively. Therefore, L(e11) ≥ 0

if only if (5.3.7) holds.

The next step is to classify CP and CCP conditions in Cov(U,UU) to

find all PPT elements in Inv(U⊗3)D.

Lemma 5.3.3. Let L =
∑

σ aσLσ and let X =
∑

σ aσVσ. Then
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1. L is CP if and only if X ≥ 0 if and only if

ae, a(12), a(13), a(23) ∈ R and a(123) = a(132),

ae + a(123) + a(132) ≥ |a(12) + a(13) + a(23)|,
2ae − a(123) − a(132) ≥ 0,

(ae + ωa(123) + ωa(132))(ae + ωa(123) + ωa(132))

≥
∣∣ωa(12) + ωa(13) + a(23)

∣∣2 .
(5.3.9)

2. L is CCP if and only if X⊤A ≥ 0 if and only if

ae, a(12), a(13), a(23) ∈ R and a(123) = a(132),

ae ≥ |a(23)|,
2ae + a(123) + a(132) + d(a(12) + a(13)) ≥ 0,(
ae + a(23) + d+1

2
(a(12) + a(13) + a(123) + a(132))

)
×
(
ae − a(23) + d−1

2
(a(12) + a(13) − a(123) − a(132))

)
≥ d2−1

4
(|a(12) − a(13)|2 + |a(123) − a(132)|2).

(5.3.10)

These characterizations were already known from [EW01, Lemma 2 and

Lemma 8], but with a different parametrization. An elaboration on Lemma

5.3.3 is attached in Appendix C using the following identifications

span {Vσ : σ ∈ S3} ∼= C⊕ C⊕M2(C), (5.3.11)

span
{
V ⊤A
σ : σ ∈ S3

} ∼= C⊕ C⊕M2(C) (5.3.12)

as ∗-algebras.

[Step 2] All extremal elements in Cov1(U,UU)POS are completely char-

acterized in the following lemma. Our proof is straightforward but rather

cumbersome, so we attach the proof in Appendix 5.4.2.

Lemma 5.3.4. Let L =
∑

σ aσLσ ∈ Cov(U,UU). Then the following are

equivalent.

1. L ∈ Ext(Cov1(U,UU)POS)
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2. ae, a(12), a(13), a(23) ∈ R, a(123) = a(132), and the associated 6-tuple

(ae, a(12), a(13), a(23),Re(a(123)), Im(a(123))) ∈ R6 (5.3.13)

is one of the following three types:

Type I c1(1,−1,−1,−1, 1, 0)

Type II c2(0, A,B, 0, C,±
√
AB − C2)

Type III c3(
A+B+2C

2
, A−B−2C

2
, −A+B−2C

2
, A+B+2C

2
,−A+B

2
,±

√
AB − C2)

where A,B ≥ 0, C ∈ R, AB ≥ C2, and the normalizing constants

c1, c2, and c3 are chosen to satisfy the TP condition

d2ae + d(a(12) + a(13) + a(23)) + (a(123) + a(132)) = 1. (5.3.14)

Then, combining Lemma 5.3.3 and Lemma 5.3.4, we can check that

� Every L ∈ Ext(Cov1(U,UU)POS) of Type I is CP,

� Every L ∈ Ext(Cov1(U,UU)POS) of Type II is CCP,

� Let L ∈ Ext(Cov1(U,UU)POS) of Type III. Then

– L is CP if and only if A = B = C,

– L is CCP if and only if A = B = −C.

Thus, Type III (with neither A = B = C nor A = B = −C) provides explicit

positive non-decomposable maps in Cov(U,UU)POS by Theorem 4.3.5. For

example, we can choose A = 1, B = 0, and C = 0 to obtain a specific

extremal element

L0 = Le + L(12) − L(13) + L(23) − L(123) − L(132) ∈ Ext(Cov1(U,UU)POS)

(5.3.15)

up to a normalizing constant.
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[Step 3] On the dual side, the chosen positive non-decomposable map

L∗
0 ∈ CovPos(UU,U) should play a role as a PPT entanglement detector.

Indeed, if we take

ρt =
1

d3 + (t+ 1)d2 + 2t

(
d+ t

d
Ve + V(13) +

t

d
V(123) +

t

d
V(132)

)
(5.3.16)

with 0 < t ≤ 3.89 and d ≥ 3, then ρt ∈ Inv(U⊗3)D is A-BC PPT by Lemma

5.3.3. Moreover, it is straightforward to see that

(d3 + (t+ 1)d2 + 2t) · (id⊗L∗
0)(ρt)

=

(
d2 + (t+ 2)d+ 3t− 2t

d

)
idd⊗ idd−

(
d2 + (2t+ 2)d

)
|Ωd⟩⟨Ωd| (5.3.17)

has a negative eigenvalue −t
(
d+

2

d
− 3

)
< 0. Consequently, the quantum

state ρt is A-BC PPT entangled by Theorem 4.3.1 or by Horodecki’s criterion.

Remark 5.3.5. Note that ρt is also C-AB PPT entangled since V(13)ρtV(13) =

ρt. On the other hand, ρt is not B-AC PPT (and hence entangled). Indeed,

we can observe that

ρ⊤B
t = V(12)(V(12)ρtV(12))

⊤AV(12), (5.3.18)

but V(12)ρtV(12) is not A-BC PPT since

V(12)ρtV(12) =
1

d3 + (t+ 1)d2 + 2t

(
d+ t

d
Ve + V(23) +

t

d
V(123) +

t

d
V(132)

)
(5.3.19)

does not satisfy the CCP condition (5.3.10).

It might be interesting if we can find a tripartite PPT-entangled Werner

state with respect to all the three partitions A-BC, B-AC, and C-AB. How-

ever, Lemma 7 of [EW01] implies that there is no such an example ρ =∑
σ aσVσ if one of the following conditions is satisfied:

� a(12) = a(13) and a(123) = a(132),

� a(13) = a(23) and a(123) = a(132),
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� a(23) = a(12) and a(123) = a(132),

We leave the general situation as an open question.

5.3.2 Tripartite quantum orthogonally invariant quan-

tum states

Within the framework of compact quantum groups, it is well-known that the

orthogonal group O(d) allows a universal object, namely the free orthogonal

quantum group O+
d [Wan95, Tim08]. In other words, the invariance property

with respect to O+
d is a stronger notion than the (classical) orthogonal group

invariance. See [LY22] for a general discussion on invariant quantum states

and covariant quantum channels with quantum group symmetries.

In this section, we focus on the space Inv(O⊗3
+ ) of the tripartite quantum

orthogonally invariant operators spanned by five tripartite operators

Tσ = V ⊤B
σ =

d∑
j1,j2,j3=1

|j1jσ(2)j3⟩⟨jσ(1)j2jσ(3)| (5.3.20)

for σ ∈ S3 \ {(13)} = {e, (12), (23), (123), (132)}. See Appendix 5.4.4 for

more discussions on (5.3.20) and O+
d . Although Theorem 4.3.1 does not cover

quantum group symmetries, any X ∈ Inv(O⊗3
+ ) satisfies the following group

invariance property

(U ⊗ U ⊗ U)X(U ⊗ U ⊗ U)∗ = X (5.3.21)

for all U ∈ U(d) thanks to Corollary 4.2.3 (1). This transfers our problem to

the realm of classical group symmetries. More precisely, we have

Inv(O⊗3
+ ) ⊆ Inv(U ⊗ U ⊗ U) = Inv(πA ⊗ πBC) (5.3.22)

where πA(U) = U and πBC(U) = U ⊗ U . The main theorem of this section

is the following.
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Theorem 5.3.6. Let ρ ∈ Inv(U ⊗ U ⊗ U)D. Then ρ is A-BC separable if

and only if ρ is A-BC PPT. In particular, A-BC PPT= A-BC SEP holds in

Inv(O⊗3
+ )D.

Remark 5.3.7. Theorem 5.3.6 implies POS = DEC in Cov(U,UU) by

Corollary 4.3.4, and equivalently, POS = DEC in Cov(U,UU). We remark

that the latter class was analyzed recently in [COS18, BCS20]. In particu-

lar, k-positivity and decomposability were discussed for a special subclass

of Cov(U,UU) for d = 3 in [COS18], and it was questioned whether cer-

tain 2-positive non-decomposable map exists in Cov(U,UU). However, our

Theorem 5.3.6 gives the complete answer POS = DEC in the whole class

Cov(U,UU) regardless of the dimension d, and this means that (k-)positive

non-decomposable maps cannot exist in Cov(U,UU).

Remark 5.3.8. Note that, for any unitary representation π of a compact

group, the following three problems

� PPTA,BC = SEPA,BC in Inv(π ⊗ π ⊗ π)

� PPTB,AC = SEPB,AC in Inv(π ⊗ π ⊗ π)

� PPTC,AB = SEPC,AB in Inv(π ⊗ π ⊗ π)

are equivalent. However, Theorem 5.3.6 implies that this equivalence is no

longer true when π is replaced by a unitary representation of a compact

quantum group. Indeed, a B-AC PPT entangled state V(12)ρtV(12) ∈ Inv(U⊗3)

from (5.3.19) is transferred to the following B-AC PPT entangled state in

Inv(O⊗3
+ ):

(V(12)ρtV(12))
⊤B

=
1

d3 + (t+ 1)d2 + 2t

(
d+ t

d
Te + T(23) +

t

d
T(123) +

t

d
T(132)

)
. (5.3.23)

In other words, the problem of PPTA,BC = SEPA,BC is not equivalent to

the problem ofPPTB,AC = SEPB,AC in Inv(O⊗3
+ )D. A reason for this gen-
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uine quantum phenomenon is that the associated C∗-algebra of O+
d is non-

commutative.

[Step 1] Let us apply Corollary 4.3.4 to prove that POS = DEC holds in

Cov1(UU,U)POS = Cov1(πBC , πA)POS , or equivalently, POS = DEC holds

in Cov1(U,UU)POS . Recall that the space Cov(U,UU) is spanned by six

linear maps

Mσ = (Td ⊗ Id) ◦ Lσ (5.3.24)

for σ ∈ S3, where Lσ is given by (5.3.6). Then the unnormalized Choi matrix

of Mσ is given by Tσ.

Lemma 5.3.9. Let d ≥ 3 and M =
∑

σ aσMσ ∈ Cov(U,UU). Then M is

positive if and only if

(1) ae, a(12), a(13), a(23) ∈ R and a(132) = a(123),

(2) ae ≥ max
{

0,−a(12),−a(13)
}
,

(3) ae + a(12) + a(13) + a(23) + a(123) + a(132) ≥ 0,

(4) ae + (d− 1)a(23) ≥ 0,

(5) (ae + a(12) + a(13) + a(23) + a(123) + a(132))(ae + (d− 1)a(23))

≥ (d− 1)|a(23) + a(123)|2.
(5.3.25)

Proof. As in the proof of Lemma 5.3.2, the positivity of M is equivalent to

M(e11) ≥ 0. Moreover, M(e11) ∈Md ⊗Md has a matrix decomposition

M ⊕ (ae + a(12)) idd−1⊕(ae + a(13)) idd−1⊕ae id(d−1)(d−2), (5.3.26)

where

M =

[
c (a(23) + a(132))⟨v|

(a(23) + a(123))|v⟩ a(23)|v⟩⟨v|

]
+ ae Id (5.3.27)

with c = a(12) + a(13) + a(23) + a(123) + a(132) and v = (1, 1, . . . , 1)T ∈ Cd−1.

The four matrices in the matrix decomposition (5.3.26) are with respect
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to the bases {|11⟩, |22⟩, . . . , |dd⟩}, {|12⟩, |13⟩, . . . , |1d⟩}, {|21⟩, |31⟩, . . . , |d1⟩},

and {|ij⟩ : i, j ̸= 1 and i ̸= j}, respectively. Thus, M(e11) ≥ 0 if and only if

the conditions (1) and (2) in (5.3.25) hold and M ≥ 0. Moreover, we can

rewrite (5.3.27) as

M − ae Id = V

[
c

√
d− 1α

√
d− 1α (d− 1)a(23)

]
V ∗, (5.3.28)

where α = a(23) + a(123) and V =

[
1 0

0 1√
d−1

|v⟩

]
∈ Md,2(C) is an isome-

try. Thus, the nonzero eigenvalues of M − aeId are the same with those of[
c

√
d− 1α

√
d− 1α (d− 1)a(23)

]
. Consequently, the condition M ≥ 0 is equivalent

to the conditions (3), (4), and (5) of (5.3.25).

Thanks to Lemma 5.3.3, it is easy to derive CP and CCP conditions in

Cov(U,UU) or A-BC PPT condition in Inv(U ⊗ U ⊗ U)D.

Lemma 5.3.10. Let d ≥ 3 and M =
∑

σ∈S3
aσMσ ∈ Cov(U,UU)POS . Then

1. M is CP if and only if the operator

V(12)

(∑
σ∈S3

aσVσ

)
V(12) =

∑
σ∈S3

a(12)σ(12)Vσ (5.3.29)

satisfies the condition (5.3.10).

2. M is CCP if and only if the operator

V(13)

(∑
σ∈S3

aσVσ

)
V(13) =

∑
σ∈S3

a(13)σ(13)Vσ (5.3.30)

satisfies the condition (5.3.10).

Proof. Let X =
∑

σ∈S3
aσVσ ∈ Inv(U⊗3) and X ′ = V(12)XV(12). Then M is
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CP if and only if

∑
σ∈S3

aσTσ = X⊤B = V(12)(X
′)⊤AV(12) ≥ 0, (5.3.31)

which is equivalent to (X ′)⊤A ≥ 0. On the other hand, let X ′′ = V(13)XV(13).

Then M is CCP if and only if(∑
σ∈S3

aσTσ

)⊤A

=
(
X⊤C

)T
=
(
V(13)(X

′′)⊤AV(13)
)T ≥ 0, (5.3.32)

and this is equivalent to (X ′′)⊤A ≥ 0.

[Step 2] We refer the reader to Appendix 5.4.2 for a proof of the following

Lemma 5.3.11 classifying all extremal elements in Cov1(U,UU)POS .

Lemma 5.3.11. Let d ≥ 3 and M =
∑

σ∈S3
aσMσ ∈ Cov(U,UU)POS . Then

the following are equivalent.

1. M ∈ Ext(Cov1(U,UU)POS),

2. ae, a(12), a(13), a(23) ∈ R, a(123) = a(132), and the associated 6-tuple

(ae, a(12), a(13), a(23),Re(a(123)), Im(a(123))) ∈ R6 (5.3.33)

is one of the following four types:

Type I c1(d− 1,−1, 1 − d,−1, 1, 0),

Type II c2(d− 1, 1 − d,−1,−1, 1, 0),

Type III c3(0, A+B − 2C, 0, B, C −B,±
√
AB − C2),

Type IV c4(0, 0, A+B − 2C,B,C −B,±
√
AB − C2),

where A,B ≥ 0, C ∈ R, AB ≥ C2, and ci (i = 1, 2, 3, 4) are normaliz-

ing constants chosen to satisfy the TP condition

d2ae + d(a(12) + a(13) + a(23)) + (a(123) + a(132)) = 1. (5.3.34)
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Proof of Theorem 5.3.6. Let us assume d ≥ 3. According to Theorem

4.3.5 and Lemma 5.3.11, it suffices to show that M =
∑

σ∈S3
aσMσ is CP

or CCP whenever (aσ)σ∈S3 is one of the four Types I - IV. Now, by applying

Lemma 5.3.10, we can check that

� Every L ∈ Ext(Cov1(U,UU)POS) of Type I or Type III is CP,

� Every L ∈ Ext(Cov1(U,UU)POS) of Type II or Type IV CCP,

thanks to the conditions A,B ≥ 0 and AB ≥ C2. When d = 2, we refer to

Appendix 5.4.3 for the complete proof.

5.4 Appendix for Section 5.3

5.4.1 Characterization of Inv(U⊗3)PPT

Recall that if d ≥ 3, there exist ∗-algebra isomorphisms

F : Inv(U ⊗ U ⊗ U) → C⊕ C⊕M2(C), (5.4.1)

G : Inv(U ⊗ U ⊗ U) → C⊕ C⊕M2(C) (5.4.2)

by the representation theory of the unitary group U(d). Moreover, the authors

in [EW01] proposed specific choice of ∗-isomorphisms F and G that can be

used to characterize the PPT condition of X =
∑

σ∈S3
aσVσ ∈ Inv(U⊗3).

For the convenience of the reader, we again present explicit maps F and

G in terms of the bases {Vσ : σ ∈ S3} and
{
V ⊤A
σ : σ ∈ S3

}
of Inv(U⊗3) and

Inv(U ⊗ U ⊗ U), respectively, in Table 2.

Proof of Lemma 5.3.3. Let X =
∑

σ∈S3
aσVσ. Then X∗ = X is equiva-

lent to ae, a(12), a(13), a(23) ∈ R and a(123) = a(132) since {Vσ}σ∈S3
is linearly
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Table 5.2: The isomorphisms F and G (ω = e2πi/3)
X F (X) X⊤A G(X⊤A)

Ve (1, 1,

[
1 0
0 1

]
) V ⊤A

e (1, 1,

[
1 0
0 1

]
)

V(12) (1,−1,

[
0 ω
ω 0

]
) V ⊤A

(12) (0, 0,

[
d+1
2

√
d2−1
2√

d2−1
2

d−1
2

]
)

V(13) (1,−1,

[
0 ω
ω 0

]
) V ⊤A

(13) (0, 0,

[
d+1
2

−
√
d2−1
2

−
√
d2−1
2

d−1
2

]
)

V(23) (1,−1,

[
0 1
1 0

]
) V ⊤A

(23) (1,−1,

[
1 0
0 −1

]
)

V(123) (1, 1,

[
ω 0
0 ω

]
) V ⊤A

(123) (0, 0,

[
d+1
2

−
√
d2−1
2√

d2−1
2

−d−1
2

]
)

V(132) (1, 1,

[
ω 0
0 ω

]
) V ⊤A

(132) (0, 0,

[
d+1
2

√
d2−1
2

−
√
d2−1
2

−d−1
2

]
)

independent. Now X ≥ 0, or equivalently, F (X) ≥ 0 holds if and only if

(ae + a(123) + a(132)) ± (a(12) + a(13) + a(23)) ≥ 0 and (5.4.3)[
ae + ωa(123) + a(123)ω ωa(12) + ωa(13) + a(23)

ωa(12) + ωa(13) + a(23) ae + ωa(123) + ωa(132)

]
≥ 0, (5.4.4)

which is equivalent to the condition (5.3.9). Similarly, we get the equivalence

between the condition X⊤A ≥ 0 and (5.3.10).

5.4.2 Extremal positive maps in Cov1(U,UU)POS and

Cov1(U,UU)POS

This section is to give detailed proofs of Lemma 5.3.4 and Lemma 5.3.11.

For convenience, we assume ae, a(12), a(13), a(23) ∈ R, a(123) = a(132), and write

r = Re(a(123)) and s = Im(a(123)) throughout this section.

Let P0 be the set of all tuples (ae, a(12), a(13), a(23), r, s) satisfying (5.3.7)
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and the TP condition

d2ae + d(a(12) + a(13) + a(23)) + (a(123) + a(132)) = 1. (5.4.5)

Then P0 describes the condition
∑

σ aσLσ ∈ Cov1(U,UU)POS exactly, so

P0 must be a convex and compact subset of R6. For simplification of the

condition (5.3.7), let us consider a linear isomorphism

α : (ae, a(12), a(13), a(23), r, s) 7→ (ae, A,B,C, r, s) (5.4.6)

of R6, where A = ae+a(12), B = ae+a(13), and C = a(23)+r. Then P = α(P0)

is the set of all tuples (ae, A,B,C, r, s) ∈ R6 satisfying
(1) A,B ≥ 0,

(2) AB ≥ C2 + s2,

(3) A+B + C + r ≥ ae ≥ |C − r|,
(4) d(d− 2)ae + d(A+B + C) − (d− 2)r = 1.

(5.4.7)

Note that we have Ext(P0) = α−1(Ext(P)). That is, it suffices to find

the extreme points of P and restore the coefficients (aσ)σ∈S3 to get the cor-

responding extremal positive (U,UU)-covariant maps.

Lemma 5.4.1. Let S be the set of tuples (A,B,C, s) satisfying (1) and (2)

of (5.4.7). Then S is a convex cone in R4. Moreover, if x0 = x1 + x2 in S
with xi = (Ai, Bi, Ci, si) and if A0B0 = C2

0 + s20, then x1 = λ1x0, x2 = λ2x0

for some λ1, λ2 ≥ 0. In other words, the half-line R+x0 is an extremal ray of

S.

Proof. It is straightforward that x ∈ S implies λx ∈ S for all λ ≥ 0. Let us

write xi = (Ai, Bi, Ci, si) ∈ S for i = 1, 2. Then A1+A2 ≥ 0 and B1+B2 ≥ 0,

so the last thing to check is

(A1 + A2) · (B1 +B2) ≥ (C1 + C2)
2 + (s1 + s2)

2. (5.4.8)
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Let us choose C ′
i ≥ |Ci|, s′i ≥ |si| such that AiBi = (C ′

i)
2 + (s′i)

2. Then,

indeed, we have

(A1 + A2)(B1 +B2) ≥ A1B1 + 2
√
A1B1A2B2 + A2B2 (5.4.9)

= (C ′
1)

2 + (s′1)
2 + 2

√
((C ′

1)
2 + (s′1)

2)((C ′
2)

2 + (s′2)
2) + (C ′

2)
2 + (s′2)

2

(5.4.10)

≥ (C ′
1)

2 + (s′1)
2 + 2(C ′

1C
′
2 + s′1s

′
2) + (C ′

2)
2 + (s′2)

2 (5.4.11)

= (C ′
1 + C ′

2)
2 + (s′1 + s′2)

2 ≥ (C1 + C2)
2 + (s1 + s2)

2. (5.4.12)

by applying the AM-GM inequality and the Cauchy-Schwarz inequality. There-

fore, x1 +x2 ∈ S, which proves that S is a convex cone. The latter statement

follows by investigating the equality condition carefully in the above inequal-

ity, which is left to the reader.

Proof of Lemma 5.3.4. It is sufficient to show that all the extreme points

x = (ae, A,B,C, r, s) of P are classified into the following three types up to

normalizing constants: for A,B ≥ 0 and AB ≥ C2,

Type I′ (1, 0, 0, 0, 1, 0),

Type II′ (0, A,B,C,C,±
√
AB − C2),

Type III′ (A+B+2C
2

, A,B,C,−A+B
2
,±

√
AB − C2).

If AB > C2 + s2, then we can choose s′ > |s| such that AB = C2 + (s′)2.

In this case, x
(0)
± = (ae, A,B,C, r,±s′) ∈ P , and x is a (nontrivial) convex

combination of x
(0)
+ and x

(0)
− . Thus, x is not extremal in P .

From now on, we assume AB = C2 + s2 (i.e., s = ±
√
AB − C2) and

divide the condition (3) of (5.4.7) into the following cases.

[Case 1] A+B+C+ r ≥ ae > |C− r|. Then for sufficiently small δ > 0,

x
(1)
± =

(
ae ∓

2(A+B + C)

d− 2
δ, A±Aδ,B ±Bδ,C ± Cδ, r ∓ d(A+B + C)

d− 2
δ, s± sδ

)
(5.4.13)

are elements of P , and x = (x
(1)
+ + x

(1)
− )/2. Therefore, x /∈ Ext(P).

[Case 2] A + B + C + r > ae = |C − r| > 0. Here we consider only the
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case C > r since the other case C < r can be argued similarly. Then for

sufficiently small δ > 0,

x
(2)
± = (ae ± (C − k)δ, A± Aδ,B ±Bδ,C ± Cδ, r ± kδ, s± sδ) (5.4.14)

are elements of P , where k ∈ R satisfies

d(d− 2)(C − k) + d(A+B + C) − (d− 2)k = 0 (5.4.15)

so that the condition (4) of (5.4.7) holds for x
(2)
± . Since x = (x

(2)
+ + x

(2)
− )/2,

it is not extremal.

[Case 3] A + B + C + r ≥ ae = |C − r| = 0, so C = r. We claim that

x = (0, A,B,C,C, s) ∈ Ext(P) corresponding to Type II′. Suppose that x

is a convex combination of x
(3)
± = (a±, A±, B±, C±, r±, s±) ∈ P . Then the

condition ae = 0 and a± ≥ 0 imply a± = 0, which again forces |C±−r±| = 0.

Therefore, Lemma 5.4.1 implies that x
(3)
± = (0, A±, B±, C±, C±, s±) = λ±x

for some λ± ≥ 0. Now the TP condition (5.4.7) (4) implies λ± = 1, so

x = x
(3)
± .

[Case 4] A + B + C + r = ae = C − r ≥ 0. Then r = −A+B
2

and

x = (A+B+2C
2

, A,B,C,−A+B
2
, s). Here we claim that x ∈ Ext(P) which cor-

responds to Type III′ (note that A + B ≥ 2
√
AB = 2

√
C2 + s2 ≥ 2|C|,

so r = −A+B
2

conversely implies C ≥ r). If x is a convex combination of

x
(4)
± = (a±, A±, B±, C±, r±, s±) ∈ P , then the condition (5.4.7) (3) for x

(4)
±

implies A± +B± +C± +r± = a± = |C±−r±|. We may assume A+ ≥ A ≥ A−

without loss of generality, so Lemma 5.4.1 implies

x
(4)
+ =

(
A+B + 2C

2
+ δ′, A+Aδ,B +Bδ,C + Cδ,−A+B

2
+ δ′′, s+ sδ

)
(5.4.16)

for some δ ≥ 0, δ′, δ′′ ∈ R, and δ′ = (A+B+C)δ+δ′′ from A++B++C++r+ =

a+. Now for the case a+ = r+ − C+ ≥ 0, we have

0 ≤ A+B + 2C = −(A+B + 2C)δ ≤ 0. (5.4.17)

However, this says A + B = −2C and x = (0, A,B,C,C, s), which can be
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absorbed into Case 3. For the case a+ = C+ − r+, we have δ′′ = −A+B
2
δ and

δ′ = A+B+2C
2

δ. However, then the TP condition (5.4.7) (4) implies(
d(d− 2)

A+B + 2C

2
+ d(A+B + C) + (d− 2)

A+B

2

)
δ = 0, (5.4.18)

which is possible only if δ = 0. Therefore, x = x
(4)
+ = x

(4)
− .

[Case 5] A+B +C + r = ae = r−C ≥ 0. Then A+B = −2C, and the

previous inequality A + B ≥ 2
√
AB ≥ 2|C| implies A = B = −C ≥ 0 and

s = 0. Thus, x = (r − C,−C,−C,C, r, 0) with C ≤ 0 and r ≥ C. Then our

problem is divided into the following three subcases.

� If C < 0 and r > C, then x /∈ Ext(P) since x = (x
(5)
+ + x

(5)
− )/2, where

x
(5)
± =

(
r − C ∓ 2

d− 2
δ,−C ± δ,−C ± δ, C ∓ δ, r ∓ d

d− 2
δ, 0

)
∈ P (5.4.19)

for sufficiently small δ > 0.

� If r = C, then x = (0,−C,−C,C,C, 0) is extremal since it can be

absorbed into Case 3.

� If C = 0, then x = r(1, 0, 0, 0, 1, 0) is indeed extremal (corresponding

to Type I′) since the point (A,B,C, s) = (0, 0, 0, 0) is an extreme point

of S in Lemma 5.4.1 and since r is uniquely determined by the TP

condition (5.4.7) (4).

Now we shall prove Lemma 5.3.11 using similar arguments. Let Q0 be the

set of all tuples (ae, a(12), a(13), a(23), r, s) satisfying (5.3.25) and (5.4.5), and

then consider a linear isomorphism

β : (ae, a(12), a(13), a(23), r, s) 7→ (A,B,C, p, q, s) (5.4.20)

of R6, where

A =
∑

σ∈S3
aσ, B = ae

d−1
+ a(23), C = a(23) + r,

p = ae + a(12), q = ae + a(13).
Then Q =
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β(Q0) becomes the set of all tuples (A,B,C, p, q, s) ∈ R6 satisfying
(1) A,B, p, q ≥ 0,

(2) AB ≥ C2 + s2,

(3) A+B − 2C ≤ p+ q,

(4) (−d2 + d+ 1)A− (d− 1)2B + 2d(d− 1)C + (d2 − 1)(p+ q) = 1.

(5.4.21)

Proof of Lemma 5.3.11. It is sufficient to show that the extreme points

y = (A,B,C, p, q, s) of Q are classified into the following four types up to

normalizing constants: for A,B ≥ 0 and AB ≥ C2,

Type I′ (0, 0, 0, 1, 0, 0),

Type II′ (0, 0, 0, 0, 1, 0),

Type III′ (A,B,C,A+B − 2C, 0,±
√
AB − C2),

Type IV′ (A,B,C, 0, A+B − 2C,±
√
AB − C2).

As in the proof of Lemma 5.3.4, we may assume AB = C2 +s2. Furthermore,

we may assume p = 0 or q = 0 since y is a convex combination of y
(0)
± ∈ Q,

where y
(0)
+ = (A,B,C, p+ q, 0, s) and y

(0)
− = (A,B,C, 0, p+ q, s). Let us first

assume q = 0 and divide the condition (3) of (5.4.21) into the following three

cases.

[Case 1] (A,B) ̸= (0, 0) and A+B− 2C < p. Then for sufficiently small

δ > 0,

y
(1)
± = (A± Aδ,B ±Bδ,C ± Cδ, p± δ′, 0, s± sδ) ∈ Q (5.4.22)

where δ′ ∈ R satisfies

(
(−d2 + d+ 1)A− (d− 1)2B + 2d(d− 1)C

)
δ + (d2 − 1)δ′ = 0, (5.4.23)

so that the condition (4) of (5.4.21) holds for y
(1)
± . Since y = (y

(1)
+ + y

(1)
− )/2

and y
(1)
+ ̸= y

(1)
− , we have y /∈ Ext(Q).

[Case 2] A = B = 0 (hence C = s = 0). Then y = p(0, 0, 0, 1, 0, 0) is
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extremal in Q (corresponding to Type I′) since (A,B,C, s) = (0, 0, 0, 0) is an

extreme point of S in Lemma 5.4.1 and since p is uniquely determined by

(5.4.21) (4).

[Case 3] A+B−2C = p. In this case, we claim that y = (A,B,C,A+B−
2C, 0, s) ∈ Ext(Q), which corresponds to Type III′. Indeed, if y is a convex

combination of y
(2)
± = (A±, B±, C±, p±, q±, s±) ∈ Q, then the conditions q =

0 and q± ≥ 0 imply q± = 0. Moreover, the conditions A + B − 2C = p and

A± + B± − 2C± ≤ p± imply A± + B± − 2C± = p±. Now applying Lemma

5.4.1, we can write

y
(2)
+ = (A(1+δ), B(1+δ), C(1+δ), (A+B−2C)(1+δ), 0, s(1+δ)) (5.4.24)

for some δ ∈ R. On the other hand, the TP condition (5.4.21) (4) for y
(2)
+

gives

(dA+ 2(d− 1)B − 2(d− 1)C) δ = 0. (5.4.25)

However,

dA+ 2(d− 1)B = A+ (d− 1)B + (d− 1)(A+B) ≥ 2(d− 1)C (5.4.26)

since A + B ≥ 2C, and the equality above holds only if A = B = C = p =

s = 0 which is impossible. Therefore, (5.4.25) holds only if δ = 0, and hence

we have y = y
(2)
+ = y

(2)
− .

Finally, we can proceed analogously when p = 0 and get the tuples of

Type II′ and Type IV′ as extreme points of Q.

5.4.3 Proof of Theorem 5.3.6 when d = 2

When d = 2, we have an additional relation

Ve − V(12) − V(13) − V(23) + V(123) + V(132) = 0. (5.4.27)
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Therefore, {Vσ}σ∈S3
is no longer linearly independent, and both the spaces

Inv(U⊗3) = span {Vσ : σ ∈ S3} and Inv(U ⊗U ⊗U) = span {Tσ : σ ∈ S3} are

5-dimensional. In particular, we have Inv(O⊗3
+ ) = Inv(U ⊗ U ⊗ U) in this

case.

We can write a general element in Cov(U,UU) as M =
∑

σ∈S3\{e} aσMσ.

Then M is positive if and only if
a(12), a(13), a(23) ≥ 0 and a(132) = a(123),

a(12) + a(13) + a(23) + a(123) + a(132) ≥ 0,

(a(12) + a(13) + a(23) + a(123) + a(132))a(23) ≥ |a(23) + a(123)|2,
(5.4.28)

by following the same proof in Lemma 5.3.9. Now let us write (r, s) =

(Re(a(123)), Im(a(123))) for convenience and consider a linear isomorphism

β̃ : (a(12), a(13), a(23), r, s) 7→ (a(12), A,B,C, s), (5.4.29)

of R5, where A = a(12) + a(13) + a(23) + 2r, B = a(23), and C = a(23) + r.

Then the set Q̃ =
{
β̃(a(12), a(13), a(23), r, s) : M ∈ Cov1(U,UU)POS

}
is equal

to the set of tuples (a(12), A,B,C, s) ∈ R5 satisfying
(1) A,B ≥ 0,

(2) AB ≥ C2 + s2,

(3) 0 ≤ a(12) ≤ A+B − 2C,

(4) A+B − C = 1
2
.

(5.4.30)

In order to find the extreme points y = (a(12), A,B,C, s) of Q̃, note that

we still have AB = C2 + s2 as in the proof of Lemma 5.3.11. Moreover, we

have a(12) = 0 or A + B − 2C since y is a convex combination of y+ =

(A + B − 2C,A,B,C, s) and y− = (0, A,B,C, s). Therefore, we can list all

possible extreme points of Q̃ in the following two types:

Type I′ (A+B − 2C,A,B,C,±
√
AB − C2),

Type II′ (0, A,B,C,±
√
AB − C2),
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for A,B ≥ 0, AB ≥ C2, and A + B − C = 1
2
. Moreover, any extreme point

of Type I′ corresponds to a tuple

(a(12), a(13), a(23), r, s) = (A+B − 2C, 0, B, C −B,±
√
AB − C2), (5.4.31)

so the associated linear map M =
∑

σ∈S3\{e} aσMσ is CP by Lemma 5.3.10

(note that Lemma 5.3.10 (1) still gives a sufficient condition for M to be CP

when d = 2). Similarly, any extreme point of Type II′ corresponds a CCP

map. In other words, every element in Ext(Cov1(U,UU)POS) is CP or CCP,

thus POS = DEC holds in Cov1(UU,U)POS . This completes the proof of

Theorem 5.3.6 by Corollary 4.3.4.

5.4.4 Quantum orthogonal symmetry

Within the framework of compact quantum groups, the orthogonal group

O(d) is understood as the space C(O(d)) of continuous functions on O(d)

endowed with the co-multiplication ∆ : C(O(d)) → C(O(d) × O(d)) given

by

(∆f)(x, y) = f(xy) (5.4.32)

for all x, y ∈ O(d) and f ∈ C(O(d)). Moreover, there exists a family of

continuous functions (πij)1≤i,j≤d generating C(O(d)) and

∆(πij) =
d∑

k=1

πik⊗πkj ∈ C(O(d))⊗minC(O(d)) ∼= C(O(d)×O(d)) (5.4.33)

for all 1 ≤ i, j ≤ d, where ⊗min means the minimal tensor product between

C∗-algebras.

The free orthogonal quantum group O+
d is a liberation of O(d) in the

sense that the space C(O+
d ) of ‘non-commutative’ continuous functions on

O+
d is the universal unital C∗-algebra generated by d2 self-adjoint operators

uij satisfying that u =
d∑

i,j=1

eij ⊗ uij is a unitary, i.e. u∗u = uu∗ = Id ⊗ 1
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in Md ⊗ C(O+
d ). The quantum group structure is encoded in the unital ∗-

homomorphism ∆ : C(O+
d ) → C(O+

d ) ⊗min C(O+
d ) determined by

∆(uij) =
d∑

k=1

uik ⊗ ukj.

Then u =
d∑

i,j=1

eij⊗uij is the standard unitary representation of O+
d satisfying

uc =
d∑

i,j=1

eij ⊗ u∗ij = u in the sense of [Wor87, Ban96]. The 3-fold tensor

representation u⊠ u⊠ u ∈M⊗3
d ⊗ C(O+

d ) of u is defined by

u⊠ u⊠ u =
d∑

i1,j1,i2,j2,i3,j3=1

ei1j1 ⊗ ei2j2 ⊗ ei3j3 ⊗ ui1j1ui2j2ui3j3 . (5.4.34)

Then the space Inv(O⊗3
+ ) in Section 5.3.2 is understood as the space Inv(u⊠

u⊠ u) of operators X ∈M⊗3
d satisfying

(u⊠ u⊠ u) · (X ⊗ 1) = (X ⊗ 1) · (u⊠ u⊠ u) (5.4.35)

in view of [LY22]. To sketch a proof of this fact, we can observe that the 5

operators Tσ (σ ∈ S3\ {(13)}) in (5.3.20) are linearly independent, and the

operators Tσ satisfy (5.4.35) using the identity

(u⊠ u)(|Ωd⟩ ⊗ 1) = |Ωd⟩ ⊗ 1. (5.4.36)

Thus, Inv(O⊗3
+ ) ⊆ Inv(u⊠u⊠u). Moreover, the space Inv(u⊠u⊠u) should

be of dimension five thanks to the representation theory of O+
d (see Corollary

6.4.12 and Corollary 5.3.5 of [Tim08]). Hence, we have Inv(O⊗3
+ ) = Inv(u ⊠

u⊠ u).
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국문초록

본 학위논문에서는 추상조화해석학에서의 방법론을 적용하여 양자정보이론의 흥미

로운 영역들을 들여다 보고자 한다. 본 논문의 구성은 저자의 학위과정 중 연구결과

[BCL+22, PJPY23, PY23]에 기반하여, 독립적인 주제를 담고 있는 두 개의 파트로

나누어 볼 수 있다.

첫 번쨰 파트에서는 가우시안상태와 안정자상태 (stabilizer state)가 흥미로운

수학적 유사성을 가짐에 착안하여, 일반화 된 가우시안상태의 정의를 제안하는것이

주된 목표이다. 이를 위해, 적당한 사교구조를 가진 국소컴팩트가환군 (LCA (locally

compact abelian) 군)을 물리적 위상공간 (phase space)으로 사용하는 추상위상공

간을 생각한다. 이러한 프레임워크 내에서 우리는 일반화 된 Weyl 유니터리 작용소

및 양자특성함수를 자연스럽게 정의할 수 있다. 그러고나면 LCA 군 위에서 정의된

여러가지 가우시안 분포의 모델 중 ’Bernstein 방식’을 적용하여 추상적인 가우시

안상태를 정의해 볼 수 있다. 놀랍게도 이러한 추상적 가우시안상태는 보존가우시

안상태 및 안정자상태 뿐 아니라 양자이론에 등장하는 여러가지 중요한 개념들을

어우르는 보편적인 방식을 제공해 준다. 그 뿐 아니라, 위상공간이 완전분리 (totally

disconnected) LCA군으로부터비롯된경우,순수가우시안상태는각각의Wigner준

확률분포 (quasi-distribution)가 확률분포를 이룬다는 성질로부터 완전히 특정지을

수있게된다.이는보존시스템에서의 Hudson정리를다른종류의위상공간에서얻은

것으로 볼수 있어 ’가우시안상태’라는 명칭에 또 하나의 정당성을 부여해 준다. 또한

위 결과는 Gross의 결과를 일반화 한 것이기도 하다.

두 번째 파트에서는 컴팩트군 표현에 대한 대칭성 하에서의 양자얽힘이론을 다

룬다. 양자얽힘은 양자정보프로세에서의 핵심적인 자원 역할을 하고, 최근 몇 년간

양자얽힘의 수학적 구조를 파악하기 위해 수많은 노력이 이루어져 왔다. 일반적으로

Størmer가도입한사상콘 (mapping cone)사이의쌍대성으로부터양자얽힘과관련된

많은개념들을설명할수있음에도,양자얽힘자체에대한계산복잡도적인어려움으로

인해 이를 효과적으로 다루는 것은 쌍대성만으로는 충분하지 않다. 본 학위논문에서

는 이러한 쌍대성이 일반적인 상황 뿐 아니라 컴팩트군 대칭성을 부여하였을때에도

잘적용된다는사실을살펴본다.이관찰로부터다음의두가지중요한결과를얻을수
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있다: 컴팩트군 대칭 하에서의 (1) 얽힘 관측기 (entanglement witness) 및 슈미트수

관측기 (Schmidt number witness) 사용의 최적화, (2) ’PPT=얽힘’ 문제와 ’양사상=

분해가능사상’ 문제의 동치성. 위 결과를 적용하여 양자얽힘과 관련된 여러가지 구체

적인사례분석과더불어다양한난제를해결해줄수있었는데,이러한점에서우리의

결과가 단순 이론에 그치지 않고 강력한 응용가치가 있음을 알아보도록 한다.

주요어휘: 추상조화해석학, 군 표현, 양자정보이론, 가우시안상태, 양자얽힘,

슈미트수

학번: 2016-20234

161



감사의 글


	Abstract
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Abstract harmonic analysis
	2.1.1 Locally compact abelian groups and Fourier analysis
	2.1.2 Compact groups and invariant operators

	2.2 Quantum entanglement
	2.2.1 Separability and PPT property
	2.2.2 Schmidt number and positive maps


	3 Abstract Gaussian states
	3.1 Preliminaries on general quantum kinematical systems
	3.1.1 Phase space structure
	3.1.2 Weyl systems
	3.1.3 Fermions and hardcore bosons

	3.2 Characteristic and Wigner functions of quantum states
	3.3 Gaussian states in general quantum kinematical systems
	3.4 Weyl systems over 2-regular groups
	3.4.1 Systems admitting compact open subgroups
	3.4.2 General 2-regular systems
	3.4.3 Pure Gaussian states

	3.5 Angle-number systems
	3.6 Fermions and hard-core bosons
	3.7 Hudson's theorem for 2-regular totally disconnected groups

	4 Mapping cone and compact group symmetry
	4.1 General theory of mapping cones
	4.2 Group symmetry methods
	4.2.1 Compact group symmetry and Twirling operations
	4.2.2 Duality between mapping cones under compact group symmetry

	4.3 Entanglement under symmetry

	5 Applications to quantum entanglement
	5.1 Hyperoctaheral group symmetry and entanglement detection
	5.1.1 Covariant positive maps with respect to monomial unitary groups

	5.2 k-positivity and Schmidt number under Orthogonal group symmetry
	5.2.1 k-positivity of orthogonally covariant maps
	5.2.2 Schmidt numbers of orthogonally invariant quantum states

	5.3 Tripartite systems with unitary group symmetries
	5.3.1 Tripartite Werner states
	5.3.2 Tripartite quantum orthogonally invariant quantum states

	5.4 Appendix for Section 5.3
	5.4.1 Characterization of Inv(U 3 ) PPT
	5.4.2 Extremal positive maps
	5.4.3 Proof of Theorem 5.3.6 when d  2
	5.4.4 Quantum orthogonal symmetry


	Bibliography
	Abstract (in Korean)
	Acknowledgement (in Korean)


<startpage>12
Abstract i
Contents iii
1 Introduction 1
2 Preliminaries 7
 2.1 Abstract harmonic analysis 7
  2.1.1 Locally compact abelian groups and Fourier analysis 8
  2.1.2 Compact groups and invariant operators 13
 2.2 Quantum entanglement 14
  2.2.1 Separability and PPT property 14
  2.2.2 Schmidt number and positive maps 16
3 Abstract Gaussian states 20
 3.1 Preliminaries on general quantum kinematical systems 23
  3.1.1 Phase space structure 23
  3.1.2 Weyl systems 25
  3.1.3 Fermions and hardcore bosons 29
 3.2 Characteristic and Wigner functions of quantum states 33
 3.3 Gaussian states in general quantum kinematical systems 39
 3.4 Weyl systems over 2-regular groups 44
  3.4.1 Systems admitting compact open subgroups 45
  3.4.2 General 2-regular systems 54
  3.4.3 Pure Gaussian states 56
 3.5 Angle-number systems 63
 3.6 Fermions and hard-core bosons 65
 3.7 Hudson's theorem for 2-regular totally disconnected groups 67
4 Mapping cone and compact group symmetry 77
 4.1 General theory of mapping cones 78
 4.2 Group symmetry methods 80
  4.2.1 Compact group symmetry and Twirling operations 80
  4.2.2 Duality between mapping cones under compact group symmetry 85
 4.3 Entanglement under symmetry 90
5 Applications to quantum entanglement 94
 5.1 Hyperoctaheral group symmetry and entanglement detection 94
  5.1.1 Covariant positive maps with respect to monomial unitary groups 102
 5.2 k-positivity and Schmidt number under Orthogonal group symmetry 104
  5.2.1 k-positivity of orthogonally covariant maps 105
  5.2.2 Schmidt numbers of orthogonally invariant quantum states 111
 5.3 Tripartite systems with unitary group symmetries 123
  5.3.1 Tripartite Werner states 124
  5.3.2 Tripartite quantum orthogonally invariant quantum states 129
 5.4 Appendix for Section 5.3 134
  5.4.1 Characterization of Inv(U 3 ) PPT 134
  5.4.2 Extremal positive maps 135
  5.4.3 Proof of Theorem 5.3.6 when d  2 141
  5.4.4 Quantum orthogonal symmetry 143
Bibliography 145
Abstract (in Korean) 161
Acknowledgement (in Korean) 163
</body>

