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Abstract

In this survey paper, first we introduce the result of [1]. It treats (relative)
SLa(C)-character varieties of surfaces and their compactification via word length,
giving a partial answer to the forklore conjecture that relative character vari-
eties are log Calabi-Yau. We interpret this in the context of [2], which introduces
compactification using triangulation. As in [2], result of Mondal [3] is used as a
critical tool to prove properties of algebras associated to the compactification
of character varieties. Such algebraic properties will lead to desirable interpre-

tation of combinatoric results related to counting of multicurves on surfaces.

Keywords: Character Variety, Degree-like function, Multicurve, Triangulation.
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Chapter 1

Introduction

Let ¥4, be a compact oriented surface of genus g with n > 1 punctures. For a
reductive algebraic Lie group G, let X, be the coarse moduli space of G-local
systems on X, ,. Let X, , . be the subvariety of X, , obtained by prescribing
traces k € A"(C) of peripheral loops around the punctures. There is a forklore

conjecture regarding its compactification:

Conjecture 1.0.1 There exists a normal compactification Xy, 1 of Xgnk with

boundary Dy 1 such that the pair (Xgpnk, Dgni) s log Calabi-Yau.

This is especially interesting when G = SLg(C). [1] gives an example by

word compactification.

Theorem 1.0.2 The conjecture is true for G = SLy(C), where Xy p = X;ng

is defined by word compactification of Xy p k-
In [2], another way of compactification is given.

Theorem 1.0.3 The conjecture is true for G = SLo(C), where Xy, 1 = XgA,n,k

is defined by compactification of Xy 1 via triangulation A.



All these compactification process boils down to introducing a filtration on
the function ring of our character variety, and especially both are examples
of filtration via counting curves, counted with weights. In such settings, the
associated graded ring structure can be revealed by inspecting the generators
and their relations carefully. The desired result is that such graded rings are
actually isomorphic to certain monomial rings, and from that we know they are
graded Gorenstein algebras. As the combinatorial aspects of Gorenstein algebras
suggest, it will result in a combinatorial reciprocity formula that forebodes the

log Calabi-Yau property of relative character varieties.



Chapter 2

Background

2.1 Filtration and Degree-like Function

We introduce the basic algebraic notions required to define compactification of
character varieties. The varieties of our concern would be spectra of rings. We
consider compactification of those induced by giving filtration on those rings.
By filtration, we mean multiplicative, increasing, and exhaustive ones as defined

below. Let R be an integral finitely generated algebra over C.

Definition 2.1.1 (Filtration) A filtration F on R is a collection {Fi},z_ of
C-subspaces of R such that F; ¢ Fi1, FiFjc Fivj, Cc Fo, R=U; F;.

When R is filtered(=given a filtration), there are two graded algebras induced
by the filtration. One is the Rees algebra R = @50 F; X" and the other is
what we call the associated graded algebra, Gr” R = @;s0 Fi/Fi-1. Then we
have R R7 /(X -1) = R{X), Gr” R= R¥/(X). For Z = SpecR, Z” = Proj R”
would be our desired compactification. Note that in this case, the complement

of Z is exactly Proj Gr’ R.



We consider exhaustive filtrations(i.e. R = U; F;) because it guarantees the

filtered ring conveys certain properties from its associated graded algebra.

Lemma 2.1.2 If Gr” R is an integral domain, so is R. If Gr” R is a normal

domain, so is R.
Another equivalent way of describing filtrations is degree-like functions.

Definition 2.1.3 (Degree-like Function) 0 : R - Zyo U {-00} is a degree-
like function if

5(C*) =0, 6(0) = -0,

d(f1+ f2) <max{d(f1),d(f2)} with equality when 6(f1) #d(f2),

6(frf2) <0(f1) +6(f2)-
If the last equality holds, § is a semi-degree(=valuation).

Indeed, a filtration F defines a degree-like function
0:x~ deg(ex).
Conversely, given a degree-like function § we can define filtration F by
Fi={xlo(z) <i}.

Via this equivalence, we can consider Rees algebra R and Gr® R induced by

degree-like function § defined on R.

2.2 Character Variety

Let 7 be a finitely generated group, and G a reductive algebraic Lie group
over C. Then we define the G-representation variety Rep, as the affine scheme
Hom(w,G) = Spec C[Rep]. Indeed, it is the closed subscheme of G™ cut by
the relations of m generators of 7. When G is a matrix group, we define tr, €

C[Repw] by p~ trp(a) for a €.



Then we define the G—character variety X by Hom(7, G) /G = Spec C[Rep, ],

which is GIT quotient by the conjugate action of G. We can regard tr, €
(C[Rep,r]G since trace is invariant under conjugate actions. Our main inter-
est in this paper is the case when G = SLo(C), in which case a lot is known.
For example, first we have tr; =2 and for a,b € 7 and p € Rep,, we have p(a) -
tra(p)1 + p(a)™' = 0 by Cayley-Hamilton theorem, hence try try, = trgy +trg,-1.
We finish this chapter with a theorem that these are all the relations we have
in X,.

Theorem 2.2.1 For G = SLy(C),
C[Xz] =Cltrglaenm]/ (tr1 =2, trg try = trap +tryy-1).



Chapter 3

Compactification via Filtration

3.1 Relations on Generators

Let ¥4, be an n-punctured Riemann surface with genus g and n We fix 7 =
71 (3g,n),G = SLa(C) for the rest of this paper. Our initial aim is to describe
the structure of Ry, by inspecting its generators and their relations, following
[2]. A theorem in [4] introduces a natural basis that we can work with, namely
multicurves. We call a union of finite disjoint curves on X, , a multicurve, and
denote by Mult the collection of isotopy classes of multicurves. We may define
their traces as follows: first, since traces of conjugate elements are equivalent, we
may define traces of baseless loops. By 2.2.1, we have tr; =2, tr, trp = trgp + trp-1
as relations of traces of loops which induces tr. = tr.-1 for any loop ¢, so we
may ignore the orientation of loops and consider their traces as traces of curves.
Then we define the trace of a union of curves as the product of traces of its
components. The set of traces of mulcicurves (up to isotopy) is exactly our

desired basis.

Theorem 3.1.1 (Charles-Marché) R,, = @ Ctr..
ceMult



By 2.2.1, the relations between traces of multicurves is described by tr; =2, tr, try =

trap +try-1, where 1 is the empty multicurve. The latter relation can be visu-

alized as follows.

()= (X) == ()
()= (X) - ()

where the omitted part of curves connects between ends with same colors. We
might want to have a better description of relations where we do not have to
care how the curves are connected, so we define f(c) = (-1) tr, where |¢| is

the number of components of ¢. Then we have

(X0 +7(0X)+7(O() =0

We shall see this means R, is isomorphic to a specialized skein algebra.
The skein algebra Sk4 (Xg,,) is the C [A, A_l]-algebra generated by framed
links in g, x (=1,1) up to isotopy defined by relations

<L v O) =—(A+ A_l) (L) disjoint union with trivial loop
(X) =4 <X> rA! <><> skein relation

Thus Ska (Z4,) /(A +1) 2Ska (Zy) /(A7 +1) is the C-algebra defined by
(o) =-2(1)
(X)= 04000+ ()

Under isotopy, we can always choose a framed link on which the projection ¥ ,, x

(-1,1) - X, 5, is immersion to a multicurve. So generators of Sk (Xg,,) /(A+1)
. o 7\ I\ .

can be represented by multicurves; Since (X) = < K), upper-crossings and

under-crossings of framed links coincide, so that the correspondence between

generators representing framed links and multicurves is one-to-one. That is, by



(><> - f (><) we obtain the ring isomorphism Sky (X4,) /(A-1) 2 Ry .
The following automorphism from [5] gives another formulation of defining

relations of Ry,,.

Theorem 3.1.2 Each spin structure for ¥4, x (=1,1) defines a non-canonical

linear map
¢:Ska (Xgn) = Skoa (Xgn)

defined by changing signs of each linked frame.

The above theorem, along with the isomorphism Sk (3g,,) /(A-1) = Ry 5,
shows that there is some f = +f where the signs may differ for each multicurve,

and satisfies the following relation:

FOX)=70X)+7(<)-
3.2 Triangulation of X,

As mentioned, giving a compactification of R, , is accomplished by defining a
filtration on R, ,. First, we introduce a filtration defined by a set of 'count-
ing curves’ on X,,. Let S = {s1,...,s,} be a collection of closed curves and
arcs(curves that connect between punctures), d € Z;. Then define ¢(g4)(c) =
5 dii(c, sg) for ¢ € Mult, where ¢(x,y) is the least number of intersections
f)zeltween curves in the isotopy classes x,y. So ¢(g q) is basically the intersection

number with respect to S counted with weight d.

Proposition 3.2.1 (g 4 (sz- trci) = max ((g,q)(¢:)
i i

(ci is a connected curve, p; #0 Vi) is a degree-like function.

Proof. §(5,ay(C*),d¢s.4)(0) = o0 is direct from the definition.

8(s,a) Xi:pi trg, + %: q; trbj) = maX{L(Svd)(c)|c =a; =bj,a; +b; 0}

< max {mfdx L(s,a)(ai), Max L (s,q) (bj)} = max {5(s,d) (Zpi trai) :0(5.d) (Z qj trbj)}



with equality when d(g q) (sz trai) #0(5,d) (Z qj trbj),
i J
5(S7d) (sz trg, - Z qj tl"b],) = 5(S,d) (.Zpiqj (traibj +traibj"1))
) 7 7,7

< max L(s,ay(ai) + max v(s,a)(by) = 0(s.a) (%fpi tra; |+ d¢s.q) (; qj trbj)

the last inequality is due to d(g.q) (tTap) < ¢(5,0)(a) + ¢(5,a)(D)-

O

One important case is that S = A is the set of arcs where these arcs divide
Y4 into areas homeomorphic to disk and each of those areas is bounded by
three arcs, counted with multiplicity. Then we call each of those areas a triangle,
and S a triangulation of 3, ,,. Next, we argue how a triangulation parametrizes
multicurves on X .

Since an arc bounds two triangles and a triangle is bounded by three arcs,
counted with multiplicity, we have 2N triangles and r = 3N arcs for some
N. Then 2N triangles, 3N arcs, n points filling in the punctures form a cell
structure on a surface of genus g and we have 2N — 3N + n = 2 — 2¢g, hence
N =n (mod 2).

Next we inspect how a multicurve appears in each triangles. When we con-
sider a multicurve intersecting A at minimum in its isotopy class, their should
be no bigons bounded by part of an arc and part of the multicurve. So when
restricted to a triangle, multicurve is a disjoint union of segments connecting
between arcs in A. Its isotopy type is characterized by a triple of nonnegative
integers representing the number of segments connecting each pair of arcs. Since
we have 2N triangles the configuration on the whole surface is represented by a
6 N-tuple of nonnegative integers. There must be the same number of segments
connected from each side of an arc so the tuple must satisfy linear relations
corresponding to the arcs. There are 3N arcs and the tuple must be a nonneg-
ative integer solution of some 3N x 6N integer matrix ®. Conversely, if we have
a nonnegative linear solution of such ®, we can glue those curves in triangles

to obtain a multicurve. In summary:



Proposition 3.2.2 A triangulation A ={s1,...,s3n} defines a bijection

¢: Mult «— {a e 78019 (a) = 0}

c— a(c)

for some ® € M3nxen(Z), where a(c); = number of times ¢ wraps around ith angle.

Example 3.2.3 In Figure 3.1, A=aubucudueu f is a triangulation on
Y12. In the view of Proposition 3.2.2, multicurves on Sy 2 corresponds(up to

isotopy) to monnegative integer solutions of the following ®.

Figure 3.1: Edges and triangles on Si o

123 4 5 6 7 8 9 10 11 12

afl1 1.0 0 0 0 0 -1 -1 0 0 O
bjr» 010 0 0 -1 -1 0 O 0 O
- oo0oo0o o0 00 O o o o0 1 -1
4]0 06 0 06 1.1 0 0 0 0 -1 -1
el0 1 1 -1 0 -1 0O 0 o0 0 O

f\ 000 110 -1 0 -1 0 0 O

Combined with 3.1.1, 3.2.2 induces

. ~ « _ 6N
¢:Ryp Ci_md(c [a: |P(a) =0, € Z3 ]

F(e) s a2

10 S Eas kg



Note that this C-linear isomorphism preserves filtration where the filtration on
the right-hand side is given by the weighted degree of monomials.
Next is our main theorem, characterizing the structure of the compactifica-

tion of X ,,.
Theorem 3.2.4 ¢ induces C-algebra isomorphism
Gr®¢:Gr® Ry, 2 C [2%®(a) =0, € Zgév] c Clzy,...,z6N]

Proof. Now that we know the generators of Gr™ R, and how they are mul-
tiplied, we only need to check if it coincides with how monomials in monomial
subring are multiplied, i.e. has the structure of a free abelian group. While
multiplying two generators(multicurves) in Gr2 Ry, there might occur an in-

tersection of those two multicurves. Then we have

deg =deg > deg

KN
I}
R
+
\
I}
=

deg =deg > deg

11 A L-tfl & 3
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in Gr® R, ;.. Hence we may resolved any intersection occuring while multi-
plying multicurves and it is enough to count only the numbers of each segment

in each triangle. In other words:
Gr® Ry, 2C [2%®(a) =0,c€ Z%V] .

]
Note that Gr® ¢ in the theorem preserves the weighted degree of both rings.

i.e. da is a semi-degree.
Much is known about the monomial ring C [xa|<1>(a) =0, e Z5Y ] For ex-

ample, we invoke the following theorem in [6].

Theorem 3.2.5 For any ® € My;un(Z) with vk® = M < N and ®(1,...,1) =

0, C [:1;0‘|<I>(a) =0,a¢€ Z%] c Clx1,...,zN] is a graded Gorenstein domain.

Corollary 3.2.6 For a triangulation A, Gr® Ry is a normal graded Goren-

stein domain.

Proof. That Gr® R, is a normal domain is immediate from 3.2.4. For the

rest, it is enough to show that rk ® = 3N and ®(1,...,1) =0. Let v1,va...,v3n5
3N

be row vectors of ®. Suppose Y. a;v; = 0. Choose a triangle. Pick columns
i=1

corresponding to segments connecting between arcs enclosing each triangle. If

the triangle has three distinct arcs, say v, ve,v3. Then ® looks as follows after

]
12 -i == T



reordering columns so that the picked columns come first, up to sign of rows.

1 10
1 01
011

*
0 00
0 00

From this, we have a; = a2 = az = 0. Meanwhile, if two arcs coincide so that
the chosen triangle is enclosed by two distinct edges, say vi, v, then ® looks as

follows up to reordering of rows and columns and the sign of rows.

1 1

1 -1 0

0 0 *
0 0 0

Thus a; = ag = 0. Since every arc bounds some triangle, we have a; = 0 for all i.
We conclude that v, v, -+, v3n are independent and rk® = 3NN.

Next, consider the multicurve that consists of n peripheral curves on X ,,.
Since it has to wrap around each angle of the triangles for exactly once, its
corresponding monomial is 21D ie. ®(1,...,1) = 0. O

The following theorem originates from [3].

Theorem 3.2.7 0 is a subdegree (that is, §(f") =nd(f) ¥Yn>0,feR)
implies Z° is relatively normal at infinity,
i.e. T'(U,Oys) is integrally closed in T'(U N Z,04s)
for any U open in Z°.

Corollary 3.2.8 If R is a normal domain and & is a subdegree, then R® is a

normal domain.

Corollary 3.2.9 X, X9A7

., are normal varieties.

]
13 =4



Proof. The isomorphism Gr® ¢ in 3.2.4 preserves grades. i.e. §° is a semi-
degree, hence a subdegree. By 2.1.2 and 3.2.6, R, is a normal domain. By

3.2.8, Rﬁn is a normal domain. O

3.3 Combinatorial Results

Now we shall bring out a reciprocity formula, which is a fragmentary clue about
the log Calabi-Yau property of the relative character variety of 3, ,,. The result

of this section depends on the following formula by [6].

Theorem 3.3.1 For any ® € My«n(Z) with tk® = M < N, K be the set of

its monnegative integer solutions and K° its positive integer solutions. Then

k(z) = ¥ 2% k°(2) = ¥ 2% are rational functions. If k° # 0, k(z71) =
eK

o acK®°
(-1)N"MEe(2).

Of course, the theorem is to be applied to @ in 3.2.4. The main ingredient
in the proof of 3.3.1 is the Grothendieck local duality, one of whose immediate

consequence is as follows:

Theorem 3.3.2 For a graded Cohen-Macaulay d-dimensional algebra R with
graded canonical module wr, Hp(t™') = (-1)2H,,,.(t).

Here, H denotes the Hilbert series. By applying this directly to Gr2,,, which

g7n7

we have seen to be a graded Gorenstein ring so that its graded canonical module

is a grade shift of itself, we obtain
Corollary 3.3.3 Hpa (t71) = (-1)"t% diHDgAn (1)

where Dﬁn = ProjGr® R, is the boundary of X,,, in Xﬁn.
To apply 3.3.1, it is required to inspect the space of positive integer solutions,
which is simple in the case of 3.2.4 since (1,...,1) is the unique positive solution

of ®. Here we have

k (Z—l) — (_1)6N—rk(¢)k0(z) _ (—1)3Nt(1717""1)k'(2)

14 AL



Now define
ga(x) = Z Gaz®

3N
anZO

fa(z) = Z F,xz“
angoN
where

Gqo = {c € Mult|e(a q)(c) = a}

F, = {c € Mult|c has no peripheral components,i(a 4y(c) = a}

1 1

Then the substitution z(; ;) = xf xf

to arcs C;, Cj and z(, ) is the variable corresponding to the segment connecting

, where x;, z; are variables corresponding

those arcs, gives ga(z) = k(z). Since we have already seen that the multicurve
comprised of the peripheral curves corresponds to the monomial 2L e

have

fa(eh)=ga(a™) lﬁ{ (1-27)
= (—1)BNrank(®) (L)) g () ﬁ (1- 279
i=1

()Y (ﬁxai)gm)ﬁ(l—x-ai)
NEWING H (% - 1)

=gA<x>ﬁ<1—:cai>
= fa(z).

which results in a reciprocity formula that suggests a log Calabi-Yau property

of the relative character variety.

15 A&t e i
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