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Abstract

This paper deals with a hyperbolic Keller-Segel system of consumption type
with the logarithmic sensitivity

dp=—xV-(pVloge), 0Oc=—pcp (x, p>0)

in R? (d > 1) for nonvanishing initial data. This system is closely related to
tumor angiogenesis, an important example of chemotaxis. We firstly show the
local existence of smooth solutions corresponding to nonvanishing smooth ini-
tial data. Next, through Riemann invariants, we present some sufficient con-
ditions of this initial data for finite-time singularity formation when d = 1.
We then prove that for any d > 1, some nonvanishing C'*°-data can become
singular in finite time. Moreover, we derive detailed information about the
behaviors of solutions when the singularity occurs. In particular, this infor-
mation tells that singularity formation from some initial data is not because
¢ touches zero (which makes log ¢ diverge) but due to the blowup of C* x C*-
norm of (p, ¢). As a corollary, we also construct initial data near any constant
equilibrium state which blows up in finite time for any d > 1. Our results
are the extension of finite-time blow-up results in [9], where initial data is
required to satisfy some vanishing conditions. Furthermore, we interpret our
results in a way that some kinds of damping or dissipation of p are necessar-
ily required to ensure the global existence of smooth solutions even though
initial data are small perturbations around constant equilibrium states.
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Chapter 1

Introduction

Chemotaxis refers to the motion of biological cells toward a higher (or lower)
concentration of some chemical substance. Understanding and analyzing its
mechanism is crucial since it describes many ubiquitous biological and eco-
logical phenomena. After its first mathematical modeling by Patlak ([26])
and Keller-Segel ([12, 13]), there have been many variations in their models
to explain realistic phenomena more precisely. One of the greatly impor-
tant examples of chemotaxis is tumor angiogenesis, the new blood vessel
formation induced by tumor cells. To be precise, by releasing vascular en-
dothelial growth factor (VEGF), tumor cells induce endothelial cells to make
new blood vessels toward them. In order to model the mechanism of tumor
angiogenesis, the authors of [17] proposed the following system:

(P-KS)

dp =rAp—xV - (pVlogc),
e = —pcp.

Here, p denotes the density of endothelial cells, and ¢ represents the concen-
tration of VEGF that is consumed by the cells. k > 0 denotes the diffusion
coefficient of the cells, and x, # > 0 represent the intensity of chemotaxis
and the consumption rate of VEGF, respectively.

In this paper, we derive finite-time singularity formation of the following



CHAPTER 1. INTRODUCTION

Cauchy problem for a hyperbolic counterpart of (P-KS):

dp =—xV - (pVlogc),
Oyc = —pcp, (H-KS)
p(ZL‘,O) :pO(I)a C(IL‘,O) :CO(ZE),

for (z,t) € R? x (0,T) with d > 1. Our finite-time blow-up is not attributed
to ¢ — 0, which makes log ¢ — 0o, but due to divergence of C* x C?-norm of
(p, ¢). Moreover, our result considers initial data not touching zero, where in
the case of initial data vanishing at some point, finite-time blow-up can be
shown using propagation of certain degeneracy ([9]). To effectively discuss
the motivation for dropping Ap and the significant meanings of our results,
we first review some related previous results.

1.1 Previous works

(P-KS). There have been a lot of studies on the long-time dynamics of
(P-KS). In addition to its biological significance, (P-KS) contains a mathe-
matically interesting structure: logarithmic sensitivity, log c. Since log ¢ di-
verges at ¢ = 0, this sensitivity has given difficulties in analyzing (P-KS). To
overcome these, the Cole-Hopf transformation

q=——=—Vloge, (1.1)
c
and scalings
x—>—‘X'ux, t—>ﬁt, q— Kq
K

have been used to transform (P-KS) into

{&p = Ap+ V- (pg),

(P-KS")

We briefly review the main results of (P-KS’). Global existence of classical
solutions to (P-KS’) in a one-dimensional bounded domain was obtained
for small initial data in [30], and for large initial data in [27] and [20].

2



CHAPTER 1. INTRODUCTION

The paper [20] also showed that the solutions converge to their boundary
data at an exponential rate as time goes to infinity. In the one-dimensional
whole line R, the authors of [7] established the global existence of classi-
cal solutions to (P-KS’) for large initial data. Furthermore, the authors of
[19] showed that the global classical solutions for large initial perturbations
around constant equilibrium states in R converge to the equilibrium states
as time approaches infinity. The authors of [23] and [24] proved the non-
linear stability of traveling wave solutions, while the authors of [21] showed
the stability of composite waves. In multidimensional space, global existence
and long-time behaviors of classical solutions to (P-KS’) were obtained for
initial data near a constant equilibrium state. In two or three-dimensional
bounded domain €2, the paper [22] obtained the global existence and large-
time asymptotic behavior of classical solutions for initial data (pg, qo) satisfy-
ing [|(po — avg(po), 90)| (zrs x ;r3)(y < 1, Where avg(po) denotes the average of
po over €. The authors of [18] showed global well-posedness and long time be-
havior of classical solutions in R? (d > 2) when ||(po — p, qo) ks sy ray < 1
with s > 441 for some constant p > 0. The paper [8] generalized this results
to the critical Besov space B2 2(R%) x (B2 25 1(R?))? with d > 2 under

the assumption that ||(po — p, qo) < 1 is sufficiently small

d d d
HBQ—QX(BQ—Q,j—l)d

for some constant p > 0. In R3, the authors of [5] established global well-
posedness of classical solutions when [|(po — 9, o)l (12 g1yrsy < 1 for some

constant p > 0. Moreover, for the initial data satisfying ||(po — 2, q0)||(H2xH1)(R3) <

1, the paper [5] further derived decay property of the solutions. Later, the au-
thors of [28] obtained asymptotic decay rates of classical solutions in R? with
d = 2,3 under assumptions that (po—p, qo) € (H>*NH %) x (H*NH~*))(R%)
for some s € (0,%) and ||(po — §, o) || g1 i1 < 1
(cP-KS). We can compare (P-KS) with the following classical counterpart:
{@p = kAp—xV - (pVloge), (cP-KS)
Opc = MCAP»

where the main difference from (P-KS) is that p does not consume but pro-
duces c. Depending on the range of A, finite-time blow-up or global well-
posedness of (cP-KS) have been studied by many authors. Since our main
concerns are focused on the consumption type, we only list some references in

3



CHAPTER 1. INTRODUCTION

this direction. See [15, 16, 4] for finite-time singularity formation when A = 1,
and [4] for global regularity when A = 0. Some blow-up criteria and asymp-
totic behaviors of solutions can be found in [11, 1], and references therein.
Refer to [25] for numerical investigation.

(H-KS). The first attempt to drop Ap was from [3]. To be more precise, the
author of [3] considered

(dH-KS)

op =V - (pq) + p(1 —p),
atq = V/)a

where a term p(1— p) represents a logistic growth restriction. In other words,
the author considered the case with damping rather than dissipation of p.
In this system, the author of [3] obtained the existence of global smooth
solutions in R?* when [|(po — 1, qo) | g3 sy 2y < 1 and V x go = 0. Recently,
in [9] (see also [2]), the authors proved the finite-time singularity formation of
(H-KS) in R? in the case when initial data satisfies some vanishing condition.
To be precise, they showed that for initial data (pg, co) satisfying po(z¢) = 0
and Vpg(rg) = V() = 0 for some 2y € R?, there exists a time T* > 0
such that

lim (HP('J)HW’Z,%(W) + HC('at)“WZoo(Rd)) = . (1.2)

t—T*

1.2 Main results and Discussion

Our primary motivation for studying the hyperbolic version (H-KS) is that
finite-time singularity formation of (H-KS) could lead to rapid norm growth
of solutions to (P-KS) when the diffusion coefficient « is small. In fact, in
[17] where (P-KS) was initially derived, very small x was used, and numerical
simulations showed large norm growth. This kind of result can be found in
other hyperbolic-elliptic type Keller-Segel equations (see [29, 10]).

The previous works covered in the last section raise three interesting
questions:

Q1. Can we delete the vanishing condition of initial data in [9]? In other
words, is there any nonvanishing initial data leading to finite time sin-
gularity formation?
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Q2. If some nonvanishing initial data blows up at some finite time, then is
it because ¢ touches zero at some point, which makes logarithmic sensi-
tivity log ¢ blow up? Furthermore, can we get more detailed behaviors
of solutions than (1.2) at the blow-up time?

Q3. Compared with global regularity results near constant equilibrium states
for (P-KS) and (dH-KS), what happens to solutions of (H-KS) near
constant equilibrium states?

To the best of the author’s knowledge, there are no known answers to these
questions. The aim of this paper is to answer them. To begin with, our
physical motivation for Q1 is to consider non-vacuum states. Moreover, con-
sidering nonvanishing data, we can have an opportunity to deal with Q3. In
order to explain how difficult to answer Q1, we need to compare Q1 with
vanishing conditions in [9]: po(zo) = 0, Vpo(xo) = Veo(xg) = 0 for some
g € R% The authors of [9] employed propagation of these conditions to
prove the finite-time blow-up. Heuristically, if initial cells don’t exist at xg
but initial chemicals are abundant at g, cells would be concentrated fast
in the neighborhood of the point to consume the chemicals. But due to the
propagation of the vanishing conditions, cell density remains zero at the point
at which solutions blow up within some finite time. But this scenario does
not work in nonvanishing initial data, so we need to consider other scenarios
to deal with it.
To do so, in this note, we shall assume that initial data (po, cy) satisfies

(po; co) € (L™ x L) (RY),
po(z) > 1 >0, co(z)> [y >0 for some constants [y, fs.

(1.1)

Under this assumption, the dynamics of (H-KS) guarantees p,c > 0, and
JeOll o < llcol o < 0.

In order to investigate whether solutions to (H-KS) blow up at a finite
time, we firstly have to establish local well-posedness of (H-KS) for nonvan-
ishing initial data in R? with d > 1.

Theorem 1 (Local well-posedness for nonvanishing data). Let d > 1. As-
sume that the initial data (po, co) satisfies (1.1), and

(Vpo,Veo) € (H™ x H™)(RY)  for some m > g + 1. (1.2)
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Then there exist a time T > 0, time-dependent positive constants (1 (t), Pa(t),
and a unique solution (p,c) to (H-KS) such that

p(m,t) > 61(@7 C(.Clﬁ,t) > 62(75) on [OvT]>
(p,¢) € L ([0,T]; (L™ x L®)(RY), (1.3)
(Vp,Ve) € L ([0,T]; (H™ " x H™)(RY)).

Furthermore, if initial data satisfies (Vpo, Vo) € (H® x H*)(RY), then
the unique solution satisfies (Vp,Ve) € L ([0, T]; (H® x H*)(R?)), where
H>(RY) := ﬂkzo HMRY).

This local well-posedness result is not trivial but surprising because the
equation of p in (H-KS) contains two derivatives of logc. In order to over-
come the loss of regularity, we compare V™ p with ,/pV™*!log ¢ (rather than
V™ logc) and observe a cancellation of certain quantity which involves
highest derivatives. This idea was motivated by [9]. We shall prove Theorem
1 in Chapter 2.

Next, in Chapter 3, we present some sufficient conditions of nonvanishing
initial data for finite-time singularity formation when d = 1.

Theorem 2 (Sufficient conditions of data for finite-time blow-up in R).
Suppose that initial data (po,co) satisfies (1.1) with d =1,

o (Dupo, Dyco) € (H™ x H®)(R), (1.42)

® o, Co, and Oycqo attain their maximums and minimums at some points in R,

(1.4Db)
e J.po(w0) <0 and co(x0)0puco(m0) < (Opco(T0))? at some z9 € R, (1.4c)

Then there exists some finite time T* > 0 such that the unique solution (p, c)
to (H-KS) satisfies

2 (D + 1 Doy + 10108 e, ) < 00 (19
c , *

and

tim (11000 )l ) + 100l D)l ) = 00 (1.6)

t—T*

6
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Remark 1.1. There is a large class of functions satisfying (1.1) and (1.4a)-
(1.4c). For instance, let ¢ € CX°(R) be a smooth bump function such that

{1 (2] < 1),
0 (|2 >2).

Then we can find zo € R satisfying 0,10(xo) < 0 and 000 (xo) < 0. Hence
for any constants p, ¢ > 0, if we define

po:=p+¢Y and cy:=c+1Y, (1.7)
then we can check that (po, co) satisfies (1.1) and (1.4a)-(1.4c).

Theorem 2 answers to our Q1 and Q2 in one dimension. Regarding Q1,
nonvanishing initial data given in (1.7) leads to the finite-time blow-up. Fur-
thermore, for Q2, noticing |9, log (-, )| ooy < 00 on [0, 77] as we can see
in (1.5), we conclude that our singularity formation is not because ¢ touches
zero but derivatives of p and ¢ blow up as (1.6). To the best of the author’s
knowledge, it is the first time to show that the finite-time blow-up of systems
with logarithimic sensitivity is not attributed to the singularity from ¢ — 0.

The main difficulty of showing Theorem 2 lies in finding proper variables
to control the equation for p containing many derivatives. A key tool to solve
this problem is a diffeomorphic transformation w = (wy,ws) : @ — w(Q)
with ©Q := {(z1,22) CR?: 2y > 0}. This w is called Riemann invariants (re-
fer to [14] or [6] for instance). In addition to the general definition of Rie-
mann invariants, we consider w satisfying certain extra properties. Combining
these extra properties with our assumptions (1.1), (1.4a)-(1.4c), we deduce
the stated finite-time singularity formation by using newly defined variables:

wl(pa log C), ’LU2<p, lOg C)'
With the above one-dimensional result at hand, we finally prove the exis-
tence of a set of nonvanishing smooth initial data in R? with d > 1 making the

solution singular in finite time. Our result is divided into R and R (d > 2)
cases, respectively:

Theorem 3 (Finite-time blow-up in R9).



CHAPTER 1. INTRODUCTION

o Letd = 1. Then for any interval I C R, there exist some finite time
T* > 0 and initial data (po,co) satisfying (1.1) and (Vpo, Vo) € (H™ X
H*>)(R) such that the unique solution (p,c) to (H-KS) satisfies (1.5) and

11111 (Hamp( )HLoo([) + ||8mcc(-7t)||L°°(I)> - o

o Letd > 2. Then there exist some finite time T* > 0 and initial data
(po,co) satisfying (1.1) and (Vpo,Vey) € (H® x H®)(RY) such that the
unique solution (p,c) to (H-KS) satisfies
i, (1190 2)lyrosqsy + 1o, )lyass) = o0

t—T*

We need some remarks to interpret our results as well as to answer our
questions Q1 and Q2.

Remark 1.2. Our result in R tells us that we can control the region where
the finite-time blow-up occurs as we please. Hence we can obtain the same
blow-up result in torus T := R/7Z by making the singularity formed within
the interval (0,1) and extending the solution periodically.

Remark 1.3. Concerning R? with d > 2, our result does not give as much
information about blow-up as the 1D case. This is because we cannot make
use of Riemann invariants technique in the proof of the multi-dimension case.
However, noticing the previous remark, we can obtain the following result in
torus T := (R/Z)¢ for any d > 1:

There exist some finite time T* > 0 and initial data (po,co) € (C %
C>)(T4) such that the unique solution (p,c) to (H-KS) satisfies

2 (D e Dl + 19 108l Dl e ) < o0
E,*

and
Jim (1900 ) ety + [ 9268 ) = 00

Indeed, since Remark 1.2 guarantees a 1D solution (p'(x1,t), c'(x1,t)) de-
fined on T which blows up at some finite time, just defining (p(x,t),c(x,t)) :=
(p*(z1,t), cH(x1, 1)) for x € T?, we can check that (p(x,t), c(x,t)) is a solution
to (H-KS) which undergoes the same blow-up.

8
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The key of the proof of Theorem 3 is (1.5) which is responsible for the
finite propagation speed (Lemma 4.1). We prove Theorem 3 in Chapter 4.

Moreover, proceeding in the same manner as the proof of the previous
theorem, we can construct initial data near any constant equilibrium state
which blows up in finite time.

Corollary 3.1 (Finite-time blow-up near any constant equilibrium state in
R%). Let p > 0 be any constant equilibrium state. Then for anyd > 1, € > 0,
and integer m > 0, there exist some finite time T* > 0 and initial data
(po, co) satisfying (1.1), (Vpo, Vo) € (H*® x H*®)(R?), and

90 = Pl sgmay + 1108 coll gy < € (1)

such that the unique solution (p,c) to (H-KS) satisfies

lim <||p('at)”W1,w(Rd) + ||C("t)||W27OO(Rd)) = OoQ.

t—T*

This corollary gives us a surprising answer to our last question, Q3. Com-
paring this corollary with the aforementioned global regularity results near
constant equilibrium states for (P-KS) and (dH-KS), we conclude that some
kinds of damping or dissipation of p are essential to extend the local classical
solutions to global ones. The proof can be found in Chapter 4.

Notation

We employ the letter C' = C(a,b,--+) to denote any constant depending
on a,b, - -, which may change from line to line in a given computation. We
sometimes use A ~ B and A < B, which mean A = CB and A < CB,
respectively, for some constant C.



Chapter 2

Local well-posedness

In this chapter, we show Theorem 1. Under the transformation (1.1) and the
scalings

X
t—=vxut, q— \/;q,
(H-KS) becomes

(H-KS")
0rq = Vp.

We shall divide the proof into two steps, which correspond to a priori esti-

{&pz V- (pq),

mates and the existence and uniqueness of a solution.

2.1 A priori estimates

This section is devoted to a priori estimate for a solution (p,c) of (H-KS),
which is assumed to be sufficiently smooth, so that the following computation
can be justified. The equation of p in (H-KS’) gives

d
SilPlle S UVl eellall o + lloll el Vall
S (el e + 1Vl ) gl grm

(2.1)

10



CHAPTER 2. LOCAL WELL-POSEDNESS

where in the last inequality, we used the Sobolev embedding, H™ 1(R%) —
L>®(R9). Tt is clear that the equation of ¢ in (H-KS) implies

d
gl S loll o llell oo (2.2)

From the equation of p in (H-KS’), we can derive

0 () —a-V(p)==(V-a)(p).
Evaluating along the characteristics defined by —¢q, we obtain

d
dt ‘p_lHLoo S ||quL°°Hp_1HL°° S ||q||Hme—1HLoo' (2.3)

On the other hand, since the equation of ¢ in (H-KS) gives

i (¢7') = ppc™,

we have p
e e S ol fle™ ] (2.4)
From (H-KS’), we also obtain

1d

5 allalze < (IVollz: + llallz2) (2.5)

Applying V™ to the equation of p in (H-KS’) and taking L? inner product
with V™p, we compute

1d

s IVl =Lt [ (vt eg) v

with
I = / (V™ p-q) - V™p,

and

Igz/ Z Z Ve -Vig | Vmp.

1<|a]<m |al+|8l=m+1

11

. .
T 1] -



CHAPTER 2. LOCAL WELL-POSEDNESS

For I, the integration by parts gives

I, = —/(Vmpv-q)-vmp—ll,

so that we obtain
1

h=-3 / (V"V -q) - V" S IVl 72V all oo S IVl sl -

Using [ fgll e < 11l ool

L S (IVoll eIVl g + 1Vl gt [Vl o) V™l 2
S Vol gm IVl gms IV pll 2
2
S IVl gmllall gm-

e T I f s llgll o (s > 0), we estimate

Thus, we have

1d

sVl = [0V 0) 9 S Vel e (26)

On the other hand, using p > 0 and (H-KS’), we compute

5 S IVAV =T + 10,
with .

=5 [V (o0) (7",
and

I, = / pV"q - V" p.
For I1I;, we estimate

m 2
I SIV(e) |l V™ ql] 7
2
S Vol peollal oo + 1ol e IV all oo ) gl im
3
S ol oo + IVl gm—1) @] 5 -

Using the integration by parts, we compute
I, = — / (Vp-V™q)-V™"p— / (pV™ - q) -V,

12

-':rx I 'kl:l- 1_-]i



CHAPTER 2. LOCAL WELL-POSEDNESS

so that we have
Mt [ (59740 0) V" £ [Vl [l

Thus, we obtain
1d

52 VeV allz: +/(me“-® -V™p

3 2
S el e + 1Vl ) llalgm + IV ol grm— gl -

Adding (2.6) to (2.7), we have

(2.7)

d m (|2 m, |2 3 2
= (197 ol + IV al22) S el + 1Vl ) Nl IV Pl s Nl
With the same argument, we can obtain
d o k 2 k 2
=3 (Il + VAV all;.)
k=1

3 2
S el e + 1Vl ) llalgm + IV ol gm— gl -

(2.8)

We now define

Xon = Tl lele o™ e el 3 (19%15 + VAV el

k=1

Then, since

gl & Nlall 2+ | (V) VAV 12 S lldll a4/~ Ml e VAV ™l 2 S X,
(2.1)-(2.5), and (2.8) imply that

d
—Xm < X1

This shows that formally, there exists a time interval [0, 7] in which ||p||;«,
el 110~ el s 1V pll 1, @l 1] remain finite. Furthermore,
we can check that ||Vc¢|| ;. also remains finite on the same time interval,
noticing that the definition of ¢ ensures the existence of a constant C' =

C (llell g ™ I oo Nlallz7m) > 0 such that [ Vel < C.

13
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In order to show that (Vpg, Veg) € H* x H* implies (Vp(t, ), Ve(t, ) €
H> x H* on the same time interval, we use the induction argument. Assume

that [[pll e el oos 17 1 ooy 1€ poos IVl s, 1all g, and Vel are
finite on [0, T]. Then, using the cancellation as we did above, we can obtain

1d
24t (97 o2 + [VAV™ a2 ) =TT + T + 1V, + 1V,
with
I = / (Vm+2p . q) VT,
IIIQ ~ / Z Z Vap . V’Bq . vm+1p’
1<]a|<m+1 |a|+|fl=m+2
1
V1= 5/(V - (pq)) (V"*1g)?,
and

Iv2 — / (Vp . vm-i—lq) . vm-i-lp‘

For III;, using the integration by parts and the assumption that ||Vg||; . <
llg|l 7w < C, we have

m, = — / (V™0V -q) - V"™ < OV o

We decompose III; into
M1, = Tl + Iy,

with

11121%\/ Z Z vocp.vﬁq Vm+1p_|_/ Z Zvap.vﬁq 'Vm-Hp,
lo|=1 |B|]=m+1 lo|l=m+18|=1

and

mggz/ > > V-V |- vty

2<]a|<m |al+|B[=m+2

14



CHAPTER 2. LOCAL WELL-POSEDNESS

Noticing the assumption that ||[Vp|| .« S ||pll gm < Cand [V 0o S [l gm <
C, we estimate

1 S 97 197l S 197+ 97l
Since ||[Vep|l ;2 < [[V™p| 2 for 2 < |a| < m, |lq|| g < C again gives

My 5|97

Considering ||V - (pq)l| . < 19l llall o < €. we have

Vi g [Vl

Using ||[Vpll ;e S lIpllgm < C again, we estimate

IV [Vl IVl o S 1197 o2+ 1V e

Combining all, and noticing
197 allze = (V2 VOV ™ all i < /o~ ol VAT a1 S VY™l

we finally have arrived at

d
Il + vy als.) £ 9707 + VAV a3

Hence, the Gronwall’s inequality implies that |[V™p||,. and ||[V™q]|,.
remain finite on [0,7]. O

Remark 2.1. Observing our priori estimate, we can see that

Sup ||p(t)||le°°(]Rd) + ||C(t)||w2,oo(Rd)
tel0,T)

controls blow-up. In other words, for (po,co) satisfying (1.1) and (1.2), we
have corresponding solution (p, c) satisfying (1.3) on [0,T] as long as

1P 1,00 ety + @) lw2.oo ey < 00 0n [0, T]. (2.9)

We can also ensure (Vp,Ve) € L= ([0,T]; (H* x H®)(R?) if (po,co) fur-
ther satisfies (Vpy, Vo) € (H® x H®)(RY) and (2.9) holds.

15



CHAPTER 2. LOCAL WELL-POSEDNESS

2.2 Existence and Uniqueness

To begin with, the proof of existence can be done using the standard argu-
ment, such as viscous approximation (refer to [9] for instance).

To prove uniqueness, we assume that there exist two solutions (p;,¢;)
(1 = 1,2) on [0,7T] to (H-KS) satisfying (1.3) and (p1(t = 0),¢1(t = 0)) =
(p2(t = 0),ca(t = 0)). We denote

o VCZ'

&

qi = (i:1,2)7 pi=pL—p2, Ci=c —cy, and ¢:=q — G.

From the equation of p:

Op=Np-q+pV-q+Vpy-q+pV-4q, (2.1)
and the equation of ¢:
we have
1d /. .. 12
5 (181132 + I/psdl ) = T+ 10+ 1T+ 1V,
with
= [3¥5a+ [ 9 a
= [ 59+ [ 590
L[
I = 9 1G]7V - (p242),
and

IV = /ng-w.

Using the integration by parts on the first term of I, we estimate
5 [ V@) o [#9 0
——%/ﬁzv'%—i‘/ﬁzv'm

5 [V

<112
< lallwr< 1212

I=

16



CHAPTER 2. LOCAL WELL-POSEDNESS

The integration by parts also gives the cancellation of IT + IV:
IM+1V =0.
Also, we have

I < |03 | o /P21 2 02 s e oy

Note that [|g1]|yy1.005 |P2llypr100s [|G2]1131.00, a0 Hp2_1HL°° are all bounded, and
therefore,

1d /o . i »
5 (181132 + I/psila) S 13- + /sl

: . 112 . 12
Since (11717 + || v/72dll3: ) (0) = 0, we conclude that (|77 + || /7all3: ) (8) =
0 for t € [0, 7). To show ¢é(t) = 0 for ¢t € [0, 7], we consider the equation of ¢

8,56 = —u (6p1 + Cgﬁ) = —Mépl

The second equality follows from p = 0 on [0, 7. Thus using the Gronwall’s
inequality, ¢(t) =0 on [0,7]. O

Remark 2.2. As we can see from the above proof, we are able to prove that
the solution is unique on [0,T] as long as the solution satisfies

o) 1,00 ety + @) lw2.0o ey < 00 0n [0, T].

17
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Chapter 3

Sufficient conditions of data for
finite-time blow-up in R

In this chapter, we prove Theorem 2 with the aid of Riemann invariants.
Henceforth, we always assume that initial data (po, ¢o) satisfies (1.1), (1.4a)-
(1.4c).

We firstly show the existence of finite time 7™ > 0 such that
tim, (11900 e gy + () yzoe sy ) = 00- (3.1)

t—T*

Then we prove that the solution actually satisfies (1.5) for ¢ € [0, T™].
Now we begin the proof. Suppose, on the contrary, that for any finite time
T > 0, the unique solution corresponding to these initial data satisfies

1P 1,00y + 1) |20y < 00 00 [0, 7. (3.2)

Recall that (3.2) is sufficient to guarantee that (p, ¢) is smooth and unique,
and has the positive lower bounds on [0, 7] by Remark 2.1 and Remark 2.2.
Abusing the notation only in this chapter, we denote ¢ := % (not ¢ = —%),
and change (H-KS’) into the matrix form:

P q p p 0
t (Q) ! (1 0) <Q) <0>
Note that ((11 '(0)) has eigenvalues: A (p, ¢) = TY-2- §2+4p7 Ao(p, q) = q+\/;12+4p’

18



CHAPTER 3. SUFFICIENT CONDITIONS OF DATA FOR
FINITE-TIME BLOW-UP IN R
q*—vgzﬂp 7 1) 7o

and corresponding eigenvectors: r1(p, q) = p,q) = < 5

We can regard \; and 7; (i = 1,2) as functions on  := {(21, 22) C R?: 2; > 0}.

We now construct a new coordinate system w on {2, called Riemann
invariants.

Lemma 3.1. There exists a global diffeomorphism w : Q — w()) C R? such
that on (2,

e Vw, -1, =0 (i=1,2), (3.3a)
821}1 811}2
—_— — . .3b
o > 0, 97 <0 (3.3b)

Proof. We firstly solve the following PDE on :

29—V ZQ2+421 1
8Zlfl (Zl;ZQ) = N T
2 V72 +4z

0. f1 (21, 22) + Ji (21, 22)

fl(Zl, —1) = ezl.
(3.4)

Evaluating along the characteristic ¢;(21, 22) defined by

2y — \/222 + 401 (21, 22)
2 b

02,01 (21, 22) =
¢(217 _1> = Z1,

we can check that f; is smooth and f; > 0 on Q. Furthermore, since (3.4)

implies that

aZ2f1 (Zb 22) = aZ1 (
the Poincare lemma ensures the existence of a smooth function w; : Q@ — R
satisfying

awl . —2Z9 + 222 + 421
822 - 2

81111

B}

= fi (21, 22), fi (21, 22) . (3.5)
This gives us that Vw; - r; = 0.

19
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CHAPTER 3. SUFFICIENT CONDITIONS OF DATA FOR
FINITE-TIME BLOW-UP IN R

Similarly, with the aid of the characteristic ¢o(z1, 22) defined by

Z9 -+ \/222 + 4(b1 (21, ZQ)
2 )

az2¢2 (Zlv 22) =
¢(2’1> —1) = Z1,

we can obtain a negative smooth function f5 defined on 2 solving

Z2+VZ22+4216 f(z Z)__ 1
2 z1J1 1, <2 \/m

0z, fo (21, 22) +

fl(Zl, 1) = —¢*!,

Since (3.6) implies that

% + V2% + 42
2

aZQfQ (21722) = azl < f2 (21722)) )

Ja (21,22),

(3.6)

the Poincare lemma again implies that there exists a smooth function wsy :

) — R satisfying

8w2 . 8w2 . 29 + / 222 + 421
o 2

Ja (21,22),

which yields Vwsy - 5 = 0.

Now we show that w = (wy,ws) : Q — w(Q) C R? is a global diffeomor-

phism. Since f; > 0, fo <0, and

ow; 0wy e+ VHRI T A7
f1(21>z2) fl(Zl,Zg)
Ouy Oy 20+ V222 + 42,
0z1 0z fa(21,22) = fa(21, 22) 5
we have

det (Vw) = —f1(z1, 22) fa(21, 22) vV 222 + 421 > 0 on Q,

, (3.7)

so that the inverse function theorem implies that w is a local diffeomorphism.

Thus, it suffices to prove that w is (globally) one-to-one. Suppose, on the
contrary, that w(z;, 22) = w(2;, 22) for some (21, 22) # (Z1, 22). Then by the

20



CHAPTER 3. SUFFICIENT CONDITIONS OF DATA FOR
FINITE-TIME BLOW-UP IN R

mean value theorem, there exist two points (z7,z3) and (z7*, 25*) lying on
the line segment with endpoints (Z1, z3) and (£, 23) such that

0 = wi (21, %) — wi(21, 22)

= Vwi|(zr,z5) - (7h— 21,5 — %) (3.8)
* %\ [ = ~ * % —25 + 2*2 +4z7 ~
= fi(z1,23) (21 — 21) + fi(27, 23) . 22 1(22_2'2)>
and
0 = wq(%1, 22) — wa(21, 22)
= Vwa|(zg= 257 - (51 — 21, 22 — 22) (3.9)

2
Kk *k 4 kK
Zy5 + z; + 4z (2_2 B 52).

If 21 < 21 and % < 2, then (3.8) is less than 0, which is a contradiction. If

= L2 (A - 2) - (a7 57)

Z1 < 71 and 23 > Zy, then (3.9) is less than 0, which is also a contradiction.
We can similarly derive contradictions in the other cases, which implies that

(21, 22) = (41, %2)- O

Remark 3.1. Lemma 3.1 enables us to write that for (z1, z3) € €,

Ai(z1,22) = (/\Z- o w_l) (wq(21, 22), wa(z1,20)), (i=1,2),

and ensures that each \; has the same reqularity with \; o w™'. Henceforth,
we identify \; defined on Q with \; o w™' defined on w(Y), and regard \; as
a function of (wy,wy) € w(Y) as well as (21, 29) € Q.

Defining a pair of functions (P, Q) : R x [0, 00) — w(2) by

P(a,t) = wi(p(e, 1), q(x,t), Qla,t) = wa(p(w,1), q(x,1)),
we can check that (P, Q) solves
0P + Aa(p, )0, P = 0,
{&Q + Ai(p, 9)0:Q =0,

with the aid of (3.3a). Since this is Theorem 1 in Section 11.3 of [6], we omit
the details.
For the proof of Theorem 2, we need two key ingredients.

(3.10)

21
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CHAPTER 3. SUFFICIENT CONDITIONS OF DATA FOR
FINITE-TIME BLOW-UP IN R

Lemma 3.2. There exists a universal constant 6g > 0 such that

%(P(x,t),Q(x,t)) >0y in R x [0,00).
8w1
Proof. To begin with, we claim that
2—2}21 >0 on w(Q). (3.11)

Indeed, since (3.7) provides us with

0z, 0z zo+ /25 +42 —29 + /23 + 42
8w1 6'11)2 _ (vw)_l _ 2f1(21, 22)\/ Z% + 421 2f2(217 22)1 /Zg + 421
1

9z Oz —
Owy Ows filz, 22)V/ 25 + 421 falz1, )V 25 + 42

we have

’

Ow, 0z 0w, 0z 0w, fi(z1,20)(23 +42)

(9)\2 . 8)\2 821 i (9/\2 822 29 + 1/ Z% + 42’1 -0

Evaluating along the characteristics defined by each X;(p,q) (i = 1,2), we
obtain from (3.10) that

P (R x[0,00)) = Fy (R) = wi (po (R), g0 (R)) = w (po (R), et (R)> :

and

Q (R x [0,00)) = Qo (R) = ws (po () , g0 (R)) = (Po (®), %0 <R>) ,

where Py(x) := P(z,0) and Qo(z) := Q(x,0). Since each w; is smooth and
both pg (R) and a;”—oco (R) are compact by the assumptions (1.1), (1.4a), and
(1.4b), P (R x [0,00)) and @ (R x [0, 00)) are also compact. Thus, (3.11) and
the smoothness of % ensure the existence of the desired oy > 0. O

Lemma 3.3. Let zg be a point satisfying (1.4c). Then

(%CP()(QZ’O) < 0.

22
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FINITE-TIME BLOW-UP IN R

Proof. By (3.5), (3.3b), (1.1), and (1.4c), we compute at

8101 awl

821 pO + 4o

P
aa: 0 822

—qo + /@8 + 4po coOzxCo — (Opco)? <0
2 2 ’

= f1(po, qo) Ozpo + f1(po; q0) p
0

]

We are now in the position to prove Theorem 2. We use a similar argument
to the proof of Theorem 2 in section 11.3 of [6]. Let zy be the point from
(1.4c), and let x,,(t) be the characteristic curve defined by Aa(p,q) with
initial value x,,(0) = zo. Note that P(xy,(t),t) = Py(xo) for t > 0. For the
simplicity, we write P := 0, P, Q := 9,Q, and P, (t) := 0,P(x,(t),t). Then
(3.10) implies that

(9)\2 3)\2 ~ ~

0P 4+ N0, P+ —=P% 4+ —22PQ =0,
8w1 8w2

and

0,Q + X20,Q = (A2 — M) Q.

Combining these, we obtain

. . Ao ~
O,P + N0, P + P po + {
811)1

10X

poe v CL0Ry AanQ)] P=0

Defining a function ®(¢) by

d(t) = eXp{ </0t N i N g—;\; (Q + A20:Q) (72,(5), 5) dS) },

we have

o) - eof ([ Ly is) | = expl(0(0) — w(0)).

where

Q)9 1 g
U(s) = / 92 (p (o), v) do.
0

x;rx_'! _C:I i 1_]|



CHAPTER 3. SUFFICIENT CONDITIONS OF DATA FOR

FINITE-TIME BLOW-UP IN R

10X
Xa—A1 Ows
proof of Lemma 3.2, there exist two constants me, Me such that

Since is smooth and @ (R x [0,00)) is compact as we saw in the

0<mg <P(t) < Mg forallt>0. (3.12)

Thus, multiplying ]5,\2 by ® and differentiating it with respect to time, we
obtain the following ODE:

d (=~ Oy ~
AGRIE B,
so that Lemma 3.2 and (3.12) yield
d (=~ do [~ 2
= <20 .
i (P2) < 5, (Put)

Since Py, (0) = 9,Py(x¢) < 0 by Lemma 3.3, there exists a finite time 7% > 0
such that

- Mg Py, (0
P)\Q(t) < ‘I>~>\2( )

Mg + P)\Q (0)5Ot
On the other hand, we claim that there exist two constants my,, My, such
that

——00 as t—T" (3.13)

0 <my < filp(z,t),q(x,t)) < My for (z,t) e Rx[0,00). (3.14)

tdeed, fi(p(r,8),4(x,1)) = (fi o w)(P(x,1), Q(z 1)), 50 that (3.14) fol-
lows from the smoothness of f; and the compactness of P (R x [0, 00)) and
Q (R x [0,00)) as in the proof of Lemma 3.2. Hence (3.2) and (3.14) give

s

=10 P(T)

—q(T*) + /@(T*) + 4p(T*)

Fi(p(T7), 4(T7)) (@p(T*) + 00q(T7) 5

< 00,

which is a contradiction to (3.13). This shows (3.1).
Now we prove the solution (p, ¢) satisfies (1.5). Note that we have

1P w100y + @)l w2.0o @y < 20

24
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CHAPTER 3. SUFFICIENT CONDITIONS OF DATA FOR
FINITE-TIME BLOW-UP IN R

on [0,7%). This ensures (p,c) is smooth and unique, and has the positive

lower bounds on [0,7%) by Remark 2.1 and Remark 2.2. Then we again

define (P, Q) : R x [0, T*) — w(f2) by

P(I,t) = wl(p(x,t),q(x,t)), Q(Ivt) = wQ(p($=t>7q<x7t))'

(In this time, we defined (P, Q) on time interval [0,7*).) Using the charac-

teristic defined by each \;(p, q) (i = 1,2), we can check from (3.10) that

PR x [0,T%) = By (R) = wr (o (R) 4o (R)) = wy (po (R), &% <R>) ,

and

QR x[0,77)) = Qo (R) = w2 (po (R) , g0 (R)) = wy <Po (R), et (R)) :

so that P (R x [0,7%)) and @ (R x [0,7%)) are compact. Hence, noticing
(p,q) = wo(P,Q) and w : Q — w(NQ) is a global diffeomorphism, p (R x [0, T*)) x

q (R x [0,77)) is also compact. This implies that
sup (11p(8) ) + 190 sy ) < 0.
te[0,7*)
From
Orc = —HCp,

we have

sup le(t)|] gy < 0.
te[0,7*)

Moreover, recalling ¢ = %<, we obtain

c

sup [|0x¢(t) | oo ) < 00-
te[0,7*)

This completes the proof of Theorem 2. O

25
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Chapter 4
Finite-time blow-up in R

In this section, we prove Theorem 3 and Corollary 3.1. We firstly derive the
finite propagation speed of (H-KS).

Lemma 4.1 (Finite propagation speed). Let (p;,¢;) (i = 1,2) be two solu-
tions of (H-KS) corresponding to initial data (pip,cip) satisfying (1.1) such
that

A= sup ([0l gy + 171081 (0)] e ) < 00
te[0,7*)

and
||Pz‘(t)||wl»°°(Rd) + ||Ci(t)||w2,oo(Rd) <00 (’L =1, 2)

fort €10,T%). Suppose that (p10,c10) = (p2,0,C20) in a ball Bsr«(Z), where
Bar(z) :={z : |z —z| <6AdT"}.
Then (p1,c1) = (p2, c2) within a cone K 4 r-(T), where
Kar-(Z) :={(x,t) : 0<t<T" |z —Z| <6Ad(T* —t)}.

Proof. Note that Remark 2.1 and Remark 2.2 imply our assumptions are
sufficient to guarantee that the solution is smooth, unique, and has positive
lower bounds on [0,7™). We denote

. VCZ‘

C;

¢ = (i=1,2), p:=p —ps C:=c—cy and §:=q — qa.
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CHAPTER 4. FINITE-TIME BLOW-UP IN R?

Define a local energy

B(t) = 5 (10O, o) + IV o))

where

Bars—+(z):={z : |z — 2| <6Ad(T* —t)}.
Recalling (2.1) and (2.2), we compute

d
SE(t) =1+11+ 111+ 1V — 3Ad / ﬁ2+/ poldl”
dt OB 1 _4(T) B 1+ 4(Z)

with
I:/ ﬁVﬁ-ql—l—/ ﬁQV'QD
B+ _¢(%) B+ —(Z)
n:/ Wm@+/ 52V - 4,
B+ _¢(%) Ba,r*_+(%)
1 -
M= [ gV ()
Ba,r+—+(7)
and

IV=/ i - V.
By, _(Z)

Using the integration by parts on the first term of I, we have

1 ~ -
=5 [ @[ #vea
Ba,r*—4(%) B+ —4(%)

1 / 2 1 / 9 / 2
=-3 PVt p (q)x | + A
2 JBage @ 2 JoB e (@) 2 Baze—i(#)

Ad
< 7

~ ~112
<5 P+ larllwree 1132 (5, o)

OB p* —4(%)

where in the second line, we used the notation ¢; = ((q1)1, - -

27
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CHAPTER 4. FINITE-TIME BLOW-UP IN R?

integrating by parts, we employ the Cauchy inequality to obtain

d
e = [ o (Y@ )
OB a1 _+(T) 121
d 2
< / p2p” + p2 (D
0B 4, 1* (%) Z

k=1

g2A¢/ 7 + palil®
OB 4 rx +(Z)
For III, we have

_ ~112
1< |3 IV o) 2 el e

Combining all, we arrive at

d
ZE® < (lallwree + [z | e llo2lwre ol ) E)

for t € [0, T*). But since E(0) =0, E(t) =0 for t € [0,7*]. To show ¢ =0 in
K 4 7+(Z), we consider the equation of ¢
0y¢ = —p (Cp1 + c2p) = —ucpr,

where the second equality follows from p = 0 in K4 7+(Z). With the same
argument as above, we can show that ¢(t) = 0 for t € [0, T™]. O

Proof of Theorem 3. We divide our proof into R and R? (d > 2) cases.

Case 1. R :
We consider initial data (pg, ¢j) defined by

py=p+1 and ¢ =+, (4.1)

where p, ¢ > 0 are constants to be determined later, and ¢ : R — [0,1] is a
smooth bump function such that
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Then as we have seen in Remark 1.1, (po, co) satisfies all of the conditions
given in Theorem 2, so that the corresponding solution (p!, c!) blows up at
some time T*. The proof consists of two steps. In Step 1, we prove that
the blow-up actually occurs on a bounded interval in R. Then in Step 2, we
rescale the solution to make it blow up within any given interval.

Step 1. To get information for the region where the blow-up occurs, we
make use of Lemma 4.1. Noticing (pj,c}) = (p,¢) on R\(—2,2) and the
corresponding solution to (p,c) is (p,ce ), Lemma 4.1 implies (p',c') =
(p, ce #Pt) in

{(z,t) € (R\(-2,2)) x [0,T"] : 2 < —2—6A"t or © > 2+ 6A"t},

where

A'=p+ sup ||V10gcl(t)”LOO(R
te[0,T*)

) (4.2)
(Note that sup,eig s [|V log cl(t)||Loo(R) is clearly bounded due to (1.5) in
Theorem 2.) Hence, we can conclude that our blow-up of (p',c!) occurs on
(=2 — 6AIT* 2 + 6AIT*) x {t = T*}.

Remark 4.1. In this Step 1, we have not given any restriction to p and c.

In other words, for any constants p,¢ > 0, we can show the blow-up region
1s bounded. This fact will be used in the proof of Corollary 3.1.

Step 2. It suffices to consider the case when the center of the interval is
the origin since (H-KS) is translation invariant. Let (—r,7) be any interval.
Our aim is to rescale (p', c!) so that the blowup occurs within (—r,r). Since
(p',c!) is a solution of (H-KS), we can check that (pl,cl) is also a solution

of (H-KS), where
pL(x,t) .= a®p*(ax, a’t), cl(x,t) .= c!(ax, a’t) (a>0).

a

Then since

pL(x,0) = a®(p+ ¥(ax)), ct(x,0) = ¢+ Y(ax),

and (pt(z,0),ct(z,0)) = (a®p,¢) on R\ (-2, 2), Lemma 4.1 implies (p, c}) =
(a2p, e Ha°Pt) in

2 2 T 2 2
{(:p,t) € (R\ (——,—)) X {O, —2} cr < == —6AM or x> —+6A(11t},
a’ a a a a
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CHAPTER 4. FINITE-TIME BLOW-UP IN R?

where

Al :=a’p+ sup |V10gc ||Loo —ap—l—a sup HVIogc

. . [[Vios )]

Hence, (pl,cl) blows up on (—% — 6A‘11T*,§ 64, T*> {t = ;} Note that

a2

|V 1og ¢! ()| oo () T

a a? a a

2 6ALTT 2 Gsupyore
+ = P+

Thus, if we choose sufficiently small p and large a, we can make the blow-up
occur within (—r,r) € R.

Case 2. R4 (d >2) :
We shall use the same notation as the above Case 1. We choose initial data
(po, co) defined by

d d

po(x) = b(ar) [[v(0ze) + 5 colw) = v(x) [[(ax) +&  (4.3)

k=2 k=2

where p, ¢ > 0 are any constants and 0 > 0 is a small constant to be de-
termined later. Note that (po,co) satisfies (1.1) and (Vpg, Veg) € (H™® X
H>)(R?). We aim to show that the corresponding solution (p, ¢) undergoes

T (1000w gy + 1e(®) e ) = 00
for some 7™ > 0. Suppose, toward the contradiction, that (p, c) satisfies

1P 1,00 ety + @ lwoe ey < 00 on [0,7] (4.4)

for any 7" > 0. Recall that (4.4) is sufficient to guarantee that (p, c) has the

positive lower bounds and is unique and smooth on [0, 7] by Remark 2.1 and
Remark 2.2.

On the other hand, we consider another initial data (p§,cs) : RY — Q
defined by

po() = po(w1),  cj(x) = co(an).

30
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Recalling (4.1), we can notice (pg, co) = (o5, ci) in {x : |zp| <671 k=2,---  d}.
Moreover, we observe that the unique solution (p*, ¢*) : R — Q correspond-

ing to (p§, cg) is
(p*(:v,t),c*(x,t)) = (pl(x17t)vcl($1vt>)'

Indeed, we can check that (p*, ¢*) solves (H-KS) in R? and the uniqueness is
ensured by Remark 2.2. Hence, recalling Step 1 in the proof of Case 1, (p*, ¢*)
blows up in {|z| < 2+ 6AT*} x {t = T*}. Our strategy is to compare (p, c)
with (p*, ¢*) by employing Lemma 4.1. Define A by

A= sup | (Hp(t)HLm(Rd) + Hvlogc*@)\lmm) :

tel0, T

Note that supyeo, 7+ [[2(¢)[| o (gay < 00 by our assumption (4.4), and
SUP;efo, 7+ || V108 ¢ (¢) || oo (ay < 00 by (1.5). Then Lemma 4.1 asserts that
if (po,co) = (p, ) in {z: || <24 6AT* +6AdT*}, then (p,c) = (p*, )
within {(z,¢) : 0 < ¢ < T*, |z] <2+ 6AT* + 6Ad(T* — t)}, where A is the
constant defined in (4.2).

Since (po, co) = (pf, ) in {x : x| <671 k=2,--- ,d}, if we choose suf-

ficiently small ¢ satisfying
24+ 6A T +6AdT* < 671,

Lemma 4.1 guarantees (p, c) = (p*, ¢*) within

{(z,t) : 0 <t <T* |z| <2+ 6AT* + 6Ad(T* —t)}. In particular, (p,c) =
(p*,c") in

{|z| <2+ 6AYT*}x{t = T*}. But since (p*, c¢*) blows up in {|z| < 2 + 6 AT} x
{t = T*}, this is a contradiction to (4.4). This completes the proof of Theo-
rem 3. [l

Proof of Corollary 3.1. We construct the desired initial data by slightly chang-
ing (4.3): we redefine (po, ¢o) as follows:

d

po(x) = 6™(an) [[w(0ae) + 5. colw) = 6™Np(an) [ [ o (0me) + 2.

k=2

for large N. Here p, ¢ > 0 are any constants. Recalling our proof of the above
Case 2, we needed the smallness of §. Thus we can control §, N so that our
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new (po, co) satisfies (1.8), and then proceed as we did in the above proof of
Case 2 to obtain the finite blow-up result. We omit the details. n
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