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Abstract

In this thesis, we consider two topics about a sum of squares. First, we prove
that every natural number can be written as a sum of at most 6 squares of
integers not divisible by 3. Second, we study a sum of squares whose domain
is the set of all integers except for a fixed integer. For beginning, we check
that whether every natural number can be written as a sum of squares except
for 1 or 4 and for each case, find the infimum of the number of squares needed
to represent every natural number. At the end, we consider the same question

for arbitrary positive integer.
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Chapter 1

Introduction

The famous Lagrange’s Four Square Theorem says that every natural number
n can be written as a sum of four squares of integers. This theorem was
generalized in many directions including Waring’s problem. In this thesis,
we focus on a sum of squares of integers with some special conditions. In
fact, Kim and Oh considered in [6] such kind of a problem. They found the
smallest integer k£ such that every natural number is a sum of k squares of
integers which are not divisible by a prime p for any prime p. They denote

the smallest integer k satisfying above property by S(p) for any prime p.

Theorem 1.1.1. (Kim and Oh, [6]) Every natural number can be written as

a sum of at most 6 squares of integers not divisible by 3, that is, S(3) = 6.

To prove this, they use Minkowski-Siegel formula. In this thesis, we provide

a purely arithmetic proof of this theorem.
k k
Note that if n = 3~ a? for some integer a;, then clearly, 4™n = 3" (2™a;)?.
i=1 i=1
So, without loss of generality, we may assume that orda(n) = 0,1 to prove the



CHAPTER 1. INTRODUCTION

above theorem. In chapter 4, we provide the arithmetic proof of S(3) = 6, as

mentioned above. To do this, we prove two propositions given below.

Proposition 1.1.2. Let N be a natural number such that orda(N) = 1. Then

N is a sum of at most 6 squares of integers not divisible by 3.

Proposition 1.1.3. Let N be a natural number such that orda(N) = 0. Then

N is a sum of at most 6 squares of integers not divisible by 3.

Clearly, Theorem 1.1.1 is a direct consequence of these two propositions
For the second problem which we are considering in this thesis, we define

for any positive integer p,
SP =N-— {p}v

where N is the set of positive integers. For any positive integer n, we define

ky(n) = mingm | n = af + - + 2%, @i € 5,).
If such a k does not exist for given p,n, we define k,(n) = co. For example,
3 = 12412+ 12 can be written as a sum of three squares of 1. However we can
not write 3 as a sum of squares of integers greater than 1. So in this situation,

we can conclude that k1(3) = oco. We also define

I(p) :==A{n: ky(n) =00} and M(p) :=max{k,(n):n ¢ I(p)}.

In this thesis, we try to find the integer M (p) for various positive integers p.

For example, we prove that M(1) = 6 in Chapter 4.



Chapter 2

Preliminaries

2.1 Basic notations and definitions

Let Z and Q denote the ring of integers and the field of rational numbers,
respectively. For each finite prime p, we use Z,, Q, to denote their p-adic
completion, respectively. Finally, R = Q., denotes the field of real numbers.
Let R be the ring of integers Z or the ring of p-adic integers Z,. Then,
any free R-module of finite rank equipped with a non-degenerate symmetric
bilinear form is called a lattice over R or an R-lattice. Let L be a lattice over
R equipped with a non-degenerate symmetric bilinear form B : L x L — R.

The corresponding quadratic form @) is defined by

Q(z) = B(xz,z) forany z € L.



CHAPTER 2. PRELIMINARIES

Let e1,e9- -+, e, be a basis for L. Then an n x n matrix M defined by
My, == (B(e;, ¢5))
is called the Gram matrix of L, and we write
L= M.

For another basis fi, fa-- -, f, for L, there is an n x n matrix T' = (t;;) with

ti; € R which is called the transition matrix such that detT" € R* and

(Bleis e5)) = T)B(fi, [;))T.

The determinant of the Gram matrix, which is unique up to unit squares, is
called the discriminant of L. From now on, we fix {ej, ez, - ,e,} as a basis
for L.

Let L1, Lo, .-+, Ly, be sublattices of L over R. We define

B(Li, L;) :={B(z,y) | v € L;, y€ Lj}.

For lattices L, L1, L, - - - , Ly, such that L = Li@®La®- - -®L,, with B(L;, L;) =
0 for any 4, 7 with ¢ # j, we say that L is the orthogonal sum of Ly, Lo, -+, Ly,
and we write

L=1Iy 1Lyl -1 Lp.

For a subset S of L, we define S+, the orthogonal complement of S by

St :={zxeL|B(z,s) =0 for any s € S}.

] S o)) &



CHAPTER 2. PRELIMINARIES

For two lattices L1, Lo, we say that L, is represented by Lo if there exists

a linear map
o :Li — Ly such that B(x,y) = B(o(x),0(y)) for any x,y € Ly,

and in this case, we write L1 — Ls. We say that an element r € R is
represented by a lattice L to indicate the existence of a vector z € L such that

Q(x) = r. Here we define a special lattice

for later use.

We may write any nonnegative integer n = 4%(83++) for some nonnegative
integers «, 3,7. Moreover, we may assume that 0 < ~ < 7. Throughout this
thesis, we always assume that a, b, ¢ are integers. In particular, a, b, c are either

0 or integers not divisible by 3 in Chapter 3.

2.2 Lemmas

In this section, we collect some lemmas which are useful in the sequel. The

first lemma is known as Three Square Theorem.

Lemma 2.2.1 (Three Square Theorem). Let n be a natural number. Then n

can be represented as a sum of three squares if and only if

n#4%(86+1),
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where «a, B are nonnegative integers.

For the proof of Lemma 2.2.1, one may see [3].
The following second and third lemmas will be used in Chapter 5. In

particular, Lemma 2.2.4 is called Cauchy’s lemma.

Lemma 2.2.2. Any even natural number n is represented by the quadratic

form As defined above if and only if
n # 48(8m +7)

for nonnegative integers k, m.

Remark 2.2.3. It is also well-known that any odd natural number can not
be represented by As. For more information on the quadratic form A, for a

natural number n, one may see [2] and [4].

Lemma 2.2.4 (Cauchy’s Lemma). Let a and b be odd positive integers such
that
b* < 4a.

Then there exist integers s,t,u,v such that
a=s>+t2+u>+0® and b=s+t+u+v.

Remark 2.2.5. This is actually part of Cauchy’s lemma. The original one
has additional condition

3a<b>+20+4

to guarantee non-negativities of s,t,u,v. The proof of this lemma can be found

in [3].
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Here is one more lemma. This is proved by Kim and Oh in [6].

Lemma 2.2.6. Let p # 2,3 be a prime. Then every natural number n can be
written as a sum of at most 4 squares of integers all of which are not divisible

by p, except for the case when p =25 and n ="79.

Jacobi’s four square theorem is the last lemma which we need in this thesis.

One may find this theorem in [7].

Lemma 2.2.7 (Jacobi’s Four Square Theorem). Let r4(n) denote the number
of ways to represent a natural number n as the sum of four squares. Then
r4(n) is eight times the sum of the divisors of n if n is odd and 24 times the
sum of the odd divisors of m if n is even. It is also true that r4(n) is eight

times the sum of all divisors which are not divisible by 4.

&1

| &1



Chapter 3

Proof of Theorem 1.1.1

In this chapter, we will prove Theorem 1.1.1. To prove the theorem, we divide
it into several cases, and we prove each case separately. In Section 3.1, we will
consider the case when n is even. In Sections 3.2 and 3.3, we will consider the

case when n is odd.

3.1 Proof of Proposition 1.1.2

In this section, we prove Proposition 1.1.2.

First, assume that n = 3,6 (mod 9). Here we can write
n=288+7v)=8x28+2y

for nonnegative integers (,7v. Note that v = 1,3,5,7, for we are assuming

that orda(n) = 1. Now, n can be written as a sum of three squares by Lemma
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2.2.1. Hence we have

n=a>+b>+c?

for some integers a,b, and c. If one of a,b, ¢ is divisible by 3, then n # 3,6
(mod 9). Therefore n is a sum of three squares of integers not divisible by 3,
which implies the theorem in this case.

Now, assume that n =0 (mod 9). Here we can write
n=288+7v)=8x28+2y

for nonnegative integers ,~ with v = 1,3,5,7. If v = 1,5, then we have
n—12 =6 (mod 9). At the same time, n — 12 = 6 (mod 8). Furthermore,

since 9 = 22 + 22 + 1, we may assume that n > 18. Hence
n=224+22422 44>+ 0%+

for some integers a,b and ¢, none of which is divisible by 3. If v = 3,7, then

n—12=6 (mod 9) and n — 12 =2 (mod 8). Hence
n=2"4+22 4224 a*+ 0>+

for some integers a,b and ¢, none of which is divisible by 3.
Suppose that n # 0 (mod 3). Now, we consider the case when n =

1,2,4,5,7,8 (mod 9). Again we may write
n=28x 28+ 2y

for nonnegative integers 5, with v = 1,3,5,7. First, assume that n = 1

.-';r'\-\.-! -;.:I- 1_] ."‘.l'l

11’



CHAPTER 3. PROOF OF THEOREM 1.1.1

(mod 9). Note that 8 x28+2y >4 andn—4=8x25+2y—4=6 (mod 9).
At the same time, 8 x 25 4+ 2y —4 = 2,6 (mod 8). Hence we can write

n=2*+a>+b+c

for some integers a,b and ¢, none of which is divisible by 3.
Assume that n =4 (mod 9). Thenn —1=8x28+2y—1=3 (mod 9).

Since v =1,3,5,7, we have 2y — 1 = 1,5 (mod 8). Hence we can write
n=1"4a’>4+b+¢

for some integers a,b and ¢, none of which is divisible by 3.
The case of n = 7 (mod 9) is quite similar to the above. Note that n—4 =
8x26+4+2y—4=3 (mod9). Since v = 1,3,5,7, we have 2y — 4 = 2,6

(mod 8). Hence we can write
n=2*+d>+b*+¢

for some integers a,b and ¢, none of which is divisible by 3.
Now, consider the case when n =2 (mod 9). We assume that n > 5. Then

n—5=8x28+2y—-5=6 (mod 9). Since 2y —5=1,5 (mod 8), we have
n=22+1+ad"+b"+¢

for some integers a,b and ¢, none of which is divisible by 3. If n = 2, then
clearly, n = 12 + 12
Let n =5 (mod 9). If n > 8, then n —8 =8 x 2584+ 2y — 8 =6 (mod 9).

10

.-';r'\-\.-! -;.:I- 1_] ."‘.l'l
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CHAPTER 3. PROOF OF THEOREM 1.1.1

At the same time, n —8 = 2,6 (mod 8). Hence we can write
n=2"+2>+a*+b* +c

for some integers a,b and ¢, none of which is divisible by 3. If n = 5, then
clearly, n = 22 + 12

Let n =8 (mod 9). n—5=8x28+2y—5=3 (mod9). Note that
2y —5=1,5 (mod 8). Hence

n=22+12+a’>+0>+c

for some integers a, b and ¢, none of which are divisible by 3.

3.2 The first part of the proof of Proposition 1.1.3

In Sections 3.2 and 3.3, we prove Proposition 1.1.3. For convenience, we
consider the cases when v = 1,3, and 5 in this section, and the case when
~v = 7 will be considered in the next section.

First, suppose n = 3,6 (mod 9). Since v # 7, we can write
n=a?+b*+

for some integers a, b, and c. Note that none of a, b, ¢ is divisible by 3 because
n=3,6 (mod9).
Now, suppose n = 0 (mod 9). In this case, n = 86+~ =0 (mod 9). If

11
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v=1,5,thenn—-3=6 (mod 9) and n —3 =6,2 (mod 8). Hence
n=1+12+1*+a*+ 0>+

for some integers a,b and c¢, none of which is divisible by 3. If v = 3, then

n—6=3 (mod9) and n —6 =5 (mod 8). Therefore
n=2*4+12+12+a* + 0> +

for some integers a,b and ¢, none of which is divisible by 3.

Suppose that n # 0 (mod 3). Then n =85+~ =1,2,4,5,7,8 (mod 9)
with v = 1,3,5. First, assume that n = 1 (mod 9). If n > 19, then n — 42 =
n—16=8(8—2) 4+~ =3 (mod 9). Hence we have

n=42+a>+b+c

for some integers a, b, and ¢, none of which is divisible by 3. If n < 19, then
n = 12 which is already a square not divisible by 3.

Let n =4 (mod 9). If n > 31, then n — 16 = 8(5 —2) +v =6 (mod 9).
Hence we have

n=4>+a>+b>+

for some integers a,b and c, none of which is divisible by 3. If n < 31, then
n = 13 which can be written as 13 = 22 + 22 4+ 22 + 12,

Let n =7 (mod 9). If n > 79, then n — 64 = 8(5 —8) +~v =6 (mod 9).
Hence we have

n=8+a>+b+c

12

.-';r'\-\.-! -;.:I- 1_] ."‘.l'l



CHAPTER 3. PROOF OF THEOREM 1.1.1

for some integers a, b, and ¢, none of which is divisible by 3. If n < 79, then
n = 25,43,61. Note that 25 = 42 + 22+ 22412, 43 =52+ 42+ 124+ 1% and
61 = 7% 422 + 22 + 22,

Let n = 2 (mod 9). The least n is 11 and so § > 1. Then n — 8 =
8(8—1)+~v=3 (mod9). Hence we can write

n=22+22+a’>+0>+c

for some integer a,b and ¢, none of which is divisible by 3.
Let n =5 (mod 9). If n > 41, then n —8 = 8(f — 1) + v = 6 (mod 9).
Hence we have

n=224+22+a2+0%+¢

for some integers a,b and ¢, none of which is divisible by 3. If n < 41, then
n =5 and we have 5 = 22 + 12

Let n = 8 (mod 9). If vy = 3,5, then n —2 =88+~ —2 =6 (mod 9).
Hence we have

n=1"+12+a*>+0>+c

for some integers a, b and ¢, none of which is divisible by 3. Suppose v = 1. If

n >89, then n —20 =8(f —3)+5=6 (mod 9). Hence we have
n=4+2"+a"+b"+¢

for some integers a,b and ¢, none of which is divisible by 3. If n < 89, then

n = 17 and we have 17 = 42 + 12.

13

.-';r'\-\.-! -;.:I- 1_] ."‘.l'l



CHAPTER 3. PROOF OF THEOREM 1.1.1

3.3 The second part of the proof of Proposition 1.1.3

As mentioned above, we will consider the case when v = 7. So, we assume
that n = 88 + 7 for some integer 8 throughout this section.

First, suppose n = 3,6 (mod 9). Let n = 86+ 7 = 3 (mod 9). Then
n—6=83+1=6 (mod9). Hence we have

n=22+124+12+a2+0>+

for some integers a,b and ¢, none of which is divisible by 3. Now, let n =

834+ 7=6 (mod9). Thenn—-9=8(8—1)+6=6 (mod 9). Hence we have
n=2"+22 4124 a* + 0> +

for some integers a, b and ¢, none of which is divisible by 3.
Now, suppose that n = 0 (mod 9). Let n = 85+ 7 =0 (mod 9). Then
n—6=83+1=3 (mod9). Hence we have

n=22+124+12+a2+0%+

for some integers a,b and ¢, none of which is divisible by 3.

Suppose that n # 0 (mod 3). Then we have n = 83+ 7 = 1,2,4,5,7,8
(mod 9). First, assume that n =1 (mod 9). Then n—4 = 83+3 =6 (mod 9).
Hence we have

n=2>+a>+b+c

for some integers a, b and ¢, none of which is divisible by 3.

14
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Ifn=2 (mod9), then n —5=88+2=6 (mod 9). Hence we have
n=2"+1*+a”+b* + ¢

for some integers a,b and ¢, none of which is divisible by 3.

If n=4 (mod9), then n—1=88+6 =3 (mod 9). Hence we have
n=1+a>+b> 4+

for some integers a, b and ¢, none of which is divisible by 3.

If n="5 (mod9), then n —2 =88+ 5 =3 (mod 9). Hence we have
n=1+1*+a>+b* +

for some integers a,b and ¢, none of which is divisible by 3.

If n=7 (mod9), thenn—1=88+6=6 (mod 9). Hence we have
n=1+a>+b>4+¢

for some integers a,b and ¢, none of which is divisible by 3.

If n=8 (mod9), then n —2 =88 +5=06 (mod 9). Hence we have
n=1+1*+a>+b* +

for some integers a,b and ¢, none of which is divisible by 3.
Hence every natural number n is a sum of at most six squares of integers
not divisible by 3. In fact, one may easily show that 15 is not a sum of five

squares of integers not divisible by 3. Note that 15 = 22422 +22 412+ 12412

15

.-';r'\-\.-! -;.:I- 1_] ."‘.l'l
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is a sum of six squares of integers not divisible by 3.

16
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Chapter 4
I(1) and M(1)

Since we define S; = {2,3,4,...}, we have a®> > 4 for any a € S;. Hence
1,2,3 € I(1), which implies that I(1) is not empty.

Theorem 4.1.1. There are exactly 12 positive integers which are not a sum

of squares of integers greater than 1. More precisely, we have
I(1) ={1,2,3,5,6,7,10,11, 14, 15,19, 23}.

Theorem 4.1.2. Any integer which is a sum of squares of integers greater

than 1 is a sum of at most six squares of integers greater than 1. That is,
M(1) = 6.

In fact, we will prove that I(1) = {1,2,3,5,6,7,10,11,14,15,19,23} and

M (1) = 6 by using Lemmas 2.2.2 and 2.2.4.
k
If an integer n = ) a? for some integers a;, then we may also write
i=1

17



CHAPTER 4. I(1) AND M(1)

4n = 3" (2a;)?. The following proposition is a key ingredient of the proof.

-

=1

Proposition 4.1.3. Let p be any positive integer. Then there exists a natural
number n, satisfying the following condition: If n > n,, then n is a sum of at

most four squares of integers all of which are contained in S,.

Proof. First, assume that n = 2 (mod 4). Choose a nonnegative integer m
such that
4m? < n < 4(m + 1)

Since n — 4m? = 2 (mod 4), it is represented by the ternary quadratic form

As by Lemma 2.2.2. So, there are integers «, 3, such that
n—4am?* =a® + B2+ 2 + (a+ B — 7).
If we write o + 8 — v = §, then we have a + § — v — é = 0 so that
n=(m+a)’+ (m+ )’ +(m—9)*+ (m—6)"
Note that n — 4m? < 8m + 4. Hence we have

—V8m+4<a,B,v,0 < V8m+4.

This implies that n = 22 + 32 + 22 4+ w? has an integer solution (a, b, ¢, d) such
that a,b,c,d € (m—+/8m + 4, m~++/8m + 4). Hence if n is big enough so that
m — /8m + 4 > p, then all of a, b, c,d are greater than p.
Now, assume that n = 1,3 (mod 4). First, take a nonnegative integer m
satisfying
4m® +2m <n < 4(m+1)* +2(m + 1).

18
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CHAPTER 4. I(1) AND M(1)

Consider the system of diophantine equations,

n — (4m? +2m) = 2% + y? + 2% + w?,

l=x4+y+z+w.

If this system of diophantine equations has a solution («, 3,7, ), then we have

four integers «, 3,7, 0 such that « + 3 +~v+d =1 and
n=(m+a)+(m+p8)?+(m+y)2+(m+06)? =4m?+2m+a®+ 5%+ + 6%

Since 1 < 4(n — 4m? — 2m), we may apply Lemma 2.2.4 so that we have an

integer solution such an «, 3,,d. Note that
n—4m? —2m < 4(m+1)2+2(m+1) —4m? —2m = 8m +6
which implies that

—V8m+6<a,f,v,0 < vV8m+6.

Now, we have n = x2 + y? + 22 + w? has an integer solution (a, b, c,d) with
a,b,c,d € (m —/8m+6,m + /8m + 6). Hence if n is big enough so that
m — +/8m + 6 > p, then all of a, b, c,d are greater than p.

Assume that n = 0 (mod 4). First, denote p = 2¥p' with k¥ > 0 and an
odd integer p’. We have n = 4¢] with e > 1 and [ £ 0 (mod 4). By Lagrange’s

four square theorem, there are nonnegative integers a, b, ¢, d satisfying

l=a®>+ b+ +d>

19
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CHAPTER 4. I(1) AND M(1)

Hence we have
n = (2%)2 + (2%)2 + (260)2 + (2€d)2.

If k < e, then 2¢a, 2°b, 2°¢, 2°d # p. Otherwise, we can find integers o', v, ¢/, d’
satisfying
[=(d)+ (V) + () + (@),

and o', b, ,d > 2F=¢p since | # 0 (mod 4). By multiplying 4¢, we have
n = 4°] = (26(1/)2 + (er/)Q + (260/)2 + (2ed/)2‘
O

Now, we may prove M (1) = 6 by using Proposition 4.1.3. Note that if
m > 11, then
1 <m—+/8m+6.

Hence any odd integer greater than 504 is a sum of at most four squares of
integers contained in S7. Assume that n is even. For n = 4[, there are some

integers a, b, ¢ and d satisfying
n = (2a)* + (2b) + (2¢)* 4 (2d)?,

where

l=a’>+ b+ 2+ d%

Since 2a,2b,2c¢,2d # 1, the integer n is a sum of at most four squares of

20
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CHAPTER 4. I(1) AND M(1)

integers greater than 1. For n = 2 (mod 4), if m > 11, then we have
1<m—+v8m+4.

That is, every n > 484 is a sum of at most four squares of integers contained in
S1. For any integer less than 506, one may directly compute that any integer
not in I(1) is a sum of at most 6 squares of integers greater than 1. Note that
any integer in /(1) is not a sum of squares greater than 1. This completes the

proofs of Theorems 4.1.1 and 4.1.2.

21



Chapter 5

I(p) for p > 2 and M(2)

In this section, we mainly prove the case case when p = 2. To do this, we first

prove the following:
Theorem 5.1.1. I(p) = & for p > 2.

Proof. Since 1 € Sy and any integer is a sum of squares of 1, I(p) = & for any

integer p > 2. 0

Theorem 5.1.2. We have M (2) = 8.

Proof. First, we apply Proposition 4.1.3. If m > 13, the we have
2<m—+8m+6.

Hence any odd integer greater than 702 is a sum of at most four squares of
integers contained in S(2). If n = 421, then we may find integers a, b, ¢, d such
that

l=a®+b+c*+d°
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CHAPTER 5. I(p) FOR p >2 AND M (2)

Hence we have
n = (4a)% + (4b)? + (4¢)? + (4d)°.

Since 4a, 4b, 4¢c, 4d # 2, any integer divisible by 16 is a sum of at most 4 squares
of integers contained in So. If n = 41 with 484 < [ = 2 (mod 4), then [ can
be written as a sum of four squares contained in S; by Proposition 4.1.3. If
n = 41 with 506 < [ = 1 (mod 2), then [ is a sum of at most four squares
greater than 1. Hence n is a sum of at most four squares of integers contained

in Sy. Now, for n =2 (mod 4), if m > 13, then
2<m—+v8m+4.

Hence every n > 676 is a sum of at most four squares of integers contained in
So. As a result, for any n > 2024, n is a sum of at most 4 squares of integers
contained in Ss. So, the proof follows from direct computation for positive

integers less than 2024. O

The following proposition is a slight modification of Proposition 4.1.3,

which gives an effective method to determine M (p) for any arbitrary inte-

ger p.

Proposition 5.1.3. Let p be a positive integer. There is a constant c, de-
pending on p satisfying the condition: If n > c, - p?, then there are integers
a,b,c,d € S, such that n = a? + b2+ +d?. Here cp 1s non-increasing and
cp, < 506.

Proof. First assume that n = 2 (mod 4). Then for each natural number n,
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CHAPTER 5. I(p) FOR p >2 AND M (2)

find a nonnegative integer m such that
4m? < n < 4(m + 1)

From the proof of Proposition 4.1.3, there are integers a, b, ¢ and d satisfying
n=a’+b+c+d°,

and

m—+vV8m-+4<a,b,c,d.

If
p<m—+8m+4, (5.1)

then we have four integers a,b,c and d in S, satisfying
n=a’>+b*+c+d°.
From Equation (5.1), we have

m>p+4+242p+5.

For every
n > 4m? > 4p® +64p + (16p 4 64)\/2p + 5 + 144,
we can find integers a,b, c,d € S, such that

n=a®+b+c+d°.
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Assume that n = 1,3 (mod 4). Then for each natural number n, find a

nonnegative integer m such that
Am? +2m <n <4(m+1)%+2(m +1).

Again from the proof of Proposition 4.1.3, there are integers a,b,c and d

satisfying
n=a®+b+c+d%
and
m—+vV8m-+6<a,b,c,d.
If

p<m—+V8m+6, (5.2)

then we have four integers a,b,c and d in S, satisfying
n=a’+b*+c+d.
From Equation (5.2), we have

m > p+4++/8p+ 22

For every

n > 4m? + 2m > 4p® + 66p + 160 + 341/8p + 22 + 8p+/8p + 22,
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CHAPTER 5. I(p) FOR p >2 AND M (2)

we can find integers a,b, c,d € S, such that
n=a®+b+c+d%

Assume that n = 0 (mod 4). Denote p = 2¢p’ with a nonnegative integer
k and an odd integer p’. Since n =0 (mod 4), we can write n = 4] for some

positive integers [ #Z 0 (mod 4) and e. If we have integers «, 3,7, satisfying
l=0o’+ B ++°+ 6,
then we can write
n = (2°0)% + (2°8)% + (2°9)2 + (2°)°.

If e > k, then we can take a = 2%, b = 2¢3, ¢ = 2%y, d = 2¢J.

So, assume that e < k. Now the original problem is equivalent to the same
problem of replacing n, p with [, 28=¢p’ respectively. Since [ # 0 (mod 4), this
case can be proved by above methods.

By equation (5.1) and (5.2), we can denote n as
n = c,p’.

Note that we can take c, as the greatest value among the cases treated above.

From equation (5.1) we have

2m > 2p4+44+2/2p+5
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CHAPTER 5. I(p) FOR p >2 AND M (2)

and from equation (5.2) we have

2m > 2p + 4+ \/3p + 22.

Similarly, we can find that

2qp+4+2\gp+5 < %(2pp+4+2\/pp+5)

and

2gp+ 4+ /8qp+22 < Z%(2pp—i-4—i- V/ 8pp + 22)

for positive integers p, ¢ with p < g. This means that c, is actually decreasing.

So, sup,(c,) = 506 = cy. O
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Chapter 6

Value of M (p)

In the previous chapters, We have proved
M(1)=6 and M(2)=28.
By using a similar method, one may prove that
M(3)=6, M(4) =5, and M(5)=5.

Theorem 6.0.1. For any integer p which is not of the form 2% - 3% for some
nonnegative integers a,b, and p # 5, then M(p) = 4. Hence, if there is a
prime p > 7 dividing p, then M (p) = 4.

Proof. It was proved in [6] that any integer is a sum of at most 4 squares of
integers not divisible by p for ant prime p > 7. Now, assume that p # 5 is

divisible by 5. Since any integer which is not equal to 79 is a sum of at most
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CHAPTER 6. VALUE OF M (p)

4 squares of integers not divisible by 5, and
79=12+22+5%+ 7> =22 + 5% + 5% + 5%,

we have M(p) = 4. O

6.1 M(p) for p=2°

In this section, we consider the case when p = 2% for some positive integer s.
Since we prove that M (2) = 8 and M (4) = 5, we may assume that p = 2° for
s > 3. The following theorem claims that M (p) =5 in this case.

Theorem 6.1.1. We have M(2°) =5 for any s > 2.

Proof. Take p = 2° for some positive integer s > 2. By Proposition 5.1.3, we
have four integers a, b, ¢, d # p such that

n=a’4+b+c*+d

for every positive integer n > 506p2.

Suppose that n < 506p%. Now take a positive integer m such that
(m—1)* <n<m?

Then we have

n—(m-—12<2m—1.
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If 2m — 1 < 4%, then
n—(m-1>2=ad+*+32+d*

for some integers a, b, c,d # p. Note that 2m — 1 < 4* holds for m < %. This

means that for n < 42! n can be written as
n=(m-12+ad>+0*+c+d.

So, if 506 x 4% < 42571 equivalently s > 6, every n is a sum of at most five
squares of integers in Sos.

The only matter is that the case of m — 1 = 2°. In that case, we can
substitute m — 1 with m —2. We have n—(m—2)? < 4m—4 =4(2°+1)—4 =
25+2 < 4% for s > 2. One can find that M (8) = M(16) = M(32) = 5 by direct
computations.

For complete proof, let p = 2°. here s > 2. Then n = 3 x 22571 =6 x (g)
needs 5 squares. By Lemma 2.2.7, r4(3 x 22571) = 96. But n = (&p)? +

2

(ig)2 + (i§)2 + 0 is the only way since the number of arraying the order and

sign is g—i x 23 = 96. Hence this n can not be a sum of four squares. O

6.2 M(p) for p=3'

Now let p = 3'. Since we have M (3), consider that ¢t > 2. Then we can prove
that M(p) < 6 by direct computations.

Theorem 6.2.1. We have M(3") <6 fort > 2
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Proof. Fix a natural number ¢t > 2. For a natural number n, we can write
n=a®+b*+c+d*
for some integers a,b,c,d. If a = b = ¢ = d = 3!, then
n=4x9"=(2x3">2
If a=b=c=3" but d # 3, then
n=3x9+d*=2Tx3" 4 d®=(Bx3H2+ 32+ 32 + %
If a = b= 3% but ¢,d # 3, then
n=2x9++d?=(4x3"NH2 432 4 (32 4+ 2 4 2
If a = 3%, but b, c,d # 3!, then
n=0 4+ b2+ d?=(2x3" N2+ (2x 32 4 (3712 £ 12 4 2+ 2.
O
By Proposition 5.1.3, we can also deduce that M (p) < 5.

Theorem 6.2.2. We have M (3!) <5 fort > 2

Proof. Take p = 3! for some positive integer ¢t > 2. By Proposition 5.1.3, we
have four integers a, b, ¢, d # p such that

n=a’4+b+c+d
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for every positive integer n > 506p2.

Suppose that n < 506p%. Now take a positive integer m such that
(m—1)%<n<m?

Then we have

n—(m-1)>%<2m-—1.

If 2m — 1 < 9%, then
n—(m-1>2=ad+*+32+d*

for some integers a, b, c,d # p. Note that 2m — 1 < 9% holds when m < 9tT+1.

2
This means that for n < (gtT‘H> , N can be written as
n=(m-12+ad>+0*+c3+d.

So, if 2024 x 9* < 9% +2 x 9 + 1, then every n is a sum of at most five squares

of integers in S,. Note that
2022 x 9" < 9% < 9% 41

holds when t > 4.

The only matter is that the case of m — 1 = 3!, In that case, we can
substitute m — 1 with m —2. We have n— (m—2)2 < 4m -4 =4(3"+1)—4 =
4 x 38 < 9 for all t > 2. One can find that M(9) = M(27) = 4 by direct

computations. O
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CHAPTER 6. VALUE OF M (p)

If n # 2 (mod 3), we can write n as a sum of at most four squares of

integers in S,.

Theorem 6.2.3. Let p = 3! for t > 2. Suppose that n # 2 (mod 3). Then n

is a sum of at most four squares of integers in S,.

Proof. First suppose that n is not of the form 4*(83+7). Let n =0 (mod 3).
Then n = a® + b?> 4+ ¢ and a, b, ¢ should be divisible by 3 or none of them
should be divisible by 3. Suppose a, b, ¢ are divisible by 3. Without loss of

generality, we can write
a=3%, b=3"by, c=3% (1<e<f<yg)

for integers aqg, bo, o, €, f, g so that ag, by, co are not divisible by 3. Let

at+b+ec

M=—0—= 3 Lag + 37 1o 4 39 1o
Then
(2M — a)® 4+ (2M — b)? + (2M — ¢)?
=12M? —4M(a+b+c)+a® +b* + * = a® +b* + & = n?
and

ords(2M — a) = ord3(2M — b) = ord3(2M —c) =e—1

unless e = f = g. In this case, we can write n as a sum of three squares none
of them is divisible by 3 by using induction on e. Let e = f = g. If a, b, c # 3¢,

then it is over. So we suppose a = 3!. Now we have M = 3'"1(1 + by + cp).
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Then

2M —a = 3" (by + cp — 2),
2M — b =311+ ¢o — 2by),
2M — ¢ =311 4 by — 2cp).

Since by, co = 1,2 (mod 3), 2M — a is divisible by 3¢ if and only if by, co = 1
(mod 3). Moreover 2M — b,2M — ¢ are also divisible by 3! if and only if
bp,co =1 (mod 3) respectively. If we substitute b by —b, 2M —a,2M —b, 2M —c
can not be divisible by 3¢. Hence we can write n = a®+b*+c? with a, b, ¢ # 3t.

Let n =1 (mod 3). Since n — 1 =0 (mod 3), we can write n = 1 + a? +
b? + ¢? for some integers a, b, c # 3.

Now suppose that n = 4%(83+7). Let n =0 (mod 3). Then n = a?+b?+
c? 4+ d? and a, b, ¢, d should be divisible by 3 or exactly one of them should be
divisible by 3. If a = b = ¢ = d = 3, we can write n = (2 x 3%)2. So suppose
that at least one of them is not 3!. Without loss of generality, we may assume
that a # 3'. Then n — a® = b? + % + d? is not of the form 4%(83 + 7) since it
is a sum of three squares and all b, ¢, d should be divisible by 3. By the same
logic, we can write n = a? + (b')? + ()? + (d')? with a, ¥, ¢, d’ # 3.

Let n = 1 (mod 3). Then there are integers a,b,c and d such that n =
a®? 4+ b? 4 ¢® + d? and all of them are divisible by 3 except for one. Again we
may assume a is not divisible by 3. Then n — a® = b + ¢? + d? and all a,b, ¢
should be divisible by 3. So we can write n = a? + (b')2 + (/)? + (d')? with
a, v, c,d #+ 3t O

It seems that M(p) = 4 if p = 3¢ with ¢t > 2.
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Conjectrue 6.2.4. M(3") =4 fort > 2.

6.3 M(p) for p =253

Now we consider the more general and the last one. Let p = 253!, Here we

only consider s,t > 1. Then we have M(p) =5if t = 1.

Theorem 6.3.1. Let p = 253 for natural numbers s,t. Then we have M(p) =
5ift=1.

Proof. Let p = 3 x 2° for some positive integer s. By Proposition 5.1.3, we

have four integers a, b, ¢, d # p such that
n=a*+b*+c*+d*

for every positive integer n > 506p2.

Suppose that n < 506p%. Now take a positive integer m such that
(m—1)* <n<m?

Then we have

n—(m—-12<2m-1.

If 2m —1 <9 x 4° then
n—(m-12=ad>+0>++d*

for some integers a, b, ¢, d # p. Note that 2m —1 < 9 x 4° holds for m < 9 x %.
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This means that for n < 81 x 42571 n can be written as
n=(m-12+a>+ 0%+ +d.

So, if 506 x 9 x 4° < 81 x 4%~1 equivalently s > 5, every n is a sum of at
most five squares of integers in S),.

The only matter is that the case of m — 1 = 3 x 2°. In that case, we can
substitute m—1 with m—2. We have n—(m—2)%? < 4m—4 = 4(3x2°+1)—4 =
3 x 2572 < 9 x 4% for s > 1. One can find that M(6) = M(12) = M(24) =
M(48) = M(96) = 5 by direct computations.

Now we have to show that there exists a natural number n which can not
be a sum of at most four squares. Let N = % x p? = 14 x 2%°. By Lemma
2.2.7, 74(7 x 22571) = 192, But n = (£p)? + (:I:%)2 + (££)? + 0 is the only

way since the number of arraying the order and sign is 4! x 23 = 192. Hence

this n can not be a sum of at most four squares. ]
It seems that M(p) = 4 if p = 253! for t > 1.

Conjectrue 6.3.2. M(p) =4 if p = 23" with t > 1.
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