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Abstract

For a prime p and a positive integer n, an integral quadratic form over the
ring Zj, is called primitively n-universal if it primitively represents all integral
quadratic forms of rank n over Z,,. In [7], Earnest and Gunawardana provided
some criteria for determining whether or not a given integral quadratic form
over Zjp is primitively l-universal. In this thesis, we prove that the minimal
rank of primitively n-universal integral quadratic form over Zj, is 2n, if p is an
odd prime or if p = 2 and n > 5. Moreover, we obtain a complete classification
of primitively 2-universal integral quadratic forms over Z, of minimal rank.
For a positive integer n, a positive definite integral quadratic form is called
primitively n-universal if it primitively represents all positive definite integral
quadratic forms of rank n. It was proved in [11] that there are exactly 107
primitively 1-universal quaternary integral quadratic forms up to isometry. In
this thesis, we prove that the minimal rank of primitively 2-universal integral
quadratic forms is six, and we prove that there are exactly 201 primitively

2-universal senary integral quadratic forms up to isometry.
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Student Number: 2017-24838
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Chapter 1

Introduction

A quadratic form of rank n is a quadratic homogeneous polynomial

n
flxy,...,x,) = Z fijwix; (fij = fj: € Q),
ij=1

where the corresponding symmetric matrix My = (fi;) is nondegenerate. We
say f is integral if My is an integral matrix, and we say f is positive definite
if My is positive definite. Throughout this thesis, we always assume that any
quadratic form is integral and positive definite.

For two (positive definite integral) quadratic forms f and g of rank n and
m, respectively, we say f is represented by g if there is an integral matrix
T € My, n(Z) such that My = T*M,T. We say f is isometric to g if the above
matrix 7T is invertible. We further say f is primitively represented by g if the

above matrix 7" can be extended to an invertible matrix in GL,,(Z) by adding
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suitable (m — n) columns. In particular, a positive integer a is primitively

represented by g if and only if there are integers x1, ..., z,, such that
g(z1,...,xym) =a and ged(zy,...,2m) = 1.

For a positive integer n, a quadratic form is called (primitively) n-universal
if it (primitively, respectively) represents all quadratic forms of rank n. La-
grange’s four-square theorem states that the quaternary quadratic form corre-
sponding to the identity matrix I is 1-universal. The complete classification
of 1-universal quadratic forms up to isometry has been done by Ramanujan,
Dickson, Conway—Schneeberger, and Bhargava (see [20], [6], and [1]). In 1998,
Kim, Kim, and Oh in [13] proved that there are exactly eleven 2-universal
quinary quadratic forms up to isometry. For some more information on n-
universal quadratic forms, see [12] or [16].

For a ring R, a quadratic R-form of rank n is a quadratic homogeneous

polynomial

n
for, .. zn) =Y fymiz;  (fij = fii € R),
ij=1
where the corresponding symmetric matrix My = (fij;) € M,(R) is nonde-
generate. An integral quadratic form is a quadratic Z-form, and a quadratic
S-form can be viewed as a quadratic R-form whenever S is a subring of R.
For two quadratic R-forms f and g of rank n and m, respectively, we say f is
represented by g (over R) if there is a matrix T' € My, ,(R) over R such that
My = T'M,T. We say f is isometric to g (over R) if the above matrix 7' is
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invertible over R. We further say g is primitively represented by f (over R)
if the above matrix 7" can be extended to an invertible matrix in GL,,(R) by
adding suitable (m —n) columns in R™.

Clearly, if f is (primitively) represented by g over Z, then f is also (prim-
itively, respectively) represented by g over Z, for any prime p. However, the
converse is not true in general. In fact, there is an effective criterion whether
or not f is represented by g over Z, for any prime p (for this, see [18]). How-
ever, as far as the author knows, there is no known effective criterion whether
or not f is primitively represented by g over Z,.

Finding primitively 1-universal quadratic forms was first considered by
Budarina in [2]. She classified all primitively 1-universal quaternary quadratic
forms satisfying some special local properties. Later, she also classified in [3]
all primitively 2-universal quadratic forms that is of class number one and has
odd squarefree discriminant. Recently, Earnest and Gunawardana classified
in [7] all quadratic Z,-forms that primitively represent all unary quadratic
Zy,-forms for any prime p including p = 2. Furthermore, they gave a complete
list of all quaternary 1-universal quadratic forms that are almost primitively
l-universal. Here, a quadratic form is called almost primitively 1-universal if
it represents almost all positive integers primitively. Recently, Ju, Kim, Kim,
Kim and Oh in [11] finally proved that there are exactly 107 primitively 1-
universal quaternary quadratic forms up to isometry.

In this thesis, we study the minimal rank of primitively n-universal quadratic
forms and the classification of primitively n-universal quadratic forms of min-

imal rank, over Z and Z, for a prime p. Most results were done by joint work
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with Prof. Byeong-Kweon Oh.

In Chapter 2, we summarize basic facts and preliminary results about rep-
resentations of quadratic spaces and lattices. We also introduce some results
on n-universal and primitively n-universal quadratic forms over Z and Z, for
a prime p.

In Chapter 3, we discuss primitive n-universality over Z, for a prime p. We
first state a necessary condition for a Z,-lattice to be primitively n-universal.
Next, we prove that the minimal rank of primitively n-universal quadartic
forms over Z, is 2n if p is odd or n > 5. Furthermore, it is 2n + 1 if p = 2
and n = 2, 3. Finally, we provide a complete classification of primitively n-
universal quadratic forms of minimal rank, when p is odd and n = 2, 3, and
when p =2 and n = 2.

In Chapter 4, we discuss primitive n-universality over Z. We prove that
the minimal rank of primitively 2-universal quadratic forms over Z is six. Fur-
thermore, we prove that there are exactly 201 primitively 2-universal senary

quadratic forms up to isometry (see Table 4.1).



Chapter 2

Preliminaries

In this chapter, we introduce definitions, notations and known results which
will be used throughout the thesis.
2.1 Representations of quadratic spaces

Let F' be a field of characteristic not 2. By a quadratic space V over F we
mean a finite dimensional vector space V over F' equipped with a symmetric

bilinear form B on V, i. e. a mapping
B:VxV->F
with the following properties:

B(ax +vy,z) = aB(z,2) + B(y, 2), B(z,y) = B(y, z)
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for all z,y,z € V and all a € F. We define the quadratic form @ (associated
with B) on V by Q(z) = B(x,z) for all z € V. We use @ and B to denote the
quadratic form and the associated bilinear form on any quadratic space. We
say that a quadratic space is unary, binary, ternary, quaternary, ..., n-ary
according as its dimension is 1, 2, 3, 4, ..., n. The quadratic space V is said
to represent a field element « if &« € Q(V). We say that V is universal if
Q(V)=F.

Suppose that V' and W are quadratic spaces. A linear map o € L(V, W)
is called a representation from V into W (with respect to the bilinear forms

BonV and W) if
B(oz,oy) = B(z,y) for any z,y € V.

We let V. — W denote a representation. We say that V is represented by W
if there is a representation V' — W. An injective representation is called an
isometry of V into W. And V and W are said to be isometric if there exists
an isometry o of V onto W. We let V =2 W denote an isometry of V onto
W. The set of all isometries V' into itself is written O(V). It is a subgroup of
GL(V), called the orthogonal group of V with respect to the quadratic form
Q.

Let V be an n-ary quadratic space. With each basis z1,...,x, for V, we
associate an n X n symmetric matrix N whose (4, j) entry is B(z;, ;). We call

N the (Gram) matriz of V in the basis z1,...,x, and write

V=N in x1,...,%,.
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If there is a basis x1, ..., x, for which this holds, then we say that V has the

(Gram) matrix N and we write

The discriminant of V, written dV, is defined to be the canonical image of

det N in the quotient monoid F/(F*)2. Tt is easily seen that the above defi-

nition of discriminant is actually independent of the choice of a basis.
Consider the quadratic space V. The orthogonal sum is the direct sum of

subspaces Vi, ..., V., which are pairwise orthogonal, i. e. which satisfies
B(V;,V;)=0 for 1<i<j<r.

It is denoted Vy L --- L V,.. If the orthogonal sum of subspaces Vi, ..., V, is
equal to V, then we say that V has the (orthogonal) splitting

V=WVl -1V,

into subspaces Vi, ..., V.. We call V; the (orthogonal) components of the
splitting. We say that a subspace U (orthogonally) splits V', or that it is a

component of V| if there exists a subspace W such that
V=UL1LW.

Suppose that we are given quadratic spaces Vi, ..., V. over F. Then there
is a unique symmetric bilinear form on the direct sum V4 @ --- @ V,. which

induces the given bilinear forms on the V; and under which the summands V7,

&1

| &1

11’
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..., V, are mutually orthogonal. For if By, ..., B, are the respective given

bilinear forms, define

B(Z z;, Zyl) = Bi(zi,y)

for typical vectors Y z;, > y; in @ Vj; it is easily seen that B has the required
properties. In this case, @ V; equipped with such a B also is denoted by
ViLl--- 1LV, and is called an orthogonal sum of quadratic spaces Vi, ... V.
Given a symmetric nxn matrix N, we let (V) (or sometimes N itself) stand
for an n-ary quadratic space which has the matrix N. Hence, for instance, the

notation

N; L Ny

with N7 and Ny symmetric matrices over F' denotes a quadratic space over F

which has the matrix
N | O

0 | Ny
Similarly,

(aa) Lo+ L (o)

with all «; in F' denotes a quadratic space over F' which has the matrix
diag(aq, ..., an).

We simply let (o, ..., a,) stand for such a space. A basis B for the quadratic
space V is called an orthogonal basis if the matrix of V' in B is diagonal. Every

nonzero quadratic space has an orthogonal basis.
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For a subset S of the quadratic space V', we put
St ={zeV|B(xS) =0}

It is easily seen that ST is a subspace of V. For a subspace U of V, we call
U the orthogonal complement of U in V. We say that V is a nondegenerate
quadratic space if V- = 0, or equivalently if dV # 0. If U is a nondegenerate

subspace of the quadratic space V, then it is well known that
V=UL1lU

Theorem 2.1.1 (Witt). (a) If U and W are isometric nondegenerate sub-

spaces of a quadratic space V, then UL and W are isometric.

(b) If V and V' are isometric nondegenerate quadratic spaces and U is any
subspace of V', then for any isometry o : U — V', there is an extension

of o to an isometry of V onto V.
Proof. (a) See [19, Theorem 42:16]. (b) See [19, Theorem 42:17]. O

Let x be an nonzero vector in the quadratic space V. We call = isotropic if
Q(z) = 0, and we call it anisotropic otherwise. Let V' be a nonzero quadratic
space. We call V isotropic if it contains an isotropic vector, and we call it
anisotropic otherwise. A quadratic space V is called a hyperbolic plane if it

has the matrix

01
V=
10
9
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in one of its bases, called a hyperbolic basis for V. A binary quadratic space
V' is a hyperbolic plane if and only if V' is isotropic and nondegenerate, if and
only if —1 € dV. We let H stand for the hyperbolic plane.

We call a nonzero quadratic space is totally isotropic if each of its nonzero
vector is isotropic. Let V be a nondegenerate quadratic space. Then any max-
imal totally isotropic subspace of V' has the same dimension. This dimension
is called the (Witt) index of V', and is written ind V. If the index of V is r,
then V is split by an orthogonal sum of r copies of hyperbolic planes. This
implies

0<2indV <dimV.

We call V' a hyperbolic space if 0 < 2r = dim V. Thus V is hyperbolic if and
only if it is isometric to a nonempty orthogonal sum of hyperbolic planes.
Let a field ' and nonzero scalars «, § € F' are given. Take a four dimen-

sional space U and a basis 1, 4, j, k for U so that
U=F1+4+Fi+ Fj+ Fk.

Define a multiplication on these basis vectors by the multiplication table

11 al k  aj
J|J —k Bl —pi
—aj pi —apfl

oy

10
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and extend this by linearity to a multiplication on U. Then U is an associative
F-algebra with multiplicative identity 1. For each pair of nonzero scalars

«a, B € F, the algebra obtained by the preceding construction is called the

o B
- |
Consider a nondegenerate n-ary quadratic space V over the field F. Suppose

that

quaternion algebra

We define the Hasse algebra
- Q4 O
SpV - 1g(§j>gn ( = >

It may be shown that SrV is uniquely determined up to an algebra isomor-
phism. Hence it is an invariant of the quadratic space V.

A global field is either a finite extension of the field of rational numbers
Q, or a finite extension of the field Fy(t) of rational functions in one variable
over a finite constant field F,. A local field is a composite object consisting of
a place p on F such that p is complete and discrete, and the residue class field
at p is finite. It is known that the completion of a global field at any one of
its nontrivial nonarchimedean places is a local field.

Suppose that F' has a unique nontrivial place p, and suppose that F' is
either a local field at p, or p is archimedean and complete. In any of these
situation, it is well-known that the Brauer group of F' is cyclic of order at most

2, and hence it may be identified with a subgroup of {£1}. For a nondegenerate

11
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quadratic space V over F, we define the Hasse symbol S,V € {1} to be the
canonical image of the Hasse algebra in the Brauer group of F. Also, given
nonzero scalars «, 8 € F', we define the Hilbert symbol (O‘Tﬁ) € {£1} to be the

canonical image of a quaternion algebra (a}’,ﬁ

) in the Brauer group of F'. Then
evidently

<04,5> +1 if (o, 3) represents 1,
) =

—1 otherwise.

The Hasse symbol may be computed from Hilbert symbols by the identity

s I (%)

1<i<j<n

The following three theorems completely resolve the representability prob-
lem of positive definite quadratic spaces over Q. For instance, we know that If
the dimension of a positive definite quadratic space over Q is > 4, then it rep-
resents any positive rational number in Q. If V' is a nondegenerate quadratic
space over the global field F' and p is a nontrivial place on F', then we put

Vp = F, ® V. The Hasse symbol S,V will be written S,V

Theorem 2.1.2 (19, Theorem 63:20). Let F' be a local field at the prime place

p. Then nondegenerate quadratic spaces U and V' over F' are isometric if and
only if
dimU =dimV, dU =dV, S5,U=5,V.

Theorem 2.1.3 (19, Theorem 63:21). Let U and V' be nondegenerate quadratic
spaces over a local field with v = dimV —dimU > 0. Then U is represented

12
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by V if and only if v > 3 or

VU ifv =20,
V=UL1dU-dV) ifv=1,
V=ZU1H ifv=2and dV = —dU,

where H is the hyperbolic plane.

Theorem 2.1.4 (19, Theorem 66:3). Let U and V' be nondegenerate quadratic
spaces over the global field F'. Then U is represented by V' if and only if U, is
represented by V, for all places p on F.

The following facts about isotropy of quadratic spaces over local fields are
well known. If F' is a local field and R is the ring of integers in F', we fix
a nonsquare unit A in R such that A = 14 4p for some unit p in R. If
(F,R) = (Qp,Zy) for a prime p, we let A, = A.

Theorem 2.1.5. Let V' be a nondegenerate n-ary quadratic space over F a

local field at p.
(a) If n =3, then V is isotropic if and only if SV = (—1,—1).

(b) Suppose n = 4. If dV is nonsquare, then V is isotropic. If dV is a
square, then V is isotropic if and only if S,V = (=1,-1). If V is
anisotropic, then

Ve{d,-Anr,—1A),

where w is a uniformizer of F.

13
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(¢) If n > 5, then V is isotropic.
Proof. (a) See [19, 58:6]. (b) See [19, 63:17]. (c) See [19, 63:19]. O

Let V be a nondegenerate quadratic space over the global field F' and let
Q) be the set of all nontrivial places on F'. The Hilbert Reciprocity Law for F
gives a reciprocity law for Hasse symbols, namely
peQ

for any nondegenerate quadratic space V over F.

2.2 Representations of quadratic lattices

Let F be a field and let R be a Dedekind domain defined by a Dedekind set of
places S on F (for the definition, see [19, §22F]). Let V' be a finite dimensional
vector space over F. A lattice in V (with respect to R, or with respect to
the defining set of places S) is a finitely generated R-submodule of V. For
a lattice M in V, we define F'M to be the F-span of M in V. We call M a
lattice on V if FM = V. If F is a local field at p then S = {p} so that R
is the ring of integers in F. If F' = Q then we assume S = Q \ {oo} so that
R = 7Z. We are interested mainly in the cases when F' = Q or F' = @, so we
suppose that R is a PID from now on. Thus, every lattice is free over R, and
its rank over R is well-defined.

Let F' be a field of characteristic not 2. A lattice L in a quadratic space V

is called a quadratic lattice, for it inherits the symmetric bilinear form B and

14
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associated quadratic form @ from the ambient space V. We call a quadratic
lattice L unary, binary, ternary, quaternary, ..., n-ary according as its rank
isl,2,3,4,...,n.

Suppose that L and M are lattices in quadratic spaces V and W, respec-
tively. A representation from L into M is a representation o : F'L — F M such
that oL C M, and we denote it by L — M. We say that L is represented by
M if there is a representation L — M. An isometry of L into M is an isometry
o : FL — FM such that oL C M. We say that L and M are isometric, and
write

LM,

if there is an isometry o : FIL =2 FM such that oL = M. A primitive
representation from L into M is a representation o : L — M such that oL is
a primitive sublattice in M. Suppose that L and M are lattices on the same

quadratic space V. We say that L and M are in the same class if
M =oL forsome o€ O(V).

This is clearly an equivalence relation on the set of all lattices on V', and we

accordingly obtain a partition of this set into equivalence classes. We use

cls L

to denote the class of L.
Let L be an n-ary lattice on the quadratic space V. Since L is free over R,

there is an R-basis for L, and any such basis is also an F-basis for V. With

15
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each basis 1, ..., x, for L, we associate the matrix N = (B(z;, x;)), i. e. the
matrix of V in zy,...,z,. We call N the (Gram) matriz of L in the basis
xi,...,Ty and write

L=N in x1,...,%p.

If there is a basis z1, ..., z, for which this holds, then we say that L has the

(Gram) matrix N and we write

The discriminant of L, written dL, is defined to be the canonical image of

det N in the quotient monoid F/(R*)2. Tt is easily seen that the above defi-

nition of discriminant is actually independent of the choice of a basis.
Consider the quadratic space V. The orthogonal sum is the direct sum of

lattices L1, ..., L, in V, which are pairwise orthogonal, i. e. which satisfies
B(Li, Lj) =0 for 1<i<j<r.

It is denoted Ly L --- L L,. If a lattice L in V is the orthogonal sum of
sublattices Li, ..., L,, then we say that L has the (orthogonal) splitting

L=L;1---1L,

into sublattices Lj, ..., L,. We call L; the (orthogonal) components of the
splitting. We say that a sublattice K (orthogonally) splits L, or that it is a

component of L, if there exists a sublattice M such that

L=K1M.

16
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Suppose that we are given quadratic spaces V; (1 < i < r) over F and
lattices L; in V; Then we know that there exists a quadratic space V' over F
such that

vyl -1V,.

Hence there always exists a quadratic space V' which includes a lattice L such
that
L=l 1---1L,.

Given a symmetric n x n matrix N, we have agreed to let (V) or N stand
for an n-ary quadratic space having the matrix N. We also use the symbol
(N) or N to denote a free n-ary quadratic lattice with the matrix N (in a
suitable quadratic space). Hence, as for spaces we have

Ni | O

Ny 1 Ny =
0 | Ny

for symmetric matrices N1 and N over F' and
(a1, ... 0 2 (diag(ag, ..., an)) = (1) L+ L {an)

for field elements «; in F. A basis B for the quadratic lattice L is called an
orthogonal basis if the matrix of L in B is diagonal.

For a subset S of the quadratic lattice L, we put
St ={zeL|B(zS) =0}

Clearly S+ (in L) is equal to the intersection of S+ (in V') with L. Hence S* is

a primitive sublattice of L. For a sublattice K of L, we call K the orthogonal

17
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complement of K in L. We call L nondegenerate if L+ = 0, or equivalently if
dL # 0.
Consider a lattice L in the quadratic space V. By the scale

sL
of L we mean the R-submodule B(L, L) of F. We define the norm
nlL

of L to be the R-submodule generated by the subset Q(L) of F. We know

that sL and nL are either a fractional ideal or 0, and
2sL, CnlL CsL.

It is clear that s(Ly) = (sL), and n(Ly) = (nL), for any p € S.

Consider a n-ary lattice L in the quadratic space V. Suppose that the
scale of L is the fractional ideal (a) = aR. Then we know that sL = aR and
dL C a"™R. If L actually satisfies

sL=aR and dL Ca"R*,

then we call L aR-modular or simply a-modular. We call L unimodular if it is
R-modular. We say that L is modular if it is a-modular for some a. Since R
is a PID, a nonzero lattice L in a quadratic space V is a-modular if and only
if B(z, L) = (a) for every primitive vector = in L.

We have agreed to let H stand for a hyperbolic plane. We also use the

symbol H to denote a free binary quadratic lattice with the matrix (9 }) in

18
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one of its bases, called a hyperbolic basis for H. Note that sH = R, nH = 2R,
and that H is a unimodular lattice on a hyperbolic plane. Moreover, we let A
denote a lattice with the matrix A. For o € F, by an expression oH (aA) we

mean a scaling of H (A, resp.) by a. That is,
1
oH = o and oA =«

Note that oH and A are a-modular.

Proposition 2.2.1 (19, Proposition 82:15 and Corollary 82:15a). Let L be a
lattice in a quadratic space V and J is an a-modular sublattice of L. Then J

splits L if and only if B(J, L) C (a). In particular, J splits L if sL = (a).
14 Y ) p s 14

Consider a nonzero nondegenerate lattice L in the quadratic space V' over
the local field F'. The above proposition implies that L splits into unary and
binary modular lattices. If we group the modular components of the above

splitting suitably, then L has a splitting
L=J,1L---1J;
in which each component is modular and
sJ1 2 - D s

Any such splitting is called a Jordan splitting of L. We have therefore proved
that every nonzero nondegenerate lattice L in a quadratic space V over a local

field F' has at least one Jordan splitting.
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Theorem 2.2.2 (19, Theorem 91:9). Let L be a nonzero nondegenerate lattice

in the quadratic space V' over the local field, and let
L=Jy1---1J L=Ky1l---1Krp

be two Jordan splittings of L. Then t = T. And for 1 < i < t we have
sJ; = sK;, rank J; = rank K;, and nJ; = sJ; if and only if nK; = sK;.

Therefore given a nonzero nondegenerate quadratic lattice L, the number
of Jordan components ¢, the i-th Jordan scale s.J; and the i-th Jordan rank
rank J; are invariants of L. Consider nonzero nondegenerate lattice L and M

in quadratic spaces V and W over the same field F'. Let
L=J;1L---1J, M=K 1 ---1Krp

be any Jordan splitting of respectively L and M. We say that the lattices L

and M are of the same Jordan type if t =T and, whenever 1 < i < t, we have
sJ; = sK;, rank J; = rank K;

and

nJ; =sJ; if and only if nK; =nJ;.

The last theorem guarantees that the above conditions are independent of
the choice of Jordan splittings, and hence the notion of Jordan type is well-
defined. Sometimes it is convenient to index the Jordan components by its

scale, namely

L= | L

1€EZ

where each L; is p’-modular or 0, and all but finitely many summands are 0.
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Theorem 2.2.3 (19, Theorem 92:1). Let L be a unimodular lattice with respect
to R on the quadratic space over the nondyadic local field. Then

for any unit € in R satisfying dL = ¢(R*)?.

Theorem 2.2.4 (19, Theorem 92:2). Let L and M be lattices of the same
Jordan type on the nondegenerate quadratic space over the nondyadic local

field. Consider Jordan splittings
L=J L---1J, M=K 1 - 1K,
Then L = M if and only if
dJ; =dK; for 1<i<t.

Theorem 2.2.5 (18, Theorem 1). Let { and L be nonzero nondegenerate
quadratic lattices over the nondyadic local field F'. Consider Jordan splittings
¢= | £y, L= | Ly and define

i = J_{Zu | 56, 2 p'3, L= J_{Lu | 5L, 2 p'}
fori € Z. Then { — L if and only if
Fl; — F&; for all 1.

The above four theorem together with Witt theorem(Theorem 2.1.1) im-

plies the following cancellation law: for nondegenerate lattices M, M7, M>
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over the nondyadic local field, M | My — M 1 M, if and only if M; — M.
However, over a dyadic local field, the situation is much more complicated.

Now consider dyadic case. Let L be a lattice on a nondegenerate quadratic
space over the dyadic local field F. We define the norm group of L to be an
additive subgroup

gL =Q(L)+2sL
of F. For a fractional ideal a in F, we define L® as the sublattice
L*={xeL|B(z,L) Ca}
of L.

Theorem 2.2.6. Suppose that a L on a nondegenerate quadratic space over

a dyadic local field F' has splittings
L=M1M =N1MN
with M is isometric to N.
(a) If M = H, then M is isometric to Nj.

b) If M s a-modular with gM C g(M7) and gM C g(N7{), then My is
1 1

isometric to N1.

(c) Suppose F = Qq. If M =2 (€) for a unit € in Zo, s(M;) = s(Ny) C (2)
and n(My) = n(Ny), then My is isometric to Nj.

Proof. (a)(b) See [19, Theorem 93:14 and Corollary 93:14a]. (c¢) See [14, The-
orem 5.3.6]. O
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Theorem 2.2.7 (19, Theorem 93:16). Let L and M be unimodular lattices on
the same quadratic space over a dyadic local field. Then L = M if and only if
gL =gM. Hence L = M if and only if Q(L) = Q(M).

There are no known effective criteria to determine representability between
lattices over a general dyadic local field. A dyadic local field is called a 2-adic
local field if 2 is unramified. Let L be a lattice in a nonzero nondegenerate
quadratic space V over a 2-adic local field F' with the Jordan splitting L =
Ly L--- 1L Forl <i <t nl; =sL; or 2sL;, and hence nl; is also an
invariant of L. Put s; = sL; and n; = nL; (1 <i <t). We call the quantities

t, rankLi, S, Ny (1 <1< t)

the Jordan invariants of L. Clearly two lattices have the same Jordan invari-

ants if and only if they are of the same Jordan type. We put
u; = ords n;.

Theorem 2.2.8 (19, Theorem 93:29). Let L and M be lattices on a nonzero
nondegenerate quadratic spaces over the 2-adic local field F' and suppose that

L and M have the same Jordan invariants. Consider Jordan splittings
L=Ji1---1J M=K 1 ---1K;
and put
Ly=JL---1J; My=K L---LK; (1<i<t).

Then L = M if and only if the following coditions hold for 1 <i <t —1:
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(1) dL;/dMy is congruent to a unit square modulo nn;y /s,
(2) FL(Z) — FK(Z) 1 <2u1> when n;41 C 4n;.

In order to describe representations of lattices over a 2-adic local field,
we need more definitions. Let F' be a 2-adic local field and let R be the
ring of integers in F. A modular R-lattice M is called proper if nM = sM,
and improper otherwise. Let £ and L be nonzero nondegenerate quadratic
lattices over the 2-adic local field F'. Consider Jordan splittings £ = | ¢y and
L = | L). We define

L= | {u]s,22R}, L= | {Lu|s.22'R},
[M = [i 1 J_{KM ‘ ‘(1“ = 25M = 2i+2R}, 2(1) = J_{LM | TIM 2 QZR}

for i € Z.

We define A; for L as follows: If L has a proper 2/T'-modular component,
A; := 27TIR: failing this, A; := 27t2R if L has a proper 2/t2-modular com-
ponent; otherwise, A; = 0. We define §; for ¢; in the same manner. We put
D; = d(£))R and d; = d(l;)R; if £, = 0 then put D; = 0 and the same when
I; = 0. Note that these definitions are independent of the Jordan decomposi-
tion of £ or L. For any R-submodule a in F' and a quadratic space U over F,
we write a — U if a = Q(z)R for some x € U. Hence, 0 — U means a vacuous

condition.

Definition 2.2.9. We say that ¢ have a lower type than L if the followings
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hold for all i:

(1) dim[; < dim &;,

(2) d;D; — (1) if dim [; = dim £;,
(3) & CA;+2"2Rand A; 1 C 61 + 2R if diml; = dim £;,
(4) A1 €61 +27TIR if dim & — 1 =dim[; > 0 and d; D; — (2171),
(5) & CA; +22R if dim£; —1=diml; > 0 and d; D; — (2°).

For two nondegenerate quadratic lattices m and M over R such that m —
M, we denote by M /m the quadratic space over F' such that F'm L (M/m) =
FM. For any o € F and a quadratic space U over F', we write &@ — U if either

a—UorAa—U.

Theorem 2.2.10 (18, Theorem 3). Let ¢ have a lower type than L. Then
{ — L if and only if the following conditions hold for all i:

(6) Ai = Livay /s

(7) i = L(izay/ s

(8) S(ZJFQ)/[M =H implies Azél - (512,
(9) 20— (2" L £441))/b;

(10) 20— (2" L Li11)/ 1y

Remark 2.2.11. In the statement of condition (V) of [18, Theorem 3], there
is a typo; “£(;;1)” should be replaced by “£;,1”. The same for [18, Proposi-
tion 25].

Let L be a lattice on a quadratic space V' over the global field F. We
define the genus gen L of L on V to be the set of all lattices M on V with
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the following property: for each p € S there exists an isometry X, € O(V})
such that M, = ¥,L,. The set of all lattices on V is thereby partitioned into

genera. We immediately have
gen M =gen L ifand only if clsM,=clsL, VpecS.

Proposition 2.2.12. Let L be a lattice on the quadratic space V' over a global
field F, let K be a nondegenerate lattice in V. If there is a representation
K, — Ly at each p € S, then there is a representation K — L' of K into
some lattice L' in gen L. If there is a primitive prepresentation K, — L, at
each p € S, then there is a primitive representation K — L' of K into some

lattice L' in gen L.

Proof. See [19, Example 102:5]. O

Let p and q be fractional ideals in F' such that 2p C q C p. Suppose that

L and M are lattices in quadratic spaces V and W, respectively. We write
L — M mod (q,p)
if there is an R-linear map o from L into M such that
Q(or) = Q(x) mod q and  B(ow,0y) = Q(z,y) mod p

for any z, y € L. If ¢ = p, we write L — M mod p. If ¢ is bijective, we write

L= M mod (q,p) and L = M mod p, respectively.
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2.3 n-universality and primitive n-universality

Let F' be a global field or a local field and let R be a Dedekind domain defined
by a Dedekind set of spots .S on F. A lattice in a quadratic space V over F
is called an (integral) R-lattice if its scale is included in R. A Z-lattice L is
called positive definite if Q(x) > 0 for all nonzero = € L, or equivalently if its
Gram matrix (in any basis) is positive definite. Hereafter, we always assume
that any Z-lattice is positive definite. An R-lattice is called n-universal if it
represents all n-ary R-lattices. A 1-universal lattice is simply called universal.
Clearly, if a Z-lattice L is n-universal then L, is n-universal for all prime p.
We denote by u(n) the minimal rank of n-universal positive definite Z-lattices,

and by wuy(n) the minimal rank of n-universal Z,-lattices. Evidently we have
u(n) > up(n) for all prime p.

In the following four theorems, F'is a local field and R is the ring of integers

in F.

Theorem 2.3.1 (10, Proposition 3.3). Let F' be a nondyadic local field. Let
L=Jy L1 J; be a Jordan splitting of an R-lattice such that R = sJ1 2
<o+ 2 8Jy. Then L is 2-universal if and only if one of the following conditions

hold:

(A) rank J; > 5.
(B) Jp = <1717171>

(C) J1 =(1,1,1,A) and J is p-modular with rank Jy > 1.
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(D) rank J; = 3, and Jy is p-modular with rank Jy > 2.

Theorem 2.3.2 (10, Proposition 3.4). Let F' be a nondyadic local field. Let
L=Jy L.--- L J be a Jordan splitting of an R-lattice such that R = sJ; 2
- 2 sJy and let n > 3. Then L is n-universal if and only if one of the

following conditions hold:
(A) rank J; > k + 3.
(B) rank J; =k + 2 and Jo is p-modular with rank Jo > 1.
(C) rank J; = k + 1 and Jo is p-modular with rank Jo > 2.

Theorem 2.3.3 (9, Theorem 1.3). Let F' be a 2-adic local field. Let L = J; L
- L Jy be a Jordan splitting of an R-lattice such that R O sJy 2 --- 2 sJy,
and let n be an even integer > 2. Then L is n-universal if and only if sJ, =

nJ1 = R and one of the following conditions hold:
(A) dimJ1 Z k —|—3.
(B) dimJ; =k +2 and sJo = nJy = (2)

(dim FJ{ —1) dim F.J;

(C) dimJ; = k+2, (1) =2 d(FJy) ¢ {1,ANF*)? and nJy =
(4).

(D) dimJ; =k+1,dimJs > 2 and sJo = nJy = (2)

(E) dimJ; =k+1, dimJy =1, sJo = nJy = (2) and nJ3 2 (8).
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Theorem 2.3.4 (9, Theorem 6.16). Let F' be a 2-adic local field. Let L =
Jp Lo L Jy be a Jordan splitting of an R-lattice such that R 2 sJy 2 -+ 2

<

sJy, and let n be an odd integer > 3. Then L is n-universal if and only

sJ1 = nJi1 = R and one of the following conditions hold:
(A) dimJ; > k+ 3.
(B) dimJ; =k+2 and nJy O (4).
(C) dimJy = k+1, sJo = nJy = (2), and one of the following cases happens:

(Cl) dimJy > 2;
(C2) dim Jo =1 and nJs 2O (8).

(D) dim J; =k, sJo = nJy = (2), and one of the following cases happens:

(D1) dim Jy > 3;

(D2) dim Jy =2 and sJ3 =nJ3 = (4);

(D3) dim Jy =1, dim J3 > 2, and sJ3 = nJs = (4);

(D4) dim Jy = dim J3 =1, sJ3 = nJs = (4), and sJy = nJy = (8).

Theorem 2.3.5 (“The Fifteen Theorem”). A positive definite Z-lattice is

universal if and only if it represents the nine critical numbers
1,2,3,5,6,7, 10, 14, and 15.

If t is any one of the above critical numbers, then there is a Z-lattice that
represents every positive integer except t. There are exactly 204 universal

quaternary Z-lattices up to isometry.
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Proof. See [1]. O

Theorem 2.3.6 (13, Theorems 1 and 2). A positive definite Z-lattice is 2-
uniwersal if and only if it represents the following six positive definite binary

Z.-lattices:
I, (2,3), (3,3), A, (3%), (3)).

Moreover, this is a minimal set, that is, for any £ among the sixz Z-lattices
above, there is a positive Z-lattice that represents the other five except £. There
are exactly eleven 2-universal positive definite quinary Z-lattices up to isome-

try.

An R-lattice is called primitively n-universal if it primitively represents
all n-ary R-lattices. A primitively l-universal lattice is simply called primi-
tively universal. An R-lattice is called almost (primitively) n-universal if it
(primitively, resp.) represents almost all (that is, all but finitely many) n-
ary R-lattices. We also define almost (primitively) universal lattices simi-
larly. Clearly a (primitively) n-universal lattice is almost (primitively, resp.)
n-universal. If a Z-lattice L is almost (primitively) n-universal then L, is
(primitively, resp.) n-universal for all prime p. The converse is not true in
general. However, the following Cassels’ theorem serves a partial converse. It
is known that the conclusion of the theorem is no longer true for n = 3 or if

the word “primitively” is omitted.

Theorem 2.3.7 (4, Ch. 11, Theorem 1.6). Let L be a Z-lattice of rank n > 4.
Then there is an integer N with the following property:
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If a > N is an integer which is primitively represented by Ly, for all primes

p, then a is primitively represented by L.

Recently Earnest and Gunawardana established a connection between the

primitive universality and isotropy of Z,-lattices.

Theorem 2.3.8 (8, Corollary3.10). A primitively universal Z,-lattice is isotropic.
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Chapter 3

Primitively n-universal

ZLp-lattices of minimal rank

3.1 Generalities

In this section, we prove a necessary space condition of primitive n-universality.
If M is a primitively n-universal quadratic Z,-lattice, then the space Q,M
must be represent an 2n-dimensional hyperbolic space. In particular, we have
up(n) > 2n.

Let K be a field complete with respect to an absolute value || satisfying

the strong triangle inequality and let 0 := {z € K : |z| < 1}.

Lemma 3.1.1 (5, Theorem 3.3). Let n > 1 and define a norm of ¢ =

(c1,...,¢n) € K™ by |c|| := max;|c;|. Denote the derivative matriz and Ja-
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cobian of f(X) = £f(X1,...,Xn) = (i(X),..., fn(X)) € K[X1,...,X,]" by
(Df)(X ( and Jp(X) = det((DF)(X)).

Let f € O[X]” aﬁci Qe o" satisfy ||f(a)|| < |Jr(a)|®. Then there is a unique
a € 0" such that f(a) = 0 and || — a|| < |J¢(a)].

Corollary 3.1.2 (5, Theorem 3.8). For m > n, let f = (fi1,...,fn) €
o[X1,..., Xm]" and a = (a1,...,an) € o™ satisfy |£(a)| < |Jrn(a)* where

Jen(a) = det(g)é’ ) . Then there is an a € o™ such that
1<i,5<n
flag,...,an,apt1, ... am) =0
and |a; — a;| < |Jgp(a)| fori=1,...,n

Lemma 3.1.3. Form > n > 1, let F = (fij)mxm and G = (gij)nxn be
symmetric matrices over o, and let A = (ay,...,a,) = (aij)mxn be a matriz
over o such that A'FA = G. Suppose that F has nonzero determinant and
A is primitive. Then for any (hi,...,hy) € 0" satisfying maxi<i<n|gin —
hi| < 4|det F'|?, there is an a € o™ such that B = (ay,...,a,_ 1, Q) is again

primitive and B'FB = (gi;) satisfies

h]’ ZfZ =n,
9y =\hi ifi=n,
gij otherwise.
Proof. Regard g1, — h1 = gn1 — h1, ..., Gn—1n — hn—1 = gnn—1 — hn—1 and
Jnn — hn, as n polynomials in m variables ayy,, ..., Gmy. To apply the previous
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corollary, it suffices to show that the derivative matrix has an n x n subdeter-
minant whose absolute value is > 2|det F|.

First note that the derivative matrix is diag(1,...,1,2)A'F. Hence it
suffices to show that A'F has an n x n subdeterminant whose absolute value
is > |det F'|. By the primitivity of A, we may complete A’ to an element of
G L0, namely

At
C

U =

By the theory of modules over PID, there is a V € GL,,0 such that UFV =
T = (tij)mxm is lower triangular. Clearly A'F'V = (t;;)nxm has a submatrix
(the leftmost one) whose determinant is d = [[;_, t;;, then evidently |d| =
ITTiy tisl > [T, tii] = |det UFV| = |det F|. Now observe that d is a linear
combination of n x n subdeterminants of A'F', hence there must exist at least

one with absolute value > |det F|, as desired. O

Corollary 3.1.4. Let M, N, N’ be quadratic Zy-lattices such that M is non-
degenerate. Suppose that N, N' has Gram matrices G, G', respectively such
that G — G' C 4(dM)*Z,. Then M primitively represents N if and only if M

primitively represents N'.

Corollary 3.1.5. Let M be a nondegenerate quadratic Zy-lattice. Then the

followings are equivalent:

(1) indQ,M > n.
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(2) M primitively represents some m-ary quadratic lattice N with sN C
4(dM)?Z,.

(3) M primitively represents every n-ary quadratic lattice N with sN C
4(dM)?Z,.

Corollary 3.1.6. If M is a primitively n-universal quadratic Zy,-lattice then

indQ,M > n.

Corollary 3.1.7. We have uy(n) > 2n. Let M be a primitively n-universal

Zip-lattice of rank m > 2n.
(a) If m = 2n, then Q,M is hyperbolic.
(b) If m =2n+1, then Q,M = H" L ((—1)"dM).
(¢) If m =2n+2 and dM = (—1)"*L, then Q,M is hyperbolic.

In particular, any primitively n-universal (2n)-ary Z,-lattice is an n-universal
Zp-lattice on the hyperbolic space H", and any primitively n-universal (2n+1)-

ary Zyp-lattice M is an n-universal Z,-lattice on the space H" L ((—1)"dM).

3.2 Primitively n-universal Z,lattices of minimal

rank for an odd prime p

In this section, we prove that u,(n) = 2n for any odd prime p and any positive

integer n. Also, we show that for any odd prime p, up to isometry, there
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are exactly one primitively 2-universal quaternary Z,-lattice and exactly two
primitively 3-universal senary Zj,-lattices.

Let R = Z or Z, for a prime p. Recall that H2 (9 }) is the even unimod-
ular R-lattice on the hyperbolic plane. If e, f denotes a hyperbolic basis for
H, then Q(we + Bf) = 2ap for any a, f € R. Now the proof of the following

lemma is quite straightforward.
Lemma 3.2.1. Let R be either Z or Z, for a prime p.

(a) The R-lattice H primitively represents all even integers. In particular,

H is primitively 1-universal over Z, for any odd prime p.

(b) If an R-lattice J primitively represents an k-ary R-lattice £, then H L J
primitively represents all (k + 1)-ary R-lattices of the form {(a) L ¢ for
any even integer .. In particular, H L --- L H (n copies) is primitively

n-universal over Z, for any odd prime p.

The above lemma shows that for any odd prime p, there is a primitively
n-universal Zy-lattice of 2n, namely H". By combining it with Corollary 3.1.7,
we conclude that the minimal rank of primitively n-universal quadratic Z,-

lattices is exactly 2n.
Lemma 3.2.2. Let p be an odd prime.
(a) A quaternary Zy-lattice is primitively 2-universal if and only if it is

isometric to H2.
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(b) A senary Zy-lattice is primitively 3-universal if and only if it is isometric

to either H? or H? L pH.

Proof. (a) According to Theorem 2.3.1 and Corollary 3.1.7, any 2-universal
quaternary lattice on the hyperbolic space H? is isometric to I, = H?.

(b) According to Theorem 2.3.2 and Corollary 3.1.7, any 3-universal senary
lattice on the hyperbolic space H? is isometric to either H? or H? L pH. It is

casily seen that H? L pH also is primitively 3-universal. O

According to Theorem 2.3.2 and Corollary 3.1.7, any 4-universal octonary
Zy-lattice on the space H* is isometric to one of the followings, where a is a
nonnegative integer and e is a unit in Z,. Thus they are the candidates of

primitively 4-universal octonary Z,-lattices.
(A) HB L (—e, p*%e).
(B) H? L (~pe,p2o+ie).

(C) H2 L (—¢) L pH L (p?2+2¢).

3.3 Primitively n-universal Zs-lattices of minimal

rank

The following is a supplement of Lemma 3.2.1 for the case when R = Zs.

Lemma 3.3.1. (a) If a Zy-lattice J is isotropic, then H L J primitively
represents all binary Zs-lattices of the form 2°H for any nonnegative

integer a.
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(b)

If a Zo-lattice J primitively represents 2T e for a nonnegative integer a
and o unit € € Zg, then H L J primitively represents binary Zs-lattices
of the form 2°H and 2*A. In particular, H L H primitively represents all
binary Zo-lattices of the form 2°H and 2%A for any nonnegative integer
a. Hence, H 1 --- L H (n copies) primitively represents all n-ary Zo-
lattices £ with nf C 27s.

The binary Zg-lattice (1, —1) represents all units in Za and all integers

wn 4Zo. It primatively represents all units in Zo and all integers in 8Zs.

For a unit € € Zy, H L (€) is isometric to (1,—1,¢). Hence H L (€)
primitively represents all binary lattices of the form («,€) for any integer

a € Zy. In particular, H L (€) is primitively 1-universal over Zs.

For a unit € € Zo, H L H L (€) primitively represents all ternary lattices
of the form £’ 1 {€) for any binary Zo-lattice ¢'. In particular, H LH L (€)

18 primitively 2-universal over Zs.

If a Zo-lattice J primitively represents some unit in Zo, then H 1L --- L
H L J (n copies of H) primitively represents all (n + m)-ary Zsa-lattices
of the form £' L £ for any m-ary Zs-lattice £ primitively represented by
J and for any n-ary Zs-lattice ¢'. In particular, H L --- L H L J is

primitively n-universal over Zs.

Proof. (a) Since J is isotropic, there is a primitive vector x € J with Q(z) = 0.

Observe that Zsle,2°f + z] = 2°H. (b) Pick a primitive vector = € J with
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Q(z) = 2°Te. Then Zyle e, —e + 2%f + ] = 2°H and
Zole + 2% f, e + x| = 2%A = 2°A.

For the latter isometry, see [19, 93:11]. (c) Let e, f be a basis for the given
lattice so that Q(ae+Bf) = a?— 32 for any «, B € Zs. If exactly one of «, 3 is
odd, then so is a® — 52. If both are odd, then o> — 3% € 8Z,. If both are even,
then a2 — 3% € 4Z,. Now observe that the given lattice primitively represents
1,4—1=3,1—4=-3, -1, and Q(/1 + 8ae + f) = 8a for any a € Zs. (d)
See [19, 93:16]. (e) Combine (b) and (d). (f) By (b), we may assume that ¢’
is unimodular. If J primitively represents e € Z5 then J = (e¢) L ---. Now

apply (d) and (e) inductively. O

By the lemma, H™ L (¢) is prmitively n-universal for any unit € in Zy. By

combining it with Corollary 3.1.7, we conclude that 2n < u}(n) < 2n + 1.

3.3.1 Classification of primitively 2-universal Z,-lattices

In this subsection, we prove that u3(2) = 5, and any primitively 2-universal
quinary Zs-lattice is isometric to H? L () for some unit € in Zs.

We know that uz(2) = 5 according to Theorem 2.3.3 or [17, Lemma 2.3].
Thus, we have u3(2) > ua(2) = 5. Therefore, the minimal rank of primitively
2-universal Zg-lattices is five. By Theorem 2.3.3 (or [17, Lemma 2.3]) and
Corollary 3.1.7, any 2-universal quinary Zs-lattice L on the space H? L (dL)
is isometric to one of the following lattices. Thus they are the candidates

of primitively 2-universal quinary Zs-lattices. Hereafter in this section, a, a;
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denote nonnegative integers, «, 5, «; denote integers in Zs, and €, J, €; denote

units in Zs.
(A) H? L (e) (B) H2 L (2¢) (C) H L (e, e, —4e)
(D) H L (¢, 2, —2) (E) H L (1,2, 4) (F) H L (e, —2¢, 8¢)
(G) H L (e, 2¢, —8e¢)

Lemma 3.3.2. A Zs-lattice L is primitively 2-universal if and only if L =

H? 1 (€) for some unit € in Zs.

Proof. 1t suffices to show the “only if” part. Moreover, it suffices to prove
the existence of a binary Zs-lattice not primitively represented by each of the
lattices (B)—(G) only for € = 1, since a Zs-lattice L is primitively 2-universal
if and only if so is a scaling of L by € for any unit € in Zs.

(B) Let L be a quinary Zo-lattice such that L = (1,3,1,3,2) in a basis
€1,...,e5. We claim that 2A is not primitively represented by L. Let z =

Zi’ z;e; be a typical primitive vector in L such that
4=Q(2) =22 + 325 + 25 + 327 + 222

Since it is impossible that zi, ..., z4 are all even, we may assume that z; is
odd for some 1 < i < 4. Since M := Zsle;, z — z;e;] is unimodular, it splits L.
Note that

M= (1,3) and M*t=(1,3,2).

This observation allows us to assume that z3 = z4 = 25 = 0.

41



CHAPTER 3. PNU Zp-LATTICES OF MIN RANK

Now suppose to the contrary that we have two primitive vectors z =
z1€1 + zpe9, w = .2 we; in L such that Q(z) = 4 = Q(w) and B(z,w) = 2.
Since z1z2 = 1 (mod 2) and 2 = B(z,w) = zjw; + 329wy, one may easily
show that Q(wie1 + waez) =4 (mod 8) and wses + wyeq + wses is primitive.
However, any integer in 8Zy is not primitively represented by (1,3, 2), which
is a contradiction. Hence, 2A is not primitively represented by L.

(C) Let L=H 1 (1,1,—4) = (3) L (5,5,5,—4). By Theorems 2.2.2 and 2.2.6,
(3) L M =(3) L(55,5,—4) implies M = (5,55, —4).

If L were primitively 2-universal, then (5,5,5, —4) must be primitively univer-
sal, which is false according to [7, Theorem 5.2]. In particular, 8 is not primi-
tively represented by (5,5,5, —4). Hence, L is not primitively 2-universal.

(D) Let L=H 1 (1,2,—-2) = (5) 1 (1,3,2,—2). By Theorems 2.2.2 and 2.2.6,

(5) L M = (5) 1 (1,3,2,—2) implies M = (1,3,2,—2).

If L were primitively 2-universal, then (1,3,2, —2) must be primitively univer-
sal, which is false according to [7, Theorem 5.2]. In particular, 8 is not primi-
tively represented by (1,3,2,—2). Hence, L is not primitively 2-universal.
(F)(G) Let L=H 1 (1,F2,£8) = (5) L (1,3,F2,48). By Theorems 2.2.2 and
2.2.6,

(5) L M = (5) L (1,3,F2,4£8) implies M =(1,3,F2,+£8).
If L were primitively 2-universal, then (1,3, F2, £8) must be primitively uni-

versal, which is false according to [7, Theorem 5.2]. In particular, 32 is
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not primitively represented by (1,3,F2,48). Hence, L is not primitively 2-
universal.

(E) We prove that L =2 H | (—1,2,4) = (1,3,3,2,4) cannot primitively rep-
resent (10,16). By Proposition 2.2.12, it is logically equivalent to prove that
(10, 16) is not primitively represented by the genus of (1,2, 3, 3, 4) over Z, since
evidently (10, 16) is represented by (1,2,3,3,4) at any odd prime, and such
representation must be primitive since the discriminant of (10, 16) is square-
free at such prime.

There are six classes in the genus:

(1,1,2,3,12), (1,2,3,3,4), (1,4,6) L A,

<2,3)¢<33%), (1,6>J_(%11a(1)), <1,2>L(f‘2_42%>.
114 103 1 1 4

For each of above six lattices, one may easily check that (10,16) is not
primitively represented by it using a direct computation, for there are only

finitely many possibilities. O

3.3.2 The minimal rank of primitively 3-universal Z,-lattices

In this subsection, we prove that u}(3) = 7.
We have to determine whether u3(3) = 6 or 7. According to Theorem 2.3.4
and Corollary 3.1.7, any 3-universal senary Zs-lattice on the hyperbolic space

H? is isometric to one of the following eight lattices.
(A)H? L (1,-1) (B) H? L (—1,4) (C) H? L (1,—4)

(D)H L (1,-1,2,-2) (E) HL(1,-1,-2,8) (F) HL(1,-1,2,-8)
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(G)H L (-1,2,—-2,4) (H)H L (-1,-2,4,8)
Lemma 3.3.3. No senary lattice is primitively 3-universal.

Proof. It suffices to show that none of the eight 3-universal senary Zo-lattice
is primitively 3-universal. First, Let L be one of (A), (B), (C), or (G). Since
L is 2-universal, A is represented by L. For any sublattice M = A of L, M
splits L and

Mt = (1,1,1,5), (5,5,5,4), (3,3,3,—4), or (5,2,2,4)

by Theorems 2.2.2 and 2.2.6. Next, suppose L is one of (D), (E), (F), or (H).
Then (1,3) is primitively represented by L. For any sublattice M = (1,3) of
L, M splits L and

M+ 2=(1,3,2,-2), (1,3,-2,8), (1,3,2,—8), or (3,—2,4,8)

again by Theorems 2.2.2 and 2.2.6. In any case, if L were primitively 3-
universal, then M+ must be primitively universal. However, according to [7,
Theorem 5.2], M L is not primitively universal. Thus, L is not primitively

3-universal. O

According to Theorem 2.3.4 and Corollary 3.1.7, any 3-universal septenary
Za-lattice L on the space H3 L (—dL) is isometric to one of the following lattices,
where lattices are numbered in accordance with Theorem 2.3.4. In this list,
M stands for a binary unimodular Zs-lattice, N stands for a Zs-lattice of the

form (e, 26), and we assume that

—a € Q(Q:M) and - € Q(Q2N).
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(A) HL(1,-1) LM L {a) (a € Zs).

(B) HL (1,-1) L N L{(B) (B € 2Z,),
H 1 (1,-1,¢) L 2H, or

H LML (—1,4) L{a), HLM L (1,-4) L (a) (a € 4Z,).
(C1) (1,—1) L M L (2,-2) L (a) (a € 2Zy).

(C2) HL(-1) LN L{4) L () (B € 4Z2),
H L (1,—1,2€¢) L 4H, or

(1,=1) LM 1 (=2,8) L (), (1,=1) L M 1 (2,-8) L () (o € 8Zy).
(D1) H LN 1L 2H 1 (8) (8 € 2Z).
(D2) M L (—1,2,-2,4) L () (a € 4Zy).
(D3) H L N L (4,—4) L (B) (8 € 4Zy).

(D4) M L (—1,-2,4,8) L (a) (o € 8Zs).

3.3.3 Primitive 4-universality over Z,

In this subsection, we prove that three octonary Zs-lattices on the hyperbolic
space H* are almost primitively 4-universal, but not primitively 4-universal.
They serve as key ingredients in the next subsection when we prove that

u3(n) = 2n for any n > 5. Currently we do not know whether u3(4) = 8 or 9.
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According to Theorem 2.3.3 and Corollary 3.1.7, any 4-universal octonary

Zo-lattice on the hyperbolic space H* is isometric to one of the following

lattices.
(A) H? L (—e, 2%%) (B) H? L (1,1, —2¢,2%0He)
(C) H? L (—e, —¢, 4¢,229%2¢) (D) H2 L {—e, —2¢, 4¢,22973¢)
(E) H2 L {—¢,2,—2,220%2¢) (F) H? L (—e, —2¢, 8¢, 220T4¢)
(G) H? L (5¢,2¢, —8¢,227%4 . 3¢)

Lemma 3.3.4. (a) H® L (1,—1) primitively represents all quaternary Zo-
lattices except A 1 2A.

(b) H21(1,-1,2,—2) primitively represents all quaternary Zo-lattices except
(1,3) L4A and 2A 1 4A.

(c) H2 L (1,—1) L 2H primitively represents all quaternary Zs-lattices except
H 1L A. Note that this octonary lattice is not 4-universal.

Proof. (a) Denote by L the given octonary lattice, and by ¢ a quaternary
Zo-lattice. First, assume that ¢ is orthogonally split by 2*H. Since 2°H is
primitively represented by H L (1, —1), ¢ is primitively represented by L.
Now, assume that ¢ 22 (2%%¢q, 2%2¢9, 2% €3, 2%¢4). Since (1, —1) primitively
represents Z; U 8Zg, we may assume that ai,ag,as,as € {1,2}. It is easily

seen that, up to rearrangement, at least one among

2%e1 + 2%y, 2% +2%%€g + 2%e3, 2%€; + 2%%€g + 2% €3 + 2% ey
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is a multiple of 8, so that it is primitively represented by the Zs-lattice (1, —1).
Hence, one may easily verify that ¢ is primitively represented by L.

Next, assume that ¢ = (2%¢,2%¢ey) 1 2?3A. We may suppose aj,as €
{1,2} and a3 € {0,1}. It is easily seen that, up to rearrangement, at least one
among

20 el + 2%2¢y, 2y 4 2031 9a1e 4 9a2¢, 4 gastl

is a multiple of 8, or we have a; = as = 1 and a3 = 0. In the former, one may

easily verify that ¢ is primitively represented by L. In the latter, observe that
Z2[$767 + xgeg + e5 — 3eg, e1 + €2e9, €3 + 3eq, €3 + €5 + 366]

is a primitive sublattice of H* L (1,—1) isometric to (2e,2e2) L A, where
x7, 78 € 25 with 22 — 23 = 2%¢; + 6.

Finally, assume that ¢ = 291 A | 2%3A. We may suppose ai,as € {0,1}. If
a1 = a3z =0, then clearly L=/¢ 1 H L (1,—1). If a1 = ag = 1, then

Zg[el + 2e9,e1 + e3 + 2eq4, €5 + 2eg, €3 — 2e4 + €5 + 3e7 — 68]

is a primitive sublattice of H? L (1, —1) isometric to 2A L 2A.

Now we prove that A | 2A is not primitively represented by L. It suffices
to show that 2A is not primitively represented by (1,3,1,3) L A.

Suppose that M = (1,3,1,3) LAiney,...,es. Let z = Z? z;e; be a typical
primitive vector in M such that 4 = Q(2) = 27+323+23+323+2(22+ 2526 +23).
Since it is impossible that zq, ..., z4 are all even, we may assume that z; is

odd for some 1 <i < 4. Since N := Zsle;, z — ze;] is unimodular, it splits L.
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Note that
N=(1,3) and Nt=(1,3) LA

This observation allows us to assume that z3 = z4 = 25 = zg = 0.

Now suppose to the contrary that we have two primitive vectors z = z1e; +
zgeg, w = YO wje; in M such that Q(z) = 4 = Q(w) and B(z,w) = 2. Since
2122 =1 (mod 2) and 2 = B(z,w) = zjw; + 3z2we, one may easily show that
Q(wre1 + waez) = 4 (mod 8) and Zg wje; is primitive. However, any integer
in 8Z is not primitively represented by (1,3) L A, which is a contradiction.
Hence, 2A is not primitively represented by M.

(b) Denote by L the given octonary lattice, and by ¢ a quaternary Zs-
lattice. Suppose that ¢ = (2%1¢€1,2%¢y,2%€3,2%¢,) and assume that a; <
as < az < ay. Since (1, —1) 1 (2, —2) primitively represents all binary lattices
of the form (€) L (8), () L (26), (¢) L (2%a), (2¢) L (23a), (23a) L (23p), we

may suppose (a1, az,as,aq) to be one among the following quadruples:

(07 07 07 2)’ (0707073)7 (0’ 07 27 2)7 (07 07 2? 3)’ (07 27 2’ 2)7 (07 27 27 3)7 (17]‘? 17 ]‘)’
(1,1,1,2), (1,1,2,2), (1,2,2,2), (2,2,2,2), (2,2,2,3).

First, assume that a; = 0. Then € is primitively represented by (1, —1). If
as = 3, then either 22e5+22%e3 = 0 (mod 16) or 2%e5+2%¢5+23¢4 = 0 (mod 16).
Hence, for instance, if (as, as) = (0,2), then (e2, —€2) L H_L (2, —2) primitively

represents (eo, 2%¢3,23¢4), for either the primitive sublattice

Zo [61,262 + (62;—63 + 1)65 + (62 tes — 1)66,63 +226464]

2
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or the primitive sublattice

Zo |:€1,2€2 + <62—;63 + 1)65 + <62;—€3 — 1)66 +e3 — 226464,63 —|—226464

is isometric to (e, 2%€3,2%€¢4). The primitive representability for cases when
(az2,a3) = (0,0) or (2,2) can be proved in a similar manner. If ay = 2, then
at least one among 2%e3 + 22¢4, 2265 + 223, 2%¢1 + 2%¢9, 2%(e1 + €2 + €3 + €4)
is congruent to 0 modulo 16, and hence, is primitively represented by (2, —2).
Hence the primitive representability for this case can be proved in a similar
manner.

Next, assume that a; = 1. Then 2¢; is primitively represented by (2, —2),

and at least one among the following integers is congruent to 0 modulo 8:

2Meg + 2%¢ey, 2%%¢€9 + 2Meg, 292¢9 4 2% €3 + 2%ey, 2% €1 4 2%2¢9,

201 ¢ 4 2%2¢9 + 2% ¢eg 4 2%¢y.

Hence, such an integer is primitively represented by (1, —1), which leads to
the primitive representability for cases when a; = 1.

Finally, assume that a1 = 2. If (a1, a2,a3,a4) = (2,2,2,3), then 23¢; is
primitively represented by (1,—1), and either 2%e3 + 2%2¢3 = 0 (mod 16) or
22¢5 + 2%2¢3 + 23¢4 = 0 (mod 16). If (a1, az,a3,a4) = (2,2,2,2), then there
exists a pair among 2%¢;, 2%¢q, 2%€3, 2%¢4, which adds up to be congruent to
8 modulo 16 (for if €1 + €3 = €3 + €3 = 0 (mod 4), then € + €5 = 2 (mod 4)),
say 2%2¢; and 22e. Then 22¢; + 22¢5 is primitively represented by (1, —1), and
cither 2%e5 4+ 22¢4 or 2%2¢; + 2%y + 22%€3 + 22¢, is primitively represented by

(2, —2), and we are done.
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Next, suppose that ¢ = (2%1¢;,2%¢ey) L 2%H. If a3 = 0 or a; > 3 (up to
rearrangement), then (2%'e;,2%¢y) is primitively represented by H L (1, —1),
and 2%3H is primitively represented by H L (2, —2). If a; = 1, then the former
is primitively represented by H L (2,—2), and the latter by H 1 (1,—1). If
a; = ag = 2, then 2" ¢; + 2%2¢9 = 0 (mod 8). Hence, in this case, the former

is primitively represented by A(0,0) L (1, —1), and the latter by H L (2, —2).

Now, suppose that ¢ = (2%1¢;,2%¢y) 1 293A. First, assume that ag > 3.
If ay = 0 or a1 > 3 (up to rearrangement), then (2% ¢, 2%ey) is primitively
represented by H L (1, —1), and 293 A by H 1 (2, —2). If a; = 1, then (2¢1, 2%2¢5)
is primitively represented by H L (2,—2) or (1,—1) L (2,—2), and 2%3A by
H1(1,-1). If a1 = az = 2 then 22¢; is primitively represented by H, 22¢1+22%¢5
by (1,—1), and 2*3A by H L (2, —2).

Next, assume that az = 2. We may assume that a1, as # 2 or 3. If a1 =1
or a; > 4 (up to rearrangement), then (2%'¢;, 2%%¢,) is primitively represented
by H L (2,-2) or (1,—1) L (2,-2), and 22A is primitively represented by
H L (1,—1). Now, suppose that a; = ag = 0. If ¢ + €2 Z 4 (mod 8) then
(€1, €2) is primitively represented by (1,—1) L (2,—2). We are left with the

case when €; + €2 = 4 (mod 8).

Now, assume that ag = 1. We may assume that ai, as # 1 or 2. If a; > 3
and ag > 4, then (2%1€;,2%¢5) is primitively represented by (1, —1) L (2, —2),
and 2A by H L H. If a; = ag = 3, then 23¢; is primitively represented by
(1,-1), 23¢; + 23¢3 by (2,—2), and 2A by H L H. If a; = 0, then 2%¢y is
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primitively represented by (1, —1), and
Zg[el — 26162, €1 +e3+eq+ 265] = —261A

is a primitive sublattice in H L (2, —2) 1 (—e;) which is isometric to 2A.

Finally, assume that az = 0. We may assume that ai, as # 0 or 1. It suf-
fices to show that ¢ = (2%1¢€1,2%2¢,) is primitively represented by H L (1, —1) L
(2,6). If a; > 3 (up to rearrangement), then ¢ is primitively represented by
H L (1,-1). If a = ag = 2, then 22¢; is primitively represented by H, and
22¢1 + 2%€9 by (1,-1).

If ¢ = 2% H 1 2%3H, then it is clear that ¢ is primitively represented by L.

Suppose that 21H 1 2%3A. If ag = 0 or ag > 3, then 2*'H is primitively
represented by H L (1, —1), and 2%3A by H L (2, —2). If ag = 2, then 2 H is
primitively represented by H L (2, —), and 2%3A by H 1 (1,—1). Now assume
that ag = 1. If a; > 1, then

Zg[el + eq, 2a1_161 — 20’1_162 +e3 + 64]

is a primitive sublattice of (1, —1) L (2, —2) that is isometric to 2**H, and 2A
is primitively represented by H L H. If a; = 0, then

Zsler + 2ea, €1 + 2e3 + e5 + eg]

is a primitive sublattice of H L (1, —1) 1 (2, —2) that is isometric to 2A.
Finally, suppose that 21 A 1 2?3 A. We may assume that a; < as. If a1 > 2,
then 291 A is primitively represented by H L (1,—1), and 2*3A by H L (2, —2).

Assume that a; = 0. It suffices to show that 23 A is primitively represented
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by H L (1,—-1) L (2,6). If ag > 2, then 2?3A is primitively represented by
H 1 (1,-1). If ag = 1, then

Zolay + 2a2, a1 + 2a4 + a5 + ag)

is a primitive sublattice of H L (1,—1) L (2,6) that is isometric to 2A. Now,
assume that a; = 1. Then 2A is primitively represented by H | H. If ag > 3,
then

Lo [(2(1371 +1)e + (2(1371 — 1)eg,e1 — ez + (2a372 + 1)es + (2a372 — 1)64]

is a primitive sublattice of (1,—1) L (2, —2) that is isometric to 2%3A. We are
left with the case az = 2.

Now we prove that (1,3) 1 4A is not primitively represented by L. It
suffices to show that 4A is not primitively represented by (1,—1,1, 3,2, —2).

Suppose that M = (1,—1,1,3,2,—2) in ey,...,e6. Let z = Z? z;e; be a
typical primitive vector in M such that 8 = Q(2) = 27— 23 +23+327+222 —222.
Since it is impossible that 21, ..., z4 are all even, we may assume that z; is
odd for some 1 < i < 4. Since N := Zso[e;, z — z;e;] is unimodular, it splits M.
Note that

N=(1,-1) and Nt (1,32 -2).

This observation allows us to assume that z3 = z4 = 25 = zg = 0.
Now suppose to the contrary that we have two primitive vectors z = z1e1 +
zpeg, w = .S wje; in M such that Q(z) = 8 = Q(w) and B(z,w) = 4. Since

2122 = £3 (mod 8) and 4 = B(z,w) = z1w; — zaw9, one may easily show that
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Q(wie1 +waez) =0 (mod 16) and Eg wje; is primitive. However, any integer
that is congruent to 8 modulo 16 is not primitively represented by (1, 3,2, —2),
which is a contradiction. Hence, 4A is not primitively represented by M.

Finally, we prove that 2A 1 4A is not primitively represented by L. Suppose
to the contrary that there is a primitive sublattice £ of L such that

(=22A 1 4A in z,y,z,w.

Suppose that L = Is L (2,2) in eq,...,eg and write z = 251; zie; and w =
Zﬁf wie;. If z; = w; = 0 (mod 2) for all 1 < i < 6, then we must have
z7zgwrwg = 1 (mod 2) which contradicts the fact that Zs[z,w] is a primitive
sublattice of L. Hence, by exchanging the role of z and w if necessary, we
may assume that z; is odd for some 1 < ¢ < 6. Since M := Zsle;, z — z;e;]
is unimodular, it splits L. Write w = wy; + w’ for some wy; € M and

w' € L' :== M*. Since M = (1, 1), we have
B(z,wy) = B(z,w) =4 (mod 8) implies Q(wp) =0 (mod 16).

Note that if o, 3 are integers such that o® — 3% = 0 (mod 16), then a =
B (mod 2). Hence, z,w)ys is not a primitive sequence of vectors in L. Therefore,
w’ is a primitive vector in L’ such that Q(w’) =8 (mod 16).

First, assume that nL' = Zy. Then L' = (1,—1,1,—1,2, —2) in some basis,
say €], ..., e Write w’ = S Swle). If w} = 0 (mod 2) for all 1 <4 < 4, then
we must have wiwg = 1 (mod 2). In this case, since N := Zslek, w' — whes] is

2-modular, N splits L', and we have

N =(2,6) and Nt =(1,1,1,5).
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Otherwise, w, = 1 (mod 2) for some 1 < ¢ < 4. In this case, since N :=
Zsolel,w" — wie;] is unimodular, N splits L', and we have
N=(1,-2) and Nt =(1,-1,2,-2).

Now, assume that nL’ C 2Zy. Then L' 2 H L H L (2,—2) in some basis, say
e,... ey Write w' = S wle;. Tf w) =0 (mod 2) for all 1 < i < 4, then we
must have wiwg = 1 (mod 2). In this case, since N := Zslef,w' — wies] is
2-modular, N splits L/, and we have

N =(2,6) and N1t=HLA.
Otherwise, w; = 1 (mod 2) for some 1 < i < 4. In this case, let j = 3 — ¢ if
i=1,2and j =7—14if i = 3, 4. Since N := Zs[w', ¢;] is unimodular, N splits
L', and we have

N=H and Nt =HL (2 -2).

So far we have divided the quadruple (z,y, z,w) into four possibly over-
lapping cases. In the first case, we may assume that L = (1,—1,1,1,1,5,2,6)
ineq,...,eg, 2= z1e1+ z9€9, W = wieq +woeo +wrer +wgeg, and 21 2owWrwg =
1 (mod 2). Since

B(z1e1 + z2e2, 11 + 22€2) =0
B(wiey + waeg, x1e1 + xoeg) =0 (mod 4),
B(wre7 + wses, rrer + xgeg) =0
we have Q(x1e1 + z2e2) = Q(x7er + zgeg) = 0 (mod 8). Hence, Q(Zg xie;) =
4 (mod 8). However, this is a contradiction, for no integer that is congruent

to 4 modulo 8 is primitively represented by the Zy-lattice (1,1, 1,5).
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In the next case, we may assume that L = (1,—1,1,—1,1,—1,2,—-2) in
€1,...,68, 2 = z1€1 + 29€9, W = wie] + woey + wzez + wyey, and z12owzwy =

1 (mod 2). Since

B(zie1 + z2e2, x1€1 + T2€2)

0
B(wiey + waea, x1e1 + x2€2) =0 (mod 4), ()
0

B(wses + waeyq, xzez + x4€4)

we have Q(x1e1+x2e2) = Q(x3e3+x4€4) = 0 (mod 8). Moreover, the equations
(*) and similar equations containing y;’s instead of x;’s lead to the conclusion

Q(y1e1 + yae2) = Q(yses + yseq) = 0 (mod 8) and
B(x1e1 + x2e2,y1€1 + y2e2) = B(wzes + xqeq,yzes + yseq) =0 (mod 4).

Hence, Q(Zg xie;) = Q(Zg yiei) = 4 (mod 8). However, this implies that
x5 = x6 = Y5 = y¢ = 0 (mod 2) and z7agyrys = 1 (mod 2), which is a
contradiction.

In the third case, we may assume that L = (1,—2) L H L A L (2,6) in
€l,...,€8, 2 = 21€] + 209, W = wWi€] + Waeo + wryey + wgeg, and z1zowrwg =
1 (mod 2). A similar reasoning to the first two cases leads to a conclusion that
Q(Zg zie;) = Q(Zg yie;) = 4 (mod 8) and B(Zg xie;, Zg yie;) = 2 (mod 4).
However, one may easily show that 2A is not primitively represented by H 1 A,
which is a contradiction.

In the final case, we may assume that L = (1,—1) L H L H 1 (2,-2) in
€1,...,68, 2 = z161 + 29€9, W = wie] + woey + wzeg + wyey, and z12owzwy =

1 (mod 2). A similar reasoning to the first two cases leads to a conclusion that
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QX2 wier) = QXS yies) = 4 (mod 8) and B(X.S ziei, Y5 yie;) = 2 (mod 4).
However, one may easily show that 2A is not primitively represented by H L
(2, —2), which is a contradiction. Hence, 2A | 4A is not primitively represented
by L.

(c) Denote by L the given octonary lattice, and by ¢ a quaternary Zs-
lattice. Suppose that ¢ = (2%¢e1,2%2¢9,2%¢3,2%¢4) and assume that a1 <
as < az < ay. Since (2%¢,226) is primitively represented by (1, —1) 1 2H, we

may assume that the exponents satisfy either
(i)0=ajand ay <1 or (ii) a; =ags =a3=1.

First, assume that case (i) holds. If ay = O then, either there is a pair of
€1, ..., €4 that adds up to be a multiple of 4, or the sum of all four is a
multiple of 4. If a3 = 0 and a4 = 1, then either € + €3 = 0 (mod 4) or
€2 + €3 + 2640 (mod 4). If a3 = 1, then 2e3 + 2¢4 = 0 (mod 4). Now, assume
that case (ii) holds. If a4 > 3, then 2%¢, is primitively represented by (1, —1),
and 2ep + 2e3 = 0 (mod 4). If ay = 2, then 22¢4 is primitively represented by
2H], and either 23 +2e3 = 0 (mod 8) or 2e + 2e3 + 2%¢4 = 0 (mod 8). Finally,
suppose that ags = 1. If there is a pair of 2¢q, ..., 2¢4 that adds up to be a
multiple of 8, then the sum of the rest two is a multiple of 4. If no such pair
exists, then the sum of all four is a multiple of 8, and the sum of any two is a
multiple of 4.

Next, suppose that ¢ = (2%¢€1,2%2¢9) | 2%H and assume that a1 < as.
Then we may suppose that a; < 1. If a; = 0, then 2%H is primitively
represented by H | 2H. Now, suppose that a; = 1. If ag = 0, then (2¢1,2%2¢3)

56



CHAPTER 3. PNU Zp-LATTICES OF MIN RANK

is primitively represented by H 1 2H. If ag > 1, then 2%H is primitively
represented by (1, —1) L 2H.

Now, suppose that ¢ = (2%¢1,2%¢5) 1 293A and assume that a1 < ao.
Then we may suppose that a; < 1. Moreover, we may assume that ag ¢
{a1,a1—1,a9,a2—1}. If a; = 0, then 2?3 A is primitively represented by H 1 2H
for az > 1. If a; = 1, then 2%3A is primitively represented by (1, —1) L 2H for
ag > 2.

Clearly, 2*'H 1 2%3H is primitively represented by L. Suppose that ¢ =
200H L 2%3A. If ap > 1, then 2*'H is primitively represented by 2H L (1,—1).
If as > 1, then 293 A is primitively represented by H L 2H.

Finally, suppose that ¢ = 291 A | 293 A. We may assume a1 < as. If a1 > 1,
then 2?1 A is primitively represented by H L 2H, and 2*3A by H L (1, —1). Now,
suppse that a; = 0. then ag > 1 and it suffices to show that 2%3 A is primitively
represented by A L (1, —1) L 2H. If a3 = 1, observe that (—1) L 2H = (3) 1 2A.
If ag > 2, then 2%3A is primitively represented by (1, —1) 1 2H.

Now, we prove that L cannot primitively represent H 1 A. It suffices to
show HL (1, —1) L 2H cannot primitively represent A. Pick any primitive vector
z=502,€ M=HL(1,-1) L2H with 2 = Q(z) = 22129 + 22 — 23 +4x576.
Q(z) = 2 (mod 4) implies that 129 = 1 (mod 2) and z3 = x4 (mod 2).

However, the B value of two such vectors must be even. ]
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3.3.4 The minimal rank of primitively n-universal Z,-lattices
for n > 5

We prove that u3(n) = 2n for n > 5 by the lemma below.

Lemma 3.3.5. Forn > 5, the following Zy-lattices are primitively n-universal.

(a) H*1 1 (1,-1)
(b) H*2 1 (1,—1) L (2,-2)
(c) H*2 1L (1,—1) L 2H

Proof. (a) Suppose that n = 5. Any quinary Zs-lattice is split by a unary
lattice. Hence, by Lemma 3.3.4, it suffices to show that any Zs-lattice £ of the
form A | 2A | (2%) is primitively represented by H* 1 (1, —1). If a > 3, then
(2%) is primitively represented by (1,—1). If a < 2, then ¢ has a splitting
other than the form A L 2A | (2%).

Suppose that n = 6. Any senary Zo-lattice either is split by a unary lattice
or is an orthogonal sum of binary lattices. For the former case, the primitive
representability follows from the case n = 5. For the latter case, consider a
Zo-lattice of the form Ly 1 Lo 1 L3 where L; are binary lattices. It is clear
that Ly 1 Lo =2 L1 L Ly =2 Lo 1 Ly =2 A 1 2A is impossible. Hence, we may
assume that Ly | Ly 22 A 1 2A. Therefore, L1 | Lo is primitively represented
by H? L (1,—1), and L3 by H2.

The case when n > 7 follows by induction on n. It follows from the case

of n — 1 for n odd, from the cases of n — 1 and n — 2 for n even.
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(b) Suppose that n = 5. Any quinary Zo-lattice is split by some unary
lattice. Hence, by Lemma 3.3.4, it suffices to show that any Zs-lattice of
the form (1,3) L 4A L (2%) or 2A 1 4A 1 (2%) is primitively represented by
H3 1 (1,—1) L (2,—2). The former case is trivial. For the latter case, we may

assume that a =0 or a > 4. If a = 0, then
ZLoler — 2eea, e1 + e7 + eg + 2eg, e3 + 4ey, e3 + €5 + 4eg]

is a primitive sublattice of H® L (2,2, —¢) that is isometric to 2A | 4A.
If @ > 4, then (2%) is primitively represented by (2, —2), and 2A L 4A by
H3 1 (1,—1) according to Lemma 3.3.4.

Suppose n = 6. Any senary Zs-lattice either is split by some unary lattice,
or is an orthogonal sum of binary lattices. For the former case, the primitive
representability follows from the case n = 5. For the latter case, consider a
Zo-lattice of the form Li | Lo 1 Ls where L; are binary lattices. It is clear
that Ly 1L Lo &2 L1 1 L3 = Ly 1 L3 = 2A 1 4A is impossible. Hence, we may
assume that Ly | Ly 22 2A 1 4A. Therefore, L1 1 Lo is primitively represented
by H? L (1,—1) L (2,—2), and L3 by H2.

The case when n > 7 follows by induction on n.

(c) Suppose that n = 5. Any quinary Zs-lattice is split by a unary lattice.
Hence, by Lemma 3.3.4, it suffices to show that any Zs-lattice of the form
H L A L (2%) is primitively represented by H? 1 (1, —1) 1 2H. We may assume
that @ > 2, and in this case (2%) is primitively represented by 2H.

Suppose that n = 6. Any senary Zs-lattice either is split by some unary

lattice, or is an orthogonal sum of binary lattices. For the former case, the
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primitive representability follows from the case n = 5. For the latter case,
consider a Zo-lattice of the form L, 1 Lo 1 L3 where L; are binary lattices.
It is clear that Ly 1 Lo & Ly 1. L3 = Ly 1 L3 = H L A is impossible. Hence,
we may assume that Ly | Lo 22 H L A. Therefore, Ly 1 Lo is primitively
represented by H? L (1, —1) L 2H, and Lz by H?2.

The case when n > 7 follows by induction on n. O
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Chapter 4

Primitively 2-universal

Z~lattices of rank six

4.1 The minimal rank of primitively 2-universal Z-
lattices

It is well known in [13] that the minimal rank of 2-universal Z-lattices is five,

which implies that the minimal rank of primitively 2-universal Z-lattices is

at least five. The aim of this section is to show that the minimal rank of

primitively 2-universal Z-lattices is six.

Lemma 4.1.1. (a) Let V be a quinary quadratic space over a local field F
atp. Then indV =2 if and only if S,V = (-1, —dV).

(b) For any quinary Z-lattice L, there are infinitely many binary Z-lattices
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that are not primitively represented by L.

Proof. (a) Since V is isotropic, V.= H L U for some ternary quadratic space
U over F'. Then indV = 2 if and only if U is isotropic, if and only if S,U =
(—1,-1), if and only if S,V = (-1, —dV).

(b) Since S(QL) =1 # (—1,—dL), there is a prime g such that S;(QL) =
(—1,—dL) by Hilbert Reciprocity Law. Then ind(Q,L) =1 by (a). Hence L,
is not primitively 2-universal by Corollary 3.1.6. Therefore there are infinitely

many binary Z-lattices that are not primitively represented by L. O

Theorem 4.1.2. The minimal rank of primitively 2-universal Z-lattices is 6.

Proof. By the above lemma, the minimal rank of primitively 2-universal Z-
lattices is at least six. Furthermore, one may easily verify that I is primitively
2-universal, for it is primitively 2-universal over Z, for any prime p, and it is

of class number one (see Theorem 4.3.1). The theorem follows from this. [

Definition 4.1.3. The prime ¢ in the proof of the above lemma such that
ind Q,L =1 is called the core prime of L (see also [17, Lemma 2.4]).

The existence of the core prime will play a significant role when we deter-
mine binary Z-lattices that are primitively represented by a quinary Z-lattice

in Sections 4.3 and 4.4.
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4.2 Candidates of primitively 2-universal senary Z-

lattices

In this section, we find all candidates of primitively 2-universal senary Z-
lattices.

A Z-sublattice Zey + - - - + Zey, of a Z-lattice L is called a k-section of L
if there are vectors eg41, ..., e, such that {e1,...,e,} is a Minkowski reduced
basis for L. Recall that a k-section of L is not unique in general.

Let L be a primitively 2-universal senary Z-lattice. We find all possible
k-sections of L inductively on &k = 1,...,6. To obtain all possible candi-
dates of (k4 1)-sections containing a specific k-section, we recurrently turn to

Lemma 4.2.1, which is quite well known (see [15, Lemma 2.1}).

Lemma 4.2.1. Let M and N be positive definite Z-lattices of rank m and n
respectively. Suppose that N = Zej + - - - + Ze,, is Minkowski reduced. Suppose
further that M is represented by N, but not by the k-section Zey + - - - + Zey,.

(a) We have Q(ex+1) < Ci(k + 1) max{pum(M),Q(ex)} where the constant
C4(j) is defined in [4] that depends only on j and pu, (M) is the m-th

successive minimum of M (see [4, Theorem 3.1]).

(b) Suppose further that n < m + 4 and N is m-universal. Then for any
x = x1€1 + -+ xpen, € L, we have Q(z) > Q(ej) whenever z; # 0.
Also, we have Q(eg+1) < pm(M).

Proof. (1) Suppose to the contrary that Q(ex+1) > Cy(k+1) max{ (M), Q(ex)}-
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Since Q(eg+1) < Ca(k + 1)pug41(N), this implies

pr41(N) > max{pn (M), Q(er) }- ()

The hypothesis that N represents M and the inequality (*) together implies
that

M — spang{r € L: Q(z) < per1(N)} NN =Zey @ - - - © Zey,

which is a contradiction.
(2) Since N represents I,,,, we have N = I, 1 N’ for N' = Zep11®--- D Zey,

and N’ also is Minkowski reduced. Since rank N’ < 4, for any
T =Tmi1€mt1+ -+ Tnén € N,

we have Q(x) > Q(e;) whenever x; # 0 (see [4, Lemma 1.2 of Ch. 12]).
Hence the former assertion holds. Moreover, the successive minima of N’
must appear on the diagonal, hence the same for N itself. In particular,
Q(ex+1) = pr+1(N). Now suppose to the contrary that Q(exr1) > pm (M),
then pg41(N) > pum (M). This inequality and the hypothesis that N represents
M together implies that

M — spang{r € L: Q(z) < per1(N)} NN C Zey @ - - - © Zey,

which is a contradiction. O

If a Z-lattice M is not primitively 2-universal, we define the truant of M

to be, among all the binary Z-lattices that is not primitively represented by
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M, the least one up to isometry with respect to the following total order in

terms of Gram matrices:

c1 < cg, or

~ c1 = co and a1 < ag, or
by ¢ by c2

c1 = c2, a] = az and by < bs,
where we assume that all lattices are Minkowski reduced, that is, 0 < 2b; <
a; < ¢; for any ¢ =1, 2.

Now we find all candidates of k-sections for each kK = 1,...,6 inductively.
Since Iy is the truant of any lattice of rank less than two, clearly the 2-
section must be Is. Since Is cannot primitively represent (1,2), we must have
1 < Q(e3) < 2 by the last lemma. By repeating this and removing duplicates
as well as any candidates that have the truant, we finally obtain the following

list of 201 candidates of primitively 2-universal senary Z-lattices:

Table 4.1: The 201 candidates of P2U senary Z-lattices

Type 5-section Candidates Possible k’s
A I Is L (k) k=12
Iy 1L (2,k) 2<k<5h
B I, 1 (2)
I L(2}4) k=2,3,56
C Iy 1 (3) I L(34) k=3
65
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Table 4.1: The 201 candidates of P2U senary Z-lattices

Type 5-section Candidates Possible k’s
I3 1 (2,2,k) 2<k<6
D L1(22) | LLE)L(i}) 3<k<8
201
Ig,J_<(1)H> k=3,0<k<7
" Is L (21) L(k) 2<k<5 k=18
E Iy L
3L (12) IgJ_(%%%> 2< k<9
11k
F I3 L (2,3) IsL(2) L (3}) k=
Is L (21) L (k) k=3,4,6<k<18
210
G LL(21) IgL((l)ﬁ) 3<k<19
IgJ_<%zH> 3<k<19
11k
I, 1 (33)L(2,k) 3<k<5
LLGHL(GY F=2,45
21 2101
H | LL(f) L) 12¢<g)ggg> 3<h<6
110k
2101
12¢<5gg%> k=3,4,6
111k
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Table 4.1: The 201 candidates of P2U senary Z-lattices

Type 5-section Candidates Possible k’s
211
IQJ_<H%>J_<k) k=2
2111
C| ea(d)) | eL(i3)) 2k <3
112 110k
1511
12¢<1121> 2<k<4
111k
| RL(3)LE) | LL(F))L(T) k=
IQL@%@L(I@ 3<k<20,22<k<24
15190
211 001k
k| RL(is))
12¢<Hgg> 5< k<2
110k
2111
IgL(H:H) 3 < k<25
111k

We refer to any of the above candidates by the expression such as (type)
or (type)x. For instance, by type K we mean each of 89 candidates in the last
four rows. Among them, by types Ki, K, Kill and KV we mean 21, 22, 23 and
23 candidates in each of four rows, respectively. For instance, by type KV we

2111 .
mean any Z-lattice of the form Ip 1 133 %) Finally, by K% we mean the
111k

2
1

1
lattice Iy L (1 2 >
1113 ) )
Moreover, when we refer to each of the candidates in Table 4.1, we always

Qo=
e

assume that the basis eq, ..., eg corresponds to the Gram matrix given in the
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table. For instance, when we consider the Z-lattice 5", we have

100000
005999
(B(eivej)): 001211
001131
001113

From now on, by abusing of terminology, the s-section of Zej+- - -+ Zeg always

denotes Zej + - - - + Zes for any s =1, 2, ..., 6.

4.3 The proof of primitive 2-universality (ordinary

cases)

In this section, we prove that some candidates given in Table 4.1 are, in fact,
primitively 2-universal. Let L be one of candidates of a primitively 2-universal
Z-lattices given in Table 4.1. We prove the primitive 2-universality of L for

cases when L itself or the 5-section of L is of class number one.

4.3.1 Class number one case

As explained in Chapter 2, if a Z-lattice O is of class number one, then O
primitively represents any Z-lattice that is primitively represented over Z, for
any prime p. Hence, if L is of class number one, then L is primitively 2-
universal if and only if L, primitively represents all binary Z,-lattices for any

prime p.

Theorem 4.3.1. If L is of class number one, then L is primitively 2-universal.

In fact, there are 10 such cases.
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Proof. One may easily show that
L= Ay, Ay, By, Bil B DIl Ell Ell or I,

Note that dL = 1, 2, 4, 3, 5, 8, 4, 7, 4, and 8, respectively. Hence L,
is primitively 2-universal for all odd prime p by Lemma 3.2.1. Also L is

primitively 2-universal by Lemma 3.3.1 for the following eight cases.

A =H? 1 (—-1,-1) Ay =2 H? L (5,10)
11 ~ < , > 11 ~ < , >

DI = H? | (5,40) Ei = H? L (3,12)
Ef = H L (1,-1) Iy 2 H? L (~1,-8)

Now, assume that L = Bl. Then Lo, & H 1L M = (1,-1) L M where
M = (1,5,2,2 - 3) is primitively 1-universal by [7, Theorem 5.2]. Hence any
diagonal binary Zs-lattice is primitively represented by Ls. Now, denote by
e, f the hyperbolic basis of H, and pick any primitive vector x, y € M with
Q(z) = 0 and Q(y) = 2°*! for a nonnegative integer a. Then Zsle, 2°f + 2]
and Zgle + 2% f, e + y] are primitive sublattices of H L. M that is isometric to
2°H and 2°A, respectively. Hence, Lq is primitively 2-universal.

Finally, assume that L = Ii. Then Lo 2 H 1 M = (1, 1) 1 M where M =
(3,7)L(432). One may easily show that Q*(M) = {3, 7}(Z5 )?U2Zs. Hence, by
Lemma 3.3.1, any diagonal binary Zs-lattice is primitively represented by Lo
except (1,1) and (1, 5), which also are primitively represented by Ls. The proof

of the fact that any binary improper modular lattice is primitively represented
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by H 1 M is quite similar to the previous case. Hence, Lo is primitively 2-

universal. O

Remark 4.3.2. In fact, for senary lattices, Lemma 4.3.1 generalizes Buda-
rina’s result [3], where L is required to be of class number one and to be of
squarefree odd discriminant. One may verify from the proof that there are

four such cases out of our 201 candidates.

4.3.2 Class number one 5-section case

In the remaining of this section, we consider the case when the 5-section of
L, say M, has class number one. Since M is a primitive sublattice of L,
L primitively represents any Z-lattice that is primitively represented by M.
Hence, if M is of class number one, then L primitively represents any Z-lattice
that is locally primitively represented by M. Note that by Lemma 4.1.1, M,
is not primitively 2-universal for some prime ¢, and hence there are infinitely
many Z-lattices that are not primitively represented by M.

Recall that any core prime g of M satisfies S,U # (—1, —1), where QM =
U L (dM) (see Definition 4.1.3). One may easily check that the 5-section of L
whose type is not of H has class number one, and the 5-section I L A | (2) of
L with type H has class number two. Note that the genus mate of this lattice
is Iy 1 (6). Hereafter o, S denote integers in Zj, and €,  denote units in Z,,
unless stated otherwise, where the prime p could be easily verified from the

context.
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Lemma 4.3.3. For the 5-section M of each type given below, the core prime
q of M and local structures over Zq of any binary Z-lattice £ that is not prim-

itively represented by M are given as follows:

Table 4.2: The core prime and the local structures

Type M q Local structures
A I5 2 EQ = <1,8a> or I’L(ﬁg) - 4ZQ
B I, 1 (2) 2 | Uy = (2,16a) or n(ly) C 8Zo

ly = (1,16a), (4,16a), (20,16c) or
n(fs) C 16Z,

D | I31(22) |2

131—(%%) 3| €3 =(3,9a) or s(¢3) C 9Zs

G Ig 1 (% :15) 5 £5 = <5,25a> or 5(€5) - 25Z5

) Uy = (1,32a), (5,16€), (4,32a) or
n(fs) C 16Z,

i) 7| 07 22 (7,490) or s(¢7) C 497+

Proof. One may easily verify that the prime ¢ given in Table 4.2 is the only
core prime for each 5-section M, and M, primitively represents ¢, for any
prime p # ¢. Hence, /¢ is primitively represented by M if and only if ¢, is
primitively represented by M.

Assume that L is of type A. Note that My = H1 N, where N = (-1, -1, —1)
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and

Q*(N) = {3,5,7}Z5)* U 2Z.

Hence My primitively represents all binary lattices of the form («a, ), where
0 € Q*(N)), H, and A. Moreover, M primitively represents (1, 1) and (1, 4¢),
for Zsle1, 62+63+e4—|—\/me5] is a primitive sublattice of I5 that is isometric
to (1,4e).

Assume that L is of type B. Note that My =2 H 1 N, where N = (1, 3,10)

and

Q*(N) = Z5 U{6,10,14}(Z5)* UAZS.

Hence My primitively represents all binary lattices of the form (a, ), where
0 € Q*(N), 2°H, and 2°A (0 < a < 1). Moreover, M, primitively represents
(2,2) and (2, 8¢), for Zsle1+ea, e1—ea+2e4++/4e — 3es] is a primitive sublattice
of Iy 1 (2) that is isometric to (2, 8¢).

Assume that L is of type D. Note that My 2 H L N, where N = (5,2, 6)

and

Q*(J) = {3,5, THZ5)? U 2Z5 U {12,28}(Z5 )* USZS.

Hence, My primitively represents all binary lattices of the form (a,6), where
0 € Q*(N), 2°H, and 2°A (0 < a < 2). Moreover, My primitively represents
(0,0"), where 6, ' € {1,4,20}.

Assume that L is of type E. Note that M3 2 H 1 N, where N = (1,1, 3-A3)
and Q*(N) = {1,As,3 - A3}(Z})?% Hence, M3 primitively represents any
binary Zs-lattice that represents 1, Ag, or 3 - Ag.
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Assume that L is of type G. Note that M5 = HL N, where N = (1,1,5-A5)
and Q*(N) = {1,As,5 - A;}(ZX)% Hence, M primitively represents any
binary Zs-lattice that represents 1, As, or 5 - As.

Assume that L is of type I. Note that My = H L N, where N = (3,7,12)
and

Q*(N) = {3, 7HZ5)* U2Z5 U {12,20,28}(Z5)* U SZS.

Hence, Ms primitively represents all binary lattices of the form («, ), where
0 € Q*(N), 2°H, and 2°A (0 < a < 2). Moreover, M, primitively represents
(0,0, where 6, 0’ € {1,5,4}, (1,16¢), (5,32a), and (4, 16¢).

Assume that L is of type K. Note that My =2 H1L N, where N = (1,1,7-A7)
and Q*(N) = {1,A7,7- A7}(Z5)% Hence, My primitively represents any
binary Zz-lattice that represents 1, A7, or 7- A7. This completes the proof.

[

We first complete the proof of the case when the 5-section splits L orthog-

onally.

Theorem 4.3.4. Suppose that L is of class number at least two. If M is of
class number one and orthogonally splits L, then L is primitively 2-universal.

In fact, there are 51 such cases.

Proof. By the above lemma, L is of type Bi(except B}), D!, El, G!, T, or K.
Let £ = (‘g Z) be a Z-lattice which is not primitively represented by M. We
assume that ¢ is Minkowski reduced, that is, 0 < 2b < a < c¢. If we show

that ¢ is primitively represented by L, then we are done. To do this, we may
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consider two Z-lattices

e a—k b s a b
b o)’ b oc—k

If either ¢ or ¢” is primitively represented by M, then clearly ¢ is primitively
represented by L = M 1 (k). Moreover, ¢ (¢") is primitively represented by
M if and only if £ (¢, repsectively) is primitively represent by M, for the
core prime q of M.

First, assume that L is of type B'. By Lemma 4.3.3 we may assume that
52 = (2, 16a> or n(fg) - 8Z2.

Suppose that k = 3 or 5. Since sf§ = Zo, ¢, is primitively represented by
Ms;. Hence, " is primitively represented by M if it is positive definite, that is,
¢ > 7. One may directly check that ¢ is primitively represented by L if ¢ < 6.

Now, suppose that k = 4. If a # 0 (mod 4), then d¢j # 0 (mod 16), and
thus ¢4 is primitively represented by Ms. Hence, ¢’ is primitively represented
by M if it is positive definite, that is, ¢ > 6. If ¢ Z 0 (mod 4), then ¢ =
2 (mod 16), and thus ¢ is split by (¢ — 4). Furthermore, since ¢ — 4 =
—2 (mod 16), ¢” is primitively represented by M if ¢ > 6. If a = ¢ = 0 (mod 4),
then s(f2) C 474 since ¢5 is not unimodular, which implies s(¢2) C 8Z5. Hence
04 is split by (¢ —4). Since ¢ —4 =4 (mod 8), ¢” is primitively represented by
M since ¢ > 8. One may directly check that ¢ is primitively represented by L
if ¢ <6.
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Assume that L is of type D'. By Lemma 4.3.3 we may assume that
lp = (1,16a), (4,16a), (20,16a), or n(fy) C 16Zs.

Suppose that k = 3 or 5. If a Z 0 (mod 16), then d¢5 # 0 (mod 16), and
thus ¢4 is primitively represented by Ms. Hence, ¢” is primitively represented
by M if it is positive definite, that is, ¢ > 7. Assume a = 0 (mod 16). Since
a — k is odd, ¢} is split by (a — k). Furthermore, since a — k #Z 1 (mod 8), £,
is primitively represented by Ms. Hence, ¢ is primitively represented by M.
One may directly check that ¢ is primitively represented by L if ¢ < 6.

Now, suppose that k = 2 or 6. If a # 0 (mod 8), then d¢j # 0 (mod 16), and
thus ¢} is primitively represented by Ms. Hence, ¢” is primitively represented
by M if it is positive definite, that is, ¢ > 9. If ¢ is odd, then ¢ = 1 (mod 8),
and thus ¢4 is split by (¢ — k). Furthermore, since ¢ — k #Z 1 (mod 8), ¢’ is
primitively represented by M if ¢ > 9. If a = 0 (mod 8) and c is even, then
5(f2) C 275 since ¢ is not unimodular, which implies §(¢3) C 4Z9, and then
¢c—k =2 (mod 4) and s(¢5) = 2Zy. Hence, ¢” is primitively represented by
M if ¢ > 9. One may directly check that ¢ is primitively represented by L if
c < 8.

Finally, suppose that k = 4. If a # 0 (mod 4), then d¢§ # 0 (mod 16), and
thus ¢4 is primitively represented by Ms. Hence, ¢’ is primitively represented
by M if it is positive definite, that is, ¢ > 6. If ¢ is odd, then ¢ = 1 (mod 8),
and thus ¢4 is split by (¢ — 4). Furthermore, since ¢ — 4 # 1 (mod 8), ¢”
is primitively represented by M if ¢ > 6. If a = 0 (mod 4) and c is even,

then s(f3) C 27y since £ is not unimodular, which implies §(f2) C 4Zy and
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dly = 0 (mod 64). If a # 0 (mod 16) then d¢j # 0 (mod 64), and hence
again ¢” is primitively represented by M if ¢ > 6. If a = 0 (mod 16) then
s(0,) = (4), and thus ¢} is split by (a —4). Furthermore, since a —4 = —4 (16),
¢, is primitively represented by M. Hence, ¢’ is primitively represented by M
since a > 16. One may directly check that ¢ is primitively represented by L if
c <5.

Next, assume that L is of type El. By Lemma 4.3.3 we may assume that
03>~ (3,9a) or s(l3) C 9Zs.

Suppose that k& # 3. Then §(¢4) = Z3, and thus ¢4 is primitively represented
by M3. Hence, ¢ is primitively represented by M if it is positive definite, that
is, ¢ > 11. One may directly check that ¢ is primitively represented by L if
c < 10.

Now, suppose that k = 3. If a # 0 (mod 9) then d¢4 # 0 (mod 27), and thus
3 is primitively represented by Ms. Hence, ¢” is primitively represented by M
if it is positive definite, that is, ¢ > 5. If a = 0 (mod 9) then s(¢%) = 3Z3, and
thus ¢4 is split by (a — k) where a — k = 6 (mod 9), and then ¢4 is primitively
represented by M3. Hence, ¢ is primitively represented by M since a > 9.
One may directly check that ¢ is primitively represented by L if ¢ < 4.

Now, assume that L is of type G'. By Lemma 4.3.3 we may assume that
55 = <5,250z> or 5(55) - 2525.

Suppose that k # 10 or 15. Then §(¢%) = Zs, and thus ¢{ is primitively repre-
sented by Ms. Hence, ¢’ is primitively represented by M if it is positive defi-
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nite, that is, ¢ > 25. One may directly check that £ is primitively represented
by L if ¢ < 24.

Now, suppose that £ = 10 or 15. If a # 0 (mod 25) then d¢Z # 0 (mod 125),
and thus ¢/ is primitively represented by Ms. Hence, ¢” is primitively repre-
sented by M if it is positive definite, that is, ¢ > 21. If a = 0 (mod 25) then
s(0L) = 5Zs, and thus /£ is split by (a—k) where a—k = 15 or 10 (mod 25), and
then ¢f is primitively represented by Ms. Hence, ¢’ is primitively represented
by M since a > 25. One may directly check that ¢ is primitively represented
by L if ¢ < 20.

Next, assume that L is of type I'. By Lemma 4.3.3 we may assume that
62 = <17 250‘))

02 (1,320), (5,16¢), (4,32a), or n(fs) C 16Zs.

If a # 0 (mod 8), then d¢j # 0 (mod 16), and thus ¢5 is primitively represented
by Ms. Hence, ¢ is primitively represented by M if it is positive definite, that
is, ¢ > 3. If ¢ is odd, then ¢ = 1 (mod 4), and thus ¢ is split by (¢ — 2).
Furthermore, since ¢ — 2 = 3 (mod 4), ¢ is primitively represented by M
if ¢ > 3. If a =0 (mod 8) and ¢ is even, then s(¢3) C 2Zy since {2 is not
unimodular, which implies s(¢2) C 4Z5, and then ¢ — k = 2 (mod 4) and
s(05) = 2Zy. Hence, ¢” is primitively represented by M since ¢ > 8. One may
directly check that ¢ is primitively represented by L if ¢ < 2.

Finally, assume that L is of type K. By Lemma 4.3.3 we may assume that

57 = <7, 49a> or 5(57) - 4927.
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Suppose that k # 7 or 14. Then s(¢%) = Z7, and thus ¢7 is primitively repre-
sented by My;. Hence, ¢’ is primitively represented by M if it is positive defi-
nite, that is, ¢ > 33. One may directly check that ¢ is primitively represented
by L if ¢ < 32.

Now, suppose that k = 7 or 14. If a # 0 (mod 49) then d¢ # 0 (mod 343),
and thus ¢/ is primitively represented by M7. Hence, ¢” is primitively repre-
sented by M if it is positive definite, that is, ¢ > 19. If a = 0 (mod 49) then
s({%) = TZ7, and thus ¢/, is split by (a—k) where a—k = 35 or 42 (mod 49), and
then /% is primitively represented by M7. Hence, ¢’ is primitively represented
by M since a > 49. One may directly check that ¢ is primitively represented
by L if ¢ < 18. This completes the proof. ]

Remark 4.3.5. If L = C3 or F3, then we may take M = I3 1L ($1), which is
a primitive sublattice of L. If L = Hili, then we may take M = Iy | @ % i),
which is a primitive sublattice of L. Since the class number of M is one and
M splits L orthogonally, the proofs of these three candidates are quite similar

to the above theorem.

Let R = Z or Zj, for some prime p. Let O be an R-lattice and let B =
{e1,...,en} be the fixed (ordered) basis for the R-lattice O. When only the

corresponding symmetric matrix Mo is given instead of the basis for O, we
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assume that B is the basis for O such that (B(e;,e;)) = Mo. We define

ail . e QA1p
O'=R

aml - Qmn

by the R-sublattice of O generated by m vectors ajie; + -+ + ainén, ...,

ami1e1 + -+ + Gmnen. Note that if the rank of O’ is m, then the symmetric

matrix corresponding to O’ is that

ail ... Qip ail ... Gml
Mor = : : Mo

aml .. Qmn Alp .. QAmn

4.3.3 A class number one superlattice of the 5-section case

Recall that we are assuming that L is one of 201 candidates of primitively
2-universal senary Z-lattices given in Table 4.1, and B = {ej,...,eg} is the
basis for L such that (B(e;,e;)) is the symmetric matrix given in Table 4.1

corresponding to L. Furthermore, M = Zej + - - - + Zes is the 5-section of L.

Lemma 4.3.6. Let d = dL and let q be the core prime of M. Let { = (% g) be
a binary Z-lattice. If ¢’ = (22:32? Zi:j;;t) is positive definite and is primitively
represented by N for some integers s and t, then £ is primitively represented

by L, where L and N are given as follows:

1. The Z-lattice L is of type E', and N = qI3 1 A.
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2. The Z-lattice L is of type G or Gili, and N = qlI3 1 (21).

3. The Z-lattice L is of type K, K or KV, and N = qI, L <

= =W

1 1
5 72),
-2 5

Proof. One may easily show that there is a representation ¢ : L? — N L (d)
such that ¢(L9) NN = M1.

Since all the other cases can be proved in similar manners, we only provide
the proof of the case when L is of type K. Since N primitively represents ¢,
there are integers ¢;’s and d;’s for ¢ = 1, ..., 5 such that the primitive sublattice

of N

€L ca €3 ¢4 s y Ta — (7Tk — 5)s2  7b— (Tk — 5)st

d1 dz d3 d4 d5 7b — (7]{} — 5)St Tc — (7]{ — 5)t2

I

N
I

Cl C2 C3 C4 C5 . R .
where (d1 dy ds dy d5) is a primitive matrix. Then we have

3(c3 — 2¢4 — 2¢5)? = 5s?
3(83 — 264 — 205)(d3 — 2d4 — 2d5) = 5st (mod 7),
3(ds — 2dy — 2d5)? = 5t

for (? _%2 é2) =3 (}g) (1 -2 —2) (mod 7). Hence, after replacing (s,t)

by (—s,—t), if necessary, we may assume that

c3—2c4 —2c5+2s=d3g —2dy — 2d5 + 2t =0 (mod?)
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Therefore, there are integers as, a4, as, bs, by and bs satisfying

s ds 1 0 2 0\ [a3 b3
eode| |21 1 1| {a by
s ds| |1 -1 0 0||as bs
s t 0 0 0 1 s t

Now, consider the sublattice

0—-7 c1 Cp a3 a4 a5 S
di do b3 by bs t

of L. Since

14 7 7 7 as b3
as a4 as S T4 7T 7 ay by
bs by by t T 7 21 7 as by

T 7T T Tq s t

3 1 1 0 c3 ds
[z oca o5 s 1 5 =2 0 cy dy
\ds dy ds t) |1 2 5 0 cs ds |
0 0 0 7q-—5 s t

the Z-lattice O is isometric to £. Now, since

et ¢ 3 ¢ ) e e —az+ 2a5 2a3+as+as+s a3 —aq
di do ds dy ds di do —b3+2bs 2b3+bs+bs+t by—by
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is a primitive matrix, so is

c1 ¢ —az+2a5 2a3+as+as+s a3 —as as

di do —bg+2bs 2b3+bg+bs+t by—by by
Therefore, the matrix

c1 C2 a3 a4 a5 S

di dy b3 by bs t

is primitive, which implies that O is a primitive sublattice of L. This completes

the proof. ]
Theorem 4.3.7. If L is of type
qii @il kil kil op Kiv

then L is primitively 2-universal. There are exactly 110 such Z-lattices, and

among them, only Eil and Eg‘ have class number one.

Proof. Let { = (‘g Ié) (0 <2b < a < c) be a Z-lattice which is not primitively
represented by M.
Suppose that L is of type E. Note that det(E") = 3k —2. By Lemma 4.3.3,

we may assume that
l3=(3,9a) or s(f3) C 9Zs.

Observe that N = 3I3 1 A is of class number one, and that 3 is the only
core prime of N. Furthermore, N; = 3H L O, where O = (A3,3,3). Thus
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N3 primitively represents all binary Zs-lattices of the form (3a,6), where
0 € Q*(0) = {A3,3,3 - A3}(Z})% Hence, N3 primitively represents ¢/ =
(%‘bl 36_(%36_2) ) Therefore N primitively represents ¢ if it is positive definite.
Hence, by Lemma 4.3.6, ¢ is primitively represented by L if ¢ > 12. One may
directly check that ¢ is primitively represented by L if ¢ < 11.

Now, suppose that L is of type G. Note that

det(G) =5k —2 and det(G'l) = 5k — 3.
By Lemma 4.3.3, we may assume that
U5 = (5,25a) or s(f5) C 25Zs.

Observe that N = 515 L (21) is of class number one, and that 5 is the only
core prime of N. Furthermore, N5 = 5H L O, where O = (A5,5,5 - As).
Thus N5 primitively represents all binary Zs-lattices of the form (5a, 8), where
0 € Q*(0) = {A5,5,5- As}(ZZ)?. Hence, N5 primitively represents

Therefore N primitively represents ¢ if it is positive definite. Hence, by
Lemma 4.3.6, ¢ is primitively represented by L if ¢ > 25. One may directly
check that ¢ is primitively represented by L if ¢ < 24.

Finally, suppose that L is of type K. Note that

det(K") = 7k — 3, det(K'") =7k — 6, and det(KY) =7k — 5.
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By Lemma 4.3.3, we may assume that
57 = <7, 49a> or 5(27) - 49Z7.

Observe that N = 71, L (:1;) %2 —;2> is of class number one, and that 7 is
the only core prime of N. Furthermore, N7 = 7TH L O, where O = (A7,7,7).
Thus N7 primitively represents all binary Zz-lattices of the form (7, 6), where
0 € Q*(0) = {A7,7,7- A7}(ZF)%. Hence, Ny primitively represents

02 (B lhn) (Brlion)r ad (Brfio):

Therefore N primitively represents ¢ if it is positive definite. Hence, by
Lemma 4.3.6, ¢ is primitively represented by L if ¢ > 33. One may directly
check that ¢ is primitively represented by L if ¢ < 32. O

Remark 4.3.8. In fact, we do not use the fact that M is the 5-section of L
in the above theorem. If [ & Dg, Hg", or Igi, then we may take a primitive
sublattice M of L as in Table 4.3. Then ¢ is the only core prime of M, and one
may apply Lemma 4.3.6 for each pair of L and IV in the table. Therefore, the
proofs of primitive 2-universalities of these three candidates are quite similar

to Theorem 4.3.7.

Summing up all, we have proved the primitive 2-universalities of 175 Z-
lattices among 201 candidates, and the primitive 2-universalities of 26 candi-

dates remain unproven.
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Table 4.3: The core prime of M and the choice of N

L M q N
pi | miGh |5] shiGh
v i 211 31 1
Mol | B L (f31) 7]t (1 2)

4.4 The proof of primitive 2-universality (exceptional

cases)

Let L be one of the remaining 26 candidates of primitively 2-universal Z-
lattices which we do not consider in Section 4.3. We try to find quinary or
quaternary primitive sublattices of L which have class number one or two to
prove primitive 2-universality of L, in each exceptional case. The next two
lemmas summarize some data needed for computations which will be used

throughout this section.

Lemma 4.4.1. For each given quaternary Zo-lattice N, the binary Zo-lattice
¢ that is not primitively represented by N satisfies one of the conditions given
i Table 4.4.

Proof. Since one may prove the lemma by direct computations, the proof is

left to the readers. O

Lemma 4.4.2. For the 5-section M and its core prime q of each type given
in Table 4.5, if a binary Z-lattice £ is not primitively represented by M, then

{ satisfies one of the conditions given in the table.
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Table 4.4: The local structures

N Binary Zs-lattices that are not primitively represented by N
L | 2 (e4a), (2,6), (26 80), n(£s) C 4Z, or Qaf = QoH
Uy = (€,49) with €6 = 3 (mod 8), (e, 16ar), (2¢, 8ar),
(1,1,2,2) | (4¢,46) with €d = 3 (mod 8), (4€, 16a), A, n(fy) C 87,
or Qaof = QoH
{5 is unimodular, /5 = (¢, 16ar), (2¢,80) with e = 3 (mod 8),
(1,2,2,4) | (2¢,32a), (4¢, 160), (8¢, 85) with ed = 3 (mod 8), (8¢, 32a),

A2, ﬂ(fg) - 16Z2, or @25 = QQH

(1,2) L(93)

0= (1,1), (3,-1),(1,20), (—1, —4),

(€,166) with ed = 3 (mod 8), (e, 64a), (2,2), (2,6), (2, 10),
(2€,16cr) with e = 1 (mod 4), (2¢, 32a) with e = —1 (mod 4),
(12,12), (4,20), (4, 166) with €5 = 3 (mod 8), (4e, 64a),
n(lz) C 87y, or Qof = QoH

Proof. Since one may prove the lemma by direct computations, the proof is

left to the readers. O

Recall that a finite sequence of vectors vy, . .., vy, in Z™ (m < n) is primitive

if and only if the greatest common divisor g of the determinants of all m x m

submatrices of the coefficient matrix of vy, . .., v, which is defined by the mxn
matrix whose rows are vy, ...,Umn, is a unit. Also, we say that vi,...,v,, is
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Table 4.5: The core prime and the local structures

Type M q Local structures
C I4 1 <3> 2 g <3, Oz> or n(ég) - 422
9 = (4e,46) or A, or
F I3 1 (2,3) 3
2 <6 9a> or 5(£3) C 9Z3
J L L(23)L(3) | 2] ¢2=(1,8a) or n(ly) C 4Z,
=~ (3,7), (~1,4), (2,2), (2, 64a),

I
(10, 32¢), (8,64q), or 5(fs) C 16Z,

p-primitive for a prime p if g is prime to p. Then it is clear that vy,...,v,, is

primitive if and only if it is p-primitive for any prime p.

Lemma 4.4.3. Let L = Zej + -+ + Zen+1 be a free Z-module of rank n + 1,
and let M = Zey + --- + Ze,. Suppose that v1,...,v, are vectors in M for

some 1l <m <n.

(a) Suppose that vy, ..., vy is p-primitive for some prime p. Then vy, ...,

Um—1,Um + pw also is p-primitive for any w € M.

(b) Suppose that vi,...,vy is p-primitive for some odd prime p. Then for
any w € M, either vi,...,Vm_1,Um +W 0T V1, ...,Vm—1,Um — W also is

p-primitive.

(c) Suppose that vy, ..., vy, is primitive. For a vectory = yie1+---+ynen+
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Ynt1€nt1 € L, put

P(y) :={p:ged(y1,.--,Yn,Ynt+1) is divisible by a prime p},

P(yn+1) :={p : yn+1 is divisible by a prime p}.

If P(yns1)\P(y) = @, then vy, . .., Um—1, Um—+y is primitive. If P(yni1)\
P(y) = {p} for an odd prime p, then either vi,...,Vm—1,0m + y or

Vi, .oy Um—1,Um — Y 1S primitive.

Proof. (a) The lemma follows from the fact that the determinant of any m xm
submatrix of the m x n coefficient matrix of vy,...,v,, is congruent modulo
p to the determinant of the corresponding m x m submatrix of the m x n
coefficient matrix of vy, ..., Vm—1,Um + pw.

(b) Suppose to the contrary that both
Viyer s Un_1,Um +w and v1,...,0%n_1,Um — W

are not p-primitive. This implies that the determinant of any m x m submatrix
of the m x n coefficient matrices C" of vy,...,vm—_1,vm + nw is a multiple of
p for any n € {1, —1}. Observe that, by multilinearity of the determinant, the

determinant of any m x m submatrix of C" is equal to
det(the corresponding m x m submatrix of C)
+ ndet(the corresponding m x m submatrix of C'),

where C' is the m x n coefficient matrix of vq,...,v,, and C’ is that of
Vly..., Um_1,w. Since p is odd, if the determinants of any m x m subma-

trix of C'! and the corresponding m x m submatrix of C~' are multiples of p

88



CHAPTER 4. P2U Z-LATTICES OF RANK 6

simultaneously, then so are the determinants of the corresponding m x m sub-
matrices of C' and C’. This implies that vy,...,v,, is not p-primitive, which
is a contradiction.

(¢) We have to show that the greatest common divisor of the determinants of
m x m submatrices of m x (n 4 1) coefficient matrix of vy, ..., Vm—1,Vm + Ny
is 1 for some n € {1,—1}. Let g1 be the greatest common divisor of the
determinants of all m x m submatrices containing the (n + 1)-th column, and
g2 be the greatest common divisor of the determinants of those not containing

the column. Then what we have to show is (g1, g2) = 1. Let
w=yie; + -+ ypen, € M.

Then g¢o is equal to the greatest common divisor of the determinants of all
m X m submatrices of m x n coefficient matrix of vy, ..., vm_1, Uy, +nw. Note
that g1 = |yn+1|- Hence it suffices to show that vi,...,Vm—1,vm + nw is ¢-
primitive for any ¢ € P(yn+1). If P(ynt+1) \ Ply) = 9, it follows from (1).
If P(ynt1) \ P(y) = {p}, it follows from (1) that both vq,...,v5_1,v% + w
and vy,...,v5_1,v; — w are ¢g-primitive for any ¢ € P(yn4+1) such that ¢ # p
(equivalently, for any ¢ € P(y)), and it follows from (2) that at least one of

the two is p-primitive. O

4.4.1 Type Bl

Theorem 4.4.4. The lattice B;i =y (% (11) (g = 5, 6) is primitively 2-

universal.
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Proof. Let £ = (‘g IC’) (0 < 2b < a < ¢) be a positive definite Z-lattice which
Iy 1 {2) does not primitively represent. Then sfy = (2) and dfs C (2°) or
wly C (8) by Lemma 4.3.3. In particular, a, b and ¢ are all even. If we show
that L primitively represents ¢, then we are done.

Denote by N the 4-section of L. Then N primitively represent a binary
Z-lattice ¢’ if and only if ¢’ is positive definite and Ny primitively represent ¢,
by the last lemma. Now suppose that

a—A b—B A B s1 89 2 1 s1 t
where =
b—B ¢—-C B C tl tQ 1 q S9 tQ

~
1%

for some integers s1, s2, t1 and to. If ¢/ = '(s1,s9;t1,t2) is primitively rep-
resented by N then evidently ¢ is primitively represented by L =2 N L (% é)
Finally, put

-2 b-1 —q b-1
W = ¢1,0,0,1) 2 [ © 1O =0 (071
b—1 c—q b—1 c—2
_ b—(q—1
Z(S) — El(—l’ 1,07 1) ~ a q (q ) ,
b—(¢g—1) c—q
b —q b
14 = ¢(0,0,0,1) = , 1) =1(0,1;0,0) = “
b c—q b«

Let ¢ =5. If a € (4) then a € (8). Then d/() = dl —5a+2b—2c+9=1 (4),
hence Ny primitively represents lél). Hence N primitively represents (V) if
a > 10, or if a = 8 and ¢ > 7. Now suppose a = 2 (4) then a = 2 (16).
If ¢ € (4) then d¢®® = dl — 2a + 2b — 5¢ + 9 = 1 (4), hence I, primitively
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represents 12 if ¢ > 10. If a = 2, then we must have b = 0 and ¢ € (16),
hence N primitively represents ¢ — 18 if ¢ > 32, then L primitively represents
Zles,v —e5+2eg] = (2, ¢) where v is a primitive vector in N such that Q(v) =
¢ — 18. Finally suppose a = ¢ = 2 (4), then a = ¢ = 2 (16). Then d¢® =
dl —5a+8b—5¢+9 =5 (8), hence N primitively represents [(®) since a > 18.
A direct calculation shows that the only remnant (2,16) also is primitively
represented by L.

Let ¢ = 6. If nly C (8) then d¢(M) = dl — 6a 4 2b — 2c + 11 = 3 (8), hence
Ny primitively represents lgl). Hence N primitively represents 1D if ¢ > 11,
or if a = 8 and ¢ > 8. Now suppose 52 = (2) and dfs C (2°). If a = 2 (4) then
a =2 (16), hence dfY) = dl —6a = 4 (16), hence Ny primitively represents lgl).
Hence N primitively represents I(Y) if ¢ > 9. If a € (4) then ¢ = 2 (16), hence
dl®) = dl —6¢ = 4 (16), then N primitively represents [(®) if a > 9, or if a > 8

and ¢ > 9. Finitely many remnants with ¢ < 8 can be verified directly. O

4.4.2 Type D!

Lemma 4.4.5. Let { = (g 2) be a Z-lattice and let m and k > 2 be positive
integers. Suppose that

2a — (2k — 1)s%  2b— (2k — 1)st
2b — (2k — 1)st  2c — (2k — 1)t?

is positive definite and is primitively represented by 21, L (4,1) for some

integers s and t. Then the binary Z-lattice £ is primitively represented by
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L)L),

Proof. Suppose that 21, 1 (4,1) primitively represents

7 €1 Cm Cmyl Cma2|  [20—(2k— 1)s? 2b— (2k —1)st
di o dm dpsr dmis|  \ 20— (2k—1)st 2c— (2k — 1)t2
Then
_ 2 _ 2_
C 2 =2¢C =5 =S
T (mod 2),

42 Ed3n+2 =t’=t
hence there exist integers as and by such that c¢p,12 = 2a9 + s and dyp42 =

2by + t. Now we claim that I,,, L (2) L (% (11) primitively represents

€1 ' Cm Cmgl Q2 S a b

d1 dm dm+1 b2 t b ¢

12

7

For the representation, we must verify the identity

az s\ [4 2 az by Cmt2 S 1 0 Cm+2  dmy2

by t 2 2q s t dmyo 1 0 2¢g—1 s t

which is evident. For the primitivity, observe that

C1 ' Cmt2 €1 Cm+1 2a2+s

di - dmi2 di -+ dmy1 200+t

is primitive, hence so is

€1 -+ Cmg1l 202+ 5 a2
di -+ dmy1 2ba+t by
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hence so is
¢t -+ Cmy1 G2 S

dy - dps1 bo
This completes the proof. O

Theorem 4.4.6. The lattice D = I3 1 (2) L (1}) (4 < k < 8) is primitively
2-universal.

Proof. Let £ = (% 2) (0 < 2b < a < ¢) be a positive definite Z-lattice. To
apply the last lemma, observe that N = 2I3 L (4,1) is of class number one,
the only core prime of N is 2, No = 2H | (1,10,12) = 2H 1 (3,10, 4) hence N,
primitively represents all binary Zs-lattices of the form (2«,€). Consider a Z-
lattice ¢ = (%Z 26,(22179,1) ), then s, = Zy and d¢’ C (2), hence Ny primitively
represents ¢,. Then N primitively represents ¢’ if ¢ > 2(2k — 1)/3, hence L
primitively represents ¢ if ¢ > 11. Finitely many remnants with ¢ < 10 can be

verified directly. O

4.4.3 Type Dii
We reserve the case of lattice Di5ii to the end of this section.

Lemma 4.4.7. Let { = (‘g g) be a positive definite binary Z-lattice and let m

and q > 2 be positive integers. Suppose that I,1+o primitively represents

€1 " Cm Cmt1l  Cmt2 a—(k—1)s> b—(k—1)st
d1 cee dm dm+1 dm+2 b— (k‘ — 1)St C — (k? — 1)t2

12

Z
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for some integers s and t that satisfy ¢yp+1+Cmy2+S = dmt1+dmio+t =0 (2).

201
Then £ is primitively represented by I,, L ((1) % 1 )
Proof. Define integers a1, as, by and by by equations

e . C 1—Cm4+2—S
ap := az + cm+2, ag 1= g

d —d —t
b1 :=ba + dpm2, by := %7

so that they satisfy ¢n+1 = a1 + a2+ S, G2 = a2, dm+1 = b1 + b2+ 1

al —
. 201 o
and dp, 12 = b1 — ba. Now we claim that I,,, 1 ( (1) % llc) primitively represents

¢l ' Cpm a1 as S a b

dl"' dmbl bzt b ¢

I

Z

For the representation, we must verify the identity

2 01 aq b1
ay az S
0 2 1 as by
by by t
1 1 k s
1 0 0 Cm+1 Amt1
Cm+1 Cm+42 S
= d’” dm oo Cmya dmia | >
m+1  Gm+2 00 k—1 < ’

which is evident. For the primitivity, observe that

c1 ' Cm42 cl  Cp G1+a2+S a1 — a2

di - dmo di o dm bytbott by —by
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is primitive, hence so is

¢l Cnp G1+ax+s ap—ax a
dy - dy bidba+t bi—by by )
hence so is
€1+ Cp a1 az S
di - dm a1 by t
This completes the proof. O

Lemma 4.4.8. Let { = (‘gﬁ) be a Z-lattice. Suppose that there exists a
primitive sublattice Z [ g\ && & 41 a2 | of the Z-lattice I5, which is isometric to

£, for some integers ¢; and d; such that the set

{(citcjdi+dj) | 1<i<j<5}
is a proper subset of (Z/27)?, where T is the residue class of n modulo 2 for
any integer n. Then ¢ satisfies one of the followings:
(i) @ orc=1 (mod 4) and d¢ =0 (mod 4);
(ii) a # 1 (mod 8), ¢ # 1 (mod 8), and dl =2 (mod 4).

Proof. Consider the set C' = {(c;,d;) |1 <i<5}. Since Z [} & & dh a2 ] is a
primitive sublattice of I5, the set C' contains at least two nonzero vectors in
(Z/27)%. Furthermore, one may easily see from the assumption that C' is one

of
{(1,0),(0,1)}, {(1,0),(1, 1)}, {(0,1),(1,1},

which respectively corresponds to each of the followings:
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(a) a+c=1 (mod 4) and b is even;
(b) a=5 (mod 8) and b = ¢ (mod 2);
(¢) a=b (mod 2) and ¢ =5 (mod 8).
The lemma follows directly from this. O

Theorem 4.4.9. The Z-lattice Diil = IgJ.(

—=oN
—NO

1
]lc) for k =6 or 7 is primitively

2-universal.

Proof. Let £ = (‘g ’C’) be a Z-lattice such that 0 < 2b < @ < ¢. Note that the
5-section M = I3 1 (2,2) in this case has class number one. Hence, we may
assume that ¢ is not primitively represented by M locally, that is, one of the

following conditions holds:
(i) f2 = (1,160) for some a € Zy;
(ii) ¢ = (4,16a) or (20,16¢c) for some a € Zo;
(iii) n(f2) C 16Zs.

Note that we have a = 1 (mod 8), a = 4 (mod 16), or a = 0 (mod 16). Assume
that both of the Z-lattices
a—(k—1) b a b

(1) = ) o= o

are positive definite. Then one may easily show that ¢(s) is primitively rep-

Cl1 C2 C3 C4 C5

resented by I5 for some s = 1, 2. Let N = Z [dl dy ds dy ds] be a primitive
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binary Z-sublattice of I5 which is isometric to £(s). If there is an (4,7) with
1 <1 < j <5 such that

ci+ci+(2—-s)=di+dj+(s—1)=0 (mod 2),

then ¢ is primitively represented by D};i by Lemma 4.4.7. If there does not

exist such an (7, j), then by Lemma 4.4.8, one of the followings must hold:

(a) a—(2—=s)(k—1)=1(mod 4) orc—(s—1)(k—1) =1 (mod 4), and
dl(s) =0 (mod 4);

(b) a—(2—s)(k—1) # 1 (mod 8), c— (s —1)(k—1) # 1 (mod 8), and
dl(s) =2 (mod 4).

However, one may easily verify that none of (a) and (b) holds in each case.
For instance, consider case (i) when k& = 6. If a is odd, then a = 1 (mod 8).
Since d¢(2) = 3 (mod 8), ¢(2) is primitively represented by I5 so that we may
take s = 2. Since d¢(2) is odd, £(2) satisfies neither (a) nor (b). Now, suppose
that a is even. Then a = 0 (mod 4) and ¢ = 1 (mod 8). Therefore, similarly to
the above, (1) is primitively represented by I5 and hence £(1) does not satisfy
any of (a) and (b).

Now, we have to consider the case when neither ¢(1) nor ¢(2) is positive
definite. Note that if @ > 9, then both ¢(1) and ¢(2) are positive definite.
Hence, we may assume that a = 1 or a = 4. If a = 1, then b = 0 and
¢ =0 (mod 8) by (i). Since £(2) is positive definite if ¢ > 9, one may apply the

same method as the above to prove the theorem. One may directly check that
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¢ is primitively represented by L if ¢ < 8. Now, assume that a = 4. Then we
have either b =0 or b = 2. If b = 0, then ¢ = 0 (mod 16) by (ii). Hence, ¢(2)
is positive definite, and we may apply the same method to the above to prove
the theorem. If b = 2, then ¢ = 1 (mod 8) by (i). Note that I3 represents
c—k = 2,3 (mod 8) by Legendre’s three-square theorem. If we choose a vector
v in the 3-section of L such that Q(v) = ¢ — k, then clearly, Z[es + e5,v + eg]

is a primitive sublattice of L isometric to (3 2). O

4.4.4 Type H!

The main obstacle for type H lattices is that the 5-section Io L A L (2) of L
is of class number two, and the genus mate Iy L (6) is not represented by L.
Lemma 4.4.5 gives some information on binary Z-lattices that are primitively

represented by the 5-section of L, though it has class number two.

Lemma 4.4.10. If a binary Z-lattice £ is not primitively represented by the
Z-lattice M = I 1 (2) L A, then either f3 = (6,16c) or n(fy) C 8Zs.

Proof. Fix a basis for M corresponding to the Gram matrix in the statement
of the lemma. Let ¢ = (‘g ’;) (0 < 2b < a < c¢) be a binary Z-lattice which

does not satisfy the conclusion. Since M primitively represents (1,1,2,2), we
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may assume that

(1,—1), (¢,46), (¢,16a),
(2, —2), (2¢,8a),

&
1

(4e,46) with €6 = —1 (mod 4), (4e, 16a),

H2

H or A.
\

We define the binary Z-lattices

/ ~ [ 2a—3t2 2ua+2b " ~ [ 2a+4ub+2u?c 2b+2uc
Cu,t) = <2ua+2b 2u2a+4ub+2c> and  (7(u, 1) = ( 2%+2uc  2c-3t2 )

Note that

VR a ua+b ~ [ a+2ub+u?c bt+uc
— \wa+b ua+2ubtc ) — b+uc c

for any integer u. Hence, if ¢'(u,t) or ¢"(u,t) is primitively represented by
N = (1,2,2,4) for some integers u and t, then ¢ is primitively represented by
M by Lemma 4.4.5. Since N, = H L H for any odd prime p, N, is primitively

2-universal over Z, for any odd prime p. Note that
S(KI(U, 1)2) = E(EII(U, 1)2) = Zg.

First, assume that s(¢3) = Za. Assume that a is odd. Since d¢”(0,1) =
2 (mod 4), ¢”(0,1)y is primitively represented by No. Note that ¢7(0,1) is
positive definite. Hence, ¢”(0,1) is primitively represented by N. Now, as-

sume that a is even. Then a = 0 (mod 4) and ¢ is odd. In this case,
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d¢'(0,1) = 2 (mod 4) and ¢'(0,1) is positive definite. Hence, ¢'(0,1) is primi-
tively represented by N.
Now, assume that £ = (2, —2). Note that a = b = ¢ = 0 (mod 2). First,
suppose that a = 2 (mod 4). If a Z —2 (mod 16), then
de"(0,1) =4 (mod 8) and d¢"(0,1) Z —4 (mod 32).
Hence, ¢”(0,1) is primitively represented by N. If a = —2 (mod 16), then

5(0"7(0,2)2) =4Zy and dl"(0,2) = 32 (mod 64).

Hence, ¢”(0,2) is primitively represented by N. Now, suppose that a =
0 (mod 4). Then a = 0 (mod 16) and ¢ = 2 (mod 4). If ¢ # —2 (mod 16),
then ¢/(0,1) is primitively represented by N, and if ¢ = —2 (mod 16), then
¢'(0,2) is primitively represented by N.

Next, assume that fo = (2¢,8a). Note that a = b = ¢ = 0 (mod 2). If
a =2 (mod 4) and a #Z 6 (mod 16), then

d¢"(0,1) =4 (mod 8) and d¢"(0,1) # —4 (mod 32).

Hence, ¢”(0, 1) is primitively represented by N. Similarly, if ¢ = 2 (mod 4) and
¢ # 6 (mod 16), then ¢'(0,1) is primitively represented by N. Now, assume

that @ = 6 (mod 16) or ¢ =6 (mod 16). Since we are assuming that
EQ ’\;é <67 160é>,

we have d¢ = 16 (mod 32). Assume that a = ¢ = 6 (mod 16). Then,
b =2 (mod 4). Hence, there is an n € {1, —1} such that

a+2nb+c =6 (mod 8).
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Since d¢”(n,1) = 8 (mod 16), we have
6”(777 1)2 = <67 85)7

which is primitively represented by Na = (1,2,2,4). Furthermore, since
¢"(n,1) is positive definite, it is primitively represented by N. Next, assume
that a = 6 (mod 16) and ¢ #Z 6 (mod 16). Then either ¢ = 8 (mod 16) and
b=0 (mod 8), or ¢ =0 (mod 16) and b =4 (mod 8). In any case,

a—2b+c= -2 (mod 16).
Since d¢"(—1,1) = 12 (mod 32), we have
ZN(_L 1)2 = <_37 _4>7

which is primitively represented by No = (1,2,2,4). Furthermore, since
¢"(—1,1) is positive definite, it is primitively represented by N. Finally, as-
sume that a #Z 6 (mod 16) and ¢ = 6 (mod 16). Then, similarly to the above,
¢'(—1,1) is primitively represented by N in this case.

Now, assume that s(¢3) = 4Z3. Note that « = b = ¢ = 0 (mod 4). If
a =4 (mod 8), then d¢”(0,1) = 8 (mod 16). Since £”(0,1) is positive definite,
¢"(0,1) is primitively represented by N. Similarly, if ¢ = 4 (mod 8), then
¢'(0,1) is primitively represented by N in this case.

Next, assume that fo = H?. Note that a =b—2 = ¢ =0 (mod 4). Assume
that a =4 (mod 8). Since d¢”(0,1) = 8 (mod 16), we have

2"(0,1)2 = (¢, 86),
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which is primitively represented by No 2 (1,2,2,4). Since ¢”(0,1) is positive
definite, ¢”7(0,1) is primitively represented by N. Next, assume that ¢ =
4 (mod 8). Then, similarly to the above, ¢(0,1) is primitively represented by

N in this case. Finally, assume that a = ¢ = 0 (mod 8). Since
a—2b+c=4 (mod 8),

we have d¢’(—1,1) = 8 (mod 16). Since ¢”(—1,1) is positive definite, £/(—1,1)
is primitively represented by N.

Finally, assume that ¢ = H or A. Note that a =b—1= ¢ =0 (mod 2).
Assume that a = 6 (mod 8). Since d¢”(0,1) =8 (mod 16), we have

(0, 1) 2 (e, 86),

which is primitively represented by No = (1,2,2,4). Hence, ¢”(0,1) is primi-
tively represented by N. Assume that ¢ = 6 (mod 8). Then, similarly to the
above, £/(0,1) is primitively represented by N in this case. Now, suppose that

neither a nor ¢ is congruent to 6 modulo 8. Then we have
a=2(mod8) or a=0 (mod4),

and the same with c. First, assume that a = ¢ = 2 (mod 8). Then, there is an
n € {1,—1} such that

a+2nb+ ¢ =6 (mod 8).
Since d¢"(n,1) = 8 (mod 16), ¢"(n,1) is primitively represented by Ny =

(1,2,2,4). Hence, ¢"(n,1) is primitively represented by N if it is positive
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definite, that is, if @ > 7, or if @ = 2 and ¢ > 15. Clearly, (21) and (2 }))
are primitively represented by M. Next, assume that a = 0 (mod 4) and
¢ =2 (mod 8). Then

4a —4b+ ¢ =6 (mod 8).
Since d¢'(—2,1) = 8 (mod 16), we have ¢'(—2,1)s = (e, 80), which is primitively
represented by Ns. Since

/ ~ 2a—3 —4a+2b
¢ (_27 1) = (74Z+2b 8a768lb+20)

is positive definite, it is primitively represented by N. Now, assume that
a =2 (mod 8) and ¢ = 0 (mod 4). Then, similarly to the above, £/(—2,1) is
primitively represented by N if it is positive definite, that is, if @ > 11, or if
a = 10 and ¢ > 4. The case when a = 2 will be postponed to the end of this
proof. Finally, assume that a = ¢ =0 (mod 4). Then, there is an n € {1, -1}
such that
a+2nb+c=6 (mod 8).

Hence, ¢"(n,1) is primitively represented by N if it is positive definite, that is,
ifa>7 orifa=4and c¢>5. Clearly ({}) is primitively represented by M.

Now, suppose that a = 2, b =1, and ¢ = 0 (mod 4). If ¢ # 0 (mod 16),
then (1,1,2) represents ¢ — 2. If we choose a vector v in the 3-section of M
such that Q(v) = ¢ — 2, then clearly, Z[e4,v + e5] is a primitive sublattice of
M isometric to (21). If ¢ = 0 (mod 16), then (1,1,2) primitively represents
¢ — 14. If we choose a vector w in the 3-section of M such that Q(v) = ¢ — 14,
then clearly,

Zleg,w — 2e4 + 3es]
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is a primitive sublattice of M isometric to (2 1). O

Theorem 4.4.11. The Z-lattice H, & I, L A1 (2. k) (3 < k < 5) is primitively

2-universal.

Proof. Denote by M the 5-section of L and let ¢ = (% IC’) (0<2b<ac<c
be a positive definite Z-lattice which M does not primitively represent. Then
we may assume that ¢ satisfies either (i) a or ¢ = 6 (2%) and d¢ C (2%); or (ii)
a=c=0(8) and b € (4), by the last lemma. If M primitively represents
a Z-lattice ¢/ = (‘g cfk) then evidently L = M 1 (k) primitively represents
£. Moreover, M primitively represents ¢ if ¢’ is positive definite and neither
Iy = (6,2%) nor n#, C (8), by the same lemma.

Let ¢ = 3 or 5, then ¢, is unimodular, hence M primitively represents
¢4, Hence M primitively represents ¢ if ¢ > 7, or if £ = (§2). Let ¢ = 4.
(i) Note that a = b =¢ =0 (2). If a = 2 (4) then d¢' = 8 (16), hence M
primitively represents ¢’ since ¢ > 6. If a € (4) then ¢ = 6 (2%), hence £} is
split by ¢ — 4 22 2 (2%), thus M primitively represents ¢ since ¢ > 6. (ii) Note
that s¢5 = (4), hence M primitively represents ¢’ since ¢ > 6. O

4.4.5 Type Hi

Lemma 4.4.12. Let { = (‘g Z;) be a positive definite binary Z-lattice and let
q and r be positive integers. Suppose that (2,2,1,1) primitively represents
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2a—A 2b—B
(2b—B 20—0)’ where

A B [ sa se 2g—1 0 Sq4 g

B ) \t, t 0 2r—1) \ss te
for some integers sy, Sg, t4 and tg such that at least one of A and C' is odd.
Then ¢ is primitively represented by I L (7 (11) L(21).

Proof. Suppose that (2,2,1,1) primitively represents

€1 ¢ c¢3 c5 20— A 20— B
d1 d2 d3 d5 26— B 2¢c—-C

Z

I

Then

03+C5EC%—}—C%EAESZ%—FS%E&;—{—S(;

c3d3 + csds = B = sty + set (mod 2).

d3—|-d5Ed%—l—dQEC’Eti—l—t%Eu—l—tﬁ
One may easily observe that by hypothesis we may assume c3 —s4 = c5 — s =
ds —tg = ds — tg = 0 (mod 2), after exchanging indices 3 and 5 if necessary.
Hence there exist integers ag, as, b3 and bs such that c3 = 2a3 + s4, c5 =
2as5 + g, d3 = 2b3 +t4 and ds = 2bs +t6. Now we claim that I L (§5) L(3})

primitively represents

chcga354a536Nab
d1d2b3t4b5t6_bc

For the representation, we must verify the identities

as S4 4 2 as b3 . C3 S4 1 0 C3 d3
b3 t4 2 2(] S4 t4 d3 t4 0 2q -1 S4 t4
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and
as  Sg 4 2 as b5 C; Sg 1 0 Cs d5
b5 t6 2 2r S6 t(j d5 t6 0 2r—1 S6 t6

I

which are evident. For the primitivity, observe that

c1 ¢y c3 Cs c1 ¢y 2a3+ 84 2a5+ sg
di do ds ds di do 2bg+ty 2bs5+tg

is primitive, hence so is

c1 ¢ az 2a3+ sS4 as 2as+ Sg

di do by 2bs+ty by 2bs+tg

hence so is
Ccl1 Cp a3 S4 a5 Sg

di do by tg by tg

This completes the proof. ]

Theorem 4.4.13. The lattice Hi = I, LA 1 (1}) (k =2, 4, 5) is primitively

2-universal.

Proof. Let ¢ = (‘bl ZC’) (0 < 2b < a < ¢) be a positive definite Z-lattice not
primitively represented by the 5-section of L. Then we may assume that £
satisfies either (i) a or ¢ = 6 (2*) and d¢ C (2°); or (ii) a = ¢ = 0 (8)
and b € (4), by Lemma 4.4.10. According to the last lemma, if (2,2,1,1)
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primitively represents a Z-lattice

2 — 3 2b
2% 2 —(2k—1)

=

then L primitively represents ¢. Also, (2,2,1,1) primitively represents ¢ if ¢
is positive definite and does not satisfy the conditions in Lemma 4.4.1.

Let k = 2 or 4. Note that a = b = ¢ = 0 (2), hence d¢’ = 1 (4), thus
(2,2,1,1)9 primitively represents ¢5. Hence (2,2,1,1) primitively represents
¢ ifa>T7, orif a =6 and ¢ > 5, which is true. Let ¥ = 5 and consider two

more Z-lattices

g 20— @E=1) 2 e (20 2

2b 2c 2b 2c— (2k—1)

According to Lemma 4.4.5, if (2,2,4, 1) primitively represents ¢’ or ¢ then ¢
is primitively represented by I» L (2) L (% }), and hence by L. (i) Note that
a=b=c=0(2). fa=c=2(4), then d/ =3 (8), and thus (2,2,1,1)9
primitively represents ¢5. Hence (2,2,1,1) primitively represents ¢’ if a > 9,
or if a = 6 and ¢ > 6, which is true. If a —2 = ¢ =0 (4), then s/’ = Zy and
dl" = 20 (2%), and thus (2,2,4, 1) primitively represents ¢5" by Lemma 4.4.1.
Hence (2,2,4,1) primitively represents ¢ if ¢ > 9, which is true. Similarly if
a=c—2=0(4), then a € (8) and ¢ = 6 (2*), and hence (2,2, 4, 1) primitively
represents ¢ if a > 9, or if a = 8 and ¢ > 5, which is true. (ii) Observe that
d¢' =3 (8), and hence (2,2,1,1) primitively represents ¢’ if a > 9, or if a = 8

and ¢ > 7, which is true. O
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4.4.6 Type Hi!

Lemma 4.4.14. Let { = (‘g g) be a positive definite binary Z-lattice and let

q and r be positive integers. Suppose that (2,2,4,1) primitively represents

(5575 3—¢) where

A B S5 Sg 2g—1 1 s5 ts

B C t5 tﬁ 1 2r—1 S6 t6

for some integers ss5, sg, ts and tg. Then £ is primitively represented by I L

<2>¢(%H>.

11r

Proof. Suppose that (2,2,4, 1) primitively represents

7 c1t c2 c3 ¢  [2a—A 26—B
di dy ds dy| \26—B 2—C
Then
C4ECZEAES§+S%ES5+86
(mod 2).
d4EdZECEt§+t§Et5+t6

Hence there exist integers a4 and b4 such that ¢4 = 2a4 4+ s5 + s and dy =

211
2by + t5 + tg. Now we claim that I 1 (2) L (1 g 1) primitively represents
'

7 cp c2 c3 ag S5 Ssg| _ [a b
dy dy d3 by ts tg b ¢
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For the representation, we must verify the identity

4 2 2 aq b4

a4 S5 S6
2 2(] 2 S5 t5
by t5 tg
2 2 2r sg tg
1 0 0 cy dy
C4 S5 Sg
= 0 2(]—1 1 S5 t5 5
d4 ts g

0 1 2r — 1 se lg

which is evident. For the primitivity, observe that

cp Ccy €3 ¢4 c1 C2 €3 2a4+ S5+ S

di dy d3 dy di do d3z 2by+ts+ts
is primitive, hence so is

c1 C2 €3 ag4 S5 204+ S5+ Se

di dy d3 by ts 2bs+t5+1ts

hence so is
€l C2 C3 a4 S5 Sg

di do d3 by ts tg

This completes the proof. O

Theorem 4.4.15. The lattice Hil = [, 1 (2) 1 (

=N
=
==

) (4 < k < 6) is primi-

tively 2-universal.
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Proof. Let £ = (‘g IC’) (0 < 2b < a < ¢) be a positive definite Z-lattice which
the 5-section of L does not primitively represent. Then we may assume that
¢ satisfies either (i) @ or ¢ = 6 (2%) and d¢ C (2°); or (ii) a = ¢ = 0 (8) and
b€ (4), by Lemma 4.4.10.

Let k =4 or 5 and consider Z-lattices

20— (2k—1) 2b 2a 2b
El o~ E// o~
2b 2 ) 2 2—(2k—1)]
and
pre (2073 21

2—1 2c—(2k—1)

(i) According to Lemma 4.4.5, if (2,2,4, 1) primitively represents ¢’ or ¢’ then
¢ is primitively represented by Iy L (2) L (% ,ﬁ), hence by L. Note that a =
b=c=0(2). Ifa=2(4) then a = 6 (2%), hence d¢’ is = 12 (2°) if k = 4,
and = 20 (2°) if k = 5, respectively, thus (2,2,4,1)s primitively represents
¢5 by Lemma 4.4.1. Hence (2,2,4,1) primitively represents ¢ if ¢ > 7, or if
0= (§2). If a € (4) then a € (8) and ¢ = 6 (2%), hence similarly (2,2,4,1)
primitively represents ¢ since a > 8. (ii) According to the last lemma, if
(2,2,1,1) primitively represents ¢ then then L primitively represents ¢. Note
that d¢" is = 4 (2%) if k = 4, and = 10 (2%) if k = 5, respectively. Hence
(2,2,1,1) primitively represents ¢ if @ > 9, or if a = 8 and ¢ > 7, which is
true.

Let k = 6 and consider a primitive sublattice M := Z[e1+ea, €3, e4, €5, €g] =

(2,2) L (i % é) of L. Note that M is of class number one, dM = 25, and the
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only core prime of M is 2, hence M primitively represents a binary Z-lattice
1@ if and only if I is positive definite and My primitively represents l§4).
Also observe that M = A 1 (2,2,48) = H 1 (2,10, 48),

Q" ((2,2,48)) = {2, 10, 4,20, 24, 56, 48,96, 112, 64},
and
Q*((2,10,48)) = {2,10,12, 28,24, 56,48, 96, 112, 32¢}.

(i) By previous inspection, My primitively represents [y, hence M primitively
represents £. (ii) By previous inspection, My primitively represents all binary
Zo-lattices 1) with n/(*) = (8), hence we may assume a = ¢ = 0 (2%) and b €
(8). Observe that M+ = Z[e; —eo] = (2) and e; —ea = —(e1 +e2) +2e1, hence
if M primitively represents {(4) = (Z 673,22), then L primitively represents
¢ by Lemma 4.4.3. Actually M primitively represents {(¥) since ¢ > 16 and

s0) = (8). 0

4.4.7 Type HY

Lemma 4.4.16. Let { = (‘g l;) be a positive definite binary Z-lattice and let

q and r be positive integers. Suppose that (2,2,1,1) primitively represents

(30 50=8) where

A B S5 Sg 2g—1 1
B C ts tg 1 2r — 2

V)

5 ts

vl

6 L6
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east one of A and C is odd.

)

Proof. Suppose that (2,2,1,1) primitively represents

for some integers ss, sg, ts and tg such that at

200
021
01gq
111

S e

Then £ is primitively represented by I 1 <

7 c1 2 ez oca| 2 — A 2b— B
dy dy ds dy| \20—B 2—C

Then

cs+eu=cE+cE=A=s2=s5= (554 56) + 56

c3ds + c4dy = B = s5ts + sste + Sgts

(mod 2).
= (85 + 56)(t5 + t6) + sels

d3+d45d§+d3505tgzt5E(t5—|—t6)+t6

One may easily observe that by hypothesis we may assume c3 — sg = ¢4 — S5 —
s¢ =ds —tg = dy —ts — tg = 0 (mod 2), after exchanging indices 3 and 4 if

necessary. Hence there exist integers as, a4, b and by such that c3 = 2a3 + s,

Ccy = 2(1240—1(—] 195 + sg, d3 = 2b3 + tg and dqy = 2bg + t5 + tg. Now we claim that
I 1 <8 2 ; 1) primitively represents
111r
chcga3a45536Nab
di do by by t5 tg b ¢
112
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For the representation, we must verify the identity

4 0 0 2 as b3
as a4 S5 Sg 04 2 2 ag by
bs by ts tg 0 2 2q 2 s s
2 2 2 2r se tg

10 0 0 c3 ds

_[c3 oca os5 ose 01 0 0 cqy dy

Ny i ts ts) o 0 2g-1 1 ss ts |
0 0 1 2r — 2 s¢ tg

which is evident. For the primitivity, observe that

1 C2 €3 ¢4 1 c2 2a3+Se 2a4 + S5+ S6

di dy ds dy di dy 2b3+tg 2bg + ts + tg
is primitive, hence so is

c1 c2 a3 a4 2a3+sg 2a4 + S5+ S

dy dy b3 by 2b3+ts 2by+t5+ s

i

hence so is
C1 C2 a3 a4 S5 S6

d1 dz b3 b4 t5 t6

This completes the proof. O
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Theorem 4.4.17. The lattice HY = I, | <

—OooN

0
2
1
1

=N=O
T

> (k =4, 6) is primitively

2-universal.

Proof. Let £ = (‘g IC’) (0 < 2b < a < ¢) be a positive definite Z-lattice which
the 5-section of L does not primitively represent. Then we may assume that
¢ satisfies either (i) @ or ¢ = 6 (2%) and d¢ C (2°); or (ii) a = ¢ = 0 (8)
and b € (4), by Lemma 4.4.10. According to the last lemma, if (2,2,1,1)

primitively represents a Z-lattice

2 — 3 2 — 1
2—1 2— (2k—2)

0=

then L primitively represents ¢. Also, (2,2,1, 1) primitively represents ¢ if ¢’ is
positive definite and does not satisfy the conditions in Lemma 4.4.1. Note that
a=b=c¢=0(2), hence d’ =1 (4), thus (2,2,1,1)2 primitively represents
¢,. Hence (2,2,1,1) primitively represents ¢’ if a > 9, if a = 8 and ¢ > 7, or if

a =6 and ¢ > 6, which is true. O

4.4.8 Type I

We reserve the lattice Il to the end of this section. For lattices Iif and Iif in the
next subsection, note that the quaternary orthogonal summand Z[es, ey4, €5, eg]
of L has nonsquare discriminant. Hence, such a quaternary Z-lattice is not

primitively 2-universal over Z, for infinitely many primes p.

2111
Theorem 4.4.18. (a) The Z-lattice N = (% 23 6) primitively represents

any binary Z-lattice {' satisfying all of the following three conditions:
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(1) n(ty) C 2Zy and ¢, represents some element in {6,—2,4,20};
(2) ¢4 represents As or 3;

(3) €, represents a unit in Z, for any odd prime p with (%) = —1,
where () 1s the Legendre symbol.

(b) If the quinary Z-lattice M = (2) L N does not primitively represent a
positive definite binary Z-lattice £, then £ satisfies n(le) = Zg, l3 =
(3-As,9a) for some a € Zs, or s({3) C 9Zs.

(c) The Z-lattice 1} = Iy 1 N is primitively 2-universal.

Proof. (a) Note that N is of class number one and dN = 12. Hence, a binary
Z-lattice ¢’ is primitively represented by N if and only if % is primitively
represented by N, for any prime p. Since No = A 1 (-2, —2) = H L (6, —2), £,
is primitively represented by N if n(¢5) C (2) and ¢, represents some element
in {6,—2,4,20} C Zy. Since N3 = H L (As,3), ¢5 is primitively represented
by Ns if ¢4 represents Ag or 3. Now, suppose p # 2, 3. If (%) = 1 then
N, = H L H, and hence N, is primitively 2-universal. If (%) = —1, that is,
dN, = A, then N, = H L (1,—A,). Hence, % is primitively represented by
N, if it represents a unit in Z,. Note that for any odd prime p, (%) = —1if
and only if
p=>5,7 (mod 12).

(b) Note that M is of class number one, dM = 24, and 3 is the only core
prime of M. Hence, a binary lattice ¢ is primitively represented by M if
and only if ¢, is primitively represented by M, for p = 2, 3. Note that
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My = H L H? 1 (6) primitively represents any binary lattice /5 satisfying
n(lz) C 2Zy, and Mg = H 1 (1,1, 3) primitively represents all binary lattices
representing 1, Ag, or 3.

(c) Let £ = (¢%) (0 < 2b < a < ¢) be a Z-lattice which is primitively
represented by neither the 5-section of L nor the primitive sublattice

M :=17Zle; + ez, e3,€e4,e5,66] = (2) L N

of L. Then by Lemma 4.3.3 and by (1) given above, we may assume that ¢

satisfies one of the following conditions:
(i) 2 = (1,32a) for some « € Zs;
(ii) €2 = (5, 16€) for some € € Z;
(iii) a=b=c=0 (mod 12).

First, assume that case (iii) holds. Observe that M+ = Z[e; —es] = (2) and
e1 —eg = —(e1 +e2) + 2e;. Hence, if ¢/ = (Z 6_12’.22 ) is primitively represented
by M, then £ is primitively represented by L by Lemma 4.4.3. In fact, ¢ is
primitively represented by M for s(¢,) C 4Zy and s(¢5) = Zs.

Denote by O the 5-section of L. Then Ot = Z(—e3 —e4 +e5+2e6) = (12).

Hence, if

s a—12-2% b T b
b c b c—12-22

is primitively represented by O, then ¢ is primitively represented by L by

Lemma 4.4.3. Moreover, ¢ (¢"") is primitively represented by O if and only if
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" (0", respectively) is positive definite and ¢4 (£}, respectively) is primitively

represented by Os.

Now, assume that case (i) holds. If ¢ < 64, then one may directly check
that ¢ is primitively represented by L. Now, we assume that ¢ > 65. First,
suppose that a is odd. Since d¢"" = 16 (mod 32), ¢4 is primitively represented
by Os. Furthermore, since ¢ is positive definite, it is primitively represented
by O. Now, suppose that a is even. Since ¢ is odd, similarly to the above, £’
is primitively represented by O if a > 64 so that ¢ is positive definite. Hence,
we may assume that a < 64. Note that ¢ = 1 (mod 8) and one of the following

conditions holds:
(o) a=4 (mod 32) and b = 2 (mod 4);
(8) a =16 (mod 32) and b =4 (mod 8);
(7) @ =0 (mod 32) and b = 0 (mod 8).
We define

if a =48,

[Salst
)
|

if a = 36,
if a =32 and ¢ =1 (mod 16),

[Salst
7

|
W~

o) if a =32 and ¢ =9 (mod 16),

12

if a =16 and ¢ =0 (mod 3),
if a =16 and ¢ # 0 (mod 3),

[Slst
7

—or O Ta‘ O 0
W~

QR
o
I

) ifa=4and c=0,1 (mod 3),
%) if a =4 and ¢ =2 (mod 3).

o
o

o N e N N N N T
o Q
7

o Q
o
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Then by (a), £ is primitively represented by N. Hence, £ is primitively

represented by L in each case. The proof of case (ii) is quite similar to this. [J

4.4.9 Type I

2111

Theorem 4.4.19. (a) If a Z-lattice (2) L ( 1211 ) does not primitively
1112

represent at positive definite binary Z-lattice £ then £ satisfies one of the

following: nwly = Zo; I5 = (10, 25q); or sl5 C (25).
2111
(b) The lattice Iy* = I 1 <% 2] %) is primitively 2-universal.
1112

Proof. (a) Denote by M the given lattice. Note that M is of class number
one, dM = 10 and the only core prime of M is 5. Hence by Lemma 3.2.1,
M primitively represents a binary lattice £ if and only if ¢ is positive definite,
My primitively represents lo and M5 primitively represents l5. Note that
My = H 1L H L (10) primitively represents all binary lattices lo satisfying
wly C (2) by Lemma 3.3.1, and M5 = H L (1,2,5) primitively represents all
binary lattices of the form (o, 0) (0 =1, 2, 5) including (10, 10) = (5, 5).

(b) Let £ = (¢%) (0 < 2b < a < ¢) be a positive definite Z-lattice. We
may assume that ¢ is primitively represented by none of the following primitive
sublattices of L: (i) the 5-section, (ii) Z[e1, €2, e3 —eu, €5, e6] = [2 L (2) L A and
(i) M = Zle1 + ez, e3,¢€4,€5,e6] = (2) L %i % . Thena=c=0 (2*-5)
and b € (8-5), by Lemmata 4.3.3 and 4.4.10,1 zinQd by (a). Now observe that
M+t =7Z[e; —es) = (2) and e; — es = —(e1 + e2) + 2eq, hence if M primitively

o
T )
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represents ¢/ = <‘; 9712)-22>v then L primitively represents ¢ by Lemma 4.4.3.

Actually M primitively represents ¢’ since ¢ > 80, s¢;, C (8) and sl; = Zs. [

1
%) primitively represents a
4
e following three conditions

hold:

(1) nty C 2Zy and ¥} represents twice an odd integer;
(2) 05 represents 1 or 13;

(3) €, represents a unit in Z, for any odd prime p with (13) = (&) =

—1, where (f) 1s the Legendre symbol.
(b) The lattice it = I, | N is primitively 2-universal.

Proof. (a) Note that N is of class number one. Hence N primitively represents
a positive definite binary Z-lattice ¢ if and only if N, primitively represents
E;) for all prime p. For p =2, Ny 2 H L A, hence Ny primitively represents ¢,
if ¢, (primitively) represents twice a 2-adic unit, by Lemma 3.3.1. For p = 13,
Ni3 2 H1(1,13), hence N3 primitively represents ¢} if ¢} represents 1 or 13,
by Lemma 3.2.1. Now suppose p # 2, 13. If Legendre symbol (1}73) = (%) =1,
then N, = H L H hence N, is primitively 2-universal. Otherwise dN,, is a non-
square unit, say A, hence N, = H 1 (1, —A,), then N, primitively represents
¢, if £}, represents a p-adic unit.

(b) Let £ 2 (¢%) (0 < 2b < a < c) be a positive definite Z-lattice which

the 5-section of L does not primitively represent. Then we may assume that
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¢ satisfies one of (i) a or c =1 (4) and df C (2%); (i) a=b=c=0 (4), a or
c=4 (2% and d¢ C (2%); or (iii) a = ¢ =0 (2*) and b € (8), by Lemma 4.3.3.

For cases (i) and (ii), observe that L primitively represents Zlej, ea, e3 —
eq,e5,e6) = Io L (2) L (2 1). Hence according to the Lemma 4.4.5, if (2,2,4,1)

primitively represents a Z-lattice

~ 20 —7 2b or 1@~ 2a 2b

2b 2c 2b 2¢—7

1

then / is primitively represented by Io 1 (2) 1 (2 1), hence by L. Also, (2,2,4,1)
primitively represents [(V) if (1) is positive definite and does not satisfy the
conditions in Lemma 4.4.1, and similarly for 1(®). (i) If a is odd then d¢®®) =
2 (4), hence (2,2,4, 1), primitively represents ng) . Hence (2,2, 4, 1) primitively
represents [(2) if ¢ > 10. If a is even then a € (4) and ¢ = 1 (4), hence similarly
(2,2,4,1) primitively represents [() if ¢ > 10 and we cannot have a = 8. If
a=4then b=2and d/® =38 (24), hence (2,2,4,1) primitively represents
1) if ¢ > 10. (ii) If @ = 4 (8) then d¢(?) = 8 (2%), hence (2,2,4,1) primitively
represents [(2) if ¢ > 10. If a € (8) then a € (2%) and ¢ = 4 (2*), hence similarly
(2,2,4,1) primitively represents /() since a > 16. Finitely many remnants can
be verified directly.

Now assume case (iii). Denote by P the set of odd primes p such that
Legendre symbol (%) = (1%) = —1. Then a prime p is € P if and only if
p=05,7,11, 15, 19, 21 (mod 26), hence

P =1{5,7,11,19,31,37,41,47,... }.
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First assume a ¢ (13). Define

2 ifa=1,3,56,11,12 (13),
o —w ra+b 18 ifa=2,4,8,9 (13),

where w =
ra+b r?a+2rb+c 26 if a = 10 (13),

o~

I(r)

(34 ifa=7(13).

Clearly L primitively represents ¢ if N primitively represents [(r) for some in-
teger . Note that for all r, Ny primitively represents I(r)2 and Ny3 primitively
represents [(r)i3, hence NN, primitively represents [(r), for all p ¢ P. Also,
I(r) is positive definite if @ > Fw(r? + max{0,r} + 1). Denote by p1, ..., p;
the distinct prime factors of a —w in P. If ¢ = 0 then IV primitively represents
1(0) if and only if [(0) is positive definite, hence if a > 46. If t = 1 then either
—a+b or b is prime to p1, hence N primitively represents either [(0) or I(—1)
if a > 91. If ¢ = 2 then at least one of —a+b, b, a+b is prime to p1po, hence N
primitively represents [(r) for some r € {—1,0,1} if a > 137. Similarly if ¢ =3
then N primitively represents [(r) for some r € {—2,—1,0,1} if a > 227. Now
assume ¢ > 4 then we have a > 2-5-7-19-3173 > % -34((t 4 4)222(t-3) 4 1),
hence [(r) is positive definite for all r € ZN [—(t +4)2!73, (t +4)2!=3 — 1]. On
the other hand, there exists some s € Z N [— (¢t + 4)2!73, (¢t + 4)2¢73 — 1] such
that ra 4 b is prime to p; - - - p; by [13, Lemma 3], hence N primitively repre-
sents [(r) for such an r. Hence we may assume a < 226. For each a = 16, 32,
..., 192 and 224, we have t = 1, and clearly both [(—1) and [(0) are positive

definite, hence N primitively represents either.
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Finally assume a € (2*-13). Define

(i;—?—g T2a7;i(-l2—tﬂbb+c) lf b ¢ (13)’

O(r) = (fafmszzf«LC) if b€ (13) and ¢ ¢ (13),

2 +b e
(raa+b r2a—:2arb+c—2> ifb=c=0 (13)

Again L primitively represents ¢ if N primitively represents ¢'(r) for some
integer 7, and for all r, Ny primitively represents ¢'(r)y and N3 primitively
represents ¢'(r)13, hence N, primitively represents ¢'(r), for all p ¢ P. Note
that ¢'(r) is positive definite if a > § -26(r? + max{0,7} +2). By an argument
similar to the above (defining ¢ for respectively a—26 or a—2, instead of a—w),
we conclude that we are done if ¢ > 209. If ¢ = 208 then 208 — 26 = 182 and
208 — 2 = 206 has 1 and 0 prime factors in P, respectively, hence again we are

done. O

4.4.10 Type J

Theorem 4.4.21. (a) Let £ = (¢5) be a binary Z-lattice such that a =
1 (mod 2) and ¢ = 0 (mod 16). If (¢ .bs) is primitively represented
by the Z-lattice (1,2) L (31), then € is primitively represented by the
Z-lattice (1) LA L (31).

(b) The Z-lattice L = J3 = I, L A L (31) is primitively 2-universal.
Proof. (a) We fix bases for Z-lattices (1,2) L ($31) and (1) LA L ($}) cor-

responding to the given Gram matrices. With respect to such bases, if there
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exists a primitive sublattice Z [ ¢ & & ¢t ] = (¢ .2g) of (1,2) L (31) for ¢,

d; € Z, then clearly, the sublattice

c1 Co 0 c3 ¢4

di do—1 2 d3 dy

Z

of (1) L AL (31) is isometric to ¢. Since the greatest common divisor of
the determinants of all 2 x 2 submatrices containing the third column is 2, it
c1 Cc3 ¢4

suffices to show that (d1 ds d4) is 2-primitive. Since a is odd, exactly one or

three of c¢q, c3, ¢4 are odd. Furthermore, since

d? + 2d3 + 3d3 + 2dzdy + 3d2 = 10 (mod 16),

dy is even and ds, d4 are odd. Therefore, (3! & i) is 2-primitive.

(b) Denote by M the 5-section of L. Let M’ := Zley, e3, eq4,€5,e6] and N :=

Zley, es, e5, eg] be primitive sublattices of L. Note that

1
M = (1) 1 1 and N2 (1,2) L
1 2 1 3 1 3

Let £ = (‘g lc’) (0 < 2b < a < c¢) be a Z-lattice which is primitively represented
by neither M nor N. Then /¢ satisfies either

(i) aor ¢ =1 (mod 8) and d¢ =0 (mod 16), or
(iil) a =c¢=0 (mod 4) and b is even.

If ¢ < 32, then one may directly check that ¢ is primitively represented by

L. Hence, we may assume that ¢ > 33. Also, we assume that a # 4 for the
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moment. Consider the Z-lattices

a—+2ub+uc—s%2—65% b+ uc— st

I

0 =10,(s,t;8)
b+ uc— st c—t2

a— s2 ua + b — st

0" =00(s, 1) =
ua+b— st ula+2ub+c—t* — 6t
where u, s, t, s’ and ¢’ are integers. Observe that the orthogonal complement
of N in M’ is Nt = Z[—e3 + 2¢e4] = (6). Hence, by Lemma 4.4.3, if £/ (s, t;s')
(0% (s,t;t")) is primitively represented by N for some s’ (', respectively) even,
then ¢ is primitively represented by L. Moreover, by (1) given above, if all of
the following three conditions hold, then ¢ is primitively represented by L:

(a) £,(s,t;1) (€0(s,t;1)) is primitively represented by N;
(b) a+2ub+ u?c — 5% (uva+2ub+c — %) =0 (mod 16);
(c) ¢ —t? (a — 52, respectively) is odd.

Assume that case (i) holds. First, suppose that a is odd. We consider the
Z-lattice

1 . ~ a ua+b
Eu(o? O’ 1) - ( ua+b u?a+2ub+c—6 ) ’

Since d¢/(0,0;1) = 2 (mod 4), £/(0,0; 1) is primitively represented by Ny =
(1,2) L (31). Hence, for any integer u, £/(0,0; 1) is primitively represented by
N. Since a is odd, there is a u € {—2,—1,0, 1} such that ua + b =0 (mod 4),
which implies that u?a + 2ub + ¢ = 0 (mod 16). Hence, we are done by
(1). Now, suppose that a is even. Then a = 0, 4 (mod 16) and ¢ is odd.
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Hence, similarly to the above, if we take an integer u € {—2,—1,0,1} such
that u?a 4 2ub+ ¢ = 0 (mod 16), then #,(0,0; 1) is primitively represented by
N.

Now, assume that case (ii) holds. First, suppose that either a = 0,

4 (mod 16) or ¢ =0, 4 (mod 16). If we define a Z-lattice ¢ by

£5(1,0;1) if a =0 (mod 16),
o 05(1,2;1) if a =4 (mod 16),
2,(0,1;1) if ¢ =0 (mod 16),
0,(2,1;1) if ¢ =4 (mod 16),

(
then d¢”" = 2 (mod 4). Hence, ¢ is primitively represented by N. Therefore,
by (1), ¢ is primitively represented by L in each case. Now, suppose that a,
¢ =8or 12 (mod 16). First, assume that b = 2 (mod 4). One may easily show
that there is an n € {1, —1} such that

a+2nb+c=0or4 (mod 16).

Hence, one of £;(1,0;1) or £7(1,2;1) is primitively represented by N. There-
fore, by (1), ¢ is primitively represented by L. Now, assume that b = 0 (mod 4).

If we define a Z-lattice £(Y) by
£5(0,1;0) if a =8 (mod 16),

24(1,0;0) if ¢ =8 (mod 16),

)

ol )
25(0,4;0) if a =c¢ =12 (mod 16) and b =0 (mod 8),

( )

£5(0,0;2) if a=c¢ =12 (mod 16) and b =4 (mod 8),
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then one may easily show that
Al =8 (mod 16), 5V = (12,—4), or d¢™ =32 (mod 64).

Hence, /Y is primitively represented by N, which implies that £ is primitively
represented by L in each case.

Finally, we consider the remaining case when a = 4. Note that b = 0 or
b = 2. It is well known that the 4-section N’ = I, | A of L is primitively 1-
universal (see [2]). If we choose a primitive vector v in N’ such that Q(v) = ¢,
then clearly, Zles — eg,v] is a primitive sublattice of L which is isometric to

(4,c¢). If we choose a vector w in N’ such that Q(w) = ¢ — 3, then clearly,
Zles — eg, w + €3]

is a primitive sublattice of L which is isometric to (§ 2). O

4.4.11 Lattices DIl and It

Finally, we consider the case when L & Di5ii or 1151 The quaternary primitive
Z-sublattice N of L given in Table 4.6 has class number two and its genus
mate N’ is also primitively represented by L. Hence, any binary Z-lattice that
is represented by the genus of N is primitively represented by L. Note that
dN = 16 and the sublattice Zes, e4, €5, €] of L is isometric to N for both

cases.
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Table 4.6: The Z-lattice N and its genus mate N’
L N N’

Diit | (1) L @%i) I3 L (16)

i 1311 42

11

I5 1120 IQJ—(25)
1105

Lemma 4.4.22. If a quaternary Zs-lattice I3 L (16) does not primitively rep-
resent a binary Zo-lattice £o, then {y satisfies one of the following conditions:
Given each quaternary Zso-lattice No below, if No does not primitively repre-
sent a binary Zs-lattice £y, then o satisfies one of the conditions given in Ta-

ble 4.7.

Proof. The necessary conditions for one N may be verified easily by a direct

calculation. Then the other can be obtained by a scaling by 5. O

Theorem 4.4.23. (a) Let ¢ = (‘g IC’) be a binary Z-lattice. Suppose that, for
some integers s, t, and t',

a — 252 b— 2st
b—2st c¢—2t>—8t"?

=

is positive definite and 0y is primitively represented by the quaternary
Zo-lattice I3 1 (16). Then £ is primitively represented by the Z-lattice
L = Diil.

(b) The Z-lattice L = DUl = 5 | (

—ON
—NO
U=

) is primitively 2-universal.
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Table 4.7: The local structures

N Binary Zo-lattices that are not primitively represented by N
Iy = (—1,a), (1,12) = (5,—4), (1,8), (1,40), (5,24),
(5,-8), (1,2%), (3,2%), (5,2%), (2,10), (6,6),
I3 L (16) | (2¢,12), (2,8) = (10,40), (6, —8) = (—2,24),
(2¢,256) with €§ = 3 (8), (2¢,27a), nly C (4) or
Qol = QuH
Iy 2 (3,a), (1,12) = (5,—4), (1,24), (1,-8), (5,8),
(5,40), (1,25q), (5,25q), (—1,25%), (2,10), (-2, —2),
513 L (80) | (2¢,—4), (2,8) = (10, 40), (6, —8) = (—2,24),

(2€,2°8) with €§ = 3 (8), (2¢,27a), nly C (4) or
Qal = Q:H

Proof. (a) Consider two primitive sublattices of L,

N :=Zles,eq,e5,e6] and N’ :=Zey,ea, e3,eq4 + 5 — 2e6] = I3 1 (16),

where the ordered basis {e;}%_; for L corresponds to the Gram matrix given

in the statement. Moreover, we fix an ordered basis for N’ corresponding to

the Gram matrix given in the defining equation above. Note that the class

number of N is two and N’ is the other class is the genus of N. Hence, if ¢/

satisfies all conditions given above, then ¢ is primitively represented by either

N or N'.
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If ¢’ is primitively represented by N, then one may directly check that ¢ is
primitively represented by L. Now, suppose that the primitive sublattice

di do ds dy
of N’ is isometric to ¢. Then clearly, the sublattice

7 ¢l Cy C3 C4+ S C4 —2¢y
di do ds da+t da+2t —2ds

of L is isometric to £. To see that such a sublattice is primitive, note that
the greatest common divisor of all 2 x 2 submatrices of the above coefficient
matrix divides (g1, g2), where g and gs are the greatest common divisor of all

2 x 2 submatrices of

ci C €3 — 264 Ccl1 C2 C3 Cq4
and
di doy ds —2dy dy dy ds dy+2t

respectively. Since (g g2 & i ) is primitive, g1 divides 2 and g5 is odd. Hence,

(91,92) = 1.

(b) Let £ (¢%) (0 < 2b < a < ¢) be a Z-lattice which is primitively repre-
sented by neither the genus of N nor the 5-section of L. Then by Lemma 4.3.3
and by (1) given above, we may assume that ¢ satisfies one of the following

conditions:
(i) €5 = (1,-16);

(ii) ¢ = (1,64«) for some v € Zs;
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(iii) f2 = (4,160) or (20, 16«) for some « € Zy;
(iV) n(ﬁg) g 1622.

If ¢ <21, then one may directly check that ¢ is primitively represented by L.

Hence, we may assume that ¢ > 22. If either
/ I~ [ a—2s2—8s"2 b—2st " i\ ~ [ a—2s2  b—2st
Uls ;) = ( b—2st c—2t2> or £(s, ;1) = (b—2$t c—2t2—8t’2>

satisfies all conditions given in (2), then ¢ is primitively represented by L.
Assume that case (i) holds. First, suppose that a is odd. Note that
a =1 (mod 8). Since d¢"(0,2;1) = 32 (mod 64), ¢"(0,2;1)y = (1,32¢) is
primitively represented by Ny. Since ¢”(0,2;1) is positive definite, ¢ is primi-
tively represented by L. Now, suppose that a is even. Note that ¢ = 1 (mod 8),

and we have
a =20 (mod 32), a=-16 (mod 64), or a=0 (mod 128).

Since ¢'(2,0;1) is positive definite, ¢ is primitively represented by L, by the
similar reasoning.

Next, assume that case (ii) holds. Suppose that a is odd. Note that
a =1 (mod 8). Since d¢"(0,0;1) = —8 (mod 64), £7(0,0;1)2 = (1,-8) is
primitively represented by N2. Furthermore, since ¢”(0,0;1) is positive def-
inite, ¢ is primitively represented by L. Now, suppose that a is even. Note

that ¢ =1 (mod 8), and we have

a=4 (mod 32), a=16 (mod 64), or a=0 (mod 64).
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If @ > 16, then ¢/(0,0; 1) is positive definite. Hence, ¢ is primitively represented
by L in this case. If a = 4, then £”(0,0;1)2 = (1,32¢) and ¢”(0,0; 1) is positive
definite. Hence, ¢ is primitively represented by L.

Now, assume that case (iii) holds. First, suppose that a = ¢ =4 (mod 16).
Note that b = 4 (mod 8). One may easily show that there is an n € {1, —1}
such that d¢”(1,1;0) = 32 (mod 64). Then, ¢(1,7;0)2 = (2,16¢) is primi-
tively represented by No. Since £”(1,7;0) is positive definite, ¢ is primitively
represented by L. Next, suppose that a = 4 (mod 16), b = 0 (mod 8), and
¢ = 0 (mod 16). In this case, either ¢”(1,0;0) or ¢”(1,2;0) is isometric to
(2,16€) over Zy. Furthermore, since it is positive definite, £ is primitively rep-
resented by L. Similarly to the above, if a = 0 (mod 16), b = 0 (mod 8), and
¢ =4 (mod 16), then ¢ is primitively represented by L.

Finally, assume that case (iv) holds. If we define a Z-lattice ¢ by

(0,1;0) ifa = 16 (mod 32),

£(0,1;0) ifc =16 (mod 32),

(1,1;0) ifa=c=0(mod32)and b= 8 (mod 16),

0"(1,0;1) ifa=0(mod32),b=0 (mod 16), and ¢ = 0 (mod 64),

o (0,1;1) ifa=0(mod64),b=0 (mod 16), and ¢ = 0 (mod 32),
7(1,1;1) ifa=c=16 (mod 32) and b = 0 (mod 32),
?'(1,0;0) ifa =32 (mod 64), b= 16 (mod 32), c = —32 (mod 128),
?'(0,1;0) ifa = —32 (mod 128), b = 16 (mod 32), ¢ = 32 (mod 64),
?'(1,1;0) ifa=c=32(mod128) and b = —16 (mod 64),
?'(1,3;0) ifa=c=32(mod128) and b = 16 (mod 64),
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then one may easily show that
dl"" =16 (mod 128), d¢" =32 (mod 64), or d¢" =64 (mod 256).
Hence, ¢ is primitively represented by L in each case. O
Theorem 4.4.24. The followings hold.
(a) Let £ = (‘; lc’) be a positive definite binary Z-lattice. Suppose that

a — 252 b— 2st
b—2st c¢— 2t —8t?

=

is positive definite and a Za-lattice 513 L (80) primitively represents lh.
Then £ is primitively represented by the lattice Ig

2111
1211
1120
1105

Proof. Consider two primitive sublattices of L:

(b) The lattice T8 = Iy | < > is primitively 2-universal.

N :=Zles, eq,€5,66] and N = Zlei,ea,e3+ €4 —e5,e6) = Iy L (‘21 g)

(a) Note that QN = QN’ and Ny = Nj, = (53 L (80))2, hence they are
locally isometric to each other, thus the genus of N is identical to the genus
of N'. Moreover N (hence N’ also) is of class number two, hence the genus of
N consists of the classes of N and N’. Therefore, if ¢’ satisfies the hypotheses,
then either N or N’ primitively represents ¢'.

If N primitively represents ¢ then the conclusion is clear. Suppose N’

primitively represents ¢, then clearly a primitive sublattice
M: =N 1Zes =1, 1 (52)L(2)
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of L primitively represents ¢ = (‘; Cfgt@ ) Observe that M+ = Z[ez — e4] =
(2) and e3 —eg = —(e3 +e4 — e5) — e5 + 2e3, hence if M primitively represents
¢”, then L primitively represents ¢ by Lemma 4.4.3.

(b) Let ¢ = (‘g lc’) (0 < 2b < a < ¢) be a positive definite Z-lattice which
none of the 5-section of L, N or N’ primitively represents. Then we may
assume that ¢ satisfies one of (i) a or ¢ = 1 (8) and d¢ C (29); (ii) a or
c=5(8)and dl = —2* (27); (il) a=b=c=0 (4), aor c =4 (2°) and
dl C (2%); (iv) a = ¢ =0 (2*) and b € (8), by Lemma 4.3.3 and by the last

lemma. According to (a), if either of Z-lattices

2a — 282 — 8s"2 2b — 2st

V(s t;s") =
2b — 2st 2¢c — 2t2

and

2a — 252 2b — 2st

(s, ;1)
2b — 2st  2¢ — 22 — 82

12

satisfies the hypotheses of (a) then L primitively represents /.

(i) If a is odd then a = 1 (8), hence d¢”(0,1;1) = 6 (2*),thus Ny primitively
represents ¢”(0,1;1)2. Hence L primitively represents £ if ¢ > 14. If a is even
then ¢ = 1 (8), and a is = 4 (2°), = 2* (25) or € (2%). Hence by a similar
argument using ¢'(1,0;1), L primitively represents ¢ if a > 14. If a = 4 then
de"(0,0;1) = 2° (29), hence L primitively represents ¢ if ¢ > 11. (ii) If a is
odd then a = 5 (8), hence d¢”(0,2;1) = 25 (29), thus L primitively represents
¢ if ¢ > 22. If a is even then ¢ = 5 (8), and a is = 4 (2°), = —2* (2%) or
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€ (27). Hence by a similar argument using ¢ (2, 0;1), L primitively represents
¢if a > 22. If a = 4 then d¢’(0,0;1) = 80 (27), hence L primitively represents
¢ since ¢ > 29. The proof for (iii) and (iv) is identical to the case DUl O
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