creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

olstupit o]

rr
Mo

Extensions of Bourgain’s
circular maximal theorem

(227 9 3 g4 39 g

20234 8¢

Metista tstel
S EL
o 3



Extensions of Bourgain’s
circular maximal theorem

(327 9 3 g5 39 )

ALnS o] A
o =R ofshuAl SRS AT
20234 49
Agdieta dete

L

o] F 9

o] & Q9 olshuit PR AXT

20234 6¥

=2
®
L

A € #F of & 3 (2
2949 o 4 ()
i 4 4 & o ()
9 4 Mool A ()
9 (1)

—?ﬂ Bez,

e




Extensions of Bourgain’s
circular maximal theorem

A dissertation
submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Lee, Juyoung

Dissertation Director : Professor Sanghyuk Lee

Department of Mathematical Sciences
Seoul National University

August 2023



(© 2023 Lee, Juyoung

All rights reserved.



Abstract

Extensions of Bourgain’s
circular maximal theorem

Lee, Juyoung

Department of Mathematical Sciences
The Graduate School
Seoul National University

The estimates for maximal functions play important roles in various prob-
lems in mathematical analysis such as those in partial differential equations,
geometric measure theory, and harmonic analysis. Since the 1950s, the max-
imal functions defined by averages have been extensively studied in the field
of classical harmonic analysis and a huge literature has been devoted to the
subject. In 1976, Stein proved his seminal result: LP bound on the spherical
maximal operator on the optimal range for every dimension bigger than 2. Its
two-dimensional counterpart, the bound on the circular maximal function,
turned out to be more difficult since the traditional L? based argument did
not work. In 1986, however, Bourgain settled the problem by proving his cel-
ebrated theorem: the circular maximal operator is bounded on LP for p > 2.
In this thesis, we prove three results which strengthen Bourgain’s circular
maximal theorem. First, we establish on the sharp range of p,q the LP—L4
boundedness of the circular maximal operator on the Heisenberg group for
Heisenberg radial functions. Secondly, we obtain the sharp LP—L? bounded-
ness of the two-parametric maximal operator defined by averages over tori.
Lastly, we prove LP estimates on the elliptic maximal operators which are
multiparametric maximal operators given by averages over ellipses.

Key words: Averaging operator, Maximal bound, Sobolev regularity, Local
smoothing
Student Number: 2016-29031
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Chapter 1

Introduction

Average is one of the most important concepts in mathematics. It helps to
understand overall behaviour of a family of objects in many contexts. Usu-
ally, averaging over a class of objects gives rise to better properties which we
can not claim for each object. Among many different forms of average de-
pending on particular purposes, what we are interested in is the arithmetic
mean. In particular, we focus on its beauty in mathematical analysis using
the language of harmonic analysis. A main objectivity in analysis is to un-
derstand functions defined on a space G. Average of a function on G is given
by integration which generalizes the arithmetic mean. Under some structures
of measure and integration on the space G, the particular value of a function
f at each point of G is generally not important. Instead, a family of aver-
ages of f completely determines f almost everywhere. This is the main idea
of generalized function, distribution, and a power of average. Over the last
half century, boundedness of the maximal averages, which allows us to say
continuity of averages, has been extensively studied. In this thesis, we study
generalizations of the monumental results, Bourgain’s circular maximal the-
orem. We start with briefly reviewing the history of the study of maximal
averages.

1.1 Maximal averages over rectangles

One advantage of average is that it makes a function regular. To be concrete,
let R™ be the n dimensional Fuclidean space with the Lebesgue measure dz,
and B, (c) be the ball of radius » > 0 with center ¢ € R™. Then, for a locally
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integrable function f on R”",
1
|BT(O)| B,(

is an average of f over a ball of radius r centered at x where |A| is a volume
of a set A C R". To see differentiability of averages, one may ask if

flz —y)dy
0)

1
1B (0)] /5,0

holds. This obviously holds when f is a continuous function. Thus, continuity
gives differentiability of averages.

This gives rise to two questions. The first question is that instead of con-
tinuous functions, what happens when we consider merely (locally) integrable
functions, LP functions. This is closely related to the LP boundedness of the
Hardy-Littlewood maximal operator

lim
r—0

)f(l’—y)dny(l’) (1.1.1)

1
My f(x) = SUP 5.0 o |f(z —y)|dy.

It is well known that My is bounded on L? if and only if p > 1 and weakly
bounded on L!'. This implies that holds almost everywhere if f is
merely locally integrable. The second question is that for which family of
sets where we are taking averages, holds almost everywhere for a
suitable family of functions (it is usually a family of locally L? functions for
a suitable p). Let O be a family of sets with nonzero bounded measure, {O}.
The second question asks whether

) 1
i 5 [ £ =)y = 1@)

diam

holds. Similarly with the first question, it is deeply related to the boundedness
of the following maximal operator,

Mo f(z) = sup ﬁ /O @ —y)ldy. (11.2)

oeo

One general statement is that when all sets in O have bounded eccentric-
ity, Mg is bounded on L? if and only if p > 1, and weakly bounded on L' (see
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[65],[75]). Generally, we assume that O is generated by finitely many param-
eters. For example, a family of balls centered at the origin considered in My,
is a one parameter family. The difficulty dealing with Mg arises when O is
a multiparameter family. For instance, when O is a family of all rectangles
centered at the origin in R", then O is an n + n(n — 1)/2-parameter family.
Indeed, we need n parameters to determine sidelengths of a rectangle, and
the dimension of SO(n) is n(n — 1)/2 which determines orientation. Unfor-
tunately, My is not bounded on any LP for p < oo. This can be checked
by using a fundamental construction due to Besicovitch (see, for example,
[75]). Meanwhile, one can easily see that if we consider n-parameter family
of rectangles each of whose sides are parallel to the coordinate axis, the cor-
responding maximal function is bounded on L for all p > 1. Precisely, we
consider the following family of sets.

9%thr = {H[_%, %] ca; >0for1 <9< n}
=1

Then, the associated maximal operator is defined by

Mg, f(z) = sup |%| /R @ y)ldy

ReRT,

str

1
— Sup = / e —y)ldy.
[Ti=. =

a;>0 i=1 @i %7%]

This is called the strong maximal function and many researches were devoted
to characterize a function space which ensures the strong maximal function
is integrable on any set of finite measure (see [2], [22], [23]). More generally,
problems concerning all rectangles with lacunary directions were considered
in [I7], [19], [56], [77], for instance. Considering all orientation of rectangles
with a fixed (large) eccentricity produces one of the core conjectures in har-
monic analysis, the Kakeya maximal conjecture, but we do not go further in
this direction.

1.2 Maximal averages over submanifolds

The main difficulty in the above multiparameter problems arose since the
sets may be “thin”. From this viewpoint, we have another natural question.
What happens if we consider a family of measure zero sets? We assume that

3
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9 is a family of submanifolds in R™. To keep a similar situation when we
consider averages, we need to replace dy in by a suitable submanifold
carried measure and |O| by a volume with respect to this measure. Precisely,
we are interested in the following one parameter problem. Let S C R" be a
fixed compact submanifold and dus be the Lebesgue measure on S. Defining
a natural normalized measure on a dilation tS by

(duly, f) = / F(ty)dus(y).

we get an averaging operator

A8 () = f # dpiy(w) = /S £ — ty)dus(y) (1.2.1)
and the associated maximal operator
Ms f(x) = sup |A7 f(x)|.
>0

One can easily find an example that such maximal operator is never bounded
on LP for any p < oo when the S is completely flat. Thus, it is natural to
impose an appropriate curvature condition. Indeed, this assumption implies
that the Fourier transform of dug has a certain power of decay. Of course the
boundedness of the maximal operator Mg implies the corresponding conver-
gence property as before.

For the last half century, maximal averaging operators over submanifolds,
especially hypersurfaces, have been extensively studied (see [76]). We inves-
tigate some history. One remarkable milestone is Stein’s work [74] that when
S is a sphere centered at the origin, the corresponding spherical maximal
operator is bounded on L? if and only if p > n/(n—1) when n > 3. However,
when n = 2, it could not be handled easily since L? method is not appli-
cable. Instead, a new idea wihch converts the problem into the study of an
associated Fourier multiplier operator was itroduced. Indeed, as , we

—

see that A7 f = ]/”\dug and almost all arguments can be modified considering

c?,u\g replaced by a multiplier m(¢-) which has a suitable decay (see [64], [72],
[74]). When the surface varies depending on the location where we take an
average, the notion of rotational curvature is needed. It was introduced in
[60] which is an equivalent formulation of that in [27]. The nonzero rotational
curvature condition says that the corresponding averaging operator can be

4
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expressed as a Fourier integral operator of suitable order (see [35]). By as-
suming the the rotational curvature condition, which essentially means that
every surface has nonvanishing Gaussian curvature, it was shown that the
maximal averaging operator is bounded on L” if and only if p > n/(n — 1)
(see [20], [72], [73]).

1.3 The circular maximal function and L? im-
proving property

Now we arrive at the main theme of this thesis, Bourgain’s circular maximal
theorem. The above problem for n = 2 was settled by Bourgain [7]. Later
Mockenhaupt, Seeger, Sogge [53] also gave an alternative proof. In [53], the
authors used an observation that one can obtain extra regularity of AS f(x)
in comparison with an estimate for a fixed ¢ when we take an average int ~ 1.
Precisely, for any fixed t > 0, A" is a bounded operator from LP(R") to
LP (R™) when o < (n—1)/p. This was proved in [24] for & < (n—1)/p, and in
[52], [59] for the a = (n —1)/p (see also [69] for a generalization). Averaging
in ¢, we obtain that the averaging operator maps L?(R") to LP(R™ x [1,2])
boundedly for some a > ”le. In [71], it is conjectured that the operator is
bounded if and only if o < max{n/p,1/2} for p > 2. This is called the local
smoothing conjecture which is another core conjecture in harmonic analysis
since the local smoothing conjecture implies the Bochner-Riesz conjecture,
the restriction conjecture, and the Kakeya conjecture (see [79]). For n = 2,
it was recently solved with e-loss by Guth, Wang, Zhang [30]. However, for
n > 3, it is verified only for p > 2(n + 1)/(n — 1) with e-loss (see [10], [81]).
The local smoothing phenomenon has been generalized to various settings
(see [6], [34], [45], [54], [62], [68] and references therein). Using the local
smoothing estimate, we can observe an interesting feature. When we restrict
t in a compact interval away from 0, the associated maximal operator

Mg f(z) = sup |A7 f(x)]
1<t<2
may be bounded from L to LY for some p < ¢. This is called the LP-improving
phenomenon and it never occur for Mg, the global operator, by the scaling
structure. In [67] and [68], authors characterized the LP-L? boundedness of

Mg, 1 except endpoints not only for the circular maximal operator but also
variable coefficient analogues. For this purpose, we need another notion of

5
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curvature, which is called the cinematic curvature (see [71]). Later, S. Lee [44]
proved the boundedness of Mg, , at all endpoints but one point. Using the
Littlewood-Paley theory, when p = ¢, the boundedness of Mg, , essentially
implies the seemingly stronger boundedness of Mgn—1 (see [66]). There are
also results in which dilation parameter sets were generalized to sets of fractal
dimensions (for example, see [1], [70]).

1.4 Maximal averages on the Heisenberg group

Now we see our first generalization of the circular maximal theorem. We
generalize the Euclidean space R™ to a noncommutative space, the Heisenberg
group H". H" can be identified with R?" x R under the noncommutative
multiplication law

(.flf, x?n-i—l) : <y7 y2n+1) = ($ + v, Lon+1 + Yon+1 +x- Ay)7

where (z,%9,11) € R* x R and A is the 2n X 2n matrix given by

0 -1,
=)
with I, the n x n identity matrix. We start from the spherical maximal
operator in H". Let do, be the normalized Lebesgue measure supported on
S#=1 x {0} € H". The normalized measure on a dilation ¢tS"~! x {0} is

defined similarly by (do?, f) = (do,, f(t-)). Because of the noncommutative
multiplication law, we define a different averaging operator by convolution.

[ *m dUt(fU>£U2n+1) = / f(x — 1Y, Topy1 — tx - A?J)dffn(y)-

S2n—1

Notice that this formula calculates an average of f on an ellipse which is
contained in a plane depending on a location. We consider the associated
spherical maximal operator

My f(x, £9,41) = sup ‘f g dot (z, x2n+1)‘ .
>0
This operator has been studied for decades in many papers in the literature.

When n > 2, the boundedness property of My» is already almost completely
understood (see Chapter|3]). However, the boundedness of My on any L? still

6
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remains open. It is a variable coefficient generalization of the circular maximal
function so that we may apply previous results. However, for Mg, both the
rotational curvature and the cinematic curvature vanish which makes the
problem difficult. Meanwhile, Beltran, Guo, Hickman, Seeger [3] restricted
the class of functions and obtained the boundedness result of M for the
sharp range p > 2 under the condition that the function is Heisenberg radial.

Definition. We say a function f : H' — C is Heisenberg radial if f(z,z3) =
f(Rz,x3) for all R € SO(2).

From now on, we simply denote do! by do;. Our first main result is the
following which completely characterizes L? improving property of My, on
Heisenberg radial functions except for some borderline cases. Here, My, is
defined by

M]}cﬂlf(xa@nﬂ) = sup |f *H dUt($,$2n+1)|-
1<t<2

Theorem 1.4.1 ([41]). Let By = (0,0), P, = (1/2,1/2), and P, = (3/7,2/7),
and let T be the closed region bounded by the triangle APyPyP,. Suppose
(1/p,1/q) € {R}U(T\ (PP, U PyPy)). Then, the estimate

1Mz fllg S [1f]]e (1.4.1)

holds for all Heisenberg radial functions f. Conversely, if (1/p,1/q) ¢ T,
then the estimate fails.

As in the Euclidean circular maximal operator, the boundedness of My,
essentially implies the boundedness of My for Heisenberg radial functions.
We will see this implication as well.

1.5 Two parameter maximal averages over tori

Our second main results concern a two-parameter maximal operator over 2-
dimensional tori tS' x sS! in R3 which can be seen as a generalization of the
circular maximal operator. Let us set

®:(0,0) = ((t + scosb) cos ¢, (t + scosf)sin g, ssinb).
For 0 < s < t, we denote T} = {®;(6,¢) : 6,¢ € [0,27)}, which is a

parametrized torus in R3. We consider a measure on T¢ which is given by

ey = [ S@i0,0)) dod (15.)

7
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Convolution with the measure do; gives rise to a 2-parameter averaging op-
erator A7f := fxdo]. Let 0 < ¢y < 1 be a fixed constant. We define the
following maximal operator.

Merf(x) = sup |A7f(x)|
0<s<cot

Here, the supremum is taken over on the set {(¢,s) : 0 < s < ¢t} so that
T% remains to be a torus. Note that when s converges to 0, the operator
collapses to the circular maximal operator. We also remark that T has a
part where Gaussian curvature vanishes so that it is already not possible to
obtain a result for the one parameter maximal operator f — sup,.; |A f|
using previous literature of maximal functions. However, Ikromov, Kempe,
Miiller [37] obtained results for maximal averaging operators over degenerate
hypersurfaces which include a torus (see also [15], [16]). According to their
result, the one parameter maximal averaging operator f — sup,., |A f|
is bounded on LP(R?) if and only if p > 2. Surprisingly, Mt has the same
boundedness property.

Theorem 1.5.1 ([42]). The mazimal operator Mr is bounded on L? if and
only if p > 2.

We also characterized a typeset of the localized maximal operator

Mif(x) = sup [A;f(x)|
(t,s)ed
Here J is a compact subset of J, := {(¢,s) € R? : 0 < s < t}. The next
theorem gives LP—L? bounds on M for a sharp large of p,q.

Theorem 1.5.2 ([2)). Set P, = (5/11,2/11) and Py = (3/7,1/7). Let Q be
the open quadrangle with vertices (0,0), (1/2,1/2), Py, and Py which includes
the half open line segment [(0,0),(1/2,1/2)). Then, the estimate

M5 fllze S|z (1.5.2)

holds if (1/p,1/q) € Q. Conversely, if (1/p,1/q) ¢ Q\{(1/2,1/2)}, then the
estimate fails.

We also obtained multi-parameter local smoothing estimates for A7. The
2-parameter and 1-parameter local smoothing estimates have extra smooth-
ing of order up to 2/p and 1/p, respectively for suitable p (see Chapter [4| for
details).
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Q=

e B

(0,0)
Figure 1.1: The typeset of M5

1.6 Multiparameter maximal averages over el-
lipses

It is natural to ask that what happens when we consider a strong circular
maximal operator as an analogue of the strong maximal operator for rect-
angles. We have two ways of considering multiparameter circular maximal
functions as Stein did for rectangles. First, we may consider a maximal av-
erage of f over all ellipses centered at a fixed point. Precisely, this generates
a 3-parameter maximal function as follows. Abusing notation, we let do be
the normalized Lebesgue measure on S'. For (,¢,s) € T x R2, at‘?s denotes
the measure on the rotated ellipse Ef, := {Ry(t cosu, ssinu) : u € T} which
is given by

(et = [ F(Rattm, ) (o)

We consider the maximal operator

Mf(z) = sup |f=of(a),
(0,t,5)€Tx[1,2]2
which was called the elliptic mazimal function in [21]. Mapping property of
M was studied by Erdogan [21], who showed that 90t is bounded from the
Sobolev space W*1/6+¢(R?) to L*(R?) for any ¢ > 0. However, the question
of whether 9t admits a nontrivial L? (p # oco) bound has remained open. We
prove the following result.
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Theorem 1.6.1 ([43]). For p > 12, there is a constant C' such that

9 f [ Lo me2y < Ol fl| Lo (g2)- (1.6.1)

However, it was shown in [21] that fails if p < 4. The optimal range
of p for which holds remains open. We now consider a 2-parameter
maximal operator

Mf(@) = sup |f %ol (a)]
(t,s)ERi
M f is an circular analogue of the strong maximal function which is known to
be bounded on L? if p > 1. So, one may call M the strong circular maximal
operator. The next theorem shows existence of a nontrivial LP bound on M.
As far as the author is aware, no such result has been known before.

Theorem 1.6.2 ([43]). For p > 4, there is a constant C' such that

[ Mfllr@mz) < Ol flzem@2)- (1.6.2)

A modification of the argument in [21] shows that fails if p <
3. Whether holds for 3 < p < 4 remains open. We also obtained
multiparameter local smoothing estimates for f x 03 s and f = ags. Following
the observation from the case of the torus, we may expect 1/p amount of extra
smoothing effect for each parameter. However, we remark that 3-parameter
average does not give an extra smoothing better than 2-parameter average.
These local smoothing estimates are key ingredients in the proof of Theorem

[.6.1 and Theorem [1.6.2]

1.7 Notations

We denote © = (Z,23) € R? x R and similarly ¢ = (£,&) € R?2 x R. In
addition to " and v, we occasionally use F and F ! to denote the Fourier
and inverse Fourier transforms, respectively. We also let B¥(p, r) denote the
ball in R* which is centered at p and of radius r. For two given nonnegative
quantities A and B, we write A < B if there is a constant C' > 0 such that
B < CA.

In what follows, we frequently use the Littlewood-Paley decomposition.
Let ¢ € C((1—-27",2427")) such that 33°° _¢(s/27) = 1 for s > 0. We

10
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set ;(s) = w(5/27), p<j(s) = D, wr(s), and @s;(s) = 37, wi(s). Then,
define the projection operators

—

Pg(€) == 0 (IENG(),  Py9(€) = s (1E)T(E).
For a given f defined on R?® we define fF and f=F by

F(£5) = o;(1€Denl&N F©),  FFEF) = ooi(1€Dw<i(I&]) F(E),

and f<<]k, fﬁj, szk, f<j, and f=* etc are similarly defined. In particular, we

have f =37, fF.

11
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Preliminaries

2.1 Decoupling inequalities

“Divide and conquer” is one of main ideas in harmonic analysis. Precisely, we
“divide” a function f = > ; /i depending on the context. Then, we usually
want to estimate the L” norm of f so that we focus on “conquering” the L?
norm of each f;. After estimating each || f;||z», we need to attach each piece
together. One can use the triangle inequality

I3 fillir < 32 fslos

and then the Holder inequality raising the power of || f;||z» to combine pieces,
but it makes a large constant from the Hoélder inequality depending on the
number of pieces. For a sharp result, we require a sharp bound but Holder’s
inequality usually does not give the best estimate. In this sense, our main aim
in dividing a function is obtaining the smallest constant C' in the following
inequalities.

122 Fille < CQCNAllER)*, (2.1.1)

1Y fille <CO i) (2.1.2)
J J
We call (2.1.1) a [?LP-decoupling inequality (or simply [*-decoupling) and

(2.1.2) a I?LP-decoupling inequality (or simply /P-decoupling). For this pur-
pose, we need further structure on f;. One typical structure is disjointness

12



CHAPTER 2. PRELIMINARIES

of Fourier support of f;. By Plancherel’s identity, we have
1
1> fille = O f572)2
J J

so that we do not lose anything as in the application of Holder. However,
when we consider LP with p > 2, the disjointness of the Fourier support is
not enough. One can assume that the Fourier supports of f; are dyadically
dispersed so that we can use the Littlewood-Paley theory and the Minkowski
inequality to obtain (2.1.1)) with C only depending on the dimension. The
sharp constant for (2.1.2) is usually obtained by using the Hélder inequality
to (2.1.1)).

In many problems such as the restriction problem, the Fourier transform
of a function is supported in a small neighborhood of a submanifold in a Eu-
clidean space with curvature. We usually want to decompose this function f
into a sum of f; each of whose Fourier support is essentially the largest rect-
angular box so that the effect of the curvature vanishes. Under this decompo-
sition, Wolff [81] first obtained the [P-decoupling inequality with the
sharp constant C' for a large p when the submanifold is a truncated light cone
in R". Later, a number of studies developed Wolff’s result (see [48], [47], [25],
[26], [8]). Finally, Bourgain and Demeter [10] proved the sharp /2-decoupling
inequality for hypersurfaces with positive definite second fundamental form
and the truncated light cone. Before the statement of the theorem, we de-
fine the decomposition precisely. Let S be a hypersurface in R” with positive
definite second fundamental form which is a graph of a function Qg,

S = {(6,05(6)) € R" : |¢) S%forlgign—l}.

For 0 < ¢ < 1, let N5(S) be the 0 neighborhood of any submanifold S. We
decompose Nj5(S) by (essentially) rectangular boxes with dimension §'/2 x

- % Y% x § as follows. For ¢ € 262271 N [~1, 1" we define

B = {(6,Qs(€) +5) : £ € ¢+ [07,82]"7L, |s] < 45},
Then, define
PA(S) = {8 - c € 23T 1 [, o)

so that Ps(S) is a finitely overlapping partition of Ns(S). Now we state the
[2-decoupling theorem.

13
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Theorem 2.1.1 (Bourgain, Demeter [10]). Let S be a hypersurface in R"
with positive second fundamental form. If supp f C Ns(S), then for p >
2(n+1)

=—* and € > 0, we have
o

_m—lndl_ 1
Ifllee Se 6 T 5% 70 D (1foll)?

0eP5(S)
where fqy is the Fourier restriction of f to 6.

The decomposition of the truncated light cone
Crli={ElEh: 1<l <2 R

is slightly different from that of hypersurfaces. Note that our decomposition
divides a small neighborhood of a surface by essentially flat pieces, but for
O™~ it is already flat along the radial direction. For the decomposition of
Ns(C™1)) we use Ps(S"1). For 0 € Ps(S™!), we define

vp={tv:1<t<2 vedb}
Then, we define a finitely overlapping partition Ps(C"~1) of N5(C™ 1) by
Ps(C™ 1) ={vp: 0 € Ps(S"1), 6N C™ 1 £ ().
The following is a consequence of Theorem [2.1.1]

Theorem 2.1.2 (Bourgain, Demeter [10], Wolff [81] for p > 74 and n = 3).
Suppose supp f C Ns(C™™1). Then, for p > % and € > 0, we have
_n=2,n_. 1
[fller Sed™ o ( Z Hfl/||%ﬂ)2

vePs(Cn—1)
where f, is the Fourier restriction of f to v.

Modifying the interpolation argument, we can also apply the interpolation
to the decoupling inequality. Thus, we have the [2-decoupling inequality for
2<p< %, 2<p< % respectively with the ¢ term replaced by d~°.
Also, the above theorems are obtained by the endpoint estimate with a trivial
L™ estimate. In addition, the sharp [? decoupling inequality is obtained by

Holder’s inequality from the [?-decoupling inequality.

14



CHAPTER 2. PRELIMINARIES

After Bourgain and Demeter’s outstanding results, the decoupling in-
equalities have been applied to numerous problems. For a very small part
of it, we refer to the references in [10]. One famous application is the local
smoothing estimate for the wave operator as Wolff [81] did. Meanwhile, de-
coupling estimates for other surfaces are also extensively studied (see [14],
[9], |11, [12], [13], [29], [28] and references therein). One interesting result is
the decoupling inequality for the moment curve. It is natural to guess that a
satisfactory decoupling estimate does not exist when the curve is contained
in an affine subspace, for example, a parabola contained in R? x {0} C R3.
Thus, we consider a moment curve

P={yt)=(tt" - ") eR": -1 <t <1}

which is never contained in any affine subspace. We may naturally define
N;(T) as before. However, the partition Ps(T") is quite different. We have
decomposed a d-neighborhood of surfaces into pieces such that the effect
of curvature essentially vanishes in each piece. In the case of ~, the last
component " has small curvature relative to other components. Thus, a piece
of I' with length 5w already ignores the curvature of the last component
while the other components are still well curved. We define some notations
for the decoupling inequality for moment curves. For ¢ € 20 VAR [—1,1], we
let 7. be the parallelepiped of dimension 5% X &% x --- x &' whose sides are
parallel to 9yy(c),d%v(c),- -+ ,0"v(c) respectively, and center is y(c). Then,
we define
Ps(T) = {m.: c € 20« Z N [—1,1]}.

The following is the optimal decoupling inequality for the moment curve from

4.

Theorem 2.1.3 (Bourgain, Demeter, Guth [I4]). Let 0 < § < 1 and suppose
that supp fr C m for each m € Ps(I"). Then, for 2 < p < co and any € > 0,

we have _— )
max{0,5— — %=} —¢ 1
I fallee Se 6™ O0m= 237N || l130) 2.

7ePs(T) 7ePs(T)

Indeed, the above theorem is slightly general in the sense that it implies
the decoupling inequality when supp f C Nj(T'). Precisely, for each 7 €
Ps(I'), m contains a d-neighborhood of T" restricted to an interval of length
§w. The statement in [I4] is a little different from Theorem but they

15



CHAPTER 2. PRELIMINARIES

are essentially equivalent. Also, Holder’s inequality to Theorem [2.1.3| gives
the sharp [P-decoupling inequality as before. By the way, in the [P-decoupling
inequality for the moment curve, recall that we lose the effect of curvature
in the last component ¢t". However, we still have a well curved curve when
we project the curve in R”~!. Thus, we may apply the decoupling inequality
for lower dimensions to further divide each piece smaller. This is one of the
main ideas in Chapter

The essential structure in the decoupling inequality is the scaling struc-
ture. It plays an important role not only in the proof of the decoupling
inequality, but also implying interesting consequences of the decoupling in-
equality. The first consequence is the conical extension of the decoupling
inequality. Theorem [2.1.2 can be seen as the conical extension of the decou-
pling for a circle. Modifying an argument in [I0], we can conically extend
decoupling estimates (see [4]). The second consequence is that we can gener-
alize the decoupling estimates to variable coefficient settings. In this thesis,
we are more interested in this part. Beltran, Hickman, Sogge [6] first ob-
tained a variable coefficient variation of the decoupling inequality. We prove
a variable coefficient generalization of the decoupling inequality for a conic
extension of the moment curve in Chapter [5| using the argument in [6].

2.2 Local smoothing estimates of the wave
operator

As mentioned in the previous section, the local smoothing estimate of the
wave operator is one of the most famous applications of decoupling. The wave
operator in R"*! is defined by the following.

~

Wi f(2,t) = 58 f(2) = —(Qi)n /R D F(g) e

This operator is deeply related to Atgnfl. Indeed,
AP (@) = [ e eyl

where do,, is the Lebesgue measure on S"~!. Using the asymptotic formula
of the Bessel function,

_n—1
2

o, (€) ~ eyl (14 1€)) 7% +ce ™1+ ¢])

16
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holds. We see the relation between Af’n_l and W, in detail in later chapters.
Now we define some notations. We denote

Av={neR*:27A<n[ <2)}, A ={neR*: [y <2)},

respectively. Similarly, we set T = [1,2] and I° = [0, 2], and we denote I, = 71
and I2 = 7I° for 7 € (0, 1]. Then, the following conjecture is equivalent to
the local smoothing conjecture for AtSn_1 introduced in Chapter , up to
the endpoints.

Conjecture 1 ([71]). Let p > 2 and A > 1. Then,

)\max{ nol_ 2,0} +e

IWagllr@n <oy Se glle

holds for any € > 0 whenever suppg C A,.

As mentioned already, Conjecture [I| was solved by Guth, Wang, and
Zhang[30] when n = 2 while it is known only for p > 22U when n > 3.

n—1
Using an interpolation argument, we get the following consequence.

Theorem 2.2.1 (Guth, Wang, Zhang[30], see also [68], [42]). Let 2 < p < g,
1/p+3/qg <1, and A\ > 1. Then, the estimate

1,13y,
Weg| pogeaey < CAZT7 72 lg]l s (2.2.1)

holds for any € > 0 whenever suppg C A,.

Proof. 1t is sufficient to show the estimate for VW, since that for WW_ follows
by conjugation and reflection. When the interval I° is replaced by I, the
desired estimate follows from the known estimates and interpolation. Indeed,
for1<p<g<ooand 1/p+3/q <1, we have

1

Wt sy < OXFFF5 e (2:22)

whenever suppg C A,. This is a consequence of interpolation between the
sharp L? local smoothing estimates for p = ¢ > 4 (|30]) and the estimate

Wi gll o g2ry < CAZ gl (eg., see [72]).
By dyadically decomposing I° away from 0 and scaling, one can deduce

from . Indeed, since
WJrg(:EaTt) = W+g(7'>($/T, t)a (223>

17



CHAPTER 2. PRELIMINARIES

rescaling gives the estimate

IWig]| gy < CT2TPAT 0 gl

for any € > 0 if suppg C Ay and 7A > 1. When 7 ~ A\7!, by scaling and an
easy estimate we also have HWJrgHLq(RQXﬂO) < \2/Pp=3/4|g]|,.. Now, since p > 2,
decomposing [° = (U72(2,\)*1 I7) UI5_, and taking sum over the intervals, we
get

141 3., 2.3 101 3.,
Wil ooy < Cmax{AEF 3754 A3 gn S AFFF 57 g]|un
for any € > 0. O

As a consequence of Theorem [2.2.1| we also have the next lemma, which
we use later to obtain estimates for functions whose Fourier supports are
included in a conical region with a small angle.

Lemma 2.2.2. Let2<p<g<oo, 1/p+3/q <1, and A > 1. Suppose that
A < h < A% Then, for any € > 0 there is a constant C' such that

_1_3 2 1.,
Wl pogasaey < O 7R 2 g 1o (2.2.4)

whenever suppg C I, x I5.

Proof. As before, it is sufficient to consider W, . By interpolation we only
need to check the estimate for (p,q) = (4,4), (2,6), (2,00), and
(00,00). Since A < h, suppg C {n : |n| ~ h}. So, the estimate for
(p,q) = (4,4), (2,6) is clear from (2.2.1). Since suppg C I, x I3, the estimate
for (2, 00) follows by the Cauchy-Schwarz inequality and Plancherel’s
theorem.

It now remains to show for p = g = oo, that is to say,

W gll e gexiey S M2 gl e

whenever suppg C I, x I3. To show this, we cover I, x I§ by as many as
CAh~=12 boundedly overlapping rectangles of dimension h x h'/? whose prin-
cipal axis contains the origin, and consider a partition of unity {@,} subordi-
nated to those rectangles such that («, 3)-th derivatives of @, in the directions
of the principal and its normal directions is bounded by Ch~=*h~%/2, (In fact,
one can also use w,(n) in the proof of Proposition below replacing A by
h.) Consequently, we have Wig = > W, x.,(D)g. It is easy to see that the
kernel of the operator g — W, x,,(D)g has a uniformly bounded L' norm for
t € 1°, v. Therefore, we get the desired estimate. O]
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Chapter 3

The circular maximal operators
on Heisenberg radial functions

Following the outstanding development for the spherical maximal operators,

there was a huge amount of literature concerning various maximal operators.

One such attempt is replacing R with some noncommutative spaces. Dealing

with fully general spaces is very difficult, but it is available when we consider

a relatively simple case, two-step nilpotent groups. The most famous and

simple example of the two-step nilpotent group is the Heisenberg group H".
As introduced in Chapter [1} we study the operator

My f(, Tont1) = 921>1103 |f *m doy (2, Tani)]

when n = 1 on the space of the Heisenberg radial functions. Recall that
a function f : H' — C is Heisenberg radial if f(z,z3) = f(Rx,z3) for all
R € SO(2). This type of maximal function was first introduced by Nevo and
Thangavelu in [58]. A few years later, Miiller and Seeger [55], and Narayanan
and Thangavelu [57] independently proved that for n > 2, My~ is bounded
on LP(H") if and only if p > 2n/(2n — 1) while Nevo and Thangavelu in [5§]
only showed a non-optimal range. Indeed, in [55], authors proved analogous
estimates for general two-step nilpotent Lie groups (see also [1]). Later, Roos,
Seeger, Srivastava [63] obtained sharp LP-improving estimates for My» up to
some endpoints when n > 2 (see also [38]).

However, the problem becomes very difficult when n = 1. There is no
result for the boundedness of My on LP for any 1 < p < oo. As we men-
tioned already, Beltran, et al [3] proved that M is bounded on the space
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

of Heisenberg radial functions when p > 2. Though the Heisenberg radial
assumption significantly simplifies the structure of the averaging operator,
the associated defining function of the averaging operator is still lacking of
curvature properties. In fact, the defining function has vanishing rotational
and cinematic curvatures at some points, see [3] for a detailed discussion.
This increases the complexity of the problem. To overcome the issue of van-
ishing curvatures, Beltran, et al. [3] used the oscillatory integral operators
with two-sided fold singularities and the variable coefficient version of local
smoothing estimate ([6]) combined with additional localization.

We recall the main theorem of this chapter concerned with LP-improving
estimates for Mg, .

Theorem 3.0.1 ([41]). Let By = (0,0), P, = (1/2,1/2), and P, = (3/7,2/7),
and let T be the closed region bounded by the triangle APyPyP,. Suppose
(1/p,1/q) € {R}U(T\ (PP U FyPy)). Then, the estimate

Mg fllg S 11f Nl 2o (3.0.1)

holds for all Heisenberg radial function f. Conversely, if (1/p,1/q) ¢ T, then
the estimate fails.

Our approach is quite different from that in [3]. Capitalizing on the
Heisenberg radial assumption, we make a change of variables so that the
averaging operator on the Heisenberg radial function takes a form close to
the circular average. While the defining function of the consequent operator
still does not have nonvanishing rotational and cinematic curvatures, via a
further change of variables we can apply the LP—L9 local smoothing estimate
of the circular maximal operator in a more straightforward manner by ex-
ploiting the apparent connection to the wave operator. Consequently, our
approach also provides a simplified proof of the result due to Beltran, et al
[3].

Even though we utilize the local smoothing estimate, we do not need to
use the full strength of the local smoothing estimate in d = 2 since we only
need the sharp LP—L? local smoothing estimates for (p,q) near (7/3,7/2).
Such estimates can also be obtained by interpolation and scaling argument
if one uses the trilinear restriction estimates for the cone and the sharp local
smoothing estimate for some large p (for example, see [46]).

The estimate (3.0.1)) remains open when (1/p,1/q) € (PP, U RyPy) \
{Fy, P1 }. However, we expect that those borderline cases should be true. Most
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

of the corresponding endpoint estimates for the circular maximal function (in
R?) are known to be true ([44]), but to implement the approach in [44] we
need the local smoothing estimate without e-loss regularity, which we are not
able to establish yet even under the Heisenberg radial assumption.

3.1 Heisenberg radial functions and main es-
timates

Since f is a Heisenberg radial function, we have f(x,z3) = fo(|z|,z3) for
some fy. Let us set

g(s,2) = fo(V/2s,2), s>0.

Then, it follows f(x, xg) = g(|z|? /2 x3). Since f xy doy(r,0,23) = [ f(r
ty1, —tya, x5 — trys)do(y) = [ g(* H — try1, 23 — tryz)do(y), we have

2 t2
f*m doy(r,0,23) = g * datr(%, x3>. (3.1.1)

Let us define an operator A; by

Aig(r,a3) = # /R 2 (G 0 (1) (€. (3.1.2)

Using Fourier inversion, we have
frmdoy(r,0,23) = Ag(r, 3). (3.1.3)

Since fxpdoy is also Heisenberg radlall || M f1|2 = [ | Mg f(r, 0, 23)|9rdrdas.
A computatlon shows || f[[zz . = llgllzz,,- Therefore, we see that the estimate

is equivalent to

7% sup [Aegl]l,. < Cligl, (3.1.4)
1<t<?2 T3

In what follows we show ((3.1.4)) holds for p, ¢ satisfying

p<gq, 3/p—1/g<1, 1/p+2/q>1. (3.1.5)

*This is true because SO(2) is an abelian group. However, SO(n) is not commutative
in general, so the property is not valid in higher dimensions.
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Then, interpolation with the trivial L>° estimate proves Theorem [1.4.1}
To show we decompose A; as follows:

Ag(r,ws) = on(r) Asg(r, z3).

kEZ

We break g via the Littlewood-Paley decomposition and try to obtain esti-
mates for each decomposed pieces.
Our proof of (3.1.4)) mainly relies on the following two propositions, which

we prove in Chapter
Proposition 3.1.1. Let |k| > 2 and j > —k. Suppose

p<q 1/p+1/g<1, 1/p+3/g>1. (3.1.6)

Then, for e > 0 we have

| st foutr WG S g, k22,

su r A

1<tI<)2 ok 9 +k)(5; —%q—§+6)+%—%||g||m, E< _9
(3.1.7)

The estimate (3.1.7) continues to be valid for the case k = —1,0, 1. How-
ever, the range of p, ¢ for which (3.1.7) holds gets smaller.

Proposition 3.1.2. Let j > —1 and k = —1,0, 1. Supposep < q, 1/p+1/q <
1 and 1/p+2/q > 1. Then, for e > 0 we have

< 2673V g .

sup |px(r)
1<t<2

We frequently use the following elementary lemma (for example, see [44])
which plays the role of the Sobolev imbedding.

Lemma 3.1.3. Let I be an interval and let F' be a smooth function defined
on R™ x I. Then, for 1 <p < oo,

sup | F(z,1)]

H (=1
tel

< ‘Ir;HF”LP R7xT) + ”FHLp R x 1) HatF”Lp (RPx 1)

22

___;rx_-l! E CI.'II

1_'_] |
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

3.2 Local maximal estimates

We prove ({3.1.4) handling the three cases k < —2, |k] < 1, and k > 2,

separately. We first consider a change of variables

r’ 4+t
(r,@s,t) = (y1,y2,7) = ( 5 ,:Ug,,rt) : (3.2.1)
which plays an important role in what follows. Note that
0
dot QLYnT) o g (3.2.2)
o(r, z3,t)

In order to show , we shall use the change of variables to apply
the local smoothing estimate to the averaging operator A; (see Proposition
. Since 1 < t < 2, |det d(y1,va,7)/0(r, x3,t)| = |r? — t?] ~ max(2%* 1)
for |k| > 2. Thus, the cases |k| > 2 can be handled directly by using local
smoothing estimates for the half wave propagator. However, the determinant
of the Jacobian may vanish when |k| < 1. This requires further decomposition
away from the set {r = ¢}. See Chapter 3.6 This is why we need to consider
the three cases separately.
Let us set g = P<_rg and g*¥ = g — P-_,g so that g = g + ¢g*. Then,
we break
or(r)Arg = ox(r) Aigr + or(r) Ag”. (3.2.3)

We use Proposition [3.1.1| and Proposition to obtain the estimate for
or(r)Asg*, whereas we show the estimate for ¢y (1).A;gx. by elementary means

using (B.1.2).

Case £ < -2
We claim that

ri > sup fon(r) Al

je o 1<t<2

holds provided that p, ¢ satisfy 2/p < 3/q, 3/p —1/q < 1, and (3.1.6]). Thus

(3.2.4) holds for p, g satisfying (3.1.5]).
We first consider ¢y (r).A;g,. We shall show that

|

S llgllee (3.2.4)

q
L'r,a:3

3k _ 2k

i 525 F gl (325

1
ra sup |ox(r)Agl ‘
1<t<2
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

holds for 1 < p < ¢ < oco. We recall (3.1.2) and note that 6t(c/l(;(tr§)) is
uniformly bounded because |r¢| < 1. Since supp gr, C {£ : |€] < €27} and

7‘2+t2

2142
Ore 2 & — tfle%ﬁl, we have ||g0k(T)atAtgk||q § 2_k||90k<T)Atngq by the
Mikhlin multiplier theorem. Applying Lemma to @i (r)Awgr, we see that
(3.2.5)) follows if we show

sk 2k
lox(r)Aegrllcs,, rexpz) S 20 HgHLp (3.2.6)

We now make use of the change of variables . Since k£ < —2 and
t € [1,2], we have |det %25” ~ 1. Thus the left hand side of (3.2.6)) is
bounded by

Cllewtrtm ) [ < aedn e siere]

LY - (R2x[2-1,22])

Changing variables ¢ — 27%¢ and (y, 7) — (2Fy, 2F7) gives
[ erem@ato

where m(§) = %(Tf)(p<0(£). Since 7 ~ 1 and ¢-o(£) is a smooth func-
tion supported in the set {£ : || < 1}, m(&) is a smooth multiplier whose
derivatives are uniformly bounded. So, the multiplier operator given by m is
uniformly bounded from LP(R?) to LI(R?) for 7 € [27},2?]. Thus, via scaling

we obtain and, hence, (3.2.5)).
Using the trlangle inequality and m we have

[+ sup 3 I (Z 2575 gl gl

1<t<2
because 2/p < 3/q. We now consider gpk(r)Atgk for which we use Proposition

1% (7) Asgiell 2 <2

T,x3,t

(R2x[1,2]) ~

~(R2x[2-1,22])

[B.1.1l Since
Tq su )A k‘ 7’0 su
1<t£)2 Z [pr(r)Ag”| Lie, Z Z 1<t§2|¢k ")

k<—2j>—k
and since p, ¢ satlsfy 3/p—1/q < 1,2/p < 3/q,and (3.1.6]), using the estimate

BT, we get
5 > 2575 ) lglly S gl

7, 3 )
Combining this with the above estimate for g — ¢ (r)A;g* gives (3.2.4) and

1<t<2 )
this proves the claim.
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Case k£ > 2

In this case we show
= 1<i<

k>2

if p<gq,3/p—1/q <1, and (3.1.6) holds. So, we have (3.2.7)) if (3.1.5) holds.
In order to prove (3.2.7)) we first prove the following.

Lemma 3.2.1. Let k> —1. If [t| S 1 and 0 < s < 2% then
AP kg|(V2s,25) S EY * |g(s, x3), (3.2.8)
where EN (y) = 272 (1 4 27 y|) V.
Proof. We note that
AP _1g(V2s,25) = K % g(s+27, z3),

1
rey sup Isok(T)Atgl‘

S llgllee (3.2.7)

Lg,x3

where
1

(27>/ V€1 (€)do(tv/25€)dE.
We note 8?[(,0<_k(2*k§)35(2*kt\/%§)] = O(1) since s < 2?*. Thus, changing

variables £ — 27%¢, by integration by parts we have |K| < &Y for any N > 0.
Since |[t| S 1and k > —1, we see EN (y1 + 27142, yo) < EY (y1,y2). Therefore,

we get (3.2.8). O

Proof of (3.2.7). We begin by observing a localization property of the oper-
ator A;. From (3.1.1) we note that

K(y) =

r? + ¢
2

for r € supp ¢y, if k is large enough, i.e., 27% < 1073. Thus, from (3.1.1)) and
(3.1.3) we see that

—try; C I = [2%71(1 — 1072), 22" (1 + 1072)]

() Awg(r, v3) = i(r) Ae([g]i) (r, 75) (3.2.9)

where [g]k(r, 23) = x1,(r)g(r,x3). Clearly, the intervals [ are finitely over-
lapping and so are the supports of ¢;. Since p < ¢, by a standard localization

argument it is sufficient for (3.2.7) to show

S llgllee (3.2.10)

1
ri sup Jon(r) Al

1<t<2 L zg
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for k > 2.
Using the decomposition (3.2.3)), we first consider ¢ (r).A;gx. Changing
variables r — 1/2s, we have

q
S /SOk(\’QS) (SUP |Avgr(V 25,x3)|) dsdzxs.
3 1<t<2

1
ra sup |ox(r)
1<t<2

Since 1 <t <2, k> 2, and g = P-_ig, by Lemma 1 |Argr(vV2s,23)| S
EN % |g|(s, z3). Hence,

The second inequality follows by Young’s convolution inequality and the third
is clear because k > 2 and p < ¢g. We now handle @k(r)Atgk . Since

| <X |

and since 3/p—1/q¢ < 1, p < q, and (3.1.6)) holds, using the estimate (3.1.7)),
ra sup |@x(r)

we get
‘ 1<t<2

Therefore, we get (3.2.10)). O

< 22k(1/q*1/7’)||g\|p < lgllp-

513 ~Y

SUES * gl

1
ra sup |ox(r)Aigk
1<t<?2

ra sup |ox(r) (3.2.11)

1<t<2

1
ra sup |ok(r)
1<t<2

2k

7 |glly S Nl

3.2.1 Case k| <1
To complete the proof of (3.1.4)), the matter is now reduced to obtaining

if p, q satisfy (3.1.5). In order to show this we use Proposition [3.1.2] Using
the decomposition (3.2.3)), we first consider ¢ (7).A;gx. Since 1 < ¢ < 2 and
|k| < 1, by Lemma we have ¢y (r)|Aigr] < EY  |g|. Hence, it follows
that

1
ra sup |pr(r) <Sllgllze, k=-1,0,1

1<t<2

1
ra sup |@r(r)Aigk S lally
1<t<2

for 1 <p<q<oo.
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We now consider ¢y (r)A;g". Note that (3.1.6)) is satisfied if (3.1.5]) holds.
Since 3/p — 1/q < 1, by (3.2.11)) and Proposition we see

|

taking a small enough € > 0. Therefore we get the desired estimate.

3

J(3_1_q 1
o S 20 2T gl < gl
TES >k

1
risup [in(r) A"
1<t<2

3.3 Global maximal estimates

Using the estimates in the previous section, one can provide a simpler proof
of the result due to Beltran et al. [3], i.e.,

1
lr7 sup |Aglllrz,, < Cllglly (3.3.1)
0<t<oo

T3 —

for 2 < p < oo. In order to show this we use the following lemma which is a
consequence of Proposition [3.1.1] and [3.1.2]

Lemma 3.3.1. Let 2 < p < 4. Then, for some ¢ > 0 we have

Hr% sup |At77jg|HL9 < C’2‘Cj||g||p. (3.3.2)
1<t<2 g

Proof. We briefly explain how one can show (3.3.2). In fact, similarly as

before, we decompose
.A{Pjg = Sl + Sg + Sg + S4,

where

Sy = Z or(r)APig, So = Z or(r)APig, Ss = Z er(r)APig,
k<—j —j<k<—2 —1<k<1
and Sy = A/Pjg — S1 — 52 — S3. Then, the estimate (3.3.2)) follows if we

show ||7’% SUPy <yco [Selllzz,, < C27|gll,, ¢ = 1,2,3,4 for some ¢ > 0. The
estimate for S; follows from and summation over k < —j. Using the
estimate of the second case in , one can easily get the estimate for 5.
The estimate for S3 is obvious from Proposition [3.1.2l By Proposition [3.1.1
combined with the localization property we can obtain the estimate

27
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

for Sy. However, due to the projection operator P; we need to modify the
previous argument slightly.

From (3.1.1)) and (3.1.3]) we see

r? + t2
AiPig(r, x3) = g(z1, ZQ)KJ-( 5 A tryy, r3 — 22 — try2>d0(y)d2,

(3.3.3)

where K; = F'(¢(277] - |). Note that |K;| < EY, for any N and k > 2. If
r € supp vi, V221 € I, and k is large enough, then we have

2 tQ ) . —N
‘Kj(r ;_ —tryl—zl,xg—tryg—zg)’ < 2_(2k+J)N<1+2j|7‘2—221|+2_k|x3—22|>

for any N since |2717% — 21| 2 2% and |rty| < 2*. Hence it follows that
1 B .
e on(r) APy (1 = xr)glly < €27 P jgll,, 1< p < o0

for any N. We break A,P;g = APixr.9 + AP (1 — xy1,)g. Using the last
inequality and then Proposition [3.1.1], we obtain

1
l o _ . —C'
ISally < (3 I oelr) APxagll)” + 3 2 * N gll, S 2]l

k>2 k>2
for some ¢ > 0 by taking an N large enough. O
Once we have (3.3.2)), using a standard argument which relies on the

Littlewood-Paley decomposition and rescaling (for example, see [7], 66, [3])
one can easily show (3.3.1]). Indeed, we break the maximal function into high
and lower frequency parts:

sup ’Atg‘ S Alowg + Ahigh g,

0<t<oo

where

Ajowg =sup  sup |AP_ag],
1 2l<t<ol+l

Apigh g = Z sup sup | APr-ag|

l I+1
pso Lo2i<e<att
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

For Ay, g we claim

sup | AP _ag(r, 23)] < Mpeg(27172, 23). (3.3.4)
2I<t<2it
This gives Ajow g(7, 73) S Mpag(271r% 23). Since Mp: is bounded on L? for
p> 2, for 2 < p < oo we get

1
77 Aow 9l 22,., < Cllgllp-

rr3 T

We now proceed to prove (3.3.4). Note that 7., ¢(277|-]) = ¢1(2%]-]) and

-1 is a smooth function supported on [—22,22]. Thus, similarly as in ([3.3.3))
we note that AyPe_og(r, x3) = [[ (21, 22) Kyxdoy, (271 (r2+%) — 21, 53— 20)dz
where K; = F1(01(2%]-])). Since K; < &Y for any N, for 2! <t < 211 we
see

AP _org(r,x3)| S / lg(21, 22)|EZY * doy, (2’17"2 — 21, T3 — zg)dz (3.3.5)

because 2%t? < 1 and 2N = 274(1 4 272|y|)~2N. Hence, taking an N large
enough, we note that

(22r) Y (1 + 272 || — tr)7N, 22 < tr,

2741 + 27 |z]) N, 2% > tr, (3:3.6)

522lN x doy-(z) < {

provided that 2! < t < 2*1. Indeed, to show this we only have to consider
the case 22 < tr since the other case is trivial. By scaling * — trz we
may assume that ¢r = 1. Thus, it is enough to show [L7?(1 + L '|z —
y))"HWdo(y) S L1+ L7Y|z| — 1))~ for L < 1 with an N large enough.
However, this is easy to see since |z —y| > [|z| — 1] and [L7'(1+ L'z —
yl)Ndo(y) S 1.

Therefore, combining and , one can see

sup | AP_ag(r,z3)| < Mreg(2717%, 23) + Mag(27172, x3).

20 <<l

Here 9, denotes the Hardy-Littlewood maximal function on R?. This proves

the claim (3.3.4)) since Myg < Mpeg.
1
So we are reduced to showing ||r? Apign gl|ze. < Clgl|, for p > 2. For the

e
purpose it is sufficient to show

I osup | APr—agllly S 27" Ngllp (3.3.7)

20 <<t
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

because

Ahighg < Z(Z sup \Athfzzg!”)l/p

l I+1
k>0 1 2i<e<a

and

(D I1Pe—agll)) ' < Mgl
l

By scaling, using (3.1.2)), we can easily see the inequality (3.3.7)) is equivalent
to (3.3.2)) while j replaced by k. So, we have (3.3.7) and this completes the

proof of (i3.3.1)).

3.4 Proof of main estimates

In order to prove Proposition|3.1.1land |3.1.2] we are led by (3.1.2)) to consider
do(tr) for which we use the following well known asymptotic expansion (see,
for example, [75]):

N
do(€) = S CEHlel 37 4 Bx(lel), ¢l 21 (3.4.1)
7=0

where Ey is a smooth function satisfying

dZ
2

for 0 < ¢ <4 if r 2 1. The expansion relates the operator A; to the
wave propagator. After changing variables, to prove Proposition and
3.1.2) we can use the local smoothing estimate for the wave operator. The
following proposition is directly obtained by Theorem and interpolation
with the trivial L? — L? estimate and the L' — L* estimate.

Ex(r)| sr (3.4.2)

Proposition 3.4.1. Let j > 0. Suppose (3.1.6) holds. Then, for e > 0 we

have s
< 2863 £, (3.4.3)

it\/fA/])
‘ i L9 (R2x[1,2))

From Theorem we can deduce the following estimate via simple
rescaling argument.
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

Corollary 3.4.2. Let j > —{. Suppose (3.1.6) holds. Then, for e > 0 we
have

< 2%(7 )(Z—i—])—&-( )£+e(€+j)||fHLp

6it\/ 7A7)j f
Lgyt(R2 x [2¢,2¢+1])

Proof. Changing variables (z,t) — 2%(x,t), we see

eitm/lpjf

3¢
— 9%
LY, (R2x[2¢,26+1])

Thus, using we have
eit\/fAr])jf

zt\/IfPZ jf(2é )‘

LY, (R2x[1,2])

< 23[+ (**7)(f+j +e(l+3) Hf(QZ )

(72
LY ,(R2x[2¢,2¢+1]) ™7

So, rescaling gives the desired inequality. ]

3.5 Proof of Proposition 3.1.1
We now recall (3.1.2) and (3.4.1). To show Proposition we first deal

with the contribution from the error part Ey. Let us set

Euolr ) = [ @ Enric) ey
Lemma 3.5.1. Let j > —k. Suppose (3.1.6|) holds. Then, we have

2~V g 1, k> -2,
9—(N=3)(j+k)9 (E_E)||g||LP; k<=2

sup [y (r) (3.5.1)

1<t<2

Proof. We first consider the case k > —2. Using Lemma [4.5.1] we need to
estimate ¢, (r)&P;g and ¢, (r)0,&P;g in L] . ,(R*x [1,2]). For simplicity we
denote LI, , = LI, ,(R* x [1,2]). We first consider ¢ (r)&P;g. Changing

T1‘3t 7,23,

varlables — s, we note that

Pe(V25)EP;g(V2s,x3) = pi(V25) / K(s =y 427, 25— 12) 9(v1, y2)dy,
where

K(s,u) = 2% / ¢ (6198 o (6) By (2047/25€])dé
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

Since s ~ 2% using (3.4.2)), we have |KC(s,u)| < 2%(1427|(s,u)|)~ M2~ NG+k)
for 1 < M < 4 via integration by parts. Thus, we have |¢x(v25)K(s +

%,u) S C2-NG+K9210-2) for 1 < t < 2 with a positive constant

C. Youﬁg’s convolution inequality gives ||¢r(v25)EP;g(Vv2s x3)||Lq <

~

2-NG+92 =3 || g L». Thus, reversing s — r2/2, after a simple mampula—
tion we get

Hsok(r)&Pjg < 9~ (N=2G+R) QR =2)) g]| (3.5.2)

r,x3,t
for 1 < p < ¢ < oo. Indeed, we need only note that 2j(% — %) — <L
2(j+k:)+k($—%) because j > —k and%—%—1<0.

We now consider ¢y, (7)0:£P;g. Note that
r2412

@Swﬁww)Ii/e“ 2ees) (46, By (trl]) + rI€| En (tr]€])) g(€)dé. (3.5.3)

Using (3.4.2), we can handle ¢ (r)0,£,P;g similarly as before. In fact, since
t&| < 27 and r|¢| ~ 21| we see

SRk

< 9~ (N=2)G+R) gk (=3 (99+E 4 923)|| gl 1.

T,r3
Hence, combining this and (3.5.2) with Lemma we get (3.5.1]) for k >
—2.

We now consider the case k£ < —2. We first claim that

|ertriacmig

I (r) € ggHLm t§ 2~ (V=G g] . (3.5.4)
We use the transformation ({3.2.1]). By (3.2.2)) we have |8E§3(”’r1;”2 tT))| ~ 1. There-
fore,
~ q 1
low(r)EPallzs,,., < ( / [or(r(y. DR (1) % o) 'dyar )
where

Riy.m) = [ eveoy(6) Exiriel)as

Note that 7 ~ 2¥. Changing 7 + 2¥7 and & + 2/¢, using and integra-
tion by parts, we have | K (y, 257)] < €22 (1427 |y|)~M2-N( 9+k for 1<M<H4
and 1 < 7 < 2. Young’s convolution inequality gives

ler(MEPgllLs, , S 27 NP2 gl

T,x3,t
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Thus, we get (3.5.4]). As for ¢4 (r)0:&P;g, we use (3.5.3) and repeat the

same argument to see [lox(r)OEPgllra, S 2_N(j+k)2j22j(%’%)||g|\Lp since
t&y| <27, r|€] ~ 2879 and k < —2. Thus, we get

lon(M)OEP;gll e < 2 W=2GHRIQkFG=3)) gl .

rag,t T

Putting (3.5.4) and this together, by Lemma we obtain (3.5.1)) for k <
—2. [

By (3.4.1) and Lemma[3.5.1] to prove Proposition [3.1. 1|and 13.1.2| we only

have to COHSldel“ contributions from the remaining C’i|t7"§ |~ 274 etiltrel g =
+i|trg]

0,...,N.To this end, it is sufficient to consider the major term CF [tré|~ 2¢
since the other terms can be handled similarly. Furthermore, by reflection
t — —t it is enough to deal with |tr§|_%ei|trf‘ since the estimate (3.4.3)
clearly holds with the interval [1, 2] replaced by [—2, —1].

Let us set

2442
Utg(r, :L’3) _ /ez( + 514’1352"'”‘5')|T§|_%/g\(§)d§. (3.5.5>
To complete the proof of Proposition [3.1.1] we need to show
2,
—2.

‘ QU350+ 5 =3 g
L?zg
(3.5.6)

k>

ol 2k
o(I+k)(5; 3o+ v llglle, k<

Using Lemma“ 4.5.1} the matter is reduced to obtaining estimates for ¢ (1)U P;g

and @ (r)0U;P;g in L} . ;. Note that

sup. [ (r) Pyl

1<t<2 2p 2q

. r2 t2 t
OUPg(r, x3,1) = / eHTE Sttt trlED D g ¢ §|1 ;ff'dg (3.5.7)

By the Mikhlin multiplier theorem one can easily see
2 o (MU Piglls, ,, k=0,

2| or (MU Pigllra, k <0,
where L? denotes L?

g s t P st (R? x[1,2]). Therefore, by Lemma it is suf-
ficient for to prove that

ler(r)OUPrgl s tw{

2R3 35 =2+ 5 =5 ]| ., k> 2

k\r u igd ~ — 5,5 9 P .,

lonrUPigllos,.,, S 4 Gurmig-g-trors P llglle, k< -2
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

We first consider the case k> 2. As before we use the change of variables

(3-2.1)). Since |det 2 yrlet ~ 22% from (3 and since 7 =rtand 1 < t < 2,

we have

2k ]+k H

lonrtPigl s, 527 P |y,

it R2X[2k 1 2k+2])

since |ré| ~ 27%%. Thus, Corollary gives the desired estimate for
k > 2. The case k < —2 can be handled in the exactly same manner. The
only difference is that |det é“—yQtT))| 1. Thus, the desired estimate (3.5.6)
immediately follows from Corollary [3.4.2]

3.6 Proof of Proposition 3.1.2

As mentioned already, the determinant of the Jacobian d(y1, ya, 7)/0(r, x3,t)
may vanish when |k| < 1. So, we need additional decomposition depending
on |r — t|. We also make decomposition in ¢ depending on |£[71& + 1 to
control the size of the multiplier [t§; + 7|{|| in a more accurate manner (for
example, see (3.6.12))).

For m > 0 let us set

Ui (€) = 0(27[16] 76 + 1),

PE) =1— > ¥(€)

0<j<m
so that Y ooy, ¥k + ¢ = 1. We additionally define
Pimg = (#¥m0)",  P"g = (v 9)".
So it follows that
Z P+ P (3.6.1)
0<k<m

Proposition 3.6.1. Let us set oy (r,t) = pp(r)p(2!r —t|). Let j > —1 and
k=—1,0,1. Suppose (3.1.6) holds. Then, for e >0 we have

lonithiPrmgliee, , S 2 59025 DGHIDFE G- g 10 (3.6.2)
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

In order to prove Proposition [3.6.1] we make the change of variables
(3.2.1). Since |k| < 1, we need only to consider (r,t) contained in the set
271 —1072,22 + 10%] x [1,2]. Set

So={(yrye,7) 1 277 <y — 7 <27,y e 270, 27])

By (3.2.1) y1 — 7 = (r — t)?/2. From ([3.2.2)) we note |det afg?lftf)w if
(y1,7) € S;. Thus, changing variables (r, x3,t) — (y1, y2,7) we obtain

1. 1 i/ —
loedhPihllLs S 2729246 2P|y (sy- (3.6.3)

T,z3,t

Therefore, for (3.6.2) it is sufficient to show

T — TG+ - ¥Gq
™= EPmgllzg sy S 207 VGGG g (3.6.4)

for p, ¢ satisfying (3.1.6)). For the purpose we need the following lemma, which
gives an improved L? estimate thanks to restriction of the integral over .
Indeed, one can remove the localization y;, 7 € [273,23].

Lemma 3.6.2. Let D; = {(zy,12,t) : 272 < |z — t| < 27241} Then, we

have
H/ e EHIENG(), (£)dE <25 lg]l 1o (3.6.5)

Lg,t(Dl)

Proof. We write x- £ +t|€| = x1(& + [€]) + 226 + (t — 21)[€|. Then, changing
variables (x,t — z1) — (z,t) and £ = n = L(§) = (& + [€],&2), we see

-1
< H / gitenie-tyy ML) ‘
L2 (D,

i(x-E+t|E])
H/ TN G(E ), (€)dE Qet T

L2 ,(R2x1))

where h(€) = G(€)1m(€) and I, = [—272+41, —2-2y[2-2 2-2+1]. By Plancherel’s
theorem in the xr—variable and integrating in ¢, we have

H/ S EFIEDG(E) b, (€)de

L3 (D) Hm‘ 2’

A computation shows det JL£ = 1+4|£|71&;, so |det JL| ~ 27™ on the support
of h. Thus, by changing variables and Plancherel’s theorem we get (3.6.5]).
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

We also use the following elementary lemma.

Lemma 3.6.3. For any 1 < p < o0, j, and m, we have

1(p59m@) Nler < Nlgllzes N(250™G) " Nle < llglle-

Proof. Since ™ — ™™t = ), it suffices to prove the second inequal-
ity only. By Young’s inequality we need only to show |[|(p;9/™)V||r < 1.

By scaling it is clear that [[(¢;(£)¥™(£))" [l = [[(¢o(§)¥™(€))"|[Lr. Note
that m(§) := po(§)Y™(€) is supported in a rectangular box with dimensions
27™ x 1. So, m(&1,27™&,) is supported in a cube of side length ~ 1 and it
is easy to see O¢(m(&1,27"&,)) is uniformly bounded for any a. This gives
l(m(-,27™))Y ||y < 1. Therefore, after scaling we get ||(¢o(&)Y™ (&)Y <

~Y

O

Proof of (3.6.4]). In view of interpolation the estimate (3.6.4) follows for p, q
satisfying (3.1.6)) if we show the next three estimates:

e 2P, L@,T@)sz%— 91|22, (3.6.6)
1Y =P, gl 1o, 51y S 27 Mgl (3.6.7)
1™ 2 Pmgllis s < 2919l s,

The first estimate follows from Lemma [3.6.2l Corollary and Lemma
3.6.3| give the other two estimates. O]

It is possible to improve the estimate (3.6.2]) when j > m.

Proposition 3.6.4. Let 7 > —1 and k = —1,0,1. Suppose 1 < p < g,
1/p+1/q <1, and j > m, then

—l)+ (1_1_1)4_327‘(;_,

j L 2(m
lorilhiPymgllzs, | S 27720240 T2 6T g

35t

Proof. By (3.6.3)) it is sufficient to show

||6iT\/—A7D

2/m J=—m_1_1y,3j(1_1
jmgHLq (51)525(7 D+ (A= -D)+5 (5
9 y,‘l‘

gllo

for p, ¢ satisfying 1 < p < ¢, 1/p+1/q < 1. In fact, by interpolation with the

estimates (3.6.6) and (3.6.7) we only have to show

17@73

e ymdllzze sy S22 gl (3.6.8)
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Let us set

1
(27)?

) = o [ e (e

Then ¢™V=2P;,,g = K3 % g. Therefore, (3.6.8) follows if we show

1™ | S 272" (3.6.9)

when t ~ 1. Note that [&[/I€] = /1-&/[EV/I+&/E] S 272 if € €

SUPP Y. SO, SUPP Yy, is contained in a conic sector with angle ~ 272 . Let S
be a sector centered at the origin in R? with angle ~ 272 and g be a cut-off
function adapted to S. Then, by integration by parts it follows that

| [ etsgienesiod|, <1

if t ~ 1. (See, for example, [44]). Now (3.6.9) is clear since the support of ¥,
can be decomposed into as many as C2 2 such sectors. O]

Finally, we prove Proposition [3.1.2] making use of Proposition [3.6.1] and

We recall (3.1.2)) and (3.4.1)). As mentioned before, by Lemma we

need only to consider U; (see (3.5.5))) and it is sufficient to show
l 7_1_ . € .
| sup |ou(UPigl|| 0 < 22% gl (3.6.10)
1<t<2 rag

for p, q satistying p < ¢, 1/p+1/¢g<1land 1/p+2/q > 1.
Proof of (3.6.10). Let usset ¢!(-) = 1—2;_:% ©(27) and @k (r, t) = @p(r)¢!(|r—

t|). Then, we decompose

oe(r) = > er(rt)+ Y eralr.t) + l(r1).

0<I<j/2 3/2<1<j

- N . ; [i/21—1
Combining this with (3.6.1) and using E%<l<j k1 + vl < @) , by the
triangle inequality we have

5
I sup, ou(MUPgl|| . < le
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where

Z Z | SUP Uy jmg|HLq7 = Z ”15<1i]@<)290k,l|ut7)]l-9H|Lq,

0<i<j/2 0<m<I—1 0<I<j/2

= > > $Up QralUPimglllea 51 = > I sup @t UPimgl e,
<t<

i<i<j 0Sm<j—1 0<m<j—1

2]—-1 j
=l sup. bl 2

The proof of (3.6.10|) is now reduced to showing
S; <236 V|| g|| . 1< <5, (3.6.11)

for p, q satistying p < ¢, 1/p+1/¢g<1land 1/p+2/q > 1.

Before we start the proof of , we briefly comment on the decom-
position S;, 7 = 1,...,5. As for S; and S5, which are easier to handle, the
sizes of r — t and |¢|7!¢; + 1 are sufficiently small on the supports of the as-
sociated multipliers, so we can remove the dependence of ¢ by an elementary
argument. For 57,5, and S3, we use Lemma combined with to
control the maximal operators. Different magnitudes of contribution come
from Oypp; = O(2') and [t&; + r[€]], so we need to compare them. Writing
t&+rlg) =t(|¢]7'& + 1) + (r — t), we note

té 4+ rl€]] < 29 max{2™™ 27"}, (3.6.12)

The decompositions in Sy, Sy, and S3 are made according to comparative
sizes of Oy, = O(2') and [t&; + r|¢]| in terms of ,m, and j.

We first consider .S;. Using Lemma , we need to estimate oy U Pj mg
and O (¢rUPjmg) in LZLE3 t(RZ x [1,2]). Note that d;px; = O(2') and 2! <

27=™ Thus, recalling (3.5.7)), we apply Lemma and the Mikhlin multi-
plier theorem to get

S
S 25 onithPrml| -

0<1<j/2m=0
Thus, by Proposition it follows that

-1
SRR D DI S D DR S [
0<1<j/2 m=0
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

Since 1/p+1/¢—1<0and 1/p+2/q > 1, we obtain (3.6.11)) with ¢ = 1.
We can show the estimate (3.6.11)) with ¢ = 2 in the same manner. As

before, since dypp; = O(2!) and 2! < 277 using (3.6.12)), Lemma [4.5.1} and
the Mikhlin multiplier theorem, we have

S S 27 JenthPla|l .

0<I1<j/2

Thus, by (3.6.3) and Theorem |3.4.1] we have

S5 Y 2 ht Gt g,

o<i<i

which gives with ¢ = 2.

We now consider S3, which we handle as before. Since j < 2[, we have
that 2/ max{2=™ 27!} <2 if [ +m > j. Similarly, 2/=™ > 2/ max{2—™,27!}
and 297™ > 2L if [ +m < j. Using (3.6.12) and (3.5.7)), we see

13 ji—m
S3 S Z < Z 24 || prilhi Pmg || La + Z 2% HSDk,lUtPj,mQHLq)

jj2<i<j  j—l<m<j—1 0<m<j—1

Since 1/p + 2/q > 1, using Proposition [3.6.4] we get for i = 3.

We handle S; and S5 in an elementary way without relying on Lemma
Instead, we can control Sy and Ss; more directly. Concerning Sy we
claim that

Sy < 226757V g| 1 (3.6.13)

if 5/g >1+1/p and 2 < p < g < oco. This clearly gives (3.6.11)) with ¢ = 4
for p, q satisfying p < ¢, 1/p+1/¢ <1 and 1/p+2/q > 1. We note that

—

|PAUP; g (r, )| S 275 | / e (st € m (€)oo (€)1, (€)g(277) (€)dE

I

where

m(€) = e (T aHEED g~ gy ¢,

and @y is a smooth function supported in [—m,7]? such that @ypo = 1. If
(r,t) € supp @), then |t —r| < 277. Thus, |0gm(&)| S 1 for any a. We remove
the dependence of ¢t by using a bound on the coefficient of Fourier series, not
the Sobolev embedding. Expanding m into Fourier series on [—, 7|* we have
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CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

m(§) = > ez Ck(r, t)e™* while |Ci(r,t)] < (1+[k|)™V. Since 1 < t < 2, the
estimate ([3.6.13]) follows after scaling & — 27¢ if we obtain

L3 1y,
IRPymgll s, -229xm) S 22777 g1,

where
Ry(r, x5) = / ellrier st iNg (€)de.

When ¢ = 2, changing variables 7> — r and following the argument

in the proof of Lemma [3.6.2) we have ||RP; gl 12 2 (272,29)xR) < 2m2||g]| 2.
On the other hand, (3.6.8|) gives HR'PjymgHLgozs([2—2723]XR) < 20=m2| gl poe .
Interpolation between these two estimates gives

1_2

”RPJ m9||L‘1 5 ([272,23]xR) < 2 )||9||Lq
for 2 < ¢ < oo. Since the support 7?,”\9(5) is contained in a rectangular
region of dimensions 2/ x 2/~ 2 | by Bernstein’s inequality we have

< gi(Z=Sytm(E-1-

IR, Illre,, (22 29xm) S TR Nlgll o

for 2 < p < ¢ < oo. Since 5/¢ > 1+ 1/p, this proves the claimed estimate
(3.6.13)).

Finally, we show (3.6.11)) with ¢ = 5. Changing variables ({;,&) —
(271, &), we observe

o UP g(r,w3)| S 280l / (TR (¢)Plg (276, &)
where

f(g) = e rilE 270 (¢ 2776,) |73 G (| (€1, 2776) )0 (2061, &)

Note that suppm C {&; € [27,27], €] < 22}, Since [9¢m(£)| $ 1 for any a,
expanding m into Fourier series on [—27,27]%, m(€) = 3", oz0 Cic(r, t)e? ¢
holds while |Cy(r,t)] < (1 + |k|)™". Hence, similarly as before, changing
variables (£1,&) — (279€1, &), to show (3.6.11)) with ¢ = 5 it is sufficient to
obtain

L, o5

<256 |gll (3.6.14)
1<t<2 2

L 3([272,2%]xR)

40



CHAPTER 3. THE HEISENBERG CIRCULAR MAXIMAL OPERATOR

for 1 < p < g < o0o. Clearly, the left hand side is bounded by HPjg(a:l, .Tg)HL;ICS(Lch)).

Plg is supported on the rectangle {¢ € [2771,27%2],|&| < 27+2}. Thus, using
Bernstein’s inequality in x,, we get

. — )2
sup Pjg<<r 5 ) ,l’g)‘
1<t<2

for 1 < ¢ < oo. Another use of Bernstein’s inequality gives (13.6.14)) for
1 < p < g < oo. This completes the proof of (3.6.10)). m

<279 PYg Lo

L7 23 ([272,2%]xR)

3.7 Sharpness of the range of p, ¢

We show (3.0.1)) implies (1/p,1/q) € T, that is to say,
(@)p<gq, (b)1+1/q=3/p, (c)3/q=2/p.

To see (a), let fr be the characteristic function of a ball of radius R >
1, centered at 0. Then, My fg is also supported in a ball B of radius ~
R and My fr 2 1 on B. Thus, suppq ||Mm frlle/| frll, is finite only if
p < q. For (b) let g, be the characteristic function of a ball of radius r <
1 centered at 0. Then, |Mg,(x,x3)| = r when (z,x3) is contained in a
cor—neighborhood of {(z,z3) : 1 < |z| < 2,23 = 0} for a small constant
co > 0. Thus, implies 71714 < ¢3/P which gives 1 4+ 1/q > 3/p if we
let r — 0. Finally, to show (c) we consider h, which is the characteristic
function of an r—neighborhood of {(x,z3) : |z| = 1,23 = 0} with r < 1.
Then, |Myih,(z,z3)| 2 ¢ > 0 when (z,23) is in an r—ball centered at 0.
Thus, gives 34 < r?/? which yields 3/q > 2/p.

The maximal estimate for general LP functions has a smaller range
of p,q. Let h, be a characteristic function of the set {(z,z3) : |z, — 1] <
r?, |zo| < 7, |z3] < r} for a sufficiently small r > 0. Then Mg h,(x,x3) ~ 1 if
—1 <z <0,|za| < cr,|zs] < cr for a small constant ¢ > 0 independent of
r. Thus, implies r'+2/¢ < ¢4/P_ Tt seems to be plausible to conjecture
that holds for general f modulo some endpoint cases as long as 1 +
2/qg—4/p > 0,3/q > 2/p, and 1/q < 1/p. The range of p,q is properly
contained in T.
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Chapter 4

Two parameter averages over
tori

As in the My, case, people also have considered strong maximal averaging
operators over lower dimensional submanifolds. Erdogan [21] and Pramanik,
Seeger [60] tried to obtain a result for two parameter maximal averages over
curves in R? and R? respectively, but it was not an LP estimate we are in-
terested in since both results require regularity of a function f. Following
the schematized proof of the one parameter maximal operators, Cho [18] and
Heo [33] obtained boundedness results for multiparameter maximal opera-
tors built on the L? method which requires sufficient decay of the Fourier
transform of the associated surface measures or associated multiplier in the
abstract setting. Two-parameter maximal functions associated with homo-
geneous surfaces were studied by Marletta, Ricci [49], and Marletta, Ricci,
Zienkiewicz [50], who obtained their boundedness on the sharp range. In
those works, homogeneity makes it possible to deduce LP boundedness from
that of a one-parameter maximal operator. Not much is known so far about
the maximal functions which are genuine multiparameter operators. In this
chapter we mainly prove Theorem and Theorem which concerns
a two parameter maximal operator.
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

4.1 Comparison with one parameter maximal
average

We begin our discussion with the maximal operator
f— sup |AP'f]
o<t

which is generated by the averages over (isotropic) dilations of the torus T{°.
While we mentioned that this operator is bounded on LP(R?) if and only if
p > 2 by Ikromov, Kempe, Miiller [37], it is not difficult to see prove the same
result directly. Indeed, writing f * o’ = INE Mf dy, where ,uf is the measure
on the circle {t®{°(¢,0) : 0 € [0,27)}. Since these circles are subsets of 2-
planes containing the origin, LP boundedness of f — sup, | f * ,uf | for p > 2
can be obtained using the circular maximal theorem [7]. In fact, we need L?
boundedness of the maximal function given by the convolution averages in
R? over the circles C((t/cq)es, t), which are not centered at the origin. Here,
C(y,r) denotes the circle {z € R? : |z — y| = r}. However, such a maximal
estimate can be obtained by making use of the local smoothing estimate for
the wave operator (see, for example, [54]). Failure of L? boundedness of f —
supg., AL f| for p < 2 follows if one takes f(z) = ¥(z)|x3| 72| log |x3||~1/2~
for a small e > 0, where y is a smooth positive function supported in a
neighborhood of the origin.

In the study of the averaging operator defined by hypersurface, nonvan-
ishing curvature of the underlying surface plays a crucial role. However, the
torus T{" has vanishing curvature. More precisely, the Gaussian curvature
K(0,¢) of T{ at the point (0, ¢) is given by

B cos 6
(1 +coeost)

K(0,9)

Notice that K vanishes on the circles ®7°(£7/2,¢), ¢ € [0,27). Decompos-
ing T{® into the parts which are away from and near those circles, we can
show, in an alternative way, L? boundedness of f — sup,, |A* f| for p > 2.
The part away from the circles has nonvanishing curvature. Thus, the asso-
ciated maximal function is bounded on L for p > 3/2 ([74]). Meanwhile,
the other parts near the circles can be handled by the result in [37]. Unlike
the one-parameter maximal function, (nontrivial) L? estimates on M cannot
be obtained by the same argument as above which relies L” boundedness
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

of a related circular maximal function in R2. In fact, to carry out the same
argument, one needs L” boundedness of the maximal function given by the
(convolution) averages over the circles C(sey, t) while supremum is taken over
0 < s < cot. However, Talagrand’s construction [78] (also see [32, Corollary
A.2]) shows that this (two-parameter) maximal function can not be bounded
on any LP, p # oo.

4.2 Local smoothing estimates of averages over

tori

Smoothing estimates for averaging operators have a close connection to the
associated maximal functions. Especially, the local smoothing estimate for
the wave operator was used by Mockenhaupt, Seeger, and Sogge [53] to pro-
vide an alternative proof of the circular maximal theorem as introduced in the
introduction. Recent progress [40} [5, 39] on the maximal functions associated
with the curves in higher dimensions were also achieved by relying on local
smoothing estimates (also see [61]). Analogously, our proofs of Theorem [1.5.1]
and are also based on 2-parameter local smoothing estimates for the
averaging operator A7, which are of independent interest. In the following,
we obtain the sharp two-parameter local smoothing estimate for A;.

Theorem 4.2.1. Let p > 2 and ¢ be a smooth function with its support
contained in J.. Set ASf(x) = (t,s)ASf(x). Then, the estimate

"A§f|’Lﬁ(R5) S e gs) (4.2.1)
holds if o < min{1/2,4/p}.

The result in Theorem is sharp in that fl;f can not be bounded from
LP to LP if o > min{1/2,4/p} (see Chapter 4.8 below). Using the estimate
, one can deduce results concerning the dimension of a union of tori
T+ T, (z,t,8) € E CR? x J,. See [31].

We also obtain the sharp local smoothing estimate for the one-parameter
operator f — AP f.

Theorem 4.2.2. Let xo € C°(0,00). Let p > 2 and 0 < ¢y < 1. Then, for
a < min{1/2,3/p}, we have

HXO(t)AgotfHLg(R‘l) S HfHLp(Rii)- (4.2.2)

44



CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

N[

1
11 1 1P
8 6 4 2

Figure 4.1: Smoothing orders of the estimates (4.2.1)), (4.2.2)), and (4.2.3])

The estimate above is sharp since f — xo(t)A%" f fails to be bounded
from L? to L2(R*) if o > min{1/2,3/p} (Chapter 4.§8). The next theorem
gives the sharp regularity estimate for A; when s, ¢ fixed.

Theorem 4.2.3. Let 0 < s < t. If « <min{l1/2,2/p}, then we have
[AF flle@sy S I f |z (ms)- (4.2.3)

If « > min{1/2,2/p}, A? is not bounded from L?(R?) to L2 (R?) (Chapter
4.8]). One can compare the local smoothing estimates in Theorem and
[4.2.2] with the regularity estimate in Theorem [£.2.3] The 2-parameter and
1-parameter local smoothing estimates have extra smoothing of order up to
2/p and 1/p, respectively, when p > 8 (see Figure [4.1)).

For p < 2, it is easy to show that there is no additional smoothing (lo-
cal smoothing) for the operators A and yo(t).A%" when compared with
the estimates with fixed s,¢ (Theorem . That is to say, .,Zlf fails to
be bounded from LP(R?) to LP(R®) and so does xo(t)A" from LP(R?) to
LP(RY) if @ > min(2/p’,1/2) and 1 < p < 2. We remark that the result for
two-parameter 2-dimensional tori can be extended to multiparameter tori in
higher dimensions.

4.3 Two parameter propagator

We define an operator U by

~

Uf(x,t,s) = / eI F e e,
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

which is closely related to the averaging operator A and the wave operator
W, . In fact, we obtain the estimates for U making use of those for W, .

Let Jo = {(t,s) : 0 < s < ¢t} and J, = (I x L) N Jp. To obtain the
required estimates for our purpose, we consider the estimates over R?® x J,
for small 7. This is the key estimate in this chapter.

Proposition 4.3.1. Let 2 < p < ¢ < oo satisfy 1/p + 3/q < 1, and let
O0<7<landX\>7""1 (a) If N\ <h < TA2, then for any € > 0 the estimate

I fllpaggaxs,y S TETPATE TR £l (4.3.1)

holds whenever suppf C Ay x I,. Moreover, (b) if suppf C Ay x I3, then
we have the estimate (4.3.1) with h = X. (¢) If h 2 7A\%, then we have

SR oo (4.3.2)

whenever supp j/c\C Ay x T,

For a bounded measurable function m, we denote by m(D) the multiplier
operator defined by F(m(D)f)(&) = m(§)f(€). In what follows, we occasion-

ally use the following lemma.

Lemma 4.3.2. Let £ = (¢/,¢") € R¥ x R¥*. Let x be an integrable function
on R* such that X is also integrable. Suppose |m(D)fll, < B|fll, for a
constant B > 0, then we have ||m(D)x(D")f|lq < BlIXI1ll fl,-

This lemma follows from the identity

m(DIX(D)f @) = x| RWm(D)NE + o)y,
R

which is a simple consequence of the Fourier inversion. The desired inequality

is immediate from Minkowski’s inequality and translation invariance of LP

norm.

Proof of Proposition[{.3.1. We make use of the decoupling inequality for the
cone ([I0]) and the sharp local smoothing estimate (Lemma for W;,..
We first show the case (a) where A < h < 7A% To this end, we prove the
estimate (4.3.1])) under the additional assumption that ¢ > 6. We subsequently
extend the range by interpolation between the consequent estimates and

(4.3.1) for (p,q) = (4,4), which we prove later.
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Fixing 3 and s, we define an operator T by setting

TaF©) = [ = ORE G, €= ()
Then, we observe that

L{f(x,t, 5) = W(Eif)(i'?t)

Let Uy C S! be a collection of ~ A\~*/2-separated points. By {w, } ey, We
denote a partition of unity on the unit circle S! such that w, is supported in
an arc centered at v of length about A=*/2 and |(d/df)*w,| < A\¥/2. For each
v € By, we set w, () = w,(£/|¢]) and

W,g(z.t) = / GEEHIED,, (E)5(E)dE.

Let x € S(R) such that ¥ > 1 on I and supp F(x) C [—1/2,1/2]. Note
that the Fourier transform of X (¢)W,g(Z,t) is supported in the set {(£, 7) :
T — €| £ 1,€/[€] € suppw,, [€] ~ A} if suppg C Ay. Thus, by Bourgain-
Demeter’s [ decoupling inequality ([10]) followed by Holder’s inequality, we
have

11 1/p
|| Z W ]R2><H) ~ )\2 2p 2q ( Z HX Vg”i%yt(]l@)) (433)

vEY) veYy

for any € > 0, ¢ > 6, and p > 2, provided that suppg C A,. Note that
US(z,t,s) =3, Wo(TE ) (@, 1) and W, (T2 f)(z,t) = Uw, (D) f(z,t,s). Since
supp]?C A, x 1, freezing s, x3, we apply the inequality , followed by
Minkowski’s inequality, to get

U fll La R3xJ,) < )\E_%_zq ( Z HX L{fl,” (RixI) > (4.3.4)

IZSDIN

for ¢ > 6 where f, = wy(D)f. We now claim that

5( t Z/{fll La(R4x1 57—(%7%))\17%7%‘1 ;7§+E fy Lr 4.3.5
( )

holds for 1/p+3/q < 1. Note that (Z 1 £,[2)!/P for 1 < p < oco. Thus, from

and (| - ) the estimate follows for ¢ > 6.
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

To obtain , we begin by showing
H)Z(t)blfy(ys)HL;t(Rzl) < C’“eisIleV"L%(R3), (4.3.6)

To do this, we apply the argument used to show Lemma [£.3.2] Let us set

W, €) = eMEEIG, (O)p(E/0)

so that x, (¢, E)ﬁ(g) = e””g'_é”)fy(ﬁ). Here &, (€) is a angular cutoff function
given in the same manner as w, (§) such that w,w, = w,. Then, a computation
shows that

(V) (V) S (O] S (D ATFAT2 (1A )N (1A 2 )Y

for any N where v, denotes a unit vector orthogonal to v. Indeed, this can be
easily seen via rotation and scaling (i.e., setting v = e; and scaling & — A\
and & — A/2&). Thus, using the above inequality for 0 < k,I < 2 and
integration by parts, we see ||(v,(¢,))" |1 < C(1+t])* for a constant C' > 0.
Since Uf, (x,t,s5) = F 1 (e EslEhy (¢, f)]?,,(ﬁ)), we have

Uf, (.1, 5) = / (Gt )Y () VPV, (& — 1 + tw, )y,

By Minkowski’s inequality and changing variables z — ¥ +n —tv we see that
the left hand side of is bounded by C'||[x () (1+[t[)*[| Lo (rr) He“'D‘f,,”Lg(W).
Therefore, we get the desired inequality .

Let us set

Xs(§) = NG, () (E/A) (& /h),

where £ := (£ - v,&3). Since A < h, similarly as before, one can easily see
IIXs|li < C for a constant. Thus, by Lemma we have [|e®Plf,||a <
|e*!PI £, || La. Combining this and yields

. v 1 1 : v
6ol gy S 12 ol ey S A0 ol 1 oty

Zy,x3,s

where Z, = v - Z and 7], = v, - Z. For the second inequality we use Bern-
stein’s inequality (see, for example, [82, Ch.5]) and Minkowski’s inequality
together with the fact that the projection of supp ﬁ(, &3) € R? to span{v,}
is contained in an interval of length < A'/2.
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

Note that the projection supp fto span{v, eg} is contained in the rectan-
gle I, x I;. By rotation the matter is reduced to obtaining estimate for the
2-d wave operator. That is to say, the inequality (4.3.5)) follows for ¢ > 6 if
we show

HWJrgHLq (R2xI,) ~ SRARD S gl

for 1/p+ 3/q < 1 whenever suppg C I, x I$. This inequality is an immedi-
ate consequence of and scaling. Indeed, as before, after scaling (i.e.,
(2.2.3)) we apply Lemma [2.2.4] with supp F(g(7-)) C L, x I2,. To this end,
we use the condition h < 72, equivalently, 7h < (T))2.

We now have the estimate for 6 < gq,2<p,and 1/p+3/q < 1.
In order to prove it in the full range, by interpolation we only have to show
- for p=q =4.

Let us define f4 by setting fi(f) = X(O’oo)(:l:fg)]/c\(g) where x g denotes the

character function of a set E. Then, changing variables {& — ++/p? — &2, we
write

Uf(x,t,s) =3, [l@sttotsVr' 8 1(ST £.)(p, &) dpdés,

where

F(SLfe)(p&s) = =+ / bt f (6,40 ) p? = &) —— \/752 dg;.-
We observe the following, which is a consequence of the estimate ([2.2.2])
with p = ¢ = 4 and the finite speed of propagation of the wave operator:

IWagllrs

z3,t,s

(RxIxI,) <7'4(7'h) ||9||L4 (RXI3) +h” NHt 9||L4 H(RX(I9)°) (4~3‘7>

for any N whenever suppg C {€ : |£| ~ h}. Indeed, to show this we decom-
pose g = g1 + g2 = gxu(42) + gxg)-(y2). By finite speed of propagation
(in fact, by straightforward kernel estimate) we have |[W,gallze@xixt) S
KN y2l ™M gl L4 @x ag)e). Meanwhile, by scaling and with p = q = 4,
we have [[Wygi| a@xixt) S Ti(Th)f||g||L4(RXﬂg). Combining those two esti-
mates, we obtain .

We now note that U f(z,t,s) = >, Wi (ST f+)(xs,t,s) and supp F(ST f+) C

{€:|€] ~ h} since A < h. Here, we regard (z3,t) and s as the spatial and tem-
poral variables, respectively. Applying (4.3.7) to W, (S% f+) with g = ST f.,
we obtain

[l

zts

1 — —
®x1) S 2ou (TIRNSEfllps moxag) + PV INENSEf s moxag)e) )-
x,t 2 x,t 2

49

___;rx_-l! E CI.'II

1_'_] |

el



CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

Reversing the change of variables & — +4/p? — &2, we note that ST f(x3,t) =
Wy fe(-,23)(Z,t). Recalling supp F f C Ay x I}, we see that the second term
in the right hand side is bounded by a constant times h~"/2||f| ;4. Since
supp F(f(+,z3)) C A, for all z3, using Lemma [2.2.2] for p = ¢ = 4, we obtain
for p = ¢ = 4. This completes the proof of (a).

The case (b) in which supp f C A, X IS can be handled without change.
We only need to note that the Fourier support of f, is included in {¢ :
|(€ - v, &3)| ~ A}, instead of {& 1 |(€ - v, &)| ~ fi}’ if f, #0.

We now consider the case (¢) where supp f C Ay x I}, with 7A?> < h. The
estimate is easier to show. We note that the Fourier transform of

e D€/ N)p(&s/h)

has uniformly bounded L' norm. One can easily verify this using 9&s(|(\, hés)|—

|h&]) = O(1) on A x I; if 7A* < h. Thus, by Lemma [4.3.2] we have
NUf(t,8) e S [|lePf||La uniformly in s. So, taking integration in t,s,
we get

ER— 111 5
14 fllo@sa,y S Tl flla@sxny S Trhe " ([P flln, 1o, goxn)-
For the second inequality we use Bernstein’s and Minkowski’s inequalities.

Using Proposition in Z,t, we obtain the estimate (4.3.2)) for 2 < p <
q < oo satisfying 1/p+3/q < 1. O

Remark 1. Following the argument in the proof of Proposition and
using Theorem and Lemma [2.2.2, one can see without difficulty that
f — Uf(z,—t,s) satisfies the same estimates in Proposition in place
of U. Then, by conjugation and reflection it follows that the estimates also
hold for f — U f(z, £t, —s).

4.4 Estimates for the averaging operator A}

Making use of the estimates for &/ in Chapter (Proposition , we
obtain estimates for the averaging operator 47 while assuming the input
function is localized in the Fourier side. These estimates are to play crucial
roles in proving Theorem [1.5.1], [1.5.2] and [£.2.1]

We relate A to U via asymptotic expansion of the Fourier transform of
do}. Note that

2
doi(§) = / e~ smOLs gy ((t + s cos0)E )d, (4.4.1)
0
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

where dj denotes the normalized arc length measure on the unit circle. We
recall the well known asymptotic expansion of the Bessel function (for exam-
ple, see [75]):

du@ =% CHE e+ Ey(d), K21 (4.4.2)

+,0<5<N

for some constants C’f where Ey is a smooth function satisfying
[(d/dr) Ex(r)| < Cr~m"(NFDAT 0 <1 < N, (4.4.3)

for r 2 1 and a constant C' > 0 where N’ = [(N + 1)/4]. We use (4.4.2) by
taking N large enough

Combining (4.4.1)) and ([4.4.2) gives an asymptotic expansion for F(doy),
which we utilize by decomposmg J in the Fourier side. We consider the cases

supp f C {€ €] > 1/7} and supp f C {€ : || < 1/7}, separately.

When supp f C A3 x R, A< 1/7

If supp fC A7 Jr X I3 I the sharp estimates are easy to obtain.

Lemma 4.4.1. Let 1 < p < g < oo and 7 € (0,1]. Suppose suppf C
B(0,1/7) :=A{z : |z| < 1/7}. Then, for a constant C' > 0 we have

4_3
IA? flle , oy < CTa e || fllie- (4.4.4)

zts

Proof. Since Af is a convolution operator and supp]? C B(0,77'), Bern-
3_3
stein’s inequality gives ||A;f|[ps S 77 7 || A f||z» for any s,t € R. Thus, we

have

||A8f||Lq STl VsteR (4.4.5)
The inequality (4.4.4) follows by integration in ¢, s over J,. O
Proposition 4.4.2. Let 1 < p < g < oo, 7 <1, and h 2 1/7. Suppose
supp f C A} x I,. Then, we have

1.1 1
||.A f”Lq R3xT,) S < Tl/q(Th> 2hp 4 ||f||Lp, (446)

acts
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

Proof. To prove (4.4.6)) it is sufficient to show, for a positive constant C,
s _1,11
[A fllg < C(rh)"2hea || fllee,  V(ts) € I (4.4.7)
In fact, integration over J, yields (4.4.6)).

For simplicity, we denote v, = (cos ¢, sin ¢), and we note that
As 27_(_ // i((Z—tvy) f—l—xdfd s v¢§§3) Vo f(g)dﬂSdef

Smce supp f C AS x T}, we may disregard the factor e using Lemma
Indeed, let p € C.(A3) such that p = 1 on A;. Setting pf(€) =
p(g) ”"455, we see ||F(p?)||; < C for a constant C > 0 and [¢| < 1. Thus,
by Minkowski’s inequality and Lemma |4.3.2| we have

2w _ N
IAZ F Il SsupH / et / e e E8) Vo 4 £ ()
¢ 0

for |t| < 1. We denote £ = (v,- &, &), and notice that |s€s| > 1 since hr > 1.
So, usng (4.4.2), we have
Jemis g = 30, ojon CF 86l 729601l 1 By (516

To show (4.4.7)), we obtain only the estimates for the operators mZ (D),
En(s|Dy|) whose multipliers are given by

my (€) = |s&| 2 B (s]g)).
Contributions from the multiplier operators associated with the other terms
can be handled similarly but those are easier. Since || < 2 and |£3] ~ h >
1/7, we use the Mikhlin multiplier theorem and Lemma to see

[m2 (D)l < ) 4| [ eteeesenFieya

L S )R e

Since supp f C AS x I, by Bernstein’s lemma we have || f[|zc < h%_%||f||Lp.
This gives the desired estimates for mi(D) For the multiplier operator
En(s|Dg|), note from (4.4.3) that 9 sf¢|N/EN(|3€¢|) < O(|ség|7loly for
|a] < N’ and a constant C' > 0. Usmg the Mikhlin multiplier theorem again,
we have

| Ex(s1Ds)f || o S H/ € sy T
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

Since supp ]? C A7 x T, we see, as before, that the right hand side is bounded
by C(ht)™N'hY/P=1/4|| f|| z». Thus, the desired estimate for Ey(s|Dg|) follows.
O

When A 2 1, to handle the case suppf C A, x I, we need more than
the estimates with fixed ¢, s. We need the smoothing estimates obtained in

Chapter [4.3|

Proposition 4.4.3. Let2 <p<qg<oo, 1/p+1/¢<1,and1 SAS1/7 <
h. Suppose supp f C Ay x I,. Then, for any € > 0 we have the following:

1 1.1 1_3.,
145 £l zo@ony S 7o (rh) " 2he~aXe™a | £ 1o, 1/p+3/¢<1,
(4.4.8)
1 1 1 1. 1,3 3
145 fllaqeoss,y S 7a(rh)"2he o A2 % 2 || flls, 1/p+3/g> 1.
(4.4.9)

To show Proposition [£.4.3] as mentioned above, we use the asymptotic
expansion of the Fourier transform of do}. Let us set

mli(g’t7 S) _ /e—i(ségsinﬁqisﬂ cos@)al(97t’ S)de,

where a;(0,t,s) = (t + scos )~ /2 Putting (4.4.1) and ([{.4.2) together,

we have -
do;(§) = Zi,ogzgz\f Mzi(éa t,s)+E(E t,s) (4.4.10)
for || > 1 where
M= (€t s) = Cl|§]’l’%eﬂt|g|mli(f, t,s), [=0,...,N, (4.4.11)

E(,t,s) = /e‘is&’smeEN((t + scos0)|€])db. (4.4.12)
Proof. We first show (4.4.8). From (4.4.10) we need to obtain estimates for

the operators associated to the multipliers Mli and £. The major contribu-
tions are from M;"(D,t,s). We claim that

|ME(D 8, )]s g,y S THER)ERTINT T fl (4413

)~
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

holds for p < ¢ and 1/p+ 3/q < 1. To show this, we consider the operator
eFtlPImiE (D, t, 5). Note that mi"(€,t,s) = [ e (FlEhE)wq (0, ¢, s)df. By the
stationary phase method, we have

mEEts) = Y BE[sg[ret e L BE(sle)), (ts) €T, (4.4.14)

+,0<j<N

for |s¢| > 1. Here, Bf and Fx depend on t, s. However, (9/dp)*a; is uniformly
bounded since s < cot, i.e., (t,8) € Jo, so Bif are uniformly bounded and E%

satisfies in place of Ey as long as (t s) e J,.
For the error term B v (sl€]), we can replace it, similarly as before, by

|s¢|~N" using the Mikhlin multiplier theorem. Thus, using (2.2.2) and Bern-
stein’s inequality in z3 (see, for example, [82, Ch.5]), we obtain

3
q

|| (¢, s)e P LEN (5| D)) fHL" J(RIXT) ~ < (rh) ™ R e AT T £

(4.4.15)

for p, q satistying 1/p + 3/q < 1 since supp]/”\C Ay x1,, se€l,, and 7h 2 1.
Recalling (4.4.14)), we consider the multiplier operator given by

1
alj,tt,s(f) = Zi,ogjgN Bﬂsﬁ] 277,

Since A < 1/7 < h, using the same argument as before (e.g., Lemma [4.3.2)),
we may replace eT*¢l with e*ls¢l By the Mikhlin multiplier theorem, we
have

)kt HsIDD g < (rh)3

X, (8,5 D) fllzs ey

Applying (2.2.4) and Bernstein’s inequality as before, we have the left hand
1 1 1 1_3

side bounded by (7h)~2h»~aX2Ts "™ f||z» for 1/p+ 3/q < 1. Combining

this and (4.4.15]), we obtain

[, (£ $)MED 9 f || 1oy S (7h) e a x|,

Thus, taking integration in s gives (4.4.13]).
We now consider the contribution of the error term £ in (4.4.10)), whose
contribution is less significant. It can be handled by using the estimates for

fixed (t,s) € J;. Recalling (4.4.10)), we set
E(6) = EX(8,5,t,6) = |€1N Ex((t + scos8)|€]).

o4
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

We have |0y Eg(0)| < 1 uniformly in n, 6 for (¢,s) € J, since (¢ + scosf) >
1 — ¢ for (t,s) € J,. By the stationary phase method [36, Theorem 7.7.5]
one can obtain a similar expansion as before:

/ eTHESOR0 ()0 = Y DE|s&s TR 4+ Bl (|s6])  (4.4.16)

+,0<w<M

for (t,s) € J.. Here, Ej, satisfies the same bounds as Ey (i.e., (£.4.3)) and
M < N/4. DE and E}; depend on t,&, but they are harmless as can be
seen by the Mikhlin multiplier theorem. The contribution from £, can be
directly controlled by the Mikhlin multiplier theorem. Since supp f C Ay xI,
Bernstein’s inequality gives

< (rh) AN (AR | £ o

L3

H/e“D?’SineEN((tJrscos&)|D])d0f‘

for (t,s) € J.. Note that the implicit constant here does not depend on ¢, s.
Thus, integration in s, t gives

1 1. 1_1 RN
IE(D, t, 8) fllLa@sxs.y < CTa(Th) 2hr s XN | fl, (4.4.17)

for 1 < p < g < 00. So, the contribution of £(D,t,s)f is acceptable. There-
fore, from (4.4.10) and (4.4.13)), we obtain ([4.4.8).

Putting (4.4.10)), (4.4.11)), (4.4.12)), and (4.4.14) together, by Plancherel’s
theorem one can easily see || A; f|[z2 S (7h)"2A7 2| f||2. Thus, integration in
s,t gives

1.1
[AF fllze@exa,y S h72AT2[ f]2, (4.4.18)
which is (4.4.9) for p = ¢ = 2. Interpolation between this and the estimate

(4.4.8)) for p, ¢ satisfying 1/p+3/q =1 gives (4.4.9)) for 1/p+3/¢g>1. O
When suppr A xRand A\ 2 1/7

We have the following estimate.

Proposition 4.4.4. Let 2 < p < ¢ < oo satisfy 1/p+1/q < 1. (a) If
1/7 SASh < 7A2, then for any € > 0 we have the estimates

3 _3

1A fll aqsnsy S 720 2 B R S 5T AT 22| f (4.4.19)
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for1/p+3/q>1, and
1A fll poms sy S 77 h 5N £ (4.4.20)

for 1/p + 3/q < 1 whenever supp]/”\ C Ay xT,. (b) If supp]? C Ay x 13,
the estimates (4.4.19) and (4.4.20) hold with h = X. (¢) Suppose 1/7 < A

and h = \21, then the estimates (4.4.8)) and (4.4.9)) hold whenever supp f C
A,\ X ]Ih.

We can prove Proposition [£.4.4] in the same manner as Proposition [£.4.3]
using the expansions and (4.4.14). By (4.4.17) we may disregard the
contribution from £. Thus, we only need to handle Mli. Moreover, one can
easily see the contribution from the multiplier operator E<(s|D|) is accept-
able. In fact, we have the following.

Lemma 4.4.5. Let2<p<g<ooand 1/p+1/q <1. ]fsuppfc A\ xT,
and h 2 X\, then we have the estimates

1

=1_L1 41D~ 1 N/, L 13,
113 =P B (6D | g,y S 74 ()N B3N fllor (44.21)

for1/p+3/qg <1, and

1

= _1 Pl 1 NZ2 S S T R R
D172 W PES (5| DI) || pogas,y S 77 (Th) N R X~ 2727 £
(4.4.22)

for1/p+3/q > 1. ]fsuppfc Ay x5, (4.4.21)) and (4.4.22)) hold with h = \.

Proof. We first consider the case suppf C Ay x I, and h 2 A. The es-
timate is easy to show by using and Bernstein’s inequality
(for example, see ) Note that (4.4.22)) with p = ¢ = 2 follows by
Plancherel’s theorem. Thus, interpolation between this estimate and
for 1/p+3/q =1 gives (1.4.22) for 1/p+3/q > 1. If supp f C Ay x IS, the
estimates and @ with h = X follow in the same manner. We
omit the detail. O

Proof of Proposition[4.4.4. Recalling (4.4.14) and comparing the estimates
(4.4.21)) and (4.4.19), we notice that it is sufficient to consider the estimates

for the multiplier operators defined by B;—L|s§ |27 ¢Eis¢l Therefore, the mat-
ter is reduced to obtaining, instead of A}, the estimates for the operators

Cif(z,t,s) = ]D]’%\SD]’%Z/{f(x, kt,ts), k==, (4.4.23)
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

which constitute the major part. We first consider the case (a): 1/7 S A <
h < 7A? and supp f C A, x I,. Note that

_1
ICEF (8 0) | Lasy S (TAR) 2 U f (-, kit £5) || o)
for k = £. Thus, by (4.3.1) and Remark (1| we get
1424, 1_1_5
IC5 fllpasxsy ST Ph N T2 a || flle, k=2

for 1/p + 3/q < 1. Therefore, we obtain ([£.4.20). So, follows from
interpolation with .

If suppr A, x IS, by the estimate (4.3.1) with A = A ((b) in Lemma
4.3.1) we get the desired estimates and (4.4.19) with h = A. This
proves (b).

If 1/7 < A\ h 2 A7, and Suppj/c\C Ay x T, the estimate follows

by (4.3.2)). As a result, we get (4.4.9) by interpolation between (4.4.18) and
@43). u

Since the main contribution to the estimate for A7 f is from C;f, by the
same argument in the proof of Proposition [£.4.4] one can easily obtain the
next.

Corollary 4.4.6. Let o, € Ny. (a) If 1/7 S X < h < 7A2, then for any
e>0

10705 AZ £l Loeo s,y

3 1 1

E R R R AN S S 8| f L, 1/p 4 3/g > 1,

<
1.8 1424 qr]1_1_5
10202 As fll Laqoxsny ST rh TR TN T4 £ o, 1/p+3/g<1,

hold whenever supp fC Ay xT,. (b) If supp fC A, XI5, we obtain the above
two estimates with h = . (¢) When 1/7 S X and h 2 N7, for any € > 0 we
have

10802 A; f | aqgswa,y S 70 (Th) 2R TaNT T Y |, 1/p+3/g <1,
1 1 1 . q-Ly3_ 3.4
10208 A; f | aqgswsny S 70 (Th) " 2RP 5 a AT T f ) 1/p+3/g > 1,

whenever supp ]?C Ay x 1.

Remark 2. By (4.4.10) and (4.4.14) it follows that

dos ()] < (1+ |&) V21 + &) ~2
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

Furthermore, if || < 1, we have |@(§)| ~ €72 for [€| large enough.
Therefore, by Plancherel’s theorem one can see that the L* to L? /o estimate
for A} is optimal. One can also see that the part of the surface T} near the
sets {®L(£7/2,0) : ¢ € [0,2m)} is responsible for the worst decay while the
Fourier transform of the part (of the surface) away from the sets enjoys better
decay.

4.5 Global maximal estimates

Now we prove our main theorems in this chapter. First, we recall an elemen-
tary lemma, which enables us to relate the local smoothing estimate to the
estimate for the maximal function and also a generalization of Lemma [3.1.3]

Lemma 4.5.1. Let 1 < p < oo, and let I and J be closed intervals of
length 1 and ¢, respectively. Suppose G be a smooth function on the rectangle
R=1xJ. Then, for any \,h > 0, we have

sup |Gty )| S (14+AP) (€77 + ho)||Gllooery + (€7 +ho)A 7 |0,G | ory

(t,s)eIxJ

1 1 _ 1
(L4 XD |0, | Logry + A7 B9 |0:0:G | o).
Proof. We first recall the inequality
\EO] ST YPIF oy + IF NS P NOF N
SUPer ~ Lp(I') Le(ry WOt ey

which holds whenever F' is a smooth function defined on an interval I’ (for
example, see [44]). By Young’s inequality we have

super [F ()] S L7V Fllogry + NPN oy + X2 [0F || oory-
for any A > 0. We use this inequality with F' = G(-,s) and I’ = I to get

sup [G(t,5)| S (L+AYP)[|sup |G (L, 5)|[| oy + A~ || sup [B.G(E, )l o(1y-
(t,s)eIxJ sed sed

Then, we apply the above inequality again to G(¢, -) and 0,G(t, s) with I’ = J
taking A = h. O

o8



CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

By a standard argument using scaling, it is sufficient to show L? bound-
edness of a localized maximal operator
Mi(@) = sup A /().
0<s<cot<l
Furthermore, we only need to show that 9t is bounded on LP for 2 < p < 4

since the other estimates follow by interpolation with the trivial L* bound.
To this end, we consider

M, f(x) = sup |A7f(z)

(t,5)€Jy—n

n>0. (4.5.1)

In order to obtain estimates for 91,,, we consider N, ff for each 7, k. The
correct bounds in terms of n, not to mention j, k, are also important for our
purpose.

Lemma 4.5.2. Let k,j >n. (a) If j < k < 2j —n, we have

o i < [ 2 e G > 1,

nJj 1 5 n _1_4 1_

3L 2p+](1 > q)Jrk »T3q 1+6)Hf” ) %+2<1
(4.5.2)

(b) For M, f<J, the same bounds hold with k = j. (¢) If 2j —n < k, then we

have

PTG G 1),
1
2

gl

»a\»—‘ »Q\b—‘

199 7 l120 S {

)+](*—*+E)+k HfHLP,

Proof. Let ny be the smallest integer such 270! < ¢5. If n > ng, then
Jo-n =1 x Iy-n. Since n < k, j, using Lemma , one can obtain (a), (b),
and (¢) from (a), (b), and (c) in Corollary [4.4.6] respectively. For n < ng, we
can not directly apply Lemma [£.5.1] However, this can be easily overcome by
a simple modification. Indeed, we cover UZO:BI Jo-n with essentially disjoint
closed dyadic cubes @ of side length L € (277(1 — ¢g),27%(1 — ¢)] so that
UQ cJy:={(t,s): 27" < s < 271(1 + ¢o)t,1 <t < 2}. Thus, we note

|| Sup(t,s)GJQ_n |A§g| HL‘I 5 ZQ || Sup(t,s)EQ |A§g|HLq

for n < ng. We may now apply Lemma to Afg and Q. Since |JQ C Jp,
we clearly have the same maximal bounds up to a constant multiple for
n < ng. ]
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We denote Q" = Jo N (Iy-: X Iy-m) for simplicity. Then, it follows that

Mf(r) = sup  sup A

m>1>0 (t,5)€QP"
Decomposing f =3, ¥ we have

Mf(z) <NLf +N2f + N3 + N,

where
N'f= sup sup |Af5", NWf= sup sup [|A7f2"],
m>1>0 (t,s)€QM™ = m>1>0 (t,5)eQ™
<
N f= sup sup |AfI", N'f= sup sup [|AfZ".
m>1>0 (t,5)€Q™ m>1>0 (t,5)€Q"

The maximal operators 91,91 and M3 can be handled by using the LP
bounds on the Hardy-Littlewood maximal and the circular maximal func-
tions.

We ﬁrst handle 9t f. Weset K = F*(p<1(|£])) and K3 = F 1 (0<1(]&3])).

Since F(f5")(€) = 0<i(€)p<m(&)F(€) and e (t) = <1 (271), we have

— 22l+m/f T —y )Kg(meg)dy

Hence, it follows that
A5 @) =2 [ ] s RO 2K s = )y o (),

If (t,s) € Q, [K(2'(7 — 2) K3(2"(y3 — 23)] < C(1+2'[g) M (1 + 27 [ys|) ="
for any M. By a standard argument using dyadic decomposition, we see

N f(x) S HH, f(x).

where H and Hs denote the 2-d and 1-d Hardy-Littlewood maximal operators
acting on T and x3, respectively. The right hand side is bounded by the strong
maximal function. Thus, ¢! is bounded on L? whenever p > 1.

Next, we consider 2. Since fZ/"(z) = 22 (f>™ (-, z5)x K (2")) (), we have

A5 2 = 2% /f>m(§: — 7, v3 — ssin0) K (2'(g — (t + s cos 0)v,))dOdody.

60

F, -
R |
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Note that s < cot < 271, so we have |K(21(y — (t + scosO)vy))| < C(1 +
245))™™ for any M. Similarly as above, this gives

27 2
A f2 ()] S Hf>™(z, x5 — ssinf)df < / HHsf(z, 25 — ssinf)df
0 0

For the second inequality, we use f>™ = f — f=™ and |f]|,|f=™| < Hsf. As
a result, we have

N f(z) <Sli%)/ HH;f(z, x5 — ssinf)df.

To handle the consequent maximal operator, we use the following simple
lemma.

Lemma 4.5.3. For p > 2, we have the estimate

| zm o

Proof. Let us define g on R? by setting g(z,x3) = g(x3) for 3 € R and
—10 < z < 10, and g(z,23) = 0 if |z] > 10. Note that [ g(z3 — scosf)df =
[ 9(z — scos, x5 — ssinB)df for |z| < 1,0 < s < 1. So, supgc,q | | g(as —

ssin@)dl| < Me.g(z,x3) for |z| < 1, where M., denotes the circular max-

sup
0<s<1

s, SNl

imal operator. By the circular maxnnal theorem [7], || supgc,eq | [ g(zs —
ssin@)df| .z, is bounded above by a constant times [[g[|zz, . = 201/7’HgHL;;E3
for p > 2. O

Therefore, by Lemma and L? boundedness of H and H; we see that
M? is bounded on L” for p > 2.

9% can be handled similarly. Since f5" = 2™ (fs1(7, ) % K3(2™)) (23), we
get

Affflm(:v) = 2" / J>1(T — (t+ scos0)vy, w3 — y3) K3(2™ (y3 — ssin6))d0dpdys.

Since s < 27", [K3(2"(ys — ssinf))| < (14 2™[ys|)~". Hence, using f»; =
f—=f<and |f|,|f<| < Hf, we have
2T

A S (@) S | HeH (T = (t+ s cos0)vy, 13)do S M [(HsH [)(-,25))().
0
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Thus, N3 f (1) < M, [(HsH f)(-, 23)](Z). Using the circular maximal theorem,
we see that M2 is bounded on LP for p > 2.
Finally, we consider 9t*. For simplicity, we set

mk s rk
Q’ll,j [ = SUDP(t,5)eQp | A; fj -
Decomposing 3 iom = Dmeisj T 2ojckzajom + 21z, my(2j—m)<k> We have

Nf < sup &'f+ sup SP'f + sup S5,

m>1>0 m>1>0 m>1>0
where
Gm,l _ le k! Gm,l _ le k Gm,l _ le,k
= f 67 f = f 657 f= 1t
m<k<j j<k<2j—m 1<j, mV(2j—m)<k

Here, a V b denotes max(a, b). Thus, the matter is reduced to showing, for
k=1,2,3,
H Sup 6Tiﬁn’lfHLp ~ C||f||p7 p 6 (274] (454>
m>1>0

We consider GT’Z first. Recalling (4.5.1)), by scaling we have
A f () = Mya(fF(27))(2') = M [F(27)]57(2). (4.5.5)
So, reindexing k — k + [ and j — j + [ gives

ST f(2) € o1y Mt [F27)]F(20).
Thus, the imbedding 7 C ¢*° and Minkowski’s inequality yield

I sup &7l < 3 (D [malf@ ],

m>1>0  m—I<k<j

We now use (b) in Lemma (with n = m — 1) for M, [f(27")]5(2).
Thus, by the first estimate in (4.5.2) with £ = j, we have

m m l,l i p
| suwp &7/l 5 32 27 (3D 2D )

m>1>0 m—I1<j

for any € > 0 for 2 < p < 4. Taking € > 0 small enough, we have

m,l a(m—1)o—bj
| sup STFIE, S Y Y 2 o pn,

mzl=0 m>1>0 m—I<j
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for some positive numbers a, b for 2 < p < 4. Changing the order of summa-
tion, we see the right hand side is bounded above by C'> 7% 2795 o fiall5s
which is bounded by C'[| f[|?, as can be seen, for example, using the Littlewood-
Paley inequality. Consequently, we obtain - for k = 1.

We now consider 62 . As before, by the imbedding /7 C ¢>°, Minkowski’s
inequality, , and reindexing k — k+ [ and 7 — 7 + [, we get

|sw erirn, < S (S ot ke ),

m>1>0 m>1>0  j<k<2j—(m-—l)

The first inequality in with n =m — [ gives
m,l m—Dp(5—1 —(j 11y . P
| sup &3 f[[7, < Z 2t ( S UG )
m2120 m>1>0 j<k<2j—(m—1)

for any € > 0 for 2 < p < 4. Note that m — [ < j for the inner sum, which is
bounded by a constant times >, =, . 2721/2=1/P)2<i|| £,(|1» by taking sum
over k with an € > 0 small enough. Slnce p > 2, similarly, we have

| sup &5 fI, < Y0 Y 2o,

m=l=0 m>1>0 m—1<j

for some a,b > 0 and 2 < p < 4. Thus, the right hand is bounded above by
C|If1|7,- This proves (4.5.4)) for k = 2.

Finally, we con81der 6 f Wthh we can handle in the same manner as
before. Via the imbedding # C (°°, , and reindexing after applying

Minkowski’s inequality we have

|swp &3fl < X (X ol ke ),,)"

mzl= m>1>0  0<j,nV(2j—n)<k

where n :=m —1[. Breaking > o ;. 0j_n)y<k = 2o0<j<ns<k T 2on<j (2i—n)<ks We
apply the first estimate in (4.5.3) to get

m, np(i-1
|| sup & Ul < > 27ET (S + 8h)

m>1>0
for any € > 0 and 2 < p < 4, where
; 11y i j €
S UG, sy YD 2URG DoY) .
0<j<n<k n<j,(2j—n)<k
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For the second sum Sy, we note that k£ > 5 > n. Thus, taking ¢ > 0 small
enough, we get

np(l_1 —a(m—1)o—bj
D TEISES 3 Y 2l
m>1>0 m>1>0 m—I<j

for some a,b > 0 since p > 2. Thus, the right hand side is bounded by
CllfI|7,. To handle Sy, note that (Zogjgngk 2(J+k)(77))p/” < gn(e=1(—3),
Thus, by Holder’s inequality we have

Sp < on (p—1)( Z ) (G+E)( )2€ij k+lH
0<j<n<k
Hence, changing the order of summation, we get

Z 2”17(%—%)8 5223(*—7%13 .

m>1>0 0<j

m—1)(1-1)
Sty = Z Z 2m ) H kall” »

m>1>0 m—I<k

where

Therefore, since 2 < p < 4, taking a sufficiently small ¢ > 0, we obtain the

desired inequality > ;-2 2""273)SP < || f|IB, if we show that St ST
for 0 < j. To this end, rearranging the sums, we observe

=303 3 ot Gt e < NS R

0<k 0<Zl I<m<Zl+k 0<k 0Zl

l\)

Since > o I f kHHLp S fi+illfe, by the same argument as above it follows
that S7; < | f|| . Consequently, we obtain (4.5.4)) for k = 3. O

4.6 Local maximal estimates

Since J is a compact subset of J,, there are constants ¢y € (0,1), and my, my >
0 such that
JCA(t,s) :my < s<my,s < cot}.

Therefore, via finite decomposition and scaling it is sufficient to show that
the maximal operator

M. f(x) = sup |A7f(z)|

(t,8)€lo
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is bounded from LP to L7 for (1/p,1/q) € int Q. To do this, we decompose
f=fso+ f20 + [ to have

M f S Mefoo + M fZ9 + Mef S0

The last two operators are easy to deal with. As before, we have M, f=0(x) <

~

(1+|-)) M= f|(z), hence | M. f=ze S |1 f]lze for 1 < p < g < oo. Concerning
E)ﬁcffoo, we use Lemma [4.5.1| and (4.4.6) to get

19T follze S 2524 flle, 1< p<q< oo,

for k > 0. So, it follows that ||9.f=0 || za < ||f]lze for 2 < p < q. Thus, we only

~

need to show that M. f>¢ is bounded from LP to L? for (1/p,1/q) € int Q.
Decomposing fxo = D _.o(f; 4 2 jcpen; ff + D kns; ff); we have

Mefoo < 32550(S)f + &1 ),
where
& f = Mefi” + 3 jcpen; Mef} & f = Pony MeS}

We first show LP-L? bound on 9M.f>o for (1/p,1/q) contained in the
interior of the triangle ¥ with vertices (1/4,1/4), Py, and (1/2,1/2) (see
Figure . The first estimate in (4.5.2) with 2" ~ 1 gives

[0 ffllzo < 2 CH a2 R R, 1/p 4 3/g > 1,
for 0 < 7 < k < 25. imcffj satisfies the same bound with £ = j. Note

that —3/2 +7/(2p) — 1/(2¢) < 0, =1+ 2/p < 0, and 1/p + 3/q > 1 if
(1/p,1/q) € int T (Figure [L.5)). Thus, using those estimates, we get

(3T 1, (C1421¢
S iso 181 fllze S 3 5m0 (27257207 + 7N (I £l S I £

for (1/p,1/q) € int . We now consider y° .., &7 f. By the first estimate in
(4.5.3) with 2" ~ 1, we have

for (1/p,1/q) € int T. Thus, M. f>¢ is bounded from L to L7 for (1/p,1/q) €
int¥.
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Next, we show LP—L? bound on M, f5o for (1/p,1/q) € int Q" where Q'
is the quadrangle with vertices (1/4,1/4), (0,0), Py, and P, (see Figure [L.5).
Note that 1/p+3/q < 1if (p,q) € int Q". By the second estimate of (4.5.2))

with 2" ~ 1, we have
. 1 4 2
190, fE || o < 2705 @RI 1y 1/p 4 3/g < 1

for 0 <7 <k <25, imcffj satisfies the same bound with k£ = j. Thus,

1

(L3, (3_2_1 9,
> o0 185l S 3255057 a 49 + 276757 2 £l < || £l o

for (1/p,1/q) € int @ since 1/p—3/q < 0and 3/p—2/q < 1 for (1/p,1/q) €
int @'. Similarly, the second estimate of (4.5.3) with 2" ~ 1 gives

(L2, 1,1 (_1483_24,
S oo 182 fllmr S S ponjng 22 e T2 | fllpe S 30,00 27 TR

for (1/p,1/q) € int Q. Note that —1 +3/p —2/q < 0 for (1/p,1/q) € int Q',
so it follows that 3~ (|65 fl» < || fllze for (1/p,1/q) € int Q. Thus, f —
M. f>o is bounded from LP to L? for (1/p,1/q) € int Q'.

Consequently, f — 9M.f>¢ is bounded from LP to L? for (1/p,1/q) €
int T Uint Q. Thus, via interpolation f — 9M.f>¢ is bounded from L? to L?
for (1/p,1/q) € int Q. This complete the proof of Theorem [1.5.2]

4.7 Proof of smoothing estimates

In this section, we prove Theorem {4.2.1} [4.2.2] and [4.2.3]

4.7.1 Two parameter smoothing estimate

We set D, = R? x J,. By L, we denote the L” Sobolev space of order a in
z, and set L2 (D;) = L (I, LF, ,(R?)). We prove Theorem making use

of the next lemma.

Proposition 4.7.1. Let 7 € (0,1] and 8 < p < oo. If a < 4/p, then we have

It _3
“AffHL{;(DT) ST HfHLP-

It is not difficult to see that the bound 7%/ is sharp up to a constant by
using a frequency localized smooth function. Assuming Proposition (4.7.1])
for the moment, we prove Theorem [4.2.1}
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Proof of Theorem[{.2.1} Since ¢ € C°(J.), as before, there are constants
co € (0,1), and mq,me > 0 such that suppy C {(t,s) : m; < s < mg,s <
cot}. By finite decomposition and scaling, we may assume supp ¢ C {(¢,s) :
1<s5<2,s<ct}.

We now consider the Fourier transform of the function (z,t,s) — .[lf f(z):

F(O) = S(OF(€) = / / / / eI OOy (1 ) dBddsdt FIE),

where ( = (&, 7,0). Let us set m*(¢) = (1+¢*)*%, vo = <o(|-]), and @ =
1 — ¢,. To prove Theorem we need to show || F~Hm*F)||ze S| f|le-
Since |F~H(ooem®F)||r S || f]|zr, we only have to show

1F=H(Gem* F)lle S [ fllzv-

For a large positive constant C', we set ¢.(¢) = @<o(|7|/C|€]) and ¢*(() =
w<o(lo|/C|E]). We also set @, =1 — ¢, and ¢* = 1 — ¢*. Thus, we have

P+ Dup” + 0" + D" = 1.

If |[7| > Cl¢|, integration by parts in ¢ gives |S(¢)| < (1 + |7|)™" for any N.
Since |7| > C|¢| and |o| < C[€| on the support of @.p*, one can easily see
| F 1 (@up*@®m*F)|lr < || fllze for any . The same argument also shows
that |7~ (. 6 me F| 1o, [ 746" 6"mF) 1o < ||l for any o. Now,
we note that |7| < Cl¢| and |o| < C|€| on the support of ¢.p*. Thus, by the
Mikhlin multiplier theorem

IF = e @™ m )| o S NIF~H(MF )| o,

where m®(¢) = (14 |£[*)*/2. Since supptp C {(t,5) : 1 <5 < 2,5 < cot}, the
right hand side is bounded above by [|A; f|| zzp,). Therefore, using Proposi-
tion {1.7.1, we get [| 7~ (o™ " mF)|e < | f| - O

In what follows, we prove Proposition using the estimates obtained
in Chapter [4.4]

Proof of Proposition[[.7.1 Let n be an integer such that 2" < 1/7 < 21,
Then, we decompose

Af=AfSr > A+ Y AT+ (4.7.1)
k>n 0<j<n<k
67
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where

Bf= )  Af LGf= Y A+ A

j>n,k>2j—n n<j<k<2j-n n<j
Note that [ A7 f5)][pe S 77 A fll 2. So,
A Fomlleramaxayy S TP flle S 777N flleo

since o < 4/p. Similarly, using (4.4.6)), we have

||A§f§0||LPvQ(R3><JT) < rl/pm 12l 2k £

for k > n. Taking sum over k gives

1 1_1
| ko A Frollne@onsn) S Thon 207257572 flle S 77| £l 10
since « < 4/p and p > 8. When 0 < j < n < k, by (4.4.8)) it follows that
1 1 . 2 1
A5 ]| oo,y S 7p 205 FOTR@=)) 1 for p > 4. Thus, we see that

1_ _3
I 0<jcnsr Ai fillere@ixany S 707 f e S 77701 fllie-

Therefore, it remains to show the estimates for the operators I and II;.
Using (¢) and (a) in Proposition 4.4.4] we obtain, respectively,

1AS £ o wp,y S 77 2205 FI2MO= D £, j>n, k>2j—n,

—1 (1= 8)th(at2—1+e) . .
1A E | crqgans,y S 7 r 20RO £l n <<k <2j—n

for any € > 0 and p > 4. Besides, (b) in Proposition [4.4.4] ((4.4.20) with
h = X) gives [|A; 7 || gparoxg,) S 7 /221742 f|| L for p > 4. Therefore,
recalling p > 8 and a < 4/p, we get

1_1 ~,2 1 _3
1T £ || ooy S 77 22j>n ko2jn 2P TIROD I < 7| £l 1o,

_1 i(1_6 2_ _3
Hﬂff”ﬁva(WxJT) ST z Zn§j§k§2j7n2 Ay tkaty 1—s_E)Hf”U” ST fllze

This completes the proof. n
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4.7.2 One parameter smoothing estimate

In order to prove Theorem [4.2.2] we make use of local smoothing estimate
for the operator f — U f(x,t, cot). For the two-parameter propagator U, we
can handle the associated operators e!Pl and e*IP! separately so that the
sharp smoothing estimates are obtained by utilizing the decoupling and local
smoothing inequalities for the cone in R**!. However, for the sharp estimate
for f — Uf(z,t,cot) a similar approach does not work. Instead, we make use
of the decoupling inequality for the conic surface (&, |€| + col€|) in R3*! (see
[10] and Theorem 2.1 of [6]).

Proposition 4.7.2. Set Uy f(x,t) = Uf(x,t,+cot). Let 1 < X < h < N2
Then, if 6 < p < oo, for any € > 0 we have

y 3.5, 2 14,
e fll iz, sz S A2 2 he 2 fl (4.7.2)

whenever Suppf C A\ x L. Also, the same bound with h = X holds for
4 < p < oo whenever supp f C Ay x 5.

Proof. When p = oo, the estimate (4.7.2)) is already shown in the previous
section (see (4.3.1])). Thus, we focus on the estimates for p = 4,6, and
the other estimates follow by interpolation.

We first consider the case supp f C A, x I3, for which hold on
a larger range 4 < p < oo. To show (4.7.2), we make use of the decoupling
inequality associated to the conic surfaces

I'y = {(57 Pﬂ:(5>>7 f €A X Hi}

where Py (€) := |€] £ col€]. In fact, we use the ¢ decoupling inequality for
the conic surfaces [10] 6]. To this end, we first check that the Hessian matrix
of Py is of rank 2. Indeed, a computation shows that

1 & —&& 0 ‘o E+& —6&  —&&
—&& & + = | —&& G+ —6L&6

Hess Py(§) = — 0
€3 0 0 0 I3k —&&  —&& §+E

Note that Hess Py(§)§ = 0, so I' has a vanishing principal curvature in the
direction of §. By rotational symmetry in &, to compute the eigenvalues of
Hess P(&) it is sufficient to consider the case & = 0 and & = [¢| # 0.
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Consequently, one can easily see that the matrix Hess Py (£) has two nonzero
eigenvalues B
€7 £ eolél ™, Eeolé|

Let us denote by 2U* a collection of points which are maximally ~ A~1/2

separated in the set SN {¢ : [£] > 272¢}. Let {W,},,cx» denote a partition
of unity subordinated to a collection of finitely overlapping spherical caps
centered at u of diameter ~ A~'/2 which cover S N {¢ : |¢| > 272&} such

that |0°W,| < Alel/2. Denote (2 ( ) = (5/]§|) Since supp f C Ay x I3, we
have f =3 oy fu where f, = (Y Mf) So, we can write
eflo,t) = 30 Usflwnt) = 3 [ @O e
HETA HETA

Since 'y are conic surfaces with two nonvanishing curvatures in R*, we have
the following [P-decoupling inequality:

N _3.4. o 1/p
IRz, X530 IR ) (4.7.3)

neyA

for p > 4 (see [13] and [6, Theorem 1.4]). Here x € S(R) such that y > 1
on I and supp ]—"(~) C [ 1/2 1/2]. Using Lemma as before, we see
IXOULfullin, S IR(@)HP @D E where @ = (i, is). Thus, a

change of variables gives |x(t )MifMHL“ S ||fu||LP for 1 < p < 0. Slnce
(O, 1full) < NI fllp for p > 2, combining the estimates and with

p = 4, we obtain
e fllzs, S N e

Interpolation with the easy L* estimate ((4.3.1) with p = ¢ = o0) gives
(4.7.2) with h = X for 4 < p < oc.

Now, we consider the case supp fc Ay x T, with A < h < A\2. Recall the
partition of unity {w, },ew, on the unit circle ' and f, = w, (D) f. Note that
U, fu(-,x3,t), v € BV have Fourier supports contained in finitely overlapping
rectangles of dimension A x A\'/2. So, we have

H ZVG‘/UA Z;l:tfl/('ax37 )Hp N )\1/2 Up(ZVG‘B)\ HZ/N{:I:fU('vxfiut)”g)l/p

for 2 < p < 0o, which is a simple consequence of the Plancherel theorem and
interpolation (for example, see Lemma 6.1 in [80]). Integration in z3 and ¢
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gives

~ 11 1/p
ez oy S A2 (30 WUaillly o) 2Sp <00, (474)

veYy

We proceed to obtain estimates for ||[Usf, || 7 (w3x1)- Using Lemma {4.3.2/and

changing variables r — x—(v, 0)t, we see ||Z/~{ifl,||Lp (®IXD) S ||etiteol Pl Iz, 3 x1)-

Similarly, we also have ||eﬂtcO|D‘f,,||Lp LRI S ||Z/{if,,||Lp (R3x1), Where
Z/Nlih(x,t) _ /ei(zf:l:Cot\/(y~§)2+£§))ﬁ(§)d§'
Therefore, from (4.7.4) it follows that

el ey S X275 (D LR Rgxﬂ) L 2<p<oco  (47.5)

veYy

Note that Fourier transform of f is contained in {{ : || ~ h} because A <
h. To estimate UY f,,, freezing v* - Z, we use the £ decoupling inequality [10]
(i.e., (4.3.3) with p = 2, ¢ = 6, and A = h) with respect to v - Z, x5 variables.
Thus, by the decoupling inequality followed by Minkowski’s inequality, we
get

L ol oy < (S IR )

veYy,

where F(f2)(€) = wilv - £.&)],(€). Since #{7 : f7 # 0} S Ah~V2, by
Holder’s inequality it follows that

1 1/6
Il oty S B2 (S0 RO AZNSs )

veYy,

Lemma 4.3.2[ and a similar argument as before yield ||x(t )Llf”||Lz S s
Hence ||uj:fu|| +(R3xT) < AZhiH0e Zueﬁh Hfl;“ < AN2h~ 1+6€||f1/||L6 There-
fore, combining thls and ( - ) with p = 6, we obtaln - ) forp=6. O

We denote £?(R® x I) = LY(I; L?, .(R?)). By an argument similar to the
proof of Theorem [4.2.1]it is sufficient to show that

Hv‘ifotfHﬁﬁ(Rsxn) S HfHLP(R3)> a<3/p
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for a constant ¢q € (0,1). We use the decomposition (4.7.1)) with s = ¢yt and
n = 0 to have

AP f = APTFS) + > k>0 AP fEG+ TP+ T

The estimates for A f5) and > k>0 Atk follow from (.4.5) and
[4.4.7) for fixed ¢,s. Indeed, we have [|AP" f50 || cosrmmaxn S |1fllp and

>0 M fEollcrarm@s s S Zaso 2477 V2H 1 S N

for p > 6.
We obtain the estimates for I and I’ using the next proposition.

Proposition 4.7.3. (a) If 1 < X\ < h < N2, then for any € > 0 we have
c 5. 1424
||-At0tf||L§7t(R3x]I) . Y 1/l ze (4.7.6)

for 6 < p < oo whenever suppj? C Ay xT,. (b) If suppf C Ay x 13, the
estimate holds with h = X\ for 4 < p < oo. (¢) If 1 < X and \*> < h,
we have , )

HAfotfHL;t(RSxﬂ) SATPRTE|| f |1

for 4 < p < oo whenever suppr Ay x T,.

Assuming this for the moment, we finish the proof of Theorem [4.2.2] By
(a) and (b) in Proposition we have

c 1-3); k(=142 +a+te
||]It0tf||£’;(R3xH) S ijo 207V ngngj AT )HfHLP-

Since p > 6 and o < 3/p, taking € > 0 small enough, we have the right hand
side bounded above by C||f||z». Finally, using (¢) in Proposition we
obtain

C i(— 24 —1lia
I Fll ety S gm0 Zokzzy 27 T2 fll S U1f e

for p > 6 and o < 3/p.
To complete the proof, it remains to prove Proposition [4.7.3, For the
purpose we closely follow the proof of Proposition [4.4.4]
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Proof of Proposition[{.7.5. We recall (1.4.10), (4.4.11)), and (4.4.12)). As seen
in the proof of Proposition [4.4.4] using the Mikhlin multiplier theorem, we

can handle £(&, ¢, cot) as if it is || 7'|&]7 (see (£.4.10)). Likewise, we can
replace Ey(cot|€]) by (cot|¢])~™ . Thus, the matter is reduced to obtaining
estimates for the operators

Ci f(x,t) := | D|"2|sD| e tIPFEtlDD pzy - o = +

(cf. (4.4.23)). Thus, it is sufficient to show that the desired bounds on A7’
also hold on C%.
We first consider the case (a). Note

IG5 Fllings) S (AR)TV2||eltUPElDD £ o

since supp fC A, x T},. By Proposition we get

”CifHL” JRIXT) S Al_Eh“HerHLp, K==

for 6 < p < oo as desired. In fact, the estimates for e(~tIP=cotlDD) ¢ fo].
low by conjugation and reflection as before (cf. Remark . Also, note that
1G5 fll e < A2[|eiHPIEeotDD || when supp f C Ay x 3. Thus, we get the
estimate in the case (b) in the same manner.

Finally, we consider the case (c¢). Since suppf C Ay x T, and M\ < h,
applying Mikhlin’s multiplier theorem and Lemma [4.3.2] successively, we see
ICEflly S (M) =12 HPIEOtDD £l S (AR) 12|l IEoDs) £l - Thus,
by a change of variables we have

ICEf Nl sty S (AR) 2PV f 11 s

for 1 < p < o0 and k = +£. Therefore, for 4 < p < 0o, the desired estimate

follows from (2.2.1)). O

4.7.3 Sobolev regularity estimate

In this subsection we prove Theorem [4.2.3] We consider estimates for A7 with
fixed 0 < s < t.

Lemma 4.7.4. Let 1 < p < 00, 0 < s <t and h = X\ ~ 1. Suppose
supp f C A3 x T,. Then, we have || A5 fllp Sox B2 || fl| o
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Since supp ]? C AS x 1, recalling the function ¢<; from the Notation sec-

tion, observe that Af f = f*(KCy*0f) where K, = F (<1 (] E’/)\)@Sl(‘fg‘/h)).

Thus, Lemma follows if we show || Kpxo7|r1 < h™'/2. This is clear since,
for fixed s,t, |[Kp * 0]|ee < h™Y/2 and Ky, x 0f is essentially supported in a
O(1) neighborhood of I'}.

Lemma 4.7.5. Let 0 < s <t andp > 2. (a) If 1 < X < h < N2, then for
any € >0
8 il
145 fll e S A TP RT T f| e (4.7.7)

holds whenever supp]? C Ay xT,. (b) If suppf C A\ x IS, we have the
estimate (4.7.7) with h = X. (¢) If 1 < X and \* < h, then for any ¢ >0

143 Fllze S AP h 5 |

holds whenever suppfc Ay x T,,.

Proof. As before, it is sufficient to show that Cf (4.4.23)) satisfies the above
estimates in place of Aj. Note that

ICEFllze S (A2 (-, wt, £8) | -

For all the cases (a), (b), and (c), the desired estimates for p = 2 follows by
Plancherel’s theorem. Thus, we only need to show the estimates for p = oo
For the cases (a) and (b) the estimates for p = oo follow from of
the corresponding cases (a) and (b) with p = ¢ = co (Remark [I)). Since
suppf C Ay xT, and 1 < X and A\? < h, by Lemma we note that
A f (-, mt, £8) fllree S llef “t'D'is'D3‘)f||Lw < s 6P where o (€) =
X(0,00) (:l:fg)f(f) Since suppf C A, x I, the estimate for p = oo in the case
(c) follows from ([2.2.1)). O

Proof of Theorem [{.2.3, Since A; f is bounded from L? to L? Jg» it s sufficient
to show Af f is bounded from LP to L? for p > 4 and o > 2/p.
We use the decomposition (4.7.1]) with 2" ~ 1. Note that ||AS fSolln, S

1A f 2011z and A7 f2oll2z,, S 2% (A7 fZoll g By Lemma we have

I 20l s . + ko M FEoll s, S Faso 207251 f e S 1IF Il

for « < 2/p and p > 4. Since o < 2/p, using (a) and (b) in Lemma [4.7.5 with
an € small enough, we have

i(1—=3Yak(a—14+1
5 f g, S Pocjaren; 202555 e S f o
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for p > 2. Similarly, using (¢) in Lemma [4.7.5 we obtain

_1 _1;
I F Nl S 250 2okza; 277727 fllie S I fllo

for p >4 and o < 2/p. ]

4.8 Optimality of the estimates

In this section, considering specific examples, we show sharpness of the es-
timates in Theorem [1.5.2] |4.2.1} [4.2.2 and except for some endpoint

cases.

Necessary conditions on (p,q) for (1.5.2)) to hold
We show that if ([1.5.2)) holds, then the following hold true:

(@p<q,  (b)3+1/¢>7/p, (e)1+2/¢g>3/p, (d)3/q=>1/p.

This shows that fails unless (1/p,1/q) is contained in the closure of
Q.

To show (a)—(d), it is sufficient to consider 9, (see (4.5.1)) instead of

¢ with J; = {(¢,s) € [1,2]* : s < cot}. The condition (a) is clear since
A7 is an translation invariant operator, which can not be bounded from L?
to L9 if p > q. It can also be seen by a simple example. Indeed, let fr be
the characteristic function of a ball of radius R > 1 which is centered at the
origin. Then, My fr(x) ~ 1 for |z| < R/2, so we have | Mo frllre/||frllr =
R3/973/P Thus, M, can be bounded from L to L7 only if p < ¢.

To show (b), let f,. denote the characteristic function of the set

{(x1, 2, 23) : |71] <72, |2a] <7, |23] <7}

for a small r > 0. One can easily see that Mg f,.(z) ~ 73 if 21 ~ 1, || <7,
and x3 ~ 1. This gives
7

1_7
1990 £l 2o /|l frlloo 2 77000

Therefore, letting r — 0 shows that the maximal operator is bounded from
LP to L7 only if (b) holds. Now, for (c) we consider the characteristic function
of

{(@,23) « [|2] = 1 <7, |ws] <77},
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which we denote by f,. Note that M f, ~ r if |z| < r and x3 ~ 1. So, we
have

1900 Follia/ | Felln 2 7557,
which gives (c) by taking 7 — 0. Finally, to show (d), let f, be the character-
istic function of the r-neighborhood of T{". Then, |9y f.(z)| =~ 1 if |z| < r.
Thus, it follows that |9 f,||ze/|| || e
(d).

3_1
2> ra ». So, letting r — 0, we obtain

Y

Sharpness of smoothing estimates

Let ¢y € (0,8/9), and let ¥ be a smooth function supported in [1/2,2] x [(1 —
27 ¢, (1 +273)cg) such that o = 1if (¢,5) € [3/4,7/4] x [(1 —275)co, (1 +
27%)cp]. Then, we consider

A f(x) = (L, 5) A f ().
We first claim that the estimates (4.2.1)), (4.2.2)), and (4.2.3)) imply a <

4/p, o < 3/p, and a < 2/p, respectively.

Let ¢ be a function such that supp ¢y C [—1072,1072] and (o(s) > 1 if
|s| < ¢ for a small constant 0 < ¢; < ¢g. Let (. € C.([—2,2]) such that
¢, = 1 on [—1,1]. Note that T? := T¢ N {z : ||Z| — 1| < 10¢;, 25 > 0} can be
parametrized by a smooth radial function ¢. That is to say,

T = {(z,6(2)) : [|7] — 1] < 10¢1}.
For a large R > 1, we consider

Fr(w) = e 0D (R(ws + 6(1))) C(l[2] = 1] /1)

Then, we claim that
AL fr()| 2 1, (2,1, 5) € Sk, (4.8.1)

where Sgp = {(z,t,s) : |z] < 1/(CR),[t — 1| < 1/(CR),[s — co| < 1/(CR)}
for a large constant C' > 0. Indeed, note that
, o T—7gl—1
Aifa) = [ s g e + o - ) - e (A
T

s
t

1

If || <1/(CR) and ||y| — 1] < 2¢;, we have |¢(y — ) — y3] < 1/(CR) and

lz3+d(g—7)—y3| < 1/(CR) when y3 = ¢(y), i.e., y € T?. Thus, |APL f(x)| ~
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CHAPTER 4. TWO PARAMETER AVERAGES OVER TORI

1if |z] < 1/(CR). Furthermore, if [t—1] < 1/(CR) and |s—¢y| < 1/(CR), the
integration is actually taken over a surface which is O(1/(C'R)) perturbation
of the surface T7°. Thus, taking C' large enough, we see that (4.8.1)) holds.

By Mikhlin's theorem it follows that ||A3g[| 1z @s) 2 |(1+|Ds[?)*2 A g| 12 m5)-

Note that fr(§) = 0 if & & [(1 — 107)R, (1 + 1072)R]. Since F(A; f)(€) =
f(E)F(do?)(E), we see

1A frll e wsy 2 BENAZ frlloes) 2 BENAS frllnesq 2 B,

For the last inequality we use (4.8.1)). Since | fr|lzr ~ R™VP, (#.2.1) im-
plies that o < 4/p. Fixing ¢t = 1 and s = ¢g, by (4.8.1] - we similarly have
IAL frll s, 2 R*73/P. Thus, ([£.2.3) holds only if o < 2/p. Concerning A",

by ([4.8.1) it follows that |AcotfR( )| > 1if|t—1| < /CR and |z| < 1/CR for
C’ large enough. Thus, [[AP fg|[pee 2 R AP frlle 2 R/, Therefore,

x,t ~Y

2) implies o« < 3/p. This proves the claim.
Therefore, to show sharpness of the estimates (4.2.1)—(4.2.3)), we only

need to show that each of the estimates (4.2.1)), (4.2.2]), and (4.2.3) holds
only if @ < 1/2. To do this, we consider

gr(x) = eBEFO G (R(z3 + o)) C(|2]).

Then, we have )
|Algr(z)| Z B2 (4.82)

if (x,t,5) € Sg={(x,t,8) : ||, [t —=1],|s — co| <1/C, |x5+co— 5| < 1/CR}
for a large constant C' > ¢y. Indeed, note that

Azgn(o) = | MG CR(za -+ co = ga)) (o~ ol)do ()

Recalling , we see that the integral is nonzero only if |R(z3 + ¢y —
ssinf)| < 2/CR Since |x3 + co — s| < 1/CR, the integral is taken over the
set T := {CIDS( ) |1—sin @] < 1/R}. Note that the surface area of T is about
R™Y2 thus ([#.8.2) follows. Since gr(&) = 0if & ¢ [(1-1072)R, (1+1072)R],
following the same argument as above, from we obtain [[Ajgrllrre 2
R*R~1/2-1/P_Hence, implies that o < 1/2.

Regarding (4.2.2)), we consider Sy, = {(z,t,5) : |z|, [t—1] < 1/C, |z3+co—
cot] < 1/CR} for a large constant C > c¢y. Then, we have |A gp(x)| > R™/?
for (x,t) € Sy, thus we see 2) implies o < 1/2.
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Finally, for (4.2.3)), fixing t = 1 and s = ¢y, we consider Sp = {z :
lz] < 1/C|as] < 1/CR} for a constant C' > 0. Then, it is easy to see
| A gr ()| = R™Y/2 for x € Sg if we take C' large enough. Similarly as before,

we have |APCggl|le . = ROR™Y271P. Therefore, ([4.2.3) implies a < 1/2

a,x N

because ||gp||r» ~ RV
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Chapter 5

Multiparameter averages over
ellipses

As introduced before, maximal operators generated by averages over ellipses
are natural multiparameter operators which generalize the circular maximal
operator. Even though it is natural, the LP-boundedness of the correspond-
ing operator has been unknown for a long time. In this chapter we prove
the boundedness result of 9 and M, Theorem [1.6.1] and Theorem [1.6.2]
respectively. We recall the definition of the operators.

Mf(e)=  sup |[fxo()],

(0,t,5)€Tx[1,2)2

Mf(x) = sup |[f o) (x)].
(t,s)eR%
As a consequence of the maximal estimate one can deduce some mea-
sure theoretical results concerning collections of the rotated ellipses (see, for
example, [51]). In analogue to the results concerning the circular maximal
function [67, 68, [44], LP improving property of 9 is also of interest. Using
the estimates in what follows, one can easily see that 2t is bounded from L?
to L? for some p < q. However, we do not pursue the matter here.

One can notice that 91 takes a supremum in a compact set [0, 1]> while M
takes a supremum in a global domain of ¢, s. Let J be an interval which is a
subset of R := (0, 00). Our approach and a standard argument relying on the
Littlewood—Paley decomposition ([7,,[67]) also show that the (global)maximal
operator

Mf(r) = sup |f * 0y ())]

(0,t,s)eT xRi: t/s€J
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is bounded on L for p > 12 if J is a compact subset of R,. However,
as eccentricity of the ellipse Ef | increases, Ej, gets close to a line. Using
Besicovitch’s construction (see, for example, [75]) and taking rotation into
account, it is easy to see that fails for any p # oo if J is unbounded
or the closure of J contains the point zero.

5.1 Local smoothing estimates for averaging
operators over ellipses

As is well known in the study on the circular maximal function, the LP
maximal bounds are closely related to the local smoothing estimate for the
operator f +— fxdop, ([53,[72]). One may try to combine the (one-parameter)
sharp local smoothing estimate for the 2-d wave operator ([30]) and the
Sobolev imbedding to get bounds on 9t and M. However, the local smoothing
estimate of (smoothing) order 2/p — € is not strong enough to generate any
maximal bound. More specifically, in this way, one can only get L/ I LY,
LP—IP estimates for 9, M, respectively. To get LP bound, we make use of
additional smoothing effect which is associated with averages along more
than one parameter.

Our proofs of Theorem [1.6.1] and [1.6.2] in fact, rely on some sharp multi-
parameter local smoothing estimates (see (5.1.2)) and (5.1.3)) in Theorem [5.1.1]
below). It seems that no such smoothing estimate has appeared in literature
until now. For £ € R? and (¢, s) € R, let & = (t&1, s&) and

(I)gz(xata 8?5) =T 5 + |(R;€)t,s|

Here, R}, denotes the transpose of Ry. Let B(z,r) denote the ball centered
at x with radius r in this chapter. The asymptotic expansion of the Fourier
transform of do (see (4.4.2)) below) naturally leads us to consider the opera-
tors

U f(x,t,s) = a(z,t,s) / L) £(£)dE, (5.1.1)

where a € C®°(B(0,2) x (271,22) x (271,2%)). The following are our main
estimates, which play crucial roles in proving the maximal estimates.

Theorem 5.1.1. If p > 12 and o > 1/2 — 3/p, then the estimate

2 flzr

x,t,s

< Ollfll (5.1.2)
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holds. Let us set A = {(t,s) € (271,2?)? : s = t}. Additionally, suppose that
suppa(x,-) NA =0 for all z € B(2,0). Then, if p > 20 and o > 1/2 —4/p,
we have the estimate

e fllee, ., < Clflle. (5.1.3)

z,t,s,0 T

Compared with the local smoothing estimate for the 2-d wave operator
[ = UYf(- t, 1), the estimates (5.1.2)) and (5.1.3)) have additional smoothing
of order up to 1/p and 2/p, respectively, which results from averages in s, ¢;

and s,t, and 6. The smoothing orders in and are sharp (see
Chapter [5.6) in that (5.1.2)), fail if « < 1/2 —3/p, a < 1/2 — 4/p,
respectively. However, there is no reason to believe that so are the ranges of p
where and hold true. It is clear that the condition supp a(z, )N
A = () is necessary for to hold with all @ > 1/2 —4/p. Indeed, when
t get close to s, the ellipse ]Ef,s becomes close to the circle ]Eis, which is
invariant under rotation, so that average in 6 does not yield in any further
regularity gain.

An immediate consequence of the estimate is that the two-parameter
averaging operator f — a(f * 0;,) is bounded from L? to L? for o < 3/p.
From these Sobolev estimates, following the argument in [31], one can obtain
results regarding dimensions of unions of ellipses.

Key observation

The main ingredients for the proof of the estimates and are
decoupling inequalities for the operators U2 and UY (see, for example, Lemma
I5.4.1}and 5.4.3|below). Those inequalities are built on our striking observation
that the immersions

£ V@ (2,1, 5,8), (5.1.4)

IAEES]

(fixing (x,t,s) and (z,t,s,0) with s # ¢, respectively) give rise to submani-
folds which are conical extensions of a finite type curve in R® and a nonde-
generate curve in R*, respectively. By this observation, we are naturally led
to regard the operators UL, U? as variable coefficient generalizations of the
associated conic surfaces.

Meanwhile, the decoupling inequalities for the extension (adjoint restric-
tion) operators given by these conic surfaces, which are constant coefficient
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CHAPTER 5. MULTIPARAMETER AVERAGES OVER ELLIPSES

counterparts of the abovementioned operators, are already known (see The-
orem below and [4]). Those inequalities were, in fact, deduced from the
decoupling inequality for the nondegenerate curve due to Bourgain, Deme-
ter, and Guth [14]. To obtain such inequalities for U9 and UY, we combine
the known inequalities for the extension operators and the argument in [6]
to get a desired decoupling inequalities in a variable coefficient setting (see
Theorem .

Decoupling inequalities of different forms have been extensively used in
the recent studies on maximal and smoothing estimates for averaging oper-
ators. We refer the reader to [60], 39, 40}, 3] and references therein for related
works.

5.2 Proof of maximal bounds

In this section we prove the maximal estimates while assuming the smooth-
ing estimates. We begin by recalling an elementary lemma, which is a 3-
parameter analogue of Lemma [4.5.1

Lemma 5.2.1. Let 1 < p < oo, and Jy, Jo, and J3 be closed intervals of
length ~ 1. Let R = J; X Jo X J3 and G € C*(R). Then, there is a constant
C > 0 such that

1 _ _ —
Sup ’G<t7376)‘ < C<)‘1)‘2)‘3)p Z ()‘1 17)‘217)‘31)5Ha£s,9GHL”(9“)
(t,s,0)eR 8€{0,1}3

holds for any A1, A2, A3 > 1. Here B = (B1, B2, B3) denotes a triple multi-indez.

By the Fourier inversion formula, we write

f ol (x) = (2m) / e Tl Ao (Re€)€) de. (5.2.1)

We now recall the asymptotic formula of the Bessel function . Fixing
a sufficiently large N, we may disregard the contribution from FEjy. Thus,
it suffices to consider the contribution from the main part 7 = 0 since the
remaining parts can be handled similarly but more easily. Using , one
can get the following estimate, which is useful later:

e £l s

x,t,s

S 27 fes (5.2.2)
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for any € > 0 provided that supp fC A;. Indeed, note that
UL f(x,t) == UL f(x,t,ts) = a(x, t,ts) /ei(”&”(R;@“D]/c\(f)df. (5.2.3)

By a change of variables and the L* local smoothing estimate (2.2.1)) for
W, one can easily see that ||Z/{i’sf||Li . < C29|f]| g+ for any (6, s) whenever

supp fC A;. Taking integration in s, we get (5.2.2)).

5.2.1 2-parameter maximal function M f: Proof of The-
orem (1.0.2

To show Theorem [1.6.2] we make use of the following, which we prove in
Chapter 5.4

Proposition 5.2.2. Let 4 < p < oo. For any € > 0, we have

{2(2_%+6)j||f||m, 4<p<12,

uo P < .
el S 24901, 12<p 2o

x,t,s

(5.2.4)

whenever supp f C A;.

To prove the estimate ((1.6.2)), we consider a local maximal operator

Mlocf($) = sup |f * O%?S<ZL’)|

(t,5)€(0,2]?
By scaling it is sufficient to show
[Mioefllzr@2) < Cllfl|lr@ey, p >4 (5.2.5)
We recall the following decomposition. For any n, m we have
f=FS+ S+ (5.2.6)

Proof of (5.2.5). Denoting Q7 = [27% 27F+1] x [277 27" F1] we set
le: sup  sup ‘fjg*at?s‘7
k;n>0 (t,5) Q)

Myf = sup sup |f5f x 0y,
k>0 (t,5)€Q
>
Msf = sup sup |fZ] xal],
kn>0 (t,5)eQy
Myf = sup sup \ff,? * at?s\.
k,n>0 (t,5)€eQy -
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Since _/\/llocf<gj) = SUPg ;>0 SUP(1,)cQr ‘f * 0, 8( )‘ from it follows that

Mlocf<x> S 2?21 M]f(‘z.)

The maximal operators M, My, and M3 can be handled easily as follows.
We note that 5! = f * K with a kernel K satisfying

K ()] S Kii(x) == 257 (1 + 2%a )7V (1 + 2% )™

for any large N. So, it follows that | f5;" « op,(z)] < K | f|(z) if (t,5) € Q}.
This gives M, f(x) S M;f(z) where Myz denotes the 2-d strong maximal
operator. Therefore, we get [|M; f||, < ||f||p for 1 <p < oc.

We denote by H the one dimensional Hardy-Littlewood maximal oper-
ator. For the maximal operator My, note that F(f<]) = f(§)p<n(&a]) —

f(f)gp<k(|§1|)g@<n(|§2|). Thus, as before, we observe that

2" f (a1 — tyr, )|
|f>k *O;ts |N// 1+2n|l‘2—22|) do (y)dz2+M1f($)

for s ~ 27", This yields
Mo f(z) S H(Mcf(21,))(22) + My f(2),

where M h(x1) = supgyes [ h(z1—ty1)do(y). Using Bourgain’s circular max-
imal theorem, Lemma it is easy to see that M. is bounded on LP(R) for

p > 2. Consequently, L7 boundedness of My, and H yields || M f||p S
for 2 < p < 0o. A symmetric argument also shows that IMsfll, S IIfll, for
2 <p<o0.

Finally, we consider M, f, which constitutes the main part. We note that
Maf < SuPguz0 25150 SUP(Ls)eQn |fiih * dol,|. The embedding 7 — (>,
followed by Minkowski’s inequality, gives

p ) 5
)

IMaslh < 30 (32 || sup |15 o

JI>0 kn>0  (BS)EQE

We now claim that

2—§max(j,l)|| l+n||p’ 7,0>0 (5.2.7)

I+
sup | fiinx o]l S
(t,5)€Qy p
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for some 6 > 0 if p > 4. Once we have this, it is easy to show that M, is
bounded on L? for p > 4. Indeed, note that (an 1) P < ClIflp for
2 < p < oo, which follows by interpolation between the estimates for p=2
and p = oo(see, for example, [80, Lemma 6.1]). Combining and this

inequality gives

[(Mafller S Z] 202" dmax(z) £l < N1l

It remains to show (5.2.7). By rescaling we note that the two operators
f = supy geqo | f}x0)| and f — sup, eqQn |f]+k %0, | have the same bounds
on LP. Thus it suffices to show (| - ) for £ = n = 0. To this end, by the
finite speed of propagation and translation invariance, it is enough to prove
that

sup | fi o]

< 27 maxGO || f) o G > 0. (5.2.8)
(t:5)€Q0

Lr(B(0,1))

Note that the Fourier support of fl is included in Ayax(j). We recall (| -
and - So, it is enough to consuier instead of f — fl * 0, s, the operators

Asf (.t s) = / €t 7l(e) de.

Contributions from other terms in can be handled similarly but they

are less significant. Therefore, the matter is reduced to obtaining the estimate

sup {A ‘
(t,5)€Q8

< 270 maxGh]| 1 (5.2.9)

Lr(B(0,1)) ™

for 7,1 > 0. Since 0;|&; 5| = t£2/|&;.s] and O4)&;.s| = s€3/1&, .|, applying Lemma
5.2.1| (with A\ = Ay = 2mUD and A3 = 1) to A4 f and Mikhlin’s multiplier

theorem, we have

cup S A
(t75)€Q8 x,t,s
Since the Fourier support of fl is included in A,ax (), by Proposition
it follows that - holds for some ¢ > 0 as long as p > 4. D
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5.2.2 3-parameter maximal function 91 f: Proof of The-

orem [1.6.7]

The proof basically relies on the estimate (5.1.3). However, to control the
averages when ¢, s are close to each other, we need to make an additional
decomposition:

ULF(,t,s) = S, UL F (st s) = vt ULF (0t s),  (5.2.10)
where ¢ (t, s) = p(2%|s — t|). Note that U , = 0 if k < —3.
Proposition 5.2.3. Let 4 < p < oo and 0 < k < j. For any € > 0, we have

9

925 £, 4 < p < 20,
e o fllee, ., S {2(

o (5.2.11)
2p\|fHLp, 20<p <o

w\»—- oo\w
mp m‘w

whenever supp fe A;.
Once we have Proposition the proof of Theorem proceeds in
a similar manner as that of Theorem [1.6.2] Note that

sup | far* op,(2)| S Ky * | f](2)
(0,t,5)€TXI2

for any N where Ky(z) := (14 |z])”". Thus, it suffices to consider f —
Mf =3 o1 SUPg etz | fj* o/,|. We make decomposition in s, ¢ using )y
to get

Sﬁtf <Mf+M'f = 2321 Zkgj My f; + Zj21 SuPy> M f;,

where

Mif(x) = sup |ult,s) f* ol (o).

(0,t,5)€TXI2

The operator 9" can be handled by using the bound on the circular maximal
function. Indeed, observe that

2 (Kn(27)  0f)(x) S 2/ (1 + 2| (Rga)reys| — )~

for 3 € L This gives 24y (¢, )| (K(2) 0, )(x) S 2 (1+ 2] — 1)) "2
for k > j because [t — s| < 277. Note |f; * 0| S [f;] * 29 Kn(27-) x of,. So,
combining these inequalities and taking N sufficiently large, we see that

supys; M fj S Mfi () + 2719 Koo x| fi(2),
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where Mg(z) = supyeo-1.92) |9 * 07, ()]. It is well known that [|[Mf;|, <
27| f]|,, for some ¢ > 0 if p > 2 (see [53, 44]). Therefore, 9" is bounded on
L? for p > 2.

To show L? bound on 9, as before, we only need to show the local
estimate |9 f||zr(B(0,1)) S ||f||p for p > 12. This is immediate once we have

1990 fill ooy S 27N fllee, 1<k<j

for any p > 12 and some ¢y > 0. By (5.2.1)) and (4.4.2)), the estimate follows

if we show

| s gl <2

(0,t,s)€T 12

sEa | fl,, 4<p<20. (5.2.12)

Proof of (5.2.12). We use Lemma To do so, we observe that

O\ (RpE) s = mu = t(RpE)FI(RpE)rs)
Osl(R3E)1s| = ma == s(RpE)3|(R5E)esl ",
ol (Rp8)r,s| = mg = (£ — 8*)(Rp&)1(R5€)a (Rp&)es|

It is clear that |0gmy| < |g|tled T =1, 2 and |0gms| < 27k|¢|*~lol. Note
that |V, (t, s)| < 2F < 27, Recalling (5.1.1]) and m we apply Lemma
t0 SUP(g 1 )eTx12 |Z/Ik7if]| with A\, = /\2 = 2/ and A3 = 2/7%. Thus, by

Mikhlin’s multiplier theorem, we have

Iz

(0,t,8)€TxI2

< 2(3j_k)/p||u1§,ifj“Lp

x,t,s,0

By Proposition the estimate (5.2.12)) follows. O

5.3 Variable coefficient decoupling inequali-
ties

In this section, we discuss the decoupling inequalities which we need to prove

Proposition [5.2.2] and [5.2.3]

Definition. Let I be an interval and 7 : I — R be a smooth curve. We say
7 is nondegenerate if det(y'(u),--- ,v@(u)) # 0 for all u € I.
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For a curve v defined on Iy := [—1,1], we set €(y) = {r(1,7(uv)) : u €
Iy, r € H}, which we call the conical extension of v. Consider an adjoint
restriction operator

Eg(z) := // =W gy, r)dudr,  z € R, (5.3.1)
]IQX]I

which is associated with €(v). By J(d) we denote a collection of disjoint
intervals of length [ € (274, 20) which are included in I. For a given function
gonlyxTand Je J(6), we set

gs(u,7) = xs(u)g(u,r).

We denote supp,, g = {u : supp f(u,-) # 0} so that supp, ¢, is included in J.

Using the decoupling inequality for the nondegenerate curve [14] and the
argument in [I0] (see also [4]), we have the following decoupling inequality
for £7.

Theorem 5.3.1. Let p > d(d+ 1) and ay(p) :== (2p — d*> —d —2)/(2dp). Let
0<d <1 and J(6Y% be a collection of disjoint intervals given as above.
Let B denote a ball of radius 6~* in R4TL. Suppose that v is nondegenerate.
Then, for any € > 0 we have

(D) —e 1/p
1EC Y gl S0 D 1B wl,,)
JeJ(51/) Jeg (/)

Here, wp(r) = (1 + Rg'|z — cg|)™" with a sufficiently large N > 100(d + 1)
and cg, Rp denoting the center of B, the radius of B, respectively.

However, the phase function ®Y (x,t,s,&) is not linear in ¢, s,6. So, for
our purpose of proving the smoothing estimate, we need a variable coefficient
generalization of Theorem [5.3.1}]

5.3.1 Variable coefficient decoupling

Let
D =B*(0,2) x (—1,1) x (1/2,2). (5.3.2)

Let ® : D — R be a smooth function and A be a smooth function with
supp A C D. For A > 1, we consider

Eng(z) = // P& Az u, ) g(u, ) dudr.
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The following is a variable coefficient generalization of Theorem [5.3.1] Let
T(®)(z,u) = (®(2,u),0,P(z,u), -, 0%®(z,u)).
Theorem 5.3.2. Let p > d(d + 1). Suppose that
rank D, T(®) =d+1 (5.3.3)

on supp a. Then, for any e >0 and M > 0, we have

1
1Y &l Sar @ (3 legil) A Mgl
JeEJ(A~1/d) JeJ(A~1/d)
(5.3.4)
Here, we allow discrepancy between amplitude functions in the left hand and
right hand sides, that is to say, the amplitude functions on the both sides are
not necessarily the same.

We refer to the inequality as a decoupling of &, at scale A~/ As
is clear, the implicit constant in is independent of particular choices
of J(A~Y/4). The role of the amplitude function A is less significant. In fact,
changes of variables z — Z(z) and u — U(u) separately in z and u do
not have effect on the decoupling inequality as long as Z, Z=%, U, and U~
are smooth with uniformly bounded derivatives up to some large order. The
decoupling for the original operator can be recovered by undoing the changes
of variables. This makes it possible to decouple an operator by using the
decoupling inequality in a normalized form. For our purpose it is enough
to consider the amplitude of the form A(z,u,r) = A;(2)A2(u,r). This can
be put together with those aforementioned changes of variables to deduce
decoupling inequalities.

Theorem can be shown through routine adaptation of the argument
in [6], where the authors obtained a variable coefficient generalization of
decoupling inequality for conic hypersurfaces, that is to say, Fourier integral
operators. However, we include a proof of Theorem [5.3.2] for convenience of
the readers (see Chapter [5.5).

5.3.2 Decoupling with a degenerate phase

To show Proposition [5.2.2] we also need to consider an operator which does
not satisfy the nondegenerate condition ([5.3.3)). In particular, we make use
of the following for this purpose.
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Corollary 5.3.3. Let J(A~Y?) be a collection of disjoint intervals such that
J C (—e€o,€) for J € J(AYY). Suppose that det D, T (®)(z,0) = 0 and

det(V.®(2,0),9,V.®(2,0),---, 09V, ®(2,0), 07V, ®(2,0)) #0 (5.3.5)
for z € supp, A. Then, if ey is small enough, for e >0 and M > 0 we have
1/p
IC 32 &l S X (32 8alls)  + Aol
JeT(A1/d) JeJ (A1)

A typical example of the phase which satisfies ([5.3.5)) is

Do(z,u) ==z (Lu,-- ,u/(d =D)L u™/(d+ 1)).

Such a phase becomes nondegenerate away from the origin. This fact can be
exploited using dyadic decomposition and a standard rescaling argument.
Let jo be the largest integer satisfying 270 < \/(@+1)=¢ For j < j,, we set

9ji = Z gy

1<27dist(0,J)<2

Thus, >, 97 = Z1§j<j0 g; + Edist(O,J)<2*j0 gs- Let A;(z,u,7) = A(?> 27u,7)
and g; =277¢g;(277-,-). For 0 < j < jo, changing variables u — 277u, we get

AD(-277.) pY
ZJ EAQJ = Zogj<j0 Aj gj + Zdist(O,J)<2’j0 A 97

Here and afterwards, for given ¥ and b, we denote

blpg(z) = // e WDz u, ) g(u, r)dudr.

We set (2, u) = ZZié Ok ®(2,0)u”/k!. Using Taylor’s expansion, we have
B(z,u) = B(2,u) + R(z, u),

where R(z,u) = [ 0472®(z, s)(u — s)**'ds/(d + 1)!. From the condition

(5.3.5) we note that the vectors V,®(z,0),9,V.®(z,0),---,09 1V, ®(z,0)
are linearly independent. Meanwhile, since det D, T (®)(z,0) = 0, V.®(z,0),

w0971V, D(2,0), 02V, ®( 2, 0) are linearly dependent. Thus, there are smooth
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functions 7o, ..., 741, such that 99®(z,0) = S0} r(2)05®(2,0)/k!. This
yields
5 - d—k k u d+1 o
_ - u +
d(z,u) = ;(1 +u'r(2))0,0(2,0) 5 + 9, (2, 0) CES
Let £ denote the inverse of the map z — (®(z,0),--- , 9% 1®(2,0), 041 ®(z,0)).
Setting Tj(z) = L(27@H iz .. 2722, 2,.1), we have
(d+1)j & j - i \d—k Zpru® | zgpu®!
DI (T ~iy) = ~dq)% ,
BT (2) 20) = 301+ QT R+ T

It is clear that 9% (2T VIR(T}(-),277)) = O(277) and 92, (2 VI (Ty(2), 277 u)—
®g(z,u)) = O(277) for any a. Therefore,

[@5](2,u) = 2TID(T(2), 27 w),
which is close to ®o(z, u), satisfies the nondegeracy condition (5.3.3)) for |u| ~

1 if ¢ is small enough. Changing variables z — T}(2), we have

AD(-,2774) L A2~ (@ +1)i[p,]

&L, 9;(Tj(2)) = € a0, i (2).
Decomposing A; o Tj into smooth functions which are supported in a ball of
radius~ 1, we may apply Theorem [5.3.2} By putting together the resultant

d+1)
inequalities on each ball, this gives decoupling of 5220T ’[®; ]gj at scales

A\~1/d2(d+1)i/d Here, it should be note that the constants in the decoupling
inequality can be taken uniformly since the phases [®;] are close to Dy

After undoing the change of variables and rescaling it in turn gives decou-
pling of £yg; at scales A1/427/¢. Now, in order to obtain decoupling at scale
A1/ we make use of the trivial decouphngl Since there are as many as
~ 2//% intervals J, it produces a factor of O(27(=2/P)/?) in its bound. Putting
everything together, we see that ||€1g;||r» is bounded above by a constant
times

. 12 1 .
O A S D DI (07 H R e eV 1]
1<27dist(0,J)<2

Terms with dist(0,J) < 277 can be handled easily. Since —(d + 1)agy(p) +
(1 —2/p)/d < 0, taking summation along 1 < j < jo, we get the desired
inequality.

N jeq ExFllee < FI) 2P0 s s IEF)IE)MP
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5.4 Proof of local smoothing estimates

In this section, we prove Proposition [5.2.2] and [5.2.3] making use of the key
observation that the immersions and give conic extensions of
finite type curves. Using suitable forms of decoupling inequalities, we first
decompose the averaging operators so that the consequent operators have
their Fourier supports in narrow angular sectors. For each of those operators,
fixing some variables, we make use of the local smoothing estimate for the
2-d wave propagator in R*"! (for example, see (5.2.2])), or lower dimensional
decoupling inequality.
Throughout this section, we assume

supp ]? C A

To exploit the decoupling inequalities, we decompose f into functions whose

Fourier supports are contained in angular sectors. For x € (0, 1), let {©% }~_,

denote a collection of disjoint arcs of length L € (27 'k, 2) such that [ J*_, ©F, =

S'. Let {¢j;}_, be a partition of unity on S' satisfying supp ¢, C O, U
or Uor.,, for 1 <m < N (here, we identify ©f = % and O%_, = ©F)
and |(d/df)'¢r| < k7! for [ > 0. We denote

&(k) = {Cn}its-

For each v € &(k), set

~

£.(&) = FO(E/€]).-

5.4.1 2-parameter case: Proof of Proposition [5.2.2

We only consider the estimate for U° := U{. The estimate for 4° follows
by the same argument. We begin with the next lemma, which we obtain by

using Corollary [5.3.3]

Lemma 5.4.1. Let p > 12 and 7 > 0. Suppose that suppfAC A;. Then, for
any € >0 and M > 0, we have

17 4y 1/p Y
Ul S 257549 (3 LI 2 e (5.40)
veS(2-i/3)
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Proof. By decomposing f on the Fourier side and symmetry, we assume that
supp f is additionally included in the set { : |&] < 2¢;}. We make changes
of variables € — 2¢ and (&;,&) — (r,7u), successively, to obtain

Uf(z,t,8) = alx,t,s) / emr@(m’t’s’“)fé—\j-) (r, ru)rdrdu,

where ®(z,t,s,u) = 21 + zou + |(1,u);4|. Let us set
h(u) = (p* +u®)"V2, p=t/s. (5.4.2)
Then, a computation shows that
Vi@, t,s5,0) = 5(u) == (1,7(uw)) := (1, u, ph(u), u’h(u)).

Lemma 5.4.2. Let t,s € I. Then, we have

| det(y(u), 5 (w), 7" (w), 7" (w)| ~ |ul, (5.4.3)

[ det(Y(w), ¥ (w), 5" (u), ¥ () lu=o ~ 1.
Proof. Note that
Y® (w) = (0, ph™(u), 2(2k — 3)h*2 (u) + 2kuh® D (u) + u*h ¥ (u))

for k = 2,3. Since det(y(u), 7' (u), 7" (u), 7" (w)) = det(y'(u), 7" (u), 7" (u)),

_ _ _ _ h"  h—+2uh’
/ " " o
et 7/ 7). 7" (w) = 2pdet (20 )

After a computation one can easily check the following:

) = (2u® = P’ (u),
3(8u* — 24p*u® + 3pM)h? (u).
(5.4.5)
Using this, we obtain det(y(u),v"(u),¥"(u)) = —6p°u(u® + p*)~°. This
gives since p ~ 1. Furthermore, differentiating both sides of the equa-
tion, we also have det(y'(u),y"(u),¥""(u)) = 6p°(u? + p*)~¢(9u? — p?), which
shows ((5.4.4]). [

R (u) = —uh?(u), R (u
h”’(u) — 3(3p2u . 2u3)h7(u), h””(u) —
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Lemmashows that V. .®(x,t, s, u) satisfies the assumption in Corol-
lary for d = 3. Thus, if u is away from u = 0, then V,; ®(x,t,s,u)
fulfills the nondegeneracy condition . Therefore, decomposing the in-
tegral U’ f into two parts, one near u = 0 and one away from u = 0, we apply
Corollary and Theorem to the former and the latter, respectively,
so that we can get decoupling at scale 277/3 for the both parts. Note that
the u-support of g, (u,r) := Ff,(277)(r,ru), v € &(277/3) are contained in
boundedly overlapping intervals of length ~ 279/3 so we have the decoupling
inequality

17 4 oys
I Y &all, S257 550 > &uall)'”

ve@&(2-3/3) veB&(2-i/3)

Therefore, undoing the changes of variables §& — 27¢ and (&1,&) — (r,ru),
we get the desired inequality (5.4.1). ]

To complete the proof of Proposition it is sufficient to show (|5.2.4])
for p > 12 since the estimate for 4 < p < 12 follows by interpolation with

the estimate (5.2.2)). By the inequality ([5.4.1]), we only have to prove that

1/p .
(X i) < 2

veEG(2-9/3)

for p > 12. Since supp f C Aj;, one can easily see that (3, [ f,2)* < |11l
for 2 < p < oo. This in fact follows by interpolation between the estimates
for p = 2 and p = oco. So, the matter is reduced to showing that

12 40y,
O e < 267559 1, (5.4.6)

x,t,s

for p > 12. Recalling with = 0 and changing variables & — &/,
we can use the local smoothing estimate for the wave operator. Since s ~ 1,
the support of f,(&,&/s) is included in an angular sector of angle ~ 279/3,
Applying Lemma, with A = 27 and b ~ 279/3, we obtain
62, (@, 1, 88) 15z, < C275 5 £, o

for any € > 0. Integrating in s gives the desired estimate ([5.4.6]).
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5.4.2 3-parameter case: Proof of Proposition [5.2.3

As before, we only consider the estimate for
uy =us,

given by (5.2.10)). That for Z/{ik can be obtained in the same manner. We use
the decoupling inequality in Theorem to obtain estimates for UY. We
start with the next lemma.

Lemma 5.4.3. Let p > 20 and 0 < k < j, and set z = (z,t,s,0). Suppose
supp f C A;. Then, for any € > 0 and M > 0, we have

_11 ik 1/p i
A2 F iz Sean 277D UAAE) 2
veS(2(k-1)/4)
(5.4.7)

Proof. By rotational symmetry, we may assume that 6 is restricted near
6 = 0. Thus, we only need to consider

o~

(=, 0) = / SO0 VFlE)dE, o = (m.t5),
where
\I/(Z/, ea 5) =T: 5 + |(R;§)t,s|a a(zlv 9) = CL(ZE, t’ 5)¢<0(9/€0)¢(2k|t - S|)

for a small ¢y > 0. Changing variables 2/ — 27%2" and ¢ — 2/¢, we have

AfE0) = [ 93k o) T e

We decompose a(27%2,0) = >" a,(z',0) such that supp,, a,, are included
in finitely overlapping balls of radius 1 and the derivatives of a,, are uniformly
bounded. We are now reduced to obtaining the decoupling inequality for the
operator

EONT, a,)g(+,0) = / N0 () g (E)deE (5.4.8)
with A := 2/7% and g := F[f(277-)] whose support is included in Ay.

We now intend to apply Theorem [5.3.2], However, the cutoff a,, is no longer
supported in a fixed bounded set, so the constants appearing the decoupling
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inequality for £(AV,a,)g may differ. To guarantee the the constants are
uniformly bounded, one may consider a slightly modified operator. Let 2 €
supp, a,. Changing variables 2’ — 2’ 4 z{, we may replace a,, g, ¥ by
an(2',0) = an(2' + 2;,0), §(§) == ei)\\I/(z(’),o,g)g@)’

U, (2,0,6) = 0(2' + 2,0,€) — (2, 0,€),

respectively. For our purpose it is enough to consider £ (/\\ffn, dn)g. One can
easily check that the derivatives of U, and @, are uniformly bounded on
B(0,2) x A for each n.

In order to apply Theorem to E(AV,,, @,)g, we need to verify that
the assumption of Theorem [5.3.2] is satisfied after suitable decomposition
and allowable transformation. Let A" = {(&,&) C Ay @ |&] < 26} and
A" ={(&,&) C Ay |&| < 28} Decomposing g, we separately consider the
following four cases:

suppg C A’, suppg C A", suppg C —A’, suppg C —A". (5.4.9)

We first handle the case supp g C A’. Writing ¥,,(2/, 6, €)= &, (2,0,1, & /&),

we set

p(z,u) = Uu(z,1,u), z=(,60).
As in the proof of Lemma [5.4.1] the desired decoupling inequality follows if
we obtain a decoupling inequality for 5;‘?" of scale A\~1/4,
Even though we have translated z’ — 2’ + zy, it is more convenient to do
computation before the translation on supp a,, that is to say, |s —t| ~ 1 and
t,s ~ 2F. Note that

HRGET  s(Ri6)5 28 — 82)(R2£)1(R£€)2>
|(R;£)t,s| ’ |(R2§)t,s| 7 |(R2£)t,s‘ ’

where R3¢ = ((Rp€)1, (Rj€)2). To show that the condition (5.3.3) holds, it is

sufficient to consider § = 0 since supp, a C (—€g, €9). We set

V(2 0,6) = (&

T(u) = (u, ph(u), u’h(u),2s (1> — s*)uh(u)). (5.4.10)

Then, recalling (5.4.2)), we see that VW (2,0,u) = (1, T(u)). To verify (5.3.3)

we have only to show that T is nondegenerate, i.e.,

H(u) := det (Y (u), Y"(u), Y" (u), Y"(u)) # 0.
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To show this, we note that sH (u)/2p(t* — s?) equals

h" 2h + 4uh’ + u*h" 2h" + uh” n'" 2h  2h
det [ R 61 + 6uh” +u?h” 3B +uh” | =det [ B 61  3n"
B 12R" 4+ Sub! + w2 AR + k" BO12R" AR

Therefore, using ([5.4.5)), one can readily see

2u® — p? 1 —2u
H(u) = W(u,t,s)det —2u? + 3p*u —u 22 — p? 7
Bu' — 24p%u? + 3p" du? — 207 —8u® +12p%u

where W(u,t,s) = 36p(t* — s?)s 'h'®(u). A computation shows that the
determinant equals p%, so we get H(u) = 36p" (t* — s*)s~'h'(u). Since ¢, s ~
2% and |t — s| ~ 1 on suppa,, we have |H(u)| > c for a constant ¢ > 0 on
supp a,. This shows that ® satisfies the nondegeneracy condition on
supp @, x (—2,2) (uniformly for each n).

Therefore, by Theoremwith d = 4 we get decoupling of Sé‘f”. In fact,
we get 7 decoupling of £(A®, a,)§ into EAD, a,)(gv(-/|- ), v € S(A4).
Putting the inequality for each n together and reversing all changes to recover
U f,,, we obtain when supp f C A

For the other cases it is sufficient to show that the nondegeneracy condi-
tion is fulfilled after allowable transformations. For the case supp g C A" we
write @(z’,@,f) = fg\if(z’,G,Sl/fg, 1) and set ®(z,u) = U(z,u, 1). Then, the
matter is reduced to decoupling of the operator £(AP, a,). Note that

V.®(z,u) = (u,1, u?h(u), phiu), 2t (t* — 32)uﬁ(u)),

where p = 1/p and h(u) = (5*+u?)~"/2. Changing coordinates, we only need
to show that the curve

T(u) := (u,u®h(u), phu), 2t (t* — s*)uh(u))

is nondegenerate on supp a, x (—2,2), i.e., det (Y, T, T Y") # 0. This
can be easily shown by a similar computation as above. Therefore, ® satisfies
(5.3.3]).

The remaining two cases suppg C —A', suppg C —A” can be handled
similarly. So, we omit the details. O
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Lemma is not enough for our purpose since the size of sectors is too
large. Since the nondegeneracy condition with d = 3 is satisfied after fixing
the variable s or ¢, we may apply a lower dimensional decoupling inequality,
which allows us to decompose further the angular sectors. To do this, we
focus on a piece U’ f, with v € &(2(k=9)/4),

Lemma 5.4.4. Let p > 12 and 0 < k < j. Let F = f, for some v €
S (2%=9/4) . Then, for any e > 0 and M > 0, we have

LT oyizk _
Pl S 20597 (0 UEIL,)" + 27
v ES(2(k=1)/3)

Proof. We fix s and, then, apply Theorem and a rescaling argument,

i.e., Lemmal5.5.1] below with d = 3, A = 29% and p = 2(:-9)/4_ Following the

same lines of argument as in the proof of Lemma |5.4.3] we need to consider

the operator given in while fixing s, that is to say, £(AV,, af)g where
as(x,t,0) = an(x,t,s,ﬁ) and

U, (x,t,0,8) == V(x,t,s,0,8).

As before, we may assume suppy a® C (—¢g, €), and we separately handle
the four cases in . It is enough to consider the first case since the other
cases can be handled similarly as in the proof of Lemma [5.4.3] We consider
®(x,t,0,u) == U(x,t,0,1,u). To show the nondegeneracy condition for ®,
from we only have to show that the curve

(u, ph(u), 25 (t* — s*)uh(u))

is nondegenerate. This is clear from a similar computation as in the proof of

Lemma 5.4.3]

As mentioned above, we now apply the rescaling argument: Lemma [5.5.1
below with g = A~/4 and R = A7 for a sufficiently small 6 = §(¢) > 0. In

fact, Theorem 5.3.2 gives @A“ ' < 1. Thus, we combine this and Lemma/|5.5.1
to obtain the desired 1nequahty using the trivial decoupling inequality. [

We now complete the proof of Proposition [5.2.3] As mentioned above, we
only consider Y := Z/{i’k. The proof is similar with that of Proposition
since we now have all the necessary decoupling inequalities. It is sufficient
to show for p > 20 thanks to the estimate ||L{,ff\|L4 < 29| £ e

56,0 ™
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which follows from (5.2.2)) by taking integration in 6. Interpolation gives
(5.2.11)) for 4 < p < 20. Combining Lemma and gives
1o MG
[ flle S 267590 S U h ) + 27 M £,

ves(2(k-)/3)

for p > 20. Since }_, sy 11o][5 < IF]5, it suffices to show

W ol e S 207555 5 flle, v € S0,

Since t, s ~ 1, changing variables s — ts and recalling (5.2.3)), we note that

Hukfz/ |Lp ~ // / |Z/{f_sfl, .T t |pdl’dtd8d9
[s—1]|<2—k

Since supp f, is included in an angular sector of angle ~ 2 =7)/3 g similar
H(1—4+0 (+2k)
o e

argument as before and Lemma [2.2.2 give UL f|l, <
This yields the desired estimate (5.2.11]) for p > 20.

5.5 Proof of Theorem [5.3.2
To prove Theorem [5.3.2) we closely follow the argument in [6]. Let us denote

Yo(u) = (L, u,u?/2!, - ud/d).

After suitable decomposition and scaling, it is enough to consider a class of

phase functions which are close to z - v,(u). More precisely, exploiting the

assumption ([5.3.3)), we can normalize the phase function such that
0PV . ® — 0%y, | < e, 0<k<d,

5.5.1
05000 <6, d+1<k<4N, 1<|B|<4N (5:5-1)

for a small ¢ > 0 and some large N. Indeed, decomposing the amplitude
function A, we assume that
supp A C B (w, p) x B' (v, p) x (1/2,2)

for some w,v and p > A~Y/4. Changing variables (z,u) — (z +w,u + v), we
replace
& (2, u) == @(z +w,u -+ v) — B(w,u +v),
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AV (z,u) := A(z4+w,u+v), and ¢4 (u,r) := @) g(y v, r) for &, A, and
g, respectively. This is harmless because the decoupling inequality for £ ATw g,
gives the corresponding one for £,g as soon as we undo the procedure. ’

Note that 7(®%)(0,u) = 0. Thanks to (5.3.3), taking p to be small
enough, we may also assume by the inverse function theorem that the map
2z T(PY)(z,u) has a smooth local inverse

2 To(z,u)

in a neighborhood of the origin. Using Taylor’s theorem, we have

d
v 054, (2,0) L v
O (z,u) = kZ: Tuk + 5/0 MDY (2,8)(u — s)%ds.  (5.5.2)
=0
Setting D,z = (u21, u4 29, -+, pz4, zar1) for p > 0, we have

(D], (2, u, 1) = p_d(I); (IZ(DPZ, 0), pu) =z Yo(u) + Ry (2, u)

where

Ru(:o) = & [ 0000 (TD,2.0). p9) = 9"

Thus, it follows that

ABY M@ 1w
A g(Iw<DP27 O)) = 5 [il&]p ([gw]P>(2)7
where [AZ;]P(Z?U??”) = AZ;<I;)J(DP27 0)>pu7 T) and [gqu]/)<u?r) = ngj(m% 71)'
Taking p small enough, we have |O¥9°RY| < ¢ for 0 < k,|3| < 4N on
supp [AY],. Therefore, making additional decomposition of [AY], and trans-

lation, we note that £)y* g(Zy (D,z,0)) can be expressed as a finite sum of
the operators

L
EX g

with @ satisfying (5.5.1) and A € C=(D) where D is defined at (5.3.2).
Replacing A\p? with )\, we only need to prove the decoupling inequality for

the operator of the above form. For the rest of this section we assume that

(5.5.1]) holds for ®.
In order to show ([5.3.4]), we make use of Theorem m For this purpose

we set

Oy (z,u) = AP(z/\u), Ax(z,u,r)=A(z/A\u,r).
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For 1 < R < A\, we denote by ”D)];f the infimum over all ® for which

1
leo' € ] A
IER Gl o) < DR (37 NER )+ (G

—Sr
=) lalle
JEJ(R-1/d)

holds for any ball B of radius R included in BL(0,2)), all @ satisfying
(5.5.1), and A € C*(D) with some A = A(A) € C°(D) satisfying || Al|cy <
[Alle-

5.5.1 Rescaling

By a rescaling argument, we have following.

Lemma 5.5.1. Let R°Y¢ < 1 <1 < R < \. Let B be a ball of radius R
included in BT1(0,2)). Suppose {J} € J(R™Y) and J C B (v, 1) for some
€ [—1,1]. If p is sufficiently small, then

,€ € q> _ﬂ
IIZg 290 (o) S D s (R0t leg 2951y 2R (%) gl

We occasionally drop the amplitude functions, which are are generically
assumed to be admissible.

Proof. To prove Lemma , we only need to consider ||E**g||»(p) instead
of |E**g|| 2 (wp)- Since wp is bounded by a rapidly decreasing sum of charac-
teristic functions, the bounds on || g||rs(z) imply those for [|E%*g| 1oy
Let B = B™!(\w, R) for some w. We make a slightly different form of
scaling from the previous one to ensure that the consequent phase satisfies

(5.5.1]). Recalling ([5.5.2)), we have

d+1
A@;(I;;(Dﬁ,@),uu):z.%(u)ﬂd! /ad“cbv(zv(p;j,o) s) (u—s)%ds,

0

where D) 2z = (21, w2y, oo 1 %%g41). Setting

(z,u,m) = 2 - Yo(u) + 5'/ O ®Y (D, z, ps) (u — s)%ds,

we have A®; (Z0(D},5,0), pu) = (®)54(z,u). This gives

(=1

EN gL (DL 2/,0)) = € (l9]) (2/N)
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where A(z,u,r) = Ao (Zy(D;,z/A),0), pu, r). Changing variables (z,u) —
(z +w,pu+v) and z — Z(z) := A\Z;(D),2/A, 0) gives

_d%4d
1Y - ERgillrmy Spu = HZS G ez sy, (5.5.3)
J

where §; = [(9)%],. We cover Z~1(B) by a collection B of finitely overlapping
Ry-balls. So, we have

1
HZS iy S (S ||25 3117 ”

B'ceB

Here, we note that supp, @ may be not included in B(0, u?R). However, by
a harmless translation in z we may assume that supp, A C B(0, u*R) by
replacing the phase and amplitude functions with [®]°, and [A]°, for some
w’ since undoing the translation recovers the desired decoupling inequality.

Note that ¢ satisfies if p is small enough. Since supp,, g, are in-
cluded in disjoint intervals of length ~ = 'R~%, we now have

1/p
d .. A 6 a ~
| ZSAM gJHLP(B’) SQR’; a(p (Z Hg R J||Lp (w /)>
J

where R = (Ru®)24(A/R)=N/84|| 5" Gslla. We put together the inequalities
over each B’ and then reverse the various changes of variables so far to recover
the original operator £%*. Note that we may incur a different amplitude
function however, the decoupling state is not changed. Since #B < y~4d+1)/2,
we can conclude that |E**g]|1s(uy) is bounded by a constant times

d24d

)\d,E a 6 [0}] — l
Dyl (Bt Pr* an 29l ) 1T R (R () SdIIZgJHp-

Finally, using (d* + d)/p < 2d* — 2, we can get the desired result. O

5.5.2 Linearization of the phase

Let ® be a smooth phase satisfying ((5.5.1)). For simplicity, denote dy = 9., ,
k=1,...,d+1. From (5.5.1), we have 0,(0s®/0;P) — 1 = O(eg). Thus, there
exists the map 7, such that (0,®/0,P)(z,m.(u)) = u. Let

V. @(z,n.(u))

8lq)('za 77z<u))
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Also note from that 0% —1 = O(¢p). Furthermore, we have I', -e; = 1
and I, - 3 = u where {ey,...,eqy1} is the standard basis in R4,

Let Aw € B1(0,2)\). By a Taylor expansion and changing variables
u — 1, (u) we have

Dy (2 + dw, u) — @5 (Aw, u) = 1 P(w, u)ly(ny (1)) - 2 + RA (2, u),

where
1
R (2,u) = ;/ (1—7)(Hess.® (A '7z + w,n, " (u)) 2, z)dr.
0

Let us set
Q.(u,r) = (n:(u),7/012 (2, n:(u))).

Then, ((5.5.1]) ensures that 2, is smooth. Changing variables (u, ) — €, (u, 1),
we see that Sj;g(z + Aw) is equal to

//eirsz(“)Aw(zaQw( ))(gwo Q0 )( )8 /( )dudr

50 (w. (0] D(w, o (u)’ (5.5.4)

where
Ap(z,u,1) = e/ R (=) ANz w,u, ), g.(u,r) = eEY gy, 7).

For this operator we could directly apply Theorem if it were not for the
extra factor e/ (=) This is not generally allowed. However, if |z| < A1/2,
expanding it into Fourier series in (u, ), we may disregard it as a minor error.

More precisely, from we note that 9;® — 1 = O(¢) and ., — 1 =
O(ep). With a sufficiently small €y we may assume that g0, is supported in
(=1,1)x[1,2]. Using (5.5.1)), we have |05R) (z,u)| < C|z|?/A for 0 < k < 4N.
Consequently, if [z| < A'/2,

|05 (Auw(z, Qu(u/r,r))| < C, 0<k <A4N. (5.5.5)

Thus, expanding A, (z, Q,(u/r, 7)) into Fourier series, we haveA (2, Qu(u,m)) =

> ez be(2)em W with [be(z)| Sy (1 + [1])~". From we have

Eg(z+ dw)| <Y (1 + 1)V E™ () (2 + vo)l, (5.5.6)

(72
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for |z| < A2 where v, := f1e; + £ye5 and

Gu(u,7) = (guwo ) (u, 7)1, () /01 (w, Ny ().

This almost allows us to obtain the first part of the next Lemma, which is

basically the same as Lemma 2.6 in [6]. We recall (/5.3.1)).

Lemma 5.5.2. Let0 < § < 1/2 and 1 < p < AV?79, Let B := B™'(\w, p) C
B4t1(0,3)\/4) and By := B¥(0, p). Suppose that ® satisfies (5.5.1). Then

@ - _

1€ 9l tm) S NE™ (G|l o(wn,) + AV llg]l: (5.5.7)

Additionally, assume that |w| < N9 Then, for some admissible A, we have
~ o — min{4,6’

IE™ (Gu) | o@ny) S I€T gl mowp) + A7 HOTH2 g5, (5.5.8)

Proof. For , we separately consider two cases |z — Aw| < A2 and
|z—Aw| > A2, We first consider the case |z—Aw| > A/2. So, we have wp(z) <
ATIN=d=2)(1 4 p=lz — Aw|)~9"2. Combining this and a trivial inequality
€2291 < Nlglla, we have

® _
||XB()\w,>\1/2)C€A;g||LP(WB) SA 6N/2||9||2a (5.5.9)

for a sufficiently large N. Next, we handle the remaining part X g(x, 2 ,\1/2)8;1;; g.
Using ((5.5.6) and Hoélder’s inequality in [, one can obtain

1/p
w
@ Tw/~ B(v,p) Tw/(~
Ieruan ER ey [ 0) 32 i, S VE Gl

The second inequality follows from the fact Y, 7. (14|€]) ™ w o) S wyl ©.0):

By the above inequality and (5.5.9)), we conclude that (5.5.7)) holds.
To show ((5.5.8)), we use a similar argument. By the same reason as in the

proof of (5.5.7), we have [|E™(g,)(1 = Xpoa2x/2) lr(wsy) S A°V?[gl for
a sufficiently large N. For the integral over the set B(0,2A!/?), we now undo

the changes of variables including (u, ) +— Q,(u,r) which are performed to

get (5.5.4). Consequently, we have
E"(G,)(2) = // NG A (2w, ) g(u, ) dudr,
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where flw(z,uj r) = e~ iRy (zu) a(A"tz + w,u,r). As before, we can expand
the function A, (z, Qy,(u/r,r)) (cf. (5.5.5)) into Fourier series in w,r. Thus,
if z € B(0,2\1/2),

(B (3)(2)] < On Ypeze(L+ 1) NIET (90)(2)],

for a suitable symbol A where

-1
ezé Q' (u,r)

9o ‘= g.

We again perform the previous linearization procedure again for Sf;; (ge)-
Since Q' 0 Qy,(u,7) = (ru,7), by (6.5.7) we have
® . _
1€, 9O rwm) S IE™ (Gu)|owpy ) + A9l

By this inequality we have S:= 37, /(1 + |€|)_2NH8§§ (90)|| Lr () bounded

by a constant times M~V || E™ (G| r(wg,) + AN\ g||. If we choose a suf-
ficiently large M, the part S can be absorbed in the left hand side of (5.5.8)).
Thus, we obtain

~ @ -
1B Gullrtony) S D I1€32 96l otwn + Al
|| <M

We note that Sjigg = Sgilg where Ay, := Ay’ () Expanding Ay
in a Taylor series one can get amplitude functions which are independent of
a particular B. From those one can find an operator which has the desired
property by pigeonholing. See [6] for details. O

5.5.3 Proof of Theorem [5.3.2
Assume that ¢ satisfies (5.5.1]) and
1<K <R< AT

Let 7 = J (R‘l/ d) be a collection of disjoint intervals. For simplicity we
set g = > jc7(p-1/a) 9s- Partition J(R™Y4) in such a way that there is a

collection J' of disjoint intervals J’ of length ~ K~'/¢ which include each
interval in J(R~/%). So, we have

9= ZJ’GJ/ gy = Zj/ej/ Z]EJ:JCJ/ 97-
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We consider a ball B of radius R included in B(0,A) and a collection
By of finitely overlapping balls B’ of radius K = A\'/* which covers B. Since
R < A= one may assume that the center of B’ € By lies in B(0, \!=¢/9)

after a translation. Using (5.5.7), we have

Ce, d+1, _
Ealisy S O3 N30 [ o )% + (2 A3l
B'eBgk

Here cp\ = A lcp and cp denotes the center of B’. We apply Theorem
to each B’ € By and ([5.5.8) subsequently to get decoupling at scale
K~Y4 Consequently, combining the inequality on each B’, we obtain

_eN
1Exg LBy S KPS e 1895 [ o, ) + K'R¥M (%) 5 |glla-

Using Lemma [5.5.1], we get

A € Do € —_£ _eN
[Exgllrwm) SDHR B sy 16395 ey ) + KTaR(3)

Thus, for a sufficiently large A\, we have ’D’\’e <) ; 14 Tteratively applying

this inequality, one can show D2 Ve S X for any 6 > 0, which completes the
proof of Theorem [5.3.2

5.6 Optimality of the estimates

We close this dissertation by making some remarks regarding the local smooth-

ing estimates (5.1.2) and (5.1.3). Once one has the estimates ([5.2.4)) and
(5.2.11)), the proofs of the estimates (5.1.2)) and ([5.1.3)) are straightforward.

So, we omit them.

As mentioned before, the smoothing orders in the estimates and
are sharp except the endpoints cases. To see this, we only consider the
operator U . The other U’ can be handled similarly. The following arguments
are almost similar with that of Chapter [4.8] Let g be a function given by
G(€) = p(277|& 0] e U612l Tt s easy to see that gz < 2(@+3/2-1/P)J Note
that

gl t,5) =29 [ eIl

Thus, we have [U%(x,t,s)| = 2% if |z, |t — 1|, |s — 1| < 277/100. So, if the
estimate (5.1.2) holds true, then 22-4/PJ < 2(a+3/2=1/p)j Tetting j — oo
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shows that holds only if & > 1/2 — 3/p. Similarly, for (5.1.3)) we note
that [U°f(x,t,s)| = 2% if |z, 0|, |t — 1],|s — 2|, < 277/100. So, gives
2(2=5/P)j < 9(a+3/2=1/P)j  Therefore, holds only if o > 1/2 — 4/p.

Besides those upper bounds on the smoothing orders, one can find other
upper bounds testing the estimates and with different type
of examples. However, we are far from being able to prove the estimates of
smoothing orders up to any of such bounds. This problem seems to be very
challenging.
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