

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사 학위논문

Spectral Analysis of Graph Neural

Networks and Its Applications

그래프 신경망의 스펙트럴 해석과 그 응용

서울대학교 대학원

수리과학부

조 현 수

2023년 8월

Spectral Analysis of Graph Neural

Networks and Its Applications

지도교수 강 명 주

이 논문을 이학박사 학위논문으로 제출함

2023년 6월

서울대학교 대학원

수리과학부

조 현 수

조 현 수의 이학박사 학위논문을 인준함

2023년 6월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

Spectral Analysis of Graph Neural

Networks and Its Applications

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of

Seoul National University

by

Hyunsoo Cho

Dissertation Director : Professor Myungjoo Kang

Department of Mathematical Sciences

Seoul National University

June 2023

Abstract

Spectral Analysis of Graph Neural
Networks and Its Applications

Hyunsoo Cho

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this dissertation, we present a theoretical analysis of spectral-based graph

neural networks and their practical performance. We analyze how the spectra

of a graph Laplacian relates to the convolution operation of a graph neural

network, and we discuss how expressive a graph convolutional model can be

and how competent expressiveness can be achieved by implementing various

convolutions on a graph based on this spectra. The results show that spectral-

based graph neural networks can perform well on graph-based tasks, and

we discuss what improvements can be made in the future to improve their

performance in practice. As an extension, we apply it to traditional computer

vision tasks in addition to graph-based tasks and show that it is comparably

expressive.

In addition, we present several results of its applications utilizing graphs.

Specifically, we conducted experiments on the task of salient object detection

using directed acyclic graphs. We also show experimental results of apply-

ing the simple model based on the theory of Fourier analysis to practical

applications such as the rain removal task. These experiments empirically

demonstrate that incorporating the knowledge of graph theory and Fourier

analysis into the model helps improve performance.

keywords : Spectral-based Graph Neural Network, Graph Neural Networks,

Collaborative Filtering, Salient Object Detection, Deraining

Student Number : 2016–25263

i

Contents

Abstract i

1 Introduction 1

2 Preliminaries 4

2.1 Graph Neural Networks . 4

2.1.1 Mathematical Terminologies 4

2.1.2 Graph Message Passing 5

2.1.3 Spatial-based Graph Neural Networks 6

2.1.4 Spectral-based Graph Neural Networks 8

2.2 Collaborative Filtering . 8

2.3 Directed Acyclic Graphs Learning 10

3 Related Works 12

3.1 Spectral-based Graph Neural Networks 12

3.1.1 Spectral Network . 12

3.1.2 ChebNet . 12

3.1.3 Graph Convolutional Networks 13

3.2 Collaborative Filtering . 13

3.3 Salient Object Detection . 15

3.4 Rain Removal Tasks . 17

4 Spectral Analysis of Graph Neural Networks 20

4.1 Schwartz space S (Rd) and Ring graph Rn 20

4.2 Convolution on General Graphs 25

ii

5 Proposed Method 30

5.1 Proposal Background . 30

5.2 Spectral GNNs to Computational Fluid Dynamics 31

5.3 Collaborative Filtering . 33

5.4 Salient Object Detection . 34

5.5 Rain Removal Task . 36

6 Experiments 39

6.1 Spectral GNNs to Computational Fluid Dynamics 39

6.1.1 Datasets . 39

6.1.2 Experimental Results 40

6.2 Collaborative Filtering . 45

6.2.1 Datasets . 45

6.2.2 Evaluation Metric . 46

6.2.3 Bayesian Personalized Ranking 47

6.2.4 Experimental Results 49

6.3 Salient Object Detection . 50

6.3.1 Datasets . 50

6.3.2 Evaluation metrics . 51

6.3.3 Experimental Results 52

6.4 Rain Removal Task . 57

6.4.1 Datasets . 57

6.4.2 Experimental Results 57

7 Conclusion 63

References 65

Abstract (in Korean) 73

iii

Chapter 1

Introduction

In recent years, there has been a growing interest in developing advanced

techniques for analyzing and processing graph-structured data. And so Graph

Neural Networks (GNNs) have emerged as powerful models ([1], [2], [3], [4],

[5], [6]) capable of capturing complex relationships and patterns in graph

data.

Graphs are a type of data structure that represents a collection of in-

terconnected nodes or vertices. These nodes are connected by edges, which

can have different properties such as direction, weight, or label. Graphs are

used to model relationships between entities and solve various real-world

problems. For instance, there are some common graph data structures such

as undirected graphs, directed graphs, weighted graphs, trees, and bipartite

graphs.

In an undirected graph, edges have no direction. They represent symmet-

ric relationships between nodes. Social Networks, Web Link Analysis, and

Clustering are examples of where these undirected graphs are used.

In a directed graph, edges have a direction from one node to another.

They represent asymmetric relationships. These directed graphs are used as

the main objects in Web Page Ranking, Routing Algorithms, and Workflow

Management. Google’s PageRank [7] is the most famous example of an algo-

rithm that builds an directed graph of links between websites.

We can also assign weights to the edges of the graph, representing the

1

strength or cost of a relationship. There are many applications of weighted

graphs, especially in computer algorithms such as Shortest Path Algorithms

and Minimum Spanning Tree Algorithms.

Trees are a special type of graph where each node has a specific parent-

child relationship. In computer sciences, trees are used to represent hierar-

chical structures of files and directories and construct syntax trees to analyze

and interpret programming languages for parsing and compiler design. More-

over, in the field of deep learning, the tree structure is also used in the decision

tree model used by XGBoost [8] and LightGBM [9].

A bipartite graph is a type of graph whose vertex set can be partitioned

into two disjoint sets. This graph is commonly used in recommendation sys-

tems, where it can be applied especially in online commercial services. In

these systems, bipartite graphs can represent relationships between users

and items helping to generate personalized recommendations based on con-

nections between users and items. Therefore, methods such as collaborative

filtering in recommendation systems use these bipartite graphs to develop

models [10].

In addition to the above versatility of graph data, the recent success of

large language models such as GPT-4 [11] has brought more focus to the

potential of graphs. The basic module of a transformer [12] is a Scaled Dot-

Product Attention of query Q, key K, and values V , and the formula of this

module is as follows, where Q,K, V ∈ Rn×d

Attention(Q,K, V) = softmax
(QK⊤
√
d

)
V (1.1)

Here, the n by n matrix A := softmax
(

QK⊤
√
d

)
can be understood as a

weighted adjacent matrix of some graph, and then A is multiplied by V ,

which is the message passing process in a typical Graph Neural Network

architecture. This messaging passing process will be briefly discussed in 2.1.2.

In fact, in recent papers [13], methods have been developed that go be-

yond applying a transformer by splitting the image into patches in a Vision

Transformer [14] and apply the idea of a graph neural network. Figure 1.1

is an illustrative example of applying these methods to an Image to create a

graph structure.

2

(a) a sample figure (b) grid structure (c) graph structure

Figure 1.1: Images and its graph structure (Han, Kai, et al. [13])

In this context of the importance of these graphs, this dissertation aims

to analyze the currently used Graph Neural Networks from the perspective

of spectral analysis with mathematical theories. Also, we will discuss the

improvement methods of the model based on these theories.

Specifically, this dissertation begins in Chapter 2 with an explanation of

the basic terminology and concepts needed to analyze GNNs. It also includes

an introduction to Collaborative Filtering and Directed Acyclic Graphs Lean-

ing. Chapter 3 introduces related works on the topics covered in this disser-

tation, which these works include spectral-based GNN models like Spectral

Network, ChebNet, and Graph Convolutional Networks.

Chapter 4 is devoted to the analysis of graph neural networks in terms of

spectral analysis. Starting with the question of how to define the convolution

operation for general graphs, we observe how convolution is defined in a

typical Schwartz space or ring graphs and what relations the convolution

operator has in terms of the Laplacian and Fourier transform. Based on these

observations, we propose the plausible assumptions for defining convolution

in general graphs and present a theorem that an arbitrary convolution matrix

can be represented exactly under these assumptions.

Chapter 5 and 6 propose models for solving practical problems such as

collaborative filtering, salient object detection and rain removal tasks based

on spectral-based GNNs or Fourier analysis and present their results. Finally,

Chapter 7 concludes with concluding remarks.

3

Chapter 2

Preliminaries

2.1 Graph Neural Networks

In this section, we briefly review the two typical types of graph neural net-

works. One is the Spatial-based graph neural network and the other is the

Spectral-based graph neural network. First, we’ll cover some mathematical

terminology and definitions to get started with these methods.

2.1.1 Mathematical Terminologies

First of all, |A| represents the cardinality of the set A.

Definition 2.1.1. For a finite V , G = (V,E) is called a directed graph if E

is a subset of V × V . We call V the set of vertices (or nodes) and E the set

of edges (or relations), respectively.

Definition 2.1.2. A graph G = (V,E) is undirected if every (x, y) ∈ E

implies (y, x) ∈ E.

Definition 2.1.3. For a graph G = (V,E) on N = |V | for some N ∈ N, the

4

adjacency matrix A = A(G) in RN×N is defined by

A = (aij), where aij =

{
1 (i, j) ∈ E

0 otherwise
(1 ≤ i, j ≤ N). (2.1)

Definition 2.1.4. For a graph G = (V,E), A = A(G) = (aij), a degree

matrix D of G is a |V | × |V | diagonal matrix defined as

D = (di,j), where dij =

{ ∑
j aij i = j

0 otherwise
(2.2)

Definition 2.1.5. A graph G = (V,E) is a bipartite graph if two disjoint

subsets V1 and V2 of V which partition V such that V1 ∩V2 = ∅, V1 ∪V2 = V

and there only exist edges between V1 and V2. In case of a bipartite graph,

we also denote G as (V1, V2, E).

From these definitions, we can readily know that the adjacency matrix

the adjacency matrix of a (undirected) bipartite graph G = (V1, V2, E) is

A(G) =

(
0 B

Bt 0

)
∈ R(|V1|+|V2|)×(|V1|+|V2|) (2.3)

for some B ∈ R|V1|×|V2| and elements of B only consist of 0 or 1.

2.1.2 Graph Message Passing

There are several approaches to the basic Graph Neural Network(GNN)

model [15, 16, 17]. They commonly used the form of neural message passing,

which aggregates messages from neighbor nodes and updates their embed-

dings through neural networks. From now on, we will focus on how to generate

the message and update the kth hidden embedding E(k).

The basic message passing framework in the node level can be expressed

as follows

e(k)u = UPDATE(k)(e(k−1)
u , AGGREGATE(k)({e(k−1)

v ,∀v ∈ Nu})) (2.4)

where e
(0)
u is an initial embedding of node u and e

(k)
u is the hidden embedding

5

of node u generated from the kth iteration [18]. AGGREGATE function gen-

erates a message from hidden embeddings of adjacent nodes, and UPDATE

function generates the next hidden embedding e
(k)
u from the message and

previous hidden embedding e
(k−1)
u .

Merkwirth et al. [19] and Scarselli et al. [20] proposed a basic GNN model

that uses aggregate function and update function as follows

e(k)u = σ(W
(k)
selfe

(k−1)
u + W k

neigh

∑
v∈Nu

ek−1
v + b(k)) (2.5)

where W
(k)
self ,W

(k)
neigh ∈ Rd(k)×d(k−1)

and b ∈ Rd(k) are trainable parameters of

kth layer of GNN, and σ is non-linear activation function. The aggregate

function of this model generates message from neighbors simply by adding

hidden embeddings of neighboring nodes, and the update function calculates

message from neighbors and their previous hidden embeddings using linear

combination, and finally applies elementwise non-linearity.

However, these methods are not the only AGGREGATE and UPDATE

methods that exist. In Graph Neural Networks literature, these methods can

be roughly categorized based on two message passing paradigms: Spatial-

based GNNs and Spectral-based GNNs.

2.1.3 Spatial-based Graph Neural Networks

Spatial-based Graph Neural Networks aggregate a node’s neighbors, usually

by a fixed size, when passing messages. This fixed-size aggregation of neigh-

bors makes it possible to apply traditional 1d convolution (1D-CNN) in GNN

models such as Patchy-SAN [21] and LGCN [22]. Or, in the case of Graph-

SAGE [23], they tried to randomly select a fixed size of neighbors and use

Max pooling, Mean Pooling, LSTM aggregator. However, since LSTM aggre-

gator takes sequential input, it introduces the risk of breaking the model’s

permutation invariance.

6

Figure 2.1: Spatial methods (Patch-SAN, Liu et al., 2020, p.27 [24])

7

2.1.4 Spectral-based Graph Neural Networks

Unlike Spatial-based GNNs, Spectral-based GNNs ([1], [25], [3]) utilize all

neighbors of each node for message passing. In addition, Spatial-based ap-

plies a general 1D-CNN or 2D-CNN with a fixed number of neighbors, and

these convolutional operations are not particularly considered to reflect the

structure of the graph. Spectral-based GNNs, on the other hand, can define

a convolution on the graph by utilizing the structure of the graph G = (V,E),

i.e., the information of vertices V and edges E. The theoretical analysis is

further elaborated in Section 4.

2.2 Collaborative Filtering

Figure 2.2: User-Item interaction

With the prevalence of the Internet and the abundance of information

available, there is a growing demand for recommendation systems that can

provide personalized item suggestions to individuals. As a result, extensive

research is being conducted to enhance recommendation systems from various

angles, and two prominent approaches are content-based filtering (CBF) and

collaborative filtering (CF).

Content-based filtering (CBF) is an algorithm that examines the charac-

teristics of items that users have positively engaged with and suggests items

with similar attributes. For instance, it suggests another thriller genre movie

8

to users who have rated various thriller movies highly. CBF offers the ben-

efit of generating recommendations based solely on the purchase history of

a single user and the feature data of items. However, a drawback is that it

does not provide recommendations for items lacking a history of interaction

based on their features.

In contrast to CBF, the collaborative filtering (CF) is a technique used

in recommendation systems to generate personalized recommendations by

leveraging the preferences and behaviors of a group of users. It predicts a

user’s interests based on the interests and behaviors of similar users or items.

CF does not rely on explicit item features but instead focuses on the collective

wisdom of users.

Because of these properties, CF can provide recommendations for items

that users might not have discovered on their own but are likely to enjoy

based on the preferences of similar users. In other words, CF can provide

diverse recommendations by considering the preferences and behaviors of a

group of users. It can suggest items that might not be directly related but

are liked by users with similar tastes.

The best advantage of CF is that it can handle the ”cold start” problem,

where there is a lack of initial data or information about a user or item. By

leveraging similarities between users or items, CF can still make recommen-

dations even for new or less-known entities.

Figure 2.3: User-Item
interaction bipartite
graph

Within the realm of CF models, matrix fac-

torization techniques are commonly employed [26].

These methods represent collaborative signals or

user-item interactions through linear combinations,

which can limit their ability to capture complex

structures. To tackle this challenge, neural collab-

orative filtering models [27] have emerged as an

alternative. These models replace the inner prod-

uct interaction function of matrix factorization with

nonlinear neural networks, enabling them to cap-

ture more intricate patterns and relationships in the

data.

However, user-item interactions can be easily understood as edges of a

9

bipartite graph as shown in Figure 2.3. Therefore, it is a reasonable approach

to introduce graph neural networks [28] in this CF models.

2.3 Directed Acyclic Graphs Learning

Figure 2.4: An illustration of DAG Structure Learning

Structure learning, in the context of machine learning and graphical mod-

els, refers to the process of inferring the underlying structure or topology of

a graphical model from observed data. It involves determining the depen-

dencies or relationships between variables in the data and constructing an

appropriate graphical model that represents these relationships.

For example, in a linear structural equation model (linear SEM), we want

to learn a directed acyclic graph (DAG) A that satisfies the following equa-

tion. Learning such an A is called DAG structure learning.

X = XA + Z (Linear SEM) (2.6)

, where X ∈ Rn×d is a data matrix consisting of n i.i.d. observations and

Z ∈ Rn×d is n i.i.d. random Gaussian noise vectors.

Directed Acyclic Graphs (DAGs) are a type of graphical model commonly

used in structure learning. In a DAG, nodes represent variables or random

variables, and directed edges between nodes indicate direct dependencies or

causal relationships between variables. The acyclic property ensures that

there are no cycles or feedback loops in the graph, meaning the dependencies

form a directed acyclic relationship.

The goal of structure learning with DAGs is to discover the most likely

or optimal graph structure that best represents the relationships in the given

10

data. This typically involves finding the set of directed edges that best ex-

plain the dependencies among variables. There are several approaches and

algorithms for structure learning in DAGs: [29], [30].

The basic approach to learning these DAGs is to solve the following con-

strained optimization problem, which is also known as NP-hard problem [31].

Minimize: F (A,X)

Subject to:

A ∈ DAGs

In order to smoothly relax the above constraint that the matrix A must

be a DAG in the previous work such as [29], [32] they introduce the following

function h, which has the property that h(A) = 0 is equivalent to A being a

DAG.

h(A) = tr[(I + αA⊙ A)d]− d (A ∈ Rd×d, α > 0) (2.7)

, where ⊙ means element-wise multiplication.

The above optimization problem is then rephrased as minimizing the

regularized loss F (A,X) + λh(A) with respect to A. Here, λ is a hyper-

parameter for regularization. As a result, this continuous relaxation allows

us to circumvent the combinatorial optimization problem and solve it with

backpropagation, which can be utilized in deep learning frameworks.

In summary, structure learning with Directed Acyclic Graphs (DAGs)

involves inferring the dependencies and relationships between variables from

observed data. It plays a vital role in various domains by providing insights

into causal relationships, enabling predictive modeling, and aiding decision-

making in complex systems.

11

Chapter 3

Related Works

3.1 Spectral-based Graph Neural Networks

In historical order, the following three models are the most popular in spectral-

based GNNs: Spectral Network [1], ChebNet [2], GCN [3].

3.1.1 Spectral Network

Bruna et al. [1] propose the following graph convolution.

gθ ∗ x = Ugθ(Λ)U⊤x, (3.1)

where U is the matrix of eigenvectors of the normalized graph Laplacian

L = IN −D− 1
2AD− 1

2 , with Λ of a diagonal matrix of eigenvalues of L.

3.1.2 ChebNet

Defferrard et al. [2] suggest that the graph convolution gθ ∗ x can be approx-

imated by a truncated expansion in terms of Chebyshev polynomials Tk(x)

up to K-th order. In other words,

12

gθ ∗ x ≈
K∑
k=0

θkTk(L̃)x, (3.2)

with L̃ =
2

λmax

L − IN . λmax denotes the largest eigenvalue of L. The

Chebyshev polynomials are defined as

Tk(x) = 2xTk−1(x)− Tk−2(x), (3.3)

with T0(x) = 1 and T1(x) = x. The main difference with the above Spectral

Networks is that ChebNet does not need to multiplicate with the Fourier

basis U . This computation reduction is valid when L is sparse, specifically

O(K|E|)≪ O(|V |2)

3.1.3 Graph Convolutional Networks

Kipf and Welling [3] proposed Graph Convolutional Network(GCN) model

which motivated from a first-order approximation of spectral graph convolu-

tions [33]. Indeed, it is a simplified version of ChebNet. Layer-wise propaga-

tion rule fo GCN can be expressed as follows

E(k) = σ(D̃− 1
2 ÃD̃− 1

2E(k−1)W (k)) (3.4)

where Ã = A + I is the adjacency matrix of the undirected graph with self-

loops, D̃ is the degree matrix of Ã, and W (k) is a trainable weight matrix

of the kth layer of GCN. The message is generated by weighted sum of the

hidden embeddings of neighbors and center node.

3.2 Collaborative Filtering

Collaborative filtering in recommendation systems can be approached in a

variety of ways, from the very traditional Matrix Factorization based on

Singular Value Decomposition [34]. However, with the recent development of

GNNs, collaborative filtering models using graph neural networks have been

13

actively developed. Among them, NGCF [5] and LightGCN [6] are the major

ones.

Alternating Least Squares

min
X,Y

∑
rui:observed

(rui − x⊤
u yi)

2 + λ(
∑
u

||xu||2 +
∑
i

||yi||2) =: L(X, Y) (3.5)

The Alternating Least Square (ALS) method [35] is based on Matrix Fac-

torization, which basically means that given a user-item interaction matrix

R ∈ Rn×m, we want to represent it as the matrix product of the user em-

bedding matrix X ∈ Rk×n and the item embedding matrix Y ∈ Rk×m. That

is, R ≈ X⊤Y . Here, n, m and k are the number of users, the number of

items, and the embedding dimension, respectively. To achieve this, the ALS

method minimizes L(X, Y) in the equation (3.5), where the optimization is

performed by alternating between X and Y . The training process stops when

L(X, Y) no longer decreases meaningfully during optimization.

Neural Graph Collaborative Filtering

Neural Graph Collaborative Filtering(NGCF) model intends to reflect a new

characteristic called High-order Connectivity in the model [5]. In this way, to

represent collaborative signals in high-order connectivity, the idea of GNN is

utilized in the embedding propagation layer.

Unlike the existing GCN, it encodes user-item interaction into the mes-

sage passaing. Because of this interaction, messages depend on the affinity

between the two embeddings, allowing more messages to be delivered from

similar items.

The propagation rule of NGCF in matrix form was proposed as follows

E(k) = LeakyReLU((Â + I)E(k−1)W
(k)
1 + ÂE(k−1) ⊙ E(k−1)W

(k)
2)) (3.6)

where E(k) ∈ R(N+M)×dl are the embeddings for users and items obtained

after kth layer, ⊙ denotes element-wise product, and Â = D− 1
2AD− 1

2 is

normalized adjacency matrix of bipartite graph. E(0) is the initial embeddings

for users and items. They generate final embeddings by concatenating all

14

E(k), and conduct the inner product to estimate user’s preference towards

the target item.

LightGCN

In a follow-up study, LightGCN [6], it was confirmed that the two charac-

teristics of GCN in NGCF models, feature transformation and non-linear

activations, do not contribute significantly to the performance of collabora-

tive filtering. Even worse, adding them made learning more difficult and less

recommended performance. As a result, a concise and accurate LightGCN

model was proposed by simplifying NGCF. In particular, LightGCN learned

user and item embedding by linearly propagating in the user-item interaction

graph and used the sum of weights of the learned embeddings in all layers as

the final embedding without using any nonlinear activation functions.

The propagation rule of LightGCN in matrix form was proposed as follows

E(k) = (D− 1
2AD− 1

2)E(k−1). (3.7)

3.3 Salient Object Detection

Figure 3.1: Reference image and Salient Object Detection

Salient object detection is important for computer vision and image pro-

cessing tasks because it enables the identification and extraction of the most

visually prominent objects or regions in an image. The salient objects are

those that capture the attention of human observers and are visually distinct

from their surroundings.

15

There are two main types of Salient Object Detection (SOD) methods

that use deep learning. One uses multi-layer perceptrons (MLPs) to find

a coarse salient object region, and then uses a CNN to segment the salient

object region in detail. This is called the classic convolutional network (CCN)

based method. The second method is called fully convolutional networks

(FCN), and since SOD is inherently prone to segmentation, many researchers

use FCN-based methods [36].

Figure 3.2: The overall architecture of our Cas-GNN

In the field of SOD tasks, researchers have also been using GNNs to

model graph structures. One of them is an SOD model called Cascade GNN,

which tries to solve the SOD task on RGB-D datasets. In this model, the

basic structure is similar to the U-net [37] based segmentation model, and in

addition the Cascade graph structure is used to fuse the RGB image and the

depth image together for better learning [38].

Specifically, the structure of Cas-Gnn is as follows. First, they used VGG-

16 [39] in Cas-Gnn as the backbone network. Internally, when the input of

3 × 256 × 256 shape comes in, the 2d convolution is accumulated and the

final feature output (or feature embedding) has the shape of 512× 32× 32.

However, in order to use cascasding features, Cas-Gnn also uses intermediate

feature embeddings before the final output in a U-net-like fashion. It utilizes

two of the intermediate features, one of which is 256 × 64 × 64 shape and

one of which is 128× 128× 128 shape. Finally, Cas-Gnn employs the shapes

of (512 × 32 × 32), (256 × 64 × 64), and (128 × 128 × 128) of the backbone

network.

And since these cascading features occur in both RGB and depth images,

it can be considered that there are a total of 6 features, and Cas-Gnn utilizes

16

a GNN with 6 node features to systematically extract the cross-modality and

high-order relationship between the 6 features. The graph message passing

in the middle of the Figure 3.2 indicates that each GNN layer of these 6

nodes is passed through. The purpose of Cas-Gnn is to find an embedding

representation for the input image comprehensively by leveraging GNNs,

rather than just using the final feature embedding of the backbone network.

3.4 Rain Removal Tasks

Figure 3.3: Synthetic Rainy image and Ground-truth image

Deraining in autonomous driving is important because it helps improve

the perception and performance of autonomous vehicles in rainy or adverse

weather conditions. Rainfall can significantly impact the visibility of the envi-

ronment, making it challenging for sensors and cameras to accurately detect

and interpret objects, obstacles, and road markings. Therefore, deraining

techniques aim to mitigate the negative effects of rain, enhance the quality

of sensor data, and ensure the safety and reliability of autonomous vehicles

in rainy weather conditions. It is a vital component in developing robust and

all-weather autonomous driving systems.

For such deraining tasks, CNN-based models [40] and diffusion models [41]

have been actively studied recently. Diffusion models have relatively superior

deraining results, but the model is heavy, inference speed is slow, and training

requires a lot of time and GPU resources. However, CNN-based derain models

are relatively fast and have lightweight models, but their derain performance

is not as good as diffusion models.

17

Deraining via Image Inpainting

Figure 3.4: Inpainting results of LaMa, (Suvorov et al., [42])

The deraining task can be approached directly as shown above, but it

can also be approached in the manner of Image Inpainting. Image inpainting

refers to the process of filling in missing or corrupted parts of an image with

plausible content. There are also various image inpainting methods that use

diffusion models ([43], [41]) or Vision Transformer-based models ([44], [45]).

However, these methods have the limitation that the performance is good,

but the model is heavy and the inference speed is relatively slow.

On the other hand, among the image inpainting models, those that use

the convolution are relatively lightweight and therefore fast when inference

time. Suvorov et al. [42] propose such an inpainting model, named LaMa.

The distinctive feature of the model is that it employs a convolution module

called Fast Fourier convolution (FFC) [46].

This FFC module uses an FFT internally, which is then processed with

a 1 by 1 convolution and nonlinear activation, and then an inverse FFT. So

while 2d-convolution usually relies heavily on local features, the FFC module

has the advantage of extracting global features as well by taking the Fourier

transform. In particular, when there are repetitive image patterns, this ad-

vantage seems to be more noticeable, so it is applied to image inpainting in

LaMa by leveraging this advantage. The results in Figure 3.4 for image in-

painting with LaMa illustrate these attributes. The pseudocode for the basic

module (Fourier Unit, FU) of the FFC is given below.

18

Algorithm 1 Pseudocode of Fourier Unit (FU). (Chi et al., [46])

1: function FU(x)
2: yr, yi ← FFT(x) ▷ yr/yi: [N,C,H,W/2]
3: y ← Concatenate([yr, yi], dim = 1) ▷ [N,C ∗ 2, H,W/2]
4: y ← ReLU(BN(Conv(y))) ▷ [N,C ∗ 2, H,W/2]
5: yr, yi ← Split(y, dim = 1) ▷ yr/yi: [N,C,H,W/2]
6: z ← iFFT(yr, yi) ▷ [N,C,H,W]
7: return z
8: end function

19

Chapter 4

Spectral Analysis of Graph

Neural Networks

Question: Given a graph G = (V,E), how do we define a convolution on G?

Before answering the question, let us consider the convolution operation

in Euclidean space Rd and discrete ring graph Rn.

4.1 Schwartz space S (Rd) and Ring graph Rn

At first, consider the space of Schwartz functions. The space of Schwartz

functions is defined as

S (Rd) =

®
f ∈ C∞(Rd,R) : sup

x∈Rd

|xα∂βf(x)| <∞ ∀α, β
´
, (4.1)

where α, β are multi-indices. If f, g ∈ S (Rd), then the convolution f ∗ g is

defined as follows:

f ∗ g(x) :=

∫ ∞

−∞
f(x− y)g(y)dy (4.2)

Also, let the Laplacian operator ∆ :=
∑d

i=1

∂2

∂x2
i

. We readily recognize

that the following equation is satisfied.

20

∆(f ∗ g) = (∆f) ∗ g (4.3)

Therefore, the operator ∆ : S (Rd) → S (Rd) and the operator ∗g :

S (Rd)→ S (Rd) commute.

In more depth, let us analyze the Laplacian and the convolution opera-

tions with Fourier transforms. At first, let f be given as above, and if we take

a Fourier transform to ∆f , then

∆f(x) = ∆

∫
Rd

f̂(ξ)e2πix·ξdξ (4.4)

=

∫
Rd

f̂(ξ)∆e2πx·ξdξ (4.5)

=

∫
Rd

(−4π2|ξ|2)f̂(ξ)e2πix·ξdξ. (4.6)

And again, if we take the inverse Fourier transform, we get”∆f(ξ) = (−4π|ξ|2)f̂(ξ), (4.7)

since ∆f has a unique representation
∫
Rd
”∆f(ξ)e2πx·ξdξ.

Now, we take the Fourier transform of the convolution operation f 7→ f∗g.

Then, by the Convolution theorem of the Fourier transform,‘f ∗ g(ξ) = f̂(ξ) · ĝ(ξ) (4.8)

In the case of these two Fourier transforms, we can see that the Fourier

transform diagonalizes the Laplacian and convolution operator in the fre-

quency domain.

Secondly, let’s look at the ring graph. Figure 4.1 is an example of ring

graphs Rn. The adjacency matrix A and the graph Laplacian L of the ring

graph Rn are as follows.

21

Figure 4.1: Ring graph R8

A =



0 1 0 . . . 0 1

1 0 1 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

1 0 0 . . . 1 0


, D =



2 0 0 . . . 0 0

0 2 0 . . . 0 0

0 0 2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 2 0

0 0 0 . . . 0 2



L = D − A =



2 −1 0 . . . 0 −1

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 2 −1

−1 0 0 . . . −1 2


The convolution operation on the ring graph Rn = (V,E) acts on the

functions f, g : V → R. Also we can identify f and g as elements of Rn, so

let f = (x0, x1, · · · , xn−1) and g = (c0, c1, · · · cn−1). Therefore, the convolution

f ∗ g ∈ Rn is defined as follows.

f ∗ g(k) =
n∑

j=0

xjck−j (k = 0, 1, · · ·n− 1) (4.9)

22

In the above equation, if m < 0 for cm, then we define cm := cn+m. Once

we’ve defined the convolution as above, we can represent the operation as a

matrix-vector product, which is shown below.

f ∗ g =



c0 cn−1 cn−2 . . . c2 c1

c1 c0 cn−1 . . . c3 c2

c2 c1 c0 . . . c4 c3
...

...
...

. . .
...

...

cn−2 cn−3 cn−4 . . . c0 cn−1

cn−1 cn−2 cn−3 . . . c1 c0


·


x0

x1

...

xn−1

 (4.10)

To analyze it a bit further, let the above circulant matrix

C :=



c0 cn−1 cn−2 . . . c2 c1

c1 c0 cn−1 . . . c3 c2

c2 c1 c0 . . . c4 c3
...

...
...

. . .
...

...

cn−2 cn−3 cn−4 . . . c0 cn−1

cn−1 cn−2 cn−3 . . . c1 c0


(4.11)

.

Then, by a simple calculation, we get

L · C = C · L (4.12)

. This result is an analogue of the equation (4.3).

Also, we take a Discrete Fourier transform to these objects. For instance,

if we denote the DFT matrix W as

W =
1√
n



ω0
0 ω1

0 ω2
0 . . . ωn−1

0

ω0
1 ω1

1 ω2
1 . . . ωn−1

1

ω0
2 ω1

2 ω2
2 . . . ωn−1

2
...

...
...

. . .
...

ω0
n−1 ω1

n−1 ω2
n−1 . . . ωn−1

n−1

 (4.13)

, where ωk = e−2πik/n, then we get

23

f̂ = W ·


x0

x1

...

xn−1

 = Wf, ĝ = W ·


c0

c1
...

cn−1

 = Wg (4.14)

.

Also,

‘f ∗ g = W · C · f (4.15)

= diag(ĝ) ·W · f (4.16)

= ĝ ⊙ f̂ (4.17)

.

This result is an analogue of the equation (4.8). Next, if we apply DFT

to the graph Laplacian, then”Lf = W · Lf (4.18)

=


0 0 . . . 0
...

... 2− 2 cos
(2πk

n

) ...

0 0 . . . 2− 2 cos
(2π(n− 1)

n

)
 ·Wf (4.19)

= Λ · f̂ (4.20)

, where Λ is a diagonal matrix of whose elements are eigenvalues of the graph

Laplacian L. This result is an analogue of the equation (4.7).

In this case, as in Schwartz space, we can observe that the Fourier trans-

form diagonalizes the graph Laplacian and the convolution operation in the

frequency domain.

Furthermore, the basic theorem of linear algebra in finite dimensional

vector spaces tell us more:

Theorem 4.1.1. If two linear operator L and M on finite dimensional vec-

tor space V are diagonalizable and LM = ML, then they are simultaneously

diagonalizable. That is, there exists an invertible matrix U such that U diag-

24

onalize both L and M , i.e., ULU−1 and UMU−1 are both diagonal matrices.

In particular, for ring graphs Rn, we can see that the DFT matrix W

diagonalizes both the graph Laplacian L and the convolution matrix C. Using

the same notation as above, this is equivalent to

WCW−1 = diag(ĝ)

WLW−1 = Λ

4.2 Convolution on General Graphs

We can define convolutions such as Euclidean space Rn, ring graphs Rn, or

image data which has grid structures, as discussed in the previous section

4.1.

More generally, in a locally compact abellian group (G,+) with a Haar

measure µ that has the property of translation invariance, the convolution

f ∗ g for f, g ∈ L1(G) can be defined (almost everywhere) as follows.

f ∗ g(x) =

∫
G

f(x− y)g(y)dµ(y) (x, y ∈ G). (4.21)

From Young’s inequality ||f ∗ g||L1(G) ≤ ||f ||L1(G)||g||L1(G), we know that

f ∗ g is defined almost everywhere, and belongs to L1(G). Moreover, we still

have the following property, for all ξ ∈ Ĝ,‘f ∗ g(ξ) = f̂(ξ)ĝ(ξ) (4.22)

, where Ĝ is the Pontryagin dual of G.

In this general view, Euclidean space Rn is a group with addition op-

erations (Rn,+), and a ring graph Rn can be seen as a finite abelian group

(Z/nZ,+). Also, image data stored on a computer can be viewed as ((Z)2,+)

or ((Z/nZ)2,+). Thus, for those spaces, the convolution operation could be

defined in terms of the above expression (4.21). However, in general, the

group operation is not given for a general graph G = (V,E).

25

Now let’s examine the relationship between Laplacian and convolution

operations. The Laplacian ∆ of (Rn,+) as a differential operator commutes

with the convolution operator by the equation (4.3). In addition, the graph

Laplacian L of (Z/nZ,+) also commutes with the convolution, the circulant

matrix C by the equation (4.12). Note that we can assign a finite abelian

group (Z/nZ,+) the same connectivity information as a ring graph Rn, i.e.,

we can view a finite abelian group Z/nZ as a ring graph Rn.

Now let’s define a convolution on a general graph G = (V,E). We still have

the graph Laplacian L = D−A and the function f : V → R or f ∈ Rn where

n = |V |. The convolution is a linear operator, so if we define a convolution

on G, it can be represented as a n by n matrix. We also want this convolution

matrix C to still have the same properties as equations (4.3) and (4.3). And

this commutativity and Theorem 4.1.1 provide a way to define convolution

operations on general graphs.

If we further assume the diagonalizability of L and C, then the above

commutativity and Theorem 4.1.1 let us know that there must exist an in-

vertible matrix U ∈ Rn×n that diagonalizes both L and C. In other words,

C = U−1DcU and L = U−1ΛU , where Dc is a diagonal matrix whose ele-

ments are eigenvalues of C and Λ is a diagonal matrix whose elements are

eigenvalues of L.

From these results, we can see that the convolution matrix C is eventually

determined by the invertible matrix U and its n eigenvalues. However, since

we don’t know these simultaneously diagonalizing invertible matrices U, we

still have a problem. If the eigenvalues of L are all different, then the set of

matrices that diagonalize L is specific, so if we fix one such U and determine

the eigenvalues of C, then the convolution matrix C will be fixed. However,

even with this method, if the number of nodes in the graph is large , n =

|V | ≫ 1, the complexity of finding the eigendecomposition of L is O(n3),

which is computationally intractable.

Thus, the spectral-based graph neural networks discussed in section 3.1

define the graph convolution under the following assumptions.

26

Assumption 1. The convolution matrix C and the graph Laplacian L are

diagonalizable.

Assumption 2. The convolution matrix C and the graph Laplacian L com-

mute.

Assumption 3. The eigenvalues of the graph Laplacian L are all distinct.

The above three assumptions are the fundamental assumption of Spectral-

based GNNs. The Assumption 1 and 2 are necessary for the Theorem 4.1.1.

If these assumptions are satisfied, consider the following two eigendecompo-

sition versions of C̃θ to approximate and learn the convolution matrix C.

C̃θ = U−1 · diag(gθ(λ1, · · · , λn)) · U (4.23)

C̃θ = U−1



gθ(λ1) 0 0 . . . 0 0

0 gθ(λ2) 0 . . . 0 0

0 0 gθ(λ3) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . gθ(λn−1) 0

0 0 0 . . . 0 gθ(λn)


U (4.24)

where gθ might be constructed via a neural network with parameters θ and

λ1, · · ·λn are all distinct eigenvalues of the graph Laplacian L. Note that gθ

in the equation (4.23) is a function from Rn to Rn and gθ in the equation

(4.24) is a function from R to R.

First, since the input domain and output domain of gθ are fixed to Rn in

the case of the equation (4.23), the same gθ cannot be used for graphs with

different numbers of nodes. This means that we need a different model of gθ

depending on the number of nodes in the graph, or we need to devise a novel

model to solve this problem so that gθ does not need to have a fixed domain

and codomain.

On the other hand, in the case of the equation (4.24), since gθ is applied

to each eigenvalue of C̃θ, gθ can be adaptively applied to graphs with different

numbers of nodes, i.e., the convolution matrix can be estimated for each input

27

graph, even if the adjacency matrix and the corresponding graph Laplacian

change as the input graph changes.

So let us inestigate the estimation in the equation (4.24) a bit more for

its general applicability. Given a graph G = (V,E), suppose there exists an

optimal convolution matrix C ∗ (G) of that graph, and let the eigenvalues of

C ∗ (G) be c∗1, · · · c∗n. Then, we observe that we just need to learn or find a

function that interpolates the points (λ1, c
∗
1), · · · , (λn, c

∗
n). Here, λ1, · · · , λn

and c∗1, · · · , c∗n are the values that depend on V and E of the given (input)

graph G = (V,E).

Now, to simplify things further and make the computation easier, let’s

assume that gθ is a polynomial, i.e,

gθ(λ) :=
k∑

j=0

θjλ
j (4.25)

, where k ∈ N is a degree of the polynomial and θ = (θ1, · · · , θk) are param-

eters to be learned.

Under these polynomial conditions, the equation (4.24) can be simply

written as a graph Laplacian as follows.

C̃θ = gθ(U
−1ΛU) = gθ(L) (4.26)

In theory, given a fixed graph Laplacian L in a situation that satisfies the

above three assumptions, we can interpolate exactly all the points we need

to interpolate as long as the polynomial has degree at least n− 1.

At this point, we now see that in the case of the Spectral-based GNNs

discussed in Section 3.1 those message passing networks are the graph con-

volution C̃θ that follows the above equation (4.26). Of course, the models

discussed in Section 3.1 did not specifically address Assumption 3, but we

can easily conclude that it is an important theoretical assumption. This is

because if the eigenvalues of the graph Laplacian of a graph G are some of

the same (having multiplicity) or, in the extreme, all of the same, then a

28

convolution matrix C like the following cannot be represented.

C = U−1



c1 0 0 . . . 0 0

0 c2 0 . . . 0 0

0 0 c3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . cn−1 0

0 0 0 . . . 0 cn


U (4.27)

, where c1 < c2 < · · · < cn, so that all eigenvalues are distinct.

Putting together the discussion so far, we have the following theorem,

which concludes this section.

Theorem 4.2.1. If one assumes the three assumptions in this section, i.e.,

Assumption 1, Assumption 2 and Assumption 3, then for every convolution

matrix C of G = (V,E), there exists a polynomial p of degree greater than

equal at least |V | − 1 such that the matrix C can be exactly represented by

the form C = p(L), where L is the graph Laplacian of G.

Further Discussions

As mentioned in the introduction to Section 4.2, a general graph G is not

given a group operation and non-trivial Haar measure, so convolution op-

erators on a locally compact abelian group G are not easily defined, nor is

the Fourier transform. However, it seems that the invertible matrix U in-

troduced in this section can take over the role, because for a convolution

matrix given by C = U−1DU = U−1diag(d1, · · · dn)U , the component vec-

tor (d1, · · · dn)⊤ ∈ Rn of the diagonal matrix D become an element in the

frequency domain 1. As a consequence, a convolution of f ∈ Rn with the ma-

trix C is expressed as an element-wise product on f̂ , which is equivalent to”Cf = UCf = UCU−1Uf = (d1, · · · , dn)⊤⊙ f̂ . Therefore, in the future, when

researching GNNs with spectral analysis, one might attain a better analysis

by utilizing U as a substitute of the Fourier transform, and in addition, one

might develop a novel GNN model that performs better with this approach.

1Here, the frequency domain means the image of a matrix multiplication operator by
U , i.e. {Uf : f ∈ R|V |}

29

Chapter 5

Proposed Method

Before proposing the method of each experiment, we would like to point out

the motivation behind each experiment.

5.1 Proposal Background

As a first attempt to demonstrate the expressive power of spectral-based

GNNs, we will show that spectral-based GNNs are sufficient for solving PDEs

in Computational Fluid Dynmaics (CFD) instead of traditional graph

data such as citation networks or molecule dataset.

For collaborative filtering, we compared a Matrix Factorization-based

method [35] and spectral-based GNNs, such as NGCF and LightGCN. In ad-

dition, to improve the recommendation performance of spectral-based GNNs,

we show that the category information of items can be used in combination

with these data to improve the recommendation performance of collaborative

filtering.

In the case of Salient Object Detection, we want to learn the struc-

ture (DAG) of the existing model, Cas-Gnn, through structure learning. The

DAG obtained can be viewed as an adjacency matrix of a graph, where each

cascading model feature acts as a node, and the adjacency matrix obtained

through DAG learning aims to improve performance by aggregating features

using spectral-based GNN’s messaging passing.

30

For the Rain Removal Task, we will show that it is empirically effective

to design a model efficiently by reflecting the features of rainstreaks in rainy

images and the results obtained through Fourier analysis, rather than training

the model end-to-end.

5.2 Spectral GNNs to Computational Fluid

Dynamics

(a) Required domain for MLP limiter (b) Graph structure (Regular Grid)

Figure 5.1: An illustration of the data for the experiment

Method Formulation

The experiments are designed in two main ways. One is to regress one of the

slope limiters, Multi-dimensional Limiting Process (MLP) limiter [47], with

FCN and GNNs. The other is to actually run the simulation with the limiter

obtained in the first experiment for two basic PDEs, Burgers’ equation and

Linear advection equation.

To compute the MLP limiter at each cell C, we need information from all

cells adjacent to all vertices in the cell C, as shown in Figure 5.1 (a). Specif-

ically, we need the cell average value of the cells and the vertex coordinates

of each cell.

The experiments were conducted using the Finite Volume Method (FVM)

for basic PDEs, dividing the analysis domain into irregular mixed meshes.

The Burgers’ equation and Linear advection are tested for the simulation

experiment. The models used in the experiments are Fully Connected Net-

31

work(FCN), GCN, and PointNet [48]. A visualization of the computational

graph of PointNet used for the experiment is shown as follows.

Figure 5.2: Computational graph of PointNet used for the experiment.

32

Figure 5.3: Construction of FCN Input

Unlike GNN, FCN can only be applied to a fixed grid shape, since the

shape of the input changes when the structure of the graph changes. In this

case, we set the input data as cell average value and approximated vertex

value as shown in Figure 5.3.

In the case of GNN, the graph structure is input data as shown in Figure

5.1 (b), and for node feature, the cell average value and gradient value of

each node (cell) are given as features. In other words, the dimension of node

feature is 1 + 2 = 3.

5.3 Collaborative Filtering

Method Formulation

GCN-based NGCF and LightGCN use the adjcency matrix of users and items

as A =

(
0 R

RT 0

)
with the user-item interaction matrix R ∈ RM×N . The

lower right of this block matrix means that there is no interaction between

the items. Since general GCN is applicable not only to the bipartite graph but

also to general graphs, it is possible to add interaction between items using

item category data. For example, from the C ∈ RN×Nc matrix containing the

category information of the item, it is possible to make the adjacency matrix

Ĉ ∈ RN×N between the items as follows

Ĉ = (ci,j), where cij =

1 , if i and j share at least one category

0 , otherwise

33

Alternatively, it is also possible to allocate corresponding weights in pro-

portion to the number of categories shared by the two items.

With Ĉ which represents interactions between items, GCN using adja-

cency matrix as A =

(
0 R

RT Ĉ

)
was applied to NGCF and LightGCN.

5.4 Salient Object Detection

Salient object detection (SOD) is the computer vision task that enhances

our understanding of visual attention, aids in image and video analysis, and

enables various computer vision applications across different domains. There-

fore, in this work, we adaptively learn the optimal structure between shallow

and deep features in the SOD model and demonstrate the performance of

the model using spectral-based GNNs.

Method Formulation

Basically, we use Cas-Gnn’s approach as a backbone for Salient Object De-

tection. If you examine the structure of Cas-Gnn’s model, there are two main

lines: one is the intermediate values for the input of RGB images, and the

other is the intermediate values for the input of depth images.

As mentioned in Section 5.1, the adjacency matrix used by the GNN

layer of Cas-Gnn was fixed. To elaborate on this, let’s call the nodes for the

RGB image obtained by the backbone network c1, c2, c3, and the nodes for

the depth image d1, d2, d3. Then the connectivity of the graph G = (V,E)

in Cas-Gnn is (c1, d1), (c2, d2), (c3, d3) ∈ E, (c1, c2), (c2, c3), (c1, c3) ∈ E, and

(d1, d2), (d2, d3), (d1, d3) ∈ E.

However, it is the assumption is based on what the authors of Cas-Gnn

believe is a reasonable graph structure for the internal cascading features of

the model. In other words, the optimal graph structure may not necessarily

be the same as above. Therefore, we want to learn this graph structure using

the methods of DAG learning covered in Section 2.3.

Let Frgb, Fd be the backbone networks for the RGB image and the depth

image, and let A be the adjacency matrix between the features in the model

that we want to find, and introduce the following h(A) from Section 2.3.

34

h(A) = tr[(I + αA⊙ A)d]− d (A ∈ Rd×d, α > 0) (5.1)

, where ⊙ means element-wise multiplication.

Then, using the linear SEM in the equation (2.6) and the structure of [32],

we can construct the following ELBO expression, which has the structure of

a variational autoencoder [49].

MLP (X,W 1,W 2) := ReLU(XW 1)W 2

[MZ | logSZ] = (I − A⊤)MLP (X,W 1,W 2)

[MX | logSX] = MLP ((I − A⊤)−1Z,W 3,W 4)

DKL(q(Z|X)||P (Z)) =
1

2

d∑
i=1

n∑
j=1

(SZ)2ij + (MZ)2ij − 2 log(SZ)ij − 1

Eq(Z|X)

[
log p(X|Z)

]
≈

d∑
i=1

n∑
j=1

−
(Xij − (MX)2ij

2(SX)2ij
− log(SX)ij

f(X,A) = −Eq(Z|X)

[
log p(X|Z)

]
+ DKL(q(Z|X)||P (Z))

, where W 1,W 2,W 3,W 4 are trainable parameter and X is a node feature.

To summarize, the node feature matrix X created by concatenating all

c1, c2, c3, d1, d2, d3 obtained from the backbone network Frgb, Fd enters f(X,A)

in the above expression. Therefore, the final loss LDAG for DAG structure

learning is as follows.

LDAG = f(X,A) + λh(A) (5.2)

, where λ is a hyperparameter.

Hence, training proceeds as follows. First, fix the initialized A ∈ R6 and

update the parameter with the AdamW [50] optimizer for the loss function of

the existing Cas-Gnn. Then, get the node feature X from the updated Cas-

Gnn, put it into LDAG in the above expression, and update the parameter

with another optimizer for A. In other words, just as the discriminator and

generator modules in the GAN [51] are trained by two optimizers alternately,

the proposed model is trained by two separate optimizers alternately between

35

the Cas-Gnn model and the DAG learning model.

5.5 Rain Removal Task

(a) Ground-truth image (no rain) (b) Rainy image

Figure 5.4: Sample images of RainDS dataset

(a) Low-band filtered image (no rain) (b) Low-band filtered image (rain)

Figure 5.5: Comparison of Low-band filtered images

The rain removal task can play an important role in autonomous driving,

as discussed in Section 3.4. These tasks need to be handled in real time to

achieve safety, responsiveness, efficient decision-making, and adaptability in

autonomous driving.

Motivation

The model is motivated by the following observation. Figure 5.4 shows an

sample image of rain from the RainDS dataset. The shape of this image

is 3 × W × H. Now, if we take this image and perform a Discret Fourier

Transform using the FFT, we get 3×W ×H, which is made up of complex

numbers. Now, after replacing the FFT values of the 0.02W × 0.02H region

36

at the four corners with zeroes, then we take the inverse FFT and convert it

elemenetwisely to absolute values, resulting in Figure 5.5. As you can see in

Figure 5.5, the pattern or signal corresponding to the high frequency is still

there. The remaining signals show a high proportion of signals that appear

to be rain.

In addition to Figure 5.4, for the entire RainDS data with rainstreak

(Drain) and the entire RainDS data without rainstreak (Dnorain), only the

four corners are truncated to 0 after FFT as before, i.e., the low frequencies

are filtered out. Then, we take the sum of the absolute values of the filtered

values, and compare the difference between Drain and Dnorain.

Table 5.1: Sum of Low-band filtered values of RainDS dataset

Rain (Drain) No rain (Dnorain)
Sum 179,009 171,881

As you can see from the table 5.1, the value is higher for Drain with rain. In

other words, we can see that the rainy image contains a lot of high frequency

information. Based on the characteristics of these rainy images, we propose

the following method formulation to remove the rain.

Method Formulation

Considering the nature of the deraining task, we design the deraining process

in two steps. The first step is to segment the rainstreak in the rainy image.

The second step is to apply convolution-based image inpainting by mask-

ing the rainstreak segmentation area found in the first step. And we want

lightweight models with fast inference at both stages.

In the first step, we want to learn to segment rainstreak pixels in a rainy

image. For our train dataset, we used the RainDS dataset. This dataset is

characterized by the fact that it is not a synthetic rainy image data, but an

image taken in a real rainy environment, and the same image was taken in a

non-rainy environment with the same settings. In other words, the data is not

composed of synthesized rain images, but pairs of actual rainy and non-rainy

images. In this dataset, we can subtract the rainy images from the non-rainy

37

images to get the desired segmentation result for real rain. We want to train

our model with this subtracted image as the correct label.

Specifically, the model in the first step is influenced by the aforementioned

motivation to take an FFT as an input and provide a signal with the low

frequency portion blown out. We can assume that since our goal is to segment

rainy pixels, the information in the low frequency part is not needed to train

the model.

In the second step, we use the LaMa model mentioned in Section 3.4

to inpaint the image. In the case of the LaMa model, we did not train it

using the rainstreak dataset, but used a pre-trained model for image inpaint-

ing. The data used to train LaMa is the Places [52] dataset. The dataset

contains a collection of 10 million scene photographs that have been catego-

rized based on their semantic scene labels. It encompasses a wide range of

diverse environments encountered in the world, providing a comprehensive

and extensive representation of different scene types. LaMa is then trained

to perform image inpainting by applying some sorts of random specific forms

of masking.

As a result, since rainy images often contain a large number of images

similar to this Places dataset with rain falling, if we successfully segment the

rainstreak pixels in the initial step, we can expect acceptable image inpainting

results, which means reliable derained outcomes.

38

Chapter 6

Experiments

6.1 Spectral GNNs to Computational Fluid

Dynamics

Figure 6.1: Various meshes generated for construction of datasets

6.1.1 Datasets

Table 6.1: Statistics of the datasets generated for the experiment

Dimension Element type Number of data

2-D
Triangular 100,000

Quadrilateral 102,000

For the experiment, we created various meshes as shown in Figure 1 and

recorded values such as cell average value, cell coordinate value, and cell

39

gradient using discrete functions that we can control such as step function.

We also calculated the MLP limiter value of each cell as it was generated to

create a supervised dataset for regression.

6.1.2 Experimental Results

Regression Result

Figure 6.2: Regression result of PointNet

Figure 6.3: Regression result of FCN

40

Table 6.2: Regression results of proposed models

Model
Parameter

(hidden,#layer)
MSE

GCN

(64,3) 6.06e-4
(64,5) 8.04e-4
(256,3) 3.36e-4
(256,5) 5.26e-4

PointNet

(32,1) 3.805e-7
(32,2) 3.320e-7
(32,3) 2.635e-7
(16,1) 8.527e-7

FCN (32,5) 5.002e-7

Table 6.2 shows the results of the MLP limiter regression experiment. The

results are 3.37e-4 for GCN, 2.635e-7 for PointNet, and 5.002e-7 for FCN.

Comparing the FCN and GNN models, the GNN model shows better results

in terms of MSE, and it is noteworthy that the GNN-based model can apply

the learned model directly under any mesh grid, while the FCN model may

not be applicable if the grid shape (Triangular or Quadrilateral) is different,

which is because the input dimension of trained FCN model must be fixed.

Numerical Simulation Result

For the following Burgers’ equation and Linear advection PDE, we conducted

an experiment to compare the simulation results with the ground-truth MLP

limiter and the simulation results with the model trained in the first step.

The grid in the region (x, y) ∈ [0, 1]× [0, 1] is an irregular mixed mesh with

a size of 100× 100.

• Burgers’ equation
∂u

∂t
+ u

∂u

∂x
+ u

∂u

∂y
= 0 (6.1)

u0(x, y) = sin(2πx) sin(2πy) (6.2)

u0(x, y) =

{
1, if 0.25 ≤ x ≤ 0.75, 0.25 ≤ y ≤ 0.75

0, otherwise
(6.3)

41

(a) t = 0 (b) t = 1

Figure 6.4: Numerical simulation result of FCN (Burgers’ equation)

(a) t = 0 (b) t = 1

Figure 6.5: Numerical simulation result of Pointnet (Burgers’ equation)

42

(a) t = 0 (b) t = 1

Figure 6.6: Numerical simulation result of FCN (Burgers’ equation)

(a) t = 0 (b) t = 1

Figure 6.7: Numerical simulation result of Pointnet (Burgers’ equation)

43

• Linear Advection
∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= 0 (6.4)

u0(x, y) =

{
1, if 0.25 ≤ x ≤ 0.75, 0.25 ≤ y ≤ 0.75

0, otherwise
(6.5)

(cx, cy) = (1.0, 0.5) (Advection Speed) (6.6)

(a) t = 0 (b) t = 1

Figure 6.8: Numerical simulation result of FCN (Linear advection)

(a) t = 0 (b) t = 1

Figure 6.9: Numerical simulation result of Pointnet (Linear advection)

44

6.2 Collaborative Filtering

6.2.1 Datasets

Table 6.3: Statistics of the datasets

Datasets #Users #Items #Interactions Density #Categories
MovieLens-100K 943 1,682 100,000 0.06305 19

CiteUlike-A 3,277 16,807 178,062 0.00323 46,391

In the experiment, two datasets were used in the experiment, including

MovieLens-100k and CiteUlike-A. ALL of the data were processed with 20-

core settings. N -core setting refers to a setting in which at least N items are

rated for each user and at least one user rates each item.

MovieLens. The MovieLens dataset contains a set of movie ratings from the

MovieLens website, a movie recommendation service [53]. This dataset was

collected and maintained by GroupLens, a research group at the University

of Minnesota. There are 5 versions included: “25m”, “latest-small”, “100k”,

“1m”, and “20m”. In all datasets, the movies data and ratings data are

joined on “movieId”. The 25m dataset, latest-small dataset, and 20m dataset

contain only movie data and rating data. The 1m dataset and 100k dataset

contain demographic data in addition to movie and rating data. In this thesis,

MovieLens-100k is used.

CiteUlike. The Citeulike-A dataset, was used in the IJCAI paper (Wang

et al. [54]). It was collected from CiteULike and Google Scholar, so it has

two versions collected from CiteULike and Google Scholar independently,

i.e., CiteUlike-A and CiteUlike-T. CiteULike allows users to create their own

collections of articles. There are abstracts, titles, and tags for each article. In

this thesis, CiteUlike-A is used.

In experiments, 10% of all intersections are randomly selected for training,

and the remaining intersections are used for validation.

45

6.2.2 Evaluation Metric

To measure the performance of the recommendation system, Normalized Dis-

counted Cumulative Gain(NDCG)@K[55, 56], Precision@K, and Recall@K

are adopted. NDCG is one of the widely-used ranking metric computed by

the all items and all users. NDCG metric address higher importance to the

top ranks and grade successively lower ranks with marginal fractional util-

ity. Discounted Cumulative Gain(DCG) for the particular rank position p is

obtained by

DCGp =

p∑
i=1

reli
log2(i + 1)

(6.7)

where reli is the grade relevance of the result at position i. The formula

of DCG shows that highly relevant items appearing lower rank should be

penalized as the graded relevance is reduced logarithmically. The alternative

formulation of DCG can emphasize the relevance by replacing numerator to

exponential term.

DCGp =

p∑
i=1

2reli

log2(i + 1).
(6.8)

The two expressions of DCG are same when the relevance values are binary,

reli ∈ {0, 1}. The final evaluation metric, NDCG for particular p is calculated

by the ratio between DCGp and IDCGp,

NDCGp =
DCGp

IDCGp

(6.9)

where ideal discounted cumulative gain(IDCG) on best result list RELp,

IDCGp is defined as

IDCGp =

|RELp|∑
i=1

2reli

log2(i + 1).
(6.10)

On the other hand, Precision@K and Recall@K mean simply the fraction of

K recommended items, regardless of the order.

Precision =
True Positive

True Positive + False Positive
(6.11)

46

Recall =
True Positive

True Positive + False Negative
(6.12)

6.2.3 Bayesian Personalized Ranking

Implicit Data

In some case of recommendation system, the users’ preferences can be ex-

pressed explicitly as positive or negative rating scores. However, in case of

recommendation system for purchasing documentation, the negative data

cannot be observed. The implicit data might be considered as real negative

feedback or missing value, which has not been observed yet. Intuitively, the

missing value should not be regarded as a negative feedback.

Personalized Total Ranking

Let U be the set of all users and I the set of all items. In the implicit

feedback, the user-item pair is defined by (u, i) = s ∈ S ⊆ U × I. Each

user’s preference is described as personalized total ranking, >u⊂ I2, where

>u meets the properties of a total order, meaning totatlity, antisymmetry,

and transitivity, repectively:

∀i, j ∈ I : i ̸= j =⇒ (i >u j) ∨ (j >u i) (6.13)

∀i, j ∈ I : (i >u j) ∧ (j >u i) =⇒ i = j (6.14)

∀i, j, k ∈ I : (i >u j) ∧ (j >u k) =⇒ i >u k (6.15)

For convenience, we also define :

I+u := {i ∈ I : (u, i) ∈ S} (6.16)

U+
i := {u ∈ U : (u, i) ∈ S} (6.17)

The training dataset DS : U × I × I is defined by :

DS := {(u, i, j)|i ∈ I+u ∧ j ∈ I\I+u } (6.18)

where user u of (u, i, j) ∈ DS is assumed to prefer i over j. This approach

allows us to train data consists of both positive and negative pairs and missing

47

values. And the DS addresses the actual objective of ranking.

Bayesian Personalized Ranking

Bayesian Personalized Ranking(BPR) optimization [57] is derived by a Bayesian

analysis of the problem using the likelihood function for p(i >u j|Θ) and the

prior probability for the model parameter p(Θ). The Bayesian formulation is

equivalent to maximizing the posterior probability.

p(Θ| >u) ∝ p(>u |Θ)p(Θ) (6.19)

where Θ is the learnable parameters.

As the above user-specific likelihood function p(>u |Θ) follows Bernoulli dis-

tribution, it can be rewritten as follow :

p(>u |Θ) = p(i >u j)δ((u,i,j)∈DS)(1− p(i >u j))δ((u,i,j)/∈DS), (6.20)

where δ is the indicator function.

Following the properties(totality, antisymmetry, and transitivity), the indi-

vidual probability that a user really prefers item i to item j is defined as

:

p(i >u j|Θ) := σ(x̂uij(Θ)) (6.21)

where σ is the loggistic sigmoid and x̂uij is obtained by matrix factorization.

For all users, the overall likelihood function is∏
u∈U

p(>u |Θ) =
∏

(u,i,j)∈DS

p(i >u j|Θ) (6.22)

=
∏

(u,i,j)∈DS

p(i >u j)δ((u,i,j)∈DS)(1− p(i >u j))δ((u,i,j)/∈DS).

(6.23)

Let p(Θ) ∼ N(0,
∑

Θ), the maximum posterior estimator to derive opti-

48

mization criterion for personalized ranking BPR− OPT is

BPR− OPT : = ln p(Θ| >u)

= ln p(>u |Θ)p(Θ)

= ln
∏

(u,i,j)∈DS

σ(x̂uijp(Θ))

=
∑

(u,i,j)∈DS

lnσ(x̂uij) + ln p(Θ)

=
∑

(u,i,j)∈DS

lnσ(x̂uij)− λΘ∥Θ∥2.

(6.24)

where λΘ are model specific regularization parameter.

We employ the this optimization as loss function, Bayesian Personalized

Ranking(BPR) loss, which is a pairwise loss that encourages the prediction

of an observed entry to be higher than its unobserved counterparts :

LBPR = −
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj) + λ∥E(0)∥2. (6.25)

6.2.4 Experimental Results

Table 6.4: Comparison between collobarative filtering methods

MovieLens-100K CiteUlike-A
ndcg@20↑ recall@20↑ precision@20↑ ndcg@20↑ recall@20↑ precision@20↑

MF (ALS) 0.0761 0.0357 0.0946 0.0350 0.0135 0.0336
NGCF 0.3538 0.0891 0.3303 0.0298 0.0090 0.0286

NGCF + category 0.3769 0.1126 0.3585 0.0372 0.0106 0.0356
LightGCN 0.4984 0.1371 0.4739 0.0789 0.0241 0.0692

LightGCN + category 0.3720 0.0892 0.3453 0.0393 0.0121 0.0364

Table 6.4 summarizes the result of using category information on the

model’s performance for two datasets and three base models. The Alternat-

ing Least Square (ALS) method based on Matrix Factorization (MF) per-

formed worse than both spectral-based GNN methods on MovieLens data,

and performed better than naive NGCF without category information on

CiteUlike data, but the final performance was not as good as LightGCN

without category information.

49

In the case of NGCF, the model with category data generally performed

better for the two datasets. Interestingly, in the case of LightGCN, the per-

formance of the model using additional category data has decreased.

For these results, we expect the difference to be caused by the presence

or absence of learnable parameters inside the model. NGCF uses learnable

parameters W
(k)
1 and W

(k)
2 in (3.6). On the other hand, LightGCN does not

use learnable parameters other than the first embedding layer. Therefore, in

the case of NGCF, message passing between the additional edges could be

effectively utilized through internal parameters, and in the case of LightGCN,

it can be interpreted that this was not the case.

In conclusion, MF-based methods try to factorize the user-item interac-

tion matrix to obtain the embedding of user and item, so it is difficult to

use additional information of these items. On the other hand, in GNN mod-

els such as NGCF, it is possible to significantly improve the performance of

existing spectral-based GNNs by using information between items, i.e., cate-

gory information, to reflect the graph information of user-items rather than

simply reflecting user-item interaction.

6.3 Salient Object Detection

6.3.1 Datasets

Table 6.5: RGB-D datasets for Salient Object Detection

Dataset Number of Images Train/Test
NJU2K 1485 Train
NLPR 700 Train

RGBD135 135 Test
DUT-RGBD 1200 Test

LFSD 100 Test

We use the dataset NJU2K [58], NLPR [59], RGBD135[60] DUT-RGBD

[61], LFSD [62]. These dataset are widely utilized to benchmark the perfor-

mance of RGB-D Salient Object Detection.

50

6.3.2 Evaluation metrics

In the area of Salient Object Detection, there are five mainly used metrics:

S-measure (Sα), F-measure (Fβ), E-measure (E) and MAE.

E-measure is designed to capture image-level statistics and their local

pixel matching information.

E =
1

W ·H

W∑
i=1

H∑
j=1

ϕFM(i, j) (6.26)

where W and H denote the width and height of the image, and ϕFM is the

enhanced alignment matrix [63].

The S-measure [64] is introduced as a method to evaluate the similarity

in structure between regional perception and object perception.

Sα = αSo + (1− α)Sr (6.27)

where Sr is the region-aware structural similarity measure and So is the

objectp-aware structural similarity measure. In this experiment, we set α =

0.5.

F-measure is the weighted harmonic mean of precision and recall.

Fβ = (1 + β2)
Precision×Recall

β2Precision + Recall
(6.28)

, where β2 = 0.3 is set for our experiment.

Mean Absolute Error (MAE) is utilized to assess the average relative error

at the pixel level between the ground truth and the normalized prediction.

MAE =
1

W ·H

W∑
i=1

H∑
j=1

|S(i, j)−G(i, j)| (6.29)

, where W and H denote the width and height of the image, and G is the

ground-truth and S is the normalized prediction.

51

6.3.3 Experimental Results

In this experiment, unlike Cas-Gnn, instead of using 3 feature embeddings

from shallow to deep features of VGG19, we increased the number to 5 for our

model. Then, the total number of nodes becomes 10 for both RGB and depth

features. The purpose of this change is that we think that GNN’s message

passing can be more effective with more 10 nodes rather than 6.

Next, the training loss of our proposed model is the sum of the LDAG

required for DAG learning as discussed in Section 5.4 and the Salient Object

Detection Loss (LSOD) used by Cas-Gnn. These losses are also trained with

two AdamW [50] optimizers.

However, models trained with two optimizers, such as GANs, often suffer

unstable learning. In fact, if the adjacency matrix A, which we want to learn,

is initialized near zero, it does not seem to learn well. To solve this problem,

we initialized A as an i.i.d. random Gaussians with a mean of 1 and a standard

deviation of 1. Then, we found that the training proceeded normally. As you

can see from the loss curves in Figures 6.10 and 6.11, both losses are steadily

reduced.

The learned DAG matrix as training progresses is shown in Figure 6.12.

As we can see, it starts out with a high amount of 1s and changes shape as

training progresses. Note that in this figure, the rows are the sources and the

columns are the targets. Also, indices from 0 to 4 correspond to RGB nodes

and indices from 5 to 9 correspond to depth nodes. Thus, as shown in (f) of

Figure 6.12, we observe that the proposed model learns a structure in which

overall RGB features affect depth features, and overall depth features affect

depth features that are themselves.

Quantitative & Qualitative Results

Table 6.6: Quantitative comparisons with Cas-Gnn

Ours Cas-Gnn
MAE ↓ Fβ ↑ Sα ↑ E ↑ MAE ↓ Fβ ↑ Sα ↑ E ↑

RGBD135 0.0288 0.9052 0.8833 0.9339 0.028 0.906 0.905 0.947
DUT-RGBD 0.0308 0.9384 0.9109 0.9598 0.025 0.904 0.919 0.952

LFSD 0.0815 0.8475 0.8192 0.8808 0.073 0.864 0.849 0.877

52

Figure 6.10: Train Loss

Figure 6.11: Validation Loss

Table 6.6 compares the results of our model and Cas-Gnn on three test

datasets. Only the DUT-RGBD dominates and the other datasets do not

obtain better results than Cas-Gnn except for the E-measure of LFSD. To

analyze this, it can be considered that the optimal model or DAG matrix

was not obtained since the training was terminated before the training pro-

gressed further to obtain better results. So, if we train enough so that the

training does not stop early, then we expect the improvement. Despite these

results, our model showed some progress on a specific dataset, so we observe

the possibility that our model improves the performance of GNNs through

structure learning.

53

(a) Epoch 19 (b) Epoch 104 (c) Epoch 164

(d) Epoch 189 (e) Epoch 249 (f) Epoch 284

Figure 6.12: The change as the DAG is trained.

Figure 6.13: Salient Object Detection result (Train)

Figure 6.14: Salient Object Detection result (Train)

54

Figure 6.15: Salient Object Detection result (Train)

Figure 6.16: Salient Object Detection result (Train)

Figure 6.17: Salient Object Detection result (Validation)

Figure 6.18: Salient Object Detection result (Validation)

55

Figure 6.19: Salient Object Detection result (Validation)

Figure 6.20: Salient Object Detection result (Validation)

56

6.4 Rain Removal Task

6.4.1 Datasets

Dataset Number of Images Description Real/Synthetic

RainDS 1000
Real rainy images

with pairs of
no rain images.

Real

DQA 206 Real rainy images. Real

RainDS/DQA

The RainDS dataset is real data, specifically a pair of ground-truth data that

has not rained and data that has rained. This RainDS data was obtained by

keeping the camera still, taking pictures, and simulating rain. DQA data is

real data and consists of only rainy data.

6.4.2 Experimental Results

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.21: Derained result 1

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.22: Derained result 2

57

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.23: Derained result 3

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.24: Derained result 4

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.25: Derained result 5

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.26: Derained result 6

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.27: Derained result 7

58

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.28: Derained result 8

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.29: Derained result 9

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.30: Derained result 10

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.31: Derained result 11

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.32: Derained result 12

59

The above results in Figures [?] through [?] show that the derained results

are qualitatively satisfactory. If we analyze the characteristics of these images,

we can observe that they are not images with too heavy rain, but have

moderate amount of rain, and the segmentation results are also not bad in

the first stage of a proposed method.

However, the results are not good for the subsequent image results, and

overall, it seems that the image inpainting itself is difficult due to too heavy

rain. In addition, it is thought to be a problem because it does not segment

well from the first stage due to the large amount of rain.

In the current experiment, we trained segmentation using only paired rain

data (RainDS) and used the pretrained model of LaMa for image inpainting

without training. However, in the future work, we expect better results if

we train a model that can segment well across domains through frequency

analysis between domains, and also train only rainstreak-similar masks other

than the inpainting mask used in LaMa.

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.33: Failure case 1

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.34: Failure case 2

60

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.35: Failure case 3

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.36: Failure case 4

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.37: Failure case 5

(a) Ground-truth (b) Rainy image (c) Derained image

Figure 6.38: Failure case 6

61

(a) Rainy image (b) Derained image

Figure 6.39: Failure case 7 (DQA dataset)

(a) Rainy image (b) Derained image

Figure 6.40: Failure case 8 (DQA dataset)

(a) Rainy image (b) Derained image

Figure 6.41: Failure case 9 (DQA dataset)

62

Chapter 7

Conclusion

This dissertation focuses on theoretical analysis and practical performance

evaluation of spectral-based graph neural networks. The relationship be-

tween the spectra of a graph Laplacian and the convolution operation in

graph neural networks is examined. The study investigates the expressive

power of graph convolutional models and explores spectral graph convolu-

tion methods to achieve comparable expressiveness. The findings demonstrate

that spectral-based graph neural networks can effectively handle graph-based

tasks.

In addition, this dissertation discusses potential future improvements to

enhance their practical performance and how to develop more diverse analysis

methods. This discussion relates the fact that the spectral theory of the

Laplacian can act as a partial alternative to the Fourier transform when

dealing with situations where there is insufficient symmetry to utilize Fourier-

analytic methods. Therefore, this might be particularly relevant in scenarios

such as manifolds without any translation symmetries, for instance general

graphs addressed in Section 4.2.

Furthermore, the study extends the application of these networks to var-

ious area such as computer vision tasks and recommendation systems, and

compares their expressiveness to existing approaches. Several applications

utilizing graphs are presented, including experiments on salient object de-

tection using directed acyclic graphs and rain removal tasks. The empirical

63

results illustrate the benefits of incorporating graph theory and Fourier anal-

ysis knowledge into the model.

64

Bibliography

[1] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and

locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,

2013.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural

networks on graphs with fast localized spectral filtering,” Advances in

neural information processing systems, vol. 29, 2016.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” 2017.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-

gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903,

2017.

[5] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph

collaborative filtering,” in Proceedings of the 42nd International ACM

SIGIR Conference on Research and Development in Information Re-

trieval, SIGIR’19, (New York, NY, USA), p. 165–174, Association for

Computing Machinery, 2019.

[6] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:

Simplifying and powering graph convolution network for recommenda-

tion,” in Proceedings of the 43rd International ACM SIGIR conference

on research and development in Information Retrieval, pp. 639–648,

2020.

[7] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: Bringing order to the web.,” tech. rep., Stanford infolab, 1999.

65

[8] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in

Proceedings of the 22nd acm sigkdd international conference on knowl-

edge discovery and data mining, pp. 785–794, 2016.

[9] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-

Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”

Advances in neural information processing systems, vol. 30, 2017.

[10] P. B. Thorat, R. Goudar, and S. Barve, “Survey on collaborative filter-

ing, content-based filtering and hybrid recommendation system,” Inter-

national Journal of Computer Applications, vol. 110, no. 4, pp. 31–36,

2015.

[11] OpenAI, “Gpt-4 technical report,” 2023.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.

[13] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision gnn: An image

is worth graph of nodes,” arXiv preprint arXiv:2206.00272, 2022.

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, and

T. Unterthiner, “Transformers for image recognition at scale,” arXiv

preprint arXiv:2010.11929, 2020.

[15] J. B. Estrach, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks

and deep locally connected networks on graphs,” in 2nd International

Conference on Learning Representations, ICLR, vol. 2014, 2014.

[16] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent vari-

able models for structured data,” in International conference on machine

learning, pp. 2702–2711, PMLR, 2016.

[17] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on

Artifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159,

2020.

66

[18] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,

“Neural message passing for quantum chemistry,” in Proceedings of the

34th International Conference on Machine Learning (D. Precup and

Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research,

pp. 1263–1272, PMLR, 06–11 Aug 2017.

[19] C. Merkwirth and T. Lengauer, “Automatic generation of complemen-

tary descriptors with molecular graph networks,” Journal of chemical

information and modeling, vol. 45, no. 5, pp. 1159–1168, 2005.

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-

dini, “The graph neural network model,” IEEE Transactions on Neural

Networks, vol. 20, no. 1, pp. 61–80, 2009.

[21] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural

networks for graphs,” in International conference on machine learning,

pp. 2014–2023, PMLR, 2016.

[22] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional

networks,” in Proceedings of the 24th ACM SIGKDD international con-

ference on knowledge discovery & data mining, pp. 1416–1424, 2018.

[23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-

ing on large graphs,” Advances in neural information processing systems,

vol. 30, 2017.

[24] Z. Liu and J. Zhou, “Introduction to graph neural networks,” Synthesis

Lectures on Artificial Intelligence and Machine Learning, vol. 14, no. 2,

pp. 1–127, 2020.

[25] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on

graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[26] N. Manouselis, H. Drachsler, R. Vuorikari, H. Hummel, R. Koper,

F. Ricci, L. Rokach, B. Shapira, and P. Kantor, “Recommender systems

handbook,” Recommender Systems in Technology Enhanced Learning,

pp. 387–415, 2011.

67

[27] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural col-

laborative filtering,” in Proceedings of the 26th international conference

on world wide web, pp. 173–182, 2017.

[28] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks

in recommender systems: a survey,” ACM Computing Surveys, vol. 55,

no. 5, pp. 1–37, 2022.

[29] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “Dags with

no tears: Continuous optimization for structure learning,” Advances in

neural information processing systems, vol. 31, 2018.

[30] Y. Yu, T. Gao, N. Yin, and Q. Ji, “Dags with no curl: An efficient dag

structure learning approach,” in International Conference on Machine

Learning, pp. 12156–12166, PMLR, 2021.

[31] D. M. Chickering, “Learning bayesian networks is np-complete,” Learn-

ing from data: Artificial intelligence and statistics V, pp. 121–130, 1996.

[32] Y. Yu, J. Chen, T. Gao, and M. Yu, “Dag-gnn: Dag structure learning

with graph neural networks,” in International Conference on Machine

Learning, pp. 7154–7163, PMLR, 2019.

[33] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on

graphs via spectral graph theory,” Applied and Computational Harmonic

Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[34] D. Bokde, S. Girase, and D. Mukhopadhyay, “Matrix factorization model

in collaborative filtering algorithms: A survey,” Procedia Computer Sci-

ence, vol. 49, pp. 136–146, 2015.

[35] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit

feedback datasets,” in 2008 Eighth IEEE international conference on

data mining, pp. 263–272, Ieee, 2008.

[36] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li, “Salient object

detection: A survey,” Computational visual media, vol. 5, pp. 117–150,

2019.

68

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-

works for biomedical image segmentation,” in Medical Image Computing

and Computer-Assisted Intervention–MICCAI 2015: 18th International

Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III

18, pp. 234–241, Springer, 2015.

[38] A. Luo, X. Li, F. Yang, Z. Jiao, H. Cheng, and S. Lyu, “Cascade graph

neural networks for rgb-d salient object detection,” in Computer Vision–

ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,

2020, Proceedings, Part XII 16, pp. 346–364, Springer, 2020.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[40] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng, “Progressive image

deraining networks: A better and simpler baseline,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition,

pp. 3937–3946, 2019.

[41] B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffusion restora-

tion models,” arXiv preprint arXiv:2201.11793, 2022.

[42] R. Suvorov, E. Logacheva, A. Mashikhin, A. Remizova, A. Ashukha,

A. Silvestrov, N. Kong, H. Goka, K. Park, and V. Lempitsky,

“Resolution-robust large mask inpainting with fourier convolutions,” in

Proceedings of the IEEE/CVF winter conference on applications of com-

puter vision, pp. 2149–2159, 2022.

[43] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and

L. Van Gool, “Repaint: Inpainting using denoising diffusion probabilis-

tic models,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 11461–11471, 2022.

[44] I. Makarov and G. Borisenko, “Depth inpainting via vision transformer,”

in 2021 IEEE International Symposium on Mixed and Augmented Real-

ity Adjunct (ISMAR-Adjunct), pp. 286–291, IEEE, 2021.

69

[45] Y. Deng, S. Hui, S. Zhou, D. Meng, and J. Wang, “T-former: An effi-

cient transformer for image inpainting,” in Proceedings of the 30th ACM

International Conference on Multimedia, pp. 6559–6568, 2022.

[46] L. Chi, B. Jiang, and Y. Mu, “Fast fourier convolution,” Advances in

Neural Information Processing Systems, vol. 33, pp. 4479–4488, 2020.

[47] S.-H. Yoon, C. Kim, and K.-H. Kim, “Multi-dimensional limiting process

for three-dimensional flow physics analyses,” Journal of Computational

Physics, vol. 227, no. 12, pp. 6001–6043, 2008.

[48] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on

point sets for 3d classification and segmentation,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 652–

660, 2017.

[49] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[50] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”

arXiv preprint arXiv:1711.05101, 2017.

[51] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and

A. A. Bharath, “Generative adversarial networks: An overview,” IEEE

signal processing magazine, vol. 35, no. 1, pp. 53–65, 2018.

[52] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A

10 million image database for scene recognition,” IEEE transactions on

pattern analysis and machine intelligence, vol. 40, no. 6, pp. 1452–1464,

2017.

[53] F. M. Harper and J. A. Konstan, “The movielens datasets: History and

context,” ACM Trans. Interact. Intell. Syst., vol. 5, dec 2015.

[54] H. Wang, B. Chen, and W.-J. Li, “Collaborative topic regression with

social regularization for tag recommendation,” in Proceedings of the

Twenty-Third International Joint Conference on Artificial Intelligence,

IJCAI ’13, p. 2719–2725, AAAI Press, 2013.

70

[55] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of

ir techniques,” ACM Transactions on Information Systems (TOIS),

vol. 20, no. 4, pp. 422–446, 2002.

[56] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware ex-

plainable recommendation by modeling aspects,” in Proceedings of the

24th ACM International on Conference on Information and Knowledge

Management, pp. 1661–1670, 2015.

[57] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:

Bayesian personalized ranking from implicit feedback,” in Proceedings

of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,

UAI ’09, (Arlington, Virginia, USA), p. 452–461, AUAI Press, 2009.

[58] R. Ju, L. Ge, W. Geng, T. Ren, and G. Wu, “Depth saliency based

on anisotropic center-surround difference,” in 2014 IEEE international

conference on image processing (ICIP), pp. 1115–1119, IEEE, 2014.

[59] H. Peng, B. Li, W. Xiong, W. Hu, and R. Ji, “Rgbd salient object

detection: A benchmark and algorithms,” in Computer Vision–ECCV

2014: 13th European Conference, Zurich, Switzerland, September 6-12,

2014, Proceedings, Part III 13, pp. 92–109, Springer, 2014.

[60] Y. Cheng, H. Fu, X. Wei, J. Xiao, and X. Cao, “Depth enhanced saliency

detection method,” in Proceedings of international conference on inter-

net multimedia computing and service, pp. 23–27, 2014.

[61] Y. Piao, X. Li, M. Zhang, J. Yu, and H. Lu, “Saliency detection via

depth-induced cellular automata on light field,” IEEE Transactions on

Image Processing, vol. 29, pp. 1879–1889, 2019.

[62] N. Li, J. Ye, Y. Ji, H. Ling, and J. Yu, “Saliency detection on light field,”

in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 2806–2813, 2014.

[63] D.-P. Fan, C. Gong, Y. Cao, B. Ren, M.-M. Cheng, and A. Borji,

“Enhanced-alignment measure for binary foreground map evaluation,”

arXiv preprint arXiv:1805.10421, 2018.

71

[64] D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, and A. Borji, “Structure-

measure: A new way to evaluate foreground maps,” in Proceedings of

the IEEE international conference on computer vision, pp. 4548–4557,

2017.

72

국문초록

본 눈문에서는 스펙트럼 기반 그래프 인공신경망의 이론적 분석과 그 실

용적 성능에 대해 다룬다. 그래프 신경망에서의 컨볼루션 연산과 라플라시안

그래프의 스펙트럼 간의 관계를 조사하고, 어떤 가정들 하에서 그래프 컨볼루

션이 정의될 수 있으며, 그러한 가정 아래에서 어떤 방식으로 그래프 컨볼루

션을 정확히 표현할 수 있는 지에 대해 분석하였다.

이러한 분석을 기반으로 다양한 그래프 컨볼루션을 실험하여 모델의 표현

력과 성능을 논의하였다. 결과적으로, 스펙트럼 기반 그래프 신경망이 그래프

기반 작업에서 우수한 성능을 보여줌을 확인하며, 실제 성능을 향상시키기 위

한 개선 가능한 부분에 대해 논의한다. 더불어, 이론과 적용 영역을 확장하여

그래프 기반 작업뿐만 아니라 전통적인 컴퓨터 비전 작업 등에도 적용할 수

있음을 보여주어 이러한 방식의 확장성을 보여주었다.

마지막으로 이 논문에서는 그래프를 활용한 몇 가지 응용 사례와 결과를

제시하였다.구체적인실험으로방향성비순환그래프(DAG)를이용한두드러

진물체검출작업에대한실험을수행하였다.이외에도푸리에변환을활용한

모듈을 활용하여 비를 제거하는 태스크 같은 실용적 분야에 적용한 모델과

실험 결과들을 살펴본다. 이러한 실험들을 통해, 그래프 이론과 푸리에 분석

지식과 같은 수학적 지식을 모델에 통합하고 이를 분석하는 것이 성능 향상에

유용함을 실증적으로 보여주었다.

주요어 :스펙트럼기반그래프인공신경망,그래프인공신경망,협업필터링,

두드러진 물체 검출, 빗물 제거 작업

학번 : 2016–25263

73

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Neural Networks
	2.1.1 Mathematical Terminologies
	2.1.2 Graph Message Passing
	2.1.3 Spatial-based Graph Neural Networks
	2.1.4 Spectral-based Graph Neural Networks

	2.2 Collaborative Filtering
	2.3 Directed Acyclic Graphs Learning

	3 Related Works
	3.1 Spectral-based Graph Neural Networks
	3.1.1 Spectral Network
	3.1.2 ChebNet
	3.1.3 Graph Convolutional Networks

	3.2 Collaborative Filtering
	3.3 Salient Object Detection
	3.4 Rain Removal Tasks

	4 Spectral Analysis of Graph Neural Networks
	4.1 Schwartz space S (Rd) and Ring graph Rn
	4.2 Convolution on General Graphs

	5 Proposed Method
	5.1 Proposal Background
	5.2 Spectral GNNs to Computational Fluid Dynamics
	5.3 Collaborative Filtering
	5.4 Salient Object Detection
	5.5 Rain Removal Task

	6 Experiments
	6.1 Spectral GNNs to Computational Fluid Dynamics
	6.1.1 Datasets
	6.1.2 Experimental Results

	6.2 Collaborative Filtering
	6.2.1 Datasets
	6.2.2 Evaluation Metric
	6.2.3 Bayesian Personalized Ranking
	6.2.4 Experimental Results

	6.3 Salient Object Detection
	6.3.1 Datasets
	6.3.2 Evaluation metrics
	6.3.3 Experimental Results

	6.4 Rain Removal Task
	6.4.1 Datasets
	6.4.2 Experimental Results

	7 Conclusion
	References
	Abstract (in Korean)

<startpage>8
Abstract
1 Introduction 1
2 Preliminaries 4
 2.1 Graph Neural Networks 4
 2.1.1 Mathematical Terminologies 4
 2.1.2 Graph Message Passing 5
 2.1.3 Spatial-based Graph Neural Networks 6
 2.1.4 Spectral-based Graph Neural Networks 8
 2.2 Collaborative Filtering 8
 2.3 Directed Acyclic Graphs Learning 10
3 Related Works 12
 3.1 Spectral-based Graph Neural Networks 12
 3.1.1 Spectral Network 12
 3.1.2 ChebNet 12
 3.1.3 Graph Convolutional Networks 13
 3.2 Collaborative Filtering 13
 3.3 Salient Object Detection 15
 3.4 Rain Removal Tasks 17
4 Spectral Analysis of Graph Neural Networks 20
 4.1 Schwartz space S (Rd) and Ring graph Rn 20
 4.2 Convolution on General Graphs 25
5 Proposed Method 30
 5.1 Proposal Background 30
 5.2 Spectral GNNs to Computational Fluid Dynamics 31
 5.3 Collaborative Filtering 33
 5.4 Salient Object Detection 34
 5.5 Rain Removal Task 36
6 Experiments 39
 6.1 Spectral GNNs to Computational Fluid Dynamics 39
 6.1.1 Datasets 39
 6.1.2 Experimental Results 40
 6.2 Collaborative Filtering 45
 6.2.1 Datasets 45
 6.2.2 Evaluation Metric 46
 6.2.3 Bayesian Personalized Ranking 47
 6.2.4 Experimental Results 49
 6.3 Salient Object Detection 50
 6.3.1 Datasets 50
 6.3.2 Evaluation metrics 51
 6.3.3 Experimental Results 52
 6.4 Rain Removal Task 57
 6.4.1 Datasets 57
 6.4.2 Experimental Results 57
7 Conclusion 63
References 65
Abstract (in Korean) 73
</body>

