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Abstract

In cryptography, using large or complex mathematical structures is often re-
quired for security or other functionality. On the other hand, small or moderate-
sized messages with a familiar algebraic structure are used in real-life compu-
tations. Regarding this discrepancy, similar concepts of embedding multiple mes-
sages into a large structure while preserving their algebra have been independently
studied in various contexts of secure computation. This includes the packing tech-
nique in homomorphic encryption (HE) and the reverse multiplication-friendly
embedding (RMFE) in information-theoretically secure multi-party computation
(MPC).

In this thesis, we formally define homomorphic packing and initiate a unified
study of related concepts in various contexts of cryptography. We review existing
packing methods through our systematic framework and prove several mathemat-
ical limitations on the performance of homomorphic packing.

As an application, we devise a new packing method and utilize it to design
an HE-based MPC protocol for Z2k-messages. Our results on the limitations of
homomorphic packing justify our approaches and design choices for the packing
method and the MPC protocol.

Keywords: Cryptography, Homomorphic packing, Homomorphic encryption, Se-
cure multi-party computation, Reverse multiplication-friendly embedding, Z2k

Student Number: 2017-28540
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Chapter 1

Introduction

In cryptography, using large or complex mathematical structures is often

required for security or other functionality. On the other hand, small or

moderate-sized messages with a familiar algebraic structure are used in real-

life computations. Regarding this discrepancy, similar concepts of embedding

multiple messages into a large structure while preserving their algebra have

been independently studied in various contexts of secure computation:

HE Packing. Homomorphic encryption (HE), which allows computations

on ciphertexts without decryption, is such a versatile tool that it is often re-

ferred as the holy grail of cryptography. After Gentry’s breakthrough [Gen09],

HE has undergone extensive study and development. HE is now considered to

be exploitable in real-life applications (e.g. privacy-preserving machine learn-

ing [KSK+18]) and regarded as a core building block in various cryptographic

primitives (e.g. secure multi-party computation [DPSZ12]).

One drawback of contemporary lattice-based HE schemes [BGV12, FV12]

is that their plaintext space is of the form Zq[x]/�M(x), as their security is

based on Ring Learning with Errors (RLWE) [LPR10]. That is, these schemes

are homomorphic with regards to the addition and multiplication of polyno-
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CHAPTER 1. INTRODUCTION

mial ring Zq[x]/�M(x). This raises a question of how to homomorphically

encode messages into the plaintexts, as our data are usually binary bits,

integers, fixed/floating point numbers, or at least Zp and Fpk .

Among a line of works on how to encode data into HE plaintexts [CJLL17,

CLPX18, CIV18, CKKS17], Smart-Vercauteren [SV10, SV14] first introduced

the idea of packing several Zp (or Fpk) elements into the HE plaintext space

Zp[x]/�M(x) via CRT1 ring isomorphism with well-chosen prime p. Their

simple yet powerful technique enables SIMD2-like optimizations and en-

hances amortized performance. That is, with a polynomial packing method,

we can securely compute on multiple Zp-messages simultaneously by homo-

morphically computing on a single packed HE plaintext in Zp[x]/�M(x).

In particular, through the packing, the complex multiplicative structure of

Zp[x]/�M(x) embeds the more handy coordinate-wise multiplication (a.k.a.

Hadamard product) of Zn

p
, where n denotes the number of packed messages.

Packing has now become a standard technique in HE research, and it is not

too much to say that the performance of HE applications are determined by

how well packings are utilized.

However, this conventional packing method has a limitation: it cannot

(e�ciently) pack Z2k-messages.3 This limitation has recently attracted atten-

tion due to development of secure multi-party computation (MPC) over Z2k

secure against actively corrupted majority by SPDZ2k [CDE+18]. SPDZ2k

follows the framework of HE-based MPC protocol SPDZ [DPSZ12], while

targeting Z2k-messages rather than prime field Zp-messages, with a moti-

vation from the fact that Z2k arithmetic matches closely what happens on

standard CPUs. In this context, Overdrive2k [OSV20], whose goal is an e�-

1Chinese Remainder Theorem
2Single Instruction, Multiple Data
3The original method of [SV10] does not consider packings for Zpk . Gentry-Halevi-

Smart [GHS12] later generalized the method to support such packing. However, this

method achieves only considerably low e�ciency. See Section 4.1.1.
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CHAPTER 1. INTRODUCTION

cient construction of HE-based MPC over Z2k , came up with a new and more

involved polynomial packing method for Z2k-messages (Section 4.1).

RMFE in Perfectly Secure MPC. Another context where polynomial

packings appear is information-theoretically secure MPC (or perfectly secure

MPC). A main tool in this area is Shamir’s linear secret sharing scheme(LSSS).

A cumbersome fact when using LSSS is that the number of shares is restricted

by the field where computation takes place.4 Thus, it is standard to lift the

computation to a larger field which supports enough number of shares, but

this causes substantial overheads. In their seminal work [CCXY18], Cascudo-

Cramer-Xing-Yuan first defined and studied reverse multiplication-friendly

embedding (RMFE) which is, roughly speaking, an embedding of several el-

ements of small finite field into a larger finite field while providing some-

what homomorphism of degree-2. Note that an RMFE can be indeed viewed

as a polynomial packing Fn

pk
! Fpd

⇠= Fp[x]/f(x), where p is a prime and

f(x) 2 Fp[x] is an irreducible polynomial of degree d. Surprisingly, [CCXY18]

constructed constant-rate RMFEs, leveraging algebraic geometry, and ap-

plied them to remove logarithmic overhead in amortized communication com-

plexity which appears to enable Shamir’s secret sharing. Since [CCXY18],

RMFE has become a standard tool in information-theoretically secure MPC,

to achieve linear amortized communication cost while preserving optimal

corruption tolerance: [BMN18, DLN19, CG20, CXY20, DLSV20, PS21].

In [CRX21], the notion of RMFE was extended to over Galois rings for

construction of e�cient perfectly secure MPC over Zpk . Again, RMFE over

Galois rings for Zpk-messages can be viewed as a polynomial packing Zn

pk
!

GR(pk, d) ⇠= Zpk [x]/f(x), where p is a prime and f(x) 2 Zpk [x] is a degree-d

irreducible polynomial in Fp[x].

4Indeed, the number of evaluation points is bounded by the size of the field.

3



CHAPTER 1. INTRODUCTION

Other Contexts. Other than HE and perfectly secure MPC, there are still

more areas where polynomial packings are used for amortization: correlation

extraction for secure computation [BMN17], zk-SNARK [CG22], etc. More-

over, we believe that polynomial packing will be even more prominent and

universal tool for e�ciency and practicality in the future: (i) RLWE-based

cryptosystems are emerging, where plaintexts are Zq[x]/�M(x); (ii) Secure

computation is emerging, where some parts of protocols need to be large or

of certain form due to security or mathematical properties required, whereas

where we actually want to compute in is (extremely) small and typical such

as F2 or Z232 .

1.1 Contributions and Results

Unified Definition and Survey. In this work, we formally define homo-

morphic packing methods, which can be understood as (somewhat) homo-

morphic encoding for copies of a small ring, e.g. Zp or Fpk , into a larger

ring, e.g. Zq[x]/f(x), (Section 3.1). The notion of polynomial packing uni-

fies forementioned concepts in various contexts of cryptography, including

HE packing and RMFE in perfectly secure MPC. Then, we gather existing

packing methods in one place. This includes RMFE (Section 2.3 and 3.1),

classic HE packing methods (Section 3.1), and recent development occurred

in HE-based MPC over Z2k (Section 4.1). We also define several properties

of homomorphic packing (Section 3.2) and analyze existing homomorphic

packing methods regarding these properties (Section 4.3).

We then provide decomposition lemmas which suggest that it is enough

to study packing methods for Zn

pk
(or Fn

pk
) into Zpt [x]/f(x) where t � k

and p is prime, instead of general case of Zn

P
(or Fn

P
) into ZQ[x]/f(x) where

P,Q 2 Z+ (Section 3.3). The results also rule out the possibility of using

composite modulus for better packing.

4



CHAPTER 1. INTRODUCTION

New Construction and Application to MPC over Z2k . We propose

a new e�cient homomorphic packing method for Z2k-messages (Section 4.2)

and apply it to secure multi-party computation (MPC) protocol over Z2k

(Chapter 5). Our protocol is secure against actively corrupted majority and

based on non-trivial adaptations of techniques used in the finite field case

to the Z2k case. Our techniques improve the e�ciency of MPC over Z2k

considerably.

Upper Bounds and Impossibility. We prove several upper bounds and

impossibility results on packing methods for Zpk or Fpk-messages.

• Upper Bounds on Packing Density (Section 6.1): We evaluate the ef-

ficiency of packing methods by packing density which measures how

densely the messages are packed in a plaintext (Def. 3.2.1).5 We prove

that, when a packing method provides somewhat homomorphism upto

degree-D polynomials, the packing density is roughly upper bounded by

1/D (Thm. 6.1.5 and 6.1.14). These results have several implications:

– Our new homomorphic packing method 4.2 achieves nearly opti-

mal density in certain parameter regimes (Example 6.1.6). Our

results justify the lifting of our packing (See Section 4.2).

– We provide the first upper bound on RMFE over Galois ring for

Zpk-messages (Example 6.1.7).

– We provide a new proof for upper bound on RMFE, which can

be extended to higher-degree settings unlike the previous proof

(Example 6.1.18).
5We note that packing density di↵ers from ciphertext rate which is the main interest

of recent developments in compressible or optimal-rate FHE [BDGM19, GH19]. Cipher-

text rate measures the ratio of plaintext size to ciphertext size, whereas packing density

measures the ratio of message size to plaintext size. On the distinction of message and

plaintext, please refer to Section 2.1.

5



CHAPTER 1. INTRODUCTION

• Impossibility of Level-consistency (Section 6.2): The notion of level-

consistency captures the property whether packings are decodable in

an identical way at di↵erent multiplicative levels (Def. 3.2.2). The level-

consistency is a desirable feature as it allows homomorphic computa-

tion between di↵erent packing levels. We prove su�cient and necessary

conditions on parameters to allow a level-consistent packing method.

These results have the following implications:

– HElib packing [HS15] (a.k.a. GHS packing [GHS12], Section 4.1.1)

is essentially the optimal method to use in fully homomorphic

encryption(FHE) (Example 6.2.6).

– It is impossible to construct e�cient level-consistent packing meth-

ods in most cases. This justifies the use of level-dependent packings

in SPDZ-like MPC protocols over Z2k [OSV20, CKL21] and high-

lights the usefulness of the trick proposed in Chapter 5.4, which

closed the gap between the level-consistent and level-dependent

packing methods in so-called reshare protocol. (See Section 6.2.)

• Impossibility of Surjectivity (Section 6.3): For a packing method intoR,

the notion of surjectivity captures the condition whether every element

of R is decodable (Def. 3.2.5). This distiction is essential when design-

ing a cryptographic protocol with the packing method in a malicious

setting, where an adversary might freely deviate from the protocol. If

there is an element in R which fails to decode, a malicious adversary

might make use of the element to illegitimately learn information of

other parties, if such invalid packings are not properly handled. We

prove su�cient and necessary conditions on parameters to allow a sur-

jective packing method. Our results suggest that it is impossible to

construct a meaningful surjective packing method in most cases. This

6



CHAPTER 1. INTRODUCTION

justifies the use of non-surjective packings and the need of ZKPoMK6,

which ensures an HE ciphertext encrypts a validly packed plaintext, in

SPDZ-like MPC protocols over Z2k [OSV20, CKL21].

1.2 Included Publications

This thesis contains the results of the following papers.

• [CKL21] Jung Hee Cheon, Dongwoo Kim, and Keewoo Lee. MHz2k:

MPC from HE over Z2k with New Packing, Simpler Reshare, and Better

ZKP. In Advances in Cryptology – CRYPTO 2021.

• [CL22] Jung Hee Cheon and Keewoo Lee. Limits of Polynomial Pack-

ings for Zpk and Fpk . In Advances in Cryptology – EUROCRYPT 2022.

6Zero-knowledge proof of message knowledge

7



Chapter 2

Preliminaries

2.1 Notations and Terminologies

- In this work, we only consider finite commutative rings with unity. Thus,

we omit the long description and simply refer them as rings. Readers must

understand the term ring as finite commutative rings with unity, even if

not explicitly stated.

- In this work, we only consider monic polynomials when defining quotient

rings. Thus, we omit description on monic property throughout the thesis

for readability. Readers must understand any polynomials defining quotient

rings as monic polynomials, even if not explicitly stated.

- This work carefully distinguishes between the use of the terms message

and plaintext. Messages are those we really want to compute with. On

the other hand, plaintexts are defined by encryption scheme (particularly,

HE schemes) we are using. In this work, messages are in Zpk or Fpk and

plaintexts are in Zq[x]/f(x).

- For prime fields, we use both notations Fp and Zp, depending on whether

we want to emphasize that it is a field or that it is the ring of integer

modulo p.

8



CHAPTER 2. PRELIMINARIES

- The multiplicative order of b modulo a is denoted as orda(b).

- We use Inva(b) to denote the smallest positive integer which is a multi-

plicative inverse of b modulo a.

- We use � to denote the coordinate-wise multiplication (a.k.a. Hadamard

product) in products of rings.

- In a product of rings R
n, the element ei denotes a standard unit vector

whose i-th coordinate is 1 and the other coordinates are 0.

- We denote the M -th cyclotomic polynomial as �M(x) and the Euler’s to-

tient function as �(·).
- We use GR(pk, d) to denote the Galois ring, a degree-d extension of Zpk .

- We use notations [n] := {1, 2, · · · , n} and [0, n] := {0, 1, · · · , n}.

2.2 Factorization of Cyclotomic Polynomials

2.2.1 Factorization of �M(x) in Zpk [x]

We first recall Hensel’s lifting lemma. For proof and detailed discussions,

refer to [Wan03] or other textbooks.

Lemma 2.2.1 (Hensel Lifting). Let p be a prime and f(x) 2 Z[x] be a monic

polynomial which factorizes into
Q

r

i=1 gi(x)
`i (mod p), where gi(x)’s are dis-

tinct irreducible polynomials in Fp[x]. Then, there exist pairwise coprime

monic polynomials f1(x), · · · , fr(x) 2 Zpk [x] such that f(x) =
Q

r

i=1 fi(x)

in Zpk [x] and fi(x) = gi(x)`i (mod p), for all i 2 [r].

When gcd(M, p) = 1, �M(x) factors into
Q

r

i=1 gi(x) in Fp[x], where gi(x)

are distinct irreducible polynomials of degree d := ordM(p). Thus, '(M) =

r ·d holds. To see this, consider a primitive M -th root of unity in a su�ciently

large extension field of Fp. Then, it is easy to see that the number of its

conjugates is d which coincides with the degree of its minimal polynomial.

Applying Hensel’s lemma, we have a factorization �M(x) =
Q

r

i=1 fi(x) in

9



CHAPTER 2. PRELIMINARIES

Zpk [x], where deg(fi) = d and fi(x) = gi(x) (mod p). Such factorization

induces the following CRT ring isomorphism.

Zpk [x]/�M(x) ⇠=
rY

i=1

Zpk [x]/fi(x) (2.1)

Each Zpk [x]/fi(x) is often referred to as a CRT slot of Zpk [x]/�M(x). In

this thesis, we frequently refer to the isomorphism Eq. 2.1 and the notation

'(M) = N = r · d.

2.2.2 Irreducibility of �2m(x) in Z2k [x]

We note that the above factorizations (Sec. 2.2.1) hold only when gcd(M, p) =

1. In particular, we have the following irreducibility result.

Proposition 2.2.2 (Irreducibility of �2m(x) in Z2k [x]). For M = 2m, cyclo-

tomic polynomial �M(x) is irreducible modulo 4, i.e. there are no f(x), g(x) 2
Z4[x] such that f(x) · g(x) = �M(x) (mod 4) and deg(f), deg(g) � 1.

Proof. Suppose such f(x) and g(x) exist. Let f(x) :=
Pdf

i=0 fi · X i and

similarly for g(x), with df + dg = '(M) = 2m�1. Since �M(x) factorizes

into (X + 1)2
m�1

in F2[x], f(x) and g(x) must be X
df + 1 = (X + 1)df

and X
dg + 1 = (X + 1)dg in F2[x], respectively. Thus, fi = 0 (mod 2) for

0 < i < df , and gi = 0 (mod 2) for 0 < i < dg. Meanwhile, we can as-

sume fdf = gdg = 1 (mod 4) without loss of generality. Also note that, since

f0 · g0 = 1 (mod 4), either f0 = g0 = 1 or f0 = g0 = 3 must hold modulo 4.

Suppose df 6= dg, and without loss of generality assume df > dg. Consider

the dg-th coe�cient of �M(x). It is 0 mudulo 2 as �M(x) = X
2m�1

+ 1.

However, expressing it as
Pdg

i=0 fi · gdg�i = f0 · gdg (mod 2), it is 1 modulo 2

and leads to a contradiction. Thus, df = dg must hold.

Again, consider the dg-th coe�cient of �M(x). It is 0 mudulo 4 as �M(x) =

X
2m�1

+1. However, expressing it as
Pdg

i=0 fi ·gdg�i = f0 ·gdg+fdf ·g0 (mod 4),

10



CHAPTER 2. PRELIMINARIES

it is 2 modulo 4 and leads to a contradiction. Thus, such f(x) and g(x) do

not exist.

2.3 RMFE

Reverse multiplication-friendly embeddings (RMFE) were first defined and

studied in-depth by [CCXY18].1 At a high level, RMFEs are embeddings of

several elements of small finite field into a larger finite field, while providing

somewhat homomorphism of degree-2.

Definition 2.3.1 (RMFE). A pair of maps (', ) is called a (n, d)pk-reverse

multiplication-friendly embedding (RMFE) if it satisfies the following.

• The map ' : Fn

pk
! Fpkd is Fpk-linear.

• The map  : Fpkd ! Fn

pk
is Fpk-linear.

• For all a, b 2 Fn

pk
, it holds  ('(a) · '(b)) = a� b

Surprisingly, [CCXY18] constructed families of (n, d)pk-RMFE where the

density n/d converges to some constant, for arbitrary prime power pk, lever-

aging algebraic geometry. That is, [CCXY18] constructed constant-rate RM-

FEs. For instance, we have a family of (n, d)2-RMFE with n/d ! 0.203 from

[CCXY18].2 Since this seminal work, RMFE has become a standard tool

in information-theoretically secure MPC, to achieve linear amortized com-

munication cost while preserving optimal corruption tolerance: [CCXY18,

BMN18, DLN19, CG20, CXY20, DLSV20, PS21]. RMFE was also leveraged

in zk-SNARK context recently [CG22].

1Nonetheless, this object was also previously studied in [BMN17] to amortize oblivious

linear evaluations (OLE) into a larger extension field for correlation extraction problem in

MPC. However, their construction achieved only sublinear density (See Section 4.1.3).
2We have found out that we can slightly improve this rate by the hybrid approach with

3-free sets (Section 4.1.3), but we omit here for simplicity.

11



CHAPTER 2. PRELIMINARIES

Recently in [CRX21], RMFE over Galois rings was first defined and stud-

ied. It is a natural generalization of RMFE over fields to Galois rings.

Definition 2.3.2 (RMFE over Galois Ring). A pair of maps (', ) is called

an (n, d)pr -RMFE over modulus pk if it satisfies the following.

• The map ' : GR(pk, r)n ! GR(pk, d) is GR(pk, r)-linear.

• The map  : GR(pk, d) ! GR(pk, r)n is GR(pk, r)-linear.

• For all a, b 2 GR(pk, r)n, it holds  ('(a) · '(b)) = a� b

The authors also showed that any (n, d)pr -RMFE over fields can be natu-

rally lifted upto an (n, d)pr -RMFE over modulus pk. That is, there are asymp-

totically good RMFE also in the Galois ring setting.

Their goal was to construct e�cient (n, d)p-RMFEs over modulus pk for

Zpk-messages as a building block for more e�cient information-theoretically

secure MPC over Zpk . More generally, it seems there are very limited ap-

plications where messages in Galois ring (except Zpk or Fpk) play important

roles. Thus, in our work, we focus on (n, d)p-RMFE over modulus pk for Zpk-

messages. Note that this case can be interpreted as packing Zpk-messages into

GR(pk, d) ⇠= Zpk [x]/f(x) for some degree-d f(x) 2 Zpk [x] which is irreducible

modulo p.

12



Chapter 3

Definitions and Basic Concepts

In this chapter, we formally define homomorphic packing and related con-

cepts which are our main interests in this work. Some basic examples of

packing methods are introduced for illustrative purpose. We also present

some propositions which allow us to modularize our study of homomorphic

packing.

3.1 Homomorphic Packing

We begin with a formal definition of packing.

Definition 3.1.1 (Packing). Let R and R be rings. We call a pair of al-

gorithms (Pack,Unpack) a packing method for n R-messages into R, if it

satisfies the following.

• Pack is an algorithm (possibly probabilistic) which, given a 2 R
n as an

input, outputs an element of R.

• Unpack is a deterministic algorithm which, given a(x) 2 R as an input,

outputs an element of Rn or ? denoting a failure.

13



CHAPTER 3. DEFINITIONS AND BASIC CONCEPTS

• Unpack(Pack(a)) = a holds for all a 2 R
n with probability 1.

For simplicity, the definition is presented a bit generally. In this thesis, we

are mostly interested in the cases where R is Zp with p 2 Z+ (or a finite field

Fpk) and R is a polynomial ring Zq[x]/f(x) with q 2 Z+ and monic f(x).

Notice that in Def. 3.1.1 the ring structure is not considered. Packing

methods are interesting only when algebraic structures of the rings come in,

since otherwise a packing is nothing more than a vanilla data encoding. The

following definition of degree captures quality of (somewhat) homomorphic

correspondence between packed messages and a packing. In this work, we are

interested in packings of at least degree-2.

Definition 3.1.2 (Degree-D Packing). Let P = (Packi,Unpacki)
D

i=1 be a

collection of packing methods for Rn into R. We call P a degree-D packing

method, if it satisfies the following for all 1  i  D:

• If a(x), b(x) satisfy Unpack
i
(a(x)) = a, Unpack

i
(b(x)) = b for a, b 2 R

n,

then Unpack
i
(a(x)± b(x)) = a± b holds;

• If a(x), b(x) satisfy Unpack
s
(a(x)) = a, Unpack

t
(b(x)) = b for a, b 2 R

n

and s, t 2 Z+ such that s + t = i, then Unpack
i
(a(x) · b(x)) = a � b

holds.

Notice that the definition is heavy on the use of Unpack rather than

Pack. Some readers might find it unnatural to define a property of packing

methods with their unpacking structures. However, this is how things are. For

instance, given that a collection of unpacking algorithms (Unpack
i
)D
i=1 allows

a degree-D packing method, it is trivial to find an appropriate collection of

packing algorithms (Packi)Di=1: we can just define Packi as an algorithm which

randomly outputs an preimage of the input regarding Unpack
i
. On the other

hand, if a collection of packing algorithms (Packi)Di=1 is given, it requires non-

trivial computations to find an appropriate collection of packing algorithms

14
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(Unpack
i
)D
i=1 in this case. In this regard, definitions and proofs coming up are

also aligned to Unpack rather than Pack.

Here are some direct but noteworthy consequences of the definition.

Remark 3.1.3. Note that the definition implies that Unpack
i
(c ·a(x)) = c ·a

holds for all c 2 Z with probability 1. In particular, Unpack
i
(0) = 0.

Remark 3.1.4. A packing method P = (Packi,Unpacki)
D

i=1 is of degree-D,

only if P 0 = (Packi,Unpacki)
D

0
i=1 is a degree-D

0 packing method for allD0
< D.

The following are some basic examples of packing methods. More sophis-

ticated examples are introduced in Section 4.1.

Example 3.1.5 (Coe�cient Packing). Let f(x) be a degree-d monic poly-

nomial in Zp[x]. Define Pack as a bijection which maps (a0, · · · , ad�1) 2 Zd

p

to
P

d�1
i=0 ai · xi 2 Zp[x]/f(x). Define Unpack as the inverse of Pack. Then,

(Pack,Unpack) is a degree-1 packing method for Zd

p
into Zp[x]/f(x). We of-

ten refer this method as coe�cient packing. As coe�cient packing is already

too good, we do not further examine degree-1 packing methods in this thesis.

Note that this method also applies to Fpk-messages if degree-1 is su�cient,

since Fn

pk
is isomorphic to Zkn

p
as Zp-modules.

Example 3.1.6 (Conventional HE Packing). When making use of lattice-

based HE schemes, where the plaintext space is of the form Zp[x]/�M(x), it

is standard to choose prime p such that p = 1 (mod M) (and M as a power-

of-two to enable e�cient implementations). Then, �M(x) fully splits in Zp[x],

and Zp[x]/�M(x) ⇠= Z�(M)
p holds. The isomorphism induces a natural packing

method, which is of degree-1, i.e. degree-D for any D 2 Z+. This packing

is more than good in several aspects, but has quite heavy restrictions on

parameters. In particular, the method does not allow packing Z2k-messages.

Example 3.1.7 (HE Packing for Fpd). If one want to pack Fpd-messages

when making use of lattice-based HE schemes, we often choose M so that

15
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�M(x) factorizes into r distinct degree-d irreducible polynomials in Zp[x].

Then, we have Zp[x]/�M(x) ⇠= Fr

pd
. As Example 3.1.6, this isomorphism

induces a natural packing method which is of degree-1, but has even heavier

restriction on parameters.

Example 3.1.8 (RMFE). Essentially, an RMFE is nothing more than a

degree-2 packing method for copies of a finite field Fpk into a larger finite

field Fpd
⇠= Zp[x]/f(x), where p is a prime and f(x) is a monic degree-

d irreducible polynomial in Zp[x]. The only additional requirement is that

the packing algorithm at level-1 and unpacking algorithm at level-2 must

be Zp-linear functions. However, any degree-2 packing method can be easily

transformed to satisfy the requirement.

Example 3.1.9 (RMFE over Galois Ring). Essentially, an RMFE over Ga-

lois ring for Zpk-messages is nothing more than a degree-2 packing method

for copies of Zpk into a larger Galois ring GR(pk, d) ⇠= Zpk [x]/f(x), where p

is a prime and f(x) is a degree-d irreducible polynomial in Zp[x]. The only

additional requirement is that the packing algorithm at level-1 and unpack-

ing algorithm at level-2 must be Zpk-linear functions. However, any degree-2

packing method can be easily transformed to satisfy the requirement.

3.2 Properties of Homomorphic Packing

In this section, we define several properties of homomorphic packing.

3.2.1 Packing Density

First, we define packing density which measures e�ciency of packing meth-

ods. It measures how dense messages are packed in a single packing.

Definition 3.2.1 (Packing Density). For a packing method for Rn into R,

we define its packing density as log(|R|n)/ log(|R|).

16
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Example 3.1.5, 3.1.6, and 3.1.7 have perfect packing density of 1. However,

we will see that these are very special cases. In most cases such perfect

packing density is not achievable, and even moderate packing density is hard

to achieve.

3.2.2 Level-Consistency

We define and examine the concept of level-consistency, which is a favorable

property for a packing method to have.

Definition 3.2.2. ForD > 1, a degree-D packing method (Packi,Unpacki)
D

i=1

is called level-consistent if Unpack
i
is all identical for 1  i  D. Otherwise,

we say a packing method is level-dependent.

The notion of level-consistency captures the property whether packings

are decodable in an identical way at di↵erent levels (Prop. 3.2.3). In an

algebraic viewpoint, a level-consistent packing has a single Unpack for all

levels, which is a ring homomorphism defined on where it does not abort. The

level-consistency is a desirable feature, as it allows homomorphic computation

between di↵erent packing levels. On the other hand, when working with

level-dependent packing methods, we must be careful about whether the

operands are packed in the same packing level as we perform homomorphic

computation on packed messages.

The following proposition says that a level-consistent packing method can

be trivially extended to an arbitrary degree.

Proposition 3.2.3. A level-consistent degree-D packing method P can be

extended to a level-consistent degree-D
0
packing P 0

for arbitrary D
0
> D.

Proof. When P is (Packi,Unpack)Di=1, define P 0 as (Pack1,Unpack)D
0

i=1.

Lastly, we introduce the notion of one-to-one packing which plays an

important role in proving our main result.

17
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Definition 3.2.4 (One-to-one Packing). Let R and R be rings. We say a

packing method (Packi,Unpacki)
D

i=1 for R
n into R is one-to-one, if there is

unique a(x) 2 R such that Unpack
i
(a(x)) = a for all a 2 R

n and i 2 [D].

3.2.3 Surjectivity

We define and examine the concept of surjectivity, which is a favorable prop-

erty for a packing method to have.

Definition 3.2.5 (Surjective Packing). Let R be a ring. We say a degree-

D packing method (Packi,Unpacki)
D

i=1 into R is surjective
1 if there is no

a(x) 2 R such that Unpack1(a(x)) =?.

For a packing method for Rn into R, the notion of surjectivity captures

the condition whether every element of R is decodable. This distiction is

essential when designing a cryptographic protocol with the packing method

in a malicious setting, where an adversary might freely deviate from the

protocol. If there is a(x) 2 R such that Unpack1(a(x)) =?, a malicious

adversary might make use of a(x), when one is supposed to use a valid packing

according to the protocol. The deviation may not only harm the correctness

of the protocol, but also may leak information of honest parties, if such invalid

packings are not properly handled.

The following proposition says that the definition of surjectivity trivially

extends to all levels. The fact plays an important role in proving our main

result.

Proposition 3.2.6. Suppose (Packi,Unpacki)
D

i=1 is a degree-D surjective pack-

ing method for R
n
into R. Then, there does not exist a(x) 2 R such that

Unpack
i
(a(x)) =?, for all i 2 [D].

1In a sense that any element of R could be an image of Pack1(·).

18
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Proof. By surjectivity and multiplicative homomorphic property, it holds

that Unpack2(a(x)) = Unpack1(1) � Unpack1(a(x)) 2 R
n, for all a(x) 2 R.

Likewise, we can proceed inductively upto Unpack
D
(·).

3.3 Decomposition Lemmas

In this section, we state and prove several necessary conditions on existence of

certain packing methods. The following propositions allow us to modularize

our study and focus on the case of packings into Zpt [x]/f(x).

Proposition 3.3.1. Let R be a ring with characteristic p and R be a ring

with characteristic q. There exists a degree-0 packing method (Pack,Unpack)

for R
n
into R only if p divides q.

Proof. Let a(x) be an output of Pack(1). Then, Unpack(q · a(x)) = q · 1 by

Remark 3.1.3. Meanwhile, q · a(x) = 0 in R. Thus, q · 1 = 0 in R
n, again by

Remark 3.1.3.

Proposition 3.3.2. Let R be a ring with characteristic p. Let q = q1 · q2,
where p|q1 and gcd(q1, q2) = 1. There exists a degree-D packing method P
for R

n
into Zq[x]/f(x), if and only if there exists a degree-D packing method

P 0
for R

n
into Zq1 [x]/f(x).

Proof. Suppose (Packi,Unpacki)
D

i=1 is a degree-D packing method P for Rn

into Zq[x]/f(x). Let a(x) satisfy Unpack
i
(a(x)) = a for some a 2 R

n and 1 
i  D. We can identify a(x) with (a1(x), a2(x)) 2 Zq1 [x]/f(x)⇥ Zq2 [x]/f(x)

via CRT isomorphism. Now, consider multiplying a constant Invq1(q2) · q2.
Observe the following.

• (Invq1(q2) · q2) · a = (Invp(q2) · q2) · a = a 2 R
n

• (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) 2 Zq1 [x]/f(x)
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R
n Zq[x]/f(x)

Zq1 [x]/f(x)

Packi

Pack0i
⇡q1

(a) Pack0i

R
n Zq[x]/f(x)

Zq1 [x]/f(x)

Unpacki

◆q1
Unpack0i

(b) Unpack0i

Figure 3.1: Definitions of Pack0
i
and Unpack0

i
in Prop. 3.3.2

• (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 2 Zq2 [x]/f(x)

Thus, if Unpack
i
(a(x)) = Unpack

i
(a1(x), a2(x)) = a then Unpack

i
(a1(x), 0) =

a.

Let ⇡q1 and ◆q1 denote the projection and injection between Zq[x]/f(x)

and Zq1 [x]/f(x) respectively. Then, for all a(x) 2 Zq[x]/f(x), Unpacki(a(x))

is fully determined by ⇡q1(a(x)), given it does not output a failure ?.

Define Pack0
i
:= ⇡q1 � Packi and Unpack0

i
:= Unpack

i
� ◆q1 (Fig. 3.1). Then,

it is straightforward that (Pack0
i
,Unpack0

i
)D
i=1 is a degree-D packing method

for Rn into Zq1 [x]/f(x).

On the other hand, suppose that (Pack0
i
,Unpack0

i
)D
i=1 is a degree-D packing

method for Rn into Zq1 [x]/f(x). Define Packi := ◆q1 � Pack0i and Unpack
i
:=

Unpack0
i
� ⇡q1 (Fig. 3.2). Then, it is straightforward that (Packi,Unpacki)

D

i=1

is a degree-D packing method for Rn into Zq[x]/f(x).

Proposition 3.3.3. Let p = p1 · p2 and q = q1 · q2, where p1|q1, p2|q2 and

gcd(q1, q2) = 1. There exists a degree-D packing method P for Zn

p
into R :=

Zq[x]/f(x), if and only if there exist degree-D packing methods P (j)
for Zn

pj

into Rj := Zqj [x]/f(x) for j = 1, 2.

Proof. Suppose (Packi,Unpacki)
D

i=1 is a degree-D packing method P for Zn

p

into R. Let a(x) 2 R satisfy Unpack
i
(a(x)) = a for some a 2 Zn

p
and
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R
n Zq[x]/f(x)

Zq1 [x]/f(x)

Packi

Pack0i
◆q1

(a) Packi

R
n Zq[x]/f(x)

Zq1 [x]/f(x)

Unpacki

⇡q1
Unpack0i

(b) Unpacki

Figure 3.2: Definitions of Packi and Unpack
i
in Prop. 3.3.2

1  i  D. We can identify a(x) with (a1(x), a2(x)) 2 R1 ⇥R2 and a with

(a1,a2) 2 Zn

p1
⇥ Zn

p2
via CRT isomorphisms. Now, consider multiplying a

constant Invq1(q2) · q2. Observe the following.

• (Invq1(q2) · q2) · a1 = (Invp1(q2) · q2) · a1 = a1 2 Zn

p1

• (Invq1(q2) · q2) · a2 = Invq1(q2) · 0 = 0 2 Zn

p2

• (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) 2 R1

• (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 2 R2

That is, if Unpack
i
(a1(x), a2(x)) = (a1,a2) then Unpack

i
(a1(x), 0) = (a1,0).

The similar holds for j = 2.

Let ⇡pj and ◆pj denote the projection and injection between Zn

p
and Zn

pj

respectively. Also let ⇡qj and ◆qj denote the projection and injection between

R and Rj respectively. Then, for all a(x) 2 R, ⇡pj � Unpack
i
(a(x)) is fully

determined by ⇡qj(a(x)), given it does not output a failure ?.

Define Pack(j)
i

:= ⇡qj � Packi � ◆pj and Unpack(j)
i

:= ⇡pj � Unpack
i
� ◆qj

(Fig. 3.3). Then, it is straightforward that (Pack(j)
i
,Unpack(j)

i
)D
i=1 is a degree-

D packing method for Zn

pj
into Rj.

On the other hand, suppose (Pack(j)
i
,Unpack(j)

i
)D
i=1 are degree-D pack-

ing methods for Zpjn into Rj, for j = 1, 2. Let  p denote the CRT ring
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Zn

p
R

Zn

pj
Rj

Packi

⇡qj◆pj

Pack(j)i

(a) Pack(j)
i

Zn

p
R

Zn

pj
Rj

⇡pj

Unpacki

◆qj

Unpack(j)i

(b) Unpack(j)
i

Figure 3.3: Definitions of Pack(j)
i

and Unpack(j)
i

in Prop. 3.3.3

Zn

p
R

Zn

p1
⇥ Zn

p2
R1 ⇥R2

Packi

 p

Pack(1)i ⇥Pack(2)i

 
�1
q

(a) Packi

Zn

p
R

Zn

p1
⇥ Zn

p2
R1 ⇥R2

Unpacki

 q 
�1
p

Unpack(1)i ⇥Unpack(2)i

(b) Unpacki

Figure 3.4: Definitions of Packi and Unpack
i
in Prop. 3.3.3

isomorphism from Zn

p
to Zn

p1
⇥Zn

p2
. Also, let  q denote the CRT ring isomor-

phism from R to R1 ⇥R2. Define Packi :=  
�1
q

� (Pack(1)
i

⇥Pack(2)
i
) � p and

Unpack
i
:=  

�1
p

� (Unpack(1)
i

⇥Unpack(2)
i
) �  q (Fig. 3.4). Then, it is straight-

forward that (Packi,Unpacki)
D

i=1 is a degree-D packing method for Zn

p
into

R.

According to Prop. 3.3.1 and 3.3.2, to study degree-D packing methods

for copies of a finite field Fpk into Zq[x]/f(x), it is enough to study degree-D

packing methods into Zpt [x]/f(x) for some t � 1. The similar holds for pack-

ing methods for copies of Zp according to Prop. 3.3.1, 3.3.2, and 3.3.3. That

is, to study degree-D packing methods for copies of Zp into Zq[x]/f(x) where

p is an arbitrary integer, it is enough to study degree-D packing methods for

Zn

pk
into Zpt [x]/f(x) for some t � k where p is a prime.

Therefore, from now on, we focus on packing methods for Zn

pk
or Fn

pk
into
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Zpt [x]/f(x) where p is a prime. (Afterwards, p is a fixed prime, even if it is not

explicitly stated.) This is not only because they are the most interesting case

containing Z2k and F2k , but also because they play roles as building blocks

when constructing general packing methods (Prop. 3.3.2, 3.3.3). We note that

level-consistency (Def. 3.2.2) and subjectivity (Def. 3.2.5) are preserved by

the constructions in Prop. 3.3.2 and 3.3.3.
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Chapter 4

Constructions

In this chapter, we introduce previous constructions of homomorphic packing

(Section 4.1) and propose a new e�cient packing method (Section 4.2). We

also analyze and compare these homomorphic packing methods regarding

properties defined in Section 3.2 (Section 4.3).

4.1 Previous Constructions

In continuation of Section 3.1, we give more examples on packing meth-

ods. The following examples are degree-2 packing methods for Z2k-messages,

which are (or can be) used to construct HE-based MPC protocol over Z2k fol-

lowing the approach of SPDZ [DPSZ12]. Most of definitions and statements

in this thesis are motivated from these examples.

4.1.1 HElib Packing

In Example 3.1.6, we introduced the conventional HE packing method for Zq-

messages into Zq[x]/�M(x), where M is a power-of-two and q = 1 (mod M).

However, it is not always applicable, e.g. if we consider Z2k-messages. The
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problem here is that �M(x) never fully splits in Z2k . One way to detour this

problem is the following. It was proposed by Gentry-Halevi-Smart [GHS12]

and generalized by Halevi-Shoup [HS15] to optimize bootstrapping proce-

dure for fully homomorphic encryption (particularly, for HElib [HEl]). In

this work, we will refer this method as HElib packing.

To construct a packing method for Zpk-messages into Zpk [x]/�M(x), choose

M to satisfy gcd(M, p) = 1. Let �M(x) factor into r distinct degree-d irre-

ducible polynomials in Zp[x], where d := ordM(p). Then, we have the fac-

torization �M(x) =
Q

r

i=1 fi(x) in Zpk [x] via Hensel lifting and the CRT ring

isomorphism Zpk [x]/�M(x) ⇠=
Q

r

i=1 Zpk [x]/fi(x). The packing algorithm Pack

puts i-th Zpk-message at the constant term of Z2k [x]/fi(x) and puts zeroes

at the other coe�cients. Define Unpack as the inverse of Pack. It is easy to

see that (Pack,Unpack) defines a degree-1 packing method. However, the

HElib packing achieves very low packing density 1/d.

4.1.2 Overdrive2k Packing

To design an e�cient HE-based MPC protocol over Z2k , Overdrive2k [OSV20]

constructed a degree-2 packing method for Zn

2k into Z2k [x]/�M(x), whereM is

odd (so yielding a CRT ring isomorphism Z2k [x]/�M(x) ⇠=
Q

r

i=1 Z2k [x]/fi(x)

with deg(fi) = d). For construction, they considered the following problem.

Consider a subset A of [0, d� 1] with A = {a1, · · · , am} so that 2ai 6= aj +ak

for all (i, i) 6= (j, k) and ai + aj < d for all i, j. The problem is to find the

maximum value of m = |A| with A for given d. Given a solution m and A for

given d, the packing algorithm of Overdrive2k at level-1 put i-th m messages

in Z2k at the coe�cients of x
ai of an element in Z2k [x]/fi(x) for ai 2 A

and put zeroes at the other coe�cients. Then, via the ring homomorphism,

we can pack r · m messages into a plaintext achieving the packing density

of m/d. The authors Overdrive2k noted that the packing density of their
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method seems to follow the trend of approximately d
0.6
/d.

Since the set A is carefully designed, if we multiply two packed plain-

texts, the (2 · ai)-th coe�cient of the result equals the multiplied value of

ai-th coe�cients of the original plaintexts. That is, Overdrive2k packing is

of degree-2. Note that Overdrive2k packing naturally extends to arbitrary

degree-2 packing methods for Zn

pk
into Zpk [x]/f(x).

4.1.3 Notes on Overdrive2k Packing

There are other cryptography literature those considering similar problems

of Overdrive2k packing [Lip12, BMN17, DLSV20]. They are also interested

in embedding several elements into a larger polynomial ring for amortizing

computations while providing one multiplication. Even though the authors of

Overdrive2k did not present detailed discussions, behind the scene of [Lip12,

BMN17, DLSV20], and Overdrive2k [OSV20], there is one of the central

problems in additive number theory.

3-free Set Problem. A set of numbers no three of which form an arith-

metic progression is called 3-free set (a.k.a. progression-free set or Salem-

Spencer Set). Especially, we are most interested in 3-free subset of [n]. We

denote the size of a largest 3-free subset of [n] by r3(n).

After Erdős and Turán first considered 3-free set and stated the fa-

mous Erdős-Turán conjecture on arithmetic progression [ET36], 3-free set,

its variants, and its generalizations have been researched extensively. The

strongest lower bound on r3(n) until now is given by Behrend [Beh46]:

r3(n) = n/e
O(

p
logn). On the other hand, an upper bound by Bloom [Blo16]

is known: r3(n) = O(n(log log n)4/ log n). Meanwhile, a recent manuscript

by Bloom and Sisask [BS21] claimed a proof of a stronger upper bound:

r3(n) = O( n

log1+c
n
) for some c > 0.

Recall that Overdrive2k considered the following problem to embed ring
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elements as much as they can into a polynomial ring. Consider a subset A

of {0, 1, · · · , d � 1} with A = {a1, · · · , am} so that 2ai 6= aj + ak for all

(i, i) 6= (j, k) and ai+aj < d for all i, j. The problem is to find the maximum

value of m = |A| with A for given d. We denote the solution to this problem

for d by ⇢3(d). Clearly, this problem is closely related to 3-free sets. It is easy

to see that ⇢3(d) = r3(bd+1
2 c).

Constructing 3-free Sets. There is an elementary method constructing

3-free sets via ternary representations of nonnegative integers. If we construct

a set composed of ternary numbers that use only the digits 0 and 1, not 2,

such a set must be a 3-free set. If two of its elements a1 and a2 are the first

and the second of an arithmetic progression of length three, the third a3 must

have the digit two at the position of the least significant digit where a1 and

a2 di↵er. Using this method, we can obtain a 3-free subset of [n] with size

approximately n
log3(2) ⇡ n

0.631, which is considerably smaller than the lower

bound by Behrend. Observing the paper, the authors of Overdrive2k seem

to have only considered this ternary construction.

Note that ternary construction can be naturally extended to (D+1)-ary

construction, yielding a degree-D packing method of density roughly

(d/D)logD+1(2)

d
.

Meanwhile, Behrend’s contruction does not well extend to be used for degree-

D packing methods. We also note that constructing an optimal 3-free subset

requires an intense amount of computation at the current stage of research.

The optimal solutions are known only for small input n’s: Gasarch, Glenn,

and Kruskal [GGK08] found the exact size of the largest 3-free subset of [n]

for n  187.

Generalized 3-free Set Problem. To achieve a better packing density,

Block, Maji, and Nguyen [BMN17] proposed a generalized version of the 3-
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free set problem. The idea is to consider two subsets A and B of {0, 1, · · · , d�
1} with A = {a1, · · · , am} and B = {b1, · · · , bm} so that ai + bi 6= aj + bk for

all (i, i) 6= (j, k) and ai+ bj < d for all i, j. The generalized problem is to find

the maximum value of m = |A| = |B| with A and B for given d. We denote

the solution to this generalized problem for d by ⇢̂3(d). Obviously, ⇢̂3(d) is

greater than ⇢3(d). Applying the solution of generalized 3-free set problem

on polynomial multiplication, we can use two di↵erent embedding methods

for right operands and left operands and directly improve the capacity of

Overdrive2k. However, the asymmetric nature of the generalized problem

significantly reduces freedom in homomorphic computations between packed

plaintexts. Therefore, we exclude this approach from the scope of our study.

4.2 New Packing Method for Z2k-Messages

In this section, we present a new and e�cient Z2k-message packing method

for contemporary SHE schemes, e.g. BGV [BGV12]. Since the conventional

plaintext packing method of using the isomorphism Zt[x]/�M(x) ⇠= Z'(M)
t

does not work when t = 2k, an alternative method is required to provide

high parallelism.

To tackle this problem, unlike previous approaches which packed messages

in coe�cients of a polynomial (Section 4.1.2), we pack messages in evaluation

points of a polynomial. Here, we detour the impossibility1 of interpolation

on Z2k by introducing a tweaked interpolation on Z2k .

1For example, over Z2k , a polynomial f(x) of degree 2 such that f(0) = f(1) = 0 and

f(2) = 1 does not exist.
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4.2.1 Tweaked Interpolation

The crux of our packing method is the following lemma: we can perform

interpolation on Z2k if we lift the target points of Z2k upto a larger ring

Z2k+� , multiplying an appropriate power of two to eliminate the e↵ect of

non-invertible elements.

Lemma 4.2.1 (Tweaked Interpolation on Z2k). Let µ0, µ1, . . . , µn be el-

ements in Z2k . Assume that an integer � is not smaller than ⌫2(n!), the

multiplicity of 2 in the factorization of n!. Then, there exists a polynomial

⇤(x) 2 Z2k+� [x] of degree at most n such that

⇤(i) = µi · 2� 8i 2 [0, n].

Proof. Recall that, for i 2 [0, n], an i-th Lagrange polynomial on [0, n] is

defined as �i(x) :=
Q

j2[0,n]\{i}
x�j

i�j
2 Q[x]. Lagrange polynomial satisfies

�i(x) =

8
<

:
0 if x 2 [0, n] and x 6= i,

1 if x = i.

Note that 2��i(x) has no multiples of 2 in denominators of its coe�cients

since � � ⌫2(n!). Then, we can identify 2��i(x) as a polynomial over Z2k+� of

degree at most n, since the denominator of each coe�cient is now invertible

in Z2k+� . Let �̃i(x) 2 Z2k+� [x] denote the polynomial. Then,

�̃i(x) =

8
<

:
0 if x 2 [0, n] and x 6= i,

2� if x = i.

Now, ⇤(x) :=
P

n

i=0 µi · �̃i(x) 2 Z2k+� [x] satisfies the claimed property.

4.2.2 Packing Method from Tweaked Interpolation

Our tweaked interpolation on Z2k gives an e�cient degree-2 homomorphic

packing for Z2k-messages into Z2k+2� [x]/�M(x). Notice the extra � added
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to preserve packed messages: after multiplying two polynomials constructed

from tweaked interpolation, the resulting polynomial carries a factor of 22�.

In bird’s eye view, our new packing method applies tweaked interpolation

on each CRT slots (Eq. (2.1), Section 2.2), while preventing degree overflow

and modulus overflow when multiplying two packed polynomials. Recall the

isomorphism Eq. (2.1) and the notation '(M) = r ·d of �M(x) (Section 2.2).

Theorem 4.2.2 (Tweaked Interpolation Packing). Let {µij}i,j be Z2k-messages

for i 2 [r] and j 2 [0,
⌅
d�1
2

⇧
]. For integers �, t satisfying � � ⌫2(

⌅
d�1
2

⇧
!) and

t � k+�, there exists L(x) 2 Z2t [x]/�M(x) satisfying the following properties:

Let Li(x) be the projection of L(x) onto the i-th slot Z2t [x]/Fi(x). Then,

for each i and j,

(i) deg(Li(x)) 
⌅
d�1
2

⇧
,

(ii) Li(j) = µij · 2� mod 2k+�.

We call such L(x) a tweaked interpolation packing of {µij}.

Proof. By Lemma 4.2.1, the condition on � guarantees that there exists

Li(x) 2 Z2k+� [x] ⇢ Z2t [x] of degree not greater than
⌅
d�1
2

⇧
such that Li(j) =

µij·2� mod 2k+� for all j 2 [0,
⌅
d�1
2

⇧
]. Now, we can define L(x) 2 Z2t [x]/�M(x)

as the isomorphic image of (L1(x), · · · , Lr(x)) 2
Q

r

i=1 Z2t [x]/Fi(x) from the

CRT isomorphism; L(x) satisfies the property.

The next theorem suggests that the tweaked interpolation packing (The-

orem 4.2.2) homomorphically preserves the messages under (multiplicative)

depth-1 arithmetic circuits. This property implies that we can naturally plug

our packing method into the two-level BGV scheme with a plaintext space

Z2k+2� [x]/�M(x) and exploit it for MPC preprocessing phase.
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Theorem 4.2.3 (Degree-2 Homomorphism). Let L(x) and R(x) be polyno-

mials in Z2k+2� [x]/�M(x) which are tweaked interpolation packings (Theo-

rem 4.2.2, t = k + 2�) of Z2k-messages {µL

ij
} and {µR

ij
}, respectively. For

↵ 2 Z2k , let ↵̃ denote an element of Z2k+2� such that ↵̃ = ↵ (mod 2k). Then,

(a) L(x) +R(x) is a tweaked interpolation packing of {µL

ij
+ µ

R

ij
}.

(b) ↵̃ · L(x) is a tweaked interpolation packing of {↵ · µL

ij
}.

(c) From LR(x) := L(x) ·R(x), one can decode homomorphically multiplied

Z2k-messages {µL

ij
· µR

ij
}.

Proof. Properties (a) and (b) are straightforward from the linearity of pro-

jection map and evaluation map, together with the fact that additions and

scalar multiplications preserves the degree of polynomial.

To prove (c), let Li(x), Ri(x), and LRi(x) respectively be the projection

of L(x), R(x), and LR(x) onto the i-th slot Z2k+2� [x]/Fi(x). Then,

LRi(x) = Li(x) ·Ri(x) in Z2k+2� [x]/Fi(x).

Note that the above equation holds also in Z2k+2� [x]: Since the degree of Li(x)

and Ri(x) are at most
⌅
d�1
2

⇧
, the sum of their degree is less than the degree

d of Fi(x). Therefore,

LRi(j) = Li(j) ·Ri(j) = µ
L

ij
· µR

ij
· 22� (mod 2k+2�),

from which one can decode the desired values.

Remark 4.2.4. We call the packing structure of LR(x) in Theorem 4.2.3(c)

the level-zero tweaked interpolation packing, whereas the original packing

in Theorem 4.2.2 is called level-one packing. We omit the level when the

packing is of level-one.
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Table 4.1: Comparisons on degree-2 packing methods for Z2k-messages

Method HElib Overdrive2k Ours

Level-consistency consistent dependent dependent

t
?
= k t = k t = k t > k

Density 1/d ⇡ d
0.6
/d ⇡ k/(2k + 2d)

Packing Density. Let k(d) denote the packing density of tweaked inter-

polation packing method for Z2k-messages when the cyclotomic polynomial

�M(x) splits into irreducible factors of degree d. Then,

k(d) =
k · bd+1

2 c�
k + 2⌫2(bd�1

2 c!)
�
d
⇡ k

2(k + d)
,

where the approximation follows from ⌫2(bd�1
2 c!) ⇡ d

2 and bd+1
2 c ⇡ d

2 .

Remark 4.2.5. For a fixed Z2k , the packing density of our method (Theo-

rem 4.2.2) depends only on d: it is better to use �M(x) with smaller d. When

d is su�ciently smaller than k, the packing density approaches 1
2 .

Remark 4.2.6. Note that MHz2k packing can be naturally extended to a

degree-D packing method for Zpk-messages into Zpt [x]/�M(x) with gcd(M, p) =

1 of density roughly
k

D · (k + d

p�1)
.

4.3 Analysis and Comparison

In this section, we analyze and compare the homomorphic packing meth-

ods previously given in this chapter, with respect to properties defined in

Section 3.2. This section is summarized in Table 4.1.

Notice that, in HElib packing which is of degree-1, packing algorithms

and unpacking algorithms are identical for all levels, i.e., level-consistent
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(Def. 3.2.2). However, in Overdrive2k and our new packing, the packing algo-

rithm di↵ers for each level, i.e., level-dependent. For example, in Overdrive2k

packing, messages are coe�cients of xai ’s at level-1, and coe�cients of x2·ai ’s

at level-2.2

One big di↵erence between our new packing from the previous packings

is that it uses a larger modulus for plaintext than that of messages. The

other packing methods are sort of coe�cient packing, making it no use of

increasing the modulus for polynomial ring. This di↵erence will serve as one

of the topics in Section 6.1 (e.g. Example 6.1.6).

Note that our new degree-2 packing reaches density of nearly 1/2 when

k is su�ciently larger than d. This is true for typical parameters used in

HE-based MPC over Z2k : k = 64, 128, 196 and d  20. In Section 6.1, we will

show that our packing method achieves a certain form of near-optimality

(Example 6.1.6).

We now examine common features of these methods. Note that there

are invalid packings regarding to these packing methods, i.e., they are non-

surjective packings (Def. 3.2.5). For example, in HElib packing, a(x) 2
Z2k [x]/�M(x) is not a valid packing, i.e. Unpack(a(x)) =?, if a(x) modulo

fi(x) is not a constant.

Also notice that all these packings leverage CRT ring isomorphism, which

is a natural and convenient way to achieve parallelism. They pack messages

into each CRT slot in an identical and independent manner. We refer packing

methods following this approach as CRT packings. However, we shed light

on the possibility that this CRT approach might be hindering us to achieve

a better packing density (Example 6.1.11).

2In Section 6.2, we prove the impossibility of designing e�cient Z2k -message packings

while satisfying level-consistency.
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Figure 4.1: Comparison of packing densities on each method according to d

Concrete E�ciency. Let ⇢̌3(d) denote the packing density of Overdrive2k

packing [OSV20] for given d (Section 4.1.2). In Fig. 4.1a, the rough plots of

packing densities according to d are presented: the lowest one is the plot of

d
0.6
/d which was mentioned as a rough estimate of ⇢̌3(d) in [OSV20]. The

graph suggests that our method has higher packing density than theirs when

k is not too small compared to d. For practical parameters, this is always the

case: in Fig. 4.1b, the exact plots of packing densities on 13  d  68 demon-

strates that the density of our method is higher than that of Overdrive2k.
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Application to MPC over Z2k

In this chapter, we apply our new homomorphic packing method for Z2k-

messages (Section 4.2) to secure multi-party computation (MPC). This chap-

ter illustrates how homomorphic packing can be utilized in secure computa-

tion and provides a rich context for the implications of the limitations proved

later in Chapter 6. To focus on these purposes, we only present the high-level

idea of our protocol in this thesis. For formal descriptions and more detailed

discussions, please refer to [CKL21].

5.1 Background on MPC and SPDZ2k

Secure Multi-Party Computation (MPC) aims to jointly compute a function

f on input (x1, · · · , xn) each held by n parties (P1, · · · , Pn), without reveal-

ing any information other than the desired output to each other. Through

steady development from the feasibility results in 1980s (e.g., [BOGW88]),

MPC research is now at the stage of improving practicality and developing

applications to diverse use-cases: auction [BCD+09], secure statistical anal-

ysis [BJSV15], privacy-preserving machine learning [DEF+19], etc.

Among various settings of MPC, the most important setting in practice is
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the actively corrupted dishonest majority case: corrupted majority is the only

meaningful goal in two-party computation (2PC), and modeling the security

threat as passive (honest-but-curious) adversaries is often unsatisfactory in

real-life applications. At the same time, however, it is notoriously di�cult

to handle actively corrupted majority e�ciently. It is a well-known fact that

lightweight information-theoretically secure primitives are not su�cient in

this setting and we need rather heavier primitives [CK89].

A seminal work BeDOZa [BDOZ11] observed that one can push the use

of heavy public key machinery into a preprocessing phase, without know-

ing input values and functions to compute. Meanwhile in an online phase,

one can securely compute a function using only lightweight primitives. This

paradigm, so-called preprocessing model, spotlighted the possibility of design-

ing an e�cient MPC protocol even in actively corrupted dishonest majority

setting. From then, there have been active and steady research on improv-

ing e�ciency of MPC protocol in this setting: [DPSZ12, DKL+13, KOS16,

KPR18, BCS20, RRKK23].

All previously mentioned works consider MPC only over finite fields where

arithmetic message authentication code (MAC), the main ingredients of the

protocols, is easily defined. Recently, SPDZ2k [CDE+18] initiated a study

of e�cient MPC over Z2k in actively corrupted dishonest majority setting

by introducing an arithmetic MAC for Z2k-messages. This is to leverage

the fact that integer arithmetic on modern CPUs is done modulo 2k, e.g.

k = 32, 64, 128; using MPC over Z2k , one can naturally deal with such arith-

metic. Also, there is no need to emulate modulo prime p operations on CPUs,

simplifying the online phase implementation. The authors of SPDZ2k claimed

that these advantages are much beneficial than the loss from the modified

MAC for Z2k . The claim was convinced by implementation and experimental

results [DEF+19].

In regard to the cost of the preprocessing phase, however, there still re-
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mains a substantial gap between the finite field case and the Z2k case. Par-

ticularly, the authors of SPDZ2k , which is based on oblivious transfer (OT),

left an open problem to design an e�cient preprocessing phase for MPC over

Z2k from lattice-based homomorphic encryption (HE). The motivation here

is that the HE-based approach has proved the best performance in the finite

field case.

The main di�culty is that the conventional message packing method

using the isomorphism of cyclotomic ring Zt[x]/�M(x) ⇠= Z'(M)
t does not

work when t is not prime, especially when t = 2k. This makes it hard to

fully leverage the batching technique of HE and causes ine�ciency compared

to the finite field case. Followup works, Overdrive2k [OSV20] and MonZ2ka

[CDRFG20], proposed more e�cient preprocessing phases for MPC over Z2k ,

yet they do not give a satisfactory solution to this problem.

5.2 Overview of Our Protocol

We propose an MPC over Z2k from Somewhat HE (SHE) in actively cor-

rupted dishonest majority setting. It is based on our new e�cient homomor-

phic packing method for Z2k-messages (Section 4.2) and non-trivial adapta-

tions of techniques used in the finite field case to the Z2k case.

Note that the core of an SHE-based MPC preprocessing phase is the triple

(or authenticated Beaver’s triple [Bea92]) generation protocol which consists

of the following building blocks (see Section 5.3):

• a packing method for SHE which enables parallelism of the protocol

and enhances amortized performance;

• the reshare protocol which re-encrypts a level-0 ciphertext to a fresh

ciphertext allowing two-level SHE to be su�cient for the generation of

authenticated triples;
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• and ZKPoPK (zero-knowledge proof of plaintext knowledge) which

guarantees that ciphertexts are validly generated from a plaintext and

restricts adversaries from submitting maliciously generated ciphertexts.

We present improvements on all of these building blocks for Z2k-messages

and integrate them into our new preprocessing phase, which is compatible

with the online phase of SPDZ2k .

Our New Packing Method for Z2k-messages. Under the plaintext ring

of degree N , our homomorphic packing method (Section 4.2) achieves near

N/2-fold parallelism while providing degree-2 homomorphism, enough for

the preprocessing phase. Previously, the best solution over Z2k of Over-

drive2k [OSV20] (Section 4.1.2) only achieved roughly N/5-fold parallelism.

Thus, our homomorphic packing method directly o↵ers 2.5x improvement in

the overall (amortized) performance of the preprocessing phase. (See Sec-

tion 4.3.)

Reshare Protocol for Level-dependent Packings. A seeming prob-

lem is that it is di�cult to design a level-consistent packing method for

Z2k-messages with high parallelism (Section 4.3), while the previous reshare

protocol for messages in finite fields (with level-consistent packing) should be

modified to be utilized in this setting.1 To this end, in the reshare protocol

of Overdrive2k [OSV20], an extra masking ciphertext with ZKPoPK, which

is the most costly part, is provided. We propose a new reshare protocol for

level-dependent packings, which resolves this problem and closes the gap be-

tween the field case and the Z2k case (Section 5.4). Concretely, in our triple

generation, the total number of ZKPoPK is five as using the original reshare,

1In Section 6.2, we prove the impossibility of designing e�cient Z2k -message pack-

ings while satisfying level-consistency. This justifies the use of level-dependent packings in

SPDZ-like MPC protocols over Z2k and highlights the usefulness of our trick.
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whereas Overdrive2k requires seven. From this aspect, we gain an additional

1.4x e�ciency improvement in total communication cost.

Better ZKPoPKs over Z[x]/�p(x). When the messages are in Z2k , using

power-of-two cyclotomic rings Z[x]/�2m(x) introduces a huge ine�ciency in

packing, since �2m(x) has only one irreducible factor in Z2k [x] (Section 2.2).

Thus, it is common to use odd cyclotomic rings for Z2k-messages. In this case,

however, we cannot leverage known e�cient ZKPoPKs over the ciphertexts

regarding Z[x]/�2m(x), such as TopGear [BCS20].

To this end, we develop an e�cient ZKPoPK over Z[x]/�p(x) where p is

a prime . This new protocol is an adaptation of TopGear to the Z2k case.

The essence of our protocol is that the core properties of power-of-two cyclo-

tomic rings, which was observed in [BCK+14], hold similarly also in prime

cyclotomic rings.2 This fact not only improves the amortized communication

cost, latency, and memory consumption of our ZKPoPK, but can also has

ramifications on works derived from [BCK+14].

ZKP of Message Knowledge. When the message space is Zp for a

moderate-sized prime p, we can take M to satisfy p = 1 (mod M) so that

the plaintext space Zp[x]/�M(x) is isomorphic to Z'(M)
p , a product of the

message space. In this case, we can e↵ortlessly use the conventional packing

method (Example 3.1.6) where any plaintext from Zp[x]/�M(x) is a valid

encoding for some messages from Z'(M)
p . That is, we can use a surjective

packing method (Section 4.3) when dealing with Zp-messages.

However, this is not the case for Z2k-messages. As remarked in Section 4.3,

our new packing method and previous methods for Z2k-messages are not

2In fact, we can prove that the similar property also holds in cyclotomic rings with

M = psqt, where p and q are prime. [CKKL22] This allows us more freedom in the choice

of cyclotomic ring and, thus, better performance.
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surjective except for trivial cases. In fact, we will see that this is inevitable

for Z2k-messages. (See Section 6.3.)

Thus, to achieve malicious security, HE-based protocols with Z2k-messages

must guarantee that each ciphertext encrypts a valid plaintext with respect

to a specific packing method, in addition to the guarantee of valid encryp-

tion. This is an intricacy of the Z2k-message case, which di↵ers from the

Zp-message case where ZKPoPK (for the guarantee of valid encryption) is

su�cient [DPSZ12, DKL+13, KPR18, BCS20].

In this regard, extending ZKPoPK, we conceptualize Zero-Knowledge

Proof of Message Knowledge (ZKPoMK), which guarantees that the given

ciphertext is encrypting a plaintext that is a valid encoding for some mes-

sages with respect to a specific packing method. Indeed, we also propose a

ZKPoMK for our new packing method (Section 4.2) and plug it into our

MPC protocol.

Performance. We can summarize the improvements by our packing (Sec-

tion 4.2) and reshare protocol (Section 5.4) as follows: (i) Our new homo-

morphic packing achieves near 1/2 packing density, 2.5x compared to 1/5

of Overdrive2k [OSV20], (ii) Our reshare protocol requires only 5 ZKPoPKs

which is 1.4x less than 7 ZKPoPKs of Overdrive2k. In total, we can expect

that the amortized communication costs of our protocol will show 3.5x im-

provements from Overdrive2k. Concretely, in our preprocessing phase, the

amortized communication costs for triple generation3 (in kbit) over Z232 and

Z264 , respectively, are 27.4 and 43.3 which outperforms the current best re-

sults, 59.1 of MonZ2ka [CDRFG20] and 153.3 of Overdrive2k [OSV20], re-

spectively showing 2.2x and 3.5x improvements.

3We assume a two-party case, and similar improvements occur in multi-party cases.
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5.3 Authenticated Triple Generation

In this section, we describe how to put all the tools together to construct an

MPC protocol for Z2k-messages. Since our MPC protocol follows the online

phase of SPDZ2k [CDE+18], the goal of our preprocessing phases is to gen-

erate authenticated triples with respect to SPDZ2k-MAC. That is, n parties

together securely generate secret shares [a]i, [b]i, [c]i and [↵a]i, [↵b]i, [↵c]i in

Z2k̃ such that
P

i
[a]i = a mod 2k,

P
i
[↵a]i = ↵a mod 2k̃, and similar for the

others, satisfying c = ab mod 2k. Here, k̃ := k+s with s as a security parame-

ter4, and ↵ 2 Z2k̃ is a single global MAC key of which share [↵]i 2 Z2s is given

to the i-th party. Then, in the online phase, the parties can securely com-

pute any arithmetic circuit via Beaver’s trick [Bea92, CDE+18] with these

authenticated triples.

Overview of Authenticated Triple Generation. We give an overview

of our preprocessing phase, focusing on the triple generation protocol, which

follows the standard methods of SPDZ [DPSZ12] (and Overdrive2k [OSV20])

exploiting two-level SHE and zero-knowledge proofs (ZKP) on it. We remark

that message packing of SHE enable the parties to generate multiple au-

thenticated triples (represented by vectors) in one execution of the triple

generation protocol, significantly reducing the amortized costs.

First, each party Pi generates and broadcasts HE ciphertexts ctai and ctbi
each encrypting the vectors [a]i and [b]i of random shares from Z2k̃ ; we omit

the superscript(1) for level-one ciphertexts. Then, all parties run ZKPoMK on

cta =
P

i
ctai and ctb =

P
i
ctbi to guarantee that each ciphertext is generated

correctly. Next, all parties compute a ciphertext ct(0)c := cta ⇥ ctb whose

underlying message is the Hadamard product c = a � b. Similarly, given

ciphertexts ct↵i , all parties can also compute ct(0)↵a and ct(0)
↵b with homomorphic

4SPDZ2k -MAC provides sec = s� log(s+ 1)-bit security [CDE+18, Theorem 1].
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operations on the ciphertexts. The parties, however, cannot directly compute

ct↵c from ciphertext multiplication between ct(0)c and ct↵ since the former is

of level-zero.

Thus, the parties perform so-called reshare protocol [DPSZ12] which,

given ct(0)c as the input, outputs a level-one ciphertext ctc having the same

message as the input and/or the random shares [c]i of the message to each

party. Roughly, it proceeds by decrypting the masked inputModSwitch(ctf )�
ct(0)c to get a (masked) message f+c, then subtracting the mask ctf from the

fresh encryption ctf+c of the message, resulting in ctc = ctf+c � ctf . Then,

parties can compute ct(0)↵c := ctc⇥ ct↵. Here, ZKPs for the masking ciphertext

ctf is also required.

Finally, parties jointly perform distributed decryption on the ciphertexts

ct↵a, ct↵b, and ct↵c to get random shares of the underlying messages: [↵a]i,

[↵b]i, and [↵c]i. The parties already have the other components of the triple

([a]i, [b]i, and [c]i), so the authenticated triple is generated.

5.4 Reshare for Level-dependent Packings

When designing a packing method for Z2k-messages with high parallelism, it

is hard to not get a level-dependent packing, e.g., the Overdrive2k [OSV20]

packing (Section 4.1.2) and our new homomorphic packing (Section 4.2, Re-

mark 4.2.4). However, this leads to a complication in the reshare protocol

for Z2k-messages, which does not occur in the case of a finite field Zp with

level-consistent packing from the isomorphism Zp[x]/�2m(x) ⇠= Z'(2
m)

p . In

particular, the reshare protocol of Overdrive2k [OSV20] exploits an extra

masking ciphertext with ZKPoPK on it, which is the most costly part, to

remedy the issue.

In this section, we propose a new reshare protocol for level-dependent

packings, which resolves this complication: our protocol extends the previous
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reshare protocol of the finite field case to operate also with level-dependent

packings without any extra cost. Our result closes the gap between the finite

field and the Z2k cases which originates from the level-dependency.

The Problem of Level-dependent Packings. Recall that the goal of

the reshare protocols is, for an input level-zero ciphertext, to output shares

of the underlying message along with a level-one ciphertext having the same

message as the input (Section 5.3). The complication, with a level-dependent

packing, is that we have to manage not only the ciphertext level but also the

packing level.

Recall that one masking ciphertext ctf is used twice in the reshare pro-

tocol for the finite field case: once to mask the input ciphertext of level-zero

and once to reconstruct the fresh ciphertext of level-one by subtracting it

(Section 5.3). While the di↵erence of ciphertext levels can be managed easily

with modulus-switching, that of the packing levels seems to be problematic.

Solution of Overdrive2k. To resolve this problem, Overdrive2k [OSV20]

provides two masking ciphertexts having the same messages but in di↵erent

packing : one with level-zero packing and the other with level-one packing.

This approach requires an extra ZKPoPK with the additional broadcast of

the masking ciphertext, doubling the cost of the reshare protocol. It results

in substantial increase of cost in the whole preprocessing protocol. In the

triple generation protocol, the number of ZKPoPK with broadcasts of ci-

phertexts is five using the original reshare protocol in the field case, whereas

Overdrive2k requires seven due to their reshare protocol, resulting roughly a

1.4x reduction in e�ciency.5

5The number of ZKPoPK is counted regarding the correlated sacrifice tech-

nique [KOS16].
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Our Solution. The crux of our reshare protocol for level-dependent pack-

ings is the idea of generating the ciphertext ct↵ of the MAC key ↵ 2 Z2s by

treating ↵ as a constant in the cyclotomic ring Z2t/�M(x), i.e. ct↵ = Enc(↵)

for ↵ 2 Z2t/�M(x) without any packing structure. Then, we actually do

not need the fresh ciphertext to be of packing level-one: it is okay to be of

packing level-zero. This is because, whereas multiplying ct↵ to a ciphertext

consumes a ciphertext level, multiplying ↵ to a plaintext does not consume a

packing level, i.e. multiplying ↵ is a linear operation in the aspect of packing

(Theorem 4.2.3(b)).
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Limitations

In this chapter, we explore several mathematical limitations of homomorphic

packing, regarding packing density (Def. 3.2.1), level-consistency (Def. 3.2.2),

and surjectivity (Def. 3.2.5). Our results on the limitations of homomor-

phic packing have several implications on HE packing, HE-based MPC, and

RMFE. In particular, our results justify our approaches and design choices

for the packing method (Section 4.2) and the MPC protocol (Chapter 5).

6.1 Packing Density

In this section, we examine upper bounds on packing density (Def. 3.2.1)

of degree-D packing methods for Zpk and Fpk , where p is a prime (See Sec-

tion 3.3). Our main result is that, when a packing method provides somewhat

homomorphism upto degree-D polynomials, the packing density is roughly

upper bounded by 1/D (Thm. 6.1.5 and 6.1.14). The results have implica-

tions in our new packing method (Example 6.1.6) and RMFE (Example 6.1.7

and 6.1.18).
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6.1.1 Algebraic Background

We first remark some algebraic facts, which enable proofs in the following

subsections.

Proposition 6.1.1. When R is a principal ideal ring (PIR), every submodule

of a free R-module of rank n can be finitely generated with n generators.

Proof. See Section 6.1.4

Remark 6.1.2. Note that Zpt is a local PIR. Consider R := Zpt [x]/f(x) as a

free Zpt-module with the rank deg(f). Then by Nakayama’s lemma, the car-

dinality of minimal generating sets is a well-defined invariant for submodules

of R.

Let A be a linearly independent subset of R. Then, since the span hAi is
a submodule of R with a minimal generating set A, inequality deg(f) � |A|
holds by Prop. 6.1.1.

6.1.2 Packing Density of Zpk-Message Packings

In this subsection, we examine upper bounds on packing density of degree-D

Zpk-message packings. We begin with an upper bound for degree-1 packing

methods: we cannot pack copies of Zpk more than the degree of the quotient

polynomial. Unlike the simple and plausible statement, the proof is quite

involved. In particular, it depends on Remark 6.1.2. The following proposition

says that we cannot reduce the degree of quotient polynomial significantly

and tower the packings along a large modulus. Notice that there are no

restriction on t and f(x).

Proposition 6.1.3. There exists a degree-1 packing method for Zn

pk
into

R := Zpt [x]/f(x) with k  t, only if n  deg(f).
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Proof. Let (Pack1,Unpack1) be a degree-1 packing method for Zn

pk
into R.

For each i 2 [n], choose ai(x) 2 R such that Unpack1(ai(x)) = ei. ViewR as a

free Zpt-module of rank deg(f), and consider the submodule ha1(x), · · · , an(x)i.
By linear homomorphic property (Remark 3.1.3), when

P
n

i=1 ci · ai(x) = 0

for some ci 2 Zpt , then ci = 0 (mod p
k) must hold. Thus, {a1(x), · · · , an(x)}

is a minimal generating set of ha1(x), · · · , an(x)i, and therefore n  deg(f)

holds (Remark 6.1.2).

In the rest of this subsection, we narrow our scope to packing methods

for Zn

pk
into Zpk [x]/f(x) with the same modulus. Indeed, this setting is less

general. Nonetheless, our results still have interesting consequences (See Ex-

ample 6.1.6 - 6.1.12). The following is a small remark on packings of non-zero

elements modulo p in this setting.

Remark 6.1.4. Let (Packi,Unpacki)
D

i=1 be a degree-D packing method for

Zn

pk
into R := Zpk [x]/f(x). For any i 2 [D], if Unpack

i
(a(x)) = a for some

a 2 Zn

pk
which is non-zero modulo p, then a(x) is also non-zero modulo p.

Otherwise, Unpack
i
(pk�1 · a(x)) = Unpack

i
(0) = 0 6= p

k�1 · a, contradicting
the linear homomorphic property (Remark 3.1.3). In particular, when f(x)

is an irreducible polynomial in Zp[x], such a(x) is a unit in R.

Roughly speaking, our main result is that we cannot pack more than

d/D Zpk-messages into Zpk [x]/f(x) while satisfying degree-D homomorphic

property, where d = deg(f). Intuitively, the statement can be understood as

that we must pack the inputs into lower d/D coe�cients since reduction by

the quotient polynomial act as randomization and will ruin the structure of

packing. However, the proof is much more involved since we have to handle

all possible packing methods. Notice that the following theorem subsumes

Prop. 6.1.3 as the D = 1 case in the t = k setting. The essence of the

proof is a generic construction of a large set which is required to be linearly

independent regardless of specific structures of packing methods.
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Theorem 6.1.5. There exists a degree-D packing method for Zn

pk
into R :=

Zpk [x]/f(x) where f(x) 2 Zpk [x] is a degree-d irreducible polynomial modulo

p, only if d � D · (n� 1) + 1.

Proof. Let (Packi,Unpacki)
D

i=1 be a degree-D packing method for Zn

pk
into R.

For each i 2 [n], choose ai(x) 2 R such that Unpack1(ai(x)) = ei. Let us de-

note A(r,s) := {a1(x)r · aj(x)s}1<jn. That is, A(0,D) = {a2(x)D, · · · , an(x)D},
A(D,0) = {a1(x)D}, and A(1,D�1) = {a1(x)a2(x)D�1

, · · · , a1(x)an(x)D�1}.

Step 1: Consider the following set of level-t packings.

At :=
[

r+s=t

0<s

A(r,s)

We will show that At is linearly independent in R for all t  D by induction

on t. The case where t = 1 is true by the linear homomorphic property at

level-1 (Remark 3.1.3): A1 = {a2(x), · · · , an(x)} (See also Prop. 6.1.3).

SupposeAt is linearly independent for some t < D. ViewAt+1 asA(0,t+1)[
a1(x) · At. Suppose

P
a↵(x)2At+1

(c↵ · a↵(x)) = 0, for some c↵ 2 Zpk . Then,

by linear homomorphic property at level-(t + 1), c↵ = 0 must hold for all

a↵(x) 2 A(0,t+1), since elements of a1(x) ·At unpack to 0 and A(0,t+1) unpacks

to a linearly independent set by construction. Subsequently, we have again

the following equality:

X

a↵(x)2a1(x)·At

(c↵ · a↵(x)) = 0.

Meanwhile, since a1(x) is a unit in R (Remark 6.1.4) and At is linearly

independent by induction hypothesis, c↵ = 0 must also hold for all a↵(x) 2
a1(x) · At. Thus, At is linearly independent in R for all t  D.

Step 2: Now consider the set A := AD [ {a1(x)D}, which coincides with

{a1(x)D, · · · , an(x)D} [ a1(x) · AD�1. Suppose
P

a↵(x)2A(c↵ · a↵(x)) = 0, for

some c↵ 2 Zpk . Then, by linear homomorphic property at level-D, c↵ = 0
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must hold for all a↵(x) 2 {a1(x)D, · · · , an(x)D}, since elements of a1(x)·AD�1

unpack to 0 and {a1(x)D, · · · , an(x)D} unpacks to a linearly independent set

by construction. Subsequently, we have again the following equality:
X

a↵(x)2a1(x)·AD�1

(c↵ · a↵(x)) = 0.

Meanwhile, since a1(x) is a unit in R and AD�1 is linearly independent

by Step 1, c↵ = 0 must also hold for all a↵(x) 2 a1(x) · AD�1. Thus, A
is linearly independent, and therefore d � |A| = D(n � 1) + 1 must hold

(Remark 6.1.2).

The following are direct consequences of our theorem.

Example 6.1.6. Degree-D packing methods for Zpk-messages to Zpk [x]/f(x),

where f(x) is a degree-d irreducible polynomial modulo p, have packing den-

sity of no larger than 1
D
+ 1

d
· (1� 1

D
). Consequently, degree-D CRT packing

methods for Zpk-messages into Zpk [x]/f(x), where f(x) factors into r dis-

tinct irreducible factors modulo p, have packing density of no larger than
1
D
+ r

deg(f) · (1�
1
D
) (Section 4.3). In particular, degree-D CRT packing meth-

ods for Z2k-messages into Z2t [x]/�M(x), where M is odd and �M(x) factors

into distinct degree-d irreducible factors modulo p, have packing density of

no larger than 1
D
+ 1

d
· (1� 1

D
).

That is, when parameters are carefully chosen, our new packing method

already nearly reaches the optimal packing density for packing methods for

Zpk-messages into Zpk [x]/f(x) (Section 4.2). Thus, if one wants to construct

a degree-D packing method for Z2k-messages into Z2t [x]/�M(x) with sub-

stantially better density than our new packing method, the only possibility

is choosing t > k or not employing the CRT approach. (See also Exam-

ple 6.1.12)

Example 6.1.7 (RMFE over Galois Ring). Consider RMFE over Galois

rings for copies of Zpk into a larger Galois ring isomorphic to Zpk [x]/f(x),
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which is exactly the setting of Thm. 6.1.5. The theorem states that such

RMFE cannot have packing density larger than 1
2 + 1

2 deg(f) . To the best of

our knowledge, this is the first upper bound result on packing density of

RMFE over Galois rings. Our theorem also yields upper bounds on packing

density of degree-D generalization of RMFE over Galois rings.

Example 6.1.8. For D > 1, consider degree-D packing methods for Zpk-

messages into Zpt [x]/f(x), where f(x) is irreducible modulo p. By Prop. 6.1.3,

when t > k, we cannot achieve a perfect packing density 1. When t = k, we

cannot achieve a perfect packing density 1 unless deg(f) = 1, by Thm. 6.1.5.

That is, there is no perfect degree-D packing method for Zpk-messages into

Zpt [x]/f(x), when f(x) is irreducible modulo p and deg(f) > 1.

Example 6.1.9. For D > 1, consider degree-D packing methods for Zpk-

messages into Zpt [x]/f(x), where f(x) is square-free modulo p. By Exam-

ple 6.1.8, there is no perfect degree-D CRT packing method for Zpk-messages

into Zpt [x]/f(x), unless f(x) splits into distinct linear factors. In particular,

there is no perfect degree-D CRT packing method for Z2k-messages into

Z2t [x]/�M(x) when M is odd.

The following theorem is a bit more general version of Thm. 6.1.5 which

has no restriction on the quotient polynomial. However, it assumes the exis-

tence of a unit of R which unpacks to an element of Zn

pk
.

Theorem 6.1.10. Let (Packi,Unpacki)
D

i=1 be a degree-D packing method for

Zn

pk
into R := Zpk [x]/f(x). Suppose a linear combination of {ai(x)}i2I is

a unit in R, where each ai(x) 2 R satisfies Unpack1(ai(x)) = ei. Then,

d � D · (n� |I|) + |I| holds.

Sketch. Assume u(x) :=
P

i2I ci · ai(x) is a unit, for some ci 2 Zpk . The

proof is exactly same as that of Thm. 6.1.5, but with only di↵erence in the

definition of A(r,s) and A. Here, we define A(r,s) := {u(x)r · aj(x)s}j /2I and

A := AD [ {ai(x)D}i2I .
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The following are some consequences of Thm. 6.1.10.

Example 6.1.11. We can revisit upper bound on packing density of CRT

packings (Section 4.3) using Thm. 6.1.10. Consider degree-D CRT pack-

ing methods (Packi,Unpacki)
D

i=1 for Zpk-messages into R := Zpk [x]/f(x),

where f(x) factors into r distinct irreducible factors modulo p. Let f(x) =
Q

r

i=1 fi(x) via Hensel lifting.

By Remark 6.1.4, for each i 2 [r], we have a(i)(x) such that (i) a(i)(x) is a

unit modulo fı(x) if and only if ı = i and (ii) Unpack1(a
(i)(x)) = ej for some

distinct j 2 [n]. Then,
P

r

i=1 a
(i)(x) is a unit in R. That is, we have |I| = r

for Thm. 6.1.10, yielding the upper bound 1
D
+ r

deg(f) · (1 � 1
D
) previously

shown in Example 6.1.6.

Example 6.1.12. Suppose one wants to design a degree-D packing method

for Zpk-messages into Zpk [x]/f(x) which has a packing density substantially

larger than 1/D. The only possibility is designing a packing method where

every unit element of Zpk [x]/f(x) unpacks to elements of Zn

pk
with very few

zero coordinates or fails to unpack at level-1.

6.1.3 Packing Density of Fpk-Message Packings

In this subsection, we examine upper bounds on packing density of degree-D

Fpk-message packings. We begin with an upper bound for degree-1 pack-

ing methods, which is an analogue of Prop. 6.1.3. Unlike the simple and

plausible statement, the proof is quite involved. In particular, it depends on

Remark 6.1.2. The following proposition says that we cannot reduce the de-

gree of quotient polynomial significantly and tower the packings along a large

modulus. Notice that there are no restriction on t and f(x).

Proposition 6.1.13. There exists a degree-1 packing method for Fn

pk
into

R := Zpt [x]/f(x), only if n · k  deg(f).
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Proof. Let (Pack1,Unpack1) be a degree-1 packing method for Fn

pk
intoR. Fix

a basis of Fpk as {�1, · · · , �k}. For each i 2 [n] and j 2 [k], choose aij(x) 2 R
such that Unpack1(aij(x)) = �j · ei. View R as a free Zpt-module of rank

deg(f), and consider the submodule haij(x)ii2[n],j2[k]. By linear homomorphic

property (Remark 3.1.3), when
P

n

i=1 cij · aij(x) = 0 for ci 2 Zpt , then ci = 0

(mod p) must hold. Thus, {aij(x)}i2[n],j2[k] is a minimal generating set of

haij(x)ii2[n],j2[k], and therefore n · k  deg(f) holds (Remark 6.1.2).

In the rest of this subsection, we narrow our scope to packing methods

for Fn

pk
into Zp[x]/f(x) with the prime modulus. Indeed, this setting is less

general. Nonetheless, our results still have interesting consequences (See Ex-

ample 6.1.18 - 6.1.21).

Our main result in this subsection is the following theorem, which is a

finite field analogue of Thm. 6.1.5. However, it is much more involved since

we must also handle the multiplicative structure inside Fpk . Notice that our

theorem subsumes Prop. 6.1.13 as the D = 1 case in the t = 1 setting. The

essence of the proof is again a generic construction of a large set which is

required to be linearly independent regardless of specific structures of packing

methods.

Theorem 6.1.14. Let B := {�1, · · · , �k} be a basis of Fpk as a Fp-vector

space. There exists a degree-D packing method for Fn

pk
into R := Zp[x]/f(x)

where f(x) 2 Zp[x] is a degree-d irreducible polynomial modulo p, only if the

following inequality holds.

d � dimh�D

1 , · · · , �D

k
i+ (n� 1)

DX

t=1

dimh�t

1, · · · , �t

k
i

Proof. Let (Packi,Unpacki)
D

i=1 be a degree-D packing method for Fn

pk
into R.

For each i 2 [n] and j 2 [k], choose aij(x) 2 R such that Unpack1(aij(x)) =
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�j ·ei. For each s 2 Z+, fix a basis Bs := {�(s)j}j of h�s

1, · · · , �s

k
i. Then, there

exist a
(s)
ij
(x) 2 R such that (i) Unpack

s
(a(s)

ij
(x)) = �

(s)
j

· ei and (ii) a
(s)
ij
(x)

is a linear combination of {ai|(x)s}|2[k]. Let us denote A(r,s) := {a11(x)r ·
a
(s)
ij
(x)}1<in & j2[|Bs|].

Step 1: Consider the following set of level-t packings.

At :=
[

r+s=t

0<s

A(r,s)

We will show that At is linearly independent in R for all t  D by induction

on t. The case where t = 1 is true by the linear homomorphic property at

level-1 (Remark 3.1.3): A1 = {aij(x)}1<in & j2[k] (See also Prop. 6.1.3).

SupposeAt is linearly independent for some t < D. ViewAt+1 asA(0,t+1)[
a11(x) · At. Suppose

P
a↵(x)2At+1

(c↵ · a↵(x)) = 0, for some c↵ 2 Zp. Then,

by linear homomorphic property at level-(t + 1), c↵ = 0 must hold for all

a↵(x) 2 A(0,t+1), since elements of a11(x)·At unpack to 0 and A(0,t+1) unpacks

to a linearly independent set by construction. Subsequently, we have again

the following equality:

X

a↵(x)2a11(x)·At

(c↵ · a↵(x)) = 0.

Meanwhile, since a11(x) is non-zero (and hence a unit in R) (Remark 3.1.3)

and At is linearly independent by induction hypothesis, c↵ = 0 must also

hold for all a↵(x) 2 a11(x) · At. Thus, At is linearly independent in R for all

t  D.

Step 2: Now consider the set A := AD [ {a(D)
1j (x)}j2[|BD|], which coincides

with {a(D)
ij

(x)}i2[n] & j2[|BD|] [ a11(x) · AD�1. Suppose
P

a↵(x)2A(c↵ · a↵(x)) =
0, for some c↵ 2 Zp. Then, by linear homomorphic property at level-D,

c↵ = 0 must hold for all a↵(x) 2 {a(D)
ij

(x)}i2[n] & j2[|BD|], since elements of

a11(x) · AD�1 unpack to 0 and {a(D)
ij

(x)}i2[n] & j2[|BD|] unpacks to a linearly
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independent set by construction. Subsequently, we have again the following

equality: X

a↵(x)2a11(x)·AD�1

(c↵ · a↵(x)) = 0.

Meanwhile, since a11(x) is a unit in R and AD�1 is linearly independent by

Step 1, c↵ = 0 must also hold for all a↵(x) 2 a11(x)·AD�1. Thus, A is linearly

independent, and therefore d � |A| must hold.

To have a more concrete bound, we prove the following proposition. Let

�
(t)
pk

denote the multiplicative order of p modulo p
k�1

gcd(pk�1,t) .

Proposition 6.1.15. Let � be a primitive element of Fpk . Regarding the

primitive element basis {1, �, �2
, · · · , �k�1}, the following equality holds.

dimh1t, �t
, �

2t
, · · · , �(k�1)ti = �

(t)
pk

Proof. Observe that dimh1t, �t
, �

2t
, · · · , �(k�1)ti is equal to the degree of the

minimal polynomial of �t in Fp[x]. The degree of the minimal polynomial of

�
t is again equal to the length of the orbit of �t regarding Frobenius map

x 7! x
p. Since � is a primitive element, we are finding the smallest s 2 Z+

satisfying t = t · ps (mod p
k � 1), which is �(t)

pk
by definition.

Corollary 6.1.16. There exists a degree-D packing method for Fn

pk
into R :=

Zp[x]/f(x) where f(x) 2 Zp[x] is a degree-d irreducible polynomial modulo p,

only if the following inequality holds.

d � �
(D)
pk

+ (n� 1)
DX

t=1

�
(t)
pk

Proof. Choose a primitive element � of Fpk and apply Thm. 6.1.14 on the

basis {1, �, �2
, · · · , �k�1} with the help of Prop. 6.1.15.
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Remark 6.1.17. Since gcd(pk � 1, t)  t, we have �(t)
pk

� log
p
(p

k�1
t

). Sub-

sequently, we have a very rough bound of �(t)
pk

& k � log
p
(t). Applying this

bound to Cor. 6.1.16, we have the following bound.

d � k · (D · (n� 1) + 1)� log
p
(D · (D!)n�1)

The following are some consequences of our main result.

Example 6.1.18 (RMFE). Note that �(1)
pk

and �
(2)
pk

are always k. Then,

by Cor. 6.1.16, degree-2 packing methods for Fpk-messages into Zp[x]/f(x),

where f(x) is a degree-d irreducible polynomial, have packing density of no

larger than 1
2 +

k

2d . That is, packing density of RMFE is upper bounded by
1
2 +

k

2d . This is a known result (See [CXY20]). However, previous proofs do

not extend to higher-degree cases (See Example 6.1.20) or to the Galois ring

case (See Example 6.1.7).

Example 6.1.19 (Degree-2 Packing). By Example 6.1.18, degree-2 CRT

packing methods for Fpk-messages into Zp[x]/f(x), where f(x) factors into r

distinct irreducible factors, have packing density of no larger than 1
2 +

r·k
2 deg(f)

(Section 4.3). In particular, degree-2 CRT packing methods for F2k-messages

into Z2[x]/�M(x), where M is odd and �M(x) factors into distinct degree-d

irreducible factors modulo 2, have packing density of no larger than 1
2 +

k

2d .

Suppose one wants to design a degree-2 packing method for Fpk-messages

into Zpt [x]/f(x) which has a packing density substantially larger than 1/2.

Note that choosing t � 2 already yields packing density no larger than 1/2

by Prop. 6.1.13. Thus, only possibility is not employing the CRT approach

(See also Remark 6.1.23).

Example 6.1.20 (Degree-3 Packing). Note that �(3)
pk

is always k, except

the case of p
k = 4. Then, by Cor. 6.1.16, degree-3 packing methods for

Fpk-messages into Zp[x]/f(x), where f(x) is a degree-d irreducible polyno-

mial, have packing density of no larger than 1
3 + 2k

3d , unless p
k = 4. Conse-

quently, degree-3 CRT packing methods for Fpk-messages into Zp[x]/f(x),
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where f(x) factors into r distinct irreducible factors, have packing density

of no larger than 1
3 +

2r·k
3 deg(f) . In particular, degree-3 CRT packing methods

for F2k-messages into Z2[x]/�M(x), where M is odd and �M(x) factors into

distinct degree-d irreducible factors modulo 2, have packing density of no

larger than 1
3 +

2k
3d , given k 6= 2.

Suppose one wants to design a degree-3 packing method for Fpk-messages

into Zpt [x]/f(x) which has a packing density substantially larger than 1/3.

Note that choosing t � 3 already yields packing density no larger than 1/3

by Prop. 6.1.13. Thus, only possibility is choosing t = 2 or not employing

the CRT approach (See also Remark 6.1.23).

Example 6.1.21. By the same arguments as in Example 6.1.8 and 6.1.9, we

have the following: For D > 1, there is no perfect degree-D packing method

for Fpk-messages into Zpt [x]/f(x), when f(x) is irreducible modulo p and

deg(f) > 1. Thus, there is no perfect degree-D CRT packing method for

Fpk-messages into Zpt [x]/f(x), unless f(x) splits into distinct linear factors.

In particular, there is no perfect degree-D CRT packing method for F2k-

messages into Z2t [x]/�M(x) when M is odd.

The following theorem is a bit more general version of Thm. 6.1.14 which

has no restriction on the quotient polynomial. However, it assumes the exis-

tence of a unit of R which unpacks to an element of Fn

pk
.

Theorem 6.1.22. Let B := {�1, · · · , �k} be a basis of Fpk as a Fp-vector

space. Let (Packi,Unpacki)
D

i=1 be a degree-D packing method for Fn

pk
into R :=

Zp[x]/f(x). Suppose a linear combination of {aij(x)}i2I & j2[k] is a unit in R,

where each aij(x) 2 R satisfies Unpack1(aij(x)) = �j ·ei. Then, the following

inequality holds.

d � |I| · dimh�D

1 , · · · , �D

k
i+ (n� |I|)

DX

t=1

dimh�t

1, · · · , �t

k
i
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Sketch. Assume u(x) :=
P

i2I & j2[k] cij ·aij(x) is a unit, for some ci 2 Zp. The

proof is exactly same as that of Thm. 6.1.14, but with only di↵erence in the

definition of A(r,s) and A. Here, we define A(r,s) := {u(x)r ·a(s)
ij
(x)}i/2I & j2[|Bs|]

and A := AD [ {a(D)
ij

(x)}i2I & j2[|BD|].

Remark 6.1.23. As Cor. 6.1.16, and Rem. 6.1.17, we can apply Prop. 6.1.15

to have a more concrete version of Thm. 6.1.22. The theorem has analogous

consequences of Example 6.1.11 and 6.1.12.

6.1.4 Proof of Prop. 6.1.1

We believe the following proposition is a classic fact in algebra. Nonetheless,

since we could not find a proper reference containing the statement, we give

a proof. Our proof is a more or less verbatim of the proof given in [Con] for

the analogous fact on principal ideal domains (PID).

Proposition 6.1.24. When R is a principal ideal ring (PIR), every submod-

ule of a free R-module of rank n can be finitely generated with n generators.

Proof. A free R-module of rank n is isomorphic to R
n, so we can assume

the free R-module is Rn without loss of generality. We proceed by induction

on n. The case where n = 0 is trivial. The case where n = 1 is true since

R is a PIR: every R-submodule of R is a principal ideal, i.e. can be finitely

generated with 1 generator.

Suppose the statement is proved for all free R-modules of rank not larger

than n. Let M be a submodule of Rn+1. Let ⇡ : Rn+1 ! R
n be the projection

which maps an element of Rn+1 to its first n coordintes. First consider the

image of ⇡|M , the restriction of ⇡ to M . Indeed, the image is ⇡M(Rn+1) =

⇡(M), which is a submodule of Rn and therefore has at most n generators

by the inductive hypothesis. Thus, we can put ⇡(M) =
P

k

i=1 R · bi for some

b1, · · · , bk 2 R
n where k  n. Let bi = ⇡(ai) for some ai 2 M . Then,
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⇡M(Rn+1) = ⇡(M) =
P

k

i=1 R · ⇡(ai). And ker(⇡|M) = M \ ker(⇡). Notice

ker(⇡) ⇠= R as R-modules. Since R is a PIR, ker(⇡|M) = R · a0 for some

a0 2 M .

We will show M =
P

k

i=0 R ·ai, and therefore M can be generated by k+1

generators a0, · · · ,ak with k + 1  n + 1. It is clear that
P

k

i=0 R · ai ⇢ M .

For the other direction, choose an arbitrary a 2 M . Then, from the above

discussions, ⇡|M(a) = r1⇡(a1)+ · · ·+rk⇡(ak) = ⇡(r1a1+ · · ·+rkak) for some

r1, · · · , rk 2 R. Therefore a�
P

k

i=1 riai 2 ker(⇡|M), and a�
P

k

i=1 riai = r0a0

for some r0 2 R. Thus a = r0a0 + r1a1 + · · · + rkak 2
P

k

i=0 R · ai, and

M ⇢
P

k

i=0 R · ai.

6.2 Level-consistency

In this section, we examine the concept of level-consistency. Our main re-

sults are necessary and su�cient conditions for a polynomial ring to allow

a level-consistent packing method for Zpk and Fpk , where p is a prime (See

Section 3.3). They limit the achievable e�ciency of level-consistent packing

methods, yielding the impossiblity of designing an e�cient packing meth-

ods while satisfying level-consistency. The results justify the use of level-

dependent packings in SPDZ-like MPC protocols over Z2k and highlights the

usefulness of the reshare protocol for level-dependent packings proposed in

Section 5.4 (Example 6.2.7, 6.2.8, and 6.2.9). Our results also implies that

the HElib packing (Section 4.1.1) is essentially the optimal method to use in

fully homomorphic encryption(FHE) (Example 6.2.6).

6.2.1 Idempotents and Nilpotents

A crucial tool when dealing with a level-consistent packing method is idem-

potents. We extensively leverage the concept of idempotents and their prop-
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erties when proving our main results on level-consistency. Here, we list and

prove the properties of idempotents related to level-consistent packing meth-

ods, which are used afterwards.

The following proposition on idempotents is a classic result in finite ring

theory. Nevertheless, for completeness, we give a proof.

Proposition 6.2.1. Let R be a finite ring. For all a 2 R, there exists a

positive integer s such that a
s
is idempotent, i.e. a

2s = a
s
.

Proof. Consider the sequence (ai)i2Z+ of R-elements. Since R is finite, there

is an element of R which appears infinitely many times in the sequence. Thus,

we can choose i, j 2 Z+ satisfying ai = a
j and 2i  j. Letting s = j�i proves

the proposition: as = a
j�2i

a
i = a

j�2i
a
j = a

2s.

The following proposition says that any idempotent a must have an idem-

potent packing a(x), regarding to a level-consistent method.

Proposition 6.2.2. Let R and R be rings. Let P be a level-consistent pack-

ing method for R
n
into R with identical unpacking algorithms Unpack. For

any idempotent a 2 R
n
, there exists an idempotent a(x) 2 R such that

Unpack(a(x)) = a.

Proof. First, extend P to a degree-D packing method for a su�ciently large

D (Prop. 3.2.3). Let a 2 R
n be idempotent. Choose an element ã(x) 2 R

such that Unpack(ã(x)) = a. By Prop. 6.2.1, there exists s 2 Z+ such that

a(x) := ã(x)s is idempotent in R. Then, Unpack(a(x)) = Unpack(ã(x)s) =

as = a holds.

The following proposition is a slight generalization of the property of

Galois rings having only 0 and 1 as idempotents.

Proposition 6.2.3. For a prime p, let R := Zpt [x]/f(x) and f(x) = g(x)`

(mod p), where g(x) is an irreducible polynomial in Fp[x]. Then, an idempo-

tent element of R is either 0 or 1.
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Proof. Suppose a(x) 2 R is idempotent. Then, f(x) divides a(x)2 � a(x)

in Zpt [x], and therefore g(x)` divides a(x)(a(x) � 1) in Fp[x]. Since g(x) is

irreducible and a(x) and a(x)� 1 are coprime in Fp[x], a(x) equals 0 or 1 in

R/pR.

Suppose a(x) = 1 in R/pR. We can represent a(x) as 1 + p
s · ã(x) for

some t � s > 0, where ã(x) is not divisible by p. Then, 0 = a(x)2 � a(x) =

p
2s · ã(x)2+p

s · ã(x) in R. Since s > 0 and p - ã(x), s must be t and therefore

a(x) = 1 in R. We can similarly show that if a(x) = 0 in R/pR then a(x) = 0

in R.

Another tool which is useful when dealing with level-consistent packing

methods is nilpotents. The following proposition says any nilpotent must un-

pack to a nilpotent, given it is a valid packing regarding to a level-consistent

method.

Proposition 6.2.4. Let R and R be rings, and let P be a level-consistent

packing method for R
n
into R with identical unpacking algorithms Unpack.

For any nilpotent a(x) 2 R, Unpack(a(x)) outputs a nilpotent a 2 R
n
or a

failure ?.

Proof. Suppose Unpack(a(x)) outputs a 2 R
n. Let s be a positive integer such

that a(x)s = 0 in R. Extend P to a degree-s packing method (Prop. 3.2.3).

Then, as = Unpack(a(x)s) = Unpack(0) = 0 holds.

6.2.2 Level-consistency in Zpk-Message Packings

Our main result on level-consistency in Zpk-message packings is the follow-

ing theorem. Our theorem illustrates a necessary condition for a surjective

packing method for Zpk-messages to exist. As mentioned, the proof regards

the notion of idempotents (Prop. 6.2.2, 6.2.3).
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Theorem 6.2.5. For a prime p, let f(x) 2 Zpt [x] have exactly r distinct

irreducible factors in Zp[x]. There exists a level-consistent packing method

for Zn

pk
into Zpt [x]/f(x) only if n  r.

Proof. Let f(x) be factorized into
Q

r

i=1 f̄i(x) in Zp[x], where each f̄i(x)

is a power of a distinct irreducible polynomial in Zp[x]. The factorization

can be lifted upto Zpt [x] via Hensel lifting. Let f(x) =
Q

r

i=1 fi(x), where

fi(x) 2 Zpt [x] is the Hensel lift of f̄i(x) satisfying f̄i(x) = fi(x) (mod p). By

Prop. 6.2.3, there are 2r idempotents in Zpt [x]/f(x) ⇡
Q

r

i=1 Zpt [x]/fi(x),

namely {0, 1}r. Also note that there are 2n idempotents in Zn

pk
, namely

{0, 1}n.
By Prop. 6.2.2, for each idempotent a of Zn

pk
, there is a distinct idem-

potent a(x) of Zpt [x]/f(x) such that Unpack(a(x)) = a. Thus, the number

of idempotents in Zn

pk
cannot be larger than that of Zpt [x]/f(x), and n  r

holds.

The following are some consequences of Thm. 6.2.5. We begin with an

optimality result for HElib packing (Section 4.1.1).

Example 6.2.6. Essentially, Thm. 6.2.5 asserts that HElib packing o↵ers the

optimal packing density if level-consistency is required. As level-consistency

is more than a favorable feature for fully homomorphic encryption(FHE),

our result reassures that HElib packing is an excellent packing method to

use for FHE, and it strongly justifies long line of researches based on such

packing method [GHS12, HS15, CH18].

The following examples illustrate the hardness of designing an e�cient

HE packing method for Z2k-messages while satisfying level-consistency. We

have similar results for Zpk-messages with p 6= 2.

Example 6.2.7. When M = 2m, since �M(x) = (x + 1)2
m�1

in F2[x], we

can pack at most one copy of Z2k into Z2t [x]/�M(x) while satisfying level-

consistency.
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Example 6.2.8. WhenM is an odd, �M(x) factors into a product of distinct

irreducible polynomials of degree d = ordM(2) in F2[x]. Let �(M) = r · d.
Then, we can pack at most r copies of Z2k into Z2t [x]/�M(x) while satisfying

level-consistency. Note that, since d > logM by definition, r < �(M)/ logM .

Example 6.2.9. WhenM = 2s·M 0, whereM 0 is an odd, �M(x) = �M 0(x)2
s�1

in F2[x]. Thus, we cannot pack more copies of Z2k into Z2t [x]/�M(x) than

Z2t [x]/�M 0(x) while satisfying level-consistency.

Thm. 6.2.5 also yields the impossibility of level-consistent RMFEs over

Galois ring for Zpk-messages.

Example 6.2.10. In GR(pt, d) ⇠= Zpt [x]/f(x) with a degree-d f(x) which is

irreducible modulo p, we can pack at most one copy of Zpk while satisfying

level-consistency. That is, there is no meaningful level-consistent RMFE over

Galois ring for Zpk-messages.

On the other side, we have the following theorem with a constructive

proof, which asserts that the necessary condition in Thm. 6.2.5 is also a

su�cient one.

Theorem 6.2.11. If there are r distinct irreducible factors of f(x) 2 Zpt [x]

in Fp[x], then there exists a level-consistent packing method for Zr

pk
into

Zpt [x]/f(x).

Proof. Let f(x) be factorized into
Q

s

i=1 gi(x)
`i in Fp[x], where s � r and

each gi(x) is distinct irreducible polynomial in Fp[x]. The factorization can

be lifted upto Zpk [x] via Hensel lifting. Let f(x) =
Q

s

i=1 fi(x), where fi(x) 2
Zpk [x] is the Hensel lift of gi(x)`i satisfying fi(x) = gi(x)`i (mod p). Then,

we can identify Zpk [x]/f(x) with
Q

s

i=1 Zpk [x]/fi(x) via the CRT ring isomor-

phism.
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Zr

pk
Zpt [x]/f(x)

Zpk [x]/f(x)

Pack

 
◆k

(a) Pack

Zr

pk
Zpt [x]/f(x)

Zpk [x]/f(x)

Unpack

⇡k
 
�1

(b) Unpack

Figure 6.1: Definitions of Pack and Unpack in Thm. 6.2.11

There is a trivial ring monomorphism  : Zr

pk
! Zpk [x]/f(x) defined as

the following.

 (a1, · · · , ar) = (a1, · · · , ar, 0, · · · , 0) 2
sY

i=1

Zpk [x]/fi(x)

Define the function  �1 : Zpk [x]/f(x) ! Zr

pk
[ {?} as the following.

 
�1(a(x)) =

8
<

:
a, if there is a 2 Zr

pk
such that  (a) = a(x)

?, otherwise

Let ⇡k and ◆k denote the projection and injection between Zpt [x]/f(x) and

Zpk [x]/f(x) respectively. Define Pack := ◆k �  and Unpack :=  
�1 � ⇡k

(Fig. 6.1). Then, it is straightforward that (Pack,Unpack) is a level-consistent

packing method.

Corollary 6.2.12. For a prime p, let f(x) 2 Zpt [x] have exactly r distinct

irreducible factors in Zp[x]. There exists a level-consistent packing method

for Zn

pk
into Zpt [x]/f(x) if and only if n  r.

Proof. Straightforward from Thm. 6.2.5 and 6.2.11.
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6.2.3 Level-consistency in Fpk-Message Packings

Our main result on level-consistency in Fpk-message packings is the following

theorem. It is a finite field analogue of Thm. 6.2.5 which is on Zpk-message

packings. Our theorem illustrates a necessary condition for a level-consistent

packing method for Fpk-messages to exist.

Theorem 6.2.13. Let r be the number of distinct irreducible factors of

f(x) 2 Zpt [x] in Fp[x] whose degrees are multiples of k. There exists a level-

consistent packing method Fn

pk
into Zpt [x]/f(x) only if n  r.

Proof. See Section 6.2.4.

The following are some consequences of Thm. 6.2.13. They illustrate the

hardness of designing an e�cient HE packing method for F2k-messages while

satisfying level-consistency. We have similar results for Fpk-messages with

p 6= 2.

Example 6.2.14. WhenM = 2m, since �M(x) = (x+1)2
m�1

in F2[x], we can

only pack copies of F2 into Z2t [x]/�M(x) while satisfying level-consistency.

Even in that case, we can pack at most one copy of F2.

Example 6.2.15. When M is an odd, �M(x) factors into a product of

distinct irreducible polynomials of degree d = ordM(2) in F2[x]. Let �(M) =

r · d. Then, we can only pack copies of F2k such that k|d into Z2t [x]/�M(x)

while satisfying level-consistency. In that case, we can pack at most r copies

of F2k . Note that, since d > logM by definition, r < �(M)/ logM . For

instance, if one wants to pack F28 into Z2t [x]/�M(x) with an odd M while

satisfying level-consistency, then one must choose M such that ordM(2) is a

multiple of 8.

Example 6.2.16. When M = 2s · M 0, where M
0 is an odd, �M(x) =

�M 0(�x
2s�1

) = �M 0(x)2
s�1

in F2[x]. Thus, we cannot pack more copies of

F2k into Z2t [x]/�M(x) than Z2t [x]/�M 0(x) while satisfying level-consistency.
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Thm. 6.2.13 also yields the impossibility of level-consistent RMFEs.

Example 6.2.17. In Fpd
⇠= Zp[x]/f(x) with a degree-d irreducible f(x),

we can pack at most one copy of Fpk while satisfying level-consistency. Fur-

thermore, if k - d, we cannot pack even a single copy of Fpk into Fpd while

satisfying level-consistency. That is, there is no meaningful level-consistent

RMFE.

On the other side, we have the following theorem with a constructive

proof, which asserts that the necessary condition in Thm. 6.2.13 is also a

su�cient one.

Theorem 6.2.18. Suppose there are r distinct irreducible factors of f(x) 2
Zpt [x] in Fp[x] whose degrees are multiples of k. Then, there exists a level-

consistent packing method Fr

pk
into Zpt [x]/f(x).

Proof. Let g(x) 2 Fp[x] be the product of r distinct irreducible factors of f(x)

in Fp[x] whose degrees are multiples of k. Then, there is a ring monomorphism

 : Fr

pk
! Fp[x]/g(x). Define the function  �1 : Fp[x]/g(x) ! Fr

pk
[ {?} as

the following.

 
�1(a(x)) =

8
<

:
a, if there is a 2 Fr

pk
such that  (a) = a(x)

?, otherwise

Let ⇡p and ◆p denote the projection and injection between Zpk [x]/f(x) and

Fp[x]/f(x), and let ⇡g and ◆g denote those of Fp[x]/f(x) and Fp[x]/g(x) re-

spectively.

Define Pack := ◆p � ◆g � and Unpack :=  
�1�⇡h�⇡p (Fig. 6.2). Then, it is

straightforward that (Pack,Unpack) is a level-consistent packing method.

Corollary 6.2.19. Let r be the number of distinct irreducible factors of

f(x) 2 Zpt [x] in Fp[x] whose degrees are multiples of k. There exists a level-

consistent packing method Fn

pk
into Zpt [x]/f(x) if and only if n  r

Proof. Straightforward from Thm. 6.2.13 and 6.2.18.
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Fr

pk
Zpt [x]/f(x)

Fp[x]/f(x)

Fp[x]/g(x)

Pack

 

◆p

◆g

(a) Pack

Fr

pk
Zpt [x]/f(x)

Fp[x]/f(x)

Fp[x]/g(x)

Unpack

⇡p

⇡g

 
�1

(b) Unpack

Figure 6.2: Definitions of Pack and Unpack in Thm. 6.2.18

6.2.4 Proof of Thm. 6.2.13

In this subsection, we prove Thm. 6.2.13. The proof is elementary, but con-

sists of a number of steps. As mentioned, idempotents (Prop. 6.2.2) and

nilpotents (Prop. 6.2.4) are at the core of the proof. Even if they are not

directly referred, many parts of the proof are motivated from the concepts.

Also notice the crucial role of one-to-one property in the proof of Lem. 6.2.24.

Theorem 6.2.13. Let r be the number of distinct irreducible factors of

f(x) 2 Zpt [x] in Fp[x] whose degrees are multiples of k. There exists a level-

consistent packing method Fn

pk
into Zpt [x]/f(x) only if n  r.

Proof. Straightforward from Lem. 6.2.21, 6.2.22, 6.2.23, and 6.2.24.

Lemma 6.2.21. Suppose there exists a level-consistent packing method for

Fn

pk
into Zpt [x]/f(x). Then, there exists a level-consistent packing method for

Fn

pk
into Fp[x]/f(x).

Proof. Let (Pack,Unpack) be a level-consistent packing method for Fn

pk
into

Zpt [x]/f(x). Suppose a(x), b(x) 2 Zpt [x]/f(x) satisfy Unpack(a(x)) = a

and Unpack(b(x)) = b for some a, b 2 Fn

pk
. If a(x) = b(x) modulo p,

then a = b since (i) Unpack(a(x) � b(x)) = a � b, (ii) a(x) � b(x) is
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nilpotent in Zpt [x]/f(x), and (iii) 0 is the only nilpotent element in Fn

pk

(Prop. 6.2.4). Thus, for all a(x) 2 Zpt [x]/f(x), Unpack(a(x)) is fully deter-

mined by a(x) mod p, given it does not output a failure ?.

Let Pack0 = ⇡p�Pack where ⇡p denotes the projection from Zpt [x]/f(x) to

Fp[x]/f(x). Let Unpack
0 : Fp[x]/f(x) ! Fn

pk
[{?} be defined as the following.

Unpack(a(x)) =

8
>>>><

>>>>:

a,

if there is ã(x) 2 Zpt [x]/f(x) such that

⇡p(ã(x)) = a(x) and Unpack(ã(x)) = a for

some a 2 Fn

pk

?, otherwise

Then, it is straightforward that (Pack0,Unpack0) is a level-consistent packing

method.

Lemma 6.2.22. Suppose there exists a level-consistent packing method for

Fn

pk
into Fp[x]/f(x). Then, there exists a level-consistent packing method for

Fn

pk
into Fp[x]/ĝ(x), where ĝ(x) is the largest square-free factor of f(x).

Proof. Let (Pack,Unpack) be a level-consistent packing method for Fn

pk
into

Fp[x]/f(x). Note that a(x) 2 Fp[x]/f(x) is nilpotent if and only if it is divis-

ible by ĝ(x). We can use the same argument used in the proof of Lem. 6.2.21

with the help of Prop. 6.2.4. Then, for all a(x) 2 Fp[x]/f(x), Unpack(a(x)) is

fully determined by a(x) mod ĝ(x), given it does not output a failure ?. Con-

sequently, we can design a level-consistent packing method (Pack0,Unpack0)

for Fn

pk
into Fp[x]/ĝ(x) as in the proof of Lem. 6.2.21.

Lemma 6.2.23. Suppose there exists a level-consistent packing method for

Fn

pk
into Fp[x]/ĝ(x) where ĝ(x) is square-free. Then, there exists a factor g(x)

of ĝ(x) which allows a level-consistent one-to-one packing method for Fn

pk
into

Fp[x]/g(x).

Proof. Let (Pack,Unpack) be a level-consistent packing method for Fn

pk
into

R := Fp[x]/ĝ(x). Let ĝ(x) factorizes into r distinct irreducible polynomials

{ĝi(x)}ri=1. We identify R with
Q

r

i=1 Fp[x]/ĝi(x).
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Step 1: For a subset A ⇢ [r], let eA(x) 2 R denote the element which is 1

modulo ĝi(x) for i 2 A and 0 modulo ĝi(x) for i /2 A. Note that eA[B(x) =

eA(x)+eB(x)�eA(x)·eB(x). Thus, if Unpack(eA(x)) = 0 and Unpack(eB(x)) =

0, then Unpack(eA[B(x)) is also 0 by the level-consistency. We can therefore

choose the maximal set I ⇢ [r] such that Unpack(eI(x)) = 0.

Step 2: Let g(x) :=
Q

i/2I ĝi(x). Consider the ideal Z ⇢ R generated by

eI(x), which coincides with g(x) · R. Then, for any a(x) 2 Z, Unpack(a(x))

outputs 0 or a failure ?, since a(x) · eI(x) = a(x). Thus, for all a(x) 2 R,

Unpack(a(x)) is fully determined by a(x) mod g(x), given it does not output

a failure ?.

Step 3: Let a(x) 2 R satisfies Unpack(a(x)) = 0. Suppose a(x) is non-

zero modulo ĝi(x) if i 2 A and 0 modulo ĝi(x) if i /2 A, for some A ⇢ [r].

Since Fp[x]/ĝi(x) are fields, there exists s 2 Z+ such that a(x)s = eA(x). By

definition, A ⇢ I holds. Thus, for any a(x) 2 R satisfying Unpack(a(x)) = 0,

it holds that a(x) 2 Z, i.e. a(x) = 0 (mod g(x)).

Step 4: Following the proof of Lem. 6.2.21 together with Step 2, we can de-

sign a level-consistent packing method (Pack0,Unpack0) for Fn

pk
into Fp[x]/g(x).

Moreover, such (Pack0,Unpack0) is a one-to-one packing method by Step 3.

Lemma 6.2.24. Let g(x) 2 Fp[x] be square-free and r be the number of

distinct irreducible factors of g(x) whose degrees are multiples of k. There

exists a level-consistent one-to-one packing method for Fn

pk
into Fp[x]/g(x),

only if r  n.

Proof. Let P = (Pack,Unpack) be a level-consistent one-to-one packing method

for Fn

pk
into R := Fp[x]/g(x). Let g(x) factorizes into r̂ distinct irreducible

polynomials {gi(x)}r̂i=1 and let di := deg(gi). We identifyR with
Q

r

i=1 Fp[x]/gi(x).

For a subset A ⇢ [r̂], let eA(x) 2 R denote the element which is 1 modulo
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gi(x) for i 2 A and 0 modulo gi(x) for i /2 A. Let ei 2 Fn

pk
denote the element

with 1 in its i-th coordinate and 0 in the others.

Since P is one-to-one, there is only one element which unpacks to ei, which

we can set as eAi(x) for some Ai ⇢ [r̂] by Prop. 6.2.2 and 6.2.3. Moreover,

Ai \Aj = ; for distinct i, j since eAi(x) · eAj(x) must be 0 to be unpacked to

0 by one-to-one property.

Let u 2 Fpk be a multiplicative generator of Fpk , and let ui(x) 2 R be the

element which unpacks to u · ei. Observe that ui(x) mod gj(x) is non-zero

if and only if j 2 Ai, since (u · ei)p
k�1 = ei and consequently ui(x)p

k�1 =

eAi(x). Moreover, for j 2 Ai, the multiplicative order s of ui(x) mod gj(x) in

Fp[x]/gj(x) ⇠= F
p
dj must divide p

k � 1.

Meanwhile, if the multiplicative order s is less than p
k � 1, then ui(x)s =

eAi(x) = 1 (mod gj(x)). This contradicts the one-to-one property, since there

must be another element of R, a power of ui(x)s � eAi(x), which unpacks

to ei and is 0 modulo gj(x). Consequently, s = p
k � 1 must hold. To allow

such conditions on the orders, dj’s must be multiples of k for j 2 Ai. Thus,

for each ei, we can choose distinct gj(x) whose degree is a multiple of k, and

r  n holds.

6.3 Surjectivity

In this section, we examine the concept of surjectivity. Our main results are

necessary and su�cient conditions for a polynomial ring to allow a surjective

packing method for Zpk and Fpk , where p is a prime (See Section 3.3). They

limit the achievable e�ciency of surjective packing methods, yielding the

impossiblity of designing an e�cient packing methods while satisfying sur-

jectivity. The results justify the use of non-surjective packings and the need

of ZKPoMK in SPDZ-like MPC protocols over Z2k as done in Chapter 5

(Example 6.3.3, 6.3.4, and 6.3.5).
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6.3.1 Zero-Set Ideal

A crucial fact when dealing with a surjective packing method is the following

proposition on zero-sets. We extensively use the proposition when proving

our main results on surjectivity.

Proposition 6.3.1 (Zero-Set Ideal). Let R and R be rings. For D > 1, let

(Packi,Unpacki)
D

i=1 be a degree-D surjective packing method for R
n
into R.

Let Zi be the set consisting of elements a(x) 2 R such that Unpack
i
(a(x)) =

0. Then, Z = Z1 = · · · = ZD for some ideal Z of R. Moreover, |Z| =

|R|/|R|n.

Proof. By Prop. 3.2.6 and multiplicative homomorphic property, R · Zi ⇢
Zi+1 holds for i < D. Since 1 2 R, Zi ⇢ R · Zi holds, and therefore Zi ⇢
R ·Zi ⇢ Zi+1. By Prop. 3.2.6 and additive homomorphic property, Zi’s have

the same size, namely |Zi| = |R|/|R|n. Thus, Zi = R · Zi = Zi+1 holds. We

can now put Z := Z1 = · · · = ZD. Moreover, since R · Z = Z holds, Z is an

ideal of R.

6.3.2 Surjectivity in Zpk-Message Packings

Our main result on surjectivity in Zpk-message packings is the following the-

orem. Our theorem illustrates a necessary condition for a surjective packing

method for Zpk-messages to exist.

Theorem 6.3.2. Let ř be the number of linear factors of f(x) 2 Zpt [x]

in Zpk [x] which are mutually distinct modulo p. For D > 1, there exists a

degree-D surjective packing method Zn

pk
into Zpt [x]/f(x) only if n  ř.

Proof. See Section 6.3.4.

The following are some consequences of Thm. 6.3.2. They illustrate the

impossibility of designing a surjective HE packing method for Z2k-messages
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with cyclotomic polynomials. We have similar results for Zpk-messages with

p 6= 2.

Example 6.3.3. When M = 2m, by Prop. 2.2.2, we cannot pack any copies

of Z2k into Z2t [x]/�M(x) while satisfying surjectivity and degree-2 homomor-

phism.

Example 6.3.4. WhenM is an odd, �M(x) factors into a product of distinct

irreducible polynomials of degree d = ordM(2) in F2[x]. Thus, we cannot pack

any copies of Z2k into Z2t [x]/�M(x) while satisfying surjectivity and degree-2

homomorphism.

Example 6.3.5. WhenM = 2s·M 0, whereM 0 is an odd, �M(x) = �M 0(�x
2s�1

)

in Z[x]. Thus, by Example 6.3.4, we cannot pack any copies of Z2k into

Z2t [x]/�M(x) while satisfying surjectivity and degree-2 homomorphism.

Thm. 6.3.2 also yields the impossibility of surjective RMFEs over Galois

ring for Zpk-messages.

Example 6.3.6. In GR(pt, d) ⇠= Zpt [x]/f(x) with a degree-d f(x) which

is irreducible modulo p, we cannot pack any copy of Zpk while satisfying

surjectivity, unless d = 1. That is, there is no meaningful surjective RMFE

over Galois ring for Zpk-messages.

On the other side, we have the following theorem with a constructive

proof, which asserts that the necessary condition in Thm. 6.3.2 is also a

su�cient one.

Theorem 6.3.7. Suppose there are r linear factors of f(x) 2 Zpt [x] in Zpk [x]

which are mutually distinct modulo p. Then, there exists a level-consistent

surjective packing method Zr

pk
into Zpt [x]/f(x).

Proof. Let g(x) 2 Zpk [x] be the product of such r linear factors of f(x)

in Zpk [x]. Then, there is a CRT ring isomophism  : Zr

pk

⇠=�! Zpk [x]/g(x).
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Zpk [x]/f(x)
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(a) Pack
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Zpt [x]/f(x)

Zpk [x]/f(x)

Zpk [x]/g(x)

Unpack

⇡k

⇡g

 
�1

(b) Unpack

Figure 6.3: Definitions of Pack and Unpack in Thm. 6.3.7

Let ⇡k and ◆k denote the projection and injection between Zpt [x]/f(x) and

Zpk [x]/f(x), and let ⇡g and ◆g denote those of Zpk [x]/f(x) and Zpk [x]/g(x)

respectively.

Define Pack := ◆k � ◆g � and Unpack :=  
�1 � ⇡h � ⇡k (Fig. 6.3). Then, it

is straightforward that (Pack,Unpack) is a level-consistent surjective packing

method.

Corollary 6.3.8. Let r be the number of linear factors of f(x) 2 Zpt [x]

in Zpk [x] which are mutually distinct modulo p. For D > 1, there exists a

degree-D surjective packing method Zn

pk
into Zpt [x]/f(x) if and only if n  r.

Proof. Straightforward from Thm. 6.3.2 and 6.3.7.

The following corollary suggests that surjectivity is a somewhat stronger

notion than level-consistency for Zpk-message packings.

Corollary 6.3.9. For D > 1, if there exists a degree-D surjective packing

method for Zn

pk
into Zpt [x]/f(x), then there exists a level-consistent surjective

packing method for Zn

pk
into Zpt [x]/f(x).

Proof. Straightforward from Thm. 6.3.2 and 6.3.7.
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6.3.3 Surjectivity in Fpk-Message Packings

Our main result on surjectivity in Fpk-message packings is the following the-

orem. It is a finite field analogue of Thm. 6.3.2 which is on Zpk-message

packings. Our theorem illustrates a necessary condition for a surjective pack-

ing method for Fpk-messages to exist.

Theorem 6.3.10. Let r be the number of distinct degree-k irreducible factors

of f(x) 2 Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective

packing method Fn

pk
into Zpt [x]/f(x) only if n  r.

Proof. See Section 6.3.5.

The following are some consequences of Thm. 6.3.10. They illustrate the

hardness of designing an e�cient HE packing method for F2k-messages while

satisfying surjectivity. We have similar results for Fpk-messages with p 6= 2.

Example 6.3.11. When M = 2m, since �M(x) = (x + 1)2
m�1

in F2[x], we

can only pack copies of F2 into Z2t [x]/�M(x) while satisfying surjectivity and

degree-2 homomorphism. Even in that case, we can pack at most one copy

of F2.

Example 6.3.12. When M is an odd, �M(x) factors into a product of

distinct irreducible polynomials of degree d = ordM(2) in F2[x]. Let �(M) =

r ·d. Then, we can only pack copies of F2d into Z2t [x]/�M(x) while satisfying

surjectivity and degree-2 homomorphism. In that case, we can pack at most

r copies of F2d . Note that, since d > logM by definition, r < �(M)/ logM .

For instance, if one wants to pack F28 into Z2t [x]/�M(x) with an odd M

while satisfying the conditions, then one must chooseM such that ordM(2) =

8. However, such M cannot be larger than (28 � 1) and might be too small

for a secure parameter of HE.
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Example 6.3.13. When M = 2s · M 0, where M
0 is an odd, �M(x) =

�M 0(�x
2s�1

) = �M 0(x)2
s�1

in F2[x]. Thus, we cannot pack more copies of

F2k into Z2t [x]/�M(x) than Z2t [x]/�M 0(x) while satisfying surjectivity and

degree-2 homomorphism.

Meanwhile, using such M can be useful when packing copies of a small

field: it enables to meet certain level of HE security by enlarging the degree

of the ring. See Example 6.3.12.

Thm. 6.3.10 also yields the impossibility of surjective RMFEs.

Example 6.3.14. In Fpd
⇠= Zp[x]/f(x) with a degree-d irreducible f(x),

we cannot pack even a single copy of Fpk while satisfying surjectivity and

degree-2 homomorphism, if k 6= d. That is, there is no meaningful surjective

RMFE.

On the other side, we have the following theorem with a constructive

proof, which asserts that the necessary condition in Thm. 6.3.10 is also a

su�cient one.

Theorem 6.3.15. If there are r distinct degree-k irreducible factors of f(x) 2
Zpt [x] in Fp[x], then there exists a level-consistent surjective packing method

Fr

pk
into Zpt [x]/f(x).

Proof. Let g(x) 2 Fp[x] be the product of r distinct degree-k irreducible fac-

tors of f(x) in Fp[x]. Then, there is a ring isomophism  : Fr

pk

⇠=�! Fp[x]/g(x).

Let ⇡p and ◆p denote the projection and injection between Zpk [x]/f(x) and

Fp[x]/f(x), and let ⇡g and ◆g denote those of Fp[x]/f(x) and Fp[x]/g(x) re-

spectively.

Define Pack := ◆p � ◆g � and Unpack :=  
�1 � ⇡h � ⇡p (Fig. 6.4). Then, it

is straightforward that (Pack,Unpack) is a level-consistent surjective packing

method.
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Figure 6.4: Definitions of Pack and Unpack in Thm. 6.3.15

Corollary 6.3.16. Let r be the number of distinct degree-k irreducible factors

of f(x) 2 Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective

packing method for Fn

pk
into Zpt [x]/f(x) if and only if n  r.

Proof. Straightforward from Thm. 6.3.10 and 6.3.15.

The following corollary suggests that surjectivity is a somewhat stronger

notion than level-consistency, also in the Fpk case.

Corollary 6.3.17. For D > 1, if there exists a degree-D surjective packing

method for Fn

pk
into Zpt [x]/f(x), then there exists a level-consistent surjective

packing method for Fn

pk
into Zpt [x]/f(x).

Proof. Straightforward from Thm. 6.3.10 and 6.3.15.

6.3.4 Proof of Thm. 6.3.2

In this subsection, we prove Thm. 6.3.2. The proof is elementary, but consists

of a number of steps. As mentioned, Prop. 6.3.1 plays an important role in

the proof.

Theorem 6.3.2. Let ř be the number of linear factors of f(x) 2 Zpt [x]

in Zpk [x] which are mutually distinct modulo p. For D > 1, there exists a

degree-D surjective packing method Zn

pk
into Zpt [x]/f(x) only if n  ř.
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Proof. Straightforward from Lem. 6.3.19, 6.3.20, and 6.3.21.

Lemma 6.3.19. For D > 1, if there exists a degree-D surjective packing

method for Zn

pk
into Zpt [x]/f(x), then there exists a degree-D surjective pack-

ing method for Zn

pk
into Zpk [x]/f(x).

Proof. Let (Packi,Unpacki)
D

i=1 be a degree-D surjective packing method for

Zn

pk
into Zpt [x]/f(x). For all b(x) 2 Zpt [x]/f(x), since Unpack

i
(b(x)) = b

for some b 2 Zn

pk
by surjectivity(Prop. 3.2.6), Unpack

i
(pk · b(x)) = 0 holds.

Thus, at any level-i and for all a(x) 2 Zpt [x]/f(x), Unpacki(a(x)) is fully

determined by a(x) mod p
k.

Let Pack0
i
= ⇡k � Packi and Unpack0

i
= Unpack

i
� ◆k, where ⇡k and ◆k

denote the projection and injection between Zpt [x]/f(x) and Zpk [x]/f(x)

respectively. Then, it is straightforward that (Pack0
i
,Unpack0

i
)D
i=1 is a degree-D

surjective packing method.

For the remaining parts of this subsection, let f(x) be a monic polynomial

in Zpk [x], and let R := Zpk [x]/f(x). Let f(x) be factorized into
Q

r

i=1 gi(x)
`i

in Fp[x], where each gi(x) is distinct irreducible polynomial in Fp[x]. The fac-

torization can be lifted upto Zpk [x] via Hensel lifting. Let f(x) =
Q

r

i=1 fi(x),

where fi(x) 2 Zpk [x] is the Hensel lift of gi(x)`i satisfying fi(x) = gi(x)`i

(mod p). Let dj := deg(fi). Then, we can identify R with
Q

r

i=1 Zpk [x]/fi(x)

via the CRT ring isomorphism. We denote as Ri for the subring of R which

is isomorphic to Zpk [x]/fi(x) according to the CRT isomorphism. Let Z be

the zero-set ideal defined in Prop. 6.3.1

Lemma 6.3.20. Let (Packi,Unpacki)
D

i=1 be a degree-D surjective packing

method for Zn

pk
into R, for some D > 1. For each standard unit vector

ei 2 Zn

pk
, there exists ai(x) such that Unpack1(ai(x)) = ei and ai(x) 2 Rj for

some j 2 [r]. Moreover, such ai(x) is a unit in Rj, and such j is distinct for

all i’s.
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Proof. Let ai(x) satisfy Unpack1(ai(x)) = ei, and let Ai ⇢ [r] be the set of j’s

such that ai(x) is non-zero modulo fj(x). Without loss of generality, assume

that ai(x) has the smallest such subset of [r], among the elements satisfying

Unpack1(·) = ei.

Step 1: Suppose, for j 2 Ai, ai(x) (mod fj(x)) is a non-unit in Zpk [x]/fj(x).

Let Unpack1(ej(x)) outputs an element in Zn

pk
with ci in its i-th coordinate.

Then, at level-1, (ej(x)� ci · ai(x)) unpacks to an element with 0 in its i-th

coordinate. Thus, the following holds.

Unpack2

⇣
ai(x) ·

�
ej(x)� ci · ai(x)

�⌘
= 0

That is, ai(x) · (ej(x) � ci · ai(x)) 2 Z. Meanwhile, notice that (ej(x) �
ci · ai(x)) (mod fj(x)) is a unit, since Zpk [x]/fj(x) is a local ring. Therefore,

ai(x)·ej(x) 2 Z and ai(x)�ai(x)·ej(x) unpacks to ei at level-1, contradicting

the assumption on the size of Ai. Thus, for all j 2 Ai, ai(x) (mod fj(x)) must

be a multiplicative unit in Zpk [x]/fj(x).

Step 2: Consider ej(x) · ai(x) 2 Rj, and let Unpack1(ej(x) · ai(x)) outputs
an element in Zn

pk
with c̃i in its i-th coordinate. Then, at level-1, (ej(x) ·

ai(x)� c̃i · ai(x)) unpacks to an element with 0 in its i-th coordinate. Thus,

the following holds.

Unpack2

⇣
ai(x) ·

�
ej(x) · ai(x)� c̃i · ai(x)

�⌘
= 0

That is, ai(x)2·(ej(x)�c̃i) 2 Z, and therefore ai(x)·(ej(x)�c̃i) 2 Z since ai(x)

(mod f|(x)) is a multiplicative unit in Zpk [x]/f|(x) for all | 2 Ai by Step 1.

Consequently, it holds that Unpack1(ej(x)·ai(x)) = Unpack1(c̃i·ai(x)) = c̃i·ei.

Suppose c̃i 2 Zpk is a non-unit. Then, (1 � c̃i) is a unit, and (1 � c̃i)�1 ·
(ai(x) � ej(x) · ai(x)) unpacks to ei at level-1 contradicting the assumption

on the size of Ai. Thus, c̃i is a unit. Then, c̃�1
i

· ej(x) · ai(x) unpacks to ei at

level-1 satisfying the desired conditions.
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Step 3: Suppose ai0(x) is also in Rj and unpacks to a standard unit vector

ei0 at level-1. Then, ai(x) ·ai0(x) unpacks to 0 at level-2, and therefore ai(x) ·
ai0(x) 2 Z. However, since ai(x) and ai0(x) are both units in Rj, all elements

of Rj must be included in Z, leading to a contradiction.

Lemma 6.3.21. Let (Packi,Unpacki)
D

i=1 be a degree-D surjective packing

method for Zn

pk
into R, for some D > 1. If there exists ai(x) 2 Rj which

satisfies Unpack1(ai(x)) = ei for a standard unit vector ei 2 Zn

pk
, then fj(x)

has a linear factor in Zpk [x].

Proof. Consider x·ai(x) 2 Rj. Suppose Unpack1(x·ai(x)) outputs an element

in Zn

pk
with ci in its i-th coordinate. Then, at level-1, (x · ai(x) � ci · ai(x))

unpacks to an element with 0 in its i-th coordinate. Thus, the following holds.

Unpack2

⇣�
x · ai(x)� ci · ai(x)

�
· ai(x)

⌘
= Unpack2

⇣
(x� ci) · ai(x)2

⌘
= 0

That is, (x� ci) · ai(x)2 2 Z, and therefore (x� ci) · ej(x) 2 Z as ai(x) is a

unit in Rj (Lem. 6.3.20).

Now consider (x�ci) 2 Zpk [x]/fj(x) and the ideal hx�cii ⇢ Zpk [x]/fj(x)

generated by it. The ideal hx�cii contains at least pk·(dj�1) elements, namely

(x� ci) ·h(x)’s for h(x) 2 Zpk [x] with deg(h) < dj �1, which are multiples of

(x�ci) in Z[x]. On the other hand, hx�cii cannot contain more than p
k·dj/pk

elements: this is because Rj must contain p
k distinct elements modulo Z,

namely c·ai(x)’s for c 2 Zpk . Thus, |hx�cii| = p
k·(dj�1) holds. In particular, it

must hold that (x�ci)dj�fj(x) is a multiple of (x�ci) in Z[x]. Consequently,
fj(x) has a linear factor (x� ci) in Zpk [x].

6.3.5 Proof of Thm. 6.3.10

In this subsection, we prove Thm. 6.3.10. The proof is elementary, but con-

sists of a number of steps. As mentioned, Prop. 6.3.1 plays an important role

in the proof.
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Theorem 6.3.10. Let r be the number of distinct degree-k irreducible factors

of f(x) 2 Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective

packing method Fn

pk
into Zpt [x]/f(x) only if n  r.

Proof. Straightforward from Lem. 6.3.23, 6.3.24, and 6.3.25.

Lemma 6.3.23. For D > 1, if there exists a degree-D surjective packing

method for Fn

pk
into Zpt [x]/f(x), then there exists a degree-D surjective pack-

ing method for Fn

pk
into Fp[x]/f(x).

Proof. Let (Packi,Unpacki)
D

i=1 be a degree-D surjective packing method for

Fn

pk
into Zpt [x]/f(x). For all b(x) 2 Zpt [x]/f(x), since Unpack

i
(b(x)) = b

for some b 2 Fn

pk
by surjectivity, Unpack

i
(p · b(x)) = 0 holds. Thus, at any

level-i and for all a(x) 2 Zpt [x]/f(x), Unpacki(a(x)) is fully determined by

a(x) mod p.

Let Pack0
i
= ⇡p �Packi and Unpack0

i
= Unpack

i
� ◆p, where ⇡p and ◆p denote

the projection and injection between Zpt [x]/f(x) and Fp[x]/f(x) respectively.

Then, it is straightforward that (Pack0
i
,Unpack0

i
)D
i=1 is a degree-D surjective

packing method.

Lemma 6.3.24. For D > 1, if there exists a degree-D surjective packing

method for Fn

pk
into R := Fp[x]/f(x), then there exists g(x) 2 Fp[x] which

divides f(x), is of degree k ·n, and allows a degree-D packing method for Fn

pk

into Fp[x]/g(x).

Proof. Let (Packi,Unpacki)
D

i=1 be a degree-D surjective packing method for

Fn

pk
into R. By Prop. 6.3.1, the sets Zi consisting of elements a(x) 2 R

such that Unpack
i
(a(x)) = 0 coincide with an ideal Z = ǧ(x) · R for some

ǧ(x) 2 Fp[x] which divides f(x), as cR is a principal ideal ring. Let g(x) :=

f(x)/ǧ(x). Then, R/Z ⇠= Fp[x]/g(x), and therefore deg(g) = k · n since

|R/Z| = p
kn. Furthermore, at any level-i and for all a(x) 2 Fp[x]/f(x),

Unpack
i
(a(x)) is fully determined by a(x) mod g(x).
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Let Pack0
i
= ⇡g �Packi and Unpack0

i
= Unpack

i
� ◆g, where ⇡g and ◆g denote

the projection and injection between Fp[x]/f(x) and Fp[x]/g(x) respectively.

Then, it is straightforward that (Pack0
i
,Unpack0

i
)D
i=1 is a degree-D packing

method.

Lemma 6.3.25. For D > 1, there exists a degree-D packing method for Fn

pk

into R := Fp[x]/g(x), where g(x) 2 Fp[x] is a polynomial of degree k ·n, only
if g(x) factors into n distinct degree-k irreducible polynomials.

Proof. Step 1: Let (Packi,Unpacki)
D

i=1 be a degree-D packing method for

Fn

pk
into R. Since |Fn

pk
| = |R|, all Packi and Unpack

i
are bijective, and 0 2 R

is the only element which packs 0 at each level-i. Thus, a(x) · b(x) = 0 if

and only if a � b = 0, where a := Unpack1(a(x)) and similar for b, since

Unpack1(a(x))� Unpack1(b(x)) = Unpack2(a(x) · b(x)).

Step 2: Suppose g(x) is not square-free. Then, there exists a non-zero a(x) 2
R such that a(x)2 = 0. By Step 1, a2 = 0, where a := Unpack1(a(x)).

However, there is no non-zero a 2 Fn

pk
satisfying a2 = 0. Thus, g(x) is square-

free. Let g(x) factorizes into r distinct irreducible polynomials {gi(x)}ri=1 and

let di := deg(gi). We identify Fp[x]/g(x) with
Q

r

i=1 Fp[x]/gi(x).

Step 3: Note that for any a 2 Fn

pk
with s zero-coordinates, there are p

ks

elements in Fn

pk
whose Hadamard product with a is 0. Then, consider ěi(x) 2

Fp[x]/g(x) which corresponds to the vector of polynomials in
Q

r

i=1 Fp[x]/gi(x)

with 0 in its i-th coordinate and 1 in the others. Observe that there are p
di

elements in Fp[x]/g(x) whose product with ěi(x) is 0. By Step 1 and the

above facts, pdi = p
ks for some s. Thus, the degree di is a positive multiple

of k and we can let di := kci where
P

r

i=1 ci = n.

Step 4: By Step 1, the number of zero-divisors in Fn

pk
and R must be same.

The number of elements which are not zero-divisors in Fn

pk
is (pk � 1)n.

Meanwhile, the number of elements which are not zero-divisors in R is

80



CHAPTER 6. LIMITATIONS

Q
r

i=1(p
di � 1). Thus, the following must hold.

rY

i=1

(pdi � 1) = (pk � 1)n =
rY

i=1

(pk � 1)ci

Observe that pdi � 1 � (pk � 1)ci holds, where the equality holds if and only

if ci = 1. Thus, di = k for all 1  i  r.
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