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Abstract

The tremendous recent progress in analyzing the training dynamics of over-

parameterized neural networks has primarily focused on wide networks and

therefore does not sufficiently address the role of depth in deep learning. In this

work, we present the first trainability guarantee of infinitely deep but narrow

neural networks. We study the infinite-depth limit of a multilayer perceptron

(MLP) with a specific initialization and establish a trainability guarantee using

the NTK theory. We then extend the analysis to an infinitely deep convolutional

neural network (CNN) and perform brief experiments.

Keywords: Neural tangent kernel, Gradient flow, Deep narrow neural network,

Artificial intelligence.

Student ID: 2020-20857
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1 Introduction

Despite the remarkable experimental advancements of deep learning in many

domains, a theoretical understanding behind this success remains elusive. Re-

cently, significant progress has been made by analyzing limits of infinitely large

neural networks to obtain provable guarantees. The neural tangent kernel

(NTK) and the mean-field (MF) theory are the most prominent results.

However, these prior analyses primarily focus on the infinite width limit

and therefore do not sufficiently address the role of depth in deep learning.

After all, substantial experimental evidence indicates that depth is indeed an

essential component to the success of modern deep neural networks. Analyses

directly addressing the limit of infinite depth may lead to an understanding of

the role of depth.

In this work, we present the first trainability guarantee of infinitely deep

but narrow neural networks. We study the infinite-depth limit of a multilayer

perceptron (MLP) with a very specific initialization and establish a trainability

guarantee using the NTK theory. The MLP uses ReLU activation functions and

has width on the order of input dimension + output dimension. Furthermore,

we extend the analysis to an infinitely deep convolutional neural network (CNN)

and perform brief experiments.
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1.1 Prior works

The classical universal approximation theorem establishes that wide 2-layer

neural networks can approximate any continuous function [12, 17]. Extensions

and generalizations [25, 35, 30, 5, 54] and random feature learning [55, 56, 57],

a constructive version of the universal approximation theorem, use large width

in their analyses. As overparameterization got recognized as a key component

in understanding the performance of deep learning [74], analyses of large neural

networks started to appear in the literature [66, 2, 15, 16, 75, 36], and their

infinite-width limits such as neural network as Gaussian process (NNGP) [44,

43, 70, 32, 41, 47], neural tangent kernel (NTK) [27], and mean-field (MF) [42, 9,

61, 60, 64, 63, 45, 53] were formulated. NNGP characterizes the neural network

at initialization, while NTK and MF analyses provide guarantees of trainability

with SGD. This line of research naturally raises the question of whether very

deep neural networks also enjoy similar properties as wide neural networks,

especially given the importance of depth in modern deep learning.

The analogous line of research for very deep neural networks has a shorter

history. Universality of deep narrow neural networks [40, 22, 37, 19, 31, 49,

68], lower bounds on the minimum width necessary for universality [40, 22,

29, 49], and quantitative analyses showing the benefit of depth over width

in approximating certain functions [69] are all very recent developments. On

the other hand, the neural ODE [7] is a continuous-depth model that can be

considered an infinite-depth limit of a neural network with residual connections.

Also stochastic extensions of neural ODE, viewing infinitely deep ResNets as

diffusion processes, have been considered in [51, 50]. However, these continuous-

depth limits do not come with any trainability or generalization guarantees.
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In the infinite width and depth limit, a quantitative universal approximation

result has been established [38] and a trainability guarantee was obtained in

setups combining the MF limit with the continuous-depth limit inspired by

the neural ODE [39, 13, 14].

Efforts to understand the trainability of deep non-wide neural networks

have been made. [3, 62] establishes trainability guarantees for linear deep

networks (no activation functions). [52] studied the so-called dynamic isometry

property, [20] studied the exploding and vanishing gradient problem for ReLU

MLPs, and [26] studied the NTK of deep MLPs and ResNets at initialization,

but these results are limited to the state of the neural network at initialization

and therefore do not directly establish guarantees on the training dynamics.

To the best of our knowledge, no prior work has yet established a trainability

guarantee on (non-linear) deep narrow neural networks.

Many extensions and variations of the NTK have been studied: NTK anal-

ysis with convolutional layers [4, 73], further refined analyses and experiments

[34], NTK analysis with regularizers and noisy gradients [8], finite-width NTK

analysis [21], quantitative universality result of the NTK [28], generalization

properties of overparameterized neural networks [6, 71], unified analysis of NTK

and MF [18], notion of lazy training generalizing linearization effect of the NTK

regime [10], closed-form evaluations of NTK kernel values [11, 4], analyses of

distribution shift and meta learning in the infinite-width regime [1, 46], library

implementations of infinitely wide neural networks as kernel methods with

NTK [48], empirical evaluation of finite vs. infinite neural networks [33], and

constructing better-performing kernels with improved extrapolation of the

standard initialization [65]. Such results have mostly focused on the analysis

and application of wide, rather than deep, neural networks.
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2 Preliminaries and Notations

In this section, we review the necessary background and set up the notation.

We largely follow the notions of [27], although our notation has some minor

differences.

Given a function fθ(x) ∈ Rn with θ ∈ Rp and x ∈ Rd+, write ∂θfθ(x) ∈ Rn×p

to denote the Jacobian matrix with respect to θ. If fθ(x) ∈ R is scalar-valued,

write ∇θfθ(x) ∈ Rp×1 for the gradient. The gradient and Jacobian matrices are,

by convention, transposes of each other, i.e., ∇θfθ(x) = (∂θfθ(x))
⊺. Write ∥ · ∥

to denote the standard Euclidean norm for vectors and the standard operator

norm for matrices. Write ⟨·, ·⟩ for the vector and Frobenius inner products.

Write Rd+ ⊂ Rd for the strict positive orthant, i.e., Rd+ is the set of vectors with

element-wise positive entries. Write
p→ to denote convergence in probability.

Write g ∼ GP(µ,Σ) to denote that g is a Gaussian process with mean µ(x)

and covariance kernel Σ(x, x′) [58, 59].

Let pin be the empirical distribution on a training dataset x1, x2, . . . , xN ∈

Rdin+ , which we assume are element-wise positive. Let F = {f : Rdin+ → Rdout}

be the function space with a seminorm ∥·∥pin induced by the bilinear map

⟨f, g⟩pin = Ex∼pin [f(x)⊺g(x)].
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If W is a matrix-valued function, write

∥W∥2pin = Ex∼pin∥W (x)∥2,

where ∥ · ∥ here is the operator norm.

2.1 Kernel gradient flow

Let L : F → R be a functional loss. We primarily consider L(f) = 1
2 ∥f − f⋆∥2pin

with a given target function f⋆. We train a neural network fθ by solving

minimize
θ

L(fθ).

Let F∗ denote the dual of F with respect to pin. So F∗ consists of linear maps

⟨δ, ·⟩pin for some δ ∈ F . Let ∂fL|f0 denote the functional derivative of the loss

at f0. Since ∂fL|f0 ∈ F∗, there exists a corresponding dual element δ|f0 ∈ F ,

where ∂fL|f0 = ⟨δ|f0 , ·⟩pin . To clarify, δ|f0(x) is defined to be a length dout

column vector.

A multi-dimensional kernel K : Rdin+ × Rdin+ → Rdout×dout is a function such

that K(x, x′) = K(x′, x)⊺ for all x, x′ ∈ Rdin+ . A multi-dimensional kernel is

positive semidefinite if

Ex,x′∼pin
[
f(x)⊺K(x, x′)f(x′)

]
≥ 0

for all f ∈ F and (strictly) positive definite if the inequality holds strictly

when ∥f∥pin ̸= 0. To clarify, Ex,x′∼pin denotes the expectation with respect to

x and x′ sampled independently from pin. The kernel gradient of L at f0 with

respect to the kernel K is defined as

∇KL|f0(x) = Ex′∼pin
[
K(x, x′)δ|f0(x′)

]
6



for all x ∈ Rdin+ . We say a time-dependent function ft follows the kernel gradient

flow with respect to K if

∂tft(x) = −∇KL|ft(x)

for all t > 0 and x ∈ Rdin+ . During the kernel gradient flow, the loss L(ft)

evolves as

∂tL|ft =− Ex,x′∼pin
[
δ|ft(x)⊺K(x, x′)δ|ft(x′)

]
.

If K is positive definite and if certain regularity conditions hold, then kernel

gradient flow converges a critical point and it converges to a global minimum

if L is convex and bounded from below.

2.2 Neural tangent kernel

Given a neural network fθ(t), [27] defines the neural tangent kernel (NTK) at

time t as

Θt(x, x
′) = ∂θfθ(t)(x)

(
∂θfθ(t)(x

′)
)⊺
,

which, by definition, is a positive semidefinite kernel. [27] pointed out that

a neural network trained with gradient flow, which we define and discuss in

Section 3.1.1, can be viewed as kernel gradient flow with respect to Θt, i.e.,

∂tfθ(t)(x) = −∇ΘtL|ft(x).

However, even though Θt is always positive semidefinite, the time-dependence of

Θt makes the training dynamics non-convex and prevents one from establishing

trainability guarantees in general. The contribution of [27] is showing that

Θt
p→ Θ in an appropriate infinite-width limit, where Θ is a fixed limit that

7



does not depend on time. Then, since Θ is fixed, kernel gradient flow generically

converges provided that the loss L is convex.
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3 NTK analysis of infinitely deep MLP

Consider an L-layer multilayer perceptron (MLP) fLθ : Rdin+ → Rdout parame-

terized by θ, where the input x ∈ Rdin+ is a din-dimensional vector with positive

entries and the output is a dout-dimensional vector. The network consists of

L − 1 fully connected hidden layers with uniform width din + dout + 1, each

followed by the ReLU activation function. The final output layer has width

dout and is not followed by an activation function.

Let us set up specific notation. Define the pre-activation values as

f1
θ(1)

(x) =W 1x+ b1

f l
θ(l)

(x) =W lσ(f l−1
θ(l−1)(x)) + bl, 2 ≤ l ≤ L.

We use ReLU for the activation σ. The weight matrices have dimension

W 1 ∈ R(din+dout+1)×din , W 2, . . . ,WL−1 ∈ R(din+dout+1)×(din+dout+1), and WL ∈

Rdout×(din+dout+1). The bias vectors have dimension b1, . . . , bL−1 ∈ R(din+dout+1)×1

and bL ∈ Rdout×1. For 1 ≤ l ≤ L, write θ(l) = {W i, bi : i ≤ l} to denote the

collection of parameters up to l-th layer. Let fLθ = fL
θ(L) .

9



3.1 Initialization

Motivated by [31], initialize the weights of our L-layer MLP fLθ as follows:

W 1 =


CLIdin

u1

0dout×din



W l =


Idin 0din×1 0din×dout

ul 01×1 01×dout

0dout×din 0dout×1 Idout


WL =

[
0dout×din 0dout×1 Idout

]
for 2 ≤ l ≤ L− 1, where ul ∈ R1×din is randomly sampled uli

iid∼ N (0, 1
din
ρ2) for

1 ≤ l ≤ L − 1. Here, Id is the d × d identity matrix and 0m×n is the m by n

matrix with all zero entries, CL > 0 is a scalar growing as a function of L at a

rate satisfying L2/CL → 0, and ρ > 0 is a fixed variance parameter. Initializes

the biases as follows:

b1 =


0din×1

v1

CL1dout



bl =


0din×1

vl

0dout×1


bL =

[
−CL1dout

]
for 2 ≤ l ≤ L − 1, where vl ∈ R is randomly sampled vl

iid∼ N (0, C2
Lβ

2) for

1 ≤ l ≤ L− 1. Here, β > 0 is a fixed variance parameter. Note that 1k ∈ Rk×1

10



is the vector whose entries are all 1. Figure 3.1 illustrates this initialization

scheme.

We clarify that while we use many specific non-random initializations, those

parameters are not fixed throughout training. In other words, all parameters

are trainable, just as one would expect from a standard MLP.

[31] used a similar construction to establish a universal approximation

result for deep MLPs by showing that their deep MLP mimics a 2-layer wide

MLP. However, their main concern is the existence of a weight configuration

that approximates a given function, which does not guarantee that such a

configuration can be found through training. On the other hand, we propose

an explicit initialization and establish a trainability guarantee; our network

outputs 0 at initialization and converges to the desired configuration through

training.

3.1.1 Gradient flow and neural tangent kernel

We are now ready to describe the training of our neural network fLθ via gradient

flow, a continuous-time model of gradient descent. Since our initialization scales

the input by CL at the first layer, we scale the learning rate accordingly, both in

the continuous-time analysis of Section 4 and in the discrete-time experiments

of Section 5, so that we get meaningful limits as L→ ∞.

Train fLθ with

∂tθ(t)
(a)
= − 1

LC2
L

∇θLoss(θ)
∣∣∣
θ=θ(t)

(b)
= − 1

LC2
L

(
∂θL(fLθ )

)⊺ ∣∣∣
θ=θ(t)

(c)
= − 1

LC2
L

Ex∼pin
[
(∂θf

L
θ (x))

⊺δ|fLθ (x)
] ∣∣∣
θ=θ(t)

,

11



Layer 1

Layer 2

Layer 3

Layer 4

Layer L

Layer L− 1

Layer L− 2

Figure 3.1 Initialization of deep MLP with din = 3 and dout = 2.

Intermediate layers have width din + 1 + dout. Line styles indicate types of

weight initializations (solid:1, double:CL, dash:Gaussian, none:0). Box styles

indicate types of bias initializations (solid:0, dash:Gaussian, double:CL, double-

dash:−CL).
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where (a) defines the θ-update to be gradient flow with learning rate 1/(LC2
L),

(b) plugs in our notation, and (c) follows from the chain rule.

This gradient flow defines θ(t) to be a function of time, but we will often

write θ rather than θ(t) for notational conciseness. This gradient flow and the

chain rule induces the functional dynamics of the neural network:

∂tf
L
θ (x) = ∂θf

L
θ (x)∂tθ

= − 1

LC2
L

Ex′∼pin
[
∂θf

L
θ (x)

(
∂θf

L
θ (x

′)
)⊺
δ|fLθ (x

′)

]
.

Since we use a scaling factor in our gradient flow, we define the scaled NTK

at time t as

Θ̃L
t (x, x

′) =
1

LC2
L

∂θf
L
θ (x)

(
∂θf

L
θ (x

′)
)⊺
.

Then,

∂tf
L
θ (x) = −Ex′∼pin

[
Θ̃L
t (x, x

′)δ|fLθ (x
′)
]

= −∇Θ̃L
t
L|fLθ (x).

3.2 Convergence in infinite-depth limit

We now analyze the convergence of the infinitely deep MLP.

Theorem 3.1 establishes that the scaled NTK at initialization (before

training) of the randomly initialized MLP converges to a deterministic limit

with a closed-form expression as the depth L becomes infinite.

Theorem 3.1 (Scaled NTK at initialization) Suppose fLθ is initialized as in

Section 3.1. For any x, x′ ∈ Rdin+ ,

Θ̃L
0 (x, x

′)
p→ Θ̃∞(x, x′)

13



as L→ ∞, where

Θ̃∞(x, x′) =
(
x⊺x′ + 1 + Eg[σ(g(x))σ(g(x′))]

)
Idout ,

and g ∼ GP(0, ρ
2

din
x⊺x′ + β2).

When L <∞, the scaled NTK Θ̃L
t (x, x

′) depends on time through its de-

pendence on θ(t). Theorem 3.2 establishes that Θ̃L
t (x, x

′) becomes independent

of t as L→ ∞.

Theorem 3.2 (Invariance of scaled NTK) Let T > 0. Suppose
∫ T
0

∥∥∥δ|fLθ ∥∥∥pindt
is stochastically bounded as L→ ∞. Then, for any x, x′ ∈ Rdin+ ,

Θ̃L
t (x, x

′)
p→ Θ̃∞(x, x′)

uniformly for t ∈ [0, T ] as L→ ∞.

Let L(f) = 1
2 ∥f − f⋆∥2pin be the quadratic loss. In this case, the stochastic

boundedness assumption of Theorem 3.2 holds, as we show in the appendix,

and we characterize the training dynamics explicitly. For the sake of notational

simplicity, assume the MLP’s prediction is a scalar, i.e., assume dout = 1. The

generalization to multi-dimensional outputs is straightforward, following the

arguments of [27, Section 5].

Theorem 3.3 concludes the analysis by characterizing the trained MLP as

L→ ∞. Define the kernel regression predictor as

fntk(x) =
(
Θ̃∞(x, x1), . . . , Θ̃

∞(x, xN )
)
K−1f⋆(X),

where Ki,j = Θ̃∞(xi, xj) and [f⋆(X)]i = f⋆(xi) for i, j ∈ {1, . . . , N}. Let ft be

trained with the limiting kernel gradient flow of fLθ(t) as L → ∞, i.e., f0 = 0

14



and ft follows

∂tft = −∇Θ̃∞L|ft(x).

Then the infinitely deep training dynamics converge to fntk in the following

sense.

Theorem 3.3 (Equivalence between deep MLP and kernel regression) Let

L(f) = 1
2 ∥f − f⋆∥2pin . Let Θ̃∞ be positive definite. If ft follows the kernel

gradient flow with respect to Θ̃∞, then for any x ∈ Rdin+ ,

lim
t→∞

ft(x) = fntk(x).

3.3 Proof outline

At a high level, our analysis follows the same line of argument as that of the

original NTK paper [27]: Theorem 3.1 characterizes the limiting NTK at initial-

ization, Theorem 3.2 establishes that the NTK remains invariant throughout

training, and Theorem 3.3 establishes convergence in the case of quadratic loss

functions. The proof of Theorem 3.3 follows from arguments similar to those

of [27, Theorem 3]. The proof of Theorem 3.1 follows from identifying the

recursive structure and noticing that the initialization is designed to simplify

this recursion.

The key technical challenge of this work is in Theorem 3.2. The analysis is

based on defining the Lyapunov function

ΓL(t) = ΨL,2(t) + ΨL,8(t) +
8∑
j=1

ΦL,j(t)

(the individual terms will be defined soon), establishing

ΓL(t) ≤ ΓL(0) +

∫ t

0
O(L/CL)ΓL(s)

4 ds,
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and appealing to Grönwall’s lemma to show that ΓL(t) is invariant, i.e., ΓL(t) →

Γ∞(0) as L → ∞ uniformly in t ∈ [0, T ]. For j = 1, . . . , 8, the first term is

defined as

ΦL,j=
1

(L− 1)CjL

L−1∑
l=1

(∥∥∥f lθ(l)(0)∥∥∥pin+ ∥∥∥f lθ(l)(t) − f l
θ(l)(0)

∥∥∥
pin

)j
and its invariance implies that the average variation of the layers vanish for

inputs x ∈ {x1, . . . , xN} to the MLP.

Because we study the infinite-depth regime, our Lyapunov analysis is

significantly more technical compared to the prior NTK analyses studying

the infinite-width regime. Prior work dealt with sums of infinitely many terms,

which were analyzed with the central limit theorem and law of large numbers.

In contrast, the infinite depth of our setup leads to an infinite composition of

layers and an infinite product of matrices, which must be controlled through a

more delicate Lyapunov analysis.

For L ≥ j ≥ k ≥ 2, define

Wk
j (x, t) =W jdiag(σ̇(f j−1

θ(j−1))) · · ·W kdiag(σ̇(fk−1
θ(k−1)))

(where W j and θ(j) depend on t and f l
θ(l)

depends on x and t) and we bound

its change by incorporating the following terms into the Lyapunov function:

ΨL,2=
1

(L−1)2

∑L
l=2

L−1
l−1

∑l
i=2

(
∥Wi

l(·,0)∥pin
+∥Wi

l(·,t)−Wi
l(·,0)∥pin

)2

ΨL,8=
1

L−1

∑L
l=2

(
∥Wl

L(·,0)∥pin
+∥Wl

L(·,t)−Wl
L(·,0)∥pin

)8
.

Establishing the invariance of ΓL(t) as L → ∞ is the first step of the

analysis, but, by itself, it does not characterize the limiting MLP for inputs

x /∈ {x1, . . . , xN} and it only bounds the average variation of the layers, rather

than the layer-wise variation. Hence, we generalize the invariance results with
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two additional Lyapunov analyses and combine these results to establish the

scaled NTK’s invariance.

Our Lyapunov analysis significantly is simplified by setting σ̈(s) = 0 and

thereby removing terms involving σ̈. However, while σ̈(s) = 0 for s ̸= 0, we

cannot ignore the fact that σ̈(0) ̸= 0 (in fact undefined). We resolve this issue by

showing that all instances of σ(s) never encounter the input s = 0 throughout

training with probability approaching 1 as L→ ∞. We outline this argument

below.

Due to the randomness of the initialization, the pre-activation values

f l
θ(l)(0)

(x) are element-wise nonzero for all x ∈ {x1, . . . , xN} with probability

1. If (f l
θ(l)(t)

(x))r = 0 for some l, r, and t, i.e., if a zero-crossing happens for a

neuron at time t, then the analysis must somehow deal with the behavior of

σ(s) at s = 0. However, if zero-crossing happens for no neurons for all t ∈ [0, T ],

then we can safely set σ̈ = 0 in our analysis. We prove that the probability

of a zero crossing (over all neurons of all layers and all t ∈ [0, T ]) vanishes as

L→ ∞. We specifically establish this claim by showing that as L→ ∞,

sup
1≤l≤L−1,t∈[0,T ]

∥∥∥f lθ(l)(t)(x)− f l
θ(l)(0)

(x)
∥∥∥ ≤ KL

with high probability and

Pr

[
inf
l,r

∣∣∣∣(f lθ(l)(0)(x))r
∣∣∣∣ > (K + 1)L

]
→ 1.

for some constant K > 0. These two results establish that the zero-crossing

probability vanishes as L→ ∞. We provide the details in Appendix.
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Layer 1

Layer 2

Layer 3

Layer L− 2

Layer L− 1

Layer L

Average Pool

Figure 3.2 Initialization of deep CNN with 4× 4 input. The 3 grids per row

represent the 3 channels per layer, and the box at the top represents the scalar

output of the final average pool. Line styles indicate types of weight initializa-

tions (solid:diag(0, 1, 0), double:diag(0, CL, 0), dash:Gaussian, none:03×3). Box

styles indicate types of bias initializations (solid:0, dash:Gaussian, double:CL,

double-dash:−CL).
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4 NTK analysis of infinitely deep CNN

Consider an L-layer convolutional neural network (CNN) fL+1
θ : Rd×d+ → R

parameterized by θ, where the input x ∈ Rd×d+ is a d× d image with positive

entries and the output is a scalar. The network consists of L− 1 convolutional

layers using 3 × 3 filters and zero-padding of 1 with 3 output channels, each

followed by the ReLU activation function. The L-th convolutional layer uses

a 3× 3 filter with zero-padding of 1 and has a single output channel. This is

followed by a global average pool with no activation function applied before

or after the average pool. All convolutional layers use stride of 1.

Let us set up specific notation. For a convolutional filter w ∈ R3×3 and a

(single-channel) image x ∈ Rd×d+ , denote the convolution operation with zero

padding as

[w ∗ x]i,j =
〈
w, ϕi,j(x)

〉
for 1 ≤ i, j ≤ d, where ϕi,j(x) = [x]i−1:i+1,j−1:j+1 and xpq = 0 if p or q is less

than 1 or greater than d, i.e., xpq = 0 if the index is out of bounds. Define

ι3×3 = diag(0, 1, 0) to be the 3 × 3 filter serving as the identity map. So

ι3×3 ∗ x = x. Define the pre-activation values as

(
f1
θ(1)

)
r,:,:

= w1
r,1,:,: ∗ x+ 1d×db

1
r ,(

f l
θ(l)

)
r,:,:

=

nl−1∑
s=1

wlr,s,:,: ∗ σ
((

f l−1
θ(l−1)

)
s,:,:

)
+ 1d×db

l
r,
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for 2 ≤ l ≤ L, where 1d×d is the d by d matrix with all unit entries, nl is

the number of channels of the l-th layer, and r = 1, . . . , nl. Our notation

indexing the 3D and 4D tensors resembles the PyTorch convention and is

defined precisely in Appendix. We use ReLU for the activation σ. The number

of channels are 3 = n1 = · · · = nL−1 and n0 = nL = 1. So, f l
θ(l)

(x) ∈ Rnl×d×d,

wl ∈ Rnl×nl−1×3×3, and bl ∈ Rnl for 1 ≤ l ≤ L. Write average pool as S(A) =

1
d2

∑d
i=1

∑d
j=1Ai,j for A ∈ Rd×d. The CNN outputs

fL+1
θ = S(fL

θ(L)).

For 1 ≤ l ≤ L, write θ(l) = {wi, bi : i ≤ l} to denote the collection of parameters

up to l-th layer.

4.0.1 Initialization

Initialize the filters of our L-layer CNN fL+1
θ as follows:

w1
1,1,:,: =


0 0 0

0 CL 0

0 0 0

 , w1
2,1,:,: =


u11,1 u11,2 u11,3

u12,1 u12,2 u12,3

u13,1 u13,2 u13,3

 ,

w1
3,1,:,: = 03×3

wl1,:,:,: = ι3×3, 03×3, 03×3

wl2,:,:,: =


ul1,1 ul1,2 ul1,3

ul2,1 ul2,2 ul2,3

ul3,1 ul3,2 ul3,3

 , 03×3, 03×3

wl3,:,:,: = 03×3, 03×3, ι3×3

wL1,:,:,: = 03×3, 03×3, ι3×3
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for 2 ≤ l ≤ L− 1, where uli,j ∈ R3×3 is randomly sampled uli,j
iid∼ N (0, ρ2) for

1 ≤ l ≤ L− 1. Here, 03×3 is the 3 by 3 matrix with all zero entries, CL > 0 is

a scalar growing as a function of L at a rate satisfying L2/CL → 0, and ρ > 0

is a fixed variance parameter. Initialize the biases as follows:

(b11, b
1
2, b

1
3) = (0, v1, CL)

(bl1, b
l
2, b

l
3) = (0, vl, 0)

bL = −CL

for 2 ≤ l ≤ L − 1, where vl ∈ R is randomly sampled vl
iid∼ N (0, C2

Lβ
2) for

1 ≤ l ≤ L− 1. Here, β > 0 is a fixed variance parameter.
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(a) True function and trained MLP after
2000 iterations.
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(b) Scaled NTK values

Figure 4.1 Depth L MLPs learning a toy function with 2D inputs as

described in Section 5.1, (Left) Trained deep MLP approximates the true

function well, i.e., training succeeds. (Right) Kernel values evaluated at

initialization and after training with 10 independent initialization-training

trials each for L = 100 and L = 10000. As L grows, initialization becomes

less random, as Theorem 3.1 predicts, and the kernel changes less throughout

training, as Theorem 3.2 predicts.

Task Architecture Depth CL ρ β Learning rate Epochs Training loss Test accuracy

10-class MLP 4000 4 1 1 1× 10−5 1500 0.0055 97.48%

10-class CNN 4000 4 1/
√
3 1 1× 10−5 2000 0.014578 94.02%

Binary CNN 20000 20 1/
√
3 1 1× 10−8 1000 0.031257 98.87%

Table 4.1 Very deep MLP and CNNs trained with MNIST. As the theory

predicts, the very deep networks are trainable.
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(a) Depth 1000 MLP
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(b) Depth 1000 CNN

Figure 4.2 Depth 1000 MLPs and CNNs with MNIST are trainable with

our proposed initialization but not with the standard Kaiming He initialization.

For Kaiming initialization, we show trials with learning rates 1×10−5, 1×10−4,

1× 10−3, 0.01, 0.1, and 1.

4.0.2 Convergence in infinite-depth limit

We now analyze the convergence of the infinitely deep CNN.

Theorem 4.1 (Scaled NTK at initialization) Suppose fL+1
θ is initialized as

in Section 4.0.1. For any x, x′ ∈ Rd×d+ ,

S
(
Θ̃L

0 (x, x
′)
)

p→ Θ̃∞(x, x′)

as L→ ∞, where

Θ̃∞(x, x′) =
1

d2

3∑
s=1

3∑
u=1

(
pd(s, u) + d2S(xψs,u)S(x

′
ψs,u

)

+
∑

i,j∈ψs,u

∑
i′,j′∈ψs,u

E[σ(g(ϕi,j(x)))σ(g(ϕi′,j′(x′)))]
)
,

g ∼ GP(0, ρ2
〈
x, x′

〉
+ β2), ψs,u is the set of coordinate which satisfy xψs,u =

[x]s−1:d+s−2,u−1:d+u−2 and xpq = 0, ϕmn(x) = 0 if the index is out of bounds,

and

pd(s, u) =


d4 (s, u) = (2, 2),

d2(d− 1)2 |s− u| = 1,

(d− 1)4 else.
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Theorem 4.2 (Invariance of scaled NTK) Let T > 0. Suppose
∫ T
0

∥∥∥δ|fLθ ∥∥∥pindt
is stochastically bounded as L→ ∞. Then, for any x, x′ ∈ Rd×d+ ,

S
(
Θ̃L
t (x, x

′)
)

p→ Θ̃∞(x, x′)

uniformly for t ∈ [0, T ] as L→ ∞.

Again, define the kernel regression predictor as

fntk(x) =
(
Θ̃∞(x, x1), . . . , Θ̃

∞(x, xN )
)
K−1f⋆(X),

where Ki,j = Θ̃∞(xi, xj) and [f⋆(X)]i = f⋆(xi) for i, j ∈ {1, . . . , N}.

Theorem 4.3 (Equivalence between deep CNN and kernel regression) Let

L(f) = 1
2 ∥f − f⋆∥2pin . Let Θ̃∞ be positive definite. If ft follows the kernel

gradient flow with respect to Θ̃∞, then for any x ∈ Rd×d+ ,

lim
t→∞

ft(x) = fntk(x).

Generalizations. At the expense of slight notational complications, we can

generalize our results as follows. We assumed the convolutional filter size is

3× 3, but we can use larger filters by assigning a symbol for the filter size and

managing the summation indices with care. We assumed the number of input

channels and output scalar dimension are 1, but we can have c input channels

and k outputs, i.e., fL+1
θ : Rc×d×d+ → Rk, by letting the intermediate layers

have c+ 1 + k channels. In fact, Section 5.2 presents a 10-class classification

of MNIST with a deep CNN using 1 + 1 + 10 = 12 channels in intermediate

layers.
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5 Experiments

In this section, we experimentally demonstrate the invariance of the scaled

NTK and the trainability of deep neural networks. The code is available at

https://github.com/lthilnklover/deep-narrow-NTK

5.1 Convergence of the scaled NTK

Our first experiment, inspired by [27], trains L-layer MLPs on 2-dimensional

inputs and shows that the network and its scaled NTK converges as the depth

L increases. For L = 100 and L = 10000, we initialize 10 independent MLP

instances and train them to approximate f⋆(x1, x2) = x1x2 using the quadratic

loss. To verify that the networks are indeed successfully trained, we compare

the trained MLP against the true function f⋆ in Figure 4.1(a). We then plot

the scaled NTK Θ̃L(x0, x) for fixed x0 =
(

1√
2
, 1√

2

)
and x = (cos(γ), sin(γ)) for

0 < γ < π/2 in Figure 4.1(b). The kernels are plotted at initialization (t = 0),

and after 2000 iterations of gradient descent.

5.2 Trainability of the deep narrow neural network

Next, we demonstrate the empirical trainability of the deep narrow networks

on the MNIST dataset.
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Very deep MLP. We train L-layer MLPs with din = 784 and dout = 10

using the quadratic loss with one-hot vectors as targets. To establish a point of

comparison, we attempt to train a 1000-layer MLP with the typical Kaiming

He uniform initialization [23]. We tuned the learning rate via a grid search from

0.00001 to 1.0, but the network was untrainable, as one would expect based

on the prior findings of [24, 67, 26]. In contrast, when we use the initialization

defined in Section 3.1, the deep MLP was trainable. Figure 4.2(a) reports these

results. To push the depth, we also trained a 4000-layer MLP and report the

results in Table 4.1. To the best of our knowledge, this 4000-layer MLP holds

the record for the deepest trained MLP.

Very deep CNN. We train L-layer CNNs using the quadratic loss with

one-hot probability vectors as targets. To reduce the computational cost, we

insert a 4 × 4 average pool before the first layer to reduce the MNIST input

size to 7 × 7. As in the MLP experiment, we attempt to train a 1000-layer

CNN with the typical Kaiming He uniform initialization, but the network was

untrainable. In contrast, when we use the initialization defined in Section 4.0.1,

the deep CNN was trainable. Figure 4.2(b) reports these results. To push the

depth, we also trained a 4000-layer CNN and report the results in Table 4.1.

To further push the depth, we simplify the problem to binary classification

between digits 0 and 1 and use values 0 and 1 as targets. We then trained a

20000-layer CNN and report the results in Table 4.1. This CNN surpasses the

10000-depth CNN of [72] and, to the best of our knowledge, holds the record

of the deepest trained CNN.
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Figure 5.1 Intermediate activation values of the rightmost neurons of each

layer after training. (The effect of the bias CL is compensated for to help

visualize the change.)

5.3 Accumulation of the layer-wise effect

To observe the accumulation of the output value throughout the depth, we plot

the intermediate activation values of the rightmost neurons of each layer from

the 10000-layerMLP trained in Section 5.1. Precisely, we plot (σ(f (l)(x)))din+dout+1−

CL for 1 ≤ l ≤ L− 1 and (f (L)(x))din+dout+1. Figure 5.1 shows that the target

output value is achieved through the accumulation of the effect of 10000-layers.
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6 Conclusion

This work presents an NTK analysis of a deep narrow MLP and CNN in the

infinite-depth limit and establishes the first trainability guarantee on deep

narrow neural networks. Our results serve as a demonstration that infinitely

deep neural networks can be made provably trainable using the right initializa-

tion, just as the infinitely wide counterparts are. However, our results do have

the following limitations. First, while our proposed initialization is straight-

forwardly implementable, it is far from the initializations used in practice.

Second, our results do not indicate any benefit of using deep neural networks

compared to wide neural networks. Further investigating the trainability of

overparameterized deep neural networks to address these questions would be

an interesting direction of future work.
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7 Appendix

As a matter of quantity, we attach a following link to download this paper with

appendix: https://arxiv.org/abs/2202.02981.
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초 록

과매개화된 신경망의 훈련 역학을 분석하는 최근의 엄청난 발전은 주로 넓은

네트워크에초점을맞추었기때문에딥러닝에서깊이의역할을충분히다루지못

한다. 이 논문에서 우리는 무한히 깊지만 좁은 신경망의 훈련 가능성을 처음으로

보인다. 우리는 특정 초기화하에서 무한한 깊이의 다층 신경망을 연구하고 뉴럴

탄젠트커널 이론을 사용하여 학습 가능성울 보장한다. 그런 다음 분석을 무한히

깊은 합성곱 신경망으로 확장하고 간단한 실험을 수행한다.

주요어: 딥러닝, 뉴럴탄젠트커널 이론, 다층신경망

학 번: 2020-20857
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