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Abstract

This paper deals with a hyperbolic Keller-Segel system of consumption type

with the logarithmic sensitivity

∂tρ = −χ∇ · (ρ∇ log c) , ∂tc = −µcρ (χ, µ > 0)

in Rd (d ≥ 1) for nonvanishing initial data. This system is closely related to

tumor angiogenesis, an important example of chemotaxis. We firstly show the

local existence of smooth solutions corresponding to nonvanishing smooth ini-

tial data. Next, through Riemann invariants, we present some sufficient con-

ditions of this initial data for finite-time singularity formation when d = 1.

We then prove that for any d ≥ 1, some nonvanishing C∞-data can become

singular in finite time. Moreover, we derive detailed information about the

behaviors of solutions when the singularity occurs. In particular, this infor-

mation tells that singularity formation from some initial data is not because

c touches zero (which makes log c diverge) but due to the blowup of C1×C2-

norm of (ρ, c). As a corollary, we also construct initial data near any constant

equilibrium state which blows up in finite time for any d ≥ 1. Our results

are the extension of finite-time blow-up results in [9], where initial data is

required to satisfy some vanishing conditions. Furthermore, we interpret our

results in a way that some kinds of damping or dissipation of ρ are necessar-

ily required to ensure the global existence of smooth solutions even though

initial data are small perturbations around constant equilibrium states.
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Chapter 1

Introduction

Chemotaxis refers to the motion of biological cells toward a higher (or lower)

concentration of some chemical substance. Understanding and analyzing its

mechanism is crucial since it describes many ubiquitous biological and eco-

logical phenomena. After its first mathematical modeling by Patlak ([26])

and Keller-Segel ([12, 13]), there have been many variations in their models

to explain realistic phenomena more precisely. One of the greatly impor-

tant examples of chemotaxis is tumor angiogenesis, the new blood vessel

formation induced by tumor cells. To be precise, by releasing vascular en-

dothelial growth factor (VEGF), tumor cells induce endothelial cells to make

new blood vessels toward them. In order to model the mechanism of tumor

angiogenesis, the authors of [17] proposed the following system:{
∂tρ = κ∆ρ− χ∇ · (ρ∇ log c) ,

∂tc = −µcρ.
(P-KS)

Here, ρ denotes the density of endothelial cells, and c represents the concen-

tration of VEGF that is consumed by the cells. κ > 0 denotes the diffusion

coefficient of the cells, and χ, µ > 0 represent the intensity of chemotaxis

and the consumption rate of VEGF, respectively.

In this paper, we derive finite-time singularity formation of the following
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CHAPTER 1. INTRODUCTION

Cauchy problem for a hyperbolic counterpart of (P-KS):
∂tρ = −χ∇ · (ρ∇ log c) ,

∂tc = −µcρ,
ρ(x, 0) = ρ0(x), c(x, 0) = c0(x),

(H-KS)

for (x, t) ∈ Rd × (0, T ) with d ≥ 1. Our finite-time blow-up is not attributed

to c→ 0, which makes log c→ ∞, but due to divergence of C1×C2-norm of

(ρ, c). Moreover, our result considers initial data not touching zero, where in

the case of initial data vanishing at some point, finite-time blow-up can be

shown using propagation of certain degeneracy ([9]). To effectively discuss

the motivation for dropping ∆ρ and the significant meanings of our results,

we first review some related previous results.

1.1 Previous works

(P-KS). There have been a lot of studies on the long-time dynamics of

(P-KS). In addition to its biological significance, (P-KS) contains a mathe-

matically interesting structure: logarithmic sensitivity, log c. Since log c di-

verges at c = 0, this sensitivity has given difficulties in analyzing (P-KS). To

overcome these, the Cole-Hopf transformation

q = −∇c
c

= −∇ log c, (1.1)

and scalings

x→
√
χµ

κ
x, t→ χµ

κ
t, q →

√
χ

µ
q

have been used to transform (P-KS) into{
∂tρ = ∆ρ+∇ · (ρq),
∂tq = ∇ρ.

(P-KS’)

We briefly review the main results of (P-KS’). Global existence of classical

solutions to (P-KS’) in a one-dimensional bounded domain was obtained

for small initial data in [30], and for large initial data in [27] and [20].

2



CHAPTER 1. INTRODUCTION

The paper [20] also showed that the solutions converge to their boundary

data at an exponential rate as time goes to infinity. In the one-dimensional

whole line R, the authors of [7] established the global existence of classi-

cal solutions to (P-KS’) for large initial data. Furthermore, the authors of

[19] showed that the global classical solutions for large initial perturbations

around constant equilibrium states in R converge to the equilibrium states

as time approaches infinity. The authors of [23] and [24] proved the non-

linear stability of traveling wave solutions, while the authors of [21] showed

the stability of composite waves. In multidimensional space, global existence

and long-time behaviors of classical solutions to (P-KS’) were obtained for

initial data near a constant equilibrium state. In two or three-dimensional

bounded domain Ω, the paper [22] obtained the global existence and large-

time asymptotic behavior of classical solutions for initial data (ρ0, q0) satisfy-

ing ∥(ρ0 − avg(ρ0), q0)∥(H3×H3)(Ω) ≪ 1, where avg(ρ0) denotes the average of

ρ0 over Ω. The authors of [18] showed global well-posedness and long time be-

havior of classical solutions in Rd (d ≥ 2) when ∥(ρ0 − ρ̄, q0)∥(Hs×Hs)(Rd) ≪ 1

with s > d
2
+1 for some constant ρ̄ > 0. The paper [8] generalized this results

to the critical Besov space B
d
2
−2(Rd) × (B

d
2
−2, d

2
−1(Rd))d with d ≥ 2 under

the assumption that ∥(ρ0 − ρ̄, q0)∥
B

d
2−2×(B

d
2−2, d2−1)d

≪ 1 is sufficiently small

for some constant ρ̄ > 0. In R3, the authors of [5] established global well-

posedness of classical solutions when ∥(ρ0 − ρ̄, q0)∥(L2×H1)(R3) ≪ 1 for some

constant ρ̄ > 0. Moreover, for the initial data satisfying ∥(ρ0 − ρ̄, q0)∥(H2×H1)(R3) ≪
1, the paper [5] further derived decay property of the solutions. Later, the au-

thors of [28] obtained asymptotic decay rates of classical solutions in Rd with

d = 2, 3 under assumptions that (ρ0− ρ̄, q0) ∈ ((H2∩Ḣ−s)×(H2∩Ḣ−s))(Rd)

for some s ∈ (0, d
2
) and ∥(ρ0 − ρ̄, q0)∥H1×H1 ≪ 1.

(cP-KS). We can compare (P-KS) with the following classical counterpart:{
∂tρ = κ∆ρ− χ∇ · (ρ∇ log c) ,

∂tc = µcλρ,
(cP-KS)

where the main difference from (P-KS) is that ρ does not consume but pro-

duces c. Depending on the range of λ, finite-time blow-up or global well-

posedness of (cP-KS) have been studied by many authors. Since our main

concerns are focused on the consumption type, we only list some references in

3



CHAPTER 1. INTRODUCTION

this direction. See [15, 16, 4] for finite-time singularity formation when λ = 1,

and [4] for global regularity when λ = 0. Some blow-up criteria and asymp-

totic behaviors of solutions can be found in [11, 1], and references therein.

Refer to [25] for numerical investigation.

(H-KS). The first attempt to drop ∆ρ was from [3]. To be more precise, the

author of [3] considered {
∂tρ = ∇ · (ρq) + ρ(1− ρ),

∂tq = ∇ρ,
(dH-KS)

where a term ρ(1−ρ) represents a logistic growth restriction. In other words,

the author considered the case with damping rather than dissipation of ρ.

In this system, the author of [3] obtained the existence of global smooth

solutions in R2 when ∥(ρ0 − 1, q0)∥(H3×H3)(R2) ≪ 1 and ∇× q0 = 0. Recently,

in [9] (see also [2]), the authors proved the finite-time singularity formation of

(H-KS) in Rd in the case when initial data satisfies some vanishing condition.

To be precise, they showed that for initial data (ρ0, c0) satisfying ρ0(x0) = 0

and ∇ρ0(x0) = ∇c0(x0) = 0 for some x0 ∈ Rd, there exists a time T ∗ > 0

such that

lim
t→T ∗

(
∥ρ(·, t)∥W 2,∞(Rd) + ∥c(·, t)∥W 2,∞(Rd)

)
= ∞. (1.2)

1.2 Main results and Discussion

Our primary motivation for studying the hyperbolic version (H-KS) is that

finite-time singularity formation of (H-KS) could lead to rapid norm growth

of solutions to (P-KS) when the diffusion coefficient κ is small. In fact, in

[17] where (P-KS) was initially derived, very small κ was used, and numerical

simulations showed large norm growth. This kind of result can be found in

other hyperbolic-elliptic type Keller-Segel equations (see [29, 10]).

The previous works covered in the last section raise three interesting

questions:

Q1. Can we delete the vanishing condition of initial data in [9]? In other

words, is there any nonvanishing initial data leading to finite time sin-

gularity formation?

4



CHAPTER 1. INTRODUCTION

Q2. If some nonvanishing initial data blows up at some finite time, then is

it because c touches zero at some point, which makes logarithmic sensi-

tivity log c blow up? Furthermore, can we get more detailed behaviors

of solutions than (1.2) at the blow-up time?

Q3. Compared with global regularity results near constant equilibrium states

for (P-KS) and (dH-KS), what happens to solutions of (H-KS) near

constant equilibrium states?

To the best of the author’s knowledge, there are no known answers to these

questions. The aim of this paper is to answer them. To begin with, our

physical motivation for Q1 is to consider non-vacuum states. Moreover, con-

sidering nonvanishing data, we can have an opportunity to deal with Q3. In

order to explain how difficult to answer Q1, we need to compare Q1 with

vanishing conditions in [9]: ρ0(x0) = 0, ∇ρ0(x0) = ∇c0(x0) = 0 for some

x0 ∈ Rd. The authors of [9] employed propagation of these conditions to

prove the finite-time blow-up. Heuristically, if initial cells don’t exist at x0
but initial chemicals are abundant at x0, cells would be concentrated fast

in the neighborhood of the point to consume the chemicals. But due to the

propagation of the vanishing conditions, cell density remains zero at the point

at which solutions blow up within some finite time. But this scenario does

not work in nonvanishing initial data, so we need to consider other scenarios

to deal with it.

To do so, in this note, we shall assume that initial data (ρ0, c0) satisfies{
(ρ0, c0) ∈ (L∞ × L∞)(Rd),

ρ0(x) ≥ β1 > 0, c0(x) ≥ β2 > 0 for some constants β1, β2.
(1.1)

Under this assumption, the dynamics of (H-KS) guarantees ρ, c > 0, and

∥c(t)∥L∞ ≤ ∥c0∥L∞ <∞.

In order to investigate whether solutions to (H-KS) blow up at a finite

time, we firstly have to establish local well-posedness of (H-KS) for nonvan-

ishing initial data in Rd with d ≥ 1.

Theorem 1 (Local well-posedness for nonvanishing data). Let d ≥ 1. As-

sume that the initial data (ρ0, c0) satisfies (1.1), and

(∇ρ0,∇c0) ∈ (Hm−1 ×Hm)(Rd) for some m >
d

2
+ 1. (1.2)

5



CHAPTER 1. INTRODUCTION

Then there exist a time T > 0, time-dependent positive constants β1(t), β2(t),

and a unique solution (ρ, c) to (H-KS) such that
ρ(x, t) ≥ β1(t), c(x, t) ≥ β2(t) on [0, T ],

(ρ, c) ∈ L∞ ([0, T ]; (L∞ × L∞)(Rd)
)
,

(∇ρ,∇c) ∈ L∞ ([0, T ]; (Hm−1 ×Hm)(Rd)
)
.

(1.3)

Furthermore, if initial data satisfies (∇ρ0,∇c0) ∈ (H∞ × H∞)(Rd), then

the unique solution satisfies (∇ρ,∇c) ∈ L∞ ([0, T ]; (H∞ ×H∞)(Rd)
)
, where

H∞(Rd) :=
⋂

k≥0H
k(Rd).

This local well-posedness result is not trivial but surprising because the

equation of ρ in (H-KS) contains two derivatives of log c. In order to over-

come the loss of regularity, we compare ∇mρ with
√
ρ∇m+1 log c (rather than

∇m+1 log c) and observe a cancellation of certain quantity which involves

highest derivatives. This idea was motivated by [9]. We shall prove Theorem

1 in Chapter 2.

Next, in Chapter 3, we present some sufficient conditions of nonvanishing

initial data for finite-time singularity formation when d = 1.

Theorem 2 (Sufficient conditions of data for finite-time blow-up in R).
Suppose that initial data (ρ0, c0) satisfies (1.1) with d = 1,

• (∂xρ0, ∂xc0) ∈ (H∞ ×H∞)(R), (1.4a)

• ρ0, c0, and ∂xc0 attain their maximums and minimums at some points in R,
(1.4b)

• ∂xρ0(x0) ≤ 0 and c0(x0)∂xxc0(x0) < (∂xc0(x0))
2 at some x0 ∈ R. (1.4c)

Then there exists some finite time T ∗ > 0 such that the unique solution (ρ, c)

to (H-KS) satisfies

sup
t∈[0,T ∗)

(
∥ρ(·, t)∥L∞(R) + ∥c(·, t)∥W 1,∞(R) + ∥∂x log c(·, t)∥L∞(R)

)
<∞ (1.5)

and

lim
t→T ∗

(
∥∂xρ(·, t)∥L∞(R) + ∥∂xxc(·, t)∥L∞(R)

)
= ∞. (1.6)

6



CHAPTER 1. INTRODUCTION

Remark 1.1. There is a large class of functions satisfying (1.1) and (1.4a)-

(1.4c). For instance, let ψ ∈ C∞
c (R) be a smooth bump function such that

ψ(x) =

{
1 (|x| ≤ 1),

0 (|x| ≥ 2).

Then we can find x0 ∈ R satisfying ∂xψ(x0) ≤ 0 and ∂xxψ(x0) < 0. Hence

for any constants ρ̄, c̄ > 0, if we define

ρ0 := ρ̄+ ψ and c0 := c̄+ ψ, (1.7)

then we can check that (ρ0, c0) satisfies (1.1) and (1.4a)-(1.4c).

Theorem 2 answers to our Q1 and Q2 in one dimension. Regarding Q1,

nonvanishing initial data given in (1.7) leads to the finite-time blow-up. Fur-

thermore, for Q2, noticing ∥∂x log c(·, t)∥L∞(R) < ∞ on [0, T ∗] as we can see

in (1.5), we conclude that our singularity formation is not because c touches

zero but derivatives of ρ and c blow up as (1.6). To the best of the author’s

knowledge, it is the first time to show that the finite-time blow-up of systems

with logarithimic sensitivity is not attributed to the singularity from c→ 0.

The main difficulty of showing Theorem 2 lies in finding proper variables

to control the equation for ρ containing many derivatives. A key tool to solve

this problem is a diffeomorphic transformation w = (w1, w2) : Ω → w(Ω)

with Ω := {(z1, z2) ⊂ R2 : z1 > 0}. This w is called Riemann invariants (re-

fer to [14] or [6] for instance). In addition to the general definition of Rie-

mann invariants, we consider w satisfying certain extra properties. Combining

these extra properties with our assumptions (1.1), (1.4a)-(1.4c), we deduce

the stated finite-time singularity formation by using newly defined variables:

w1(ρ, log c), w2(ρ, log c).

With the above one-dimensional result at hand, we finally prove the exis-

tence of a set of nonvanishing smooth initial data in Rd with d ≥ 1 making the

solution singular in finite time. Our result is divided into R and Rd (d ≥ 2)

cases, respectively:

Theorem 3 (Finite-time blow-up in Rd).

7



CHAPTER 1. INTRODUCTION

• Let d = 1. Then for any interval I ⊂ R, there exist some finite time

T ∗ > 0 and initial data (ρ0, c0) satisfying (1.1) and (∇ρ0,∇c0) ∈ (H∞ ×
H∞)(R) such that the unique solution (ρ, c) to (H-KS) satisfies (1.5) and

lim
t→T ∗

(
∥∂xρ(·, t)∥L∞(I) + ∥∂xxc(·, t)∥L∞(I)

)
= ∞.

• Let d ≥ 2. Then there exist some finite time T ∗ > 0 and initial data

(ρ0, c0) satisfying (1.1) and (∇ρ0,∇c0) ∈ (H∞ × H∞)(Rd) such that the

unique solution (ρ, c) to (H-KS) satisfies

lim
t→T ∗

(
∥ρ(·, t)∥W 1,∞(Rd) + ∥c(·, t)∥W 2,∞(Rd)

)
= ∞.

We need some remarks to interpret our results as well as to answer our

questions Q1 and Q2.

Remark 1.2. Our result in R tells us that we can control the region where

the finite-time blow-up occurs as we please. Hence we can obtain the same

blow-up result in torus T := R/Z by making the singularity formed within

the interval (0, 1) and extending the solution periodically.

Remark 1.3. Concerning Rd with d ≥ 2, our result does not give as much

information about blow-up as the 1D case. This is because we cannot make

use of Riemann invariants technique in the proof of the multi-dimension case.

However, noticing the previous remark, we can obtain the following result in

torus Td := (R/Z)d for any d ≥ 1:

There exist some finite time T ∗ > 0 and initial data (ρ0, c0) ∈ (C∞ ×
C∞)(Td) such that the unique solution (ρ, c) to (H-KS) satisfies

sup
t∈[0,T ∗)

(
∥ρ(·, t)∥L∞(Td) + ∥c(·, t)∥W 1,∞(Td) + ∥∇ log c(·, t)∥L∞(Td)

)
<∞

and

lim
t→T ∗

(
∥∇ρ(·, t)∥L∞(Td) +

∥∥∇2c(·, t)
∥∥
L∞(Td)

)
= ∞.

Indeed, since Remark 1.2 guarantees a 1D solution (ρ1(x1, t), c
1(x1, t)) de-

fined on T which blows up at some finite time, just defining (ρ(x, t), c(x, t)) :=

(ρ1(x1, t), c
1(x1, t)) for x ∈ Td, we can check that (ρ(x, t), c(x, t)) is a solution

to (H-KS) which undergoes the same blow-up.

8
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The key of the proof of Theorem 3 is (1.5) which is responsible for the

finite propagation speed (Lemma 4.1). We prove Theorem 3 in Chapter 4.

Moreover, proceeding in the same manner as the proof of the previous

theorem, we can construct initial data near any constant equilibrium state

which blows up in finite time.

Corollary 3.1 (Finite-time blow-up near any constant equilibrium state in

Rd). Let ρ̄ > 0 be any constant equilibrium state. Then for any d ≥ 1, ϵ > 0,

and integer m ≥ 0, there exist some finite time T ∗ > 0 and initial data

(ρ0, c0) satisfying (1.1), (∇ρ0,∇c0) ∈ (H∞ ×H∞)(Rd), and

∥ρ0 − ρ̄∥Hm(Rd) + ∥∇ log c0∥Hm(Rd) ≤ ϵ (1.8)

such that the unique solution (ρ, c) to (H-KS) satisfies

lim
t→T ∗

(
∥ρ(·, t)∥W 1,∞(Rd) + ∥c(·, t)∥W 2,∞(Rd)

)
= ∞.

This corollary gives us a surprising answer to our last question, Q3. Com-

paring this corollary with the aforementioned global regularity results near

constant equilibrium states for (P-KS) and (dH-KS), we conclude that some

kinds of damping or dissipation of ρ are essential to extend the local classical

solutions to global ones. The proof can be found in Chapter 4.

Notation

We employ the letter C = C(a, b, · · · ) to denote any constant depending

on a, b, · · · , which may change from line to line in a given computation. We

sometimes use A ≈ B and A ≲ B, which mean A = CB and A ≤ CB,

respectively, for some constant C.

9



Chapter 2

Local well-posedness

In this chapter, we show Theorem 1. Under the transformation (1.1) and the

scalings

t→ √
χµt, q →

√
χ

µ
q,

(H-KS) becomes {
∂tρ = ∇ · (ρq),
∂tq = ∇ρ.

(H-KS’)

We shall divide the proof into two steps, which correspond to a priori esti-

mates and the existence and uniqueness of a solution.

2.1 A priori estimates

This section is devoted to a priori estimate for a solution (ρ, c) of (H-KS),

which is assumed to be sufficiently smooth, so that the following computation

can be justified. The equation of ρ in (H-KS’) gives

d

dt
∥ρ∥L∞ ≲ ∥∇ρ∥L∞∥q∥L∞ + ∥ρ∥L∞∥∇q∥L∞

≲ (∥ρ∥L∞ + ∥∇ρ∥Hm−1) ∥q∥Hm ,
(2.1)

10



CHAPTER 2. LOCAL WELL-POSEDNESS

where in the last inequality, we used the Sobolev embedding, Hm−1(Rd) ↪→
L∞(Rd). It is clear that the equation of c in (H-KS) implies

d

dt
∥c∥L∞ ≲ ∥ρ∥L∞∥c∥L∞ . (2.2)

From the equation of ρ in (H-KS’), we can derive

∂t
(
ρ−1
)
− q · ∇

(
ρ−1
)
= − (∇ · q)

(
ρ−1
)
.

Evaluating along the characteristics defined by −q, we obtain

d

dt

∥∥ρ−1
∥∥
L∞ ≲ ∥∇q∥L∞

∥∥ρ−1
∥∥
L∞ ≲ ∥q∥Hm

∥∥ρ−1
∥∥
L∞ . (2.3)

On the other hand, since the equation of c in (H-KS) gives

∂t
(
c−1
)
= µρc−1,

we have
d

dt

∥∥c−1
∥∥
L∞ ≲ ∥ρ∥L∞

∥∥c−1
∥∥
L∞ . (2.4)

From (H-KS’), we also obtain

1

2

d

dt
∥q∥2L2 ≲

(
∥∇ρ∥2L2 + ∥q∥2L2

)
. (2.5)

Applying ∇m to the equation of ρ in (H-KS’) and taking L2 inner product

with ∇mρ, we compute

1

2

d

dt
∥∇mρ∥2L2 = I1 + I2 +

∫ (
ρ∇m+1 · q

)
· ∇mρ

with

I1 =

∫ (
∇m+1ρ · q

)
· ∇mρ,

and

I2 ≈
∫  ∑

1≤|α|≤m

∑
|α|+|β|=m+1

∇αρ · ∇βq

 · ∇mρ.

11
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For I1, the integration by parts gives

I1 = −
∫

(∇mρ∇ · q) · ∇mρ− I1,

so that we obtain

I1 = −1

2

∫
(∇mρ∇ · q) · ∇mρ ≲ ∥∇mρ∥2L2∥∇q∥L∞ ≲ ∥∇ρ∥2Hm−1∥q∥Hm .

Using ∥fg∥Hs ≲ ∥f∥L∞∥g∥Hs + ∥f∥Hs∥g∥L∞ (s > 0), we estimate

I2 ≲ (∥∇ρ∥L∞∥∇q∥Hm−1 + ∥∇ρ∥Hm−1∥∇q∥L∞) ∥∇mρ∥L2

≲ ∥∇ρ∥Hm−1∥∇q∥Hm−1∥∇mρ∥L2

≲ ∥∇ρ∥2Hm−1∥q∥Hm .

Thus, we have

1

2

d

dt
∥∇mρ∥2L2 −

∫ (
ρ∇m+1 · q

)
· ∇mρ ≲ ∥∇ρ∥2Hm−1∥q∥Hm . (2.6)

On the other hand, using ρ > 0 and (H-KS’), we compute

1

2

d

dt
∥√ρ∇mq∥2L2 = II1 + II2

with

II1 =
1

2

∫
∇ · (ρq) (∇mq)2 ,

and

II2 =

∫
ρ∇mq · ∇m+1ρ.

For II1, we estimate

II1 ≲ ∥∇(ρq)∥L∞∥∇mq∥2L2

≲ (∥∇ρ∥L∞∥q∥L∞ + ∥ρ∥L∞∥∇q∥L∞) ∥q∥2Hm

≲ (∥ρ∥L∞ + ∥∇ρ∥Hm−1) ∥q∥3Hm .

Using the integration by parts, we compute

II2 = −
∫

(∇ρ · ∇mq) · ∇mρ−
∫ (

ρ∇m+1 · q
)
· ∇mρ,

12
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so that we have

II2 +

∫ (
ρ∇m+1 · q

)
· ∇mρ ≲ ∥∇ρ∥2Hm−1∥q∥Hm .

Thus, we obtain

1

2

d

dt
∥√ρ∇mq∥2L2 +

∫ (
ρ∇m+1 · q

)
· ∇mρ

≲ (∥ρ∥L∞ + ∥∇ρ∥Hm−1) ∥q∥3Hm + ∥∇ρ∥2Hm−1∥q∥Hm .

(2.7)

Adding (2.6) to (2.7), we have

d

dt

(
∥∇mρ∥2L2 + ∥√ρ∇mq∥2L2

)
≲ (∥ρ∥L∞ + ∥∇ρ∥Hm−1) ∥q∥3Hm+∥∇ρ∥2Hm−1∥q∥Hm .

With the same argument, we can obtain

d

dt

m∑
k=1

(∥∥∇kρ
∥∥2
L2 +

∥∥√ρ∇kq
∥∥2
L2

)
≲ (∥ρ∥L∞ + ∥∇ρ∥Hm−1) ∥q∥3Hm + ∥∇ρ∥2Hm−1∥q∥Hm .

(2.8)

We now define

Xm := 1+∥ρ∥L∞+∥c∥L∞+
∥∥ρ−1

∥∥
L∞+

∥∥c−1
∥∥
L∞+∥q∥L2+

m∑
k=1

(∥∥∇kρ
∥∥2
L2 +

∥∥√ρ∇kq
∥∥2
L2

)
.

Then, since

∥q∥Hm ≈ ∥q∥L2+
∥∥(√ρ)−1√ρ∇mq

∥∥
L2 ≲ ∥q∥L2+

√
∥ρ−1∥L∞∥√ρ∇mq∥L2 ≲ Xm,

(2.1)-(2.5), and (2.8) imply that

d

dt
Xm ≲ X4

m.

This shows that formally, there exists a time interval [0, T ] in which ∥ρ∥L∞ ,

∥c∥L∞ , ∥ρ−1∥L∞ , ∥c−1∥L∞ , ∥∇ρ∥Hm−1 , and ∥q∥Hm remain finite. Furthermore,

we can check that ∥∇c∥Hm also remains finite on the same time interval,

noticing that the definition of q ensures the existence of a constant C =

C (∥c∥L∞ , ∥c−1∥L∞ , ∥q∥Hm) > 0 such that ∥∇c∥Hm ≤ C.

13
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In order to show that (∇ρ0,∇c0) ∈ H∞×H∞ implies (∇ρ(t, ·),∇c(t, ·)) ∈
H∞×H∞ on the same time interval, we use the induction argument. Assume

that ∥ρ∥L∞ , ∥c∥L∞ , ∥ρ−1∥L∞ , ∥c−1∥L∞ , ∥∇ρ∥Hm−1 , ∥q∥Hm , and ∥∇c∥Hm are

finite on [0, T ]. Then, using the cancellation as we did above, we can obtain

1

2

d

dt

(∥∥∇m+1ρ
∥∥2
L2 +

∥∥√ρ∇m+1q
∥∥2
L2

)
= III1 + III2 + IV1 + IV2

with

III1 =

∫ (
∇m+2ρ · q

)
· ∇m+1ρ,

III2 ≈
∫  ∑

1≤|α|≤m+1

∑
|α|+|β|=m+2

∇αρ · ∇βq

 · ∇m+1ρ,

IV1 =
1

2

∫
(∇ · (ρq))

(
∇m+1q

)2
,

and

IV2 =

∫ (
∇ρ · ∇m+1q

)
· ∇m+1ρ.

For III1, using the integration by parts and the assumption that ∥∇q∥L∞ ≲
∥q∥Hm ≤ C, we have

III1 = −1

2

∫ (
∇m+1ρ∇ · q

)
· ∇m+1ρ ≤ C

∥∥∇m+1ρ
∥∥2
L2 .

We decompose III2 into

III2 = III21 + III22

with

III21 ≈
∫ ∑

|α|=1

∑
|β|=m+1

∇αρ · ∇βq

·∇m+1ρ+

∫  ∑
|α|=m+1

∑
|β|=1

∇αρ · ∇βq

·∇m+1ρ,

and

III22 ≈
∫  ∑

2≤|α|≤m

∑
|α|+|β|=m+2

∇αρ · ∇βq

 · ∇m+1ρ.

14
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Noticing the assumption that ∥∇ρ∥L∞ ≲ ∥ρ∥Hm ≤ C and ∥∇q∥L∞ ≲ ∥q∥Hm ≤
C, we estimate

III21 ≲
∥∥∇m+1ρ

∥∥
L2

∥∥∇m+1q
∥∥
L2 ≲

∥∥∇m+1ρ
∥∥2
L2 +

∥∥∇m+1q
∥∥2
L2 .

Since ∥∇αρ∥L2 ≤ ∥∇m+1ρ∥L2 for 2 ≤ |α| ≤ m, ∥q∥Hm ≤ C again gives

III22 ≲
∥∥∇m+1ρ

∥∥2
L2 .

Considering ∥∇ · (ρq)∥L∞ ≲ ∥ρ∥Hm∥q∥Hm ≤ C, we have

IV1 ≲
∥∥∇m+1q

∥∥2
L2 .

Using ∥∇ρ∥L∞ ≲ ∥ρ∥Hm ≤ C again, we estimate

IV2 ≲
∥∥∇m+1ρ

∥∥
L2

∥∥∇m+1q
∥∥
L2 ≲

∥∥∇m+1ρ
∥∥2
L2 +

∥∥∇m+1q
∥∥2
L2 .

Combining all, and noticing∥∥∇m+1q
∥∥2
L2 =

∥∥(√ρ)−1√ρ∇m+1q
∥∥
L2 ≤

√
∥ρ−1∥L∞

∥∥√ρ∇m+1q
∥∥2
L2 ≲

∥∥√ρ∇m+1q
∥∥2
L2 ,

we finally have arrived at

d

dt

(∥∥∇m+1ρ
∥∥2
L2 +

∥∥√ρ∇m+1q
∥∥2
L2

)
≲
∥∥∇m+1ρ

∥∥2
L2 +

∥∥√ρ∇m+1q
∥∥2
L2 .

Hence, the Grönwall’s inequality implies that ∥∇m+1ρ∥L2 and ∥∇m+1q∥L2

remain finite on [0, T ]. 2

Remark 2.1. Observing our priori estimate, we can see that

sup
t∈[0,T )

∥ρ(t)∥W 1,∞(Rd) + ∥c(t)∥W 2,∞(Rd)

controls blow-up. In other words, for (ρ0, c0) satisfying (1.1) and (1.2), we

have corresponding solution (ρ, c) satisfying (1.3) on [0, T ] as long as

∥ρ(t)∥W 1,∞(Rd) + ∥c(t)∥W 2,∞(Rd) <∞ on [0, T ]. (2.9)

We can also ensure (∇ρ,∇c) ∈ L∞ ([0, T ]; (H∞ ×H∞)(Rd)
)
if (ρ0, c0) fur-

ther satisfies (∇ρ0,∇c0) ∈ (H∞ ×H∞)(Rd) and (2.9) holds.
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2.2 Existence and Uniqueness

To begin with, the proof of existence can be done using the standard argu-

ment, such as viscous approximation (refer to [9] for instance).

To prove uniqueness, we assume that there exist two solutions (ρi, ci)

(i = 1, 2) on [0, T ] to (H-KS) satisfying (1.3) and (ρ1(t = 0), c1(t = 0)) =

(ρ2(t = 0), c2(t = 0)). We denote

qi = −∇ci
ci

(i = 1, 2), ρ̃ := ρ1 − ρ2, c̃ := c1 − c2, and q̃ := q1 − q2.

From the equation of ρ̃:

∂tρ̃ = ∇ρ̃ · q1 + ρ̃∇ · q1 +∇ρ2 · q̃ + ρ2∇ · q̃, (2.1)

and the equation of q̃:

∂tq̃ = ∇ρ̃, (2.2)

we have
1

2

d

dt

(
∥ρ̃∥2L2 + ∥√ρ2q̃∥2L2

)
= I + II + III + IV.

with

I =

∫
ρ̃∇ρ̃ · q1 +

∫
ρ̃2∇ · q1,

II =

∫
ρ̃∇ρ2 · q̃ +

∫
ρ̃ρ2∇ · q̃,

III =
1

2

∫
|q̃|2∇ · (ρ2q2),

and

IV =

∫
ρ2q̃ · ∇ρ̃.

Using the integration by parts on the first term of I, we estimate

I =
1

2

∫
∇
(
ρ̃2
)
· q1 +

∫
ρ̃2∇ · q1

= −1

2

∫
ρ̃2∇ · q1 +

∫
ρ̃2∇ · q1

=
1

2

∫
ρ̃2∇ · q1

≤ ∥q1∥W 1,∞∥ρ̃∥2L2 .
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The integration by parts also gives the cancellation of II + IV:

II + IV = 0.

Also, we have

III ≤
∥∥ρ−1

2

∥∥
L∞∥√ρ2q̃∥2L2∥ρ2∥W 1,∞∥q2∥W 1,∞ .

Note that ∥q1∥W 1,∞ , ∥ρ2∥W 1,∞ , ∥q2∥W 1,∞ , and
∥∥ρ−1

2

∥∥
L∞ are all bounded, and

therefore,
1

2

d

dt

(
∥ρ̃∥2L2 + ∥√ρ2q̃∥2L2

)
≲ ∥ρ̃∥2L2 + ∥√ρ2q̃∥2L2 .

Since
(
∥ρ̃∥2L2 +

∥∥√ρ2q̃∥∥2L2

)
(0) = 0, we conclude that

(
∥ρ̃∥2L2 +

∥∥√ρ2q̃∥∥2L2

)
(t) =

0 for t ∈ [0, T ]. To show c̃(t) = 0 for t ∈ [0, T ], we consider the equation of c̃:

∂tc̃ = −µ (c̃ρ1 + c2ρ̃) = −µc̃ρ1.

The second equality follows from ρ̃ = 0 on [0, T ]. Thus using the Grönwall’s

inequality, ˜c(t) = 0 on [0, T ]. 2

Remark 2.2. As we can see from the above proof, we are able to prove that

the solution is unique on [0, T ] as long as the solution satisfies

∥ρ(t)∥W 1,∞(Rd) + ∥c(t)∥W 2,∞(Rd) <∞ on [0, T ].
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Chapter 3

Sufficient conditions of data for

finite-time blow-up in R

In this chapter, we prove Theorem 2 with the aid of Riemann invariants.

Henceforth, we always assume that initial data (ρ0, c0) satisfies (1.1), (1.4a)-

(1.4c).

We firstly show the existence of finite time T ∗ > 0 such that

lim
t→T ∗

(
∥ρ(t)∥W 1,∞(R) + ∥c(t)∥W 2,∞(R)

)
= ∞. (3.1)

Then we prove that the solution actually satisfies (1.5) for t ∈ [0, T ∗].

Now we begin the proof. Suppose, on the contrary, that for any finite time

T > 0, the unique solution corresponding to these initial data satisfies

∥ρ(t)∥W 1,∞(R) + ∥c(t)∥W 2,∞(R) <∞ on [0, T ]. (3.2)

Recall that (3.2) is sufficient to guarantee that (ρ, c) is smooth and unique,

and has the positive lower bounds on [0, T ] by Remark 2.1 and Remark 2.2.

Abusing the notation only in this chapter, we denote q := ∂xc
c

(not q = −∂xc
c
),

and change (H-KS’) into the matrix form:

∂t

(
ρ

q

)
+

(
q ρ

1 0

)
∂x

(
ρ

q

)
=

(
0

0

)
.

Note that

(
q ρ

1 0

)
has eigenvalues: λ1(ρ, q) =

q−
√

q2+4ρ

2
, λ2(ρ, q) =

q+
√

q2+4ρ

2
,

18
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and corresponding eigenvectors: r1(ρ, q) =

(
q−
√

q2+4ρ

2
, 1

)
, r2(ρ, q) =

(
q+
√

q2+4ρ

2
, 1

)
.

We can regard λi and ri (i = 1, 2) as functions on Ω := {(z1, z2) ⊂ R2 : z1 > 0}.

We now construct a new coordinate system w on Ω, called Riemann

invariants.

Lemma 3.1. There exists a global diffeomorphism w : Ω → w(Ω) ⊂ R2 such

that on Ω,

• ∇wi · ri = 0 (i = 1, 2), (3.3a)

• ∂w1

∂z1
> 0,

∂w2

∂z1
< 0. (3.3b)

Proof. We firstly solve the following PDE on Ω:∂z2f1 (z1, z2) +
z2 −

√
z22 + 4z1
2

∂z1f1 (z1, z2) =
1√

z22 + 4z1
f1 (z1, z2) ,

f1(z1,−1) = ez1 .
(3.4)

Evaluating along the characteristic ϕ1(z1, z2) defined by∂z2ϕ1 (z1, z2) =
z2 −

√
z22 + 4ϕ1(z1, z2)

2
,

ϕ(z1,−1) = z1,

we can check that f1 is smooth and f1 > 0 on Ω. Furthermore, since (3.4)

implies that

∂z2f1 (z1, z2) = ∂z1

(
−z2 +

√
z22 + 4z1
2

f1 (z1, z2)

)
,

the Poincare lemma ensures the existence of a smooth function w1 : Ω → R
satisfying

∂w1

∂z1
= f1 (z1, z2) ,

∂w1

∂z2
=

−z2 +
√
z22 + 4z1
2

f1 (z1, z2) . (3.5)

This gives us that ∇w1 · r1 = 0.
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Similarly, with the aid of the characteristic ϕ2(z1, z2) defined by∂z2ϕ2 (z1, z2) =
z2 +

√
z22 + 4ϕ1(z1, z2)

2
,

ϕ(z1,−1) = z1,

we can obtain a negative smooth function f2 defined on Ω solving∂z2f2 (z1, z2) +
z2 +

√
z22 + 4z1
2

∂z1f1 (z1, z2) = − 1√
z22 + 4z1

f2 (z1, z2) ,

f1(z1, 1) = −ez1 .
(3.6)

Since (3.6) implies that

∂z2f2 (z1, z2) = ∂z1

(
−z2 +

√
z22 + 4z1
2

f2 (z1, z2)

)
,

the Poincare lemma again implies that there exists a smooth function w2 :

Ω → R satisfying

∂w2

∂z1
= f2 (z1, z2) ,

∂w2

∂z2
= −z2 +

√
z22 + 4z1
2

f2 (z1, z2) ,

which yields ∇w2 · r2 = 0.

Now we show that w = (w1, w2) : Ω → w(Ω) ⊂ R2 is a global diffeomor-

phism. Since f1 > 0, f2 < 0, and

∇w =


∂w1

∂z1

∂w1

∂z2
∂w2

∂z1

∂w2

∂z2

 =

f1(z1, z2) f1(z1, z2)
−z2 +

√
z22 + 4z1
2

f2(z1, z2) − f2(z1, z2)
z2 +

√
z22 + 4z1
2

 , (3.7)

we have

det (∇w) = −f1(z1, z2)f2(z1, z2)
√
z22 + 4z1 > 0 on Ω,

so that the inverse function theorem implies that w is a local diffeomorphism.

Thus, it suffices to prove that w is (globally) one-to-one. Suppose, on the

contrary, that w(z̄1, z̄2) = w(z̃1, z̃2) for some (z̄1, z̄2) ̸= (z̃1, z̃2). Then by the
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mean value theorem, there exist two points (z∗1 , z
∗
2) and (z∗∗1 , z

∗∗
2 ) lying on

the line segment with endpoints (z̄1, z̄2) and (z̃1, z̃2) such that

0 = w1(z̄1, z̄2)− w1(z̃1, z̃2)

= ∇w1|(z∗1 ,z∗2 ) · (z̄1 − z̃1, z̄2 − z̃2)

= f1(z
∗
1 , z

∗
2)(z̄1 − z̃1) + f1(z

∗
1 , z

∗
2)
−z∗2 +

√
z∗2

2 + 4z∗1
2

(z̄2 − z̃2),

(3.8)

and

0 = w2(z̄1, z̄2)− w2(z̃1, z̃2)

= ∇w2|(z∗∗1 ,z∗∗2 ) · (z̄1 − z̃1, z̄2 − z̃2)

= f2(z
∗∗
1 , z

∗∗
2 )(z̄1 − z̃1)− f2(z

∗∗
1 , z

∗∗
2 )

z∗∗2 +
√
z∗∗2

2 + 4z∗∗1
2

(z̄2 − z̃2).

(3.9)

If z̄1 < z̃1 and z̄2 ≤ z̃2, then (3.8) is less than 0, which is a contradiction. If

z̄1 < z̃1 and z̄2 > z̃2, then (3.9) is less than 0, which is also a contradiction.

We can similarly derive contradictions in the other cases, which implies that

(z̄1, z̄2) = (z̃1, z̃2).

Remark 3.1. Lemma 3.1 enables us to write that for (z1, z2) ∈ Ω,

λi(z1, z2) =
(
λi ◦ w−1

)
(w1(z1, z2), w2(z1, z2)) , (i = 1, 2),

and ensures that each λi has the same regularity with λi ◦ w−1. Henceforth,

we identify λi defined on Ω with λi ◦ w−1 defined on w(Ω), and regard λi as

a function of (w1, w2) ∈ w(Ω) as well as (z1, z2) ∈ Ω.

Defining a pair of functions (P,Q) : R× [0,∞) → w(Ω) by

P (x, t) = w1(ρ(x, t), q(x, t)), Q(x, t) = w2(ρ(x, t), q(x, t)),

we can check that (P,Q) solves{
∂tP + λ2(ρ, q)∂xP = 0,

∂tQ+ λ1(ρ, q)∂xQ = 0,
(3.10)

with the aid of (3.3a). Since this is Theorem 1 in Section 11.3 of [6], we omit

the details.

For the proof of Theorem 2, we need two key ingredients.
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Lemma 3.2. There exists a universal constant δ0 > 0 such that

∂λ2
∂w1

(P (x, t), Q(x, t)) ≥ δ0 in R× [0,∞).

Proof. To begin with, we claim that

∂λ2
∂w1

> 0 on w(Ω). (3.11)

Indeed, since (3.7) provides us with
∂z1
∂w1

∂z1
∂w2

∂z2
∂w1

∂z2
∂w2

 = (∇w)−1 =


z2 +

√
z22 + 4z1

2f1(z1, z2)
√
z22 + 4z1

−z2 +
√
z22 + 4z1

2f2(z1, z2)
√
z22 + 4z1

1

f1(z1, z2)
√
z22 + 4z1

−1

f2(z1, z2)
√
z22 + 4z1

 ,

we have

∂λ2
∂w1

=
∂λ2
∂z1

∂z1
∂w1

+
∂λ2
∂z2

∂z2
∂w1

=
z2 +

√
z22 + 4z1

f1(z1, z2)(z22 + 4z1)
> 0.

Evaluating along the characteristics defined by each λi(ρ, q) (i = 1, 2), we

obtain from (3.10) that

P (R× [0,∞)) = P0 (R) = w1 (ρ0 (R) , q0 (R)) = w1

(
ρ0 (R) ,

∂xc0
c0

(R)
)
,

and

Q (R× [0,∞)) = Q0 (R) = w2 (ρ0 (R) , q0 (R)) = w2

(
ρ0 (R) ,

∂xc0
c0

(R)
)
,

where P0(x) := P (x, 0) and Q0(x) := Q(x, 0). Since each wi is smooth and

both ρ0 (R) and ∂xc0
c0

(R) are compact by the assumptions (1.1), (1.4a), and

(1.4b), P (R× [0,∞)) and Q (R× [0,∞)) are also compact. Thus, (3.11) and

the smoothness of ∂λ2

∂w1
ensure the existence of the desired δ0 > 0.

Lemma 3.3. Let x0 be a point satisfying (1.4c). Then

∂xP0(x0) < 0.
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Proof. By (3.5), (3.3b), (1.1), and (1.4c), we compute at x0

∂xP0 =
∂w1

∂z1
∂xρ0 +

∂w1

∂z2
∂xq0

= f1(ρ0, q0) ∂xρ0 + f1(ρ0, q0)
−q0 +

√
q20 + 4ρ0
2

c0∂xxc0 − (∂xc0)
2

c20
< 0.

We are now in the position to prove Theorem 2. We use a similar argument

to the proof of Theorem 2 in section 11.3 of [6]. Let x0 be the point from

(1.4c), and let xλ2(t) be the characteristic curve defined by λ2(ρ, q) with

initial value xλ2(0) = x0. Note that P (xλ2(t), t) = P0(x0) for t ≥ 0. For the

simplicity, we write P̃ := ∂xP , Q̃ := ∂xQ, and P̃λ2(t) := ∂xP (xλ2(t), t). Then

(3.10) implies that

∂tP̃ + λ2∂xP̃ +
∂λ2
∂w1

P̃ 2 +
∂λ2
∂w2

P̃ Q̃ = 0,

and

∂tQ+ λ2∂xQ = (λ2 − λ1)Q̃.

Combining these, we obtain

∂tP̃ + λ2∂xP̃ +
∂λ2
∂w1

P̃ 2 +

[
1

λ2 − λ1

∂λ2
∂w2

(∂tQ+ λ2∂xQ)

]
P̃ = 0.

Defining a function Φ(t) by

Φ(t) := exp

{(∫ t

0

1

λ2 − λ1

∂λ2
∂w2

(∂tQ+ λ2∂xQ) (xλ2(s), s) ds

)}
,

we have

Φ(t) = exp

{(∫ t

0

d

ds
Ψ(s) ds

)}
= exp{(Ψ(t)−Ψ(0))},

where

Ψ(s) :=

∫ Q(xλ2
(s),s)

0

1

λ2 − λ1

∂λ2
∂w2

(P0(x0), v) dv.
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Since 1
λ2−λ1

∂λ2

∂w2
is smooth and Q (R× [0,∞)) is compact as we saw in the

proof of Lemma 3.2, there exist two constants mΦ, MΦ such that

0 < mΦ ≤ Φ(t) ≤MΦ for all t ≥ 0. (3.12)

Thus, multiplying P̃λ2 by Φ and differentiating it with respect to time, we

obtain the following ODE:

d

dt

(
P̃λ2Φ

)
= − ∂λ2

∂w1

P̃ 2
λ2
Φ,

so that Lemma 3.2 and (3.12) yield

d

dt

(
P̃λ2Φ

)
≤ − δ0

MΦ

(
P̃λ2Φ

)2
.

Since P̃λ2(0) = ∂xP0(x0) < 0 by Lemma 3.3, there exists a finite time T ∗ > 0

such that

P̃λ2(t) ≤
MΦP̃λ2(0)

MΦ + P̃λ2(0)δ0t
→ −∞ as t→ T ∗. (3.13)

On the other hand, we claim that there exist two constants mf1 , Mf1 such

that

0 < mf1 ≤ f1(ρ(x, t), q(x, t)) ≤Mf1 for (x, t) ∈ R× [0,∞). (3.14)

Indeed, f1(ρ(x, t), q(x, t)) = (f1 ◦ w−1)(P (x, t), Q(x, t)), so that (3.14) fol-

lows from the smoothness of f1 and the compactness of P (R× [0,∞)) and

Q (R× [0,∞)) as in the proof of Lemma 3.2. Hence (3.2) and (3.14) give∥∥∥P̃ (T ∗)
∥∥∥
L∞

= ∥∂xP (T ∗)∥L∞

=

∥∥∥∥∥f1(ρ(T ∗), q(T ∗))

(
∂xρ(T

∗) + ∂xq(T
∗)
−q(T ∗) +

√
q2(T ∗) + 4ρ(T ∗)

2

)∥∥∥∥∥
L∞

<∞,

which is a contradiction to (3.13). This shows (3.1).

Now we prove the solution (ρ, c) satisfies (1.5). Note that we have

∥ρ(t)∥W 1,∞(R) + ∥c(t)∥W 2,∞(R) <∞
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on [0, T ∗). This ensures (ρ, c) is smooth and unique, and has the positive

lower bounds on [0, T ∗) by Remark 2.1 and Remark 2.2. Then we again

define (P,Q) : R× [0, T ∗) → w(Ω) by

P (x, t) = w1(ρ(x, t), q(x, t)), Q(x, t) = w2(ρ(x, t), q(x, t)).

(In this time, we defined (P,Q) on time interval [0, T ∗).) Using the charac-

teristic defined by each λi(ρ, q) (i = 1, 2), we can check from (3.10) that

P (R× [0, T ∗)) = P0 (R) = w1 (ρ0 (R) , q0 (R)) = w1

(
ρ0 (R) ,

∂xc0
c0

(R)
)
,

and

Q (R× [0, T ∗)) = Q0 (R) = w2 (ρ0 (R) , q0 (R)) = w2

(
ρ0 (R) ,

∂xc0
c0

(R)
)
,

so that P (R× [0, T ∗)) and Q (R× [0, T ∗)) are compact. Hence, noticing

(ρ, q) = w−1◦(P,Q) and w : Ω → w(Ω) is a global diffeomorphism, ρ (R× [0, T ∗))×
q (R× [0, T ∗)) is also compact. This implies that

sup
t∈[0,T ∗)

(
∥ρ(t)∥L∞(R) + ∥q(t)∥L∞(R)

)
<∞.

From

∂tc = −µcρ,

we have

sup
t∈[0,T ∗)

∥c(t)∥L∞(R) <∞.

Moreover, recalling q = ∂xc
c
, we obtain

sup
t∈[0,T ∗)

∥∂xc(t)∥L∞(R) <∞.

This completes the proof of Theorem 2. 2
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In this section, we prove Theorem 3 and Corollary 3.1. We firstly derive the

finite propagation speed of (H-KS).

Lemma 4.1 (Finite propagation speed). Let (ρi, ci) (i = 1, 2) be two solu-

tions of (H-KS) corresponding to initial data (ρi,0, ci,0) satisfying (1.1) such

that

A := sup
t∈[0,T ∗)

(
∥ρ2(t)∥L∞(Rd) + ∥∇ log c1(t)∥L∞(Rd)

)
<∞

and

∥ρi(t)∥W 1,∞(Rd) + ∥ci(t)∥W 2,∞(Rd) <∞ (i = 1, 2)

for t ∈ [0, T ∗). Suppose that (ρ1,0, c1,0) = (ρ2,0, c2,0) in a ball BA,T ∗(x̄), where

BA,T ∗(x̄) := {x : |x− x̄| ≤ 6AdT ∗} .

Then (ρ1, c1) = (ρ2, c2) within a cone KA,T ∗(x̄), where

KA,T ∗(x̄) := {(x, t) : 0 ≤ t ≤ T ∗, |x− x̄| ≤ 6Ad(T ∗ − t)} .

Proof. Note that Remark 2.1 and Remark 2.2 imply our assumptions are

sufficient to guarantee that the solution is smooth, unique, and has positive

lower bounds on [0, T ∗). We denote

qi = −∇ci
ci

(i = 1, 2), ρ̃ := ρ1 − ρ2, c̃ := c1 − c2, and q̃ := q1 − q2.
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Define a local energy

E(t) :=
1

2

(
∥ρ̃(t)∥2

L2(BA,T∗−t(x̄)) + ∥√ρ2q̃(t)∥2L2(BA,T∗−t(x̄))

)
,

where

BA,T ∗−t(x̄) := {x : |x− x̄| ≤ 6Ad(T ∗ − t)} .

Recalling (2.1) and (2.2), we compute

d

dt
E(t) = I + II + III + IV− 3Ad

(∫
∂BA,T∗−t(x̄)

ρ̃2 +

∫
∂BA,T∗−t(x̄)

ρ2|q̃|2
)

with

I =

∫
BA,T∗−t(x̄)

ρ̃∇ρ̃ · q1 +
∫
BA,T∗−t(x̄)

ρ̃2∇ · q1,

II =

∫
BA,T∗−t(x̄)

ρ̃∇ρ2 · q̃ +
∫
BA,T∗−t(x̄)

ρ̃ρ2∇ · q̃,

III =
1

2

∫
BA,T∗−t(x̄)

|q̃|2∇ · (ρ2q2),

and

IV =

∫
BA,T∗−t(x̄)

ρ2q̃ · ∇ρ̃.

Using the integration by parts on the first term of I, we have

I =
1

2

∫
BA,T∗−t(x̄)

∇
(
ρ̃2
)
· q1 +

∫
BA,T∗−t(x̄)

ρ̃2∇ · q1

= −1

2

∫
BA,T∗−t(x̄)

ρ̃2∇ · q1 +
1

2

∫
∂BA,T∗−t(x̄)

ρ̃2

(
d∑

k=1

(q1)k

)
+

∫
BA,T∗−t(x̄)

ρ̃2∇ · q1

≤ Ad

2

∫
∂BA,T∗−t(x̄)

ρ̃2 + ∥q1∥W 1,∞∥ρ̃∥2
L2(BA,T∗−t(x̄)),

where in the second line, we used the notation q1 = ((q1)1, · · · , (q1)d). After
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integrating by parts, we employ the Cauchy inequality to obtain

II + IV =

∫
∂BA,T∗−t(x̄)

ρ2

(
d∑

i=1

(q̃)i

)
ρ̃

≤
∫
∂BA,T∗−t(x̄)

ρ2ρ̃
2 + ρ2

(
d∑

k=1

(q̃)k

)2

≤ 2Ad

∫
∂BA,T∗−t(x̄)

ρ̃2 + ρ2|q̃|2.

For III, we have

III ≤
∥∥ρ−1

2

∥∥
L∞∥√ρ2q̃∥2L2(BA,T∗−t(x̄))∥ρ2∥W 1,∞∥q2∥W 1,∞ .

Combining all, we arrive at

d

dt
E(t) ≤

(
∥q1∥W 1,∞ +

∥∥ρ−1
2

∥∥
L∞∥ρ2∥W 1,∞∥q2∥W 1,∞

)
E(t)

for t ∈ [0, T ∗). But since E(0) = 0, E(t) = 0 for t ∈ [0, T ∗]. To show c̃ = 0 in

KA,T ∗(x̄), we consider the equation of c̃:

∂tc̃ = −µ (c̃ρ1 + c2ρ̃) = −µc̃ρ1,

where the second equality follows from ρ̃ = 0 in KA,T ∗(x̄). With the same

argument as above, we can show that c̃(t) = 0 for t ∈ [0, T ∗].

Proof of Theorem 3. We divide our proof into R and Rd (d ≥ 2) cases.

Case 1. R :

We consider initial data (ρ10, c
1
0) defined by

ρ10 := ρ̄+ ψ and c10 := c̄+ ψ, (4.1)

where ρ̄, c̄ > 0 are constants to be determined later, and ψ : R → [0, 1] is a

smooth bump function such that

ψ(x) =

{
1 (|x| ≤ 1),

0 (|x| ≥ 2).
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Then as we have seen in Remark 1.1, (ρ0, c0) satisfies all of the conditions

given in Theorem 2, so that the corresponding solution (ρ1, c1) blows up at

some time T ∗. The proof consists of two steps. In Step 1, we prove that

the blow-up actually occurs on a bounded interval in R. Then in Step 2, we

rescale the solution to make it blow up within any given interval.

Step 1. To get information for the region where the blow-up occurs, we

make use of Lemma 4.1. Noticing (ρ10, c
1
0) = (ρ̄, c̄) on R\(−2, 2) and the

corresponding solution to (ρ̄, c̄) is (ρ̄, c̄e−µρ̄t), Lemma 4.1 implies (ρ1, c1) =

(ρ̄, c̄e−µρ̄t) in{
(x, t) ∈ (R\(−2, 2))× [0, T ∗] : x ≤ −2− 6A1t or x ≥ 2 + 6A1t

}
,

where

A1 = ρ̄+ sup
t∈[0,T ∗)

∥∥∇ log c1(t)
∥∥
L∞(R). (4.2)

(Note that supt∈[0,T ∗) ∥∇ log c1(t)∥L∞(R) is clearly bounded due to (1.5) in

Theorem 2.) Hence, we can conclude that our blow-up of (ρ1, c1) occurs on

(−2− 6A1T ∗, 2 + 6A1T ∗)× {t = T ∗}.

Remark 4.1. In this Step 1, we have not given any restriction to ρ̄ and c̄.

In other words, for any constants ρ̄, c̄ > 0, we can show the blow-up region

is bounded. This fact will be used in the proof of Corollary 3.1.

Step 2. It suffices to consider the case when the center of the interval is

the origin since (H-KS) is translation invariant. Let (−r, r) be any interval.

Our aim is to rescale (ρ1, c1) so that the blowup occurs within (−r, r). Since
(ρ1, c1) is a solution of (H-KS), we can check that (ρ1a, c

1
a) is also a solution

of (H-KS), where

ρ1a(x, t) := a2ρ1(ax, a2t), c1a(x, t) := c1(ax, a2t) (a > 0).

Then since

ρ1a(x, 0) = a2(ρ̄+ ψ(ax)), c1a(x, 0) = c̄+ ψ(ax),

and (ρ1a(x, 0), c
1
a(x, 0)) = (a2ρ̄, c̄) on R\

(
− 2

a
, 2
a

)
, Lemma 4.1 implies (ρ1a, c

1
a) =

(a2ρ̄, c̄e−µa2ρ̄t) in{
(x, t) ∈

(
R\
(
−2

a
,
2

a

))
×
[
0,
T ∗

a2

]
: x ≤ −2

a
− 6A1

at or x ≥ 2

a
+ 6A1

at

}
,
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where

A1
a := a2ρ̄+ sup

t∈[0, T∗
a2

)

∥∥∇ log c1a(t)
∥∥
L∞(R) = a2ρ̄+ a sup

t∈[0,T ∗)

∥∥∇ log c1(t)
∥∥
L∞(R).

Hence, (ρ1a, c
1
a) blows up on

(
− 2

a
− 6A1

aT
∗

a2
, 2
a
+ 6A1

aT
∗

a2

)
×
{
t = T ∗

a2

}
. Note that

2

a
+

6A1
aT

∗

a2
=

2

a
+ ρ̄+

6 supt∈[0,T ∗) ∥∇ log c1(t)∥L∞(R)T
∗

a
.

Thus, if we choose sufficiently small ρ̄ and large a, we can make the blow-up

occur within (−r, r) ∈ R.

Case 2. Rd (d ≥ 2) :

We shall use the same notation as the above Case 1. We choose initial data

(ρ0, c0) defined by

ρ0(x) := ψ(x1)
d∏

k=2

ψ(δxk) + ρ̄, c0(x) := ψ(x1)
d∏

k=2

ψ(δxk) + c̄, (4.3)

where ρ̄, c̄ > 0 are any constants and δ > 0 is a small constant to be de-

termined later. Note that (ρ0, c0) satisfies (1.1) and (∇ρ0,∇c0) ∈ (H∞ ×
H∞)(Rd). We aim to show that the corresponding solution (ρ, c) undergoes

lim
t→T ∗

(
∥ρ(t)∥W 1,∞(Rd) + ∥c(t)∥W 2,∞(Rd)

)
= ∞

for some T ∗ > 0. Suppose, toward the contradiction, that (ρ, c) satisfies

∥ρ(t)∥W 1,∞(Rd) + ∥c(t)∥W 2,∞(Rd) <∞ on [0, T ] (4.4)

for any T > 0. Recall that (4.4) is sufficient to guarantee that (ρ, c) has the

positive lower bounds and is unique and smooth on [0, T ] by Remark 2.1 and

Remark 2.2.

On the other hand, we consider another initial data (ρ∗0, c
∗
0) : Rd → Ω

defined by

ρ∗0(x) := ρ10(x1), c∗0(x) := c10(x1).
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Recalling (4.1), we can notice (ρ0, c0) = (ρ∗0, c
∗
0) in {x : |xk| ≤ δ−1, k = 2, · · · , d}.

Moreover, we observe that the unique solution (ρ∗, c∗) : Rd → Ω correspond-

ing to (ρ∗0, c
∗
0) is

(ρ∗(x, t), c∗(x, t)) = (ρ1(x1, t), c
1(x1, t)).

Indeed, we can check that (ρ∗, c∗) solves (H-KS) in Rd and the uniqueness is

ensured by Remark 2.2. Hence, recalling Step 1 in the proof of Case 1, (ρ∗, c∗)

blows up in {|x| ≤ 2 + 6A1T ∗}× {t = T ∗}. Our strategy is to compare (ρ, c)

with (ρ∗, c∗) by employing Lemma 4.1. Define A by

A := sup
t∈[0, T ∗)

(
∥ρ(t)∥L∞(Rd) + ∥∇ log c∗(t)∥L∞(Rd)

)
.

Note that supt∈[0, T ∗) ∥ρ(t)∥L∞(Rd) <∞ by our assumption (4.4), and

supt∈[0, T ∗) ∥∇ log c∗(t)∥L∞(Rd) < ∞ by (1.5). Then Lemma 4.1 asserts that

if (ρ0, c0) = (ρ∗0, c
∗
0) in {x : |x| ≤ 2 + 6A1T ∗ + 6AdT ∗}, then (ρ, c) = (ρ∗, c∗)

within {(x, t) : 0 ≤ t ≤ T ∗, |x| ≤ 2 + 6A1T ∗ + 6Ad(T ∗ − t)}, where A1 is the

constant defined in (4.2).

Since (ρ0, c0) = (ρ∗0, c
∗
0) in {x : |xk| ≤ δ−1, k = 2, · · · , d}, if we choose suf-

ficiently small δ satisfying

2 + 6A1T ∗ + 6AdT ∗ ≤ δ−1,

Lemma 4.1 guarantees (ρ, c) = (ρ∗, c∗) within

{(x, t) : 0 ≤ t ≤ T ∗, |x| ≤ 2 + 6A1T ∗ + 6Ad(T ∗ − t)}. In particular, (ρ, c) =

(ρ∗, c∗) in

{|x| ≤ 2 + 6A1T ∗}×{t = T ∗}. But since (ρ∗, c∗) blows up in {|x| ≤ 2 + 6A1T ∗}×
{t = T ∗}, this is a contradiction to (4.4). This completes the proof of Theo-

rem 3.

Proof of Corollary 3.1. We construct the desired initial data by slightly chang-

ing (4.3): we redefine (ρ0, c0) as follows:

ρ0(x) := δNψ(x1)
d∏

k=2

ψ(δxk) + ρ̄, c0(x) := δNψ(x1)
d∏

k=2

ψ(δxk) + c̄.

for large N . Here ρ̄, c̄ > 0 are any constants. Recalling our proof of the above

Case 2, we needed the smallness of δ. Thus we can control δ,N so that our
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new (ρ0, c0) satisfies (1.8), and then proceed as we did in the above proof of

Case 2 to obtain the finite blow-up result. We omit the details.
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국문초록

이 논문은 Rd (d ≥ 1)에서 다음과 같은 로그 민감로를 갖는 쌍곡 Keller-Segel

소비 유형 시스템에 대해 다룬다.

∂tρ = −χ∇ · (ρ∇ log c) , ∂tc = −µcρ (χ, µ > 0)

우리는 먼저 영이 아닌 매끄러운 초기 데이터에 해당하는 매끄러운 해의 국

소적 존재성을 보인다. 다음으로 리만 불변량을 통해 d = 1 일 때 유한 시간

특이점 형성을 위한 초기 데이터의 몇 가지 조건을 제시한다. 그런 다음 모든

d ≥ 1에대해일부영이아닌 C∞ 데이터가유한한시간내에폭발할수있음을

증명한다. 따름정리로, 우리는 모든 d ≥ 1에 대해 유한한 시간 내에 폭발하는

모든 상수 평형 상태 근처에 초기 데이터를 건설한다.

주요어휘: Keller-Segel, 소비 유형, 유한시간 폭발, 리만 불변량

학번: 2021-20488
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